Science.gov

Sample records for agent-based computer simulation

  1. Thread Group Multithreading: Accelerating the Computation of an Agent-Based Power System Modeling and Simulation Tool -- C GridLAB-D

    SciTech Connect

    Jin, Shuangshuang; Chassin, David P.

    2014-01-06

    GridLAB-DTM is an open source next generation agent-based smart-grid simulator that provides unprecedented capability to model the performance of smart grid technologies. Over the past few years, GridLAB-D has been used to conduct important analyses of smart grid concepts, but it is still quite limited by its computational performance. In order to break through the performance bottleneck to meet the need for large scale power grid simulations, we develop a thread group mechanism to implement highly granular multithreaded computation in GridLAB-D. We achieve close to linear speedups on multithreading version compared against the single-thread version of the same code running on general purpose multi-core commodity for a benchmark simple house model. The performance of the multithreading code shows favorable scalability properties and resource utilization, and much shorter execution time for large-scale power grid simulations.

  2. Incorporating fault tolerance in distributed agent based systems by simulating bio-computing model of stress pathways

    NASA Astrophysics Data System (ADS)

    Bansal, Arvind K.

    2006-05-01

    Bio-computing model of 'Distributed Multiple Intelligent Agents Systems' (BDMIAS) models agents as genes, a cooperating group of agents as operons - commonly regulated groups of genes, and the complex task as a set of interacting pathways such that the pathways involve multiple cooperating operons. The agents (or groups of agents) interact with each other using message passing and pattern based bindings that may reconfigure agent's function temporarily. In this paper, a technique has been described for incorporating fault tolerance in BDMIAS. The scheme is based upon simulating BDMIAS, exploiting the modeling of biological stress pathways, integration of fault avoidance, and distributed fault recovery of the crashed agents. Stress pathways are latent pathways in biological system that gets triggered very quickly, regulate the complex biological system by temporarily regulating or inactivating the undesirable pathways, and are essential to avoid catastrophic failures. Pattern based interaction between messages and agents allow multiple agents to react concurrently in response to single condition change represented by a message broadcast. The fault avoidance exploits the integration of the intelligent processing rate control using message based loop feedback and temporary reconfiguration that alters the data flow between functional modules within an agent, and may alter. The fault recovery exploits the concept of semi passive shadow agents - one on the local machine and other on the remote machine, dynamic polling of machines, logically time stamped messages to avoid message losses, and distributed archiving of volatile part of agent state on distributed machines. Various algorithms have been described.

  3. Simulating Cancer Growth with Multiscale Agent-Based Modeling

    PubMed Central

    Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.

    2014-01-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698

  4. Agent-based modeling and simulation Part 3 : desktop ABMS.

    SciTech Connect

    Macal, C. M.; North, M. J.; Decision and Information Sciences

    2007-01-01

    Agent-based modeling and simulation (ABMS) is a new approach to modeling systems comprised of autonomous, interacting agents. ABMS promises to have far-reaching effects on the way that businesses use computers to support decision-making and researchers use electronic laboratories to support their research. Some have gone so far as to contend that ABMS 'is a third way of doing science,' in addition to traditional deductive and inductive reasoning (Axelrod 1997b). Computational advances have made possible a growing number of agent-based models across a variety of application domains. Applications range from modeling agent behavior in the stock market, supply chains, and consumer markets, to predicting the spread of epidemics, the threat of bio-warfare, and the factors responsible for the fall of ancient civilizations. This tutorial describes the theoretical and practical foundations of ABMS, identifies toolkits and methods for developing agent models, and illustrates the development of a simple agent-based model of shopper behavior using spreadsheets.

  5. Agent-Based Simulations for Project Management

    NASA Technical Reports Server (NTRS)

    White, J. Chris; Sholtes, Robert M.

    2011-01-01

    Currently, the most common approach used in project planning tools is the Critical Path Method (CPM). While this method was a great improvement over the basic Gantt chart technique being used at the time, it now suffers from three primary flaws: (1) task duration is an input, (2) productivity impacts are not considered , and (3) management corrective actions are not included. Today, computers have exceptional computational power to handle complex simulations of task e)(eculion and project management activities (e.g ., dynamically changing the number of resources assigned to a task when it is behind schedule). Through research under a Department of Defense contract, the author and the ViaSim team have developed a project simulation tool that enables more realistic cost and schedule estimates by using a resource-based model that literally turns the current duration-based CPM approach "on its head." The approach represents a fundamental paradigm shift in estimating projects, managing schedules, and reducing risk through innovative predictive techniques.

  6. Agent-based simulation of a financial market

    NASA Astrophysics Data System (ADS)

    Raberto, Marco; Cincotti, Silvano; Focardi, Sergio M.; Marchesi, Michele

    2001-10-01

    This paper introduces an agent-based artificial financial market in which heterogeneous agents trade one single asset through a realistic trading mechanism for price formation. Agents are initially endowed with a finite amount of cash and a given finite portfolio of assets. There is no money-creation process; the total available cash is conserved in time. In each period, agents make random buy and sell decisions that are constrained by available resources, subject to clustering, and dependent on the volatility of previous periods. The model proposed herein is able to reproduce the leptokurtic shape of the probability density of log price returns and the clustering of volatility. Implemented using extreme programming and object-oriented technology, the simulator is a flexible computational experimental facility that can find applications in both academic and industrial research projects.

  7. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  8. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  9. High performance computing for three-dimensional agent-based molecular models.

    PubMed

    Pérez-Rodríguez, G; Pérez-Pérez, M; Fdez-Riverola, F; Lourenço, A

    2016-07-01

    Agent-based simulations are increasingly popular in exploring and understanding cellular systems, but the natural complexity of these systems and the desire to grasp different modelling levels demand cost-effective simulation strategies and tools. In this context, the present paper introduces novel sequential and distributed approaches for the three-dimensional agent-based simulation of individual molecules in cellular events. These approaches are able to describe the dimensions and position of the molecules with high accuracy and thus, study the critical effect of spatial distribution on cellular events. Moreover, two of the approaches allow multi-thread high performance simulations, distributing the three-dimensional model in a platform independent and computationally efficient way. Evaluation addressed the reproduction of molecular scenarios and different scalability aspects of agent creation and agent interaction. The three approaches simulate common biophysical and biochemical laws faithfully. The distributed approaches show improved performance when dealing with large agent populations while the sequential approach is better suited for small to medium size agent populations. Overall, the main new contribution of the approaches is the ability to simulate three-dimensional agent-based models at the molecular level with reduced implementation effort and moderate-level computational capacity. Since these approaches have a generic design, they have the major potential of being used in any event-driven agent-based tool. PMID:27372059

  10. High performance computing for three-dimensional agent-based molecular models.

    PubMed

    Pérez-Rodríguez, G; Pérez-Pérez, M; Fdez-Riverola, F; Lourenço, A

    2016-07-01

    Agent-based simulations are increasingly popular in exploring and understanding cellular systems, but the natural complexity of these systems and the desire to grasp different modelling levels demand cost-effective simulation strategies and tools. In this context, the present paper introduces novel sequential and distributed approaches for the three-dimensional agent-based simulation of individual molecules in cellular events. These approaches are able to describe the dimensions and position of the molecules with high accuracy and thus, study the critical effect of spatial distribution on cellular events. Moreover, two of the approaches allow multi-thread high performance simulations, distributing the three-dimensional model in a platform independent and computationally efficient way. Evaluation addressed the reproduction of molecular scenarios and different scalability aspects of agent creation and agent interaction. The three approaches simulate common biophysical and biochemical laws faithfully. The distributed approaches show improved performance when dealing with large agent populations while the sequential approach is better suited for small to medium size agent populations. Overall, the main new contribution of the approaches is the ability to simulate three-dimensional agent-based models at the molecular level with reduced implementation effort and moderate-level computational capacity. Since these approaches have a generic design, they have the major potential of being used in any event-driven agent-based tool.

  11. On agent-based modeling and computational social science

    PubMed Central

    Conte, Rosaria; Paolucci, Mario

    2014-01-01

    In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS. PMID:25071642

  12. Agent-Based Modeling and Simulation on Emergency Evacuation

    NASA Astrophysics Data System (ADS)

    Ren, Chuanjun; Yang, Chenghui; Jin, Shiyao

    Crowd stampedes and evacuation induced by panic caused by emergences often lead to fatalities as people are crushed, injured, trampled or even dead. Such phenomena may be triggered in life-threatening situations such as fires, explosions in crowded buildings. Emergency evacuation simulation has recently attracted the interest of a rapidly increasing number of scientists. This paper presents an Agent-Based Modeling and Simulation using Repast software to construct crowd evacuations for emergency response from an area under a fire. Various types of agents and different attributes of agents are designed in contrast to traditional modeling. The attributes that govern the characteristics of the people are studied and tested by iterative simulations. Simulations are also conducted to demonstrate the effect of various parameters of agents. Some interesting results were observed such as "faster is slower" and the ignorance of available exits. At last, simulation results suggest practical ways of minimizing the harmful consequences of such events and the existence of an optimal escape strategy.

  13. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  14. Agent-based modeling to simulate the dengue spread

    NASA Astrophysics Data System (ADS)

    Deng, Chengbin; Tao, Haiyan; Ye, Zhiwei

    2008-10-01

    In this paper, we introduce a novel method ABM in simulating the unique process for the dengue spread. Dengue is an acute infectious disease with a long history of over 200 years. Unlike the diseases that can be transmitted directly from person to person, dengue spreads through a must vector of mosquitoes. There is still no any special effective medicine and vaccine for dengue up till now. The best way to prevent dengue spread is to take precautions beforehand. Thus, it is crucial to detect and study the dynamic process of dengue spread that closely relates to human-environment interactions where Agent-Based Modeling (ABM) effectively works. The model attempts to simulate the dengue spread in a more realistic way in the bottom-up way, and to overcome the limitation of ABM, namely overlooking the influence of geographic and environmental factors. Considering the influence of environment, Aedes aegypti ecology and other epidemiological characteristics of dengue spread, ABM can be regarded as a useful way to simulate the whole process so as to disclose the essence of the evolution of dengue spread.

  15. Patient-centered appointment scheduling using agent-based simulation.

    PubMed

    Turkcan, Ayten; Toscos, Tammy; Doebbeling, Brad N

    2014-01-01

    Enhanced access and continuity are key components of patient-centered care. Existing studies show that several interventions such as providing same day appointments, walk-in services, after-hours care, and group appointments, have been used to redesign the healthcare systems for improved access to primary care. However, an intervention focusing on a single component of care delivery (i.e. improving access to acute care) might have a negative impact other components of the system (i.e. reduced continuity of care for chronic patients). Therefore, primary care clinics should consider implementing multiple interventions tailored for their patient population needs. We collected rapid ethnography and observations to better understand clinic workflow and key constraints. We then developed an agent-based simulation model that includes all access modalities (appointments, walk-ins, and after-hours access), incorporate resources and key constraints and determine the best appointment scheduling method that improves access and continuity of care. This paper demonstrates the value of simulation models to test a variety of alternative strategies to improve access to care through scheduling. PMID:25954423

  16. Serious games experiment toward agent-based simulation

    USGS Publications Warehouse

    Wein, Anne; Labiosa, William

    2013-01-01

    We evaluate the potential for serious games to be used as a scientifically based decision-support product that supports the United States Geological Survey’s (USGS) mission--to provide integrated, unbiased scientific information that can make a substantial contribution to societal well-being for a wide variety of complex environmental challenges. Serious or pedagogical games are an engaging way to educate decisionmakers and stakeholders about environmental challenges that are usefully informed by natural and social scientific information and knowledge and can be designed to promote interactive learning and exploration in the face of large uncertainties, divergent values, and complex situations. We developed two serious games that use challenging environmental-planning issues to demonstrate and investigate the potential contributions of serious games to inform regional-planning decisions. Delta Skelta is a game emulating long-term integrated environmental planning in the Sacramento-San Joaquin Delta, California, that incorporates natural hazards (flooding and earthquakes) and consequences for California water supplies amidst conflicting water interests. Age of Ecology is a game that simulates interactions between economic and ecologic processes, as well as natural hazards while implementing agent-based modeling. The content of these games spans the USGS science mission areas related to water, ecosystems, natural hazards, land use, and climate change. We describe the games, reflect on design and informational aspects, and comment on their potential usefulness. During the process of developing these games, we identified various design trade-offs involving factual information, strategic thinking, game-winning criteria, elements of fun, number and type of players, time horizon, and uncertainty. We evaluate the two games in terms of accomplishments and limitations. Overall, we demonstrated the potential for these games to usefully represent scientific information

  17. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  18. An agent-based computational model of the spread of tuberculosis

    NASA Astrophysics Data System (ADS)

    de Espíndola, Aquino L.; Bauch, Chris T.; Troca Cabella, Brenno C.; Souto Martinez, Alexandre

    2011-05-01

    In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed.

  19. Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.

    2014-12-01

    Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.

  20. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  1. A Systematic Review of Agent-Based Modelling and Simulation Applications in the Higher Education Domain

    ERIC Educational Resources Information Center

    Gu, X.; Blackmore, K. L.

    2015-01-01

    This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…

  2. AN AGENT-BASED SIMULATION STUDY OF A COMPLEX ADAPTIVE COLLABORATION NETWORK

    SciTech Connect

    Ozmen, Ozgur; Smith, Jeffrey; Yilmaz, Levent

    2013-01-01

    One of the most significant problems in organizational scholarship is to discern how social collectives govern, organize, and coordinate the actions of individuals to achieve collective outcomes. The collectives are usually interpreted as complex adaptive systems (CAS). The understanding of CAS is more likely to arise with the help of computer-based simulations. In this tutorial, using agent-based modeling approach, a complex adaptive social communication network model is introduced. The objective is to present the underlying dynamics of the system in a form of computer simulation that enables analyzing the impacts of various mechanisms on network topologies and emergent behaviors. The ultimate goal is to further our understanding of the dynamics in the system and facilitate developing informed policies for decision-makers.

  3. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    PubMed

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  4. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    PubMed

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526

  5. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery

    PubMed Central

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526

  6. An agent-based epidemic simulation of social behaviors affecting HIV transmission among Taiwanese homosexuals.

    PubMed

    Huang, Chung-Yuan

    2015-01-01

    Computational simulations are currently used to identify epidemic dynamics, to test potential prevention and intervention strategies, and to study the effects of social behaviors on HIV transmission. The author describes an agent-based epidemic simulation model of a network of individuals who participate in high-risk sexual practices, using number of partners, condom usage, and relationship length to distinguish between high- and low-risk populations. Two new concepts-free links and fixed links-are used to indicate tendencies among individuals who either have large numbers of short-term partners or stay in long-term monogamous relationships. An attempt was made to reproduce epidemic curves of reported HIV cases among male homosexuals in Taiwan prior to using the agent-based model to determine the effects of various policies on epidemic dynamics. Results suggest that when suitable adjustments are made based on available social survey statistics, the model accurately simulates real-world behaviors on a large scale.

  7. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  8. Automated multi-objective calibration of biological agent-based simulations.

    PubMed

    Read, Mark N; Alden, Kieran; Rose, Louis M; Timmis, Jon

    2016-09-01

    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate

  9. Automated multi-objective calibration of biological agent-based simulations.

    PubMed

    Read, Mark N; Alden, Kieran; Rose, Louis M; Timmis, Jon

    2016-09-01

    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate

  10. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    NASA Astrophysics Data System (ADS)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-06-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.

  11. An agent-based computational model for tuberculosis spreading on age-structured populations

    NASA Astrophysics Data System (ADS)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  12. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  13. Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors

    SciTech Connect

    Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Message Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.

  14. A Scaffolding Framework to Support Learning of Emergent Phenomena Using Multi-Agent-Based Simulation Environments

    NASA Astrophysics Data System (ADS)

    Basu, Satabdi; Sengupta, Pratim; Biswas, Gautam

    2015-04-01

    Students from middle school to college have difficulties in interpreting and understanding complex systems such as ecological phenomena. Researchers have suggested that students experience difficulties in reconciling the relationships between individuals, populations, and species, as well as the interactions between organisms and their environment in the ecosystem. Multi-agent-based computational models (MABMs) can explicitly capture agents and their interactions by representing individual actors as computational objects with assigned rules. As a result, the collective aggregate-level behavior of the population dynamically emerges from simulations that generate the aggregation of these interactions. Past studies have used a variety of scaffolds to help students learn ecological phenomena. Yet, there is no theoretical framework that supports the systematic design of scaffolds to aid students' learning in MABMs. Our paper addresses this issue by proposing a comprehensive framework for the design, analysis, and evaluation of scaffolding to support students' learning of ecology in a MABM. We present a study in which middle school students used a MABM to investigate and learn about a desert ecosystem. We identify the different types of scaffolds needed to support inquiry learning activities in this simulation environment and use our theoretical framework to demonstrate the effectiveness of our scaffolds in helping students develop a deep understanding of the complex ecological behaviors represented in the simulation..

  15. Agent-Based Knowledge Discovery for Modeling and Simulation

    SciTech Connect

    Haack, Jereme N.; Cowell, Andrew J.; Marshall, Eric J.; Fligg, Alan K.; Gregory, Michelle L.; McGrath, Liam R.

    2009-09-15

    This paper describes an approach to using agent technology to extend the automated discovery mechanism of the Knowledge Encapsulation Framework (KEF). KEF is a suite of tools to enable the linking of knowledge inputs (relevant, domain-specific evidence) to modeling and simulation projects, as well as other domains that require an effective collaborative workspace for knowledge-based tasks. This framework can be used to capture evidence (e.g., trusted material such as journal articles and government reports), discover new evidence (covering both trusted and social media), enable discussions surrounding domain-specific topics and provide automatically generated semantic annotations for improved corpus investigation. The current KEF implementation is presented within a semantic wiki environment, providing a simple but powerful collaborative space for team members to review, annotate, discuss and align evidence with their modeling frameworks. The novelty in this approach lies in the combination of automatically tagged and user-vetted resources, which increases user trust in the environment, leading to ease of adoption for the collaborative environment.

  16. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach.

  17. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. PMID:25683347

  18. Juxtaposition of System Dynamics and Agent-Based Simulation for a Case Study in Immunosenescence

    PubMed Central

    Figueredo, Grazziela P.

    2015-01-01

    Advances in healthcare and in the quality of life significantly increase human life expectancy. With the aging of populations, new un-faced challenges are brought to science. The human body is naturally selected to be well-functioning until the age of reproduction to keep the species alive. However, as the lifespan extends, unseen problems due to the body deterioration emerge. There are several age-related diseases with no appropriate treatment; therefore, the complex aging phenomena needs further understanding. It is known that immunosenescence is highly correlated to the negative effects of aging. In this work we advocate the use of simulation as a tool to assist the understanding of immune aging phenomena. In particular, we are comparing system dynamics modelling and simulation (SDMS) and agent-based modelling and simulation (ABMS) for the case of age-related depletion of naive T cells in the organism. We address the following research questions: Which simulation approach is more suitable for this problem? Can these approaches be employed interchangeably? Is there any benefit of using one approach compared to the other? Results show that both simulation outcomes closely fit the observed data and existing mathematical model; and the likely contribution of each of the naive T cell repertoire maintenance method can therefore be estimated. The differences observed in the outcomes of both approaches are due to the probabilistic character of ABMS contrasted to SDMS. However, they do not interfere in the overall expected dynamics of the populations. In this case, therefore, they can be employed interchangeably, with SDMS being simpler to implement and taking less computational resources. PMID:25807273

  19. Applying GIS and high performance agent-based simulation for managing an Old World Screwworm fly invasion of Australia.

    PubMed

    Welch, M C; Kwan, P W; Sajeev, A S M

    2014-10-01

    Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised. PMID:24705073

  20. Applying GIS and high performance agent-based simulation for managing an Old World Screwworm fly invasion of Australia.

    PubMed

    Welch, M C; Kwan, P W; Sajeev, A S M

    2014-10-01

    Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised.

  1. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.

    PubMed

    Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio

    2016-08-24

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.

  2. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.

    PubMed

    Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio

    2016-01-01

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services. PMID:27563911

  3. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass

    PubMed Central

    Sánchez, Jesús M.; Carrera, Álvaro; Iglesias, Carlos Á.; Serrano, Emilio

    2016-01-01

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services. PMID:27563911

  4. Use of agent-based simulations to design and interpret HIV clinical trials.

    PubMed

    Cuadros, Diego F; Abu-Raddad, Laith J; Awad, Susanne F; García-Ramos, Gisela

    2014-07-01

    In this study, we illustrate the utility of an agent-based simulation to inform a trial design and how this supports outcome interpretation of randomized controlled trials (RCTs). We developed agent-based Monte Carlo models to simulate existing landmark HIV RCTs, such as the Partners in Prevention HSV/HIV Transmission Study. We simulated a variation of this study using valacyclovir therapy as the intervention, and we used a male circumcision RCT based on the Rakai Male Circumcision Trial. Our results indicate that a small fraction (20%) of the simulated Partners in Prevention HSV/HIV Transmission Study realizations rejected the null hypothesis, which was no effect from the intervention. Our results also suggest that an RCT designed to evaluate the effectiveness of a more potent drug regimen for HSV-2 suppression (valacyclovir therapy) is more likely to identify the efficacy of the intervention. For the male circumcision RCT simulation, the greater biological effect of the male circumcision yielded a major fraction (81%) of RCT realizations' that rejects the null hypothesis, which was no effect from the intervention. Our study highlights how agent-based simulations synthesize individual variation in the epidemiological context of the RCT. This methodology will be particularly useful for designing RCTs aimed at evaluating combination prevention interventions in community-based RCTs, wherein an intervention׳s effectiveness is challenging to predict. PMID:24792492

  5. ACACIA: an agent-based program for simulating behavior to reach long-term goals.

    PubMed

    Beltran, Francesc S; Quera, Vicenç; Zibetti, Elisabetta; Tijus, Charles; Miñano, Meritxell

    2009-05-01

    We present ACACIA, an agent-based program implemented in Java StarLogo 2.0 that simulates a two-dimensional microworld populated by agents, obstacles and goals. Our program simulates how agents can reach long-term goals by following sensorial-motor couplings (SMCs) that control how the agents interact with their environment and other agents through a process of local categorization. Thus, while acting in accordance with this set of SMCs, the agents reach their goals through the emergence of global behaviors. This agent-based simulation program would allow us to understand some psychological processes such as planning behavior from the point of view that the complexity of these processes is the result of agent-environment interaction.

  6. Agent-based simulation of building evacuation using a grid graph-based model

    NASA Astrophysics Data System (ADS)

    Tan, L.; Lin, H.; Hu, M.; Che, W.

    2014-02-01

    Shifting from macroscope models to microscope models, the agent-based approach has been widely used to model crowd evacuation as more attentions are paid on individualized behaviour. Since indoor evacuation behaviour is closely related to spatial features of the building, effective representation of indoor space is essential for the simulation of building evacuation. The traditional cell-based representation has limitations in reflecting spatial structure and is not suitable for topology analysis. Aiming at incorporating powerful topology analysis functions of GIS to facilitate agent-based simulation of building evacuation, we used a grid graph-based model in this study to represent the indoor space. Such model allows us to establish an evacuation network at a micro level. Potential escape routes from each node thus could be analysed through GIS functions of network analysis considering both the spatial structure and route capacity. This would better support agent-based modelling of evacuees' behaviour including route choice and local movements. As a case study, we conducted a simulation of emergency evacuation from the second floor of an official building using Agent Analyst as the simulation platform. The results demonstrate the feasibility of the proposed method, as well as the potential of GIS in visualizing and analysing simulation results.

  7. Comparing large-scale computational approaches to epidemic modeling: agent based versus structured metapopulation models

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruno; Ajelli, Marco; Balcan, Duygu; Colizza, Vittoria; Hu, Hao; Ramasco, José; Merler, Stefano; Vespignani, Alessandro

    2010-03-01

    We provide for the first time a side by side comparison of the results obtained with a stochastic agent based model and a structured metapopulation stochastic model for the evolution of a baseline pandemic event in Italy. The Agent Based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high resolution census data worldwide, and integrating airline travel flow data with short range human mobility patterns at the global scale. Both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing of the order of few days. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes.

  8. Agent-based modeling of malaria vectors: the importance of spatial simulation

    PubMed Central

    2014-01-01

    Background The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as “agents” in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. Methods In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. Results As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. Conclusions The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important. PMID:24992942

  9. Collaborative Multi-Agent Based Simulations: Stakeholder-Focused Innovation in Water Resources Management and Decision-Support Modeling

    NASA Astrophysics Data System (ADS)

    Kock, B. E.

    2006-12-01

    The combined use of multi-agent based simulations and collaborative modeling approaches is emerging as a highly effective tool for representing complex coupled social-biophysical water resource systems. A collaboratively-designed, multi-agent based simulation can be used both as a decision-support tool and as a didactic method for improving stakeholder understanding and engagement with water resources policymaking and management. Major technical and non-technical obstacles remain to the efficient and effective development of multi-agent models of human society, to integrating these models with GIS and other numerical models, and to building a process for engaging stakeholders with model design, implementation and use. It is proposed here to tackle some of these obstacles through a collaborative multi-agent based simulation process framework, intended for practical use in resolving disputes and environmental challenges over sustainable irrigated agriculture in the Western United States. A practical implementation of this framework will be conducted in collaboration with a diverse stakeholder group representing farmers and local, state and federal water managers. Through the use of simulation gaming, interviewing and computer-based knowledge elicitation, a multi-agent model representing local and regional social dynamics will be developed to support the acceptable and sustainable implementation of management alternatives for reducing regional problems of salinization and high selenium concentrations in soils and irrigation water. The development of a socially and scientifically credible simulation platform in this setting can make a significant contribution to ensuring the non-adversarial use of high quality science, enhance the engagement of stakeholders with policymaking, and help meet the challenges of integrating dynamic models of human society with more traditional biophysical systems models.

  10. An Agent-Based Model of New Venture Creation: Conceptual Design for Simulating Entrepreneurship

    NASA Technical Reports Server (NTRS)

    Provance, Mike; Collins, Andrew; Carayannis, Elias

    2012-01-01

    There is a growing debate over the means by which regions can foster the growth of entrepreneurial activity in order to stimulate recovery and growth of their economies. On one side, agglomeration theory suggests the regions grow because of strong clusters that foster knowledge spillover locally; on the other side, the entrepreneurial action camp argues that innovative business models are generated by entrepreneurs with unique market perspectives who draw on knowledge from more distant domains. We will show you the design for a novel agent-based model of new venture creation that will demonstrate the relationship between agglomeration and action. The primary focus of this model is information exchange as the medium for these agent interactions. Our modeling and simulation study proposes to reveal interesting relationships in these perspectives, offer a foundation on which these disparate theories from economics and sociology can find common ground, and expand the use of agent-based modeling into entrepreneurship research.

  11. An agent-based simulation-assisted approach to bi-lateral building systems control

    NASA Astrophysics Data System (ADS)

    Mo, Zhengchun

    Two of the primary objectives of building operations are maximizing occupancy comfort and minimizing energy costs. While research effort has been focused on concept development, design decision support and systems advancement, little attention has been paid to operational decision support. Most commercial buildings are operated under a central control scheme, in which a building operator makes control decisions without in-depth information about individual preference. Widely used set points represent generalized human requirements that do not sufficiently address individual differences. Energy costs, on the other hand, are easier to measure. As a result, operational decisions tend to favor cost savings at the expense of individual occupancy comfort. Personal control systems have enabled individual occupants to customize their local environments. It is argued that individual occupants and building operators have different motivations for environmental controls. They access to different scopes of information and represent partial knowledge for operational solutions. Such a new control environment suggests a bi-lateral control scheme that cannot be offered by existing central control schemes or distributed control schemes. There is a critical need for methods that support the bi-lateral control scheme, in which building operators and individual occupants coordinate to make balanced control decisions. Toward this end, an agent-based simulation-assisted computational framework has been proposed and prototypically implemented in the lighting controls domain. The prototype supports bi-lateral building operations by offering concurrent evaluation of alternative control strategies. The experimental results showed that, by utilizing the proposed framework, the energy use is greatly reduced without undue increase in individual visual discomfort.

