Sample records for agent-based computer simulation

  1. A Parallel Sliding Region Algorithm to Make Agent-Based Modeling Possible for a Large-Scale Simulation: Modeling Hepatitis C Epidemics in Canada.

    PubMed

    Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla

    2016-11-01

    Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.

  2. Agents in bioinformatics, computational and systems biology.

    PubMed

    Merelli, Emanuela; Armano, Giuliano; Cannata, Nicola; Corradini, Flavio; d'Inverno, Mark; Doms, Andreas; Lord, Phillip; Martin, Andrew; Milanesi, Luciano; Möller, Steffen; Schroeder, Michael; Luck, Michael

    2007-01-01

    The adoption of agent technologies and multi-agent systems constitutes an emerging area in bioinformatics. In this article, we report on the activity of the Working Group on Agents in Bioinformatics (BIOAGENTS) founded during the first AgentLink III Technical Forum meeting on the 2nd of July, 2004, in Rome. The meeting provided an opportunity for seeding collaborations between the agent and bioinformatics communities to develop a different (agent-based) approach of computational frameworks both for data analysis and management in bioinformatics and for systems modelling and simulation in computational and systems biology. The collaborations gave rise to applications and integrated tools that we summarize and discuss in context of the state of the art in this area. We investigate on future challenges and argue that the field should still be explored from many perspectives ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages to be used by information agents, and to the adoption of agents for computational grids.

  3. Application of Psychological Theories in Agent-Based Modeling: The Case of the Theory of Planned Behavior.

    PubMed

    Scalco, Andrea; Ceschi, Andrea; Sartori, Riccardo

    2018-01-01

    It is likely that computer simulations will assume a greater role in the next future to investigate and understand reality (Rand & Rust, 2011). Particularly, agent-based models (ABMs) represent a method of investigation of social phenomena that blend the knowledge of social sciences with the advantages of virtual simulations. Within this context, the development of algorithms able to recreate the reasoning engine of autonomous virtual agents represents one of the most fragile aspects and it is indeed crucial to establish such models on well-supported psychological theoretical frameworks. For this reason, the present work discusses the application case of the theory of planned behavior (TPB; Ajzen, 1991) in the context of agent-based modeling: It is argued that this framework might be helpful more than others to develop a valid representation of human behavior in computer simulations. Accordingly, the current contribution considers issues related with the application of the model proposed by the TPB inside computer simulations and suggests potential solutions with the hope to contribute to shorten the distance between the fields of psychology and computer science.

  4. A Micro-Level Data-Calibrated Agent-Based Model: The Synergy between Microsimulation and Agent-Based Modeling.

    PubMed

    Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee

    2018-01-01

    Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.

  5. An equation-free approach to agent-based computation: Bifurcation analysis and control of stationary states

    NASA Astrophysics Data System (ADS)

    Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.

    2012-08-01

    We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.

  6. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  7. Projective simulation for artificial intelligence

    PubMed Central

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  8. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  9. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  10. CulSim: A simulator of emergence and resilience of cultural diversity

    NASA Astrophysics Data System (ADS)

    Ulloa, Roberto

    CulSim is an agent-based computer simulation software that allows further exploration of influential and recent models of emergence of cultural groups grounded in sociological theories. CulSim provides a collection of tools to analyze resilience of cultural diversity when events affect agents, institutions or global parameters of the simulations; upon combination, events can be used to approximate historical circumstances. The software provides a graphical and text-based user interface, and so makes this agent-based modeling methodology accessible to a variety of users from different research fields.

  11. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  12. Applying GIS and high performance agent-based simulation for managing an Old World Screwworm fly invasion of Australia.

    PubMed

    Welch, M C; Kwan, P W; Sajeev, A S M

    2014-10-01

    Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  13. High performance cellular level agent-based simulation with FLAME for the GPU.

    PubMed

    Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela

    2010-05-01

    Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.

  14. Research on monocentric model of urbanization by agent-based simulation

    NASA Astrophysics Data System (ADS)

    Xue, Ling; Yang, Kaizhong

    2008-10-01

    Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.

  15. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    NASA Technical Reports Server (NTRS)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  16. Adaptive quantum computation in changing environments using projective simulation

    NASA Astrophysics Data System (ADS)

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-08-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.

  17. Adaptive quantum computation in changing environments using projective simulation

    PubMed Central

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-01-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263

  18. Using Model Replication to Improve the Reliability of Agent-Based Models

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  19. Trends in Social Science: The Impact of Computational and Simulative Models

    NASA Astrophysics Data System (ADS)

    Conte, Rosaria; Paolucci, Mario; Cecconi, Federico

    This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.

  20. Integrating GIS and ABM to Explore Spatiotemporal Dynamics

    NASA Astrophysics Data System (ADS)

    Sun, M.; Jiang, Y.; Yang, C.

    2013-12-01

    Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.

  1. Using computer agents to explain medical documents to patients with low health literacy.

    PubMed

    Bickmore, Timothy W; Pfeifer, Laura M; Paasche-Orlow, Michael K

    2009-06-01

    Patients are commonly presented with complex documents that they have difficulty understanding. The objective of this study was to design and evaluate an animated computer agent to explain research consent forms to potential research participants. Subjects were invited to participate in a simulated consent process for a study involving a genetic repository. Explanation of the research consent form by the computer agent was compared to explanation by a human and a self-study condition in a randomized trial. Responses were compared according to level of health literacy. Participants were most satisfied with the consent process and most likely to sign the consent form when it was explained by the computer agent, regardless of health literacy level. Participants with adequate health literacy demonstrated the highest level of comprehension with the computer agent-based explanation compared to the other two conditions. However, participants with limited health literacy showed poor comprehension levels in all three conditions. Participants with limited health literacy reported several reasons, such as lack of time constraints, ability to re-ask questions, and lack of bias, for preferring the computer agent-based explanation over a human-based one. Animated computer agents can perform as well as or better than humans in the administration of informed consent. Animated computer agents represent a viable method for explaining health documents to patients.

  2. Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Messagemore » Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.« less

  3. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  4. Memoryless cooperative graph search based on the simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Yan, Gang-Feng; Fan, Zhen

    2011-04-01

    We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.

  5. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  6. Addressing the translational dilemma: dynamic knowledge representation of inflammation using agent-based modeling.

    PubMed

    An, Gary; Christley, Scott

    2012-01-01

    Given the panoply of system-level diseases that result from disordered inflammation, such as sepsis, atherosclerosis, cancer, and autoimmune disorders, understanding and characterizing the inflammatory response is a key target of biomedical research. Untangling the complex behavioral configurations associated with a process as ubiquitous as inflammation represents a prototype of the translational dilemma: the ability to translate mechanistic knowledge into effective therapeutics. A critical failure point in the current research environment is a throughput bottleneck at the level of evaluating hypotheses of mechanistic causality; these hypotheses represent the key step toward the application of knowledge for therapy development and design. Addressing the translational dilemma will require utilizing the ever-increasing power of computers and computational modeling to increase the efficiency of the scientific method in the identification and evaluation of hypotheses of mechanistic causality. More specifically, development needs to focus on facilitating the ability of non-computer trained biomedical researchers to utilize and instantiate their knowledge in dynamic computational models. This is termed "dynamic knowledge representation." Agent-based modeling is an object-oriented, discrete-event, rule-based simulation method that is well suited for biomedical dynamic knowledge representation. Agent-based modeling has been used in the study of inflammation at multiple scales. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggest that this modeling framework is well suited for addressing the translational dilemma. This review describes agent-based modeling, gives examples of its applications in the study of inflammation, and introduces a proposed general expansion of the use of modeling and simulation to augment the generation and evaluation of knowledge by the biomedical research community at large.

  7. Adaptive Agent Modeling of Distributed Language: Investigations on the Effects of Cultural Variation and Internal Action Representations

    ERIC Educational Resources Information Center

    Cangelosi, Angelo

    2007-01-01

    In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…

  8. Chemical Computer Man: Chemical Agent Response Simulation (CARS). Technical report, January 1983-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.G.; Mioduszewski, R.J.

    The Chemical Computer Man: Chemical Agent Response Simulation (CARS) is a computer model and simulation program for estimating the dynamic changes in human physiological dysfunction resulting from exposures to chemical-threat nerve agents. The newly developed CARS methodology simulates agent exposure effects on the following five indices of human physiological function: mental, vision, cardio-respiratory, visceral, and limbs. Mathematical models and the application of basic pharmacokinetic principles were incorporated into the simulation so that for each chemical exposure, the relationship between exposure dosage, absorbed dosage (agent blood plasma concentration), and level of physiological response are computed as a function of time. CARS,more » as a simulation tool, is designed for the users with little or no computer-related experience. The model combines maximum flexibility with a comprehensive user-friendly interactive menu-driven system. Users define an exposure problem and obtain immediate results displayed in tabular, graphical, and image formats. CARS has broad scientific and engineering applications, not only in technology for the soldier in the area of Chemical Defense, but also in minimizing animal testing in biomedical and toxicological research and the development of a modeling system for human exposure to hazardous-waste chemicals.« less

  9. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    PubMed

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  10. Agent-based simulation of a financial market

    NASA Astrophysics Data System (ADS)

    Raberto, Marco; Cincotti, Silvano; Focardi, Sergio M.; Marchesi, Michele

    2001-10-01

    This paper introduces an agent-based artificial financial market in which heterogeneous agents trade one single asset through a realistic trading mechanism for price formation. Agents are initially endowed with a finite amount of cash and a given finite portfolio of assets. There is no money-creation process; the total available cash is conserved in time. In each period, agents make random buy and sell decisions that are constrained by available resources, subject to clustering, and dependent on the volatility of previous periods. The model proposed herein is able to reproduce the leptokurtic shape of the probability density of log price returns and the clustering of volatility. Implemented using extreme programming and object-oriented technology, the simulator is a flexible computational experimental facility that can find applications in both academic and industrial research projects.

  11. Computational Modeling and Simulation of Genital Tubercle Development

    EPA Science Inventory

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating ...

  12. Virtual agents in a simulated virtual training environment

    NASA Technical Reports Server (NTRS)

    Achorn, Brett; Badler, Norman L.

    1993-01-01

    A drawback to live-action training simulations is the need to gather a large group of participants in order to train a few individuals. One solution to this difficulty is the use of computer-controlled agents in a virtual training environment. This allows a human participant to be replaced by a virtual, or simulated, agent when only limited responses are needed. Each agent possesses a specified set of behaviors and is capable of limited autonomous action in response to its environment or the direction of a human trainee. The paper describes these agents in the context of a simulated hostage rescue training session, involving two human rescuers assisted by three virtual (computer-controlled) agents and opposed by three other virtual agents.

  13. Simulating Cancer Growth with Multiscale Agent-Based Modeling

    PubMed Central

    Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.

    2014-01-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698

  14. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An Agent-Based Epidemic Simulation of Social Behaviors Affecting HIV Transmission among Taiwanese Homosexuals

    PubMed Central

    2015-01-01

    Computational simulations are currently used to identify epidemic dynamics, to test potential prevention and intervention strategies, and to study the effects of social behaviors on HIV transmission. The author describes an agent-based epidemic simulation model of a network of individuals who participate in high-risk sexual practices, using number of partners, condom usage, and relationship length to distinguish between high- and low-risk populations. Two new concepts—free links and fixed links—are used to indicate tendencies among individuals who either have large numbers of short-term partners or stay in long-term monogamous relationships. An attempt was made to reproduce epidemic curves of reported HIV cases among male homosexuals in Taiwan prior to using the agent-based model to determine the effects of various policies on epidemic dynamics. Results suggest that when suitable adjustments are made based on available social survey statistics, the model accurately simulates real-world behaviors on a large scale. PMID:25815047

  16. Dynamic Simulation of Crime Perpetration and Reporting to Examine Community Intervention Strategies

    ERIC Educational Resources Information Center

    Yonas, Michael A.; Burke, Jessica G.; Brown, Shawn T.; Borrebach, Jeffrey D.; Garland, Richard; Burke, Donald S.; Grefenstette, John J.

    2013-01-01

    Objective: To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Method: Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically…

  17. Research-Based Design of Pedagogical Agent Roles: A Review, Progress, and Recommendations

    ERIC Educational Resources Information Center

    Kim, Yanghee; Baylor, Amy L.

    2016-01-01

    In this paper we review the contribution of our original work titled "Simulating Instructional Roles Through Pedagogical Agents" published in the "International Journal of Artificial Intelligence and Education" (Baylor and Kim in "Computers and Human Behavior," 25(2), 450-457, 2005). Our original work operationalized…

  18. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  19. Distributed environmental control

    NASA Technical Reports Server (NTRS)

    Cleveland, Gary A.

    1992-01-01

    We present an architecture of distributed, independent control agents designed to work with the Computer Aided System Engineering and Analysis (CASE/A) simulation tool. CASE/A simulates behavior of Environmental Control and Life Support Systems (ECLSS). We describe a lattice of agents capable of distributed sensing and overcoming certain sensor and effector failures. We address how the architecture can achieve the coordinating functions of a hierarchical command structure while maintaining the robustness and flexibility of independent agents. These agents work between the time steps of the CASE/A simulation tool to arrive at command decisions based on the state variables maintained by CASE/A. Control is evaluated according to both effectiveness (e.g., how well temperature was maintained) and resource utilization (the amount of power and materials used).

  20. Computational Modeling of Inflammation and Wound Healing

    PubMed Central

    Ziraldo, Cordelia; Mi, Qi; An, Gary; Vodovotz, Yoram

    2013-01-01

    Objective Inflammation is both central to proper wound healing and a key driver of chronic tissue injury via a positive-feedback loop incited by incidental cell damage. We seek to derive actionable insights into the role of inflammation in wound healing in order to improve outcomes for individual patients. Approach To date, dynamic computational models have been used to study the time evolution of inflammation in wound healing. Emerging clinical data on histo-pathological and macroscopic images of evolving wounds, as well as noninvasive measures of blood flow, suggested the need for tissue-realistic, agent-based, and hybrid mechanistic computational simulations of inflammation and wound healing. Innovation We developed a computational modeling system, Simple Platform for Agent-based Representation of Knowledge, to facilitate the construction of tissue-realistic models. Results A hybrid equation–agent-based model (ABM) of pressure ulcer formation in both spinal cord-injured and -uninjured patients was used to identify control points that reduce stress caused by tissue ischemia/reperfusion. An ABM of arterial restenosis revealed new dynamics of cell migration during neointimal hyperplasia that match histological features, but contradict the currently prevailing mechanistic hypothesis. ABMs of vocal fold inflammation were used to predict inflammatory trajectories in individuals, possibly allowing for personalized treatment. Conclusions The intertwined inflammatory and wound healing responses can be modeled computationally to make predictions in individuals, simulate therapies, and gain mechanistic insights. PMID:24527362

  1. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    PubMed

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  2. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  3. An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy.

    PubMed

    Day, Theodore Eugene; Ravi, Nathan; Xian, Hong; Brugh, Ann

    2013-01-01

    Agent-based models are valuable for examining systems where large numbers of discrete individuals interact with each other, or with some environment. Diabetic Veterans seeking eye care at a Veterans Administration hospital represent one such cohort. The objective of this study was to develop an agent-based template to be used as a model for a patient with diabetic retinopathy (DR). This template may be replicated arbitrarily many times in order to generate a large cohort which is representative of a real-world population, upon which in-silico experimentation may be conducted. Agent-based template development was performed in java-based computer simulation suite AnyLogic Professional 6.6. The model was informed by medical data abstracted from 535 patient records representing a retrospective cohort of current patients of the VA St. Louis Healthcare System Eye clinic. Logistic regression was performed to determine the predictors associated with advancing stages of DR. Predicted probabilities obtained from logistic regression were used to generate the stage of DR in the simulated cohort. The simulated cohort of DR patients exhibited no significant deviation from the test population of real-world patients in proportion of stage of DR, duration of diabetes mellitus (DM), or the other abstracted predictors. Simulated patients after 10 years were significantly more likely to exhibit proliferative DR (P<0.001). Agent-based modeling is an emerging platform, capable of simulating large cohorts of individuals based on manageable data abstraction efforts. The modeling method described may be useful in simulating many different conditions where course of disease is described in categorical stages.

  4. Agent-based model to rural urban migration analysis

    NASA Astrophysics Data System (ADS)

    Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.

    2006-05-01

    In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.

  5. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  6. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    NASA Astrophysics Data System (ADS)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  7. Contrast-enhanced digital mammography (CEDM): imaging modeling, computer simulations, and phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew

    2005-04-01

    Contrast enhanced digital mammography (CEDM), which is based upon the analysis of a series of x-ray projection images acquired before/after the administration of contrast agents, may provide physicians critical physiologic and morphologic information of breast lesions to determine the malignancy of lesions. This paper proposes to combine the kinetic analysis (KA) of contrast agent uptake/washout process and the dual-energy (DE) contrast enhancement together to formulate a hybrid contrast enhanced breast-imaging framework. The quantitative characteristics of materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filter, breast tissues/lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systematically modeled. The contrast-noise-ration (CNR) of iodinated lesions and mean absorbed glandular dose were estimated mathematically. The x-ray techniques optimization was conducted through a series of computer simulations to find the optimal tube voltage, filter thickness, and exposure levels for various breast thicknesses, breast density, and detectable contrast agent concentration levels in terms of detection efficiency (CNR2/dose). A phantom study was performed on a modified Selenia full field digital mammography system to verify the simulated results. The dose level was comparable to the dose in diagnostic mode (less than 4 mGy for an average 4.2 cm compressed breast). The results from the computer simulations and phantom study are being used to optimize an ongoing clinical study.

  8. The Role of Agent Age and Gender for Middle-Grade Girls

    ERIC Educational Resources Information Center

    Kim, Yanghee

    2016-01-01

    Compared to boys, many girls are more aware of a social context in the learning process and perform better when the environment supports frequent interactions and social relationships. For these girls, embodied agents (animated on-screen characters acting as tutors) could afford simulated social interactions in computer-based learning and thereby…

  9. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations

    PubMed Central

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061

  10. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    PubMed

    Riaz, Faisal; Niazi, Muaz A

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  11. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson’s arms race model

    PubMed Central

    Niazi, Muaz A.

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294

  12. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.

    2014-12-01

    Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.

  14. Evolvable social agents for bacterial systems modeling.

    PubMed

    Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry

    2004-09-01

    We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.

  15. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  16. Construction of Interaction Layer on Socio-Environmental Simulation

    NASA Astrophysics Data System (ADS)

    Torii, Daisuke; Ishida, Toru

    In this study, we propose a method to construct a system based on a legacy socio-environmental simulator which enables to design more realistic interaction models in socio-environmetal simulations. First, to provide a computational model suitable for agent interactions, an interaction layer is constructed and connected from outside of a legacy socio-environmental simulator. Next, to configure the agents interacting ability, connection description for controlling the flow of information in the connection area is provided. As a concrete example, we realized an interaction layer by Q which is a scenario description language and connected it to CORMAS, a socio-envirionmental simulator. Finally, we discuss the capability of our method, using the system, in the Fire-Fighter domain.

  17. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  18. Simulation and virtual reality in medical education and therapy: a protocol.

    PubMed

    Roy, Michael J; Sticha, Deborah L; Kraus, Patricia L; Olsen, Dale E

    2006-04-01

    Continuing medical education has historically been provided primarily by didactic lectures, though adult learners prefer experiential or self-directed learning. Young physicians have extensive experience with computer-based or "video" games, priming them for medical education--and treating their patients--via new technologies. We report our use of standardized patients (SPs) to educate physicians on the diagnosis and treatment of biological and chemical warfare agent exposure. We trained professional actors to serve as SPs representing exposure to biological agents such as anthrax and smallpox. We rotated workshop participants through teaching stations to interview, examine, diagnose and treat SPs. We also trained SPs to simulate a chemical mass casualty (MASCAL) incident. Workshop participants worked together to treat MASCAL victims, followed by discussion of key teaching points. More recently, we developed computer-based simulation (CBS) modules of patients exposed to biological agents. We compare the strengths and weaknesses of CBS vs. live SPs. Finally, we detail plans for a randomized controlled trial to assess the efficacy of virtual reality (VR) exposure therapy compared to pharmacotherapy for post-traumatic stress disorder (PTSD). PTSD is associated with significant disability and healthcare costs, which may be ameliorated by the identification of more effective therapy.

  19. An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data.

    PubMed

    Shi, Zhenzhen; Chapes, Stephen K; Ben-Arieh, David; Wu, Chih-Hang

    2016-01-01

    We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies.

  20. An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data

    PubMed Central

    Chapes, Stephen K.; Ben-Arieh, David; Wu, Chih-Hang

    2016-01-01

    We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as “sepsis”. Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies. PMID:27556404

  1. A hybrid agent-based approach for modeling microbiological systems.

    PubMed

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  2. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems: A Case Study on Vocal Fold Inflammation and Healing.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2016-05-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.

  3. Nonlinearity in Social Service Evaluation: A Primer on Agent-Based Modeling

    ERIC Educational Resources Information Center

    Israel, Nathaniel; Wolf-Branigin, Michael

    2011-01-01

    Measurement of nonlinearity in social service research and evaluation relies primarily on spatial analysis and, to a lesser extent, social network analysis. Recent advances in geographic methods and computing power, however, allow for the greater use of simulation methods. These advances now enable evaluators and researchers to simulate complex…

  4. Understanding Islamist political violence through computational social simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Jennifer H; Mackerrow, Edward P; Patelli, Paolo G

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates themore » computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.« less

  5. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  6. Exploring Tradeoffs in Demand-side and Supply-side Management of Urban Water Resources using Agent-based Modeling and Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.

    2015-12-01

    Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  7. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks

    PubMed Central

    Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.

    2015-01-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406

  8. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  9. Expert knowledge elicitation using computer simulation: the organization of frail elderly case management as an illustration.

    PubMed

    Chiêm, Jean-Christophe; Van Durme, Thérèse; Vandendorpe, Florence; Schmitz, Olivier; Speybroeck, Niko; Cès, Sophie; Macq, Jean

    2014-08-01

    Various elderly case management projects have been implemented in Belgium. This type of long-term health care intervention involves contextual factors and human interactions. These underlying complex mechanisms can be usefully informed with field experts' knowledge, which are hard to make explicit. However, computer simulation has been suggested as one possible method of overcoming the difficulty of articulating such elicited qualitative views. A simulation model of case management was designed using an agent-based methodology, based on the initial qualitative research material. Variables and rules of interaction were formulated into a simple conceptual framework. This model has been implemented and was used as a support for a structured discussion with experts in case management. The rigorous formulation provided by the agent-based methodology clarified the descriptions of the interventions and the problems encountered regarding: the diverse network topologies of health care actors in the project; the adaptation time required by the intervention; the communication between the health care actors; the institutional context; the organization of the care; and the role of the case manager and his or hers personal ability to interpret the informal demands of the frail older person. The simulation model should be seen primarily as a tool for thinking and learning. A number of insights were gained as part of a valuable cognitive process. Computer simulation supporting field experts' elicitation can lead to better-informed decisions in the organization of complex health care interventions. © 2013 John Wiley & Sons, Ltd.

  10. Parallel computing in enterprise modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priorimore » ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.« less

  11. A Computational Model Predicting Disruption of Blood Vessel Development

    PubMed Central

    Kleinstreuer, Nicole; Dix, David; Rountree, Michael; Baker, Nancy; Sipes, Nisha; Reif, David; Spencer, Richard; Knudsen, Thomas

    2013-01-01

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology. PMID:23592958

  12. Abstraction of an Affective-Cognitive Decision Making Model Based on Simulated Behaviour and Perception Chains

    NASA Astrophysics Data System (ADS)

    Sharpanskykh, Alexei; Treur, Jan

    Employing rich internal agent models of actors in large-scale socio-technical systems often results in scalability issues. The problem addressed in this paper is how to improve computational properties of a complex internal agent model, while preserving its behavioral properties. The problem is addressed for the case of an existing affective-cognitive decision making model instantiated for an emergency scenario. For this internal decision model an abstracted behavioral agent model is obtained, which ensures a substantial increase of the computational efficiency at the cost of approximately 1% behavioural error. The abstraction technique used can be applied to a wide range of internal agent models with loops, for example, involving mutual affective-cognitive interactions.

  13. Multi-agent systems and their applications

    DOE PAGES

    Xie, Jing; Liu, Chen-Ching

    2017-07-14

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  14. Multi-agent systems and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Liu, Chen-Ching

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  15. Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics

    NASA Astrophysics Data System (ADS)

    Saeedi, Sara

    2018-06-01

    With the advancement of computational modeling and simulation (M&S) methods as well as data collection technologies, urban dynamics modeling substantially improved over the last several decades. The complex urban dynamics processes are most effectively modeled not at the macro-scale, but following a bottom-up approach, by simulating the decisions of individual entities, or residents. Agent-based modeling (ABM) provides the key to a dynamic M&S framework that is able to integrate socioeconomic with environmental models, and to operate at both micro and macro geographical scales. In this study, a multi-agent system is proposed to simulate residential dynamics by considering spatiotemporal land use changes. In the proposed ABM, macro-scale land use change prediction is modeled by Artificial Neural Network (ANN) and deployed as the agent environment and micro-scale residential dynamics behaviors autonomously implemented by household agents. These two levels of simulation interacted and jointly promoted urbanization process in an urban area of Tehran city in Iran. The model simulates the behavior of individual households in finding ideal locations to dwell. The household agents are divided into three main groups based on their income rank and they are further classified into different categories based on a number of attributes. These attributes determine the households' preferences for finding new dwellings and change with time. The ABM environment is represented by a land-use map in which the properties of the land parcels change dynamically over the simulation time. The outputs of this model are a set of maps showing the pattern of different groups of households in the city. These patterns can be used by city planners to find optimum locations for building new residential units or adding new services to the city. The simulation results show that combining macro- and micro-level simulation can give full play to the potential of the ABM to understand the driving mechanism of urbanization and provide decision-making support for urban management.

  16. A Multi-Agent Approach to the Simulation of Robotized Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banaś, W.

    2016-08-01

    The recent years of eventful industry development, brought many competing products, addressed to the same market segment. The shortening of a development cycle became a necessity if the company would like to be competitive. Because of switching to the Intelligent Manufacturing model the industry search for new scheduling algorithms, while the traditional ones do not meet the current requirements. The agent-based approach has been considered by many researchers as an important way of evolution of modern manufacturing systems. Due to the properties of the multi-agent systems, this methodology is very helpful during creation of the model of production system, allowing depicting both processing and informational part. The complexity of such approach makes the analysis impossible without the computer assistance. Computer simulation still uses a mathematical model to recreate a real situation, but nowadays the 2D or 3D virtual environments or even virtual reality have been used for realistic illustration of the considered systems. This paper will focus on robotized manufacturing system and will present the one of possible approaches to the simulation of such systems. The selection of multi-agent approach is motivated by the flexibility of this solution that offers the modularity, robustness and autonomy.

  17. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    PubMed

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  18. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery

    PubMed Central

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526

  19. Magician Simulator: A Realistic Simulator for Heterogenous Teams of Autonomous Robots. MAGIC 2010 Challenge

    DTIC Science & Technology

    2011-02-07

    Sensor UGVs (SUGV) or Disruptor UGVs, depending on their payload. The SUGVs included vision, GPS/IMU, and LIDAR systems for identifying and tracking...employed by all the MAGICian research groups. Objects of interest were tracked using standard LIDAR and Computer Vision template-based feature...tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous Locali- zation and Mapping ( SLAM ). Our system contains

  20. Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots

    DTIC Science & Technology

    2011-01-18

    IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored

  1. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  2. An Atom Is Known by the Company It Keeps: A Constructionist Learning Environment for Materials Science Using Agent-Based Modeling

    ERIC Educational Resources Information Center

    Blikstein, Paulo; Wilensky, Uri

    2009-01-01

    This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…

  3. Modelling the spread of innovation in wild birds.

    PubMed

    Shultz, Thomas R; Montrey, Marcel; Aplin, Lucy M

    2017-06-01

    We apply three plausible algorithms in agent-based computer simulations to recent experiments on social learning in wild birds. Although some of the phenomena are simulated by all three learning algorithms, several manifestations of social conformity bias are simulated by only the approximate majority (AM) algorithm, which has roots in chemistry, molecular biology and theoretical computer science. The simulations generate testable predictions and provide several explanatory insights into the diffusion of innovation through a population. The AM algorithm's success raises the possibility of its usefulness in studying group dynamics more generally, in several different scientific domains. Our differential-equation model matches simulation results and provides mathematical insights into the dynamics of these algorithms. © 2017 The Author(s).

  4. An experimental-computational platform for investigating microbial interactions and dynamics in communities with two codependent species

    NASA Astrophysics Data System (ADS)

    Fuentes-Cabrera, Miguel; Anderson, John D.; Wilmoth, Jared; Ginovart, Marta; Prats, Clara; Portell-Canal, Xavier; Retterer, Scott

    Microbial interactions are critical for governing community behavior and structure in natural environments. Examination of microbial interactions in the lab involves growth under ideal conditions in batch culture; conditions that occur in nature are, however, characterized by disequilibrium. Of particular interest is the role that system variables play in shaping cell-to-cell interactions and organization at ultrafine spatial scales. We seek to use experiments and agent-based modeling to help discover mechanisms relevant to microbial dynamics and interactions in the environment. Currently, we are using an agent-based model to simulate microbial growth, dynamics and interactions that occur on a microwell-array device developed in our lab. Bacterial cells growing in the microwells of this platform can be studied with high-throughput and high-content image analyses using brightfield and fluorescence microscopy. The agent-based model is written in the language Netlogo, which in turn is ''plugged into'' a computational framework that allows submitting many calculations in parallel for different initial parameters; visualizing the outcomes in an interactive phase-like diagram; and searching, with a genetic algorithm, for the parameters that lead to the most optimal simulation outcome.

  5. A decentralised multi-agent approach to enhance the stability of smart microgrids with renewable energy

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.

    2016-05-01

    This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.

  6. Mobile code security

    NASA Astrophysics Data System (ADS)

    Ramalingam, Srikumar

    2001-11-01

    A highly secure mobile agent system is very important for a mobile computing environment. The security issues in mobile agent system comprise protecting mobile hosts from malicious agents, protecting agents from other malicious agents, protecting hosts from other malicious hosts and protecting agents from malicious hosts. Using traditional security mechanisms the first three security problems can be solved. Apart from using trusted hardware, very few approaches exist to protect mobile code from malicious hosts. Some of the approaches to solve this problem are the use of trusted computing, computing with encrypted function, steganography, cryptographic traces, Seal Calculas, etc. This paper focuses on the simulation of some of these existing techniques in the designed mobile language. Some new approaches to solve malicious network problem and agent tampering problem are developed using public key encryption system and steganographic concepts. The approaches are based on encrypting and hiding the partial solutions of the mobile agents. The partial results are stored and the address of the storage is destroyed as the agent moves from one host to another host. This allows only the originator to make use of the partial results. Through these approaches some of the existing problems are solved.

  7. Pedestrian simulation and distribution in urban space based on visibility analysis and agent simulation

    NASA Astrophysics Data System (ADS)

    Ying, Shen; Li, Lin; Gao, Yurong

    2009-10-01

    Spatial visibility analysis is the important direction of pedestrian behaviors because our visual conception in space is the straight method to get environment information and navigate your actions. Based on the agent modeling and up-tobottom method, the paper develop the framework about the analysis of the pedestrian flow depended on visibility. We use viewshed in visibility analysis and impose the parameters on agent simulation to direct their motion in urban space. We analyze the pedestrian behaviors in micro-scale and macro-scale of urban open space. The individual agent use visual affordance to determine his direction of motion in micro-scale urban street on district. And we compare the distribution of pedestrian flow with configuration in macro-scale urban environment, and mine the relationship between the pedestrian flow and distribution of urban facilities and urban function. The paper first computes the visibility situations at the vantage point in urban open space, such as street network, quantify the visibility parameters. The multiple agents use visibility parameters to decide their direction of motion, and finally pedestrian flow reach to a stable state in urban environment through the simulation of multiple agent system. The paper compare the morphology of visibility parameters and pedestrian distribution with urban function and facilities layout to confirm the consistence between them, which can be used to make decision support in urban design.

  8. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models.

    PubMed

    Ajelli, Marco; Gonçalves, Bruno; Balcan, Duygu; Colizza, Vittoria; Hu, Hao; Ramasco, José J; Merler, Stefano; Vespignani, Alessandro

    2010-06-29

    In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modeling approaches may differ and depend on the different approximations and assumptions used. We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a large and geographically heterogeneous European country. The agent-based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their initial conditions by using the same disease parameterization, and by defining the same importation of infected cases from international travels. The results obtained show that both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes. The good agreement between the two modeling approaches is very important for defining the tradeoff between data availability and the information provided by the models. The results we present define the possibility of hybrid models combining the agent-based and the metapopulation approaches according to the available data and computational resources.

  9. An agent-based computational model of the spread of tuberculosis

    NASA Astrophysics Data System (ADS)

    de Espíndola, Aquino L.; Bauch, Chris T.; Troca Cabella, Brenno C.; Souto Martinez, Alexandre

    2011-05-01

    In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed.

  10. Competition of information channels in the spreading of innovations

    NASA Astrophysics Data System (ADS)

    Kocsis, Gergely; Kun, Ferenc

    2011-08-01

    We study the spreading of information on technological developments in socioeconomic systems where the social contacts of agents are represented by a network of connections. In the model, agents get informed about the existence and advantages of new innovations through advertising activities of producers, which are then followed by an interagent information transfer. Computer simulations revealed that varying the strength of external driving and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of innovations. The time evolution can be described analytically by an integral equation that captures the nucleation and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior with a crossover to a higher exponent when long-range social contacts are present in the system. Based on computer simulations we construct an approximate phase diagram of the model on a regular square lattice of agents.

  11. Competition of information channels in the spreading of innovations.

    PubMed

    Kocsis, Gergely; Kun, Ferenc

    2011-08-01

    We study the spreading of information on technological developments in socioeconomic systems where the social contacts of agents are represented by a network of connections. In the model, agents get informed about the existence and advantages of new innovations through advertising activities of producers, which are then followed by an interagent information transfer. Computer simulations revealed that varying the strength of external driving and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of innovations. The time evolution can be described analytically by an integral equation that captures the nucleation and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior with a crossover to a higher exponent when long-range social contacts are present in the system. Based on computer simulations we construct an approximate phase diagram of the model on a regular square lattice of agents.

  12. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  13. A technology path to tactical agent-based modeling

    NASA Astrophysics Data System (ADS)

    James, Alex; Hanratty, Timothy P.

    2017-05-01

    Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.

  14. Generating Pedestrian Trajectories Consistent with the Fundamental Diagram Based on Physiological and Psychological Factors

    PubMed Central

    Narang, Sahil; Best, Andrew; Curtis, Sean; Manocha, Dinesh

    2015-01-01

    Pedestrian crowds often have been modeled as many-particle system including microscopic multi-agent simulators. One of the key challenges is to unearth governing principles that can model pedestrian movement, and use them to reproduce paths and behaviors that are frequently observed in human crowds. To that effect, we present a novel crowd simulation algorithm that generates pedestrian trajectories that exhibit the speed-density relationships expressed by the Fundamental Diagram. Our approach is based on biomechanical principles and psychological factors. The overall formulation results in better utilization of free space by the pedestrians and can be easily combined with well-known multi-agent simulation techniques with little computational overhead. We are able to generate human-like dense crowd behaviors in large indoor and outdoor environments and validate the results with captured real-world crowd trajectories. PMID:25875932

  15. A hybrid computational model to explore the topological characteristics of epithelial tissues.

    PubMed

    González-Valverde, Ismael; García-Aznar, José Manuel

    2017-11-01

    Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour, interaction (communication), and mobility features are modelled and specified on a machine-independent abstract programming level using a state-based agent behaviour language (APL). With this APL a high-level agent compiler is able to synthesize a hardware model (RTL, VHDL), a software model (C, ML), or a simulation model (XML) suitable to simulate a multi-agent system using the SeSAm simulator framework. Agent communication is provided by a simple tuple-space database implemented on node level providing fault tolerant access of global data. A novel synthesis development kit (SynDK) based on a graph-structured database approach is introduced to support the rapid development of compilers and synthesis tools, used for example for the design and implementation of the APL compiler.

  17. Continuous Opinion Dynamics Under Bounded Confidence:. a Survey

    NASA Astrophysics Data System (ADS)

    Lorenz, Jan

    Models of continuous opinion dynamics under bounded confidence have been presented independently by Krause and Hegselmann and by Deffuant et al. in 2000. They have raised a fair amount of attention in the communities of social simulation, sociophysics and complexity science. The researchers working on it come from disciplines such as physics, mathematics, computer science, social psychology and philosophy. In these models agents hold continuous opinions which they can gradually adjust if they hear the opinions of others. The idea of bounded confidence is that agents only interact if they are close in opinion to each other. Usually, the models are analyzed with agent-based simulations in a Monte Carlo style, but they can also be reformulated on the agent's density in the opinion space in a master equation style. The contribution of this survey is fourfold. First, it will present the agent-based and density-based modeling frameworks including the cases of multidimensional opinions and heterogeneous bounds of confidence. Second, it will give the bifurcation diagrams of cluster configuration in the homogeneous model with uniformly distributed initial opinions. Third, it will review the several extensions and the evolving phenomena which have been studied so far, and fourth it will state some open questions.

  18. Connectionist agent-based learning in bank-run decision making

    NASA Astrophysics Data System (ADS)

    Huang, Weihong; Huang, Qiao

    2018-05-01

    It is of utter importance for the policy makers, bankers, and investors to thoroughly understand the probability of bank-run (PBR) which was often neglected in the classical models. Bank-run is not merely due to miscoordination (Diamond and Dybvig, 1983) or deterioration of bank assets (Allen and Gale, 1998) but various factors. This paper presents the simulation results of the nonlinear dynamic probabilities of bank runs based on the global games approach, with the distinct assumption that heterogenous agents hold highly correlated but unidentical beliefs about the true payoffs. The specific technique used in the simulation is to let agents have an integrated cognitive-affective network. It is observed that, even when the economy is good, agents are significantly affected by the cognitive-affective network to react to bad news which might lead to bank-run. Both the rise of the late payoffs, R, and the early payoffs, r, will decrease the effect of the affective process. The increased risk sharing might or might not increase PBR, and the increase in late payoff is beneficial for preventing the bank run. This paper is one of the pioneers that links agent-based computational economics and behavioral economics.