  12. An operational epidemiological model for calibrating agent-based simulations of pandemic influenza outbreaks.

    PubMed

    Prieto, D; Das, T K

    2016-03-01

    Uncertainty of pandemic influenza viruses continue to cause major preparedness challenges for public health policymakers. Decisions to mitigate influenza outbreaks often involve tradeoff between the social costs of interventions (e.g., school closure) and the cost of uncontrolled spread of the virus. To achieve a balance, policymakers must assess the impact of mitigation strategies once an outbreak begins and the virus characteristics are known. Agent-based (AB) simulation is a useful tool for building highly granular disease spread models incorporating the epidemiological features of the virus as well as the demographic and social behavioral attributes of tens of millions of affected people. Such disease spread models provide excellent basis on which various mitigation strategies can be tested, before they are adopted and implemented by the policymakers. However, to serve as a testbed for the mitigation strategies, the AB simulation models must be operational. A critical requirement for operational AB models is that they are amenable for quick and simple calibration. The calibration process works as follows: the AB model accepts information available from the field and uses those to update its parameters such that some of its outputs in turn replicate the field data. In this paper, we present our epidemiological model based calibration methodology that has a low computational complexity and is easy to interpret. Our model accepts a field estimate of the basic reproduction number, and then uses it to update (calibrate) the infection probabilities in a way that its effect combined with the effects of the given virus epidemiology, demographics, and social behavior results in an infection pattern yielding a similar value of the basic reproduction number. We evaluate the accuracy of the calibration methodology by applying it for an AB simulation model mimicking a regional outbreak in the US. The calibrated model is shown to yield infection patterns closely replicating

  13. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    SciTech Connect

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

  14. Quantitative agent-based firm dynamics simulation with parameters estimated by financial and transaction data analysis

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuichi; Souma, Wataru; Aoyama, Hideaki; Iyetomi, Hiroshi; Fujiwara, Yoshi; Kaizoji, Taisei

    2007-03-01

    Firm dynamics on a transaction network is considered from the standpoint of econophysics, agent-based simulations, and game theory. In this model, interacting firms rationally invest in a production facility to maximize net present value. We estimate parameters used in the model through empirical analysis of financial and transaction data. We propose two different methods ( analytical method and regression method) to obtain an interaction matrix of firms. On a subset of a real transaction network, we simulate firm's revenue, cost, and fixed asset, which is the accumulated investment for the production facility. The simulation reproduces the quantitative behavior of past revenues and costs within a standard error when we use the interaction matrix estimated by the regression method, in which only transaction pairs are taken into account. Furthermore, the simulation qualitatively reproduces past data of fixed assets.

  15. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  16. An Agent-Based Labor Market Simulation with Endogenous Skill-Demand

    NASA Astrophysics Data System (ADS)

    Gemkow, S.

    This paper considers an agent-based labor market simulation to examine the influence of skills on wages and unemployment rates. Therefore less and highly skilled workers as well as less and highly productive vacancies are implemented. The skill distribution is exogenous whereas the distribution of the less and highly productive vacancies is endogenous. The different opportunities of the skill groups on the labor market are established by skill requirements. This means that a highly productive vacancy can only be filled by a highly skilled unemployed. Different skill distributions, which can also be interpreted as skill-biased technological change, are simulated by incrementing the skill level of highly skilled persons exogenously. This simulation also provides a microeconomic foundation of the matching function often used in theoretical approaches.

  17. Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation

    SciTech Connect

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2014-01-01

    Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

  18. Recent Advances in Agent-Based Tsunami Evacuation Simulations: Case Studies in Indonesia, Thailand, Japan and Peru

    NASA Astrophysics Data System (ADS)

    Mas, Erick; Koshimura, Shunichi; Imamura, Fumihiko; Suppasri, Anawat; Muhari, Abdul; Adriano, Bruno

    2015-12-01

    As confirmed by the extreme tsunami events over the last decade (the 2004 Indian Ocean, 2010 Chile and 2011 Japan tsunami events), mitigation measures and effective evacuation planning are needed to reduce disaster risks. Modeling tsunami evacuations is an alternative means to analyze evacuation plans and possible scenarios of evacuees' behaviors. In this paper, practical applications of an agent-based tsunami evacuation model are presented to demonstrate the contributions that agent-based modeling has added to tsunami evacuation simulations and tsunami mitigation efforts. A brief review of previous agent-based evacuation models in the literature is given to highlight recent progress in agent-based methods. Finally, challenges are noted for bridging gaps between geoscience and social science within the agent-based approach for modeling tsunami evacuations.

  19. Modeling the Information Age Combat Model: An Agent-Based Simulation of Network Centric Operations

    NASA Technical Reports Server (NTRS)

    Deller, Sean; Rabadi, Ghaith A.; Bell, Michael I.; Bowling, Shannon R.; Tolk, Andreas

    2010-01-01

    The Information Age Combat Model (IACM) was introduced by Cares in 2005 to contribute to the development of an understanding of the influence of connectivity on force effectiveness that can eventually lead to quantitative prediction and guidelines for design and employment. The structure of the IACM makes it clear that the Perron-Frobenius Eigenvalue is a quantifiable metric with which to measure the organization of a networked force. The results of recent experiments presented in Deller, et aI., (2009) indicate that the value of the Perron-Frobenius Eigenvalue is a significant measurement of the performance of an Information Age combat force. This was accomplished through the innovative use of an agent-based simulation to model the IACM and represents an initial contribution towards a new generation of combat models that are net-centric instead of using the current platform-centric approach. This paper describes the intent, challenges, design, and initial results of this agent-based simulation model.

  20. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  1. Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.

    PubMed

    Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle

    2016-02-01

    This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology. PMID:26590977

  2. Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.

    PubMed

    Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle

    2016-02-01

    This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.

  3. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    NASA Astrophysics Data System (ADS)

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-08-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high school students' understandings of complex systems components and whether an agent-based simulation could improve their understandings. Pretest and posttest essays were coded for changes in six components to determine whether students showed more expert thinking about the complex system of the Chesapeake Bay watershed. Results showed significant improvement for the components Emergence ( r = .26, p = .03), Order ( r = .37, p = .002), and Tradeoffs ( r = .44, p = .001). Implications include that the experiential nature of the simulation has the potential to support conceptual change for some complex systems components, presenting a promising option for complex systems instruction.

  4. From Agents to Continuous Change via Aesthetics: Learning Mechanics with Visual Agent-Based Computational Modeling

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Farris, Amy Voss; Wright, Mason

    2012-01-01

    Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…

  5. The Agent-based Approach: A New Direction for Computational Models of Development.

    ERIC Educational Resources Information Center

    Schlesinger, Matthew; Parisi, Domenico

    2001-01-01

    Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…

  6. Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Mesgari, M.-S.

    2015-12-01

    During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  7. Changing crops in response to climate: virtual Nang Rong, Thailand in an agent based simulation

    PubMed Central

    Malanson, George P.; Verdery, Ashton M.; Walsh, Stephen J.; Sawangdee, Yothin; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Williams, Nathalie E.; Yao, Xiaozheng; Entwisle, Barbara; Rindfuss, Ronald R.

    2014-01-01

    The effects of extended climatic variability on agricultural land use were explored for the type of system found in villages of northeastern Thailand. An agent based model developed for the Nang Rong district was used to simulate land allotted to jasmine rice, heavy rice, cassava, and sugar cane. The land use choices in the model depended on likely economic outcomes, but included elements of bounded rationality in dependence on household demography. The socioeconomic dynamics are endogenous in the system, and climate changes were added as exogenous drivers. Villages changed their agricultural effort in many different ways. Most villages reduced the amount of land under cultivation, primarily with reduction in jasmine rice, but others did not. The variation in responses to climate change indicates potential sensitivity to initial conditions and path dependence for this type of system. The differences between our virtual villages and the real villages of the region indicate effects of bounded rationality and limits on model applications. PMID:25061240

  8. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  9. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  10. Investigating the role of water in the Diffusion of Cholera using Agent-Based simulation

    NASA Astrophysics Data System (ADS)

    Augustijn, Ellen-Wien; Doldersum, Tom; Augustijn, Denie

    2014-05-01

    Traditionally, cholera was considered to be a waterborne disease. Currently we know that many other factors can contribute to the spread of this disease including human mobility and human behavior. However, the hydrological component in cholera diffusion is significant. The interplay between cholera and water includes bacteria (V. cholera) that survive in the aquatic environment, the possibility that run-off water from dumpsites carries the bacteria to surface water (rivers and lakes), and when the bacteria reach streams they can be carried downstream to infect new locations. Modelling is a very important tool to build theory on the interplay between different types of transmission mechanisms that together are responsible for the spread of Cholera. Agent-based simulation models are very suitable to incorporate behavior at individual level and to reproduce emergence. However, it is more difficult to incorporate the hydrological components in this type of model. In this research we present the hydrological component of an Agent-Based Cholera model developed to study a Cholera epidemic in Kumasi (Ghana) in 2005. The model was calibrated on the relative contribution of each community to the distributed pattern of cholera rather than the absolute number of incidences. Analysis of the results shows that water plays an important role in the diffusion of cholera: 75% of the cholera cases were infected via river water that was contaminated by runoff from the dumpsites. To initiate infections upstream, the probability of environment-to-human transmission seemed to be overestimated compared to what may be expected from literature. Scenario analyses show that there is a strong relation between the epidemic curve and the rainfall. Removing dumpsites that are situated close to the river resulted in a strong decrease in the number of cholera cases. Results are sensitive to the scheduling of the daily activities and the survival time of the cholera bacteria.

  11. Impact of road environment on drivers' behaviors in dilemma zone: Application of agent-based simulation.

    PubMed

    Kim, Sojung; Son, Young-Jun; Chiu, Yi-Chang; Jeffers, Mary Anne B; Yang, C Y David

    2016-11-01

    At a signalized intersection, there exists an area where drivers become indecisive as to either stop their car or proceed through when the traffic signal turns yellow. This point, called a dilemma zone, has remained a safety concern for drivers due to the great possibility of a rear-end or right-angle crash occurring. In order to reduce the risk of car crashes at the dilemma zone, Institute of Transportation Engineers (ITE) recommended a dilemma zone model. The model, however, fails to provide precise calculations on the decision of drivers because it disregards the supplemental roadway information, such as whether a red light camera is present. Hence, the goal of this study was to incorporate such roadway environmental factors into a more realistic driver decision-making model for the dilemma zone. A driving simulator was used to determine the influence of roadway conditions on decision-making of real drivers. Following data collection, each driver's decision outcomes were implemented in an Agent-Based Simulation (ABS) so as to analyze behaviors under realistic road environments. The experimental results revealed that the proposed dilemma zone model was able to accurately predict the decisions of drivers. Specifically, the model confirmed the findings from the driving simulator study that the changes in the roadway environment reduced the number of red light violations at an intersection.

  12. Agent-Based Spatiotemporal Simulation of Biomolecular Systems within the Open Source MASON Framework

    PubMed Central

    Pérez-Rodríguez, Gael; Pérez-Pérez, Martín; Glez-Peña, Daniel; Azevedo, Nuno F.; Lourenço, Anália

    2015-01-01

    Agent-based modelling is being used to represent biological systems with increasing frequency and success. This paper presents the implementation of a new tool for biomolecular reaction modelling in the open source Multiagent Simulator of Neighborhoods framework. The rationale behind this new tool is the necessity to describe interactions at the molecular level to be able to grasp emergent and meaningful biological behaviour. We are particularly interested in characterising and quantifying the various effects that facilitate biocatalysis. Enzymes may display high specificity for their substrates and this information is crucial to the engineering and optimisation of bioprocesses. Simulation results demonstrate that molecule distributions, reaction rate parameters, and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of realistic cell environments. While higher percentage of collisions with occurrence of reaction increases the affinity of the enzyme to the substrate, a faster reaction (i.e., turnover number) leads to a smaller number of time steps. Slower diffusion rates and molecular crowding (physical hurdles) decrease the collision rate of reactants, hence reducing the reaction rate, as expected. Also, the random distribution of molecules affects the results significantly. PMID:25874228

  13. Evaluation of wholesale electric power market rules and financial risk management by agent-based simulations

    NASA Astrophysics Data System (ADS)

    Yu, Nanpeng

    As U.S. regional electricity markets continue to refine their market structures, designs and rules of operation in various ways, two critical issues are emerging. First, although much experience has been gained and costly and valuable lessons have been learned, there is still a lack of a systematic platform for evaluation of the impact of a new market design from both engineering and economic points of view. Second, the transition from a monopoly paradigm characterized by a guaranteed rate of return to a competitive market created various unfamiliar financial risks for various market participants, especially for the Investor Owned Utilities (IOUs) and Independent Power Producers (IPPs). This dissertation uses agent-based simulation methods to tackle the market rules evaluation and financial risk management problems. The California energy crisis in 2000-01 showed what could happen to an electricity market if it did not go through a comprehensive and rigorous testing before its implementation. Due to the complexity of the market structure, strategic interaction between the participants, and the underlying physics, it is difficult to fully evaluate the implications of potential changes to market rules. This dissertation presents a flexible and integrative method to assess market designs through agent-based simulations. Realistic simulation scenarios on a 225-bus system are constructed for evaluation of the proposed PJM-like market power mitigation rules of the California electricity market. Simulation results show that in the absence of market power mitigation, generation company (GenCo) agents facilitated by Q-learning are able to exploit the market flaws and make significantly higher profits relative to the competitive benchmark. The incorporation of PJM-like local market power mitigation rules is shown to be effective in suppressing the exercise of market power. The importance of financial risk management is exemplified by the recent financial crisis. In this

  14. An artificial intelligence approach for modeling molecular self-assembly: agent-based simulations of rigid molecules.

    PubMed

    Fortuna, Sara; Troisi, Alessandro

    2009-07-23

    Agent-based simulations are rule-based models traditionally used for the simulations of complex systems. In this paper, an algorithm based on the concept of agent-based simulations is developed to predict the lowest energy packing of a set of identical rigid molecules. The agents are identified with rigid portions of the system under investigation, and they evolve following a set of rules designed to drive the system toward the lowest energy minimum. The algorithm is compared with a conventional Metropolis Monte Carlo algorithm, and it is applied on a large set of representative models of molecules. For all the systems studied, the agent-based method consistently finds a significantly lower energy minima than the Monte Carlo algorithm because the system evolution includes elements of adaptation (new configurations induce new types of moves) and learning (past successful choices are repeated).

  15. An Agent-based Simulation Model for C. difficile Infection Control

    PubMed Central

    Codella, James; Safdar, Nasia; Heffernan, Rick; Alagoz, Oguzhan

    2014-01-01

    Background. Control of C. difficile infection (CDI) is an increasingly difficult problem for healthcare institutions. There are commonly recommended strategies to combat CDI transmission such as oral vancomycin for CDI treatment, increased hand hygiene with soap and water for healthcare workers, daily environmental disinfection of infected patient rooms, and contact isolation of diseased patients. However, the efficacy of these strategies, particularly for endemic CDI, has not been well studied. The objective of this research is to develop a valid agent-based simulation model (ABM) to study C. difficile transmission and control in a mid-sized hospital. Methods. We develop an ABM of a mid-sized hospital with agents such as patients, healthcare workers, and visitors. We model the natural progression of CDI in a patient using a Markov chain and the transmission of CDI through agent and environmental interactions. We derive input parameters from aggregate patient data from the 2007-2010 Wisconsin Hospital Association and published medical literature. We define a calibration process, which we use to estimate transition probabilities of the Markov model by comparing simulation results to benchmark values found in published literature. Results. Comparing CDI control strategies implemented individually, routine bleach disinfection of CDI+ patient rooms provides the largest reduction in nosocomial asymptomatic colonizations (21.8%) and nosocomial CDIs (42.8%). Additionally, vancomycin treatment provides the largest reduction in relapse CDIs (41.9%), CDI-related mortalities (68.5%), and total patient LOS (21.6%). Conclusion. We develop a generalized ABM for CDI control that can be customized and further expanded to specific institutions and/or scenarios. Additionally, we estimate transition probabilities for a Markov model of natural CDI progression in a patient through calibration. PMID:25112595

  16. Agent-based evacuation simulation for spatial allocation assessment of urban shelters

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Wen, Jiahong; Jiang, Yong

    2015-12-01

    The construction of urban shelters is one of the most important work in urban planning and disaster prevention. The spatial allocation assessment is a fundamental pre-step for spatial location-allocation of urban shelters. This paper introduces a new method which makes use of agent-based technology to implement evacuation simulation so as to conduct dynamic spatial allocation assessment of urban shelters. The method can not only accomplish traditional geospatial evaluation for urban shelters, but also simulate the evacuation process of the residents to shelters. The advantage of utilizing this method lies into three aspects: (1) the evacuation time of each citizen from a residential building to the shelter can be estimated more reasonably; (2) the total evacuation time of all the residents in a region is able to be obtained; (3) the road congestions in evacuation in sheltering can be detected so as to take precautionary measures to prevent potential risks. In this study, three types of agents are designed: shelter agents, government agents and resident agents. Shelter agents select specified land uses as shelter candidates for different disasters. Government agents delimitate the service area of each shelter, in other words, regulate which shelter a person should take, in accordance with the administrative boundaries and road distance between the person's position and the location of the shelter. Resident agents have a series of attributes, such as ages, positions, walking speeds, and so on. They also have several behaviors, such as reducing speed when walking in the crowd, helping old people and children, and so on. Integrating these three types of agents which are correlated with each other, evacuation procedures can be simulated and dynamic allocation assessment of shelters will be achieved. A case study in Jing'an District, Shanghai, China, was conducted to demonstrate the feasibility of the method. A scenario of earthquake disaster which occurs in nighttime

  17. Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate

    PubMed Central

    Zhang, Le; Strouthos, Costas G.; Wang, Zhihui; Deisboeck, Thomas S.

    2008-01-01

    We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells’ phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model’s biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell ‘search precisions’. The in silico results show that microscopic tumor heterogeneity can impact the tumor system’s multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed. PMID:20047002

  18. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models

    SciTech Connect

    Paul M. Torrens; Atsushi Nara; Xun Li; Haojie Zhu; William A. Griffin; Scott B. Brown

    2012-01-01

    Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be 'good enough' for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.

  19. Age-correlated stress resistance improves fitness of yeast: support from agent-based simulations

    PubMed Central

    2014-01-01

    Background Resistance to stress is often heterogeneous among individuals within a population, which helps protect against intermittent stress (bet hedging). This is also the case for heat shock resistance in the budding yeast Saccharomyces cerevisiae. Interestingly, the resistance appears to be continuously distributed (vs. binary, switch-like) and correlated with replicative age (vs. random). Older, slower-growing cells are more resistant than younger, faster-growing ones. Is there a fitness benefit to age-correlated stress resistance? Results Here this hypothesis is explored using a simple agent-based model, which simulates a population of individual cells that grow and replicate. Cells age by accumulating damage, which lowers their growth rate. They synthesize trehalose at a metabolic cost, which helps protect against heat shock. Proteins Tsl1 and Tps3 (trehalose synthase complex regulatory subunit TSL1 and TPS3) represent the trehalose synthesis complex and they are expressed using constant, age-dependent and stochastic terms. The model was constrained by calibration and comparison to data from the literature, including individual-based observations obtained using high-throughput microscopy and flow cytometry. A heterogeneity network was developed, which highlights the predominant sources and pathways of resistance heterogeneity. To determine the best trehalose synthesis strategy, model strains with different Tsl1/Tps3 expression parameters were placed in competition in an environment with intermittent heat shocks. Conclusions For high severities and low frequencies of heat shock, the winning strain used an age-dependent bet hedging strategy, which shows that there can be a benefit to age-correlated stress resistance. The study also illustrates the utility of combining individual-based observations and modeling to understand mechanisms underlying population heterogeneity, and the effect on fitness. PMID:24529069

  20. Investigation of Simulated Trading — A multi agent based trading system for optimization purposes

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes J.

    2010-07-01

    Some years ago, Bachem, Hochstättler, and Malich proposed a heuristic algorithm called Simulated Trading for the optimization of vehicle routing problems. Computational agents place buy-orders and sell-orders for customers to be handled at a virtual financial market, the prices of the orders depending on the costs of inserting the customer in the tour or for his removal. According to a proposed rule set, the financial market creates a buy-and-sell graph for the various orders in the order book, intending to optimize the overall system. Here I present a thorough investigation for the application of this algorithm to the traveling salesman problem.

  1. Simulating Land-Use Change using an Agent-Based Land Transaction Model

    NASA Astrophysics Data System (ADS)

    Bakker, M. M.; van Dijk, J.; Alam, S. J.

    2013-12-01

    In the densely populated cultural landscapes of Europe, the vast majority of all land is owned by private parties, be it farmers (the majority), nature organizations, property developers, or citizens. Therewith, the vast majority of all land-use change arises from land transactions between different owner types: successful farms expand at the expense of less successful farms, and meanwhile property developers, individual citizens, and nature organizations also actively purchase land. These land transactions are driven by specific properties of the land, by governmental policies, and by the (economic) motives of both buyers and sellers. Climate/global change can affect these drivers at various scales: at the local scale changes in hydrology can make certain land less or more desirable; at the global scale the agricultural markets will affect motives of farmers to buy or sell land; while at intermediate (e.g. provincial) scales property developers and nature conservationists may be encouraged or discouraged to purchase land. The cumulative result of all these transactions becomes manifest in changing land-use patterns, and consequent environmental responses. Within the project Climate Adaptation for Rural Areas an agent-based land-use model was developed that explores the future response of individual land users to climate change, within the context of wider global change (i.e. policy and market change). It simulates the exchange of land among farmers and between farmers and nature organizations and property developers, for a specific case study area in the east of the Netherlands. Results show that local impacts of climate change can result in a relative stagnation in the land market in waterlogged areas. Furthermore, the increase in dairying at the expense of arable cultivation - as has been observed in the area in the past - is slowing down as arable produce shows a favourable trend in the agricultural world market. Furthermore, budgets for nature managers are

  2. Impact of Different Policies on Unhealthy Dietary Behaviors in an Urban Adult Population: An Agent-Based Simulation Model

    PubMed Central

    Giabbanelli, Philippe J.; Arah, Onyebuchi A.; Zimmerman, Frederick J.

    2014-01-01

    Objectives. Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. Methods. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Results. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Conclusions. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems. PMID:24832414

  3. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  4. On-lattice agent-based simulation of populations of cells within the open-source Chaste framework.

    PubMed

    Figueredo, Grazziela P; Joshi, Tanvi V; Osborne, James M; Byrne, Helen M; Owen, Markus R

    2013-04-01

    Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction-diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the 'what if' scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system. PMID:24427527

  5. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    SciTech Connect

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease states in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.

  6. The effects of social interactions on fertility decline in nineteenth-century France: an agent-based simulation experiment.

    PubMed

    González-Bailón, Sandra; Murphy, Tommy E

    2013-07-01

    We built an agent-based simulation, incorporating geographic and demographic data from nineteenth-century France, to study the role of social interactions in fertility decisions. The simulation made experimentation possible in a context where other empirical strategies were precluded by a lack of data. We evaluated how different decision rules, with and without interdependent decision-making, caused variations in population growth and fertility levels. The analyses show that incorporating social influence into the model allows empirically observed behaviour to be mimicked, especially at a national level. These findings shed light on individual-level mechanisms through which the French demographic transition may have developed.

  7. Multi-Agent Based Simulation of Optimal Urban Land Use Allocation in the Middle Reaches of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Huang, W.; Jin, W.; Li, S.

    2016-06-01

    The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.

  8. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department.

    PubMed

    Kittipittayakorn, Cholada; Ying, Kuo-Ching

    2016-01-01

    Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries' healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES) and agent-based simulation (ABS) to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department. PMID:27195606

  9. Linking Bayesian and Agent-Based Models to Simulate Complex Social-Ecological Systems in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Pope, A.; Gimblett, R.

    2013-12-01

    Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent's water demand. Depth-to-groundwater was then used as an indicator of unique vegetation guilds within the riparian corridor. Each vegetation guild provides varying levels of ecosystem services, the changes of which, along with changes in depth-to-groundwater, feedback to influence agent behavior. Using this modeling approach allowed us to examine resilience of semi-arid riparian corridors and agent behavior under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.

  10. Can human-like Bots control collective mood: agent-based simulations of online chats

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Šuvakov, Milovan

    2013-10-01

    Using an agent-based modeling approach, in this paper, we study self-organized dynamics of interacting agents in the presence of chat Bots. Different Bots with tunable ‘human-like’ attributes, which exchange emotional messages with agents, are considered, and the collective emotional behavior of agents is quantitatively analyzed. In particular, using detrended fractal analysis we determine persistent fluctuations and temporal correlations in time series of agent activity and statistics of avalanches carrying emotional messages of agents when Bots favoring positive/negative affects are active. We determine the impact of Bots and identify parameters that can modulate that impact. Our analysis suggests that, by these measures, the emotional Bots induce collective emotion among interacting agents by suitably altering the fractal characteristics of the underlying stochastic process. Positive emotion Bots are slightly more effective than negative emotion Bots. Moreover, Bots which periodically alternate between positive and negative emotion can enhance fluctuations in the system, leading to avalanches of agent messages that are reminiscent of self-organized critical states.

  11. Acceptability of an Embodied Conversational Agent-based Computer Application for Hispanic Women

    PubMed Central

    Wells, Kristen J.; Vázquez-Otero, Coralia; Bredice, Marissa; Meade, Cathy D.; Chaet, Alexis; Rivera, Maria I.; Arroyo, Gloria; Proctor, Sara K.; Barnes, Laura E.

    2015-01-01

    There are few Spanish language interactive, technology-driven health education programs. Objectives of this feasibility study were to: 1) learn more about computer and technology usage among Hispanic women living in a rural community; and 2) evaluate acceptability of the concept of using an embodied conversational agent (ECA) computer application among this population. A survey about computer usage history and interest in computers was administered to a convenience sample of 26 women. A sample video prototype of a hospital discharge ECA was administered followed by questions to gauge opinion about the ECA. Data indicate women exhibited both a high level of computer experience and enthusiasm for the ECA. Feedback from community is essential to ensure equity in state of the art dissemination of health information. Hay algunos programas interactivos en español que usan la tecnología para educar sobre la salud. Los objetivos de este estudio fueron: 1) aprender más sobre el uso de computadoras y tecnología entre mujeres Hispanas que viven en comunidades rurales y 2) evaluar la aceptabilidad del concepto de usar un programa de computadora utilizando un agente de conversación encarnado (ECA) en esta población. Se administro una encuesta sobre el historial de uso y del interés de aprender sobre computadoras fue a 26 mujeres por muestreo de conveniencia. Un ejemplo del prototipo ECA en forma de video de un alta hospitalaria fue administrado y fue seguido por preguntas sobre la opinión que tenían del ECA. Los datos indican que las mujeres mostraron un alto nivel de experiencia con las computadoras y un alto nivel de entusiasmo sobre el ECA. La retroalimentación de la comunidad es esencial para asegurar equidad en la diseminación de información sobre la salud con tecnología de punta. PMID:26671558

  12. An Economic Analysis of Strategies to Control Clostridium Difficile Transmission and Infection Using an Agent-Based Simulation Model

    PubMed Central

    Nelson, Richard E.; Jones, Makoto; Leecaster, Molly; Samore, Matthew H.; Ray, William; Huttner, Angela; Huttner, Benedikt; Khader, Karim; Stevens, Vanessa W.; Gerding, Dale; Schweizer, Marin L.; Rubin, Michael A.

    2016-01-01

    Background A number of strategies exist to reduce Clostridium difficile (C. difficile) transmission. We conducted an economic evaluation of “bundling” these strategies together. Methods We constructed an agent-based computer simulation of nosocomial C. difficile transmission and infection in a hospital setting. This model included the following components: interactions between patients and health care workers; room contamination via C. difficile shedding; C. difficile hand carriage and removal via hand hygiene; patient acquisition of C. difficile via contact with contaminated rooms or health care workers; and patient antimicrobial use. Six interventions were introduced alone and "bundled" together: (a) aggressive C. difficile testing; (b) empiric isolation and treatment of symptomatic patients; (c) improved adherence to hand hygiene and (d) contact precautions; (e) improved use of soap and water for hand hygiene; and (f) improved environmental cleaning. Our analysis compared these interventions using values representing 3 different scenarios: (1) base-case (BASE) values that reflect typical hospital practice, (2) intervention (INT) values that represent implementation of hospital-wide efforts to reduce C. diff transmission, and (3) optimal (OPT) values representing the highest expected results from strong adherence to the interventions. Cost parameters for each intervention were obtained from published literature. We performed our analyses assuming low, normal, and high C. difficile importation prevalence and transmissibility of C. difficile. Results INT levels of the “bundled” intervention were cost-effective at a willingness-to-pay threshold of $100,000/quality-adjusted life-year in all importation prevalence and transmissibility scenarios. OPT levels of intervention were cost-effective for normal and high importation prevalence and transmissibility scenarios. When analyzed separately, hand hygiene compliance, environmental decontamination, and empiric

  13. An agent-based framework for fuel cycle simulation with recycling

    SciTech Connect

    Gidden, M.J.; Wilson, P.P.H.; Huff, K.D.; Carlsen, R.W.

    2013-07-01

    Simulation of the nuclear fuel cycle is an established field with multiple players. Prior development work has utilized techniques such as system dynamics to provide a solution structure for the matching of supply and demand in these simulations. In general, however, simulation infrastructure development has occurred in relatively closed circles, each effort having unique considerations as to the cases which are desired to be modeled. Accordingly, individual simulators tend to have their design decisions driven by specific use cases. Presented in this work is a proposed supply and demand matching algorithm that leverages the techniques of the well-studied field of mathematical programming. A generic approach is achieved by treating facilities as individual entities and actors in the supply-demand market which denote preferences amongst commodities. Using such a framework allows for varying levels of interaction fidelity, ranging from low-fidelity, quick solutions to high-fidelity solutions that model individual transactions (e.g. at the fuel-assembly level). The power of the technique is that it allows such flexibility while still treating the problem in a generic manner, encapsulating simulation engine design decisions in such a way that future simulation requirements can be relatively easily added when needed. (authors)

  14. How to determine future EHR ROI. Agent-based modeling and simulation offers a new alternative to traditional techniques.

    PubMed

    Blachowicz, Dariusz; Christiansen, John H; Ranginani, Archana; Simunich, Kathy Lee

    2008-01-01

    Effectively determining the future return-on-investment of regional healthcare delivery and electronic healthcare record systems requires consideration of many alternative designs for their performance, cost and ability to meet stakeholder expectations. Successfully testing, validating and communicating the expected consequences of alternative business practices, processes, protocols and policies requires an objective analytical approach. Agent-based modeling and simulation (ABMS), a technique for determining the system-level results of complex, interacting, and often conflicting individual-level decisions, provides such an approach. ABMS of healthcare delivery can provide actionable guidance for decision makers by enabling healthcare experts to define the individual, agent-level rules of operation; allowing them to see how the agent rules play out over time in a detailed real-world context; providing them with the tools to assess the consequences of alternative plans; and giving them a clear method for communicating results to the broader stakeholder community.

  15. Agent-Based Simulations of Malaria Transmissions with Applications to a Study Site in Thailand

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Zollner, Gabriela E.; Coleman, Russell E.

    2006-01-01

    The dynamics of malaria transmission are driven by environmental, biotic and socioeconomic factors. Because of the geographic dependency of these factors and the complex interactions among them, it is difficult to generalize the key factors that perpetuate or intensify malaria transmission. Methods: Discrete event simulations were used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. Meteorological and environmental parameters may be derived from satellite data. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results were compared with mosquito vector and human malaria data acquired over 4.5 years (June 1999 - January 2004) in Kong Mong Tha, a remote village in Kanchanaburi Province, western Thailand. Results: Three years of transmissions of vivax and falciparum malaria were simulated for a hypothetical hamlet with approximately 1/7 of the study site population. The model generated results for a number of scenarios, including applications of larvicide and insecticide, asymptomatic cases receiving or not receiving treatment, blocking malaria transmission in mosquito vectors, and increasing the density of farm (host) animals in the hamlet. Transmission characteristics and trends in the simulated results are comparable to actual data collected at the study site.

  16. The contribution of agent-based simulations to conservation management on a Natura 2000 site.

    PubMed

    Dupont, Hélène; Gourmelon, Françoise; Rouan, Mathias; Le Viol, Isabelle; Kerbiriou, Christian

    2016-03-01

    The conservation of biodiversity today must include the participation and support of local stakeholders. Natura 2000 can be considered as a conservation system that, in its application in most EU countries, relies on the participation of local stakeholders. Our study proposes a scientific method for participatory modelling, with the aim of contributing to the conservation management of habitats and species at a Natura 2000 site (Crozon Peninsula, Bretagne, France) that is representative of in landuse changes in coastal areas. We make use of companion modelling and its associated tools (scenario-planning, GIS, multi-agent modelling and simulations) to consider possible futures through the co-construction of management scenarios and the understanding of their consequences on different indicators of biodiversity status (habitats, avifauna, flora). The maintenance of human activities as they have been carried out since the creation of the Natura 2000s zone allows the biodiversity values to remain stable. Extensive agricultural activities have been shown to be essential to this maintenance, whereas management sustained by the multiplication of conservation actions brings about variable results according to the indicators. None of the scenarios has a positive incidence on the set of indicators. However, an understanding of the modelling system and the results of the simulations allow for the refining of the selection of conservation actions in relation to the species to be preserved.

  17. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    SciTech Connect

    Gali, Emmanuel; Eidenbenz, Stephan; Mniszewski, Sue; Cuellar, Leticia; Teuscher, Christof

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  18. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  19. The contribution of agent-based simulations to conservation management on a Natura 2000 site.

    PubMed

    Dupont, Hélène; Gourmelon, Françoise; Rouan, Mathias; Le Viol, Isabelle; Kerbiriou, Christian

    2016-03-01

    The conservation of biodiversity today must include the participation and support of local stakeholders. Natura 2000 can be considered as a conservation system that, in its application in most EU countries, relies on the participation of local stakeholders. Our study proposes a scientific method for participatory modelling, with the aim of contributing to the conservation management of habitats and species at a Natura 2000 site (Crozon Peninsula, Bretagne, France) that is representative of in landuse changes in coastal areas. We make use of companion modelling and its associated tools (scenario-planning, GIS, multi-agent modelling and simulations) to consider possible futures through the co-construction of management scenarios and the understanding of their consequences on different indicators of biodiversity status (habitats, avifauna, flora). The maintenance of human activities as they have been carried out since the creation of the Natura 2000s zone allows the biodiversity values to remain stable. Extensive agricultural activities have been shown to be essential to this maintenance, whereas management sustained by the multiplication of conservation actions brings about variable results according to the indicators. None of the scenarios has a positive incidence on the set of indicators. However, an understanding of the modelling system and the results of the simulations allow for the refining of the selection of conservation actions in relation to the species to be preserved. PMID:26696603

  20. An Agent-Based Simulation for Investigating the Impact of Stereotypes on Task-Oriented Group Formation

    NASA Astrophysics Data System (ADS)

    Maghami, Mahsa; Sukthankar, Gita

    In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.

  1. Exploring Tradeoffs in Demand-side and Supply-side Management of Urban Water Resources using Agent-based Modeling and Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.

    2015-12-01

    Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  2. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach

    PubMed Central

    2016-01-01

    Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235

  3. An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data.

    PubMed

    Shi, Zhenzhen; Chapes, Stephen K; Ben-Arieh, David; Wu, Chih-Hang

    2016-01-01

    We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies. PMID:27556404

  4. An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data

    PubMed Central

    Chapes, Stephen K.; Ben-Arieh, David; Wu, Chih-Hang

    2016-01-01

    We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as “sepsis”. Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies. PMID:27556404

  5. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  6. An agent-based model to simulate tsetse fly distribution and control techniques: a case study in Nguruman, Kenya

    PubMed Central

    Lin, Shengpan; DeVisser, Mark H.; Messina, Joseph P.

    2015-01-01

    Background African trypanosomiasis, also known as “sleeping sickness” in humans and “nagana” in livestock is an important vector-borne disease in Sub-Saharan Africa. Control of trypanosomiasis has focused on eliminating the vector, the tsetse fly (Glossina, spp.). Effective tsetse fly control planning requires models to predict tsetse population and distribution changes over time and space. Traditional planning models have used statistical tools to predict tsetse distributions and have been hindered by limited field survey data. Methodology/Results We developed an Agent-Based Model (ABM) to provide timing and location information for tsetse fly control without presence/absence training data. The model is driven by daily remotely-sensed environment data. The model provides a flexible tool linking environmental changes with individual biology to analyze tsetse control methods such as aerial insecticide spraying, wild animal control, releasing irradiated sterile tsetse males, and land use and cover modification. Significance This is a bottom-up process-based model with freely available data as inputs that can be easily transferred to a new area. The tsetse population simulation more closely approximates real conditions than those using traditional statistical models making it a useful tool in tsetse fly control planning. PMID:26309347

  7. Multiobjective Decision Making Policies and Coordination Mechanisms in Hierarchical Organizations: Results of an Agent-Based Simulation

    PubMed Central

    2014-01-01

    This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926

  8. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    NASA Astrophysics Data System (ADS)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  9. Modelling Temporal Schedule of Urban Trains Using Agent-Based Simulation and NSGA2-BASED Multiobjective Optimization Approaches

    NASA Astrophysics Data System (ADS)

    Sahelgozin, M.; Alimohammadi, A.

    2015-12-01

    Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  10. Learning through Computer Simulations.

    ERIC Educational Resources Information Center

    Braun, Ludwig

    Prior to the relatively easy access to computers which began in the mid-1960's, simulation was a tool only of researchers. Even now, students are frequently excluded from direct laboratory experiences for many reasons. However, computer simulation can open up these experiences, providing a powerful teaching tool for individuals, for small and…

  11. Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model.

    PubMed

    Mansury, Yuri; Kimura, Mark; Lobo, Jose; Deisboeck, Thomas S

    2002-12-01

    Brain cancer cells invade early on surrounding parenchyma, which makes it impossible to surgically remove all tumor cells and thus significantly worsens the prognosis of the patient. Specific structural elements such as multicellular clusters have been seen in experimental settings to emerge within the invasive cell system and are believed to express the systems' guidance toward nutritive sites in a heterogeneous environment. Based on these observations, we developed a novel agent-based model of spatio-temporal search and agglomeration to investigate the dynamics of cell motility and aggregation with the assumption that tumors behave as complex dynamic self-organizing biosystems. In this model, virtual cells migrate because they are attracted by higher nutrient concentrations and to avoid overpopulated areas with high levels of toxic metabolites. A specific feature of our model is the capability of cells to search both globally and locally. This concept is applied to simulate cell-surface receptor-mediated information processing of tumor cells such that a cell searching for a more growth-permissive place "learns" the information content of a brain tissue region within a two-dimensional lattice in two stages, processing first the global and then the local input. In both stages, differences in microenvironment characteristics define distinctions in energy expenditure for a moving cell and thus influence cell migration, proliferation, agglomeration, and cell death. Numerical results of our model show a phase transition leading to the emergence of two distinct spatio-temporal patterns depending on the dominant search mechanism. If global search is dominant, the result is a small number of large clusters exhibiting rapid spatial expansion but shorter lifetime of the tumor system. By contrast, if local search is dominant, the trade-off is many small clusters with longer lifetime but much slower velocity of expansion. Furthermore, in the case of such dominant local search

  12. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments

    PubMed Central

    2013-01-01

    Background Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. Results An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell’s probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell’s type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell’s response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. Conclusions A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy

  13. Estimation of the age-specific per-contact probability of Ebola virus transmission in Liberia using agent-based simulations

    NASA Astrophysics Data System (ADS)

    Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2016-06-01

    Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.

  14. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  15. Toward a Multi-Scale Computational Model of Arterial Adaptation in Hypertension: Verification of a Multi-Cell Agent Based Model

    PubMed Central

    Thorne, Bryan C.; Hayenga, Heather N.; Humphrey, Jay D.; Peirce, Shayn M.

    2011-01-01

    Agent-based models (ABMs) represent a novel approach to study and simulate complex mechano chemo-biological responses at the cellular level. Such models have been used to simulate a variety of emergent responses in the vasculature, including angiogenesis and vasculogenesis. Although not used previously to study large vessel adaptations, we submit that ABMs will prove equally useful in such studies when combined with well-established continuum models to form multi-scale models of tissue-level phenomena. In order to couple agent-based and continuum models, however, there is a need to ensure that each model faithfully represents the best data available at the relevant scale and that there is consistency between models under baseline conditions. Toward this end, we describe the development and verification of an ABM of endothelial and smooth muscle cell responses to mechanical stimuli in a large artery. A refined rule-set is proposed based on a broad literature search, a new scoring system for assigning confidence in the rules, and a parameter sensitivity study. To illustrate the utility of these new methods for rule selection, as well as the consistency achieved with continuum-level models, we simulate the behavior of a mouse aorta during homeostasis and in response to both transient and sustained increases in pressure. The simulated responses depend on the altered cellular production of seven key mitogenic, synthetic, and proteolytic biomolecules, which in turn control the turnover of intramural cells and extracellular matrix. These events are responsible for gross changes in vessel wall morphology. This new ABM is shown to be appropriately stable under homeostatic conditions, insensitive to transient elevations in blood pressure, and responsive to increased intramural wall stress in hypertension. PMID:21720536

  16. Rural-urban migration including formal and informal workers in the urban sector: an agent-based numerical simulation study

    NASA Astrophysics Data System (ADS)

    Branco, Nilton; Oliveira, Tharnier; Silveira, Jaylson

    2012-02-01

    The goal of this work is to study rural-urban migration in the early stages of industrialization. We use an agent-based model and take into account the existence of informal and formal workers on the urban sector and possible migration movements, dependent on the agents' social and private utilities. Our agents are place on vertices of a square lattice, such that each vertex has only one agent. Rural, urban informal and urban formal workers are represented by different states of a three-state Ising model. At every step, a fraction a of the agents may change sectors or migrate. The total utility of a given agent is then calculated and compared to a random utility, in order to check if this agent turns into an actual migrant or changes sector. The dynamics is carried out until an equilibrium state is reached and equilibrium variables are then calculated and compared to available data. We find that a generalized Harris-Todaro condition is satisfied [1] on these equilibrium regimes, i.e, the ratio between expected wages between any pair of sectors reach a constant value. [4pt] [1] J. J. Silveira, A. L. Esp'indola and T. J. Penna, Physica A, 364, 445 (2006).

  17. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1977-01-01

    In a computer simulation study of earthquakes a seismically active strike slip fault is represented by coupled mechanical blocks which are driven by a moving plate and which slide on a friction surface. Elastic forces and time independent friction are used to generate main shock events, while viscoelastic forces and time dependent friction add aftershock features. The study reveals that the size, length, and time and place of event occurrence are strongly influenced by the magnitude and degree of homogeneity in the elastic, viscous, and friction parameters of the fault region. For example, periodically reoccurring similar events are observed in simulations with near-homogeneous parameters along the fault, whereas seismic gaps are a common feature of simulations employing large variations in the fault parameters. The study also reveals correlations between strain energy release and fault length and average displacement and between main shock and aftershock displacements.

  18. Adding ecosystem function to agent-based land use models

    PubMed Central

    Yadav, V.; Del Grosso, S.J.; Parton, W.J.; Malanson, G.P.

    2015-01-01

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeochemical models are needed in order to calculate such fluxes. The Century model is described with particular attention to the land use choices that it can encompass. When Century is applied to a land use problem the combinatorial choices lead to a potentially unmanageable number of simulation runs. Century is also parameter-intensive. Three ways of including Century output in agent-based models, ranging from separately calculated look-up tables to agents running Century within the simulation, are presented. The latter may be most efficient, but it moves the computing costs to where they are most problematic. Concern for computing costs should not be a roadblock. PMID:26191077

  19. Ideal free distribution or dynamic game? An agent-based simulation study of trawling strategies with varying information

    NASA Astrophysics Data System (ADS)

    Beecham, J. A.; Engelhard, G. H.

    2007-10-01

    An ecological economic model of trawling is presented to demonstrate the effect of trawling location choice strategy on net input (rate of economic gain of fish caught per time spent less costs). Fishing location choice is considered to be a dynamic process whereby trawlers chose from among a repertoire of plastic strategies that they modify if their gains fall below a fixed proportion of the mean gains of the fleet as a whole. The distribution of fishing across different areas of a fishery follows an approximate ideal free distribution (IFD) with varying noise due to uncertainty. The least-productive areas are not utilised because initial net input never reaches the mean yield of better areas subject to competitive exploitation. In cases, where there is a weak temporal autocorrelation between fish stocks in a specific location, a plastic strategy of local translocation between trawls mixed with longer-range translocation increases realised input. The trawler can change its translocation strategy in the light of information about recent trawling success compared to its long-term average but, in contrast to predictions of the Marginal Value Theorem (MVT) model, does not know for certain what it will find by moving, so may need to sample new patches. The combination of the two types of translocation mirrored beam-trawling strategies used by the Dutch fleet and the resultant distribution of trawling effort is confirmed by analysis of historical effort distribution of British otter trawling fleets in the North Sea. Fisheries exploitation represents an area where dynamic agent-based adaptive models may be a better representation of the economic dynamics of a fleet than classically inspired optimisation models.

  20. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1976-01-01

    Two computer simulation models of earthquakes were studied for the dependence of the pattern of events on the model assumptions and input parameters. Both models represent the seismically active region by mechanical blocks which are connected to one another and to a driving plate. The blocks slide on a friction surface. In the first model elastic forces were employed and time independent friction to simulate main shock events. The size, length, and time and place of event occurrence were influenced strongly by the magnitude and degree of homogeniety in the elastic and friction parameters of the fault region. Periodically reoccurring similar events were frequently observed in simulations with near homogeneous parameters along the fault, whereas, seismic gaps were a common feature of simulations employing large variations in the fault parameters. The second model incorporated viscoelastic forces and time-dependent friction to account for aftershock sequences. The periods between aftershock events increased with time and the aftershock region was confined to that which moved in the main event.

  1. Learning to Measure Biodiversity: Two Agent-Based Models that Simulate Sampling Methods & Provide Data for Calculating Diversity Indices

    ERIC Educational Resources Information Center

    Jones, Thomas; Laughlin, Thomas

    2009-01-01

    Nothing could be more effective than a wilderness experience to demonstrate the importance of conserving biodiversity. When that is not possible, though, there are computer models with several features that are helpful in understanding how biodiversity is measured. These models are easily used when natural resources, transportation, and time…

  2. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  3. Understanding Islamist political violence through computational social simulation

    SciTech Connect

    Watkins, Jennifer H; Mackerrow, Edward P; Patelli, Paolo G; Eberhardt, Ariane; Stradling, Seth G

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  4. Who's your neighbor? neighbor identification for agent-based modeling.

    SciTech Connect

    Macal, C. M.; Howe, T. R.; Decision and Information Sciences; Univ. of Chicago

    2006-01-01

    Agent-based modeling and simulation, based on the cellular automata paradigm, is an approach to modeling complex systems comprised of interacting autonomous agents. Open questions in agent-based simulation focus on scale-up issues encountered in simulating large numbers of agents. Specifically, how many agents can be included in a workable agent-based simulation? One of the basic tenets of agent-based modeling and simulation is that agents only interact and exchange locally available information with other agents located in their immediate proximity or neighborhood of the space in which the agents are situated. Generally, an agent's set of neighbors changes rapidly as a simulation proceeds through time and as the agents move through space. Depending on the topology defined for agent interactions, proximity may be defined by spatial distance for continuous space, adjacency for grid cells (as in cellular automata), or by connectivity in social networks. Identifying an agent's neighbors is a particularly time-consuming computational task and can dominate the computational effort in a simulation. Two challenges in agent simulation are (1) efficiently representing an agent's neighborhood and the neighbors in it and (2) efficiently identifying an agent's neighbors at any time in the simulation. These problems are addressed differently for different agent interaction topologies. While efficient approaches have been identified for agent neighborhood representation and neighbor identification for agents on a lattice with general neighborhood configurations, other techniques must be used when agents are able to move freely in space. Techniques for the analysis and representation of spatial data are applicable to the agent neighbor identification problem. This paper extends agent neighborhood simulation techniques from the lattice topology to continuous space, specifically R2. Algorithms based on hierarchical (quad trees) or non-hierarchical data structures (grid cells) are

  5. Grid computing and biomolecular simulation.

    PubMed

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  6. An agent based model of genotype editing

    SciTech Connect

    Rocha, L. M.; Huang, C. F.

    2004-01-01

    This paper presents our investigation on an agent-based model of Genotype Editing. This model is based on several characteristics that are gleaned from the RNA editing system as observed in several organisms. The incorporation of editing mechanisms in an evolutionary agent-based model provides a means for evolving agents with heterogenous post-transcriptional processes. The study of this agent-based genotype-editing model has shed some light into the evolutionary implications of RNA editing as well as established an advantageous evolutionary computation algorithm for machine learning. We expect that our proposed model may both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in agent-based optimization.

  7. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  8. Software simulator for multiple computer simulation system

    NASA Technical Reports Server (NTRS)

    Ogrady, E. P.

    1983-01-01

    A description is given of the structure and use of a computer program that simulates the operation of a parallel processor simulation system. The program is part of an investigation to determine algorithms that are suitable for simulating continous systems on a parallel processor configuration. The simulator is designed to accurately simulate the problem-solving phase of a simulation study. Care has been taken to ensure the integrity and correctness of data exchanges and to correctly sequence periods of computation and periods of data exchange. It is pointed out that the functions performed during a problem-setup phase or a reset phase are not simulated. In particular, there is no attempt to simulate the downloading process that loads object code into the local, transfer, and mapping memories of processing elements or the memories of the run control processor and the system control processor. The main program of the simulator carries out some problem-setup functions of the system control processor in that it requests the user to enter values for simulation system parameters and problem parameters. The method by which these values are transferred to the other processors, however, is not simulated.

  9. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    NASA Technical Reports Server (NTRS)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  10. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    EPA Science Inventory

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  11. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  12. Investigating biocomplexity through the agent-based paradigm.

    PubMed

    Kaul, Himanshu; Ventikos, Yiannis

    2015-01-01

    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex.

  13. Investigating biocomplexity through the agent-based paradigm

    PubMed Central

    Kaul, Himanshu

    2015-01-01

    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines—or agents—to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex. PMID:24227161

  14. Computer Simulation of Mutagenesis.

    ERIC Educational Resources Information Center

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  15. Composite Erosion by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2006-01-01

    Composite degradation is evaluated by computational simulation when the erosion degradation occurs on a ply-by-ply basis and the degrading medium (device) is normal to the ply. The computational simulation is performed by a multi factor interaction model and by a multi scale and multi physics available computer code. The erosion process degrades both the fiber and the matrix simultaneously in the same slice (ply). Both the fiber volume ratio and the matrix volume ratio approach zero while the void volume ratio increases as the ply degrades. The multi factor interaction model simulates the erosion degradation, provided that the exponents and factor ratios are selected judiciously. Results obtained by the computational composite mechanics show that most composite characterization properties degrade monotonically and approach "zero" as the ply degrades completely.

  16. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  17. Taxis through Computer Simulation Programs.

    ERIC Educational Resources Information Center

    Park, David

    1983-01-01

    Describes a sequence of five computer programs (listings for Apple II available from author) on tactic responses (oriented movement of a cell, cell group, or whole organism in reponse to stimuli). The simulation programs are useful in helping students examine mechanisms at work in real organisms. (JN)

  18. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  19. Interactive agent based modeling of public health decision-making.

    PubMed

    Parks, Amanda L; Walker, Brett; Pettey, Warren; Benuzillo, Jose; Gesteland, Per; Grant, Juliana; Koopman, James; Drews, Frank; Samore, Matthew

    2009-01-01

    Agent-based models have yielded important insights regarding the transmission dynamics of communicable diseases. To better understand how these models can be used to study decision making of public health officials, we developed a computer program that linked an agent-based model of pertussis with an agent-based model of public health management. The program, which we call the Public Health Interactive Model & simulation (PHIMs) encompassed the reporting of cases to public health, case investigation, and public health response. The user directly interacted with the model in the role of the public health decision-maker. In this paper we describe the design of our model, and present the results of a pilot study to assess its usability and potential for future development. Affinity for specific tools was demonstrated. Participants ranked the program high in usability and considered it useful for training. Our ultimate goal is to achieve better public health decisions and outcomes through use of public health decision support tools. PMID:20351907

  20. Computer simulation of liquid metals

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2013-12-01

    Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.

  1. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  2. An Agent-Based Cockpit Task Management System

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1997-01-01

    An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.

  3. Computer simulation and scientific visualization

    SciTech Connect

    Weber, D.P.; Moszur, F.M.

    1990-01-01

    The simulation of processes in engineering and the physical sciences has progressed rapidly over the last several years. With rapid developments in supercomputers, parallel processing, numerical algorithms and software, scientists and engineers are now positioned to quantitatively simulate systems requiring many billions of arithmetic operations. The need to understand and assimilate such massive amounts of data has been a driving force in the development of both hardware and software to create visual representations of the underling physical systems. In this paper, and the accompanying videotape, the evolution and development of the visualization process in scientific computing will be reviewed. Specific applications and associated imaging hardware and software technology illustrate both the computational needs and the evolving trends. 6 refs.

  4. Biomes computed from simulated climatologies

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Esch, Monika

    1994-01-01

    The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fur Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced C02 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.[/ab

  5. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  6. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth. PMID:27044046

  7. Computer simulation of nonequilibrium processes

    SciTech Connect

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed.

  8. Inversion based on computational simulations

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-09-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.

  9. Agent-based computational model of the prevalence of gonococcal infections after the implementation of HIV pre-exposure prophylaxis guidelines

    PubMed Central

    Escobar, Erik; Durgham, Ryan; Dammann, Olaf; Stopka, Thomas J.

    2015-01-01

    Recently, the first comprehensive guidelines were published for pre-exposure prophylaxis (PrEP) for the prevention of HIV infection in populations with substantial risk of infection. Guidelines include a daily regimen of emtricitabine/tenofovir disoproxil fumarate (TDF/FTC) as well as condom usage during sexual activity. The relationship between the TDF/FTC intake regimen and condom usage is not yet fully understood. If men who have sex with men (MSM,) engage in high-risk sexual activities without using condoms when prescribed TDF/FTC they might be at an increased risk for other sexually transmitted diseases (STD). Our study focuses on the possible occurrence of behavioral changes among MSM in the United States over time with regard to condom usage. In particular, we were interested in creating a model of how increased uptake of TDF/FTC might cause a decline in condom usage, causing significant increases in non-HIV STD incidence, using gonococcal infection incidence as a biological endpoint. We used the agent-based modeling software NetLogo, building upon an existing model of HIV infection. We found no significant evidence for increased gonorrhea prevalence due to increased PrEP usage at any level of sample-wide usage, with a range of 0-90% PrEP usage. However, we did find significant evidence for decreased prevalence of HIV, with a maximal effect being reached when 5% to 10% of the MSM population used PrEP. Our findings appear to indicate that attitudes of aversion, within the medical community, toward the promotion of PrEP due to the potential risk of increased STD transmission are unfounded. PMID:26834937

  10. Agent-based computational model of the prevalence of gonococcal infections after the implementation of HIV pre-exposure prophylaxis guidelines.

    PubMed

    Escobar, Erik; Durgham, Ryan; Dammann, Olaf; Stopka, Thomas J

    2015-01-01

    Recently, the first comprehensive guidelines were published for pre-exposure prophylaxis (PrEP) for the prevention of HIV infection in populations with substantial risk of infection. Guidelines include a daily regimen of emtricitabine/tenofovir disoproxil fumarate (TDF/FTC) as well as condom usage during sexual activity. The relationship between the TDF/FTC intake regimen and condom usage is not yet fully understood. If men who have sex with men (MSM,) engage in high-risk sexual activities without using condoms when prescribed TDF/FTC they might be at an increased risk for other sexually transmitted diseases (STD). Our study focuses on the possible occurrence of behavioral changes among MSM in the United States over time with regard to condom usage. In particular, we were interested in creating a model of how increased uptake of TDF/FTC might cause a decline in condom usage, causing significant increases in non-HIV STD incidence, using gonococcal infection incidence as a biological endpoint. We used the agent-based modeling software NetLogo, building upon an existing model of HIV infection. We found no significant evidence for increased gonorrhea prevalence due to increased PrEP usage at any level of sample-wide usage, with a range of 0-90% PrEP usage. However, we did find significant evidence for decreased prevalence of HIV, with a maximal effect being reached when 5% to 10% of the MSM population used PrEP. Our findings appear to indicate that attitudes of aversion, within the medical community, toward the promotion of PrEP due to the potential risk of increased STD transmission are unfounded. PMID:26834937

  11. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  12. Agent-Based Literacy Theory

    ERIC Educational Resources Information Center

    McEneaney, John E.

    2006-01-01

    The purpose of this theoretical essay is to explore the limits of traditional conceptualizations of reader and text and to propose a more general theory based on the concept of a literacy agent. The proposed theoretical perspective subsumes concepts from traditional theory and aims to account for literacy online. The agent-based literacy theory…

  13. Agent-based model to rural urban migration analysis

    NASA Astrophysics Data System (ADS)

    Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.

    2006-05-01

    In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.

  14. Computer simulation of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Jang, Jee Hwan

    One of the main objectives of computer simulation is to isolate the effect of a specific variable in a physical or chemical system of interest, but with ambiguity in experimental interpretation. The area of polymer surface or interface contains such an ambiguity due to absence of a major thermodynamic driving force and difficulty of the complete control of experimental design. Considering the length and the time scales that define a phenomenon observed in polymeric systems, the appropriate choice of a method among the currently available methodologies in computational chemistry that have been developed mostly for small molecules is very demanding because of the Imitation of computational resources. In this study, a computationally efficient Monte Carlo simulation on a high coordination lattice employing the RIS scheme for short range interactions and a Lennard-Jones potential for long-range interaction has been applied to various boundary situations which define the material status and distinguish the properties of the material at an interface or surface from those in the bulk state. The polymer surfaces of interest in this study include a free polymer surface, a surface near an attractive solid substrate, a polymer surface generated by compression between two repulsive hard walls, and a polymer-polymer interface. Several focuses are on the change of the static properties and dynamic properties at the interfaces, which includes density profiles, distribution of a specific constituent of a polymer chain at the interfaces, chain orientation, local conformational state, and chain diffusivity. Each property at an interface is greatly affected by the characteristic of the imposed heterogeneity. One common feature is that the chains are confined at an interface along the direction normal to a surface regardless of the detailed nature of the surface. In addition, the effect of a surface gradually diminishes toward a bulk region and each property has its own effective

  15. Computer simulation of microstructural dynamics

    SciTech Connect

    Grest, G.S.; Anderson, M.P.; Srolovitz, D.J.