  19. Evacuation simulation using Hybrid Space Discretisation and Application to Large Underground Rail Tunnel Station

    NASA Astrophysics Data System (ADS)

    Chooramun, N.; Lawrence, P. J.; Galea, E. R.

    2017-08-01

    In all evacuation simulation tools, the space through which agents navigate and interact is represented by one the following methods, namely Coarse regions, Fine nodes and Continuous regions. Each of the spatial representation methods has its benefits and limitations. For instance, the Coarse approach allows simulations to be processed very rapidly, but is unable to represent the interactions of the agents from an individual perspective; the Continuous approach provides a detailed representation of agent movement and interaction but suffers from relatively poor computational performance. The Fine nodal approach presents a compromise between the Continuous and Coarse approaches such that it allows agent interaction to be modelled while providing good computational performance. Our approach for representing space in an evacuation simulation tool differs such that it allows evacuation simulations to be run using a combination of Coarse regions, Fine nodes and Continuous regions. This approach, which we call Hybrid Spatial Discretisation (HSD), is implemented within the buildingEXODUS evacuation simulation software. The HSD incorporates the benefits of each of the spatial representation methods whilst providing an optimal environment for representing agent movement and interaction. In this work, we demonstrate the effectiveness of the HSD through its application to a moderately large case comprising of an underground rail tunnel station with a population of 2,000 agents.

  20. Emergence of a snake-like structure in mobile distributed agents: an exploratory agent-based modeling approach.

    PubMed

    Niazi, Muaz A

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems.

  1. Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    PubMed Central

    Niazi, Muaz A.

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135

  2. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents

    PubMed Central

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872

  3. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    PubMed

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  4. Minimal model for tag-based cooperation

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Schuster, Heinz Georg

    2003-10-01

    Recently, Riolo et al. [Nature (London) 414, 441 (2001)] showed by computer simulations that cooperation can arise without reciprocity when agents donate only to partners who are sufficiently similar to themselves. One striking outcome of their simulations was the observation that the number of tolerant agents that support a wide range of players was not constant in time, but showed characteristic fluctuations. The cause and robustness of these tides of tolerance remained to be explored. Here we clarify the situation by solving a minimal version of the model of Riolo et al. It allows us to identify a net surplus of random changes from intolerant to tolerant agents as a necessary mechanism that produces these oscillations of tolerance, which segregate different agents in time. This provides a new mechanism for maintaining different agents, i.e., for creating biodiversity. In our model the transition to the oscillating state is caused by a saddle node bifurcation. The frequency of the oscillations increases linearly with the transition rate from tolerant to intolerant agents.

  5. Imbalance detection in a manufacturing system: An agent-based model usage

    NASA Astrophysics Data System (ADS)

    Shevchuk, G. K.; Zvereva, O. M.; Medvedev, M. A.

    2017-11-01

    This paper delivers the results of the research work targeted at communications in a manufacturing system. A computer agent-based model which simulates manufacturing system functioning has been engineered. The system lifecycle consists of two recursively repeated stages: a communication stage and a production stage. Model data sets were estimated with the static Leontief's equilibrium equation usage. In experiments relationships between the manufacturing system lifecycle time and conditions of equilibrium violations have been identified. The research results are to be used to propose violation negative influence compensation methods.

  6. Agent 2003 Conference on Challenges in Social Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret Clemmons, ed.

    Welcome to the Proceedings of the fourth in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. Agent 2003 is the second conference in which three Special Interest Groups from the North American Association for Computational Social and Organizational Science (NAACSOS) have been involved in planning the program--Computational Social Theory; Simulation Applications; and Methods, Toolkits and Techniques. The theme of Agent 2003, Challenges in Social Simulation, is especially relevant, as there seems to be no shortage of such challenges. Agent simulation has been applied with increasing frequency to social domains for several decades,more » and its promise is clear and increasingly visible. Like any nascent scientific methodology, however, it faces a number of problems or issues that must be addressed in order to progress. These challenges include: (1) Validating models relative to the social settings they are designed to represent; (2) Developing agents and interactions simple enough to understand but sufficiently complex to do justice to the social processes of interest; (3) Bridging the gap between empirically spare artificial societies and naturally occurring social phenomena; (4) Building multi-level models that span processes across domains; (5) Promoting a dialog among theoretical, qualitative, and empirical social scientists and area experts, on the one hand, and mathematical and computational modelers and engineers, on the other; (6) Using that dialog to facilitate substantive progress in the social sciences; and (7) Fulfilling the aspirations of users in business, government, and other application areas, while recognizing and addressing the preceding challenges. Although this list hardly exhausts the challenges the field faces, it does identify topics addressed throughout the presentations of Agent 2003. Agent 2003 is part of a much larger process in which new methods and techniques are applied to difficult social issues. Among the resources that give us the prospect of success is the innovative and transdisciplinary research community being built. We believe that Agent 2003 contributes to further progress in computational modeling of social processes, and we hope that you find these Proceedings to be stimulating and rewarding. As the horizons of this transdiscipline continue to emerge and converge, we hope to provide similar forums that will promote development of agent simulation modeling in the years to come.« less

  7. Dual-energy contrast-enhanced digital mammography (DE-CEDM): optimization on digital subtraction with practical x-ray low/high-energy spectra

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri

    2006-03-01

    Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.

  8. Numerical Modeling of Mixing and Venting from Explosions in Bunkers

    NASA Astrophysics Data System (ADS)

    Liu, Benjamin

    2005-07-01

    2D and 3D numerical simulations were performed to study the dynamic interaction of explosion products in a concrete bunker with ambient air, stored chemical or biological warfare (CBW) agent simulant, and the surrounding walls and structure. The simulations were carried out with GEODYN, a multi-material, Godunov-based Eulerian code, that employs adaptive mesh refinement and runs efficiently on massively parallel computer platforms. Tabular equations of state were used for all materials with the exception of any high explosives employed, which were characterized with conventional JWL models. An appropriate constitutive model was used to describe the concrete. Interfaces between materials were either tracked with a volume-of-fluid method that used high-order reconstruction to specify the interface location and orientation, or a capturing approach was employed with the assumption of local thermal and mechanical equilibrium. A major focus of the study was to estimate the extent of agent heating that could be obtained prior to venting of the bunker and resultant agent dispersal. Parameters investigated included the bunker construction, agent layout, energy density in the bunker and the yield-to-agent mass ratio. Turbulent mixing was found to be the dominant heat transfer mechanism for heating the agent.

  9. Agent-based modeling and systems dynamics model reproduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Macal, C. M.

    2009-01-01

    Reproducibility is a pillar of the scientific endeavour. We view computer simulations as laboratories for electronic experimentation and therefore as tools for science. Recent studies have addressed model reproduction and found it to be surprisingly difficult to replicate published findings. There have been enough failed simulation replications to raise the question, 'can computer models be fully replicated?' This paper answers in the affirmative by reporting on a successful reproduction study using Mathematica, Repast and Swarm for the Beer Game supply chain model. The reproduction process was valuable because it demonstrated the original result's robustness across modelling methodologies and implementation environments.

  10. Pushing the frontiers of first-principles based computer simulations of chemical and biological systems.

    PubMed

    Brunk, Elizabeth; Ashari, Negar; Athri, Prashanth; Campomanes, Pablo; de Carvalho, F Franco; Curchod, Basile F E; Diamantis, Polydefkis; Doemer, Manuel; Garrec, Julian; Laktionov, Andrey; Micciarelli, Marco; Neri, Marilisa; Palermo, Giulia; Penfold, Thomas J; Vanni, Stefano; Tavernelli, Ivano; Rothlisberger, Ursula

    2011-01-01

    The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells. Many of these projects are done in collaboration with experimental groups from the Institute of Chemical Sciences and Engineering (ISIC) at the EPFL.

  11. Understanding the Impact of Intelligent Tutoring Agents on Real-Time Training Simulations

    DTIC Science & Technology

    2011-01-01

    environments has increased. Intelligent Tutoring Systems (ITS) technology may include reactive or proactive simulation agents that monitor and... environments . These reactive agents monitor the trainee’s progress and provide hints or other feedback only when there is sufficient variance from... agents have a higher computational cost in that they need to sense and understand more about the trainee, environment and training context, but are

  12. Design of a multi-agent hydroeconomic model to simulate a complex human-water system: Early insights from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.

    2015-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.

  13. Estimation of the age-specific per-contact probability of Ebola virus transmission in Liberia using agent-based simulations

    NASA Astrophysics Data System (ADS)

    Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2016-06-01

    Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.

  14. Agent based simulations in disease modeling Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Pappalardo, Francesco; Pennisi, Marzio

    2016-07-01

    Fibrosis represents a process where an excessive tissue formation in an organ follows the failure of a physiological reparative or reactive process. Mathematical and computational techniques may be used to improve the understanding of the mechanisms that lead to the disease and to test potential new treatments that may directly or indirectly have positive effects against fibrosis [1]. In this scenario, Ben Amar and Bianca [2] give us a broad picture of the existing mathematical and computational tools that have been used to model fibrotic processes at the molecular, cellular, and tissue levels. Among such techniques, agent based models (ABM) can give a valuable contribution in the understanding and better management of fibrotic diseases.

  15. Risk, individual differences, and environment: an Agent-Based Modeling approach to sexual risk-taking.

    PubMed

    Nagoski, Emily; Janssen, Erick; Lohrmann, David; Nichols, Eric

    2012-08-01

    Risky sexual behaviors, including the decision to have unprotected sex, result from interactions between individuals and their environment. The current study explored the use of Agent-Based Modeling (ABM)-a methodological approach in which computer-generated artificial societies simulate human sexual networks-to assess the influence of heterogeneity of sexual motivation on the risk of contracting HIV. The models successfully simulated some characteristics of human sexual systems, such as the relationship between individual differences in sexual motivation (sexual excitation and inhibition) and sexual risk, but failed to reproduce the scale-free distribution of number of partners observed in the real world. ABM has the potential to inform intervention strategies that target the interaction between an individual and his or her social environment.

  16. Self-Organization, Resilience and Robustness of Complex Systems Through an Application to Financial Market from an Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    This paper introduces the implementation of a computational agent-based financial market model in which the system is described on both microscopic and macroscopic levels. This artificial financial market model is used to study the system response when a shock occurs. Indeed, when a market experiences perturbations, financial systems behavior can exhibit two different properties: resilience and robustness. Through simulations and different scenarios of market shocks, these system properties are studied. The results notably show that the emergence of collective herding behavior when market shock occurs leads to a temporary disruption of the system self-organization. Numerical simulations highlight that the market can absorb strong mono-shocks but can also be led to rupture by low but repeated perturbations.

  17. Towards a complex systems approach in sports injury research: simulating running-related injury development with agent-based modelling.

    PubMed

    Hulme, Adam; Thompson, Jason; Nielsen, Rasmus Oestergaard; Read, Gemma J M; Salmon, Paul M

    2018-06-18

    There have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research. Agent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various 'athlete management tools'. The findings confirmed that building weekly running distances over time, even within the reported ACWR 'sweet spot', will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a 'hard ceiling' dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads. The presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Suppression Characteristics of Cup-Burner Flames in Low Gravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    The structure and suppression of laminar methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using physically acting fire-extinguishing agents (CO2, N2, He, and Ar) in normal earth (lg) and zero gravity (0g). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An initial observation of the flame without agent was also made at the NASA Glenn 2.2-Second Drop Tower. An agent was introduced into a low-speed coflowing oxidizing stream by gradually replacing the air until extinguishment occurred under a fixed minimal fuel velocity. The suppression of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff phenomena of the trailing diffusion flame. The thermal and transport properties of the agents affected the flame extinguishment limits.

  19. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    PubMed

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  20. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  1. A Harris-Todaro Agent-Based Model to Rural-Urban Migration

    NASA Astrophysics Data System (ADS)

    Espíndola, Aquino L.; Silveira, Jaylson J.; Penna, T. J. P.

    2006-09-01

    The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.

  2. Mechanism change in a simulation of peer review: from junk support to elitism.

    PubMed

    Paolucci, Mario; Grimaldo, Francisco

    2014-01-01

    Peer review works as the hinge of the scientific process, mediating between research and the awareness/acceptance of its results. While it might seem obvious that science would regulate itself scientifically, the consensus on peer review is eroding; a deeper understanding of its workings and potential alternatives is sorely needed. Employing a theoretical approach supported by agent-based simulation, we examined computational models of peer review, performing what we propose to call redesign , that is, the replication of simulations using different mechanisms . Here, we show that we are able to obtain the high sensitivity to rational cheating that is present in literature. In addition, we also show how this result appears to be fragile against small variations in mechanisms. Therefore, we argue that exploration of the parameter space is not enough if we want to support theoretical statements with simulation, and that exploration at the level of mechanisms is needed. These findings also support prudence in the application of simulation results based on single mechanisms, and endorse the use of complex agent platforms that encourage experimentation of diverse mechanisms.

  3. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

    PubMed

    Cockrell, Chase; An, Gary

    2017-10-07

    Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation. Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods. The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we developed two novel methods for characterizing the behavior of a RDS: Probabilistic Basins of Attraction (PBoA) and Stochastic Trajectory Analysis (STA). Computationally generated behavioral landscapes demonstrated attractor structures around stochastic regions of behavior that could be described in a complementary fashion through use of PBoA and STA. The stochasticity of the boundaries of the attractors highlights the challenge for correlative attempts to characterize and classify clinical sepsis. HPC simulations of models like the IIRABM can be used to generate approximations of the behavior space of sepsis to both establish "boundaries of futility" with respect to existing investigatory approaches and apply system engineering principles to investigate the general dynamic properties of sepsis to provide a pathway for developing control strategies. The issues that bedevil the study and treatment of sepsis, namely clinical data sparseness and inadequate experimental sampling of system behavior space, are fundamental to nearly all biomedical research, manifesting in the "Crisis of Reproducibility" at all levels. HPC-augmented simulation-based research offers an investigatory strategy more consistent with that seen in the physical sciences (which combine experiment, theory and simulation), and an opportunity to utilize the leading advances in HPC, namely deep machine learning and evolutionary computing, to form the basis of an iterative scientific process to meet the full promise of Precision Medicine (right drug, right patient, right time). Copyright © 2017. Published by Elsevier Ltd.

  4. Crowd Simulation Incorporating Agent Psychological Models, Roles and Communication

    DTIC Science & Technology

    2005-01-01

    system (PMFserv) that implements human behavior models from a range of ability, stress, emotion , decision theoretic and motivation sources. An...autonomous agents, human behavior models, culture and emotions 1. Introduction There are many applications of computer animation and simulation where...We describe a new architecture to integrate a psychological model into a crowd simulation system in order to obtain believable emergent behaviors

  5. Evaluation of a Computer Simulation in a Therapeutics Case Discussion.

    ERIC Educational Resources Information Center

    Kinkade, Raenel E.; And Others

    1995-01-01

    A computer program was used to simulate a case presentation in pharmacotherapeutics. Students (n=24) used their knowledge of the disease (glaucoma) and various topical agents on the computer program's formulary to "treat" the patient. Comparison of results with a control group found the method as effective as traditional case…

  6. Investigation of Simulated Trading — A multi agent based trading system for optimization purposes

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes J.

    2010-07-01

    Some years ago, Bachem, Hochstättler, and Malich proposed a heuristic algorithm called Simulated Trading for the optimization of vehicle routing problems. Computational agents place buy-orders and sell-orders for customers to be handled at a virtual financial market, the prices of the orders depending on the costs of inserting the customer in the tour or for his removal. According to a proposed rule set, the financial market creates a buy-and-sell graph for the various orders in the order book, intending to optimize the overall system. Here I present a thorough investigation for the application of this algorithm to the traveling salesman problem.

  7. Organization of the secure distributed computing based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera

    2018-04-01

    Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.

  8. A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression

    PubMed Central

    Dutta-Moscato, Joyeeta; Solovyev, Alexey; Mi, Qi; Nishikawa, Taichiro; Soto-Gutierrez, Alejandro; Fox, Ira J.; Vodovotz, Yoram

    2014-01-01

    Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl4). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl4-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl4-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into liver fibrosis. PMID:25152891

  9. Development and verification of an agent-based model of opinion leadership.

    PubMed

    Anderson, Christine A; Titler, Marita G

    2014-09-27

    The use of opinion leaders is a strategy used to speed the process of translating research into practice. Much is still unknown about opinion leader attributes and activities and the context in which they are most effective. Agent-based modeling is a methodological tool that enables demonstration of the interactive and dynamic effects of individuals and their behaviors on other individuals in the environment. The purpose of this study was to develop and test an agent-based model of opinion leadership. The details of the design and verification of the model are presented. The agent-based model was developed by using a software development platform to translate an underlying conceptual model of opinion leadership into a computer model. Individual agent attributes (for example, motives and credibility) and behaviors (seeking or providing an opinion) were specified as variables in the model in the context of a fictitious patient care unit. The verification process was designed to test whether or not the agent-based model was capable of reproducing the conditions of the preliminary conceptual model. The verification methods included iterative programmatic testing ('debugging') and exploratory analysis of simulated data obtained from execution of the model. The simulation tests included a parameter sweep, in which the model input variables were adjusted systematically followed by an individual time series experiment. Statistical analysis of model output for the 288 possible simulation scenarios in the parameter sweep revealed that the agent-based model was performing, consistent with the posited relationships in the underlying model. Nurse opinion leaders act on the strength of their beliefs and as a result, become an opinion resource for their uncertain colleagues, depending on their perceived credibility. Over time, some nurses consistently act as this type of resource and have the potential to emerge as opinion leaders in a context where uncertainty exists. The development and testing of agent-based models is an iterative process. The opinion leader model presented here provides a basic structure for continued model development, ongoing verification, and the establishment of validation procedures, including empirical data collection.

  10. Reducing the Complexity of an Agent-Based Local Heroin Market Model

    PubMed Central

    Heard, Daniel; Bobashev, Georgiy V.; Morris, Robert J.

    2014-01-01

    This project explores techniques for reducing the complexity of an agent-based model (ABM). The analysis involved a model developed from the ethnographic research of Dr. Lee Hoffer in the Larimer area heroin market, which involved drug users, drug sellers, homeless individuals and police. The authors used statistical techniques to create a reduced version of the original model which maintained simulation fidelity while reducing computational complexity. This involved identifying key summary quantities of individual customer behavior as well as overall market activity and replacing some agents with probability distributions and regressions. The model was then extended to allow external market interventions in the form of police busts. Extensions of this research perspective, as well as its strengths and limitations, are discussed. PMID:25025132

  11. The Agent-Based Simulation (ABS) Verification, validation and Accreditation (VV&A) Study Phase 2 - Joint/DoD

    DTIC Science & Technology

    2008-09-15

    however, a variety of so-called variance-reduction techniques ( VRTs ) that have been developed, which reduce output variance with little or no...additional computational effort. VRTs typically achieve this via judicious and careful reuse of the basic underlying random nmnbers. Perhaps the best-known...typical simulation situation- change a weapons-system configuration and see what difference it makes). Key to making CRN and most other VRTs work

  12. Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

    PubMed Central

    Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.