    1985-01-01

    Since many of the physical properties of materials are determined by their microstructure, it is important to be able to predict and control microstructural development. A number of approaches have been taken to study this problem, but they assume that the grains can be described as spherical or hexagonal and that growth occurs in an average environment. We have developed a new technique to bridge the gap between the atomistic interactions and the macroscopic scale by discretizing the continuum system such that the microstructure retains its topological connectedness, yet is amenable to computer simulations. Using this technique, we have studied grain growth in polycrystalline aggregates. The temporal evolution and grain morphology of our model are in excellent agreement with experimental results for metals and ceramics.

  16. Priority Queues for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in new priority queue data structures for event list management of computer simulations, and includes a new priority queue data structure and an improved event horizon applied to priority queue data structures. ne new priority queue data structure is a Qheap and is made out of linked lists for robust, fast, reliable, and stable event list management and uses a temporary unsorted list to store all items until one of the items is needed. Then the list is sorted, next, the highest priority item is removed, and then the rest of the list is inserted in the Qheap. Also, an event horizon is applied to binary tree and splay tree priority queue data structures to form the improved event horizon for event management.

  17. Agent based simulations in disease modeling Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Pappalardo, Francesco; Pennisi, Marzio

    2016-07-01

    Fibrosis represents a process where an excessive tissue formation in an organ follows the failure of a physiological reparative or reactive process. Mathematical and computational techniques may be used to improve the understanding of the mechanisms that lead to the disease and to test potential new treatments that may directly or indirectly have positive effects against fibrosis [1]. In this scenario, Ben Amar and Bianca [2] give us a broad picture of the existing mathematical and computational tools that have been used to model fibrotic processes at the molecular, cellular, and tissue levels. Among such techniques, agent based models (ABM) can give a valuable contribution in the understanding and better management of fibrotic diseases.

  18. Computer simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    Smondyrev, Alexander M.

    Liquid crystal physics is an exciting interdisciplinary field of research with important practical applications. Their complexity and the presence of strong translational and orientational fluctuations require a computational approach, especially in the studies of nonequlibrium phenomena. In this dissertation we present the results of computer simulation studies of liquid crystals using the molecular dynamics technique. We employed the Gay-Berne phenomenological model of liquid crystals to describe the interaction between the molecules. Both equilibrium and non-equilibrium phenomena were studied. In the first case we studied the flow properties of the liquid crystal system in equilibrium as well as the dynamics of the director. We measured the viscosities of the Gay-Berne model in the nematic and isotropic phases. The temperature-dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment. The director motion was found to be ballistic at short times and diffusive at longer times. The second class of problems we focused on is the properties of the system which was rapidly quenched to very low temperatures from the nematic phase. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well. Finally, we considered a system in the isotropic phase which is then cooled to temperatures below the isotropic-nematic transition temperature. We expect topological defects to play a central role in the subsequent equilibration of the system. To identify and study these defects we require a simulation of a system with several thousand particles. We present the results of large

  19. Agent-based forward analysis

    SciTech Connect

    Kerekes, Ryan A.; Jiao, Yu; Shankar, Mallikarjun; Potok, Thomas E.; Lusk, Rick M.

    2008-01-01

    We propose software agent-based "forward analysis" for efficient information retrieval in a network of sensing devices. In our approach, processing is pushed to the data at the edge of the network via intelligent software agents rather than pulling data to a central facility for processing. The agents are deployed with a specific query and perform varying levels of analysis of the data, communicating with each other and sending only relevant information back across the network. We demonstrate our concept in the context of face recognition using a wireless test bed comprised of PDA cell phones and laptops. We show that agent-based forward analysis can provide a significant increase in retrieval speed while decreasing bandwidth usage and information overload at the central facility. n

  20. Exploring cooperation and competition using agent-based modeling

    PubMed Central

    Elliott, Euel; Kiel, L. Douglas

    2002-01-01

    Agent-based modeling enhances our capacity to model competitive and cooperative behaviors at both the individual and group levels of analysis. Models presented in these proceedings produce consistent results regarding the relative fragility of cooperative regimes among agents operating under diverse rules. These studies also show how competition and cooperation may generate change at both the group and societal level. Agent-based simulation of competitive and cooperative behaviors may reveal the greatest payoff to social science research of all agent-based modeling efforts because of the need to better understand the dynamics of these behaviors in an increasingly interconnected world. PMID:12011396

  1. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  2. The Shuttle Mission Simulator computer generated imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1984-01-01

    Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.

  3. Simulating Drosophila Genetics with the Computer.

    ERIC Educational Resources Information Center

    Small, James W., Jr.; Edwards, Kathryn L.

    1979-01-01

    Presents some techniques developed to help improve student understanding of Mendelian principles through the use of a computer simulation model by the genetic system of the fruit fly. Includes discussion and evaluation of this computer assisted program. (MA)

  4. Protocols for Handling Messages Between Simulation Computers

    NASA Technical Reports Server (NTRS)

    Balcerowski, John P.; Dunnam, Milton

    2006-01-01

    Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.

  5. Monte Carlo Computer Simulation of a Rainbow.

    ERIC Educational Resources Information Center

    Olson, Donald; And Others

    1990-01-01

    Discusses making a computer-simulated rainbow using principles of physics, such as reflection and refraction. Provides BASIC program for the simulation. Appends a program illustrating the effects of dispersion of the colors. (YP)

  6. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  7. GIS and agent based spatial-temporal simulation modeling for assessing tourism social carrying capacity: a study on Mount Emei scenic area, China

    NASA Astrophysics Data System (ADS)

    Zhang, Renjun

    2007-06-01

    Each scenic area can sustain a specific level of acceptance of tourist development and use, beyond which further development can result in socio-cultural deterioration or a decline in the quality of the experience gained by visitors. This specific level is called carrying capacity. Social carrying capacity can be defined as the maximum level of use (in terms of numbers and activities) that can be absorbed by an area without an unacceptable decline in the quality of experience of visitors and without an unacceptable adverse impact on the society of the area. It is difficult to assess the carrying capacity, because the carrying capacity is determined by not only the number of visitors, but also the time, the type of the recreation, the characters of each individual and the physical environment. The objective of this study is to build a spatial-temporal simulation model to simulate the spatial-temporal distribution of tourists. This model is a tourist spatial behaviors simulator (TSBS). Based on TSBS, the changes of each visitor's travel patterns such as location, cost, and other states data are recoded in a state table. By analyzing this table, the intensity of the tourist use in any area can be calculated; the changes of the quality of tourism experience can be quantized and analyzed. So based on this micro simulation method the social carrying capacity can be assessed more accurately, can be monitored proactively and managed adaptively. In this paper, the carrying capacity of Mount Emei scenic area is analyzed as followed: The author selected the intensity of the crowd as the monitoring Indicators. it is regarded that longer waiting time means more crowded. TSBS was used to simulate the spatial-temporal distribution of tourists. the average of waiting time all the visitors is calculated. And then the author assessed the social carrying capacity of Mount Emei scenic area, found the key factors have impacted on social carrying capacity. The results show that the TSBS

  8. Computer Simulation in Chemical Kinetics

    ERIC Educational Resources Information Center

    Anderson, Jay Martin

    1976-01-01

    Discusses the use of the System Dynamics technique in simulating a chemical reaction for kinetic analysis. Also discusses the use of simulation modelling in biology, ecology, and the social sciences, where experimentation may be impractical or impossible. (MLH)

  9. AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*

    PubMed Central

    Bruch, Elizabeth; Atwell, Jon

    2014-01-01

    Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351

  10. Computer Simulation in Undergraduate Instruction: A Symposium.

    ERIC Educational Resources Information Center

    Street, Warren R.; And Others

    These symposium papers discuss the instructional use of computers in psychology, with emphasis on computer-produced simulations. The first, by Rich Edwards, briefly outlines LABSIM, a general purpose system of FORTRAN programs which simulate data collection in more than a dozen experimental models in psychology and are designed to train students…

  11. Computer simulation of inhibitor application -- A review

    SciTech Connect

    Banerjee, G.; Vasanth, K.L.

    1997-12-01

    The rapid development of powerful software as well as hardware in computer technology has changed the traditional approach to all areas of science and technology. In the field of corrosion inhibitors, computers are used to model, simulate, analyze and monitor inhibitor applications in both laboratory and industrial environments. This paper will present an up-to-date critical review of such simulation studies.

  12. Agent Based Modeling as an Educational Tool

    NASA Astrophysics Data System (ADS)

    Fuller, J. H.; Johnson, R.; Castillo, V.

    2012-12-01

    Motivation is a key element in high school education. One way to improve motivation and provide content, while helping address critical thinking and problem solving skills, is to have students build and study agent based models in the classroom. This activity visually connects concepts with their applied mathematical representation. "Engaging students in constructing models may provide a bridge between frequently disconnected conceptual and mathematical forms of knowledge." (Levy and Wilensky, 2011) We wanted to discover the feasibility of implementing a model based curriculum in the classroom given current and anticipated core and content standards.; Simulation using California GIS data ; Simulation of high school student lunch popularity using aerial photograph on top of terrain value map.

  13. Recent advances in computer image generation simulation.

    PubMed

    Geltmacher, H E

    1988-11-01

    An explosion in flight simulator technology over the past 10 years is revolutionizing U.S. Air Force (USAF) operational training. The single, most important development has been in computer image generation. However, other significant advances are being made in simulator handling qualities, real-time computation systems, and electro-optical displays. These developments hold great promise for achieving high fidelity combat mission simulation. This article reviews the progress to date and predicts its impact, along with that of new computer science advances such as very high speed integrated circuits (VHSIC), on future USAF aircrew simulator training. Some exciting possibilities are multiship, full-mission simulators at replacement training units, miniaturized unit level mission rehearsal training simulators, onboard embedded training capability, and national scale simulator networking.

  14. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data.

    PubMed

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.

  15. Computer simulation of nonequilibrium processes

    SciTech Connect

    Hoover, W.G.; Moran, B.; Holian, B.L.; Posch, H.A.; Bestiale, S.

    1987-01-01

    Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An extension of Nose's reversible atomistic mechanics makes it possible to simulate such non-equilibrium systems with completely reversible equations of motion. The new techniques show that macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov-unstable microscopic equations of motion.

  16. Filtration theory using computer simulations

    SciTech Connect

    Bergman, W.; Corey, I.

    1997-08-01

    We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.

  17. Filtration theory using computer simulations

    SciTech Connect

    Bergman, W.; Corey, I.

    1997-01-01

    We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three- dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements.

  18. Computational Modeling and Simulation of Genital Tubercle Development

    EPA Science Inventory

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating ...

  19. Evaluation of Visual Computer Simulator for Computer Architecture Education

    ERIC Educational Resources Information Center

    Imai, Yoshiro; Imai, Masatoshi; Moritoh, Yoshio

    2013-01-01

    This paper presents trial evaluation of a visual computer simulator in 2009-2011, which has been developed to play some roles of both instruction facility and learning tool simultaneously. And it illustrates an example of Computer Architecture education for University students and usage of e-Learning tool for Assembly Programming in order to…

  20. Deterministic Agent-Based Path Optimization by Mimicking the Spreading of Ripples.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Di Paolo, Ezequiel A; Liu, Hao

    2016-01-01

    Inspirations from nature have contributed fundamentally to the development of evolutionary computation. Learning from the natural ripple-spreading phenomenon, this article proposes a novel ripple-spreading algorithm (RSA) for the path optimization problem (POP). In nature, a ripple spreads at a constant speed in all directions, and the node closest to the source is the first to be reached. This very simple principle forms the foundation of the proposed RSA. In contrast to most deterministic top-down centralized path optimization methods, such as Dijkstra's algorithm, the RSA is a bottom-up decentralized agent-based simulation model. Moreover, it is distinguished from other agent-based algorithms, such as genetic algorithms and ant colony optimization, by being a deterministic method that can always guarantee the global optimal solution with very good scalability. Here, the RSA is specifically applied to four different POPs. The comparative simulation results illustrate the advantages of the RSA in terms of effectiveness and efficiency. Thanks to the agent-based and deterministic features, the RSA opens new opportunities to attack some problems, such as calculating the exact complete Pareto front in multiobjective optimization and determining the kth shortest project time in project management, which are very difficult, if not impossible, for existing methods to resolve. The ripple-spreading optimization principle and the new distinguishing features and capacities of the RSA enrich the theoretical foundations of evolutionary computation.

  1. Computational Spectrum of Agent Model Simulation

    SciTech Connect

    Perumalla, Kalyan S

    2010-01-01

    The study of human social behavioral systems is finding renewed interest in military, homeland security and other applications. Simulation is the most generally applied approach to studying complex scenarios in such systems. Here, we outline some of the important considerations that underlie the computational aspects of simulation-based study of human social systems. The fundamental imprecision underlying questions and answers in social science makes it necessary to carefully distinguish among different simulation problem classes and to identify the most pertinent set of computational dimensions associated with those classes. We identify a few such classes and present their computational implications. The focus is then shifted to the most challenging combinations in the computational spectrum, namely, large-scale entity counts at moderate to high levels of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases are outlined. A case study of large-scale agent simulation is provided in simulating large numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent computational results are identified that highlight the potential of modern high-end computing platforms to push the envelope with respect to speed, scale and fidelity of social system simulations. Finally, the problem of shielding the modeler or domain expert from the complex computational aspects is discussed and a few potential solution approaches are identified.

  2. Computer Simulation and ESL Reading.

    ERIC Educational Resources Information Center

    Wu, Mary A.

    It is noted that although two approaches to second language instruction--the communicative approach emphasizing genuine language use and computer assisted instruction--have come together in the form of some lower level reading instruction materials for English as a second language (ESL), advanced level ESL reading materials using computer…

  3. Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.

    1986-01-01

    Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.

  4. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  5. Computer simulation of engine systems

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The use of computerized simulations of the steady state and transient performance of jet engines throughout the flight regime is discussed. In addition, installation effects on thrust and specific fuel consumption is accounted for as well as engine weight, dimensions and cost. The availability throughout the government and industry of analytical methods for calculating these quantities are pointed out.

  6. Astronomy Simulation with Computer Graphics.

    ERIC Educational Resources Information Center

    Thomas, William E.

    1982-01-01

    "Planetary Motion Simulations" is a system of programs designed for students to observe motions of a superior planet (one whose orbit lies outside the orbit of the earth). Programs run on the Apple II microcomputer and employ high-resolution graphics to present the motions of Saturn. (Author/JN)

  7. Economic Analysis. Computer Simulation Models.

    ERIC Educational Resources Information Center

    Sterling Inst., Washington, DC. Educational Technology Center.

    A multimedia course in economic analysis was developed and used in conjunction with the United States Naval Academy. (See ED 043 790 and ED 043 791 for final reports of the project evaluation and development model.) This volume of the text discusses the simulation of behavioral relationships among variable elements in an economy and presents…

  8. Psychology on Computers: Simulations, Experiments and Projects.

    ERIC Educational Resources Information Center

    Belcher, Duane M.; Smith, Stephen D.

    PSYCOM is a unique mixed media package which combines high interest projects on the computer with a written text of expository material. It goes beyond most computer-assisted instruction which emphasizes drill and practice and testing of knowledge. A project might consist of a simulation or an actual experiment, or it might be a demonstration, a…

  9. Teaching Environmental Systems Modelling Using Computer Simulation.

    ERIC Educational Resources Information Center

    Moffatt, Ian

    1986-01-01

    A computer modeling course in environmental systems and dynamics is presented. The course teaches senior undergraduates to analyze a system of interest, construct a system flow chart, and write computer programs to simulate real world environmental processes. An example is presented along with a course evaluation, figures, tables, and references.…

  10. Architectural considerations for agent-based national scale policy models : LDRD final report.

    SciTech Connect

    Backus, George A.; Strip, David R.

    2007-09-01

    The need to anticipate the consequences of policy decisions becomes ever more important as the magnitude of the potential consequences grows. The multiplicity of connections between the components of society and the economy makes intuitive assessments extremely unreliable. Agent-based modeling has the potential to be a powerful tool in modeling policy impacts. The direct mapping between agents and elements of society and the economy simplify the mapping of real world functions into the world of computation assessment. Our modeling initiative is motivated by the desire to facilitate informed public debate on alternative policies for how we, as a nation, provide healthcare to our population. We explore the implications of this motivation on the design and implementation of a model. We discuss the choice of an agent-based modeling approach and contrast it to micro-simulation and systems dynamics approaches.

  11. Computer Simulation Of A Small Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1991-01-01

    Component-type mathematical model of small turboshaft engine developed for use in real-time computer simulations of dynamics of helicopter flight. Yields shaft speeds, torques, fuel-consumption rates, and other operating parameters with sufficient accuracy for use in real-time simulation of maneuvers involving large transients in power and/or severe accelerations.

  12. Salesperson Ethics: An Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  13. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  14. Reservoir Thermal Recover Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Li, Baoyan; Ma, Yuanle

    The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer

  15. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  16. Cluster computing software for GATE simulations

    SciTech Connect

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-06-15

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values.

  17. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  18. Computer simulation of bubble formation.

    SciTech Connect

    Insepov, Z.; Bazhirov, T.; Norman, G.; Stegailov, V.; Mathematics and Computer Science; Institute for High Energy Densities of Joint Institute for High Temperatures of RAS

    2007-01-01

    Properties of liquid metals (Li, Pb, Na) containing nanoscale cavities were studied by atomistic Molecular Dynamics (MD). Two atomistic models of cavity simulation were developed that cover a wide area in the phase diagram with negative pressure. In the first model, the thermodynamics of cavity formation, stability and the dynamics of cavity evolution in bulk liquid metals have been studied. Radial densities, pressures, surface tensions, and work functions of nano-scale cavities of various radii were calculated for liquid Li, Na, and Pb at various temperatures and densities, and at small negative pressures near the liquid-gas spinodal, and the work functions for cavity formation in liquid Li were calculated and compared with the available experimental data. The cavitation rate can further be obtained by using the classical nucleation theory (CNT). The second model is based on the stability study and on the kinetics of cavitation of the stretched liquid metals. A MD method was used to simulate cavitation in a metastable Pb and Li melts and determine the stability limits. States at temperatures below critical (T < 0.5Tc) and large negative pressures were considered. The kinetic boundary of liquid phase stability was shown to be different from the spinodal. The kinetics and dynamics of cavitation were studied. The pressure dependences of cavitation frequencies were obtained for several temperatures. The results of MD calculations were compared with estimates based on classical nucleation theory.

  19. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  20. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  1. Applications of Agent Based Approaches in Business (A Three Essay Dissertation)

    ERIC Educational Resources Information Center

    Prawesh, Shankar

    2013-01-01

    The goal of this dissertation is to investigate the enabling role that agent based simulation plays in business and policy. The aforementioned issue has been addressed in this dissertation through three distinct, but related essays. The first essay is a literature review of different research applications of agent based simulation in various…

  2. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  3. Computational modeling and simulation of genital tubercle development.

    PubMed

    Leung, Maxwell C K; Hutson, M Shane; Seifert, Ashley W; Spencer, Richard M; Knudsen, Thomas B

    2016-09-01

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development. PMID:27180093

  4. Computational modeling and simulation of genital tubercle development.

    PubMed

    Leung, Maxwell C K; Hutson, M Shane; Seifert, Ashley W; Spencer, Richard M; Knudsen, Thomas B

    2016-09-01

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development.

  5. Computer Series, 108. Computer Simulation of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Cullen, John F., Jr.

    1989-01-01

    Presented is a computer simulation called "The Great Chemical Bead Game" which can be used to teach the concepts of equilibrium and kinetics to introductory chemistry students more clearly than through an experiment. Discussed are the rules of the game, the application of rate laws and graphical analysis. (CW)

  6. Computer simulation of breathing systems for divers

    SciTech Connect

    Sexton, P.G.; Nuckols, M.L.

    1983-02-01

    A powerful new tool for the analysis and design of underwater breathing gas systems is being developed. A versatile computer simulator is described which makes possible the modular ''construction'' of any conceivable breathing gas system from computer memory-resident components. The analysis of a typical breathing gas system is demonstrated using this simulation technique, and the effects of system modifications on performance of the breathing system are shown. This modeling technique will ultimately serve as the foundation for a proposed breathing system simulator under development by the Navy. The marriage of this computer modeling technique with an interactive graphics system will provide the designer with an efficient, cost-effective tool for the development of new and improved diving systems.

  7. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  8. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  9. Software Engineering for Scientific Computer Simulations

    NASA Astrophysics Data System (ADS)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  10. Automatic temperature computation for realistic IR simulation

    NASA Astrophysics Data System (ADS)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  11. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  12. Enabling computational technologies for subsurface simulations

    SciTech Connect

    Falgout, R D

    1999-02-22

    We collaborated with Environmental Programs to develop and apply advanced computational methodologies for simulating multiphase flow through heterogeneous porous media. The primary focus was on developing a fast accurate advection scheme using a new temporal subcycling technique and on the scalable and efficient solution of the nonlinear Richards' equation used to model two-phase (variably saturated) flow. The resulting algorithms can be orders-of-magnitude faster than existing methods. Our computational technologies were applied to the simulation of subsurface fluid flow and chemical transport in the context of two important applications: water resource management and groundwater remediation.

  13. Task simulation in computer-based training

    SciTech Connect

    Gardner, P.R.

    1988-02-01

    Westinghouse Hanford Company (WHC) makes extensive use of job-task simulations in company-developed computer-based training (CBT) courseware. This courseware is different from most others because it does not simulate process control machinery or other computer programs, instead the WHC Excerises model day-to-day tasks such as physical work preparations, progress, and incident handling. These Exercises provide a higher level of motivation and enable the testing of more complex patterns of behavior than those typically measured by multiple-choice and short questions. Examples from the WHC Radiation Safety and Crane Safety courses will be used as illustrations. 3 refs.

  14. Computer simulation: A modern day crystal ball?

    NASA Technical Reports Server (NTRS)

    Sham, Michael; Siprelle, Andrew

    1994-01-01

    It has long been the desire of managers to be able to look into the future and predict the outcome of decisions. With the advent of computer simulation and the tremendous capability provided by personal computers, that desire can now be realized. This paper presents an overview of computer simulation and modeling, and discusses the capabilities of Extend. Extend is an iconic-driven Macintosh-based software tool that brings the power of simulation to the average computer user. An example of an Extend based model is presented in the form of the Space Transportation System (STS) Processing Model. The STS Processing Model produces eight shuttle launches per year, yet it takes only about ten minutes to run. In addition, statistical data such as facility utilization, wait times, and processing bottlenecks are produced. The addition or deletion of resources, such as orbiters or facilities, can be easily modeled and their impact analyzed. Through the use of computer simulation, it is possible to look into the future to see the impact of today's decisions.

  15. Computer simulation in sport and industry.

    PubMed

    Hubbard, M

    1993-01-01

    The last several decades have brought decreases in the specific cost of computer memory and increases in processor throughput. As a result simulation has become correspondingly more important as a component of industrial design and as a method for the study of general biomechanics and sports techniques. This paper illustrates, by way of examples, several of the more important aspects of the application of computer simulation to dynamic problems. Topics include (1) the ideas of suitable model complexity and its tradeoff with interpretability; (2) the sequential and iterative nature of model building and the importance of experimental data in the modelling and validation process; (3) the essential role of user-friendly software and graphical interfaces in the interchange of information between simulation programs and the users; and 4) the role of computer simulation in learning feedback loops, both in the field and in the computer laboratory. Most industrial use of simulation is in the design process. A similar approach is equally valid in biomechanics and sport applications through the incorporation of design variables, which may be easily changed in the model experiment.

  16. Computer simulation of the threshold sensitivity determinations

    NASA Technical Reports Server (NTRS)

    Gayle, J. B.

    1974-01-01

    A computer simulation study was carried out to evaluate various methods for determining threshold stimulus levels for impact sensitivity tests. In addition, the influence of a number of variables (initial stimulus level, particular stimulus response curve, and increment size) on the apparent threshold values and on the corresponding population response levels was determined. Finally, a critical review of previous assumptions regarding the stimulus response curve for impact testing is presented in the light of the simulation results.

  17. Computation Simulation Of Autonomous Vehicle Navigation

    NASA Astrophysics Data System (ADS)

    Meystel, A.; Koch, E.

    1984-06-01

    A concept of navigation is simulated based upon heuristic search. A mobile robot with a vision system navigates with an unknown or an unclear map. The range of vision is limited, thus, inflicting various judgments concerned with the comparison of alternatives of motion. The frequency of the decision-making procedure is limited by a definite time of computation. The system is simulated with a number of maps and the results of navigation are compared.

  18. Perspective: Computer simulations of long time dynamics

    PubMed Central

    Elber, Ron

    2016-01-01

    Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances. PMID:26874473

  19. Uncertainty and error in computational simulations

    SciTech Connect

    Oberkampf, W.L.; Diegert, K.V.; Alvin, K.F.; Rutherford, B.M.

    1997-10-01

    The present paper addresses the question: ``What are the general classes of uncertainty and error sources in complex, computational simulations?`` This is the first step of a two step process to develop a general methodology for quantitatively estimating the global modeling and simulation uncertainty in computational modeling and simulation. The second step is to develop a general mathematical procedure for representing, combining and propagating all of the individual sources through the simulation. The authors develop a comprehensive view of the general phases of modeling and simulation. The phases proposed are: conceptual modeling of the physical system, mathematical modeling of the system, discretization of the mathematical model, computer programming of the discrete model, numerical solution of the model, and interpretation of the results. This new view is built upon combining phases recognized in the disciplines of operations research and numerical solution methods for partial differential equations. The characteristics and activities of each of these phases is discussed in general, but examples are given for the fields of computational fluid dynamics and heat transfer. They argue that a clear distinction should be made between uncertainty and error that can arise in each of these phases. The present definitions for uncertainty and error are inadequate and. therefore, they propose comprehensive definitions for these terms. Specific classes of uncertainty and error sources are then defined that can occur in each phase of modeling and simulation. The numerical sources of error considered apply regardless of whether the discretization procedure is based on finite elements, finite volumes, or finite differences. To better explain the broad types of sources of uncertainty and error, and the utility of their categorization, they discuss a coupled-physics example simulation.

  20. Quantitative computer simulations of extraterrestrial processing operations

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Nikravesh, P. E.

    1989-01-01

    The automation of a small, solid propellant mixer was studied. Temperature control is under investigation. A numerical simulation of the system is under development and will be tested using different control options. Control system hardware is currently being put into place. The construction of mathematical models and simulation techniques for understanding various engineering processes is also studied. Computer graphics packages were utilized for better visualization of the simulation results. The mechanical mixing of propellants is examined. Simulation of the mixing process is being done to study how one can control for chaotic behavior to meet specified mixing requirements. An experimental mixing chamber is also being built. It will allow visual tracking of particles under mixing. The experimental unit will be used to test ideas from chaos theory, as well as to verify simulation results. This project has applications to extraterrestrial propellant quality and reliability.

  1. Progress in Computational Simulation of Earthquakes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Gregory; Judd, Michele; Li, P. Peggy; Norton, Charles; Tisdale, Edwin; Granat, Robert

    2006-01-01

    GeoFEST(P) is a computer program written for use in the QuakeSim project, which is devoted to development and improvement of means of computational simulation of earthquakes. GeoFEST(P) models interacting earthquake fault systems from the fault-nucleation to the tectonic scale. The development of GeoFEST( P) has involved coupling of two programs: GeoFEST and the Pyramid Adaptive Mesh Refinement Library. GeoFEST is a message-passing-interface-parallel code that utilizes a finite-element technique to simulate evolution of stress, fault slip, and plastic/elastic deformation in realistic materials like those of faulted regions of the crust of the Earth. The products of such simulations are synthetic observable time-dependent surface deformations on time scales from days to decades. Pyramid Adaptive Mesh Refinement Library is a software library that facilitates the generation of computational meshes for solving physical problems. In an application of GeoFEST(P), a computational grid can be dynamically adapted as stress grows on a fault. Simulations on workstations using a few tens of thousands of stress and displacement finite elements can now be expanded to multiple millions of elements with greater than 98-percent scaled efficiency on over many hundreds of parallel processors (see figure).

  2. A School Finance Computer Simulation Model

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    1974-01-01

    Presents a description of the computer simulation model developed by the National Educational Finance Project for use by States in planning and evaluating alternative approaches for State support programs. Provides a general introduction to the model, a program operation overview, a sample run, and some conclusions. (Author/WM)

  3. Factors Promoting Engaged Exploration with Computer Simulations

    ERIC Educational Resources Information Center

    Podolefsky, Noah S.; Perkins, Katherine K.; Adams, Wendy K.