    2011-01-01

    We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788

  13. On the need and use of models to explore the role of economic confidence:a survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprigg, James A.; Paez, Paul J.; Hand, Michael S.

    2005-04-01

    Empirical studies suggest that consumption is more sensitive to current income than suggested under the permanent income hypothesis, which raises questions regarding expectations for future income, risk aversion, and the role of economic confidence measures. This report surveys a body of fundamental economic literature as well as burgeoning computational modeling methods to support efforts to better anticipate cascading economic responses to terrorist threats and attacks. This is a three part survey to support the incorporation of models of economic confidence into agent-based microeconomic simulations. We first review broad underlying economic principles related to this topic. We then review the economicmore » principle of confidence and related empirical studies. Finally, we provide a brief survey of efforts and publications related to agent-based economic simulation.« less

  14. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  15. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed.

  16. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. PMID:29706894

  17. Multi-agent-based bio-network for systems biology: protein-protein interaction network as an example.

    PubMed

    Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng

    2008-10-01

    Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.

  18. Simulating Microbial Community Patterning Using Biocellion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Seung-Hwa; Kahan, Simon H.; Momeni, Babak

    2014-04-17

    Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis forma- tion. Momeni et al. [5] investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling and simulation to actual patterns observed in wet-lab experiments. However, simu- lations of millions of cells in a three-dimensional community are ex- tremely time-consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vastmore » space of parameter combinations and assumptions. Improving the speed, scale, and accu- racy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high performance software framework for ac- celerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accu- racy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion fur- ther accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chap- ter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.« less

  19. What makes virtual agents believable?

    NASA Astrophysics Data System (ADS)

    Bogdanovych, Anton; Trescak, Tomas; Simoff, Simeon

    2016-01-01

    In this paper we investigate the concept of believability and make an attempt to isolate individual characteristics (features) that contribute to making virtual characters believable. As the result of this investigation we have produced a formalisation of believability and based on this formalisation built a computational framework focused on simulation of believable virtual agents that possess the identified features. In order to test whether the identified features are, in fact, responsible for agents being perceived as more believable, we have conducted a user study. In this study we tested user reactions towards the virtual characters that were created for a simulation of aboriginal inhabitants of a particular area of Sydney, Australia in 1770 A.D. The participants of our user study were exposed to short simulated scenes, in which virtual agents performed some behaviour in two different ways (while possessing a certain aspect of believability vs. not possessing it). The results of the study indicate that virtual agents that appear resource bounded, are aware of their environment, own interaction capabilities and their state in the world, agents that can adapt to changes in the environment and exist in correct social context are those that are being perceived as more believable. Further in the paper we discuss these and other believability features and provide a quantitative analysis of the level of contribution for each such feature to the overall perceived believability of a virtual agent.

  20. Using simulation modelling to examine the impact of venue lockout and last-drink policies on drinking-related harms and costs to licensees.

    PubMed

    Scott, Nick; Livingston, Michael; Reporter, Iyanoosh; Dietze, Paul

    2017-06-01

    Many variations of venue lockout and last-drink policies have been introduced in attempts to reduce drinking-related harms. We estimate the public health gains and licensee costs of these policies using a computer simulated population of young adults engaging in heavy drinking. Using an agent-based model we implemented 1 am/2 am/3 am venue lockouts in conjunction with last drinks zero/one/two hours later, or at current closing times. Outcomes included: the number of incidents of verbal aggression in public drinking venues, private venues or on the street; and changed revenue to public venues. The most effective policy in reducing verbal aggression among agents was 1 am lockouts with current closing times. All policies produced substantial reductions in street-based incidents of verbal aggression among agents (33-81%) due to the smoothing of transport demand. Direct revenue losses were 1-9% for simulated licensees, with later lockout times and longer periods between lockout and last drinks producing smaller revenue losses. Simulation models are useful for exploring consequences of policy change. Our simulation suggests that additional hours between lockout and last drinks could reduce aggression by easing transport demand, while minimising revenue loss to venue owners. Implications for public health: Direct policies to reduce late-night transport-related disputes should be considered. © 2017 The Authors.

  1. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling.

    PubMed

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.

  2. Dimensionality of Motion and Binding Valency Govern Receptor–Ligand Kinetics As Revealed by Agent-Based Modeling

    PubMed Central

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071

  3. Modelling brain emergent behaviours through coevolution of neural agents.

    PubMed

    Maniadakis, Michail; Trahanias, Panos

    2006-06-01

    Recently, many research efforts focus on modelling partial brain areas with the long-term goal to support cognitive abilities of artificial organisms. Existing models usually suffer from heterogeneity, which constitutes their integration very difficult. The present work introduces a computational framework to address brain modelling tasks, emphasizing on the integrative performance of substructures. Moreover, implemented models are embedded in a robotic platform to support its behavioural capabilities. We follow an agent-based approach in the design of substructures to support the autonomy of partial brain structures. Agents are formulated to allow the emergence of a desired behaviour after a certain amount of interaction with the environment. An appropriate collaborative coevolutionary algorithm, able to emphasize both the speciality of brain areas and their cooperative performance, is employed to support design specification of agent structures. The effectiveness of the proposed approach is illustrated through the implementation of computational models for motor cortex and hippocampus, which are successfully tested on a simulated mobile robot.

  4. Agent-Based Simulations for Project Management

    NASA Technical Reports Server (NTRS)

    White, J. Chris; Sholtes, Robert M.

    2011-01-01

    Currently, the most common approach used in project planning tools is the Critical Path Method (CPM). While this method was a great improvement over the basic Gantt chart technique being used at the time, it now suffers from three primary flaws: (1) task duration is an input, (2) productivity impacts are not considered , and (3) management corrective actions are not included. Today, computers have exceptional computational power to handle complex simulations of task e)(eculion and project management activities (e.g ., dynamically changing the number of resources assigned to a task when it is behind schedule). Through research under a Department of Defense contract, the author and the ViaSim team have developed a project simulation tool that enables more realistic cost and schedule estimates by using a resource-based model that literally turns the current duration-based CPM approach "on its head." The approach represents a fundamental paradigm shift in estimating projects, managing schedules, and reducing risk through innovative predictive techniques.

  5. A Stigmergy Collaboration Approach in the Open Source Software Developer Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Pullum, Laura L; Treadwell, Jim N

    2009-01-01

    The communication model of some self-organized online communities is significantly different from the traditional social network based community. It is problematic to use social network analysis to analyze the collaboration structure and emergent behaviors in these communities because these communities lack peer-to-peer connections. Stigmergy theory provides an explanation of the collaboration model of these communities. In this research, we present a stigmergy approach for building an agent-based simulation to simulate the collaboration model in the open source software (OSS) developer community. We used a group of actors who collaborate on OSS projects through forums as our frame of reference andmore » investigated how the choices actors make in contributing their work on the projects determines the global status of the whole OSS project. In our simulation, the forum posts serve as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing the developer agents behavior selection probability.« less

  6. Module-based multiscale simulation of angiogenesis in skeletal muscle

    PubMed Central

    2011-01-01

    Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529

  7. Real-time path planning in dynamic virtual environments using multiagent navigation graphs.

    PubMed

    Sud, Avneesh; Andersen, Erik; Curtis, Sean; Lin, Ming C; Manocha, Dinesh

    2008-01-01

    We present a novel approach for efficient path planning and navigation of multiple virtual agents in complex dynamic scenes. We introduce a new data structure, Multi-agent Navigation Graph (MaNG), which is constructed using first- and second-order Voronoi diagrams. The MaNG is used to perform route planning and proximity computations for each agent in real time. Moreover, we use the path information and proximity relationships for local dynamics computation of each agent by extending a social force model [Helbing05]. We compute the MaNG using graphics hardware and present culling techniques to accelerate the computation. We also address undersampling issues and present techniques to improve the accuracy of our algorithm. Our algorithm is used for real-time multi-agent planning in pursuit-evasion, terrain exploration and crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct goal.

  8. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    NASA Astrophysics Data System (ADS)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-06-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.

  9. Learning to Measure Biodiversity: Two Agent-Based Models that Simulate Sampling Methods & Provide Data for Calculating Diversity Indices

    ERIC Educational Resources Information Center

    Jones, Thomas; Laughlin, Thomas

    2009-01-01

    Nothing could be more effective than a wilderness experience to demonstrate the importance of conserving biodiversity. When that is not possible, though, there are computer models with several features that are helpful in understanding how biodiversity is measured. These models are easily used when natural resources, transportation, and time…

  10. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.

    PubMed

    Riechmann, Hannes; Finke, Andrea; Ritter, Helge

    2016-06-01

    Brain-computer interfaces provide a means for controlling a device by brain activity alone. One major drawback of noninvasive BCIs is their low information transfer rate, obstructing a wider deployment outside the lab. BCIs based on codebook visually evoked potentials (cVEP) outperform all other state-of-the-art systems in that regard. Previous work investigated cVEPs for spelling applications. We present the first cVEP-based BCI for use in real-world settings to accomplish everyday tasks such as navigation or action selection. To this end, we developed and evaluated a cVEP-based on-line BCI that controls a virtual agent in a simulated, but realistic, 3-D kitchen scenario. We show that cVEPs can be reliably triggered with stimuli in less restricted presentation schemes, such as on dynamic, changing backgrounds. We introduce a novel, dynamic repetition algorithm that allows for optimizing the balance between accuracy and speed individually for each user. Using these novel mechanisms in a 12-command cVEP-BCI in the 3-D simulation results in ITRs of 50 bits/min on average and 68 bits/min maximum. Thus, this work supports the notion of cVEP-BCIs as a particular fast and robust approach suitable for real-world use.

  11. Exploiting Motion Capture to Enhance Avoidance Behaviour in Games

    NASA Astrophysics Data System (ADS)

    van Basten, Ben J. H.; Jansen, Sander E. M.; Karamouzas, Ioannis

    Realistic simulation of interacting virtual characters is essential in computer games, training and simulation applications. The problem is very challenging since people are accustomed to real-world situations and thus, they can easily detect inconsistencies and artifacts in the simulations. Over the past twenty years several models have been proposed for simulating individuals, groups and crowds of characters. However, little effort has been made to actually understand how humans solve interactions and avoid inter-collisions in real-life. In this paper, we exploit motion capture data to gain more insights into human-human interactions. We propose four measures to describe the collision-avoidance behavior. Based on these measures, we extract simple rules that can be applied on top of existing agent and force based approaches, increasing the realism of the resulting simulations.

  12. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  13. Computer Laboratory for Multi-scale Simulations of Novel Nanomaterials

    DTIC Science & Technology

    2014-09-15

    schemes for multiscale modeling of polymers. Permselective ion-exchange membranes for protective clothing, fuel cells , and batteries are of special...polyelectrolyte membranes ( PEM ) with chemical warfare agents (CWA) and their simulants and (2) development of new simulation methods and computational...chemical potential using gauge cell method and calculation of density profiles. However, the code does not run in parallel environments. For mesoscale

  14. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom.

    PubMed

    Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard

    2016-01-01

    The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.

  15. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches. The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  16. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion-suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  17. Protecting software agents from malicious hosts using quantum computing

    NASA Astrophysics Data System (ADS)

    Reisner, John; Donkor, Eric

    2000-07-01

    We evaluate how quantum computing can be applied to security problems for software agents. Agent-based computing, which merges technological advances in artificial intelligence and mobile computing, is a rapidly growing domain, especially in applications such as electronic commerce, network management, information retrieval, and mission planning. System security is one of the more eminent research areas in agent-based computing, and the specific problem of protecting a mobile agent from a potentially hostile host is one of the most difficult of these challenges. In this work, we describe our agent model, and discuss the capabilities and limitations of classical solutions to the malicious host problem. Quantum computing may be extremely helpful in addressing the limitations of classical solutions to this problem. This paper highlights some of the areas where quantum computing could be applied to agent security.

  18. Hypothesis generation using network structures on community health center cancer-screening performance.

    PubMed

    Carney, Timothy Jay; Morgan, Geoffrey P; Jones, Josette; McDaniel, Anna M; Weaver, Michael T; Weiner, Bryan; Haggstrom, David A

    2015-10-01

    Nationally sponsored cancer-care quality-improvement efforts have been deployed in community health centers to increase breast, cervical, and colorectal cancer-screening rates among vulnerable populations. Despite several immediate and short-term gains, screening rates remain below national benchmark objectives. Overall improvement has been both difficult to sustain over time in some organizational settings and/or challenging to diffuse to other settings as repeatable best practices. Reasons for this include facility-level changes, which typically occur in dynamic organizational environments that are complex, adaptive, and unpredictable. This study seeks to understand the factors that shape community health center facility-level cancer-screening performance over time. This study applies a computational-modeling approach, combining principles of health-services research, health informatics, network theory, and systems science. To investigate the roles of knowledge acquisition, retention, and sharing within the setting of the community health center and to examine their effects on the relationship between clinical decision support capabilities and improvement in cancer-screening rate improvement, we employed Construct-TM to create simulated community health centers using previously collected point-in-time survey data. Construct-TM is a multi-agent model of network evolution. Because social, knowledge, and belief networks co-evolve, groups and organizations are treated as complex systems to capture the variability of human and organizational factors. In Construct-TM, individuals and groups interact by communicating, learning, and making decisions in a continuous cycle. Data from the survey was used to differentiate high-performing simulated community health centers from low-performing ones based on computer-based decision support usage and self-reported cancer-screening improvement. This virtual experiment revealed that patterns of overall network symmetry, agent cohesion, and connectedness varied by community health center performance level. Visual assessment of both the agent-to-agent knowledge sharing network and agent-to-resource knowledge use network diagrams demonstrated that community health centers labeled as high performers typically showed higher levels of collaboration and cohesiveness among agent classes, faster knowledge-absorption rates, and fewer agents that were unconnected to key knowledge resources. Conclusions and research implications: Using the point-in-time survey data outlining community health center cancer-screening practices, our computational model successfully distinguished between high and low performers. Results indicated that high-performance environments displayed distinctive network characteristics in patterns of interaction among agents, as well as in the access and utilization of key knowledge resources. Our study demonstrated how non-network-specific data obtained from a point-in-time survey can be employed to forecast community health center performance over time, thereby enhancing the sustainability of long-term strategic-improvement efforts. Our results revealed a strategic profile for community health center cancer-screening improvement via simulation over a projected 10-year period. The use of computational modeling allows additional inferential knowledge to be drawn from existing data when examining organizational performance in increasingly complex environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Designing environmental campaigns by using agent-based simulations: strategies for changing environmental attitudes.

    PubMed

    Mosler, Hans-Joachim; Martens, Thomas

    2008-09-01

    Agent-based computer simulation was used to create artificial communities in which each individual was constructed according to the principles of the elaboration likelihood model of Petty and Cacioppo [1986. The elaboration likelihood model of persuasion. In: Berkowitz, L. (Ed.), Advances in Experimental Social Psychology. Academic Press, New York, NY, pp. 123-205]. Campaigning strategies and community characteristics were varied systematically to understand and test their impact on attitudes towards environmental protection. The results show that strong arguments influence a green (environmentally concerned) population with many contacts most effectively, while peripheral cues have the greatest impact on a non-green population with fewer contacts. Overall, deeper information scrutiny increases the impact of strong arguments but is especially important for convincing green populations. Campaigns involving person-to-person communication are superior to mass-media campaigns because they can be adapted to recipients' characteristics.

  20. TOWARDS A MULTI-SCALE AGENT-BASED PROGRAMMING LANGUAGE METHODOLOGY

    PubMed Central

    Somogyi, Endre; Hagar, Amit; Glazier, James A.

    2017-01-01

    Living tissues are dynamic, heterogeneous compositions of objects, including molecules, cells and extra-cellular materials, which interact via chemical, mechanical and electrical process and reorganize via transformation, birth, death and migration processes. Current programming language have difficulty describing the dynamics of tissues because: 1: Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be either continuous or discrete, and their activity may be conditional, 3: Objects and processes form complex, heterogeneous relationships and structures, 4: Objects and processes may be hierarchically composed, 5: Processes may create, destroy and transform objects and processes. Some modeling languages support these concepts, but most cannot translate models into executable simulations. We present a new hybrid executable modeling language paradigm, the Continuous Concurrent Object Process Methodology (CCOPM) which naturally expresses tissue models, enabling users to visually create agent-based models of tissues, and also allows computer simulation of these models. PMID:29282379

  1. TOWARDS A MULTI-SCALE AGENT-BASED PROGRAMMING LANGUAGE METHODOLOGY.

    PubMed

    Somogyi, Endre; Hagar, Amit; Glazier, James A

    2016-12-01

    Living tissues are dynamic, heterogeneous compositions of objects , including molecules, cells and extra-cellular materials, which interact via chemical, mechanical and electrical process and reorganize via transformation, birth, death and migration processes . Current programming language have difficulty describing the dynamics of tissues because: 1: Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be either continuous or discrete, and their activity may be conditional, 3: Objects and processes form complex, heterogeneous relationships and structures, 4: Objects and processes may be hierarchically composed, 5: Processes may create, destroy and transform objects and processes. Some modeling languages support these concepts, but most cannot translate models into executable simulations. We present a new hybrid executable modeling language paradigm, the Continuous Concurrent Object Process Methodology ( CCOPM ) which naturally expresses tissue models, enabling users to visually create agent-based models of tissues, and also allows computer simulation of these models.

  2. A comprehensive overview of the applications of artificial life.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  3. Basic emotions and adaptation. A computational and evolutionary model.

    PubMed

    Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions.

  4. Biocellion: accelerating computer simulation of multicellular biological system models.

    PubMed

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The Living Cell as a Multi-agent Organisation: A Compositional Organisation Model of Intracellular Dynamics

    NASA Astrophysics Data System (ADS)

    Jonker, C. M.; Snoep, J. L.; Treur, J.; Westerhoff, H. V.; Wijngaards, W. C. A.

    Within the areas of Computational Organisation Theory and Artificial Intelligence, techniques have been developed to simulate and analyse dynamics within organisations in society. Usually these modelling techniques are applied to factories and to the internal organisation of their process flows, thus obtaining models of complex organisations at various levels of aggregation. The dynamics in living cells are often interpreted in terms of well-organised processes, a bacterium being considered a (micro)factory. This suggests that organisation modelling techniques may also benefit their analysis. Using the example of Escherichia coli it is shown how indeed agent-based organisational modelling techniques can be used to simulate and analyse E.coli's intracellular dynamics. Exploiting the abstraction levels entailed by this perspective, a concise model is obtained that is readily simulated and analysed at the various levels of aggregation, yet shows the cell's essential dynamic patterns.

  6. Reinforcement Learning in a Nonstationary Environment: The El Farol Problem

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria

    1999-01-01

    This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.