    2010-01-01

    This paper extends prior research on student use of computer simulations (sims) to engage with and explore science topics, in this case wave interference. We describe engaged exploration; a process that involves students actively interacting with educational materials, sense making, and exploring primarily via their own questioning. We analyze…

  4. Assessing Moderator Variables: Two Computer Simulation Studies.

    ERIC Educational Resources Information Center

    Mason, Craig A.; And Others

    1996-01-01

    A strategy is proposed for conceptualizing moderating relationships based on their type (strictly correlational and classically correlational) and form, whether continuous, noncontinuous, logistic, or quantum. Results of computer simulations comparing three statistical approaches for assessing moderator variables are presented, and advantages of…

  5. Decision Making in Computer-Simulated Experiments.

    ERIC Educational Resources Information Center

    Suits, J. P.; Lagowski, J. J.

    A set of interactive, computer-simulated experiments was designed to respond to the large range of individual differences in aptitude and reasoning ability generally exhibited by students enrolled in first-semester general chemistry. These experiments give students direct experience in the type of decision making needed in an experimental setting.…

  6. GENMAP--A Microbial Genetics Computer Simulation.

    ERIC Educational Resources Information Center

    Day, M. J.; And Others

    1985-01-01

    An interactive computer program in microbial genetics is described. The simulation allows students to work at their own pace and develop understanding of microbial techniques as they choose donor bacterial strains, specify selective media, and interact with demonstration experiments. Sample questions and outputs are included. (DH)

  7. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high…

  8. Spiking network simulation code for petascale computers

    PubMed Central

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  9. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  10. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  11. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  12. Two Computer Simulations for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Stoner, Ronald

    1997-05-01

    Two-dimensional media, such as transparencies and textbook illustrations are often inadequate for representing three-dimensional phenomena. Computer simulation using animation and interactive graphics can solve the pedagogic problem of allowing students to visualize inherently 3-D phenomena in physics and astronomy. This paper demonstrates two such computer simulations intended for use in introductory astronomy courses. The first permits visualization of astronomical structures on several different size scales by converting catalogs of astronomical objects at known distances (stars, star clusters, galaxies, etc.) to 3-D arrays of color-coded points that can be rotated in simulation to reveal 3-D structure. The second simulates the apparent motion of the sun in the sky of an arbitrary planet, simultaneously with the combined rotational and orbital motion of the planet that is responsible for it. These simulations were written in Borland Pascal for MS-DOS computers using the utilities package distributed with CUPS software (Educational software packages produced by the Consortium on Upper-level Physics Software (CUPS) are available from John Wiley & Sons, Inc.).

  13. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  14. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors. PMID:27140113

  15. Computer simulations of WIGWAM underwater experiment

    SciTech Connect

    Kamegai, Minao; White, J.W.

    1993-11-01

    We performed computer simulations of the WIGWAM underwater experiment with a 2-D hydro-code, CALE. First, we calculated the bubble pulse and the signal strength at the closest gauge in one-dimensional geometry. The calculation shows excellent agreement with the measured data. Next, we made two-dimensional simulations of WIGWAM applying the gravity over-pressure, and calculated the signals at three selected gauge locations where measurements were recorded. The computed peak pressures at those gauge locations come well within the 15% experimental error bars. The signal at the farthest gauge is of the order of 200 bars. This is significant, because at this pressure the CALE output can be linked to a hydro-acoustics computer program, NPE Code (Nonlinear Progressive Wave-equation Code), to analyze the long distance propagation of acoustical signals from the underwater explosions on a global scale.

  16. Cosmological Simulations on a Grid of Computers

    NASA Astrophysics Data System (ADS)

    Depardon, Benjamin; Caron, Eddy; Desprez, Frédéric; Blaizot, Jérémy; Courtois, Hélène

    2010-06-01

    The work presented in this paper aims at restricting the input parameter values of the semi-analytical model used in GALICS and MOMAF, so as to derive which parameters influence the most the results, e.g., star formation, feedback and halo recycling efficiencies, etc. Our approach is to proceed empirically: we run lots of simulations and derive the correct ranges of values. The computation time needed is so large, that we need to run on a grid of computers. Hence, we model GALICS and MOMAF execution time and output files size, and run the simulation using a grid middleware: DIET. All the complexity of accessing resources, scheduling simulations and managing data is harnessed by DIET and hidden behind a web portal accessible to the users.

  17. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  18. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  19. High-performance computing MRI simulations.

    PubMed

    Stöcker, Tony; Vahedipour, Kaveh; Pflugfelder, Daniel; Shah, N Jon

    2010-07-01

    A new open-source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three-dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off-resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface-based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given.

  20. Computational Challenges in Nuclear Weapons Simulation

    SciTech Connect

    McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

    2003-08-29

    After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

  1. Computer Simulations Improve University Instructional Laboratories1

    PubMed Central

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and “wet” laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. PMID:15592599

  2. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  3. Memory interface simulator: A computer design aid

    NASA Technical Reports Server (NTRS)

    Taylor, D. S.; Williams, T.; Weatherbee, J. E.

    1972-01-01

    Results are presented of a study conducted with a digital simulation model being used in the design of the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. The model simulates the activity involved as instructions are fetched from random access memory for execution in one of the system central processing units. A series of model runs measured instruction execution time under various assumptions pertaining to the CPU's and the interface between the CPU's and RAM. Design tradeoffs are presented in the following areas: Bus widths, CPU microprogram read only memory cycle time, multiple instruction fetch, and instruction mix.

  4. Introduction to computational oral absorption simulation.

    PubMed

    Sugano, Kiyohiko

    2009-03-01

    Computational oral absorption simulation (COAS) is anticipated to be a powerful tool in improving the productivity of drug discovery and development. This article reviews the theories of pharmaceutical sciences that consist of COAS. Although most of these theories are classical, they are revisited from the context of modern drug discovery and development. The theories of solubility, diffusion, dissolution, precipitation, intestinal membrane permeation and gastrointestinal transit are comprehensively described. Prediction strategy is then discussed based on the biopharmaceutical classification system. In the final part, good simulation practice is proposed and many frequently asked questions answered.

  5. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  6. Computer Simulation for Emergency Incident Management

    SciTech Connect

    Brown, D L

    2004-12-03

    This report describes the findings and recommendations resulting from the Department of Homeland Security (DHS) Incident Management Simulation Workshop held by the DHS Advanced Scientific Computing Program in May 2004. This workshop brought senior representatives of the emergency response and incident-management communities together with modeling and simulation technologists from Department of Energy laboratories. The workshop provided an opportunity for incident responders to describe the nature and substance of the primary personnel roles in an incident response, to identify current and anticipated roles of modeling and simulation in support of incident response, and to begin a dialog between the incident response and simulation technology communities that will guide and inform planned modeling and simulation development for incident response. This report provides a summary of the discussions at the workshop as well as a summary of simulation capabilities that are relevant to incident-management training, and recommendations for the use of simulation in both incident management and in incident management training, based on the discussions at the workshop. In addition, the report discusses areas where further research and development will be required to support future needs in this area.

  7. Fiber Composite Sandwich Thermostructural Behavior - Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Aiello, Robert A.; Murthy, Pappu L. N.

    1988-01-01

    Four computational simulation methods with different levels of sophistication were used to simulate thermal behavior and structural changes of composite sandwich panels with a honeycomb core subjected to a variety of environmental effects. The models on thich these methods are based include three-dimensional finite-element modeling, three-dimensional finite-element modeling assuming a homogeneous core, laminate theory, and simple equations for predicting the equivalent properties of the honeycomb core. A procedure was developed and embedded in a composite mechanics computer code, which made it possile to conduct parametric studies to determine 'optimum' composite sandwich configurations for specific applications. The procedure was applied for the evaluation of composite sandwich behavior at the global, local, laminate, ply, and micromechanics levels when the composite sandwich is subjected to hygral, thermal, and mechanical loading environments.

  8. Metal matrix composites microfracture: Computational simulation

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Caruso, John J.; Chamis, Christos C.

    1990-01-01

    Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system.

  9. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  10. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  11. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  12. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  13. Neural network computer simulation of medical aerosols.

    PubMed

    Richardson, C J; Barlow, D J

    1996-06-01

    Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.

  14. Utility of computer simulations in landscape genetics.

    PubMed

    Epperson, Bryan K; McRae, Brad H; Scribner, Kim; Cushman, Samuel A; Rosenberg, Michael S; Fortin, Marie-Josée; James, Patrick M A; Murphy, Melanie; Manel, Stéphanie; Legendre, Pierre; Dale, Mark R T

    2010-09-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to processes by combining complex and realistic life histories, behaviours, landscape features and genetic data. Central to landscape genetics is the connection of spatial patterns of genetic variation to the usually highly stochastic space-time processes that create them over both historical and contemporary time periods. The field should benefit from a shift to computer simulation approaches, which enable incorporation of demographic and environmental stochasticity. A key role of simulations is to show how demographic processes such as dispersal or reproduction interact with landscape features to affect probability of site occupancy, population size, and gene flow, which in turn determine spatial genetic structure. Simulations could also be used to compare various statistical methods and determine which have correct type I error or the highest statistical power to correctly identify spatio-temporal and environmental effects. Simulations may also help in evaluating how specific spatial metrics may be used to project future genetic trends. This article summarizes some of the fundamental aspects of spatial-temporal population genetic processes. It discusses the potential use of simulations to determine how various spatial metrics can be rigorously employed to identify features of interest, including contrasting locus-specific spatial patterns due to micro-scale environmental selection.

  15. A computer simulation of chromosomal instability

    NASA Astrophysics Data System (ADS)

    Goodwin, E.; Cornforth, M.

    The transformation of a normal cell into a cancerous growth can be described as a process of mutation and selection occurring within the context of clonal expansion. Radiation, in addition to initial DNA damage, induces a persistent and still poorly understood genomic instability process that contributes to the mutational burden. It will be essential to include a quantitative description of this phenomenon in any attempt at science-based risk assessment. Monte Carlo computer simulations are a relatively simple way to model processes that are characterized by an element of randomness. A properly constructed simulation can capture the essence of a phenomenon that, as is often the case in biology, can be extraordinarily complex, and can do so even though the phenomenon itself is incompletely understood. A simple computer simulation of one manifestation of genomic instability known as chromosomal instability will be presented. The model simulates clonal expansion of a single chromosomally unstable cell into a colony. Instability is characterized by a single parameter, the rate of chromosomal rearrangement. With each new chromosome aberration, a unique subclone arises (subclones are defined as having a unique karyotype). The subclone initially has just one cell, but it can expand with cell division if the aberration is not lethal. The computer program automatically keeps track of the number of subclones within the expanding colony, and the number of cells within each subclone. Because chromosome aberrations kill some cells during colony growth, colonies arising from unstable cells tend to be smaller than those arising from stable cells. For any chosen level of instability, the computer program calculates the mean number of cells per colony averaged over many runs. These output should prove useful for investigating how such radiobiological phenomena as slow growth colonies, increased doubling time, and delayed cell death depend on chromosomal instability. Also of

  16. New Computer Simulations of Macular Neural Functioning

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  17. Computer simulations of the Ni2MnGa alloys

    NASA Astrophysics Data System (ADS)

    Breczko, Teodor M.; Nelayev, Vladislav; Dovzhik, Krishna; Najbuk, Miroslaw

    2008-07-01

    This article reports an computer simulations of physical properties of Heusler NiMnGa alloy. Computer simulation are devoted to austenite phase. The chemical composition of researched specimens causes generation martesite and austenite phases.

  18. Trends in Social Science: The Impact of Computational and Simulative Models

    NASA Astrophysics Data System (ADS)

    Conte, Rosaria; Paolucci, Mario; Cecconi, Federico

    This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.

  19. Investigation of Carbohydrate Recognition via Computer Simulation

    SciTech Connect

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  20. Parallel Proximity Detection for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1998-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  1. Parallel Proximity Detection for Computer Simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1997-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  2. Investigation of Carbohydrate Recognition via Computer Simulation.

    PubMed

    Johnson, Quentin R; Lindsay, Richard J; Petridis, Loukas; Shen, Tongye

    2015-01-01

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years. PMID:25927900

  3. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE PAGES

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  4. Investigation of Carbohydrate Recognition via Computer Simulation.

    PubMed

    Johnson, Quentin R; Lindsay, Richard J; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  5. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language. PMID:11542669

  6. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  7. Multidimensional computer simulation of Stirling cycle engines

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.

    1990-01-01

    The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.

  8. Computer Simulation Studies of Gramicidin Channel

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2009-04-01

    Ion channels are large membrane proteins, and their function is to facilitate the passage of ions across biological membranes. Recently, Dr. John Cuppoletti's group at UC showed that the gramicidin channel could function at high temperatures (360 -- 390K) with significant currents. This finding may have large implications for fuel cell technology. In this project, we will examine the experimental system by computer simulation. We will investigate how the temperature affects the current and differences in magnitude of the currents between two forms of Gramicidin, A and D. This research will help to elucidate the underlying molecular mechanism in this promising new technology.

  9. Computer simulation of solder joint failure

    SciTech Connect

    Burchett, S.N.; Frear, D.R.; Rashid, M.M.

    1997-04-01

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide the fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.

  10. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  11. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  12. Mapping lava flow hazards using computer simulation

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Young, P. A. V.; McKendrick, I. J.

    1994-01-01

    Computer simulations of the paths of flowing lava are achieved using a program, FLOWFRONT, that describes the behavior of flow and digital models of the terrain. Two methods of application of simulations of the hazards posed by lava flows are described. The first, deterministic, method requires that program parameters such as vent position, minimum flow thickness, and thickness/slope relationship be based on the ambient eruptive conditions so that the future course of a specific lava flow can be simulated. This is illustrated using retrospective modeling of the first 21 days of the eruption of an andesitic lava flow at Lonquimay volcano, Chile, in 1988-1989. The usefulness of this method for real-time predictive modeling is likely to be limited by the lack of accurate field data on flow characteristics, the simple nature of the model, and the sensitivity to parameter choice of the final planimetric form of the model flow. The second application is probabilistic in nature and creates a map of the likelihood of inundation by lava flows that is useful for long-term land use planning. This method uses the historical record of past eruptions to constrain a series of Monte Carlo simulations and is illustrated using data from Etna volcano in Sicily. A multivariate statistical analysis of nine parameters for the 1763-1989 eruption catalog using simulated annealing permitted a classification of Etna's flank eruptions into two types: A and B. Type A eruptions are short-lived and produce linear lava flows; type B eruptions are long-lived, and produce lava flows that are much broader in shape, and their vents are restricted to the eastern flank of the volcano. The simulation method consists of creating a probability surface of the location of future eruption vents and segmenting the region according to the most likely historical eruption on which to base the simulation. Analysis of the autocorrelation of the historical eruptions shows that type A eruptions are strongly

  13. Computer Simulations in Science Education: Implications for Distance Education

    ERIC Educational Resources Information Center

    Sahin, Sami

    2006-01-01

    This paper is a review of literature about the use of computer simulations in science education. This review examines types and examples of computer simulations. The literature review indicated that although computer simulations cannot replace science classroom and laboratory activities completely, they offer various advantages both for classroom…

  14. The Learning Effects of Computer Simulations in Science Education

    ERIC Educational Resources Information Center

    Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.

    2012-01-01

    This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…

  15. Computational simulation of liquid fuel rocket injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1994-01-01

    A major component of any liquid propellant rocket is the propellant injection system. Issues of interest include the degree of liquid vaporization and its impact on the combustion process, the pressure and temperature fields in the combustion chamber, and the cooling of the injector face and chamber walls. The Finite Difference Navier-Stokes (FDNS) code is a primary computational tool used in the MSFC Computational Fluid Dynamics Branch. The branch has dedicated a significant amount of resources to development of this code for prediction of both liquid and solid fuel rocket performance. The FDNS code is currently being upgraded to include the capability to model liquid/gas multi-phase flows for fuel injection simulation. An important aspect of this effort is benchmarking the code capabilities to predict existing experimental injection data. The objective of this MSFC/ASEE Summer Faculty Fellowship term was to evaluate the capabilities of the modified FDNS code to predict flow fields with liquid injection. Comparisons were made between code predictions and existing experimental data. A significant portion of the effort included a search for appropriate validation data. Also, code simulation deficiencies were identified.

  16. Mapping lava flow hazards using computer simulation

    SciTech Connect

    Wadge, G.; Young, P.A.V.; Mckendrick, I.J.

    1994-01-01

    Computer simulations of the paths of flowing lava are achieved using a program, FLOWFRONT, that describes the behavior of flow and digital models of the terrain. Two methods of application of simulations of the hazards posed by lava flows are described. The first, deterministic, method requires that program parameters such as vent position, minimum flow thickness, and thickness/slope relationship be based on the ambient eruptive conditions so that the future course of a specific lava flow can be simulated. This is illustrated using retrospective modeling of the first 21 days of the eruption of an andesitic lava flow at Lonquimay volcano, Chile, in 1988-1989. The usefulness of this method for real-time predictive modeling is likely to be limited by the lack of accurate field data on flow characteristics, the simple nature of the model, and the sensitivity to parameter choice of the final planimetric form of the model flow. The second application is probabilistic in nature and creates a map of the likelihood of inundation by lava flows that is useful for long-term land use planning. This method uses the historical record of past eruptions to constrain a series of Monte Carlo simulations and is illustrated using data from Etna volcano in Sicily. A multivariate statistical analysis of nine parameters for the 1763-1989 eruption catalog using simulated annealing permitted a classification of Etna`s flank eruptions into two types: A and B. Type A eruptions are short-lived and produce linear lava flows; type B eruptions are long-lived, and produce lava flows that are much broader in shape, and their vents are restricted to the eastern flank of the volcano.

  17. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  18. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  19. Infrared Flight Simulation Using Computer Generated Imagery

    NASA Astrophysics Data System (ADS)

    Weathersby, Marshall R.; Finlay, W. Mark

    1985-01-01

    A sophisticated deterministic interactive software model for computer generation of three-dimensionally projected infrared scenes has been developed. Scenes can be produced using either a self-emission or near infrared reflectance model. The software allows for generation of flight paths through a data base consisting of both feature and topography and near real-time display of stored precomputed images. The emphasis in the model development has been in computer generation of infrared scenes which accurately reproduce the characteristics of real-world imagery. The software combines computer graphics and infrared physics to produce synthetic scenes with the statistical properties of real scenes. Options exist for generation of images in near-infrared, 3-5 or 8-12 micron spectral bands including atmospheric attenuation effects. The three-dimensional projection algorithms allow for viewing of the scenes from any geometry and include concave and convex surfaces as well as hidden objects. Features exist for insertion of additional objects into the three-dimensional scenes. Thus targets, buildings, and other natural or man-made objects can be inserted with any orientation anywhere in the scenes. This allows full simulation of varying depression angles, range closure, and fly-over. The three-dimensional infrared background clutter model is an evaluation tool capable of both assessing system performance in clutter and increasing our understanding of clutter itself. The model in its current form represents a powerful tool for the fundamental understanding of infrared clutter. Possible applications include, but are most certainly not limited to, sensor operator training in the area of target discrimination with dynamic imagery, evaluation of automatic target recognizer (ATR) algorithms, and simulations allowing pilots to pre-fly missions.

  20. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1984-01-01

    All the investigations which were performed employed in one way or another a computer simulation technique based on atomistic level considerations. In general, three types of simulation methods were used for modeling systems with discrete particles that interact via well defined potential functions: molecular dynamics (a general method for solving the classical equations of motion of a model system); Monte Carlo (the use of Markov chain ensemble averaging technique to model equilibrium properties of a system); and molecular statics (provides properties of a system at T = 0 K). The effects of three-body forces on the vibrational frequencies of triatomic cluster were investigated. The multilayer relaxation phenomena for low index planes of an fcc crystal was analyzed also as a function of the three-body interactions. Various surface properties for Si and SiC system were calculated. Results obtained from static simulation calculations for slip formation were presented. The more elaborate molecular dynamics calculations on the propagation of cracks in two-dimensional systems were outlined.

  1. Computer simulation of fatigue under diametrical compression

    SciTech Connect

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-04-15

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.

  2. Agent based modeling of blood coagulation system: implementation using a GPU based high speed framework.

    PubMed

    Chen, Wenan; Ward, Kevin; Li, Qi; Kecman, Vojislav; Najarian, Kayvan; Menke, Nathan

    2011-01-01

    The coagulation and fibrinolytic systems are complex, inter-connected biological systems with major physiological roles. The complex, nonlinear multi-point relationships between the molecular and cellular constituents of two systems render a comprehensive and simultaneous study of the system at the microscopic and macroscopic level a significant challenge. We have created an Agent Based Modeling and Simulation (ABMS) approach for simulating these complex interactions. As the scale of agents increase, the time complexity and cost of the resulting simulations presents a significant challenge. As such, in this paper, we also present a high-speed framework for the coagulation simulation utilizing the computing power of graphics processing units (GPU). For comparison, we also implemented the simulations in NetLogo, Repast, and a direct C version. As our experiments demonstrate, the computational speed of the GPU implementation of the million-level scale of agents is over 10 times faster versus the C version, over 100 times faster versus the Repast version and over 300 times faster versus the NetLogo simulation. PMID:22254271

  3. A Mass Spectrometer Simulator in Your Computer

    NASA Astrophysics Data System (ADS)

    Gagnon, Michel

    2012-12-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result, it is not possible for instructors to take full advantage of this equipment. Therefore, to facilitate accessibility to this tool, we have developed a realistic computer-based simulator. Using this software, students are able to practice their ability to identify the components of the original gas, thereby gaining a better understanding of the underlying physical laws. The software is available as a free download.

  4. Computational simulation methods for composite fracture mechanics

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    1988-01-01

    Structural integrity, durability, and damage tolerance of advanced composites are assessed by studying damage initiation at various scales (micro, macro, and global) and accumulation and growth leading to global failure, quantitatively and qualitatively. In addition, various fracture toughness parameters associated with a typical damage and its growth must be determined. Computational structural analysis codes to aid the composite design engineer in performing these tasks were developed. CODSTRAN (COmposite Durability STRuctural ANalysis) is used to qualitatively and quantitatively assess the progressive damage occurring in composite structures due to mechanical and environmental loads. Next, methods are covered that are currently being developed and used at Lewis to predict interlaminar fracture toughness and related parameters of fiber composites given a prescribed damage. The general purpose finite element code MSC/NASTRAN was used to simulate the interlaminar fracture and the associated individual as well as mixed-mode strain energy release rates in fiber composites.

  5. Miller experiments in atomistic computer simulations

    PubMed Central

    Saitta, Antonino Marco; Saija, Franz

    2014-01-01

    The celebrated Miller experiments reported on the spontaneous formation of amino acids from a mixture of simple molecules reacting under an electric discharge, giving birth to the research field of prebiotic chemistry. However, the chemical reactions involved in those experiments have never been studied at the atomic level. Here we report on, to our knowledge, the first ab initio computer simulations of Miller-like experiments in the condensed phase. Our study, based on the recent method of treatment of aqueous systems under electric fields and on metadynamics analysis of chemical reactions, shows that glycine spontaneously forms from mixtures of simple molecules once an electric field is switched on and identifies formic acid and formamide as key intermediate products of the early steps of the Miller reactions, and the crucible of formation of complex biological molecules. PMID:25201948

  6. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  7. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  8. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  9. Multiscale agent-based consumer market modeling.

    SciTech Connect

    North, M. J.; Macal, C. M.; St. Aubin, J.; Thimmapuram, P.; Bragen, M.; Hahn, J.; Karr, J.; Brigham, N.; Lacy, M. E.; Hampton, D.; Decision and Information Sciences; Procter & Gamble Co.

    2010-05-01

    Consumer markets have been studied in great depth, and many techniques have been used to represent them. These have included regression-based models, logit models, and theoretical market-level models, such as the NBD-Dirichlet approach. Although many important contributions and insights have resulted from studies that relied on these models, there is still a need for a model that could more holistically represent the interdependencies of the decisions made by consumers, retailers, and manufacturers. When the need is for a model that could be used repeatedly over time to support decisions in an industrial setting, it is particularly critical. Although some existing methods can, in principle, represent such complex interdependencies, their capabilities might be outstripped if they had to be used for industrial applications, because of the details this type of modeling requires. However, a complementary method - agent-based modeling - shows promise for addressing these issues. Agent-based models use business-driven rules for individuals (e.g., individual consumer rules for buying items, individual retailer rules for stocking items, or individual firm rules for advertizing items) to determine holistic, system-level outcomes (e.g., to determine if brand X's market share is increasing). We applied agent-based modeling to develop a multi-scale consumer market model. We then conducted calibration, verification, and validation tests of this model. The model was successfully applied by Procter & Gamble to several challenging business problems. In these situations, it directly influenced managerial decision making and produced substantial cost savings.

  10. Duality quantum computer and the efficient quantum simulations

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Long, Gui-Lu

    2016-03-01

    Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.

  11. Problems in Conducting Research on Computer-Based Simulation.

    ERIC Educational Resources Information Center

    Crawford, Alice M.

    Computer-based simulation (CBS) represents a unique utilization of computers for instruction that combines some of the best features of the technologies of simulation and computer assisted instruction (CAI). CBS grew out of an interest in testing the application of CAI to procedural and perceptual motor skills. With the sophisticated graphics…

  12. Computer-aided simulation study of photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Zaghloul, Mona E.; Rhee, Do Jun

    1989-01-01

    A computer model that simulates the response of photomultiplier tubes (PMTs) and the associated voltage divider circuit is developed. An equivalent circuit that approximates the operation of the device is derived and then used to develop a computer simulation of the PMT. Simulation results are presented and discussed.

  13. Using Computational Simulations to Confront Students' Mental Models

    ERIC Educational Resources Information Center

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  14. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  15. An Agent Based Model for Social Class Emergence

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxiang; Rodriguez Segura, Daniel; Lin, Fei; Mazilu, Irina

    We present an open system agent-based model to analyze the effects of education and the society-specific wealth transactions on the emergence of social classes. Building on previous studies, we use realistic functions to model how years of education affect the income level. Numerical simulations show that the fraction of an individual's total transactions that is invested rather than consumed can cause wealth gaps between different income brackets in the long run. In an attempt to incorporate the network effects, we also explore how the probability of interactions among agents depending on the spread of their income brackets affects wealth distribution.

  16. Agent-based model of macrophage action on endocrine pancreas.

    PubMed

    Martínez, Ignacio V; Gómez, Enrique J; Hernando, M Elena; Villares, Ricardo; Mellado, Mario

    2012-01-01

    This paper proposes an agent-based model of the action of macrophages on the beta cells of the endocrine pancreas. The aim of this model is to simulate the processes of beta cell proliferation and apoptosis and also the process of phagocytosis of cell debris by macrophages, all of which are related to the onset of the autoimmune response in type 1 diabetes. We have used data from the scientific literature to design the model. The results show that the model obtains good approximations to real processes and could be used to shed light on some open questions concerning such processes.

  17. NISAC Agent Based Laboratory for Economics

    2006-10-11

    The software provides large-scale microeconomic simulation of complex economic and social systems (such as supply chain and market dynamics of businesses in the US economy) and their dependence on physical infrastructure systems. The system is based on Agent simulation, where each entity of inteest in the system to be modeled (for example, a Bank, individual firms, Consumer households, etc.) is specified in a data-driven sense to be individually repreented by an Agent. The Agents interactmore » using rules of interaction appropriate to their roles, and through those interactions complex economic and social dynamics emerge. The software is implemented in three tiers, a Java-based visualization client, a C++ control mid-tier, and a C++ computational tier.« less

  18. NISAC Agent Based Laboratory for Economics

    SciTech Connect

    Downes, Paula; Davis, Chris; Eidson, Eric; Ehlen, Mark; Gieseler, Charles; Harris, Richard

    2006-10-11

    The software provides large-scale microeconomic simulation of complex economic and social systems (such as supply chain and market dynamics of businesses in the US economy) and their dependence on physical infrastructure systems. The system is based on Agent simulation, where each entity of inteest in the system to be modeled (for example, a Bank, individual firms, Consumer households, etc.) is specified in a data-driven sense to be individually repreented by an Agent. The Agents interact using rules of interaction appropriate to their roles, and through those interactions complex economic and social dynamics emerge. The software is implemented in three tiers, a Java-based visualization client, a C++ control mid-tier, and a C++ computational tier.

  19. An agent-based multilayer architecture for bioinformatics grids.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Milanesi, Luciano; Romano, Paolo

    2007-06-01

    Due to the huge volume and complexity of biological data available today, a fundamental component of biomedical research is now in silico analysis. This includes modelling and simulation of biological systems and processes, as well as automated bioinformatics analysis of high-throughput data. The quest for bioinformatics resources (including databases, tools, and knowledge) becomes therefore of extreme importance. Bioinformatics itself is in rapid evolution and dedicated Grid cyberinfrastructures already offer easier access and sharing of resources. Furthermore, the concept of the Grid is progressively interleaving with those of Web Services, semantics, and software agents. Agent-based systems can play a key role in learning, planning, interaction, and coordination. Agents constitute also a natural paradigm to engineer simulations of complex systems like the molecular ones. We present here an agent-based, multilayer architecture for bioinformatics Grids. It is intended to support both the execution of complex in silico experiments and the simulation of biological systems. In the architecture a pivotal role is assigned to an "alive" semantic index of resources, which is also expected to facilitate users' awareness of the bioinformatics domain.