  7. The Effect of Contextual Pedagogical Advisement and Competition on Middle-School Students' Attitude toward Mathematics and Mathematics Instruction Using a Computer-Based Simulation Game

    ERIC Educational Resources Information Center

    Van Eck, Richard

    2006-01-01

    Many students enter mathematics courses with a poor attitude toward mathematics (Gal & Ginsburg, 1994), making attitude as important a consideration as achievement in mathematics (Cognition and Technology Group at Vanderbilt (CTGV), 1992; Marsh, Cairns, Relich, Barnes, & Debus, 1984; Sedighian & Sedighian, 1996). Pedagogical agents are often…

  8. Simulating Spatial Growth Patterns in Developing Countries: A Case of Shama in the Western Region of Ghana.

    NASA Astrophysics Data System (ADS)

    Inkoom, J. N.; Nyarko, B. K.

    2014-12-01

    The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.

  9. Self-Organization of Vocabularies under Different Interaction Orders.

    PubMed

    Vera, Javier

    2017-01-01

    Traditionally, the formation of vocabularies has been studied by agent-based models (primarily, the naming game) in which random pairs of agents negotiate word-meaning associations at each discrete time step. This article proposes a first approximation to a novel question: To what extent is the negotiation of word-meaning associations influenced by the order in which agents interact? Automata networks provide the adequate mathematical framework to explore this question. Computer simulations suggest that on two-dimensional lattices the typical features of the formation of word-meaning associations are recovered under random schemes that update small fractions of the population at the same time; by contrast, if larger subsets of the population are updated, a periodic behavior may appear.

  10. Intelligent judgements over health risks in a spatial agent-based model.

    PubMed

    Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana

    2018-03-20

    Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time. Our results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.

  11. Learning by Communicating in Natural Language with Conversational Agents

    ERIC Educational Resources Information Center

    Graesser, Arthur; Li, Haiying; Forsyth, Carol

    2014-01-01

    Learning is facilitated by conversational interactions both with human tutors and with computer agents that simulate human tutoring and ideal pedagogical strategies. In this article, we describe some intelligent tutoring systems (e.g., AutoTutor) in which agents interact with students in natural language while being sensitive to their cognitive…

  12. An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Tofazzal

    This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.

  13. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  14. Scalable Entity-Based Modeling of Population-Based Systems, Final LDRD Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, A J; Smith, S G; Vassilevska, T K

    2005-01-27

    The goal of this project has been to develop tools, capabilities and expertise in the modeling of complex population-based systems via scalable entity-based modeling (EBM). Our initial focal application domain has been the dynamics of large populations exposed to disease-causing agents, a topic of interest to the Department of Homeland Security in the context of bioterrorism. In the academic community, discrete simulation technology based on individual entities has shown initial success, but the technology has not been scaled to the problem sizes or computational resources of LLNL. Our developmental emphasis has been on the extension of this technology to parallelmore » computers and maturation of the technology from an academic to a lab setting.« less

  15. Data multiplexing in radio interferometric calibration

    NASA Astrophysics Data System (ADS)

    Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.

    2018-03-01

    New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.

  16. Agent-based modeling for the landuse change of hunter-gather societies and the impacts on biodiversity in Guyana

    NASA Astrophysics Data System (ADS)

    Iwamura, T.; Fragoso, J.; Lambin, E.

    2012-12-01

    The interactions with animals are vital to the Amerindian, indigenous people, of Rupunini savannah-forest in Guyana. Their connections extend from basic energy and protein resource to spiritual bonding through "paring" to a certain animal in the forest. We collected extensive dataset of 23 indigenous communities for 3.5 years, consisting 9900 individuals from 1307 households, as well as animal observation data in 8 transects per communities (47,000 data entries). In this presentation, our research interest is to model the driver of land use change of the indigenous communities and its impacts on the ecosystem in the Rupunini area under global change. Overarching question we would like to answer with this program is to find how and why "tipping-point" from hunting gathering society to the agricultural society occurs in the future. Secondary question is what is the implication of the change to agricultural society in terms of biodiversity and carbon stock in the area, and eventually the well-being of Rupunini people. To answer the questions regarding the society shift in agriculture activities, we built as simulation with Agent-Based Modeling (Multi Agents Simulation). We developed this simulation by using Netlogo, the programming environment specialized for spatially explicit agent-based modeling (ABM). This simulation consists of four different process in the Rupunini landscape; forest succession, animal population growth, hunting of animals, and land clearing for agriculture. All of these processes are carried out by a set of computational unit, called "agents". In this program, there are four types of agents - patches, villages, households, and animals. Here, we describe the impacts of hunting on the biodiversity based on actual demographic data from one village named Crush Water. Animal population within the hunting territory of the village stabilized but Agouti/Paca dominates the landscape with little population of armadillos and peccaries. White-tailed deers, Tapirs, Capybara exist but very low. This finding is well aligned with the hunting dataset - Agouti/Paca consists 27% of total hunting. Based on our simulation, it seems the dominance of Agouti/Paca among hunted animals shown in the field data can be explained solely by their high carrying capacity against human extraction (population density of the Paca/Agouti = 60 per square km, whereas other animals ranges 0.63 to 7). When we incorporate agriculture, the "rodentation" of the animal population toward Agouti/Paca becomes more obvious. This simulation shows the interactions of people and animals through land change and hunting, which were observed in our fields.

  17. Effect of reinforcement learning on coordination of multiangent systems

    NASA Astrophysics Data System (ADS)

    Bukkapatnam, Satish T. S.; Gao, Greg

    2000-12-01

    For effective coordination of distributed environments involving multiagent systems, learning ability of each agent in the environment plays a crucial role. In this paper, we develop a simple group learning method based on reinforcement, and study its effect on coordination through application to a supply chain procurement scenario involving a computer manufacturer. Here, all parties are represented by self-interested, autonomous agents, each capable of performing specific simple tasks. They negotiate with each other to perform complex tasks and thus coordinate supply chain procurement. Reinforcement learning is intended to enable each agent to reach a best negotiable price within a shortest possible time. Our simulations of the application scenario under different learning strategies reveals the positive effects of reinforcement learning on an agent's as well as the system's performance.

  18. Incorporating individual health-protective decisions into disease transmission models: a mathematical framework.

    PubMed

    Durham, David P; Casman, Elizabeth A

    2012-03-07

    It is anticipated that the next generation of computational epidemic models will simulate both infectious disease transmission and dynamic human behaviour change. Individual agents within a simulation will not only infect one another, but will also have situational awareness and a decision algorithm that enables them to modify their behaviour. This paper develops such a model of behavioural response, presenting a mathematical interpretation of a well-known psychological model of individual decision making, the health belief model, suitable for incorporation within an agent-based disease-transmission model. We formalize the health belief model and demonstrate its application in modelling the prevalence of facemask use observed over the course of the 2003 Hong Kong SARS epidemic, a well-documented example of behaviour change in response to a disease outbreak.

  19. Incorporating individual health-protective decisions into disease transmission models: a mathematical framework

    PubMed Central

    Durham, David P.; Casman, Elizabeth A.

    2012-01-01

    It is anticipated that the next generation of computational epidemic models will simulate both infectious disease transmission and dynamic human behaviour change. Individual agents within a simulation will not only infect one another, but will also have situational awareness and a decision algorithm that enables them to modify their behaviour. This paper develops such a model of behavioural response, presenting a mathematical interpretation of a well-known psychological model of individual decision making, the health belief model, suitable for incorporation within an agent-based disease-transmission model. We formalize the health belief model and demonstrate its application in modelling the prevalence of facemask use observed over the course of the 2003 Hong Kong SARS epidemic, a well-documented example of behaviour change in response to a disease outbreak. PMID:21775324

  20. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in a thermodynamic framework as a set of reactions that roll-up the integrated effect that diverse biological communities exert on a geological system. This approach may work well to predict the effect of certain biological communities in specific environments in which experimental data is available. However, it does not further our knowledge of how the geobiological system actually functions on a micro scale. Agent-based techniques may provide a framework to explore the fundamental interactions required to explain the system-wide behavior. This presentation will present a survey of several promising applications of agent-based modeling approaches to problems in the geosciences and describe specific contributions to some of the inherent challenges facing this approach.

  1. Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Mesgari, M.-S.

    2015-12-01

    During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  2. Exploring the Use of Computer Simulations in Unraveling Research and Development Governance Problems

    NASA Technical Reports Server (NTRS)

    Balaban, Mariusz A.; Hester, Patrick T.

    2012-01-01

    Understanding Research and Development (R&D) enterprise relationships and processes at a governance level is not a simple task, but valuable decision-making insight and evaluation capabilities can be gained from their exploration through computer simulations. This paper discusses current Modeling and Simulation (M&S) methods, addressing their applicability to R&D enterprise governance. Specifically, the authors analyze advantages and disadvantages of the four methodologies used most often by M&S practitioners: System Dynamics (SO), Discrete Event Simulation (DES), Agent Based Modeling (ABM), and formal Analytic Methods (AM) for modeling systems at the governance level. Moreover, the paper describes nesting models using a multi-method approach. Guidance is provided to those seeking to employ modeling techniques in an R&D enterprise for the purposes of understanding enterprise governance. Further, an example is modeled and explored for potential insight. The paper concludes with recommendations regarding opportunities for concentration of future work in modeling and simulating R&D governance relationships and processes.

  3. The Lagrangian Ensemble metamodel for simulating plankton ecosystems

    NASA Astrophysics Data System (ADS)

    Woods, J. D.

    2005-10-01

    This paper presents a detailed account of the Lagrangian Ensemble (LE) metamodel for simulating plankton ecosystems. It uses agent-based modelling to describe the life histories of many thousands of individual plankters. The demography of each plankton population is computed from those life histories. So too is bio-optical and biochemical feedback to the environment. The resulting “virtual ecosystem” is a comprehensive simulation of the plankton ecosystem. It is based on phenotypic equations for individual micro-organisms. LE modelling differs significantly from population-based modelling. The latter uses prognostic equations to compute demography and biofeedback directly. LE modelling diagnoses them from the properties of individual micro-organisms, whose behaviour is computed from prognostic equations. That indirect approach permits the ecosystem to adjust gracefully to changes in exogenous forcing. The paper starts with theory: it defines the Lagrangian Ensemble metamodel and explains how LE code performs a number of computations “behind the curtain”. They include budgeting chemicals, and deriving biofeedback and demography from individuals. The next section describes the practice of LE modelling. It starts with designing a model that complies with the LE metamodel. Then it describes the scenario for exogenous properties that provide the computation with initial and boundary conditions. These procedures differ significantly from those used in population-based modelling. The next section shows how LE modelling is used in research, teaching and planning. The practice depends largely on hindcasting to overcome the limits to predictability of weather forecasting. The scientific method explains observable ecosystem phenomena in terms of finer-grained processes that cannot be observed, but which are controlled by the basic laws of physics, chemistry and biology. What-If? Prediction ( WIP), used for planning, extends hindcasting by adding events that describe natural or man-made hazards and remedial actions. Verification is based on the Ecological Turing Test, which takes account of uncertainties in the observed and simulated versions of a target ecological phenomenon. The rest of the paper is devoted to a case study designed to show what LE modelling offers the biological oceanographer. The case study is presented in two parts. The first documents the WB model (Woods & Barkmann, 1994) and scenario used to simulate the ecosystem in a mesocosm moored in deep water off the Azores. The second part illustrates the emergent properties of that virtual ecosystem. The behaviour and development of an individual plankton lineage are revealed by an audit trail of the agent used in the computation. The fields of environmental properties reveal the impact of biofeedback. The fields of demographic properties show how changes in individuals cumulatively affect the birth and death rates of their population. This case study documents the virtual ecosystem used by Woods, Perilli and Barkmann (2005; hereafter WPB); to investigate the stability of simulations created by the Lagrangian Ensemble metamodel. The Azores virtual ecosystem was created and analysed on the Virtual Ecology Workbench (VEW) which is described briefly in the Appendix.

  4. Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection

    PubMed Central

    Jones, Douglas E.; Dorman, Karin S.

    2009-01-01

    Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen’s ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell. PMID:19837088

  5. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  6. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  7. Mapping an Experiment-Based Assessment of Collaborative Behavior onto Collaborative Problem Solving in PISA 2015: A Cluster Analysis Approach for Collaborator Profiles

    ERIC Educational Resources Information Center

    Herborn, Katharina; Mustafic, Maida; Greiff, Samuel

    2017-01-01

    Collaborative problem solving (CPS) assessment is a new academic research field with a number of educational implications. In 2015, the Programme for International Student Assessment (PISA) assessed CPS with a computer-simulated human-agent (H-A) approach that claimed to measure 12 individual CPS skills for the first time. After reviewing the…

  8. Agent-based modeling of the interaction between CD8+ T cells and Beta cells in type 1 diabetes.

    PubMed

    Ozturk, Mustafa Cagdas; Xu, Qian; Cinar, Ali

    2018-01-01

    We propose an agent-based model for the simulation of the autoimmune response in T1D. The model incorporates cell behavior from various rules derived from the current literature and is implemented on a high-performance computing system, which enables the simulation of a significant portion of the islets in the mouse pancreas. Simulation results indicate that the model is able to capture the trends that emerge during the progression of the autoimmunity. The multi-scale nature of the model enables definition of rules or equations that govern cellular or sub-cellular level phenomena and observation of the outcomes at the tissue scale. It is expected that such a model would facilitate in vivo clinical studies through rapid testing of hypotheses and planning of future experiments by providing insight into disease progression at different scales, some of which may not be obtained easily in clinical studies. Furthermore, the modular structure of the model simplifies tasks such as the addition of new cell types, and the definition or modification of different behaviors of the environment and the cells with ease.

  9. A Systematic Review of Agent-Based Modelling and Simulation Applications in the Higher Education Domain

    ERIC Educational Resources Information Center

    Gu, X.; Blackmore, K. L.

    2015-01-01

    This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…

  10. A Stigmergy Approach for Open Source Software Developer Community Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Beaver, Justin M; Potok, Thomas E

    2009-01-01

    The stigmergy collaboration approach provides a hypothesized explanation about how online groups work together. In this research, we presented a stigmergy approach for building an agent based open source software (OSS) developer community collaboration simulation. We used group of actors who collaborate on OSS projects as our frame of reference and investigated how the choices actors make in contribution their work on the projects determinate the global status of the whole OSS projects. In our simulation, the forum posts and project codes served as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing developer agentmore » behaviors selection probability.« less

  11. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    DTIC Science & Technology

    2013-04-01

    DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were

  12. Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation

    DTIC Science & Technology

    2006-09-01

    risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level

  13. Systems modeling and simulation applications for critical care medicine

    PubMed Central

    2012-01-01

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718

  14. Anomalous diffusion in the evolution of soccer championship scores: Real data, mean-field analysis, and an agent-based model

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Vainstein, Mendeli H.; Gonçalves, Sebastián; Paula, Felipe S. F.

    2013-08-01

    Statistics of soccer tournament scores based on the double round robin system of several countries are studied. Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer tournaments obtained by an agent-based model which successfully describes the final scoring distribution [da Silva , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2012.10.030 184, 661 (2013)]. Such model yields random walks of scores over time with the same anomalous diffusion as observed in real data.

  15. Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide

    DOE PAGES

    Trotochaud, Lena; Tsyshevsky, Roman; Holdren, Scott; ...

    2017-08-21

    Certain organophosphorus molecules are infamous due to their use as highly toxic nerve agents. The filtration materials currently in common use for protection against chemical warfare agents were designed before organophosphorus compounds were used as chemical weapons. A better understanding of the surface chemistry between simulant molecules and the individual filtration-material components is a critical precursor to the development of more effective materials for filtration, destruction, decontamination, and/or sensing of nerve agents. Here, we report on the surface adsorption and reactions of a sarin simulant molecule, dimethyl methylphosphonate (DMMP), with cupric oxide surfaces. In situ ambient pressure X-ray photoelectron andmore » infrared spectroscopies are coupled with density functional calculations to propose mechanisms for DMMP decomposition on CuO. We find extensive room temperature decomposition of DMMP on CuO, with the majority of decomposition fragments bound to the CuO surface. We observe breaking of PO-CH3, P-OCH3, and P-CH3bonds at room temperature. On the basis of these results, we identify specific DMMP decomposition mechanisms not seen on other metal oxides. Participation of lattice oxygen in the decomposition mechanism leads to significant changes in chemical and electronic surface environment, which are manifest in the spectroscopic and computational data. This study establishes a computational baseline for the study of highly toxic organophosphorous compounds on metal oxide surfaces.« less

  16. Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trotochaud, Lena; Tsyshevsky, Roman; Holdren, Scott

    Certain organophosphorus molecules are infamous due to their use as highly toxic nerve agents. The filtration materials currently in common use for protection against chemical warfare agents were designed before organophosphorus compounds were used as chemical weapons. A better understanding of the surface chemistry between simulant molecules and the individual filtration-material components is a critical precursor to the development of more effective materials for filtration, destruction, decontamination, and/or sensing of nerve agents. Here, we report on the surface adsorption and reactions of a sarin simulant molecule, dimethyl methylphosphonate (DMMP), with cupric oxide surfaces. In situ ambient pressure X-ray photoelectron andmore » infrared spectroscopies are coupled with density functional calculations to propose mechanisms for DMMP decomposition on CuO. We find extensive room temperature decomposition of DMMP on CuO, with the majority of decomposition fragments bound to the CuO surface. We observe breaking of PO-CH3, P-OCH3, and P-CH3bonds at room temperature. On the basis of these results, we identify specific DMMP decomposition mechanisms not seen on other metal oxides. Participation of lattice oxygen in the decomposition mechanism leads to significant changes in chemical and electronic surface environment, which are manifest in the spectroscopic and computational data. This study establishes a computational baseline for the study of highly toxic organophosphorous compounds on metal oxide surfaces.« less

  17. iCrowd: agent-based behavior modeling and crowd simulator

    NASA Astrophysics Data System (ADS)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  18. Enhancement of the conductivity detection signal in capillary electrophoresis systems using neutral cyclodextrins as sweeping agents.

    PubMed

    Boublík, Milan; Riesová, Martina; Dubský, Pavel; Gaš, Bohuslav

    2018-06-01

    Conductivity detection is a universal detection technique often encountered in electrophoretic separation systems, especially in modern chip-electrophoresis based devices. On the other hand, it is sparsely combined with another contemporary trend of enhancing limits of detection by means of various preconcentration strategies. This can be attributed to the fact that a preconcentration experimental setup usually brings about disturbances in a conductivity baseline. Sweeping with a neutral sweeping agent seems a good candidate for overcoming this problem. A neutral sweeping agent does not hinder the conductivity detection while a charged analyte may preconcentrate on its boundary due to a decrease in its effective mobility. This study investigates such sweeping systems theoretically, by means of computer simulations, and experimentally. A formula is provided for the reliable estimation of the preconcentration factor. Additionally, it is demonstrated that the conductivity signal can significantly benefit from slowing down the analyte and thus the overall signal enhancement can easily overweight amplification caused solely by the sweeping process. The overall enhancement factor can be deduced a priori from the linearized theory of electrophoresis implemented in the PeakMaster freeware. Sweeping by neutral cyclodextrin is demonstrated on an amplification of a conductivity signal of flurbiprofen in a real drug sample. Finally, a possible formation of unexpected system peaks in systems with a neutral sweeping agent is revealed by the computer simulation and confirmed experimentally. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The comparison of the use of holonic and agent-based methods in modelling of manufacturing systems

    NASA Astrophysics Data System (ADS)

    Foit, K.; Banaś, W.; Gwiazda, A.; Hryniewicz, P.

    2017-08-01

    The rapid evolution in the field of industrial automation and manufacturing is often called the 4th Industry Revolution. Worldwide availability of the internet access contributes to the competition between manufacturers, gives the opportunity for buying materials, parts and for creating the partnership networks, like cloud manufacturing, grid manufacturing (MGrid), virtual enterprises etc. The effect of the industry evolution is the need to search for new solutions in the field of manufacturing systems modelling and simulation. During the last decade researchers have developed the agent-based approach of modelling. This methodology have been taken from the computer science, but was adapted to the philosophy of industrial automation and robotization. The operation of the agent-based system depends on the simultaneous acting of different agents that may have different roles. On the other hand, there is the holon-based approach that uses the structures created by holons. It differs from the agent-based structure in some aspects, while the other ones are quite similar in both methodologies. The aim of this paper is to present the both methodologies and discuss the similarities and the differences. This may could help to select the optimal method of modelling, according to the considered problem and software resources.

  20. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  1. A Technology Analysis to Support Acquisition of UAVs for Gulf Coalition Forces Operations

    DTIC Science & Technology

    2017-06-01

    their selection of the most suitable and cost-effective unmanned aerial vehicles to support detection operations. This study uses Map Aware Non ...being detected by Gulf Coalition Forces and improved time to detect them, support the use of UAVs in detection missions. Computer experimentations and...aerial vehicles to support detection operations. We use Map Aware Non - Uniform Automata, an agent-based simulation software platform, for the

  2. Nanoparticle Contrast Agents for Enhanced Microwave Imaging and Thermal Treatment of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    continue to increase in step with de - creasing critical dimensions, electrodynamic effects directly influence high-frequency device performance, and...computational burden is significant. The Cellular Monte Carlo (CMC) method, originally de - veloped by Kometer et al. [50], was designed to reduce this...combination of a full-wave FDTD solver with a de - vice simulator based upon a stochastic transport kernel is conceptually straightforward, but the

  3. An Agent-Based Model for the Role of Short-Term Memory Enhancement in the Emergence of Grammatical Agreement.

    PubMed

    Vera, Javier

    2018-01-01

    What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.

  4. A Computational Model and Multi-Agent Simulation for Information Assurance

    DTIC Science & Technology

    2002-06-01

    Podell , Information Security: an Integrated Collection of Essays, IEEE Computer Society Press, Los Alamitos, CA, 1994. Brinkley, D. L. and Schell, R...R., “What is There to Worry About? An Introduction to the Computer Security Problem,” ed. Abrams and Jajodia and Podell , Information Security: an

  5. Basic emotions and adaptation. A computational and evolutionary model

    PubMed Central

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual “sensations” based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual’s life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions. PMID:29107988

  6. Computer modeling describes gravity-related adaptation in cell cultures.

    PubMed

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  7. Corruption dynamics model

    NASA Astrophysics Data System (ADS)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  8. Extending self-organizing particle systems to problem solving.

    PubMed

    Rodríguez, Alejandro; Reggia, James A

    2004-01-01

    Self-organizing particle systems consist of numerous autonomous, purely reflexive agents ("particles") whose collective movements through space are determined primarily by local influences they exert upon one another. Inspired by biological phenomena (bird flocking, fish schooling, etc.), particle systems have been used not only for biological modeling, but also increasingly for applications requiring the simulation of collective movements such as computer-generated animation. In this research, we take some first steps in extending particle systems so that they not only move collectively, but also solve simple problems. This is done by giving the individual particles (agents) a rudimentary intelligence in the form of a very limited memory and a top-down, goal-directed control mechanism that, triggered by appropriate conditions, switches them between different behavioral states and thus different movement dynamics. Such enhanced particle systems are shown to be able to function effectively in performing simulated search-and-collect tasks. Further, computational experiments show that collectively moving agent teams are more effective than similar but independently moving ones in carrying out such tasks, and that agent teams of either type that split off members of the collective to protect previously acquired resources are most effective. This work shows that the reflexive agents of contemporary particle systems can readily be extended to support goal-directed problem solving while retaining their collective movement behaviors. These results may prove useful not only for future modeling of animal behavior, but also in computer animation, coordinated movement control in robotic teams, particle swarm optimization, and computer games.

  9. Applications of Agent Based Approaches in Business (A Three Essay Dissertation)

    ERIC Educational Resources Information Center

    Prawesh, Shankar

    2013-01-01

    The goal of this dissertation is to investigate the enabling role that agent based simulation plays in business and policy. The aforementioned issue has been addressed in this dissertation through three distinct, but related essays. The first essay is a literature review of different research applications of agent based simulation in various…

  10. Agent-based modelling in synthetic biology.

    PubMed

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  11. Agent based simulation on the process of human flesh search-From perspective of knowledge and emotion

    NASA Astrophysics Data System (ADS)

    Zhu, Hou; Hu, Bin

    2017-03-01

    Human flesh search as a new net crowed behavior, on the one hand can help us to find some special information, on the other hand may lead to privacy leaking and offending human right. In order to study the mechanism of human flesh search, this paper proposes a simulation model based on agent-based model and complex networks. The computational experiments show some useful results. Discovered information quantity and involved personal ratio are highly correlated, and most of net citizens will take part in the human flesh search or will not take part in the human flesh search. Knowledge quantity does not influence involved personal ratio, but influences whether HFS can find out the target human. When the knowledge concentrates on hub nodes, the discovered information quantity is either perfect or almost zero. Emotion of net citizens influences both discovered information quantity and involved personal ratio. Concretely, when net citizens are calm to face the search topic, it will be hardly to find out the target; But when net citizens are agitated, the target will be found out easily.

  12. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    PubMed

    Laghari, Samreen; Niazi, Muaz A

    2016-01-01

    Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  13. Computer-based simulation training to improve learning outcomes in mannequin-based simulation exercises.

    PubMed

    Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J

    2011-08-10

    To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.

  14. A proposal for a computer-based framework of support for public health in the management of biological incidents: the Czech Republic experience.

    PubMed

    Bures, Vladimír; Otcenásková, Tereza; Cech, Pavel; Antos, Karel

    2012-11-01

    Biological incidents jeopardising public health require decision-making that consists of one dominant feature: complexity. Therefore, public health decision-makers necessitate appropriate support. Based on the analogy with business intelligence (BI) principles, the contextual analysis of the environment and available data resources, and conceptual modelling within systems and knowledge engineering, this paper proposes a general framework for computer-based decision support in the case of a biological incident. At the outset, the analysis of potential inputs to the framework is conducted and several resources such as demographic information, strategic documents, environmental characteristics, agent descriptors and surveillance systems are considered. Consequently, three prototypes were developed, tested and evaluated by a group of experts. Their selection was based on the overall framework scheme. Subsequently, an ontology prototype linked with an inference engine, multi-agent-based model focusing on the simulation of an environment, and expert-system prototypes were created. All prototypes proved to be utilisable support tools for decision-making in the field of public health. Nevertheless, the research revealed further issues and challenges that might be investigated by both public health focused researchers and practitioners.

  15. Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.

    PubMed

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2015-04-01

    Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.

  16. Solving optimization problems by the public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2017-09-01

    We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.

  17. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.

    PubMed

    Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio

    2016-08-24

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.

  18. Feasibility Analysis of UAV Technology to Improve Tactical Surveillance in South Korea’s Rear Area Operations

    DTIC Science & Technology

    2017-03-01

    determine the optimum required operational capability of the unmanned aerial vehicles to support Korean rear area operations. We use Map Aware Non ...area operations. Through further experimentations and analyses, we were able to find the optimum characteristics of an improved unmanned aerial...operations. We use Map Aware Non -Uniform Automata, an agent-based simulation software platform for computational experiments. The study models a scenario

  19. Probing voltage sensing domain of KCNQ2 channel as a potential target to combat epilepsy: a comparative study.

    PubMed

    Mehta, Pakhuri; Srivastava, Shubham; Choudhary, Bhanwar Singh; Sharma, Manish; Malik, Ruchi

    2017-12-01

    Multidrug resistance along with side-effects of available anti-epileptic drugs and unavailability of potent and effective agents in submicromolar quantities presents the biggest therapeutic challenges in anti-epileptic drug discovery. The molecular modeling techniques allow us to identify agents with novel structures to match the continuous urge for its discovery. KCNQ2 channel represents one of the validated targets for its therapy. The present study involves identification of newer anti-epileptic agents by means of a computer-aided drug design adaptive protocol involving both structure-based virtual screening of Asinex library using homology model of KCNQ2 and 3D-QSAR based virtual screening with docking analysis, followed by dG bind and ligand efficiency calculations with ADMET studies, of which 20 hits qualified all the criterions. The best ligands of both screenings with least potential for toxicity predicted computationally were then taken for molecular dynamic simulations. All the crucial amino acid interactions were observed in hits of both screenings such as Glu130, Arg207, Arg210 and Phe137. Robustness of docking protocol was analyzed through Receiver operating characteristic (ROC) curve values 0.88 (Area under curve AUC = 0.87) in Standard Precision and 0.84 (AUC = 0.82) in Extra Precision modes. Novelty analysis indicates that these compounds have not been reported previously as anti-epileptic agents.

  20. Agent-based modeling of the spread of the 1918-1919 flu in three Canadian fur trading communities.

    PubMed

    O'Neil, Caroline A; Sattenspiel, Lisa

    2010-01-01

    Previous attempts to study the 1918-1919 flu in three small communities in central Manitoba have used both three-community population-based and single-community agent-based models. These studies identified critical factors influencing epidemic spread, but they also left important questions unanswered. The objective of this project was to design a more realistic agent-based model that would overcome limitations of earlier models and provide new insights into these outstanding questions. The new model extends the previous agent-based model to three communities so that results can be compared to those from the population-based model. Sensitivity testing was conducted, and the new model was used to investigate the influence of seasonal settlement and mobility patterns, the geographic heterogeneity of the observed 1918-1919 epidemic in Manitoba, and other questions addressed previously. Results confirm outcomes from the population-based model that suggest that (a) social organization and mobility strongly influence the timing and severity of epidemics and (b) the impact of the epidemic would have been greater if it had arrived in the summer rather than the winter. New insights from the model suggest that the observed heterogeneity among communities in epidemic impact was not unusual and would have been the expected outcome given settlement structure and levels of interaction among communities. Application of an agent-based computer simulation has helped to better explain observed patterns of spread of the 1918-1919 flu epidemic in central Manitoba. Contrasts between agent-based and population-based models illustrate the advantages of agent-based models for the study of small populations. © 2010 Wiley-Liss, Inc.

  1. Evaluation of Littoral Combat Ships for Open-Ocean Anti-Submarine Warfare

    DTIC Science & Technology

    2016-03-01

    known. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory Using a Historical Case...coverage over a small area. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory...Defense Tech, May 30. Hill, R R, R G Carl, and L E Champagne . “Using agent-based simulation to empirically examine search theory using a

  2. Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models

    PubMed Central

    Najnin, Shamima; Banerjee, Bonny

    2018-01-01

    Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The “novel words to novel objects” language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task. PMID:29441027

  3. Use of Computer-Assisted Instruction to Review Microbiology and Antimicrobial Agents.

    ERIC Educational Resources Information Center

    Carver, Peggy L.; And Others

    1991-01-01

    A study assessed the effectiveness of a microcomputer-assisted instructional program using graphics, color, and text in simulations to enhance pharmacy students' knowledge of microbiology and antimicrobial agents. Results indicated high short- and long-term retention of information presented and higher levels of knowledge and comprehension among…

  4. Multi-agent modelling of climate outlooks and food security on a community garden scheme in Limpopo, South Africa.

    PubMed

    Bharwani, Sukaina; Bithell, Mike; Downing, Thomas E; New, Mark; Washington, Richard; Ziervogel, Gina

    2005-11-29

    Seasonal climate outlooks provide one tool to help decision-makers allocate resources in anticipation of poor, fair or good seasons. The aim of the 'Climate Outlooks and Agent-Based Simulation of Adaptation in South Africa' project has been to investigate whether individuals, who adapt gradually to annual climate variability, are better equipped to respond to longer-term climate variability and change in a sustainable manner. Seasonal climate outlooks provide information on expected annual rainfall and thus can be used to adjust seasonal agricultural strategies to respond to expected climate conditions. A case study of smallholder farmers in a village in Vhembe district, Limpopo Province, South Africa has been used to examine how such climate outlooks might influence agricultural strategies and how this climate information can be improved to be more useful to farmers. Empirical field data has been collected using surveys, participatory approaches and computer-based knowledge elicitation tools to investigate the drivers of decision-making with a focus on the role of climate, market and livelihood needs. This data is used in an agent-based social simulation which incorporates household agents with varying adaptation options which result in differing impacts on crop yields and thus food security, as a result of using or ignoring the seasonal outlook. Key variables are the skill of the forecast, the social communication of the forecast and the range of available household and community-based risk coping strategies. This research provides a novel approach for exploring adaptation within the context of climate change.

  5. a Simulation-As Framework Facilitating Webgis Based Installation Planning

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chang, Z. Y.; Fei, Y. F.

    2017-09-01

    Installation Planning is constrained by both natural and social conditions, especially for spatially sparse but functionally connected facilities. Simulation is important for proper deploy in space and configuration in function of facilities to make them a cohesive and supportive system to meet users' operation needs. Based on requirement analysis, we propose a framework to combine GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS. In this framework, Agent based simulation runs as a service on the server, exposes basic simulation functions, such as scenario configuration, simulation control, and simulation data retrieval to installation planners. At the same time, the simulation service is able to utilize various kinds of geoprocessing services in Agents' process logic to make sophisticated spatial inferences and analysis. This simulation-as-a-service framework has many potential benefits, such as easy-to-use, on-demand, shared understanding, and boosted performances. At the end, we present a preliminary implement of this concept using ArcGIS javascript api 4.0 and ArcGIS for server, showing how trip planning and driving can be carried out by agents.

  6. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python

  7. New approaches in agent-based modeling of complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2017-12-01

    Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

  8. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach

    PubMed Central

    2016-01-01

    Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235

  9. Virtual tissues in toxicology.

    PubMed

    Shah, Imran; Wambaugh, John

    2010-02-01

    New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects across chemicals, dose, time, and species remains challenging. Technological advances in multiresolution imaging and multiscale simulation are making it feasible to reconstruct tissues in silico. In toxicology, these "virtual" tissues (VT) aim to predict histopathological outcomes from alterations of cellular phenotypes that are controlled by chemical-induced perturbations in molecular pathways. The behaviors of thousands of heterogeneous cells in tissues are simulated discretely using agent-based modeling (ABM), in which computational "agents" mimic cell interactions and cellular responses to the microenvironment. The behavior of agents is constrained by physical laws and biological rules derived from experimental evidence. VT extend compartmental physiologic models to simulate both acute insults as well as the chronic effects of low-dose exposure. Furthermore, agent behavior can encode the logic of signaling and genetic regulatory networks to evaluate the role of different pathways in chemical-induced injury. To extrapolate toxicity across species, chemicals, and doses, VT require four main components: (a) organization of prior knowledge on physiologic events to define the mechanistic rules for agent behavior, (b) knowledge on key chemical-induced molecular effects, including activation of stress sensors and changes in molecular pathways that alter the cellular phenotype, (c) multiresolution quantitative and qualitative analysis of histologic data to characterize and measure chemical-, dose-, and time-dependent physiologic events, and (d) multiscale, spatiotemporal simulation frameworks to effectively calibrate and evaluate VT using experimental data. This investigation presents the motivation, implementation, and application of VT with examples from hepatotoxicity and carcinogenesis.

  10. Stability and robustness analysis of cooperation cycles driven by destructive agents in finite populations

    NASA Astrophysics Data System (ADS)

    Requejo, Rubén J.; Camacho, Juan; Cuesta, José A.; Arenas, Alex

    2012-08-01

    The emergence and promotion of cooperation are two of the main issues in evolutionary game theory, as cooperation is amenable to exploitation by defectors, which take advantage of cooperative individuals at no cost, dooming them to extinction. It has been recently shown that the existence of purely destructive agents (termed jokers) acting on the common enterprises (public goods games) can induce stable limit cycles among cooperation, defection, and destruction when infinite populations are considered. These cycles allow for time lapses in which cooperators represent a relevant fraction of the population, providing a mechanism for the emergence of cooperative states in nature and human societies. Here we study analytically and through agent-based simulations the dynamics generated by jokers in finite populations for several selection rules. Cycles appear in all cases studied, thus showing that the joker dynamics generically yields a robust cyclic behavior not restricted to infinite populations. We also compute the average time in which the population consists mostly of just one strategy and compare the results with numerical simulations.

  11. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  12. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  13. Simulation-based intelligent robotic agent for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Biegl, Csaba A.; Springfield, James F.; Cook, George E.; Fernandez, Kenneth R.

    1990-01-01

    A robot control package is described which utilizes on-line structural simulation of robot manipulators and objects in their workspace. The model-based controller is interfaced with a high level agent-independent planner, which is responsible for the task-level planning of the robot's actions. Commands received from the agent-independent planner are refined and executed in the simulated workspace, and upon successful completion, they are transferred to the real manipulators.

  14. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass

    PubMed Central

    Sánchez, Jesús M.; Carrera, Álvaro; Iglesias, Carlos Á.; Serrano, Emilio

    2016-01-01

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services. PMID:27563911

  15. This "Ethical Trap" Is for Roboticists, Not Robots: On the Issue of Artificial Agent Ethical Decision-Making.

    PubMed

    Miller, Keith W; Wolf, Marty J; Grodzinsky, Frances

    2017-04-01

    In this paper we address the question of when a researcher is justified in describing his or her artificial agent as demonstrating ethical decision-making. The paper is motivated by the amount of research being done that attempts to imbue artificial agents with expertise in ethical decision-making. It seems clear that computing systems make decisions, in that they make choices between different options; and there is scholarship in philosophy that addresses the distinction between ethical decision-making and general decision-making. Essentially, the qualitative difference between ethical decisions and general decisions is that ethical decisions must be part of the process of developing ethical expertise within an agent. We use this distinction in examining publicity surrounding a particular experiment in which a simulated robot attempted to safeguard simulated humans from falling into a hole. We conclude that any suggestions that this simulated robot was making ethical decisions were misleading.

  16. In-class Simulations of the Iterated Prisoner's Dilemma Game.

    ERIC Educational Resources Information Center

    Bodo, Peter

    2002-01-01

    Developed a simple computer program for the in-class simulation of the repeated prisoner's dilemma game with student-designed strategies. Describes the basic features of the software. Presents two examples using the program to teach the problems of cooperation among profit-maximizing agents. (JEH)

  17. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  18. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  19. Construction of multi-agent mobile robots control system in the problem of persecution with using a modified reinforcement learning method based on neural networks

    NASA Astrophysics Data System (ADS)

    Patkin, M. L.; Rogachev, G. N.

    2018-02-01

    A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.

  20. RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem

    NASA Astrophysics Data System (ADS)

    Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu

    2000-07-01

    This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.

  1. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  2. Mesoscopic effects in an agent-based bargaining model in regular lattices.