  20. Computer simulation of industrial hazards1

    PubMed Central

    Knox, E. G.

    1973-01-01

    Knox, E. G. (1973).Brit. J. industr. Med.,30, 54-63. Computer simulation of industrial hazards. A computer simulation system for a range of industrial hazards provided for model experiments which manipulated (a) the sub-structure of an exposed population in terms of age-distributions and levels of exposure, (b) the nature of the dose/response relationship, (c) the latent interval and its variability, (d) normal life-table expectations, and (e) employment turnover rates. The development of the system led to clarification of terms and concepts with ambiguous current usages, notably in relation to latency. Distinction is made between the notions of `biological' and `observable' latent intervals. Hypothetical exercises with the model tested its technical validity and at the same time demonstrated in quantitative terms the relationships between `biological' and `observable' latent intervals, employment turnover rates, total mortalities, and the distribution of illnesses and death between those currently employed in the exposing industry, those employed elsewhere, and those retired. Prospects of success for personnel engineering techniques, which manipulate age-distributions of exposed work people in relation to diseases with long latent intervals, were examined. Published asbestos cancer data were used as a basis for specific model fitting and resulted in a numerical formulation of the exposure/response relationships. Severe exposure results in an increment of risk of death of about 0·02 unit per person per annum for those exposed for around six years, but with higher rates for shorter exposures and lower rates for longer ones. The mean biological latent interval was about 25 years with a coefficient of variation of about 25%. These suppositions explained a range of published data comprehensively and at the same time predicted that (a) persons exposed at severe levels for a working lifetime of 50 years have a 40% risk of dying from asbestos cancer, and (b) industrial

  1. A computer simulation study of racemic mixtures

    NASA Astrophysics Data System (ADS)

    Largo, J.; Vega, C.; MacDowell, L. G.; Solana, J. R.

    A simple model for a chiral molecule is proposed. The model consists of a central atom bonded to four different atoms in tetrahedral coordination. Two different potentials were used to describe the pair potentials between atoms: the hard sphere potential and the Lennard-Jones potential. For both the hard sphere and the Lennard-Jones chiral models, computer simulations have been performed for the pure enantiomers and also for the racemic mixture. The racemic mixture consisted of an equimolar mixture of the two optically active enantiomers. It is found that the equations of state are the same, within statistical uncertainty, for the pure enantiomer fluid and for the racemic mixture. Only at high pressures does the racemic mixture seem to have a higher density, for a given pressure, than the pure enantiomer. Concering the structure, no difference is found in the site-site correlation functions between like and unlike molecules in the racemic mixture either at low or at high densities. However, small differences are found for the site-site correlations of the pure enantiomer and those of the racemic mixtures. In the Lennard-Jones model, similar conclusions are drawn. The extension of Wertheim's first-order perturbation theory, denoted bonded hard sphere theory (ARCHER, A. L., and JACKSON, G., 1991, Molec. Phys. , 73 , 881; AMOS, M. D., and JACKSON, G., 1992, J. chem. Phys. , 96 , 4604), successfully reproduces the simulation results for the hard chiral model. Virial coefficients of the hard chiral model up to the fourth have also been evaluated. Again, no differences are found between virial coefficients of the pure fluid and of the racemic mixture. All the results of this work illustrate the quasi-ideal behaviour of racemic mixtures in the fluid phase.

  2. Computer simulation of nanocube self-assemblies

    NASA Astrophysics Data System (ADS)

    Zhang, Xi

    Self-assembly of nanoscale building blocks and molecules into ordered nanostructures is a promising venue for bottom-up materials design. A wide variety of nanoparticles with unique shapes and uniform sizes have been successfully synthesized. However, organizing these nanoparticles into desired, predefined nanostructures is a formidable challenge now facing the materials community. For example, simple 2-D arrays and 3-D superlattices are the prevalent structures from most nanocube self-assemblies. Two practical strategies to impart anisotropy onto nanocubes, namely, attaching polymer tethers to nanoparticle surfaces and introducing directional dipolar interactions, can be applied to achieve more complex assembled structures. In this dissertation, we conduct computer simulations on nanocube self-assemblies induced by polymer tethers and directional dipole interactions, to examine the various parameters involved in such complicated self-assembly processes, including temperature, concentration, solvent condition, cube size, tether length, tether topology, tether placement, tether number, dipole direction, dipole strength and polydispersity, in order to understand how the packing geometry and interactions between nanocubes can be manipulated to confer precise control over the assembled structures and the phase behavior. First, we simulate monotethered nanocubes and find that the nanocubes favor face-to-face packing in poor solvents, stabilizing the lamellae phases. Next, we simulate different architectures of tethered nanocubes and demonstrate that the steric influence of tether beads can be manipulated to interfere with the face-to-face packing of nanocubes and alter the phase behaviors. We also study the self-assembly of nanocubes with dipoles. We find that the head-to-tail alignment of dipoles, coupled with the face-to-face close packing of nanocubes, dictates the assembled structures. The face-face attraction between nanocubes can also be utilized to control the

  3. Computational simulation of liquid rocket injector anomalies

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.

    1986-01-01

    A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.

  4. Computer simulation of FCC riser reactors.

    SciTech Connect

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.

    1999-04-20

    A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.

  5. Techniques and Issues in Agent-Based Modeling Validation

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui

    2012-01-01

    Validation of simulation models is extremely important. It ensures that the right model has been built and lends confidence to the use of that model to inform critical decisions. Agent-based models (ABM) have been widely deployed in different fields for studying the collective behavior of large numbers of interacting agents. However, researchers have only recently started to consider the issues of validation. Compared to other simulation models, ABM has many differences in model development, usage and validation. An ABM is inherently easier to build than a classical simulation, but more difficult to describe formally since they are closer to human cognition. Using multi-agent models to study complex systems has attracted criticisms because of the challenges involved in their validation [1]. In this report, we describe the challenge of ABM validation and present a novel approach we recently developed for an ABM system.

  6. Exploring the Use of Computer Simulations in Unraveling Research and Development Governance Problems

    NASA Technical Reports Server (NTRS)

    Balaban, Mariusz A.; Hester, Patrick T.

    2012-01-01

    Understanding Research and Development (R&D) enterprise relationships and processes at a governance level is not a simple task, but valuable decision-making insight and evaluation capabilities can be gained from their exploration through computer simulations. This paper discusses current Modeling and Simulation (M&S) methods, addressing their applicability to R&D enterprise governance. Specifically, the authors analyze advantages and disadvantages of the four methodologies used most often by M&S practitioners: System Dynamics (SO), Discrete Event Simulation (DES), Agent Based Modeling (ABM), and formal Analytic Methods (AM) for modeling systems at the governance level. Moreover, the paper describes nesting models using a multi-method approach. Guidance is provided to those seeking to employ modeling techniques in an R&D enterprise for the purposes of understanding enterprise governance. Further, an example is modeled and explored for potential insight. The paper concludes with recommendations regarding opportunities for concentration of future work in modeling and simulating R&D governance relationships and processes.

  7. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  8. Simulation of reliability in multiserver computer networks

    NASA Astrophysics Data System (ADS)

    Minkevičius, Saulius

    2012-11-01

    The performance in terms of reliability of computer multiserver networks motivates this paper. The probability limit theorem is derived on the extreme queue length in open multiserver queueing networks in heavy traffic and applied to a reliability model for multiserver computer networks where we relate the time of failure of a multiserver computer network to the system parameters.

  9. Computational simulations of vorticity enhanced diffusion

    NASA Astrophysics Data System (ADS)

    Vold, Erik L.

    1999-11-01

    Computer simulations are used to investigate a phenomenon of vorticity enhanced diffusion (VED), a net transport and mixing of a passive scalar across a prescribed vortex flow field driven by a background gradient in the scalar quantity. The central issue under study here is the increase in scalar flux down the gradient and across the vortex field. The numerical scheme uses cylindrical coordinates centered with the vortex flow which allows an exact advective solution and 1D or 2D diffusion using simple numerical methods. In the results, the ratio of transport across a localized vortex region in the presence of the vortex flow over that expected for diffusion alone is evaluated as a measure of VED. This ratio is seen to increase dramatically while the absolute flux across the vortex decreases slowly as the diffusion coefficient is decreased. Similar results are found and compared for varying diffusion coefficient, D, or vortex rotation time, τv, for a constant background gradient in the transported scalar vs an interface in the transported quantity, and for vortex flow fields constant in time vs flow which evolves in time from an initial state and with a Schmidt number of order unity. A simple analysis shows that for a small diffusion coefficient, the flux ratio measure of VED scales as the vortex radius over the thickness for mass diffusion in a viscous shear layer within the vortex characterized by (Dτv)1/2. The phenomenon is linear as investigated here and suggests that a significant enhancement of mixing in fluids may be a relatively simple linear process. Discussion touches on how this vorticity enhanced diffusion may be related to mixing in nonlinear turbulent flows.

  10. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.; Ziegler, C.

    1983-01-01

    A software simulator to help NASA in the design of the LMSS was developed. The simulator will be used to study the characteristics of implementation requirements of the LMSS's configuration with specifications as outlined by NASA.

  11. New Pedagogies on Teaching Science with Computer Simulations

    ERIC Educational Resources Information Center

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  12. How Effective Is Instructional Support for Learning with Computer Simulations?

    ERIC Educational Resources Information Center

    Eckhardt, Marc; Urhahne, Detlef; Conrad, Olaf; Harms, Ute

    2013-01-01

    The study examined the effects of two different instructional interventions as support for scientific discovery learning using computer simulations. In two well-known categories of difficulty, data interpretation and self-regulation, instructional interventions for learning with computer simulations on the topic "ecosystem water" were developed…

  13. Computer-Based Simulation Models for Community College Business Students.

    ERIC Educational Resources Information Center

    Kahl, James

    Instructors at Lower Columbia College in Longview, Washington use computer-based simulation models in lower level business administration courses. Prior to use, teachers must select and obtain a simulation, discuss it with campus computer personnel, set an operations schedule, obtain the necessary supplementary material, and test run the program.…

  14. Explore Effective Use of Computer Simulations for Physics Education

    ERIC Educational Resources Information Center

    Lee, Yu-Fen; Guo, Yuying

    2008-01-01

    The dual purpose of this article is to provide a synthesis of the findings related to the use of computer simulations in physics education and to present implications for teachers and researchers in science education. We try to establish a conceptual framework for the utilization of computer simulations as a tool for learning and instruction in…

  15. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    ERIC Educational Resources Information Center

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  16. Cognitive Effects from Process Learning with Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Breuer, Klaus; Kummer, Ruediger

    1990-01-01

    Discusses content learning versus process learning, describes process learning with computer-based simulations, and highlights an empirical study on the effects of process learning with problem-oriented, computer-managed simulations in technical vocational education classes in West Germany. Process learning within a model of the cognitive system…

  17. Computers for real time flight simulation: A market survey

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.; Karplus, W. J.

    1977-01-01

    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them.

  18. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  19. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    ERIC Educational Resources Information Center

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  20. GPU-accelerated micromagnetic simulations using cloud computing

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Rowlands, G. E.; Buhrman, R. A.; Ralph, D. C.

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics.

  1. Case Studies in Computer Adaptive Test Design through Simulation.

    ERIC Educational Resources Information Center

    Eignor, Daniel R.; And Others

    The extensive computer simulation work done in developing the computer adaptive versions of the Graduate Record Examinations (GRE) Board General Test and the College Board Admissions Testing Program (ATP) Scholastic Aptitude Test (SAT) is described in this report. Both the GRE General and SAT computer adaptive tests (CATs), which are fixed length…

  2. Strengthening Theoretical Testing in Criminology Using Agent-based Modeling

    PubMed Central

    Groff, Elizabeth R.

    2014-01-01

    Objectives: The Journal of Research in Crime and Delinquency (JRCD) has published important contributions to both criminological theory and associated empirical tests. In this article, we consider some of the challenges associated with traditional approaches to social science research, and discuss a complementary approach that is gaining popularity—agent-based computational modeling—that may offer new opportunities to strengthen theories of crime and develop insights into phenomena of interest. Method: Two literature reviews are completed. The aim of the first is to identify those articles published in JRCD that have been the most influential and to classify the theoretical perspectives taken. The second is intended to identify those studies that have used an agent-based model (ABM) to examine criminological theories and to identify which theories have been explored. Results: Ecological theories of crime pattern formation have received the most attention from researchers using ABMs, but many other criminological theories are amenable to testing using such methods. Conclusion: Traditional methods of theory development and testing suffer from a number of potential issues that a more systematic use of ABMs—not without its own issues—may help to overcome. ABMs should become another method in the criminologists toolbox to aid theory testing and falsification. PMID:25419001

  3. Agent based modeling in tactical wargaming

    NASA Astrophysics Data System (ADS)

    James, Alex; Hanratty, Timothy P.; Tuttle, Daniel C.; Coles, John B.

    2016-05-01

    Army staffs at division, brigade, and battalion levels often plan for contingency operations. As such, analysts consider the impact and potential consequences of actions taken. The Army Military Decision-Making Process (MDMP) dictates identification and evaluation of possible enemy courses of action; however, non-state actors often do not exhibit the same level and consistency of planned actions that the MDMP was originally designed to anticipate. The fourth MDMP step is a particular challenge, wargaming courses of action within the context of complex social-cultural behaviors. Agent-based Modeling (ABM) and its resulting emergent behavior is a potential solution to model terrain in terms of the human domain and improve the results and rigor of the traditional wargaming process.

  4. Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  5. Creating Science Simulations through Computational Thinking Patterns

    ERIC Educational Resources Information Center

    Basawapatna, Ashok Ram

    2012-01-01

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…

  6. An agent-based approach to financial stylized facts

    NASA Astrophysics Data System (ADS)

    Shimokawa, Tetsuya; Suzuki, Kyoko; Misawa, Tadanobu

    2007-06-01

    An important challenge of the financial theory in recent years is to construct more sophisticated models which have consistencies with as many financial stylized facts that cannot be explained by traditional models. Recently, psychological studies on decision making under uncertainty which originate in Kahneman and Tversky's research attract a lot of interest as key factors which figure out the financial stylized facts. These psychological results have been applied to the theory of investor's decision making and financial equilibrium modeling. This paper, following these behavioral financial studies, would like to propose an agent-based equilibrium model with prospect theoretical features of investors. Our goal is to point out a possibility that loss-averse feature of investors explains vast number of financial stylized facts and plays a crucial role in price formations of financial markets. Price process which is endogenously generated through our model has consistencies with, not only the equity premium puzzle and the volatility puzzle, but great kurtosis, asymmetry of return distribution, auto-correlation of return volatility, cross-correlation between return volatility and trading volume. Moreover, by using agent-based simulations, the paper also provides a rigorous explanation from the viewpoint of a lack of market liquidity to the size effect, which means that small-sized stocks enjoy excess returns compared to large-sized stocks.

  7. Genetic Crossing vs Cloning by Computer Simulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Subinay

    We perform Monte Carlo simulation using Penna's bit string model, and compare the process of asexual reproduction by cloning with that by genetic crossover. We find them to be comparable as regards survival of a species, and also if a natural disaster is simulated.

  8. Spatial Learning and Computer Simulations in Science

    ERIC Educational Resources Information Center

    Lindgren, Robb; Schwartz, Daniel L.

    2009-01-01

    Interactive simulations are entering mainstream science education. Their effects on cognition and learning are often framed by the legacy of information processing, which emphasized amodal problem solving and conceptual organization. In contrast, this paper reviews simulations from the vantage of research on perception and spatial learning,…

  9. Genetic crossing vs cloning by computer simulation

    SciTech Connect

    Dasgupta, S.

    1997-06-01

    We perform Monte Carlo simulation using Penna`s bit string model, and compare the process of asexual reproduction by cloning with that by genetic crossover. We find them to be comparable as regards survival of a species, and also if a natural disaster is simulated.

  10. Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    PubMed Central

    Niazi, Muaz A.

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135

  11. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  12. Use of advanced computers for aerodynamic flow simulation

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F.

    1980-01-01

    The current and projected use of advanced computers for large-scale aerodynamic flow simulation applied to engineering design and research is discussed. The design use of mature codes run on conventional, serial computers is compared with the fluid research use of new codes run on parallel and vector computers. The role of flow simulations in design is illustrated by the application of a three dimensional, inviscid, transonic code to the Sabreliner 60 wing redesign. Research computations that include a more complete description of the fluid physics by use of Reynolds averaged Navier-Stokes and large-eddy simulation formulations are also presented. Results of studies for a numerical aerodynamic simulation facility are used to project the feasibility of design applications employing these more advanced three dimensional viscous flow simulations.

  13. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  14. Some theoretical issues on computer simulations

    SciTech Connect

    Barrett, C.L.; Reidys, C.M.

    1998-02-01

    The subject of this paper is the development of mathematical foundations for a theory of simulation. Sequentially updated cellular automata (sCA) over arbitrary graphs are employed as a paradigmatic framework. In the development of the theory, the authors focus on the properties of causal dependencies among local mappings in a simulation. The main object of and study is the mapping between a graph representing the dependencies among entities of a simulation and a representing the equivalence classes of systems obtained by all possible updates.

  15. An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard W.

    This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.

  16. Computer simulation of water reclamation processors

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hightower, T. M.; Flynn, Michael T.

    1991-01-01

    The development of detailed simulation models of water reclamation processors based on the ASPEN PLUS simulation program is discussed. Individual models have been developed for vapor compression distillation, vapor phase catalytic ammonia removal, and supercritical water oxidation. These models are used for predicting the process behavior. Particular attention is given to methodology which is used to complete this work, and the insights which are gained by this type of model development.

  17. Computer simulation of a few common process control systems

    SciTech Connect

    Muncy, M.P.

    1986-06-01

    This paper shows how to simulate five common process control systems on an IBM PC with a commercially available software package named TUTSIM. All steps involved in producing and checking each simulation are described as clearly as possible. Complete computer listings and output line plots are included to fully document each simulation. Sufficient information is provided so that readers of this paper can duplicate each simulation if they desire to do so. 10 refs., 13 figs., 11 tbls.

  18. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  19. Validating agent based models through virtual worlds.

    SciTech Connect

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  20. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  1. Two inviscid computational simulations of separated flow about airfoils

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1976-01-01

    Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.

  2. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1981-01-01

    A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.

  3. Numerical simulation of supersonic wake flow with parallel computers

    SciTech Connect

    Wong, C.C.; Soetrisno, M.

    1995-07-01

    Simulating a supersonic wake flow field behind a conical body is a computing intensive task. It requires a large number of computational cells to capture the dominant flow physics and a robust numerical algorithm to obtain a reliable solution. High performance parallel computers with unique distributed processing and data storage capability can provide this need. They have larger computational memory and faster computing time than conventional vector computers. We apply the PINCA Navier-Stokes code to simulate a wind-tunnel supersonic wake experiment on Intel Gamma, Intel Paragon, and IBM SP2 parallel computers. These simulations are performed to study the mean flow in the near wake region of a sharp, 7-degree half-angle, adiabatic cone at Mach number 4.3 and freestream Reynolds number of 40,600. Overall the numerical solutions capture the general features of the hypersonic laminar wake flow and compare favorably with the wind tunnel data. With a refined and clustering grid distribution in the recirculation zone, the calculated location of the rear stagnation point is consistent with the 2D axisymmetric and 3D experiments. In this study, we also demonstrate the importance of having a large local memory capacity within a computer node and the effective utilization of the number of computer nodes to achieve good parallel performance when simulating a complex, large-scale wake flow problem.

  4. Computer Simulation of Electric Field Lines.

    ERIC Educational Resources Information Center

    Kirkup, L.

    1985-01-01

    Describes a computer program which plots electric field line plots. Includes program listing, sample diagrams produced on a BBC model B microcomputer (which could be produced on other microcomputers by modifying the program), and a discussion of the properties of field lines. (JN)

  5. How Real Is a Computer Simulation?

    ERIC Educational Resources Information Center

    Higgins, John J.

    Two keywords "input" and "get," in the BASIC programming language provide a metaphor of the processes of response and intervention in a dialogue situation. Computer teaching activities can be programmed using one or both of these commands. There are at least five main types: the quiz or overt teaching program, the text processsing program, the…

  6. Agent Based Model of Livestock Movements

    NASA Astrophysics Data System (ADS)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  7. An Exercise in Biometrical Genetics Based on a Computer Simulation.

    ERIC Educational Resources Information Center

    Murphy, P. J.

    1983-01-01

    Describes an exercise in biometrical genetics based on the noninteractive use of a computer simulation of a wheat hydridization program. Advantages of using the material in this way are also discussed. (Author/JN)

  8. MINEXP, A Computer-Simulated Mineral Exploration Program

    ERIC Educational Resources Information Center

    Smith, Michael J.; And Others

    1978-01-01

    This computer simulation is designed to put students into a realistic decision making situation in mineral exploration. This program can be used with different exploration situations such as ore deposits, petroleum, ground water, etc. (MR)

  9. Parallel solvers for reservoir simulation on MIMD computers

    SciTech Connect

    Piault, E.; Willien, F.; Roux, F.X.

    1995-12-01

    We have investigated parallel solvers for reservoir simulation. We compare different solvers and preconditioners using T3D and SP1 parallel computers. We use block diagonal domain decomposition preconditioner with non-overlapping sub-domains.

  10. Advances in Monte Carlo computer simulation

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.

    2011-03-01

    Since the invention of the Metropolis method in 1953, Monte Carlo methods have been shown to provide an efficient, practical approach to the calculation of physical properties in a wide variety of systems. In this talk, I will discuss some of the advances in the MC simulation of thermodynamics systems, with an emphasis on optimization to obtain a maximum of useful information.

  11. Bodies Falling with Air Resistance: Computer Simulation.

    ERIC Educational Resources Information Center

    Vest, Floyd

    1982-01-01

    Two models are presented. The first assumes that air resistance is proportional to the velocity of the falling body. The second assumes that air resistance is proportional to the square of the velocity. A program written in BASIC that simulates the second model is presented. (MP)

  12. Advanced Simulation and Computing Business Plan

    SciTech Connect

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  13. Student Ecosystems Problem Solving Using Computer Simulation.

    ERIC Educational Resources Information Center

    Howse, Melissa A.

    The purpose of this study was to determine the procedural knowledge brought to, and created within, a pond ecology simulation by students. Environmental Decision Making (EDM) is an ecosystems modeling tool that allows users to pose their own problems and seek satisfying solutions. Of specific interest was the performance of biology majors who had…

  14. Monte Carlo simulations on SIMD computer architectures

    SciTech Connect

    Burmester, C.P.; Gronsky, R.; Wille, L.T.

    1992-03-01

    Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.

  15. Computer Simulation of the Beating Human Heart

    NASA Astrophysics Data System (ADS)

    Peskin, Charles S.; McQueen, David M.

    2001-06-01

    The mechanical function of the human heart couples together the fluid mechanics of blood and the soft tissue mechanics of the muscular heart walls and flexible heart valve leaflets. We discuss a unified mathematical formulation of this problem in which the soft tissue looks like a specialized part of the fluid in which additional forces are applied. This leads to a computational scheme known as the Immersed Boundary (IB) method for solving the coupled equations of motion of the whole system. The IB method is used to construct a three-dimensional Virtual Heart, including representations of all four chambers of the heart and all four valves, in addition to the large arteries and veins that connect the heart to the rest of the circulation. The chambers, valves, and vessels are all modeled as collections of elastic (and where appropriate, actively contractile) fibers immersed in viscous incompressible fluid. Results are shown as a computer-generated video animation of the beating heart.

  16. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  17. Conceptually enhanced simulations: A computer tool for science teaching

    NASA Astrophysics Data System (ADS)

    Snir, Joseph; Smith, Carol; Grosslight, Lorraine

    1993-06-01

    In this paper, we consider a way computer simulations can be used to address the problem of teaching for conceptual change and understanding. After identifying three levels of understanding of a natural phenomenon (concrete, conceptual, and metaconceptual) that need to be addressed in school science, and classifying computer model systems and simulations more generally in terms of the design choices facing the programmer, we argue that there are ways to design computer simulations that can make them more powerful than laboratory models. In particular, computer simulations that provide an explicit representation for a set of interrelated concepts allow students to perceive what cannot be directly observed in laboratory experiments: representations for the concepts and ideas used for interpreting the experiment. Further, by embedding the relevant physical laws directly into the program code, these simulations allow for genuine discoveries. We describe how we applied these ideas in developing a computer simulation for a particular set of purposes: to help students grasp the distinction between mass and density and to understand the phenomenon of flotation in terms of these concepts. Finally, we reflect on the kinds of activities such conceptually enhanced simulations allow that may be important in bringing about the desired conceptual change.

  18. Computational Aerothermodynamic Simulation Issues on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; White, Jeffery A.

    2004-01-01

    The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.

  19. Computer simulations of particle-surface dynamics

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; DeBoni, T.M.

    1986-10-01

    Our simulations of particle-surface dynamics use the molecular dynamics codes that we have developed over the past several years. The initial state of a molecule and the parameters defining the incoming trajectory can be specifically described or randomly selected. Statistical analyses of the states of the particles and their trajectories following wall collisions are carried out by the code. We have carried out calculations at high center-of-mass energies and low incidence angles and have examined the survival fraction of molecules and the dependence upon the incoming trajectory. We report also on preliminary efforts that are being made to simulate sputtering and recombinant desorption processes, since the recombinant desorption of hydrogen from typical wall materials may be an important source for vibrationally-excited hydrogen in volume sources; for surface sources the presence of occluded hydrogen may affect the concentration of atomic species.

  20. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1981-01-01

    A molecular dynamics technique based upon Lennard-Jones type pair interactions is used to investigate time-dependent as well as equilibrium properties. The case study deals with systems containing Si and O atoms. In this case a more involved potential energy function (PEF) is employed and the system is simulated via a Monte-Carlo procedure. This furnishes the equilibrium properties of the system at its interfaces and surfaces as well as in the bulk.

  1. Computer simulation of a geomagnetic substorm

    NASA Technical Reports Server (NTRS)

    Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.

    1981-01-01

    A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.

  2. The Use of Computer Simulations in High School Curricula.

    ERIC Educational Resources Information Center

    Visich, Marian, Jr.; Braun, Ludwig

    The Huntington Computer Project has developed 17 simulation games which can be used for instructional purposes in high schools. These games were designed to run on digital computers and to deal with material from either biology, physics, or social studies. Distribution was achieved through the Digital Equipment Corporation, which disseminated…

  3. Evaluation of a Computer Simulation in a Therapeutics Case Discussion.

    ERIC Educational Resources Information Center

    Kinkade, Raenel E.; And Others

    1995-01-01

    A computer program was used to simulate a case presentation in pharmacotherapeutics. Students (n=24) used their knowledge of the disease (glaucoma) and various topical agents on the computer program's formulary to "treat" the patient. Comparison of results with a control group found the method as effective as traditional case presentation on…

  4. Application Of Computer Simulation To The Entertainment Industry

    NASA Astrophysics Data System (ADS)

    Mittelman, Phillip S.

    1983-10-01

    Images generated by computer have started to appear in feature films (TRON, Star Trek II), in television commercials and in animated films. Of particular interest is the use of computer generated imagery which simulates the images which a real camera might have made if the imaged objects had been real.

  5. A Digital Computer Simulation of Cardiovascular and Renal Physiology.

    ERIC Educational Resources Information Center

    Tidball, Charles S.

    1979-01-01

    Presents the physiological MACPEE, one of a family of digital computer simulations used in Canada and Great Britain. A general description of the model is provided, along with a sample of computer output format, options for making interventions, advanced capabilities, an evaluation, and technical information for running a MAC model. (MA)

  6. Frontiers in the Teaching of Physiology. Computer Literacy and Simulation.

    ERIC Educational Resources Information Center

    Tidball, Charles S., Ed.; Shelesnyak, M. C., Ed.

    Provided is a collection of papers on computer literacy and simulation originally published in The Physiology Teacher, supplemented by additional papers and a glossary of terms relevant to the field. The 12 papers are presented in five sections. An affirmation of conventional physiology laboratory exercises, coping with computer terminology, and…

  7. COFLO: A Computer Aid for Teaching Ecological Simulation.

    ERIC Educational Resources Information Center

    Le vow, Roy B.

    A computer-assisted course was designed to provide students with an understanding of modeling and simulation techniques in quantitiative ecology. It deals with continuous systems and has two segments. One develops mathematical and computer tools, beginning with abstract systems and their relation to physical systems. Modeling principles are next…

  8. Remote access of the ILLIAC 4. [computer flow distribution simulations

    NASA Technical Reports Server (NTRS)

    Stevens, K. G., Jr.

    1975-01-01

    The ILLIAC-4 hardware is described. The Illiac system, the Advanced Research Projects Agency computer network, and IMLAC PDS-1 are included. The space shuttle flow simulation is demonstrated to show the feasibility of using an advanced computer from a remote location.

  9. Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.