    PubMed

    Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo

    2011-03-09

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.

  3. Assortative Mating and the Reversal of Gender Inequality in Education in Europe: An Agent-Based Model

    PubMed Central

    Grow, André; Van Bavel, Jan

    2015-01-01

    While men have always received more education than women in the past, this gender imbalance in education has turned around in large parts of the world. In many countries, women now excel men in terms of participation and success in higher education. This implies that, for the first time in history, there are more highly educated women than men reaching the reproductive ages and looking for a partner. We develop an agent-based computational model that explicates the mechanisms that may have linked the reversal of gender inequality in education with observed changes in educational assortative mating. Our model builds on the notion that individuals search for spouses in a marriage market and evaluate potential candidates based on preferences. Based on insights from earlier research, we assume that men and women prefer partners with similar educational attainment and high earnings prospects, that women tend to prefer men who are somewhat older than themselves, and that men prefer women who are in their mid-twenties. We also incorporate the insight that the educational system structures meeting opportunities on the marriage market. We assess the explanatory power of our model with systematic computational experiments, in which we simulate marriage market dynamics in 12 European countries among individuals born between 1921 and 2012. In these experiments, we make use of realistic agent populations in terms of educational attainment and earnings prospects and validate model outcomes with data from the European Social Survey. We demonstrate that the observed changes in educational assortative mating can be explained without any change in male or female preferences. We argue that our model provides a useful computational laboratory to explore and quantify the implications of scenarios for the future. PMID:26039151

  4. Assortative mating and the reversal of gender inequality in education in europe: an agent-based model.

    PubMed

    Grow, André; Van Bavel, Jan

    2015-01-01

    While men have always received more education than women in the past, this gender imbalance in education has turned around in large parts of the world. In many countries, women now excel men in terms of participation and success in higher education. This implies that, for the first time in history, there are more highly educated women than men reaching the reproductive ages and looking for a partner. We develop an agent-based computational model that explicates the mechanisms that may have linked the reversal of gender inequality in education with observed changes in educational assortative mating. Our model builds on the notion that individuals search for spouses in a marriage market and evaluate potential candidates based on preferences. Based on insights from earlier research, we assume that men and women prefer partners with similar educational attainment and high earnings prospects, that women tend to prefer men who are somewhat older than themselves, and that men prefer women who are in their mid-twenties. We also incorporate the insight that the educational system structures meeting opportunities on the marriage market. We assess the explanatory power of our model with systematic computational experiments, in which we simulate marriage market dynamics in 12 European countries among individuals born between 1921 and 2012. In these experiments, we make use of realistic agent populations in terms of educational attainment and earnings prospects and validate model outcomes with data from the European Social Survey. We demonstrate that the observed changes in educational assortative mating can be explained without any change in male or female preferences. We argue that our model provides a useful computational laboratory to explore and quantify the implications of scenarios for the future.

  5. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  6. Evolution of tag-based cooperation with emotion on complex networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2018-04-01

    We study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals through Monte Carlo simulations. Interactions and reproduction among computational agents are simulated on undirected Barabási-Albert (UBA) networks and Erdös-Rènyi random graphs (ER).We study the Hammond-Axelrod model on both UBA networks and ER random graphs for the asexual reproduction case. We use a modified version of the traditional Hammond-Axelrod model and we also allow the agents’ decisions about one of the strategies to take into account the emotion among their equals. Our simulations showed that egoism and altruism win, differently from other results found in the literature where ethnocentric strategy is common.

  7. Development of Aspen: A microanalytic simulation model of the US economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, R.J.; Basu, N.; Quint, T.

    1996-02-01

    This report describes the development of an agent-based microanalytic simulation model of the US economy. The microsimulation model capitalizes on recent technological advances in evolutionary learning and parallel computing. Results are reported for a test problem that was run using the model. The test results demonstrate the model`s ability to predict business-like cycles in an economy where prices and inventories are allowed to vary. Since most economic forecasting models have difficulty predicting any kind of cyclic behavior. These results show the potential of microanalytic simulation models to improve economic policy analysis and to provide new insights into underlying economic principles.more » Work already has begun on a more detailed model.« less

  8. Clustering recommendations to compute agent reputation

    NASA Astrophysics Data System (ADS)

    Bedi, Punam; Kaur, Harmeet

    2005-03-01

    Traditional centralized approaches to security are difficult to apply to multi-agent systems which are used nowadays in e-commerce applications. Developing a notion of trust that is based on the reputation of an agent can provide a softer notion of security that is sufficient for many multi-agent applications. Our paper proposes a mechanism for computing reputation of the trustee agent for use by the trustier agent. The trustier agent computes the reputation based on its own experience as well as the experience the peer agents have with the trustee agents. The trustier agents intentionally interact with the peer agents to get their experience information in the form of recommendations. We have also considered the case of unintentional encounters between the referee agents and the trustee agent, which can be directly between them or indirectly through a set of interacting agents. The clustering is done to filter off the noise in the recommendations in the form of outliers. The trustier agent clusters the recommendations received from referee agents on the basis of the distances between recommendations using the hierarchical agglomerative method. The dendogram hence obtained is cut at the required similarity level which restricts the maximum distance between any two recommendations within a cluster. The cluster with maximum number of elements denotes the views of the majority of recommenders. The center of this cluster represents the reputation of the trustee agent which can be computed using c-means algorithm.

  9. Making sense of information in noisy networks: human communication, gossip, and distortion.

    PubMed

    Laidre, Mark E; Lamb, Alex; Shultz, Susanne; Olsen, Megan

    2013-01-21

    Information from others can be unreliable. Humans nevertheless act on such information, including gossip, to make various social calculations, thus raising the question of whether individuals can sort through social information to identify what is, in fact, true. Inspired by empirical literature on people's decision-making when considering gossip, we built an agent-based simulation model to examine how well simple decision rules could make sense of information as it propagated through a network. Our simulations revealed that a minimalistic decision-rule 'Bit-wise mode' - which compared information from multiple sources and then sought a consensus majority for each component bit within the message - was consistently the most successful at converging upon the truth. This decision rule attained high relative fitness even in maximally noisy networks, composed entirely of nodes that distorted the message. The rule was also superior to other decision rules regardless of its frequency in the population. Simulations carried out with variable agent memory constraints, different numbers of observers who initiated information propagation, and a variety of network types suggested that the single most important factor in making sense of information was the number of independent sources that agents could consult. Broadly, our model suggests that despite the distortion information is subject to in the real world, it is nevertheless possible to make sense of it based on simple Darwinian computations that integrate multiple sources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A reinforcement learning model of joy, distress, hope and fear

    NASA Astrophysics Data System (ADS)

    Broekens, Joost; Jacobs, Elmer; Jonker, Catholijn M.

    2015-07-01

    In this paper we computationally study the relation between adaptive behaviour and emotion. Using the reinforcement learning framework, we propose that learned state utility, ?, models fear (negative) and hope (positive) based on the fact that both signals are about anticipation of loss or gain. Further, we propose that joy/distress is a signal similar to the error signal. We present agent-based simulation experiments that show that this model replicates psychological and behavioural dynamics of emotion. This work distinguishes itself by assessing the dynamics of emotion in an adaptive agent framework - coupling it to the literature on habituation, development, extinction and hope theory. Our results support the idea that the function of emotion is to provide a complex feedback signal for an organism to adapt its behaviour. Our work is relevant for understanding the relation between emotion and adaptation in animals, as well as for human-robot interaction, in particular how emotional signals can be used to communicate between adaptive agents and humans.

  11. Using uncertainty and sensitivity analyses in socioecological agent-based models to improve their analytical performance and policy relevance.

    PubMed

    Ligmann-Zielinska, Arika; Kramer, Daniel B; Spence Cheruvelil, Kendra; Soranno, Patricia A

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system.

  12. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  13. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.

  14. Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma

    NASA Astrophysics Data System (ADS)

    Rezaei, Golriz; Kirley, Michael

    2012-12-01

    Understanding how cooperative behaviour evolves in network communities, where the individual members interact via social dilemma games, is an on-going challenge. In this paper, we introduce a social network based model to investigate the evolution of cooperation in the N-player Prisoner’s Dilemma game. As such, this work complements previous studies focused on multi-player social dilemma games and endogenous networks. Agents in our model, employ different game-playing strategies reflecting varying cognitive capacities. When an agent plays cooperatively, a social link is formed with each of the other N-1 group members. Subsequent cooperative actions reinforce this link. However, when an agent defects, the links in the social network are broken. Computational simulations across a range of parameter settings are used to examine different scenarios: varying population and group sizes; the group formation process (or partner selection); and agent decision-making strategies under varying dilemma constraints (cost-to-benefit ratios), including a “discriminator” strategy where the action is based on a function of the weighted links within an agent’s social network. The simulation results show that the proposed social network model is able to evolve and maintain cooperation. As expected, as the value of N increases the equilibrium proportion of cooperators in the population decreases. In addition, this outcome is dependent on the dilemma constraint (cost-to-benefit ratio). However, in some circumstances the dynamic social network plays an increasingly important role in promoting and sustaining cooperation, especially when the agents adopt the discriminator strategy. The adjustment of social links results in the formation of communities of “like-minded” agents. Subsequently, this local optimal behaviour promotes the evolution of cooperative behaviour at the system level.

  15. Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2002-01-01

    Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…

  16. Physical Scaffolding Accelerates the Evolution of Robot Behavior.

    PubMed

    Buckingham, David; Bongard, Josh

    2017-01-01

    In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain. As a first proof of concept, we introduce a two-link chain: A fast yet low-fidelity ( lo-fi) simulator hosts minimally embodied agents, which gradually evolve controllers and morphologies to colonize a slow yet high-fidelity ( hi-fi) simulator. The agents are thus physically scaffolded. We show here that, given the same computational budget, these physically scaffolded robots reach higher performance in the hi-fi simulator than do robots that only evolve in the hi-fi simulator, but only for a sufficiently difficult task. These results suggest that a simulation-to-reality pipeline may strike a good balance between accelerating evolution in simulation while anchoring the results in reality, free the investigator from having to prespecify the robot's morphology, and pave the way to scalable, automated, robot-generating systems.

  17. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    PubMed

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. CRITTERS! A Realistic Simulation for Teaching Evolutionary Biology

    ERIC Educational Resources Information Center

    Latham, Luke G., II; Scully, Erik P.

    2008-01-01

    Evolutionary processes can be studied in nature and in the laboratory, but time and financial constraints result in few opportunities for undergraduate and high school students to explore the agents of genetic change in populations. One alternative to time consuming and expensive teaching laboratories is the use of computer simulations. We…

  19. Multiagent intelligent systems

    NASA Astrophysics Data System (ADS)

    Krause, Lee S.; Dean, Christopher; Lehman, Lynn A.

    2003-09-01

    This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of "what if" analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the "family" would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent "publishes" its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.

  20. Computational Modeling and Treatment Identification in the Myelodysplastic Syndromes.

    PubMed

    Drusbosky, Leylah M; Cogle, Christopher R

    2017-10-01

    This review discusses the need for computational modeling in myelodysplastic syndromes (MDS) and early test results. As our evolving understanding of MDS reveals a molecularly complicated disease, the need for sophisticated computer analytics is required to keep track of the number and complex interplay among the molecular abnormalities. Computational modeling and digital drug simulations using whole exome sequencing data input have produced early results showing high accuracy in predicting treatment response to standard of care drugs. Furthermore, the computational MDS models serve as clinically relevant MDS cell lines for pre-clinical assays of investigational agents. MDS is an ideal disease for computational modeling and digital drug simulations. Current research is focused on establishing the prediction value of computational modeling. Future research will test the clinical advantage of computer-informed therapy in MDS.

  1. Evolution of cooperative strategies from first principles.

    PubMed

    Burtsev, Mikhail; Turchin, Peter

    2006-04-20

    One of the greatest challenges in the modern biological and social sciences is to understand the evolution of cooperative behaviour. General outlines of the answer to this puzzle are currently emerging as a result of developments in the theories of kin selection, reciprocity, multilevel selection and cultural group selection. The main conceptual tool used in probing the logical coherence of proposed explanations has been game theory, including both analytical models and agent-based simulations. The game-theoretic approach yields clear-cut results but assumes, as a rule, a simple structure of payoffs and a small set of possible strategies. Here we propose a more stringent test of the theory by developing a computer model with a considerably extended spectrum of possible strategies. In our model, agents are endowed with a limited set of receptors, a set of elementary actions and a neural net in between. Behavioural strategies are not predetermined; instead, the process of evolution constructs and reconstructs them from elementary actions. Two new strategies of cooperative attack and defence emerge in simulations, as well as the well-known dove, hawk and bourgeois strategies. Our results indicate that cooperative strategies can evolve even under such minimalist assumptions, provided that agents are capable of perceiving heritable external markers of other agents.

  2. An Agent-Based Simulation for Investigating the Impact of Stereotypes on Task-Oriented Group Formation

    NASA Astrophysics Data System (ADS)

    Maghami, Mahsa; Sukthankar, Gita

    In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.

  3. Hybrid evolutionary computing model for mobile agents of wireless Internet multimedia

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2001-03-01

    The ecosystem is used as an evolutionary paradigm of natural laws for the distributed information retrieval via mobile agents to allow the computational load to be added to server nodes of wireless networks, while reducing the traffic on communication links. Based on the Food Web model, a set of computational rules of natural balance form the outer stage to control the evolution of mobile agents providing multimedia services with a wireless Internet protocol WIP. The evolutionary model shows how mobile agents should behave with the WIP, in particular, how mobile agents can cooperate, compete and learn from each other, based on an underlying competition for radio network resources to establish the wireless connections to support the quality of service QoS of user requests. Mobile agents are also allowed to clone themselves, propagate and communicate with other agents. A two-layer model is proposed for agent evolution: the outer layer is based on the law of natural balancing, the inner layer is based on a discrete version of a Kohonen self-organizing feature map SOFM to distribute network resources to meet QoS requirements. The former is embedded in the higher OSI layers of the WIP, while the latter is used in the resource management procedures of Layer 2 and 3 of the protocol. Algorithms for the distributed computation of mobile agent evolutionary behavior are developed by adding a learning state to the agent evolution state diagram. When an agent is in an indeterminate state, it can communicate to other agents. Computing models can be replicated from other agents. Then the agents transitions to the mutating state to wait for a new information-retrieval goal. When a wireless terminal or station lacks a network resource, an agent in the suspending state can change its policy to submit to the environment before it transitions to the searching state. The agents learn the facts of agent state information entered into an external database. In the cloning process, two agents on a host station sharing a common goal can be merged or married to compose a new agent. Application of the two-layer set of algorithms for mobile agent evolution, performed in a distributed processing environment, is made to the QoS management functions of the IP multimedia IM sub-network of the third generation 3G Wideband Code-division Multiple Access W-CDMA wireless network.

  4. Simulating the behavior of patients who leave a public hospital emergency department without being seen by a physician: a cellular automaton and agent-based framework.

    PubMed

    Yousefi, Milad; Yousefi, Moslem; Fogliatto, F S; Ferreira, R P M; Kim, J H

    2018-01-11

    The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies.

  5. Simulating the behavior of patients who leave a public hospital emergency department without being seen by a physician: a cellular automaton and agent-based framework

    PubMed Central

    Yousefi, Milad; Yousefi, Moslem; Fogliatto, F.S.; Ferreira, R.P.M.; Kim, J.H.

    2018-01-01

    The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies. PMID:29340526

  6. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  7. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    PubMed

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  8. Automated Intelligent Agents: Are They Trusted Members of Military Teams?

    DTIC Science & Technology

    2008-12-01

    computer -based team firefighting game (C3Fire). The order of presentation of the two trials (human – human vs. human – automation) was...agent. All teams played a computer -based team firefighting game (C3Fire). The order of presentation of the two trials (human – human vs. human...26 b. Participants’ Computer ..................27 C. VARIABLES .........................................27 1. Independent Variables

  9. Brief introductory guide to agent-based modeling and an illustration from urban health research.

    PubMed

    Auchincloss, Amy H; Garcia, Leandro Martin Totaro

    2015-11-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.

  10. Brief introductory guide to agent-based modeling and an illustration from urban health research

    PubMed Central

    Auchincloss, Amy H.; Garcia, Leandro Martin Totaro

    2017-01-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364

  11. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  12. A Primer for Agent-Based Simulation and Modeling in Transportation Applications

    DOT National Transportation Integrated Search

    2013-11-01

    Agent-based modeling and simulation (ABMS) methods have been applied in a spectrum of research domains. This primer focuses on ABMS in the transportation interdisciplinary domain, describes the basic concepts of ABMS and the recent progress of ABMS i...

  13. Agent-Based Simulation of Learning Dissemination in a Project-Based Learning Context Considering the Human Aspects

    ERIC Educational Resources Information Center

    Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto

    2018-01-01

    Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…

  14. Combining patient journey modelling and visual multi-agent computer simulation: a framework to improving knowledge translation in a healthcare environment.

    PubMed

    Curry, Joanne; Fitzgerald, Anneke; Prodan, Ante; Dadich, Ann; Sloan, Terry

    2014-01-01

    This article focuses on a framework that will investigate the integration of two disparate methodologies: patient journey modelling and visual multi-agent simulation, and its impact on the speed and quality of knowledge translation to healthcare stakeholders. Literature describes patient journey modelling and visual simulation as discrete activities. This paper suggests that their combination and their impact on translating knowledge to practitioners are greater than the sum of the two technologies. The test-bed is ambulatory care and the goal is to determine if this approach can improve health services delivery, workflow, and patient outcomes and satisfaction. The multidisciplinary research team is comprised of expertise in patient journey modelling, simulation, and knowledge translation.

  15. Physics-based agent to simulant correlations for vapor phase mass transport.

    PubMed

    Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A

    2013-12-15

    Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant. Published by Elsevier B.V.

  16. >From naive to sophisticated behavior in multiagents-based financial market models

    NASA Astrophysics Data System (ADS)

    Mansilla, R.

    2000-09-01

    The behavior of physical complexity and mutual information function of the outcome of a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game is studied. The first magnitude is a measure rooted in the Kolmogorov-Chaitin theory and the second a measure related to Shannon's information entropy. Extensive computer simulations were done, as a result of which, is proposed an ansatz for physical complexity of the type C(l)=lα and the dependence of the exponent α from the parameters of the model is established. The accuracy of our results and the relationship with the behavior of mutual information function as a measure of time correlation of agents choice are discussed.

  17. Modeling Co-evolution of Speech and Biology.

    PubMed

    de Boer, Bart

    2016-04-01

    Two computer simulations are investigated that model interaction of cultural evolution of language and biological evolution of adaptations to language. Both are agent-based models in which a population of agents imitates each other using realistic vowels. The agents evolve under selective pressure for good imitation. In one model, the evolution of the vocal tract is modeled; in the other, a cognitive mechanism for perceiving speech accurately is modeled. In both cases, biological adaptations to using and learning speech evolve, even though the system of speech sounds itself changes at a more rapid time scale than biological evolution. However, the fact that the available acoustic space is used maximally (a self-organized result of cultural evolution) is constant, and therefore biological evolution does have a stable target. This work shows that when cultural and biological traits are continuous, their co-evolution may lead to cognitive adaptations that are strong enough to detect empirically. Copyright © 2016 Cognitive Science Society, Inc.