    ERIC Educational Resources Information Center

    Samsel, Richard W.; And Others

    1994-01-01

    At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…

  10. Use of Computer Simulations in Microbial and Molecular Genetics.

    ERIC Educational Resources Information Center

    Wood, Peter

    1984-01-01

    Describes five computer programs: four simulations of genetic and physical mapping experiments and one interactive learning program on the genetic coding mechanism. The programs were originally written in BASIC for the VAX-11/750 V.3. mainframe computer and have been translated into Applesoft BASIC for Apple IIe microcomputers. (JN)

  11. Coached, Interactive Computer Simulations: A New Technology for Training.

    ERIC Educational Resources Information Center

    Hummel, Thomas J.

    This paper provides an overview of a prototype simulation-centered intelligent computer-based training (CBT) system--implemented using expert system technology--which provides: (1) an environment in which trainees can learn and practice complex skills; (2) a computer-based coach or mentor to critique performance, suggest improvements, and provide…

  12. The Design, Development, and Evaluation of an Evaluative Computer Simulation.

    ERIC Educational Resources Information Center

    Ehrlich, Lisa R.

    This paper discusses evaluation design considerations for a computer based evaluation simulation developed at the University of Iowa College of Medicine in Cardiology to assess the diagnostic skills of primary care physicians and medical students. The simulation developed allows for the assessment of diagnostic skills of physicians in the…

  13. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  14. Students from Many Countries Use Computers to Simulate International Negotiations.

    ERIC Educational Resources Information Center

    Wilson, David L.

    1991-01-01

    College students around the world confer by computer in the International Communications and Negotiation Simulation. The simulation is offered by schools within the curriculum or as an extracurricular activity, with faculty as coordinators. Student teams are given scenarios and country assignments, prepare a position paper, and participate in the…

  15. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    ERIC Educational Resources Information Center

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  16. Computer Simulation of the Population Growth (Schizosaccharomyces Pombe) Experiment.

    ERIC Educational Resources Information Center

    Daley, Michael; Hillier, Douglas

    1981-01-01

    Describes a computer program (available from authors) developed to simulate "Growth of a Population (Yeast) Experiment." Students actively revise the counting techniques with realistically simulated haemocytometer or eye-piece grid and are reminded of the necessary dilution technique. Program can be modified to introduce such variables as…

  17. Computer Simulation as an Aid to Managers of Training.

    ERIC Educational Resources Information Center

    Wagner, Harold; Butler, Patrick J.

    Research investigated computer simulations of a hypothetical self-paced training program to determine the utility of this technique as a planning aid for Army training program managers. The General Purpose Simulation System (GPSS) was selected as the programing language and the study was divided into three stages. In Stage I, the daily number of…

  18. Effectiveness of an Endodontic Diagnosis Computer Simulation Program.

    ERIC Educational Resources Information Center

    Fouad, Ashraf F.; Burleson, Joseph A.

    1997-01-01

    Effectiveness of a computer simulation to teach endodontic diagnosis was assessed using three groups (n=34,32,24) of dental students. All were lectured on diagnosis, pathology, and radiographic interpretation. One group then used the simulation, another had a seminar on the same material, and the third group had no further instruction. Results…

  19. Enhancing Computer Science Education with a Wireless Intelligent Simulation Environment

    ERIC Educational Resources Information Center

    Cook, Diane J.; Huber, Manfred; Yerraballi, Ramesh; Holder, Lawrence B.

    2004-01-01

    The goal of this project is to develop a unique simulation environment that can be used to increase students' interest and expertise in Computer Science curriculum. Hands-on experience with physical or simulated equipment is an essential ingredient for learning, but many approaches to training develop a separate piece of equipment or software for…

  20. Design Model for Learner-Centered, Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Hawley, Chandra L.; Duffy, Thomas M.

    This paper presents a model for designing computer-based simulation environments within a constructivist framework for the K-12 school setting. The following primary criteria for the development of simulations are proposed: (1) the problem needs to be authentic; (2) the cognitive demand in learning should be authentic; (3) scaffolding supports a…

  1. Computer simulation program is adaptable to industrial processes

    NASA Technical Reports Server (NTRS)

    Schultz, F. E.

    1966-01-01

    The Reaction kinetics ablation program /REKAP/, developed to simulate ablation of various materials, provides mathematical formulations for computer programs which can simulate certain industrial processes. The programs are based on the use of nonsymmetrical difference equations that are employed to solve complex partial differential equation systems.

  2. A computer simulator for development of engineering system design methodologies

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Sobieszczanski-Sobieski, J.

    1987-01-01

    A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.

  3. Numerical Problems and Agent-Based Models for a Mass Transfer Course

    ERIC Educational Resources Information Center

    Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.

    2009-01-01

    Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…

  4. Permutations of Control: Cognitive Considerations for Agent-Based Learning Environments.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2001-01-01

    Discussion of intelligent agents and their use in computer learning environments focuses on cognitive considerations. Presents four dimension of control that should be considered in designing agent-based learning environments: learner control, from constructivist to instructivist; feedback; relationship of learner to agent; and learner confidence…

  5. Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2002-01-01

    Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…

  6. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  7. Computer Simulations of Coupled Piano Strings

    NASA Astrophysics Data System (ADS)

    Albert, Destiny L.

    1997-03-01

    The behavior of coupled piano strings is studied by using a finite difference scheme. The coupling of the strings produce motion in two transverse directions, parallel and perpendicular to the soundboard. The sound induced shows two decay rates, a rapid decay followed by a slow decay. These effects are in agreement with experimental results. (Weinreich, Gabriel. "The Coupled Motion of Piano Strings." Scientific American. January 1979) . Our simulations suggest that the motion of the end supports contributes to the elliptical motion of the strings. Furthermore, multiple strings contribute to the quality of the sound produced by a piano.

  8. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  9. Computer simulation of vasectomy for wolf control

    USGS Publications Warehouse

    Haight, R.G.; Mech, L.D.

    1997-01-01

    Recovering gray wolf (Canis lupus) populations in the Lake Superior region of the United States are prompting state management agencies to consider strategies to control population growth. In addition to wolf removal, vasectomy has been proposed. To predict the population effects of different sterilization and removal strategies, we developed a simulation model of wolf dynamics using simple rules for demography and dispersal. Simulations suggested that the effects of vasectomy and removal in a disjunct population depend largely on the degree of annual immigration. With low immigration, periodic sterilization reduced pup production and resulted in lower rates of territory recolonization. Consequently, average pack size, number of packs, and population size were significantly less than those for an untreated population. Periodically removing a proportion of the population produced roughly the same trends as did sterilization; however, more than twice as many wolves had to be removed than sterilized. With high immigration, periodic sterilization reduced pup production but not territory recolonization and produced only moderate reductions in population size relative to an untreated population. Similar reductions in population size were obtained by periodically removing large numbers of wolves. Our analysis does not address the possible effects of vasectomy on larger wolf populations, but it suggests that the subject should be considered through modeling or field testing.

  10. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  11. Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient

    NASA Astrophysics Data System (ADS)

    Mari, A.; Eisert, J.

    2012-12-01

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  12. Computational methods for coupling microstructural and micromechanical materials response simulations

    SciTech Connect

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  13. Improving Agent Based Models and Validation through Data Fusion

    PubMed Central

    Laskowski, Marek; Demianyk, Bryan C.P.; Friesen, Marcia R.; McLeod, Robert D.; Mukhi, Shamir N.

    2011-01-01

    This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level. PMID:23569606

  14. Computer Simulations of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Kob, Walter

    Glasses are materials that are ubiquitous in our daily life. We find them in such diverse items as window pans, optical fibers, computer chips, ceramics, all of which are oxide glasses, as well as in food, foams, polymers, gels, which are mainly of organic nature. Roughly speaking glasses are solid materials that have no translational or orientational order on the scale beyond O(10) diameters of the constituent particles (atoms, colloids, …) [1]. Note that these materials are not necessarily homogeneous since, e.g., alkali-glasses such as Na2O-SiO2 show (disordered!) structural features on the length scale of 6-10 Å (compare to the interatomic distance of 1-2 Å) and gels can have structural inhomogeneities that extend up to macroscopic length scales.

  15. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  16. Computing abstraction hierarchies by numerical simulation

    SciTech Connect

    Bundy, A.; Giunchiglia, F.; Sebastiani, R.; Walsh, T.

    1996-12-31

    We present a novel method for building ABSTRIPS-style abstraction hierarchies in planning. The aim of this method is to minimize the amount of backtracking between abstraction levels. Previous approaches have determined the criticality of operator preconditions by reasoning about plans directly. Here, we adopt a simpler and faster approach where we use numerical simulation of the planning process. We demonstrate the theoretical advantages of our approach by identifying some simple properties lacking in previous approaches but possessed by our method. We demonstrate the empirical advantages of our approach by a set of four benchmark experiments using the ABTWEAK system. We compare the quality of the abstraction hierarchies generated with those built by the ALPINE and HIGHPOINT algorithms.

  17. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  18. Computational Simulations and the Scientific Method

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  19. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  20. Computation simulation of the nonlinear response of suspension bridges

    SciTech Connect

    McCallen, D.B.; Astaneh-Asl, A.

    1997-10-01

    Accurate computational simulation of the dynamic response of long- span bridges presents one of the greatest challenges facing the earthquake engineering community The size of these structures, in terms of physical dimensions and number of main load bearing members, makes computational simulation of transient response an arduous task. Discretization of a large bridge with general purpose finite element software often results in a computational model of such size that excessive computational effort is required for three dimensional nonlinear analyses. The aim of the current study was the development of efficient, computationally based methodologies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies and software are described and illustrated in this paper.

  1. Access Control for Agent-based Computing: A Distributed Approach.

    ERIC Educational Resources Information Center

    Antonopoulos, Nick; Koukoumpetsos, Kyriakos; Shafarenko, Alex

    2001-01-01

    Discusses the mobile software agent paradigm that provides a foundation for the development of high performance distributed applications and presents a simple, distributed access control architecture based on the concept of distributed, active authorization entities (lock cells), any combination of which can be referenced by an agent to provide…

  2. BSim: An Agent-Based Tool for Modeling Bacterial Populations in Systems and Synthetic Biology

    PubMed Central

    Gorochowski, Thomas E.; Matyjaszkiewicz, Antoni; Todd, Thomas; Oak, Neeraj; Kowalska, Kira; Reid, Stephen; Tsaneva-Atanasova, Krasimira T.

    2012-01-01

    Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher. PMID:22936991

  3. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    PubMed

    Gorochowski, Thomas E; Matyjaszkiewicz, Antoni; Todd, Thomas; Oak, Neeraj; Kowalska, Kira; Reid, Stephen; Tsaneva-Atanasova, Krasimira T; Savery, Nigel J; Grierson, Claire S; di Bernardo, Mario

    2012-01-01

    Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher. PMID:22936991

  4. Assessment methodology for computer-based instructional simulations.

    PubMed

    Koenig, Alan; Iseli, Markus; Wainess, Richard; Lee, John J

    2013-10-01

    Computer-based instructional simulations are becoming more and more ubiquitous, particularly in military and medical domains. As the technology that drives these simulations grows ever more sophisticated, the underlying pedagogical models for how instruction, assessment, and feedback are implemented within these systems must evolve accordingly. In this article, we review some of the existing educational approaches to medical simulations, and present pedagogical methodologies that have been used in the design and development of games and simulations at the University of California, Los Angeles, Center for Research on Evaluation, Standards, and Student Testing. In particular, we present a methodology for how automated assessments of computer-based simulations can be implemented using ontologies and Bayesian networks, and discuss their advantages and design considerations for pedagogical use.

  5. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  6. Demeter, persephone, and the search for emergence in agent-based models.

    SciTech Connect

    North, M. J.; Howe, T. R.; Collier, N. T.; Vos, J. R.; Decision and Information Sciences; Univ. of Chicago; PantaRei Corp.; Univ. of Illinois

    2006-01-01

    In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent or potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.

  7. Macroevolution simulated with autonomously replicating computer programs.

    PubMed

    Yedid, Gabriel; Bell, Graham

    The process of adaptation occurs on two timescales. In the short term, natural selection merely sorts the variation already present in a population, whereas in the longer term genotypes quite different from any that were initially present evolve through the cumulation of new mutations. The first process is described by the mathematical theory of population genetics. However, this theory begins by defining a fixed set of genotypes and cannot provide a satisfactory analysis of the second process because it does not permit any genuinely new type to arise. The evolutionary outcome of selection acting on novel variation arising over long periods is therefore difficult to predict. The classical problem of this kind is whether 'replaying the tape of life' would invariably lead to the familiar organisms of the modern biota. Here we study the long-term behaviour of populations of autonomously replicating computer programs and find that the same type, introduced into the same simple environment, evolves on any given occasion along a unique trajectory towards one of many well-adapted end points.

  8. Computer simulation of normal and pathological copper metabolism in man.

    PubMed

    Blincoe, C

    1993-01-01

    A digital computer simulation of copper metabolism was used to simulate human copper metabolism. The simulation agrees well with the normal data extant. Wilson's disease (hepatolenticular degeneration) and Menkes' disease (steely-hair syndrome) were simulated. Simulation of the unavailability of accumulated liver copper simulated Wilson's disease if it was assumed that the increased urinary excretion was due to induction of an enzymic mechanism for enhanced excretion. This would be consistent with the genetic defect causing only the sequestering of unavailable copper in the liver. Other genetic defects need not be present. Menkes' disease is also a genetic disease affecting the newborn. It was simulated successfully as a defect in absorption of copper from the gastrointestinal tract.

  9. High field electrophoresis—computer simulations

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Kułakowski, K.

    2004-11-01

    We describe for the first time the results, obtained by means of a new two-dimensional version of a cellular automaton (2DA), designed for the simulation of the gel electrophoresis at high fields. The calculations are performed up to N=442 reptons. The results are compared with those from a modified version of the one-dimensional automaton (1DA), which has been constructed previously. The modification is that the movements of different parts of a molecule of DNA are treated as statistically independent events. This approach is applied also for 2DA. Main results are: (i) for long molecules (N≫1) the velocity v tends to a constant both for 1DA and 2DA; (ii) the diffusion coefficient D for 2DA increases with N; (iii) 2DA enables the formation of so-called hernias, i.e. fragments of DNA locally perpendicular to the molecule, and (iv) a direct observation of the geometration effect. The results (i) and (ii) mimic the experimental behavior at high electric fields. We also calculate a dimensionless quantity y=D/(Lv), where L=Na is the molecule length and a is the stiffness length. The discussion of y reveals the role of the length fluctuations.

  10. Computer simulation of polypeptides in a confinement.

    PubMed

    Sikorski, Andrzej; Romiszowski, Piotr

    2007-02-01

    A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.

  11. Computational algorithms to simulate the steel continuous casting

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Soto-Cortés, G.; Palomar-Pardavé, M.; Romero-Romo, M. A.; Aguilar-López, R.

    2010-10-01

    Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithms based on the numerical method to create a simulator for the continuous casting process, which is the most popular method to produce steel products for metallurgical industries. The kinematics of industrial processing was computationally reproduced using subroutines logically programmed. The cast steel by each strand was calculated using an iterative method nested in the main loop. The process was repeated at each time step (Δ t) to calculate the casting time, simultaneously, the steel billets produced were counted and stored. The subroutines were used for creating a computational representation of a continuous casting plant (CCP) and displaying the simulation of the steel displacement through the CCP. These algorithms have been developed to create a simulator using the programming language C++. Algorithms for computer animation of the continuous casting process were created using a graphical user interface (GUI). Finally, the simulator functionality was shown and validated by comparing with the industrial information of the steel production of three casters.

  12. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  13. Combining high performance simulation, data acquisition, and graphics display computers

    NASA Technical Reports Server (NTRS)

    Hickman, Robert J.

    1989-01-01

    Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.

  14. Modeling and Computer Simulation: Molecular Dynamics and Kinetic Monte Carlo

    SciTech Connect

    Wirth, B.D.; Caturla, M.J.; Diaz de la Rubia, T.

    2000-10-10

    Recent years have witnessed tremendous advances in the realistic multiscale simulation of complex physical phenomena, such as irradiation and aging effects of materials, made possible by the enormous progress achieved in computational physics for calculating reliable, yet tractable interatomic potentials and the vast improvements in computational power and parallel computing. As a result, computational materials science is emerging as an important complement to theory and experiment to provide fundamental materials science insight. This article describes the atomistic modeling techniques of molecular dynamics (MD) and kinetic Monte Carlo (KMC), and an example of their application to radiation damage production and accumulation in metals. It is important to note at the outset that the primary objective of atomistic computer simulation should be obtaining physical insight into atomic-level processes. Classical molecular dynamics is a powerful method for obtaining insight about the dynamics of physical processes that occur on relatively short time scales. Current computational capability allows treatment of atomic systems containing as many as 10{sup 9} atoms for times on the order of 100 ns (10{sup -7}s). The main limitation of classical MD simulation is the relatively short times accessible. Kinetic Monte Carlo provides the ability to reach macroscopic times by modeling diffusional processes and time-scales rather than individual atomic vibrations. Coupling MD and KMC has developed into a powerful, multiscale tool for the simulation of radiation damage in metals.

  15. Embedding quantum simulators for quantum computation of entanglement.

    PubMed

    Di Candia, R; Mejia, B; Castillo, H; Pedernales, J S; Casanova, J; Solano, E

    2013-12-13

    We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables, overcoming the necessity of full tomography and reducing drastically the experimental requirements. Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators.

  16. Computer simulation tests of optimized neutron powder diffractometer configurations

    NASA Astrophysics Data System (ADS)

    Cussen, L. D.; Lieutenant, K.

    2016-06-01

    Recent work has developed a new mathematical approach to optimally choose beam elements for constant wavelength neutron powder diffractometers. This article compares Monte Carlo computer simulations of existing instruments with simulations of instruments using configurations chosen using the new approach. The simulations show that large performance improvements over current best practice are possible. The tests here are limited to instruments optimized for samples with a cubic structure which differs from the optimization for triclinic structure samples. A novel primary spectrometer design is discussed and simulation tests show that it performs as expected and allows a single instrument to operate flexibly over a wide range of measurement resolution.

  17. Executive Summary: Special Section on Credible Computational Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1998-01-01

    This summary presents the motivation for the Special Section on the credibility of computational fluid dynamics (CFD) simulations, its objective, its background and context, its content, and its major conclusions. Verification and validation (V&V) are the processes for establishing the credibility of CFD simulations. Validation assesses whether correct things are performed and verification assesses whether they are performed correctly. Various aspects of V&V are discussed. Progress is made in verification of simulation models. Considerable effort is still needed for developing a systematic validation method that can assess the credibility of simulated reality.

  18. HPC Infrastructure for Solid Earth Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Chen, L.; Okuda, H.

    2004-12-01

    Recently, various types of parallel computers with various types of architectures and processing elements (PE) have emerged, which include PC clusters and the Earth Simulator. Moreover, users can easily access to these computer resources through network on Grid environment. It is well-known that thorough tuning is required for programmers to achieve excellent performance on each computer. The method for tuning strongly depends on the type of PE and architecture. Optimization by tuning is a very tough work, especially for developers of applications. Moreover, parallel programming using message passing library such as MPI is another big task for application programmers. In GeoFEM project (http://gefeom.tokyo.rist.or.jp), authors have developed a parallel FEM platform for solid earth simulation on the Earth Simulator, which supports parallel I/O, parallel linear solvers and parallel visualization. This platform can efficiently hide complicated procedures for parallel programming and optimization on vector processors from application programmers. This type of infrastructure is very useful. Source codes developed on PC with single processor is easily optimized on massively parallel computer by linking the source code to the parallel platform installed on the target computer. This parallel platform, called HPC Infrastructure will provide dramatic efficiency, portability and reliability in development of scientific simulation codes. For example, line number of the source codes is expected to be less than 10,000 and porting legacy codes to parallel computer takes 2 or 3 weeks. Original GeoFEM platform supports only I/O, linear solvers and visualization. In the present work, further development for adaptive mesh refinement (AMR) and dynamic load-balancing (DLB) have been carried out. In this presentation, examples of large-scale solid earth simulation using the Earth Simulator will be demonstrated. Moreover, recent results of a parallel computational steering tool using an

  19. Coupled computational simulation and empirical research into the foraging system of Pharaoh's ant (Monomorium pharaonis).

    PubMed

    Jackson, Duncan; Holcombe, Mike; Ratnieks, Francis

    2004-01-01

    The Pharaoh's ant (Monomorium pharaonis), a significant pest in many human environments, is phenomenally successful at locating and exploiting available food resources. Several pheromones are utilized in the self-organized foraging of this ant but most aspects of the overall system are poorly characterised. Agent-based modelling of ants as individual complex X-machines facilitates study of the mechanisms underlying the emergence of trails and aids understanding of the process. Conducting simultaneous modelling, and simulation, alongside empirical biological studies is shown to drive the research by formulating hypotheses that must be tested before the model can be verified and extended. Integration of newly characterised behavioural processes into the overall model will enable testing of general theories giving insight into division of labour within insect societies. This study aims to establish a new paradigm in computational modelling applicable to all types of multi-agent biological systems, from tissues to animal societies, as a powerful tool to accelerate basic research. PMID:15351134

  20. Computer simulation for optimization of offshore platform evacuation

    SciTech Connect

    Soma, H.; Drager, K.H.; Bjoerdal, P.

    1996-12-31

    A method for optimizing the evacuation system on offshore platforms, in which computer simulation provides a main contribution, is presented. The use of computer simulation in offshore projects is explained, and the contribution with respect to input to the Quantitative Risk Analyses (QRA) and to the engineering is also presented. In order to design an optimum evacuation system on offshore platforms, detailed analyses and sensitivity calculations are required. By utilizing computer programs and simulation tools, the work load is no longer prohibitive for comprehensive optimization calculations to be performed. The evacuation system can accordingly be designed based on engineering considerations, rather than mainly relying on the preferences of the design team involved in the project. A description of three computer programs which perform stochastic reliability analyses of evacuation operations is presented; Evacuation Simulations (EVACSIM) simulates the evacuation (egress) of personnel on the platform, Lifeboat Launch for Conventional lifeboats (LBL-C) simulates the launch and escape operation of davit launched lifeboats and Lifeboat Launch for Free fall lifeboats (LBL-F) simulates the launch and escape operation of slide launched or vertical drop free fall lifeboats. Other computer programs that analyze parts of the evacuation process, such as Offshore Rescue Simulation (ORS), are mentioned. The result of this synthesis is an estimate of the yearly number of lives lost during evacuation of a platform, which is a suitable parameter for optimizing the evacuation system and deciding improvements. The impact of changing design parameters is found by carrying out evacuation analyses for the revised design (i.e., a sensitivity) and comparing the resulting loss of lives with the Base Case results. By systematizing this approach, the evacuation system on the platform can thus be optimized.

  1. Computers vs. wind tunnels for aerodynamic flow simulations

    NASA Technical Reports Server (NTRS)

    Chapman, D. R.; Mark, H.; Pirtle, M. W.

    1975-01-01

    It is pointed out that in other fields of computational physics, such as ballistics, celestial mechanics, and neutronics, computations have already displaced experiments as the principal means of obtaining dynamic simulations. In the case of aerodynamic investigations, the complexity of the computational work involved in solving the Navier-Stokes equations is the reason that such investigations rely currently mainly on wind-tunnel testing. However, because of inherent limitations of the wind-tunnel approach and economic considerations, it appears that at some time in the future aerodynamic studies will chiefly rely on computational flow data provided by the computer. Taking into account projected development trends, it is estimated that computers with the required capabilities for a solution of the complete viscous, time-dependent Navier-Stokes equations will be available in the mid-1980s.

  2. E-laboratories : agent-based modeling of electricity markets.

    SciTech Connect

    North, M.; Conzelmann, G.; Koritarov, V.; Macal, C.; Thimmapuram, P.; Veselka, T.

    2002-05-03

    Electricity markets are complex adaptive systems that operate under a wide range of rules that span a variety of time scales. These rules are imposed both from above by society and below by physics. Many electricity markets are undergoing or are about to undergo a transition from centrally regulated systems to decentralized markets. Furthermore, several electricity markets have recently undergone this transition with extremely unsatisfactory results, most notably in California. These high stakes transitions require the introduction of largely untested regulatory structures. Suitable laboratories that can be used to test regulatory structures before they are applied to real systems are needed. Agent-based models can provide such electronic laboratories or ''e-laboratories.'' To better understand the requirements of an electricity market e-laboratory, a live electricity market simulation was created. This experience helped to shape the development of the Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential as an e-laboratory, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.

  3. An agent-based mathematical model about carp aggregation

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Wu, Chao

    2005-05-01

    This work presents an agent-based mathematical model to simulate the aggregation of carp, a harmful fish in North America. The referred mathematical model is derived from the following assumptions: (1) instead of the consensus among every carps involved in the aggregation, the aggregation of carp is completely a random and spontaneous physical behavior of numerous of independent carp; (2) carp aggregation is a collective effect of inter-carp and carp-environment interaction; (3) the inter-carp interaction can be derived from the statistical analytics about large-scale observed data. The proposed mathematical model is mainly based on empirical inter-carp force field, whose effect is featured with repulsion, parallel orientation, attraction, out-of-perception zone, and blind. Based on above mathematical model, the aggregation behavior of carp is formulated and preliminary simulation results about the aggregation of small number of carps within simple environment are provided. Further experiment-based validation about the mathematical model will be made in our future work.

  4. High performance computing for domestic petroleum reservoir simulation

    SciTech Connect

    Zyvoloski, G.; Auer, L.; Dendy, J.

    1996-06-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. High-performance computing offers the prospect of greatly increasing the resolution at which petroleum reservoirs can be represented in simulation models. The increases in resolution can be achieved through large increases in computational speed and memory, if machine architecture and numerical methods for solution of the multiphase flow equations can be used to advantage. Perhaps more importantly, the increased speed and size of today`s computers make it possible to add physical processes to simulation codes that heretofore were too expensive in terms of computer time and memory to be practical. These factors combine to allow the development of new, more accurate methods for optimizing petroleum reservoir production.

  5. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  6. High performance stream computing for particle beam transport simulations

    NASA Astrophysics Data System (ADS)

    Appleby, R.; Bailey, D.; Higham, J.; Salt, M.

    2008-07-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.

  7. Accuracy vs. computational time: translating aortic simulations to the clinic.

    PubMed

    Brown, Alistair G; Shi, Yubing; Marzo, Alberto; Staicu, Cristina; Valverde, Isra; Beerbaum, Philipp; Lawford, Patricia V; Hose, D Rodney

    2012-02-01

    State of the art simulations of aortic haemodynamics feature full fluid-structure interaction (FSI) and coupled 0D boundary conditions. Such analyses require not only significant computational resource but also weeks to months of run time, which compromises the effectiveness of their translation to a clinical workflow. This article employs three computational fluid methodologies, of varying levels of complexity with coupled 0D boundary conditions, to simulate the haemodynamics within a patient-specific aorta. The most comprehensive model is a full FSI simulation. The simplest is a rigid walled incompressible fluid simulation while an alternative middle-ground approach employs a compressible fluid, tuned to elicit a response analogous to the compliance of the aortic wall. The results demonstrate that, in the context of certain clinical questions, the simpler analysis methods may capture the important characteristics of the flow field.

  8. Simulation of an interferometric computed tomography system for intraocular lenses

    NASA Astrophysics Data System (ADS)

    Tayag, Tristan J.; Bachim, Brent L.

    2010-08-01

    In this paper, we present a metrology system to characterize the refractive index profile of intraocular lenses (IOLs). Our system is based on interferometric optical phase computed tomography. We believe this metrology system to be a key enabling technology in the development of the next generation of IOLs. We propose a Fizeau-based optical configuration and present a simulation study on the application of computed tomography to IOL characterization.

  9. Method for simulating paint mixing on computer monitors

    NASA Astrophysics Data System (ADS)

    Carabott, Ferdinand; Lewis, Garth; Piehl, Simon

    2002-06-01

    Computer programs like Adobe Photoshop can generate a mixture of two 'computer' colors by using the Gradient control. However, the resulting colors diverge from the equivalent paint mixtures in both hue and value. This study examines why programs like Photoshop are unable to simulate paint or pigment mixtures, and offers a solution using Photoshops existing tools. The article discusses how a library of colors, simulating paint mixtures, is created from 13 artists' colors. The mixtures can be imported into Photoshop as a color swatch palette of 1248 colors and as 78 continuous or stepped gradient files, all accessed in a new software package, Chromafile.

  10. Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable Computing

    SciTech Connect

    Hampton, Scott S; Agarwal, Pratul K

    2010-05-01

    Reconfigurable computing (RC) is being investigated as a hardware solution for improving time-to-solution for biomolecular simulations. A number of popular molecular dynamics (MD) codes are used to study various aspects of biomolecules. These codes are now capable of simulating nanosecond time-scale trajectories per day on conventional microprocessor-based hardware, but biomolecular processes often occur at the microsecond time-scale or longer. A wide gap exists between the desired and achievable simulation capability; therefore, there is considerable interest in alternative algorithms and hardware for improving the time-to-solution of MD codes. The fine-grain parallelism provided by Field Programmable Gate Arrays (FPGA) combined with their low power consumption make them an attractive solution for improving the performance of MD simulations. In this work, we use an FPGA-based coprocessor to accelerate the compute-intensive calculations of LAMMPS, a popular MD code, achieving up to 5.5 fold speed-up on the non-bonded force computations of the particle mesh Ewald method and up to 2.2 fold speed-up in overall time-to-solution, and potentially an increase by a factor of 9 in power-performance efficiencies for the pair-wise computations. The results presented here provide an example of the multi-faceted benefits to an application in a heterogeneous computing environment.

  11. Urban earthquake simulation of Tokyo metropolis using full K computer

    NASA Astrophysics Data System (ADS)

    Fujita, Kohei; Ichimura, Tsuyoshi; Hori, Muneo

    2016-04-01

    Reflecting detailed urban geographic information data to earthquake simulation of cities is expected to improve the reliability of damage estimates for future earthquakes. Such simulations require high resolution computation of large and complex domains and thus fast and scalable finite element solver capable of utilizing supercomputers are needed. Targeting massively parallel scalar supercomputers, we have been developing a fast low-ordered unstructured finite element solver by combining multi-precision arithmetic, multi-grid method, predictors, and techniques for utilizing multi-cores and SIMD units of CPUs. In this talk, I will show the developed method and its scalability/performance on the K computer. Together, I will show some small scale measurement results on Intel Haswell CPU servers for checking performance portability. As an application example, I will show an urban earthquake simulation targeted on a 10 km by 9 km area of central Tokyo with 320 thousand structures. Here the surface ground is modeled by 33 billion elements and 133 billion degrees-of-freedom, and its seismic response is computed using the whole K computer with 82944 compute nodes. The fast and scalable finite element method can be applied to earthquake wave propagation problems through earth crust or elastic/viscoelastic crustal deformation analyses and is expected to be useful for improving resolution of such simulations in the future.

  12. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies.

  13. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. PMID:20674066

  14. [Computer simulated images of radiopharmaceutical distributions in anthropomorphic phantoms

    SciTech Connect

    Not Available

    1991-05-17

    We have constructed an anatomically correct human geometry, which can be used to store radioisotope concentrations in 51 various internal organs. Each organ is associated with an index number which references to its attenuating characteristics (composition and density). The initial development of Computer Simulated Images of Radiopharmaceuticals in Anthropomorphic Phantoms (CSIRDAP) over the first 3 years has been very successful. All components of the simulation have been coded, made operational and debugged.

  15. Computer Simulation of Sexual Selection on Age-Structured Populations

    NASA Astrophysics Data System (ADS)

    Martins, S. G. F.; Penna, T. J. P.

    Using computer simulations of a bit-string model for age-structured populations, we found that sexual selection of older males is advantageous, from an evolutionary point of view. These results are in opposition to a recent proposal of females choosing younger males. Our simulations are based on findings from recent studies of polygynous bird species. Since secondary sex characters are found mostly in males, we could make use of asexual populations that can be implemented in a fast and efficient way.

  16. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  17. A Generic Scheduling Simulator for High Performance Parallel Computers

    SciTech Connect

    Yoo, B S; Choi, G S; Jette, M A

    2001-08-01

    It is well known that efficient job scheduling plays a crucial role in achieving high system utilization in large-scale high performance computing environments. A good scheduling algorithm should schedule jobs to achieve high system utilization while satisfying various user demands in an equitable fashion. Designing such a scheduling algorithm is a non-trivial task even in a static environment. In practice, the computing environment and workload are constantly changing. There are several reasons for this. First, the computing platforms constantly evolve as the technology advances. For example, the availability of relatively powerful commodity off-the-shelf (COTS) components at steadily diminishing prices have made it feasible to construct ever larger massively parallel computers in recent years [1, 4]. Second, the workload imposed on the system also changes constantly. The rapidly increasing compute resources have provided many applications developers with the opportunity to radically alter program characteristics and take advantage of these additional resources. New developments in software technology may also trigger changes in user applications. Finally, political climate change may alter user priorities or the mission of the organization. System designers in such dynamic environments must be able to accurately forecast the effect of changes in the hardware, software, and/or policies under consideration. If the environmental changes are significant, one must also reassess scheduling algorithms. Simulation has frequently been relied upon for this analysis, because other methods such as analytical modeling or actual measurements are usually too difficult or costly. A drawback of the simulation approach, however, is that developing a simulator is a time-consuming process. Furthermore, an existing simulator cannot be easily adapted to a new environment. In this research, we attempt to develop a generic job-scheduling simulator, which facilitates the evaluation of

  18. A Computer Simulation of Community Pharmacy Practice for Educational Use

    PubMed Central

    Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-01-01

    Objective. To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. Design. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Assessment. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Conclusion. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor. PMID:26056406

  19. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  20. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  1. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  2. Modeling emergency department operations using advanced computer simulation systems.

    PubMed

    Saunders, C E; Makens, P K; Leblanc, L J

    1989-02-01

    We developed a computer simulation model of emergency department operations using simulation software. This model uses multiple levels of preemptive patient priority; assigns each patient to an individual nurse and physician; incorporates all standard tests, procedures, and consultations; and allows patient service processes to proceed simultaneously, sequentially, repetitively, or a combination of these. Selected input data, including the number of physicians, nurses, and treatment beds, and the blood test turnaround time, then were varied systematically to determine their simulated effect on patient throughput time, selected queue sizes, and rates of resource utilization. Patient throughput time varied directly with laboratory service times and inversely with the number of physician or nurse servers. Resource utilization rates varied inversely with resource availability, and patient waiting time and patient throughput time varied indirectly with the level of patient acuity. The simulation can be animated on a computer monitor, showing simulated patients, specimens, and staff members moving throughout the ED. Computer simulation is a potentially useful tool that can help predict the results of changes in the ED system without actually altering it and may have implications for planning, optimizing resources, and improving the efficiency and quality of care.

  3. A compositional reservoir simulator on distributed memory parallel computers

    SciTech Connect

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.

  4. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  5. Dynamic computer simulation of the Fort St. Vrain steam turbines

    SciTech Connect

    Conklin, J.C.

    1983-01-01

    A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

  6. AKSATINT - SATELLITE INTERFERENCE ANALYSIS AND SIMULATION USING PERSONAL COMPUTERS

    NASA Technical Reports Server (NTRS)

    Kantak, A.

    1994-01-01

    In the late seventies, the number of communication satellites in service increased, and interference has become an increasingly important consideration in designing satellite/ground station communications systems. Satellite Interference Analysis and Simulation Using Personal Computers, AKSATINT, models the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both the desired and the interfering satellites are considered to be in elliptical orbits. The simulation contains computation of orbital positions of both satellites using classical orbital elements, calculation of the satellite antennae look angles for both satellites and elevation angles at the desired-satellite ground-station antenna, and computation of Doppler effect due to the motions of the satellites and the Earth's rotation. AKSATINT also computes the interference-tosignal-power ratio, taking into account losses suffered by the links. After computing the interference-to-signal-power ratio, the program computes the statistical quantities. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. The program includes a flowchart, a sample run, and results of that run. AKSATINT is expected to be of general use to system designers and frequency managers in selecting the proper frequency under an interference scenario. The AKSATINT program is written in BASIC. It was designed to operate on the IBM Personal Computer AT or compatibles, and has been implemented under MS DOS 3.2. AKSATINT was developed in 1987.

  7. Computer simulation of Aphis gossypii insects using Penna aging model

    NASA Astrophysics Data System (ADS)

    Giarola, L. T. P.; Martins, S. G. F.; Toledo Costa, M. C. P.

    2006-08-01

    A computer simulation was made for the population dynamics of Aphis gossypii in laboratory and field conditions. The age structure was inserted in the dynamics through bit string model for biological aging, proposed by Penna in 1995. The influence of different host plants and of climatic factors such as temperature and precipitation was considered in the simulation starting from experimental data. The results obtained indicate that the simulation is an appropriate instrument for understanding of the population dynamics of these species and for the establishment of biological control strategies.

  8. Computer simulation of plasma and N-body problems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Miller, J. B.

    1975-01-01

    The following FORTRAN language computer codes are presented: (1) efficient two- and three-dimensional central force potential solvers; (2) a three-dimensional simulator of an isolated galaxy which incorporates the potential solver; (3) a two-dimensional particle-in-cell simulator of the Jeans instability in an infinite self-gravitating compressible gas; and (4) a two-dimensional particle-in-cell simulator of a rotating self-gravitating compressible gaseous system of which rectangular coordinate and superior polar coordinate versions were written.

  9. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  10. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    PubMed

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model.

  11. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    PubMed

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. PMID:25622296

  12. Interval sampling methods and measurement error: a computer simulation.

    PubMed

    Wirth, Oliver; Slaven, James; Taylor, Matthew A

    2014-01-01

    A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments.

  13. A Computer Simulated Experiment in Complex Order Kinetics

    ERIC Educational Resources Information Center

    Merrill, J. C.; And Others

    1975-01-01

    Describes a computer simulation experiment in which physical chemistry students can determine all of the kinetic parameters of a reaction, such as order of the reaction with respect to each reagent, forward and reverse rate constants for the overall reaction, and forward and reverse activation energies. (MLH)

  14. Effectiveness of Computer Simulation for Enhancing Higher Order Thinking.

    ERIC Educational Resources Information Center

    Gokhale, Anu A.

    1996-01-01

    Electronics students (16 controls, 16 experimentals) designed, built, and tested an amplifier. The experimentals did so after it was designed through computer simulation (using Electronics Workbench software). The experimental group performed significantly better on problem-solving tests; both groups did the same on drill and practice tests. (SK)

  15. Computer Simulations and Problem-Solving in Probability.

    ERIC Educational Resources Information Center

    Camp, John S.

    1978-01-01

    The purpose of this paper is to present problems (and solutions) from the areas of marketing, population planning, system reliability, and mathematics to show how a computer simulation can be used as a problem-solving strategy in probability. Examples using BASIC and two methods of generating random numbers are given. (Author/MP)

  16. Social Choice in a Computer-Assisted Simulation

    ERIC Educational Resources Information Center

    Thavikulwat, Precha

    2009-01-01

    Pursuing a line of inquiry suggested by Crookall, Martin, Saunders, and Coote, the author applied, within the framework of design science, an optimal-design approach to incorporate into a computer-assisted simulation two innovative social choice processes: the multiple period double auction and continuous voting. Expectations that the…

  17. Simulations Using a Computer/Videodisc System: Instructional Design Considerations.

    ERIC Educational Resources Information Center

    Ehrlich, Lisa R.

    Instructional design considerations involved in using level four videodisc systems when designing simulations are explored. Discussion of the hardware and software system characteristics notes that computer based training offers the features of text, graphics, color, animation, and highlighting techniques, while a videodisc player offers all of…

  18. Computational Simulation of a Water-Cooled Heat Pump

    NASA Technical Reports Server (NTRS)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  19. Improving a Computer Networks Course Using the Partov Simulation Engine

    ERIC Educational Resources Information Center

    Momeni, B.; Kharrazi, M.

    2012-01-01

    Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…

  20. Advanced Simulation and Computing Co-Design Strategy

    SciTech Connect

    Ang, James A.; Hoang, Thuc T.; Kelly, Suzanne M.; McPherson, Allen; Neely, Rob

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  1. Biology Students Building Computer Simulations Using StarLogo TNG

    ERIC Educational Resources Information Center

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  2. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  3. Computer Simulation of Small Group Decisions: Model Three.

    ERIC Educational Resources Information Center

    Hare, A.P.; Scheiblechner, Hartmann

    In a test of three computer models to simulate group decisions, data were used from 31 American and Austrian groups on a total of 307 trials. The task for each group was to predict a series of answers of an unknown subject on a value-orientation questionnaire, after being given a sample of his typical responses. The first model, used the mean of…

  4. Role of Computer Graphics in Simulations for Teaching Physiology.

    ERIC Educational Resources Information Center

    Modell, H. I.; And Others

    1983-01-01

    Discusses a revision of existing respiratory physiology simulations to promote active learning experiences for individual students. Computer graphics were added to aid student's conceptualization of the physiological system. Specific examples are provided, including those dealing with alveolar gas equations and effects of anatomic shunt flow on…

  5. Systematic error analysis of rotating coil using computer simulation

    SciTech Connect

    Li, Wei-chuan; Coles, M.

    1993-04-01

    This report describes a study of the systematic and random measurement uncertainties of magnetic multipoles which are due to construction errors, rotational speed variation, and electronic noise in a digitally bucked tangential coil assembly with dipole bucking windings. The sensitivities of the systematic multipole uncertainty to construction errors are estimated analytically and using a computer simulation program.

  6. Highway traffic simulation on multi-processor computers

    SciTech Connect

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  7. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  8. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations. PMID:26406070

  9. Computers With Wings: Flight Simulation and Personalized Landscapes

    NASA Astrophysics Data System (ADS)

    Oss, Stefano

    2005-03-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of various nature, from history to geography, computer science, and much more.

  10. Simulation of a National Computer Network in a Gaming Environment

    ERIC Educational Resources Information Center

    Segal, Ronald; O'Neal, Beverly

    1978-01-01

    A national computer services network simulation model was used in a 3-day gaming exercise involving 16 institutional teams who made decisions about their likely long-term network participation. Participants were able to react to others' decisions and actions, and to critical overriding political, economical, and organizational issues. (CMV)

  11. Modeling and Computer Simulation of AN Insurance Policy:

    NASA Astrophysics Data System (ADS)

    Acharyya, Muktish; Acharyya, Ajanta Bhowal

    We have developed a model for a life-insurance policy. In this model, the net gain is calculated by computer simulation for a particular type of lifetime distribution function. We observed that the net gain becomes maximum for a particular value of upper age for last premium.

  12. Computational Modelling and Simulation Fostering New Approaches in Learning Probability

    ERIC Educational Resources Information Center

    Kuhn, Markus; Hoppe, Ulrich; Lingnau, Andreas; Wichmann, Astrid

    2006-01-01

    Discovery learning in mathematics in the domain of probability based on hands-on experiments is normally limited because of the difficulty in providing sufficient materials and data volume in terms of repetitions of the experiments. Our cooperative, computational modelling and simulation environment engages students and teachers in composing and…

  13. Time Advice and Learning Questions in Computer Simulations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel

    2011-01-01

    Students (N = 101) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without time advice) x 3 (with learning questions and corrective feedback, with…

  14. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  15. Endogenizing geopolitical boundaries with agent-based modeling

    PubMed Central

    Cederman, Lars-Erik

    2002-01-01

    Agent-based modeling promises to overcome the reification of actors. Whereas this common, but limiting, assumption makes a lot of sense during periods characterized by stable actor boundaries, other historical junctures, such as the end of the Cold War, exhibit far-reaching and swift transformations of actors' spatial and organizational existence. Moreover, because actors cannot be assumed to remain constant in the long run, analysis of macrohistorical processes virtually always requires “sociational” endogenization. This paper presents a series of computational models, implemented with the software package REPAST, which trace complex macrohistorical transformations of actors be they hierarchically organized as relational networks or as collections of symbolic categories. With respect to the former, dynamic networks featuring emergent compound actors with agent compartments represented in a spatial grid capture organizational domination of the territorial state. In addition, models of “tagged” social processes allows the analyst to show how democratic states predicate their behavior on categorical traits. Finally, categorical schemata that select out politically relevant cultural traits in ethnic landscapes formalize a constructivist notion of national identity in conformance with the qualitative literature on nationalism. This “finite-agent method”, representing both states and nations as higher-level structures superimposed on a lower-level grid of primitive agents or cultural traits, avoids reification of agency. Furthermore, it opens the door to explicit analysis of entity processes, such as the integration and disintegration of actors as well as boundary transformations. PMID:12011409

  16. Symbolic Quantum Computation Simulation in SymPy

    NASA Astrophysics Data System (ADS)

    Cugini, Addison; Curry, Matt; Granger, Brian

    2010-10-01

    Quantum computing is an emerging field which aims to use quantum mechanics to solve difficult computational problems with greater efficiency than on a classical computer. There is a need to create software that i) helps newcomers to learn the field, ii) enables practitioners to design and simulate quantum circuits and iii) provides an open foundation for further research in the field. Towards these ends we have created a package, in the open-source symbolic computation library SymPy, that simulates the quantum circuit model of quantum computation using Dirac notation. This framework builds on the extant powerful symbolic capabilities of SymPy to preform its simulations in a fully symbolic manner. We use object oriented design to abstract circuits as ordered collections of quantum gate and qbit objects. The gate objects can either be applied directly to the qbit objects or be represented as matrices in different bases. The package is also capable of performing the quantum Fourier transform and Shor's algorithm. A notion of measurement is made possible through the use of a non-commutative gate object. In this talk, we describe the software and show examples of quantum circuits on single and multi qbit states that involve common algorithms, gates and measurements.

  17. Computer-simulated development process of Chinese characters font cognition

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Mu, Zhichun; Sun, Dehui; Hu, Dunli

    2008-10-01

    The research of Chinese characters cognition is an important research aspect of cognitive science and computer science, especially artificial intelligence. In this paper, according as the traits of Chinese characters the database of Chinese characters font representations and the model of computer simulation of Chinese characters font cognition are constructed from the aspect of cognitive science. The font cognition of Chinese characters is actual a gradual process and there is the accumulation of knowledge. Through using the method of computer simulation, the development model of Chinese characters cognition was constructed. And this is the important research content of Chinese characters cognition. This model is based on self-organizing neural network and adaptive resonance theory (ART) neural network. By Combining the SOFM and ART2 network, two sets of input were trained. Through training and testing methods, the development process of Chinese characters cognition based on Chinese characters cognition was simulated. Then the results from this model and could be compared with the results that were obtained only using SOFM. By analyzing the results, this simulation suggests that the model is able to account for some empirical results. So, the model can simulate the development process of Chinese characters cognition in a way.

  18. Computer simulations of isolated conductors in electrostatic equilibrium.

    PubMed

    Chang, Herng-Hua

    2008-11-01

    A computer simulation model is introduced to study the characteristics of isolated conductors in electrostatic equilibrium. Drawing an analogy between electrons and how they move to the surface of isolated conductors, we randomly initialize a large number of particles inside a small region at the center of simulated conductors and advance them according to their forces of repulsion. By use of optimized numerical techniques of the finite-size particle method associated with Poisson's equation, the particles are quickly advanced using a fast Fourier transform and their charge is efficiently shared using the clouds-in-cells method. The particle populations in the simulations range from 50x10;{3} to 1x10;{6} that move in various computation domains equal to 128x128 , 256x256 , and 512x512 grids. When the particles come to an electrostatic equilibrium, they lie on the boundaries of the simulated conductors, from which the equilibrium properties are obtained. Consistent with the theory of electrostatics and charged conductors, we found that the particles move in response to the conductor geometry in such a way that the electrostatic energy is minimized. Good approximation results for the equilibrium properties were obtained using the proposed computer simulation model.

  19. Computer Simulation Of Radiographic Screen-Film Images

    NASA Astrophysics Data System (ADS)

    Metter, Richard V.; Dillon, Peter L.; Huff, Kenneth E.; Rabbani, Majid

    1986-06-01

    A method is described for computer simulation of radiographic screen-film images. This method is based on a previously published model of the screen-film imaging process.l The x-ray transmittance of a test object is sampled at a pitch of 50 μm by scanning a high-resolution, low-noise direct-exposure radiograph. This transmittance is then used, along with the x-ray exposure incident upon the object, to determine the expected number of quanta per pixel incident upon the screen. The random nature of x-ray arrival and absorption, x-ray quantum to light photon conversion, and photon absorption by the film is simulated by appropriate random number generation. Standard FFT techniques are used for computing the effects of scattering. Finally, the computed film density for each pixel is produced on a high-resolution, low-noise output film by a scanning printer. The simulation allows independent specification of x-ray exposure, x-ray quantum absorption, light conversion statistics, light scattering, and film characteristics (sensitometry and gran-ularity). Each of these parameters is independently measured for radiographic systems of interest. The simulator is tested by comparing actual radiographic images with simulated images resulting from the independently measured parameters. Images are also shown illustrating the effects of changes in these parameters on image quality. Finally, comparison is made with a "perfect" imaging system where information content is only limited by the finite number of x-rays.

  20. Bibliography for Verification and Validation in Computational Simulations

    SciTech Connect

    Oberkampf, W.L.

    1998-10-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  1. Computational simulation of high temperature metal matrix composites cyclic behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Hopkins, D. A.

    1988-01-01

    A procedure was developed and is described which can be used to computationally simulate the cyclic behavior of high temperature metal matrix composites (HTMMC) and its degradation effects on the structural response. This procedure consists of HTMMC mechanics coupled with a multifactor interaction constituent material relationship and with an incremental iterative nonlinear analysis. The procedure is implemented in a computer code that can be used to computationally simulate the thermomechanical behavior of HTMMC starting from the fabrication process and proceeding through thermomechanical cycling, accounting for the interface/interphase region. Results show that combined thermal/mechanical cycling, the interphase, and in situ matrix properties have significant effects on the structural integrity of HTMMC.

  2. Measure of Landscape Heterogeneity by Agent-Based Methodology

    NASA Astrophysics Data System (ADS)

    Wirth, E.; Szabó, Gy.; Czinkóczky, A.

    2016-06-01

    With the rapid increase of the world's population, the efficient food production is one of the key factors of the human survival. Since biodiversity and heterogeneity is the basis of the sustainable agriculture, the authors tried to measure the heterogeneity of a chosen landscape. The EU farming and subsidizing policies (EEA, 2014) support landscape heterogeneity and diversity, nevertheless exact measurements and calculations apart from statistical parameters (standard deviation, mean), do not really exist. In the present paper the authors' goal is to find an objective, dynamic method that measures landscape heterogeneity. It is achieved with the so called agent-based modelling, where randomly dispatched dynamic scouts record the observed land cover parameters and sum up the features of a new type of land. During the simulation the agents collect a Monte Carlo integral as a diversity landscape potential which can be considered as the unit of the `greening' measure. As a final product of the ABM method, a landscape potential map is obtained that can serve as a tool for objective decision making to support agricultural diversity.

  3. Computer simulation for hormones related to primary thyropathy.

    PubMed

    Hatakeyama, T; Yagi, H

    1985-01-01

    We propose a mathematical model of the human hypothalamus-anterior pituitary-thyroid system regulating basal metabolism, and practice computer simulation concerning primary thyropathy such as Graves' disease, hypothyroidism, T4-toxicosis and T3-toxicosis by use of this model. In order to throw light on properties of the system, indicial responses of the hormones, T4, T3, rT3, and TSH, and the function of the thyroid gland are computed. Medical treatments for Graves' disease and for hypothyroidism are simulated with a view to enhancing clinical significance. Performance of the simulation leads to an interesting result that when the convertion rate of blood T4 to blood T3 increases, explicit T3-toxicosis occurs, although the function of the thyroid gland is normal.

  4. Paediatric bed fall computer simulation model development and validation.

    PubMed

    Thompson, Angela K; Bertocci, Gina E

    2013-01-01

    Falls from beds and other household furniture are common scenarios stated to conceal child abuse. Knowledge of the biomechanics associated with short-distance falls may aid clinicians in distinguishing between abusive and accidental injuries. Computer simulation is a useful tool to investigate injury-producing events and to study the effect of altering event parameters on injury risk. In this study, a paediatric bed fall computer simulation model was developed and validated. The simulation was created using Mathematical Dynamic Modeling(®) software with a child restraint air bag interaction (CRABI) 12-month-old anthropomorphic test device (ATD) representing the fall victim. The model was validated using data from physical fall experiments of the same scenario with an instrumented CRABI ATD. Validation was conducted using both observational and statistical comparisons. Future parametric sensitivity studies using this model will lead to an improved understanding of relationships between child (fall victim) parameters, fall environment parameters and injury potential.

  5. Evaluating Water Demand Using Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  6. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate.

    PubMed

    Du, Ling-Ran; Lu, Xiao-Jing; Guan, Hai-Tao; Yang, Yong-Jie; Gu, Meng-Jie; Zheng, Zhuo-Zhao; Lv, Tian-Shi; Yan, Zi-Guang; Song, Li; Zou, Ying-Hua; Fu, Nai-Qi; Qi, Xian-Rong; Fan, Tian-Yuan

    2014-08-25

    New type of liquid embolic agents based on a liquid crystalline material of glyceryl monooleate (GMO) was developed and evaluated in this study. Ternary phase diagram of GMO, water and ethanol was constructed and three isotropic liquids (ILs, GMO:ethanol:water=49:21:30, 60:20:20 and 72:18:10 (w/w/w)) were selected as potential liquid embolic agents, which could spontaneously form viscous gel cast when contacting with water or physiological fluid. The ILs exhibited excellent microcatheter deliverability due to low viscosity, and were proved to successfully block the saline flow when performed in a device to simulate embolization in vitro. The ILs also showed good cytocompatibility on L929 mouse fibroblast cell line. The embolization of ILs to rabbit kidneys was performed successfully under monitoring of digital subtraction angiography (DSA), and embolic degree was affected by the initial formulation composition and used volume. At 5th week after embolization, DSA and computed tomography (CT) confirmed the renal arteries embolized with IL did not recanalize in follow-up period, and an obvious atrophy of the embolized kidney was observed. Therefore, the GMO-based liquid embolic agents showed feasible and effective to embolize, and potential use in clinical interventional embolization therapy.

  7. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate.

    PubMed

    Du, Ling-Ran; Lu, Xiao-Jing; Guan, Hai-Tao; Yang, Yong-Jie; Gu, Meng-Jie; Zheng, Zhuo-Zhao; Lv, Tian-Shi; Yan, Zi-Guang; Song, Li; Zou, Ying-Hua; Fu, Nai-Qi; Qi, Xian-Rong; Fan, Tian-Yuan

    2014-08-25

    New type of liquid embolic agents based on a liquid crystalline material of glyceryl monooleate (GMO) was developed and evaluated in this study. Ternary phase diagram of GMO, water and ethanol was constructed and three isotropic liquids (ILs, GMO:ethanol:water=49:21:30, 60:20:20 and 72:18:10 (w/w/w)) were selected as potential liquid embolic agents, which could spontaneously form viscous gel cast when contacting with water or physiological fluid. The ILs exhibited excellent microcatheter deliverability due to low viscosity, and were proved to successfully block the saline flow when performed in a device to simulate embolization in vitro. The ILs also showed good cytocompatibility on L929 mouse fibroblast cell line. The embolization of ILs to rabbit kidneys was performed successfully under monitoring of digital subtraction angiography (DSA), and embolic degree was affected by the initial formulation composition and used volume. At 5th week after embolization, DSA and computed tomography (CT) confirmed the renal arteries embolized with IL did not recanalize in follow-up period, and an obvious atrophy of the embolized kidney was observed. Therefore, the GMO-based liquid embolic agents showed feasible and effective to embolize, and potential use in clinical interventional embolization therapy. PMID:24858389

  8. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  9. Agent Based Intelligence in a Tetrahedral Rover

    NASA Technical Reports Server (NTRS)

    Phelps, Peter; Truszkowski, Walt

    2007-01-01

    A tetrahedron is a 4-node 6-strut pyramid structure which is being used by the NASA - Goddard Space Flight Center as the basic building block for a new approach to robotic motion. The struts are extendable; it is by the sequence of activities: strut-extension, changing the center of gravity and falling that the tetrahedron "moves". Currently, strut-extension is handled by human remote control. There is an effort underway to make the movement of the tetrahedron autonomous, driven by an attempt to achieve a goal. The approach being taken is to associate an intelligent agent with each node. Thus, the autonomous tetrahedron is realized as a constrained multi-agent system, where the constraints arise from the fact that between any two agents there is an extendible strut. The hypothesis of this work is that, by proper composition of such automated tetrahedra, robotic structures of various levels of complexity can be developed which will support more complex dynamic motions. This is the basis of the new approach to robotic motion which is under investigation. A Java-based simulator for the single tetrahedron, realized as a constrained multi-agent system, has been developed and evaluated. This paper reports on this project and presents a discussion of the structure and dynamics of the simulator.

  10. Agent-Based Modeling of Growth Processes

    ERIC Educational Resources Information Center

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  11. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  12. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  13. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual

  14. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  15. Computational simulation for analysis and synthesis of impact resilient structure

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2013-10-01

    Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspectives, this work looks at a generic beam and plate structure subject to impact loading and carry out analysis and numerical simulation. The first objective of the work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study. The analysis will be based on dynamic response analysis. Consideration is given to the elastic-plastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at an optimum configuration in terms of loading, structural dimensions, material properties and composite lay-up, among others. Results will be discussed in view of practical applications.

  16. Cosmic Reionization on Computers. I. Design and Calibration of Simulations

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.

    2014-09-01

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h -1 Mpc and 40 h -1 Mpc boxes with spatial resolution reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.

  17. Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling

    NASA Technical Reports Server (NTRS)

    Campbell, Kenyth

    2012-01-01

    The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.

  18. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  19. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    SciTech Connect

    C. FOSTER; ET AL

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  20. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.