  18. An agent-based computational model for tuberculosis spreading on age-structured populations

    NASA Astrophysics Data System (ADS)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  19. FLAME: A platform for high performance computing of complex systems, applied for three case studies

    DOE PAGES

    Kiran, Mariam; Bicak, Mesude; Maleki-Dizaji, Saeedeh; ...

    2011-01-01

    FLAME allows complex models to be automatically parallelised on High Performance Computing (HPC) grids enabling large number of agents to be simulated over short periods of time. Modellers are hindered by complexities of porting models on parallel platforms and time taken to run large simulations on a single machine, which FLAME overcomes. Three case studies from different disciplines were modelled using FLAME, and are presented along with their performance results on a grid.

  20. Integrated control of lateral and vertical vehicle dynamics based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia

    2014-03-01

    The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.

  1. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.

    PubMed

    FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J

    2016-12-01

    The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations, including the high concentrations required for standard clinical CT imaging. Computed tomography imaging studies demonstrated image contrast improvement of approximately 40% to 50% using CZ-TaO NPs compared with an iodinated agent injected at the same mass concentration. Blood and organ analyses showed no adverse effects after injection in healthy naive rats at 3 times the ACD. Retention of tantalum at 48 hours after injection was less than 2% of the injected dose in the whole carcass, which very closely matched the reported retention of existing commercial iodine-based contrast agents. Urine analysis of sensitive markers for acute kidney injury showed no responses at 1 week after injection at 3 times the ACD; however, a moderate response in the neutrophil gelatinase-associated lipocalin biomarker was measured at 24 and 48 hours. Compared with other TaO NPs reported in the literature, CZ-TaO NPs had relatively low osmolality and viscosity at concentrations greater than 200 mg Ta/mL and were similar in these physical properties to dimeric iodine-based contrast agents. We found that a CZ-TaO NP-based contrast agent is potentially viable for general-purpose clinical CT imaging. Our results suggest that such an agent can be formulated with clinically viable physicochemical properties, can be biologically safe and cleared rapidly in urine, and can provide substantially improved image contrast at CT compared with current iodinated agents.

  2. From Agents to Continuous Change via Aesthetics: Learning Mechanics with Visual Agent-Based Computational Modeling

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Farris, Amy Voss; Wright, Mason

    2012-01-01

    Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…

  3. Modeling the Impact of Motivation, Personality, and Emotion on Social Behavior

    NASA Astrophysics Data System (ADS)

    Miller, Lynn C.; Read, Stephen J.; Zachary, Wayne; Rosoff, Andrew

    Models seeking to predict human social behavior must contend with multiple sources of individual and group variability that underlie social behavior. One set of interrelated factors that strongly contribute to that variability - motivations, personality, and emotions - has been only minimally incorporated in previous computational models of social behavior. The Personality, Affect, Culture (PAC) framework is a theory-based computational model that addresses this gap. PAC is used to simulate social agents whose social behavior varies according to their personalities and emotions, which, in turn, vary according to their motivations and underlying motive control parameters. Examples involving disease spread and counter-insurgency operations show how PAC can be used to study behavioral variability in different social contexts.

  4. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.

  5. An agent-based method for simulating porous fluid-saturated structures with indistinguishable components

    NASA Astrophysics Data System (ADS)

    Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle

    2017-10-01

    Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.

  6. An Agent-Based Cockpit Task Management System

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1997-01-01

    An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.

  7. Modeling marine oily wastewater treatment by a probabilistic agent-based approach.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong

    2018-02-01

    This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.

  9. ICCE/ICCAI 2000 Full & Short Papers (Educational Agent).

    ERIC Educational Resources Information Center

    2000

    This document contains the full text of the following papers on educational agent from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "An Agent-Based Intelligent Tutoring System" (C.M. Bruff and M.A. Williams); (2) "Design of Systematic Concept…

  10. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  11. An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Gidden, Matthew J.

    Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

  12. Adding ecosystem function to agent-based land use models

    USDA-ARS?s Scientific Manuscript database

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeoche...

  13. A Simple Evacuation Modeling and Simulation Tool for First Responders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Daniel B; Payne, Patricia W

    2015-01-01

    Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools canmore » quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.« less

  14. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  15. Growing a market economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view ofmore » society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.« less

  16. Experimental econophysics: Complexity, self-organization, and emergent properties

    NASA Astrophysics Data System (ADS)

    Huang, J. P.

    2015-03-01

    Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).

  17. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    NASA Astrophysics Data System (ADS)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?

  18. Computing with motile bio-agents

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Burrage, Kevin; Nicolau, Dan V.

    2007-12-01

    We describe a model of computation of the parallel type, which we call 'computing with bio-agents', based on the concept that motions of biological objects such as bacteria or protein molecular motors in confined spaces can be regarded as computations. We begin with the observation that the geometric nature of the physical structures in which model biological objects move modulates the motions of the latter. Consequently, by changing the geometry, one can control the characteristic trajectories of the objects; on the basis of this, we argue that such systems are computing devices. We investigate the computing power of mobile bio-agent systems and show that they are computationally universal in the sense that they are capable of computing any Boolean function in parallel. We argue also that using appropriate conditions, bio-agent systems can solve NP-complete problems in probabilistic polynomial time.

  19. Examining the Relationship between Pre-Malignant Breast Lesions, Carcinogenesis and Tumor Evolution in the Mammary Epithelium Using an Agent-Based Model.

    PubMed

    Chapa, Joaquin; An, Gary; Kulkarni, Swati A

    2016-01-01

    Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.

  20. Agent-based modeling of malaria vectors: the importance of spatial simulation.

    PubMed

    Bomblies, Arne

    2014-07-03

    The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as "agents" in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important.

  1. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  2. Towards a genetics-based adaptive agent to support flight testing

    NASA Astrophysics Data System (ADS)

    Cribbs, Henry Brown, III

    Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.

  3. A Distributed, Collaborative Intelligent Agent System Approach for Proactive Postmarketing Drug Safety Surveillance

    PubMed Central

    Ji, Yanqing; Ying, Hao; Farber, Margo S.; Yen, John; Dews, Peter; Miller, Richard E.; Massanari, R. Michael

    2014-01-01

    Discovering unknown adverse drug reactions (ADRs) in postmarketing surveillance as early as possible is of great importance. The current approach to postmarketing surveillance primarily relies on spontaneous reporting. It is a passive surveillance system and limited by gross underreporting (<10% reporting rate), latency, and inconsistent reporting. We propose a novel team-based intelligent agent software system approach for proactively monitoring and detecting potential ADRs of interest using electronic patient records. We designed such a system and named it ADRMonitor. The intelligent agents, operating on computers located in different places, are capable of continuously and autonomously collaborating with each other and assisting the human users (e.g., the food and drug administration (FDA), drug safety professionals, and physicians). The agents should enhance current systems and accelerate early ADR identification. To evaluate the performance of the ADRMonitor with respect to the current spontaneous reporting approach, we conducted simulation experiments on identification of ADR signal pairs (i.e., potential links between drugs and apparent adverse reactions) under various conditions. The experiments involved over 275 000 simulated patients created on the basis of more than 1000 real patients treated by the drug cisapride that was on the market for seven years until its withdrawal by the FDA in 2000 due to serious ADRs. Healthcare professionals utilizing the spontaneous reporting approach and the ADRMonitor were separately simulated by decision-making models derived from a general cognitive decision model called fuzzy recognition-primed decision (RPD) model that we recently developed. The quantitative simulation results show that 1) the number of true ADR signal pairs detected by the ADRMonitor is 6.6 times higher than that by the spontaneous reporting strategy; 2) the ADR detection rate of the ADRMonitor agents with even moderate decision-making skills is five times higher than that of spontaneous reporting; and 3) as the number of patient cases increases, ADRs could be detected significantly earlier by the ADRMonitor. PMID:20007038

  4. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    PubMed

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to use high-fidelity patient simulators, which present simulations that are closer to real-life situations.

  5. Using distributed partial memories to improve self-organizing collective movements.

    PubMed

    Winder, Ransom; Reggia, James A

    2004-08-01

    Past self-organizing models of collectively moving "particles" (simulated bird flocks, fish schools, etc.) have typically been based on purely reflexive agents that have no significant memory of past movements. We hypothesized that giving such individual particles a limited distributed memory of past obstacles they encountered could lead to significantly faster travel between goal destinations. Systematic computational experiments using six terrains that had different arrangements of obstacles demonstrated that, at least in some domains, this conjecture is true. Furthermore, these experiments demonstrated that improved performance over time came not only from the avoidance of previously seen obstacles, but also (surprisingly) immediately after first encountering obstacles due to decreased delays in circumventing those obstacles. Simulations also showed that, of the four strategies we tested for removal of remembered obstacles when memory was full and a new obstacle was to be saved, none was better than random selection. These results may be useful in interpreting future experimental research on group movements in biological populations, and in improving existing methodologies for control of collective movements in computer graphics, robotic teams, particle swarm optimization, and computer games.

  6. A Two-Stage Multi-Agent Based Assessment Approach to Enhance Students' Learning Motivation through Negotiated Skills Assessment

    ERIC Educational Resources Information Center

    Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan

    2015-01-01

    In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…

  7. StarLogo TNG

    NASA Astrophysics Data System (ADS)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel

    Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.

  8. Mathematical modeling and computational prediction of cancer drug resistance.

    PubMed

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Pain expressiveness and altruistic behavior: an exploration using agent-based modeling.

    PubMed

    de C Williams, Amanda C; Gallagher, Elizabeth; Fidalgo, Antonio R; Bentley, Peter J

    2016-03-01

    Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.

  10. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  11. Linking Cognitive and Social Aspects of Sound Change Using Agent-Based Modeling.

    PubMed

    Harrington, Jonathan; Kleber, Felicitas; Reubold, Ulrich; Schiel, Florian; Stevens, Mary

    2018-03-26

    The paper defines the core components of an interactive-phonetic (IP) sound change model. The starting point for the IP-model is that a phonological category is often skewed phonetically in a certain direction by the production and perception of speech. A prediction of the model is that sound change is likely to come about as a result of perceiving phonetic variants in the direction of the skew and at the probabilistic edge of the listener's phonological category. The results of agent-based computational simulations applied to the sound change in progress, /u/-fronting in Standard Southern British, were consistent with this hypothesis. The model was extended to sound changes involving splits and mergers by using the interaction between the agents to drive the phonological reclassification of perceived speech signals. The simulations showed no evidence of any acoustic change when this extended model was applied to Australian English data in which /s/ has been shown to retract due to coarticulation in /str/ clusters. Some agents nevertheless varied in their phonological categorizations during interaction between /str/ and /ʃtr/: This vacillation may represent the potential for sound change to occur. The general conclusion is that many types of sound change are the outcome of how phonetic distributions are oriented with respect to each other, their association to phonological classes, and how these types of information vary between speakers that happen to interact with each other. Copyright © 2018 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  12. Efficient Evaluation Functions for Multi-Rover Systems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian; Tumer, Kagan

    2004-01-01

    Evolutionary computation can be a powerful tool in cresting a control policy for a single agent receiving local continuous input. This paper extends single-agent evolutionary computation to multi-agent systems, where a collection of agents strives to maximize a global fitness evaluation function that rates the performance of the entire system. This problem is solved in a distributed manner, where each agent evolves its own population of neural networks that are used as the control policies for the agent. Each agent evolves its population using its own agent-specific fitness evaluation function. We propose to create these agent-specific evaluation functions using the theory of collectives to avoid the coordination problem where each agent evolves a population that maximizes its own fitness function, yet the system has a whole achieves low values of the global fitness function. Instead we will ensure that each fitness evaluation function is both "aligned" with the global evaluation function and is "learnable," i.e., the agents can readily see how their behavior affects their evaluation function. We then show how these agent-specific evaluation functions outperform global evaluation methods by up to 600% in a domain where a set of rovers attempt to maximize the amount of information observed while navigating through a simulated environment.

  13. An agent-based model for emotion contagion and competition in online social media

    NASA Astrophysics Data System (ADS)

    Fan, Rui; Xu, Ke; Zhao, Jichang

    2018-04-01

    Recent studies suggest that human emotions diffuse in not only real-world communities but also online social media. However, a comprehensive model that considers up-to-date findings and multiple online social media mechanisms is still missing. To bridge this vital gap, an agent-based model, which concurrently considers emotion influence and tie strength preferences, is presented to simulate the emotion contagion and competition. Our model well reproduces patterns observed in the empirical data, like anger's preference on weak ties, anger-dominated users' high vitalities and angry tweets' short retweet intervals, and anger's competitiveness in negative events. The comparison with a previously presented baseline model further demonstrates its effectiveness in modeling online emotion contagion. It is also surprisingly revealed by our model that as the ratio of anger approaches joy with a gap less than 12%, anger will eventually dominate the online social media and arrives the collective outrage in the cyber space. The critical gap disclosed here can be indeed warning signals at early stages for outrage control. Our model would shed lights on the study of multiple issues regarding emotion contagion and competition in terms of computer simulations.

  14. Multi-Level Cultural Models

    DTIC Science & Technology

    2014-11-05

    usable simulations. This procedure was to be tested using real-world data collected from open-source venues. The final system would support rapid...assess social change. Construct is an agent-based dynamic-network simulation system design to allow the user to assess the spread of information and...protest or violence. Technical Challenges Addressed  Re‐use:    Most agent-based simulation ( ABM ) in use today are one-off. In contrast, we

  15. Applications of agent-based modeling to nutrient movement Lake Michigan

    EPA Science Inventory

    As part of an ongoing project aiming to provide useful information for nearshore management (harmful algal blooms, nutrient loading), we explore the value of agent-based models in Lake Michigan. Agent-based models follow many individual “agents” moving through a simul...

  16. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  17. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, Joshua; Hope, Michael; Ley, Hubert

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less

  18. An Immune Agent for Web-Based AI Course

    ERIC Educational Resources Information Center

    Gong, Tao; Cai, Zixing

    2006-01-01

    To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…

  19. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  20. Numerical Simulation of Shock-Dispersed Fuel Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, John B.; Day, Marcus; Beckner, Vincent

    Successfully attacking underground storage facilities for chemical and biological (C/B) weapons is an important mission area for the Department of Defense. The fate of a C/B agent during an attack depends critically on the pressure and thermal environment that the agent experiences. The initial environment is determined by the blast wave from an explosive device. The byproducts of the detonation provide a fuel source that burn when mixed with oxidizer (after burning). Additional energy can be released by the ignition of the C/B agent as it mixes with the explosion products and the air in the chamber. Hot plumes ventingmore » material from any openings in the chamber can provide fuel for additional energy release when mixed with additional oxidizer. Assessment of the effectiveness of current explosives as well as the development of new explosive systems requires a detailed understanding of all of these modes of energy release. Using methodologies based on the use of higher-order Godunov schemes combined with Adaptive Mesh Refinement (AMR), implemented in a parallel adaptive framework suited to the massively parallel computer systems provided by the DOD High-Performance Computing Modernization program, we use a suite of programs to develop predictive models for the simulation of the energetics of blast waves, deflagration waves and ejecta plumes. The programs use realistic reaction kinetic and thermodynamic models provided by standard components (such as CHEMKIN) as well as other novel methods to model enhanced explosive devices. The work described here focuses on the validation of these models against a series of bomb calorimetry experiments performed at the Ernst-Mach Institute. In this paper, we present three-dimensional simulations of the experiments, examining the explosion dynamics and the role of subsequent burning on the explosion products on the thermal and pressure environment within the calorimeter. The effects of burning are quantified by comparing two sets of computations, one in which the calorimeter is filled with nitrogen so there is no after burning and a second in which the calorimeter contains air.« less

  1. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA takes a long-range planning perspective and optimizes overall energy consumption of a large number of group events or meetings together. THINC provides an end-to-end integration within a single agent of energy efficient scheduling, rescheduling and credit allocation. While SAVES, TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of agent-based systems in actually reducing energy consumption in commercial buildings. I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real meetings/events at multiple educational buildings including the main libraries at the University of Southern California. I also provide results on simulations and real-world experiments, clearly demonstrating the power of agent technology to assist human users in saving energy in commercial buildings.

  2. Agent Based Fault Tolerance for the Mobile Environment

    NASA Astrophysics Data System (ADS)

    Park, Taesoon

    This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.

  3. Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.

    PubMed

    Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing

    2006-08-01

    This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.

  4. Towards Anatomic Scale Agent-Based Modeling with a Massively Parallel Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT_HPC)

    PubMed Central

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis. PMID:25806784

  5. An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard W.

    This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.

  6. Unsilencing Critical Conversations in Social-Studies Teacher Education Using Agent-Based Modeling

    ERIC Educational Resources Information Center

    Hostetler, Andrew; Sengupta, Pratim; Hollett, Ty

    2018-01-01

    In this article, we argue that when complex sociopolitical issues such as ethnocentrism and racial segregation are represented as complex, emergent systems using agent-based computational models (in short agent-based models or ABMs), discourse about these representations can disrupt social studies teacher candidates' dispositions of teaching…

  7. Agent-based modeling of the spread of influenza-like illness in an emergency department: a simulation study.

    PubMed

    Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D

    2011-11-01

    The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.

  8. DAMS: A Model to Assess Domino Effects by Using Agent-Based Modeling and Simulation.

    PubMed

    Zhang, Laobing; Landucci, Gabriele; Reniers, Genserik; Khakzad, Nima; Zhou, Jianfeng

    2017-12-19

    Historical data analysis shows that escalation accidents, so-called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent-based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent-based modeling technique explains the domino effects from a bottom-up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher-level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large-scale complicated cases. © 2017 Society for Risk Analysis.

  9. Driving-forces model on individual behavior in scenarios considering moving threat agents

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  10. Grid commerce, market-driven G-negotiation, and Grid resource management.

    PubMed

    Sim, Kwang Mong

    2006-12-01

    Although the management of resources is essential for realizing a computational grid, providing an efficient resource allocation mechanism is a complex undertaking. Since Grid providers and consumers may be independent bodies, negotiation among them is necessary. The contribution of this paper is showing that market-driven agents (MDAs) are appropriate tools for Grid resource negotiation. MDAs are e-negotiation agents designed with the flexibility of: 1) making adjustable amounts of concession taking into account market rivalry, outside options, and time preferences and 2) relaxing bargaining terms in the face of intense pressure. A heterogeneous testbed consisting of several types of e-negotiation agents to simulate a Grid computing environment was developed. It compares the performance of MDAs against other e-negotiation agents (e.g., Kasbah) in a Grid-commerce environment. Empirical results show that MDAs generally achieve: 1) higher budget efficiencies in many market situations than other e-negotiation agents in the testbed and 2) higher success rates in acquiring Grid resources under high Grid loadings.

  11. Quantitative Analysis of Intra Urban Growth Modeling using socio economic agents by combining cellular automata model with agent based model

    NASA Astrophysics Data System (ADS)

    Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.

    2017-12-01

    Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes. Sensitivity study of the model indicated that southern and south-west part of the city have shown improvement and small patches of growth are also observed in the north western part of the city.The study highlights the growing importance of socio economic factors and geo-computational modeling approach on changing LULC of newly growing cities of modern India.

  12. Computational Systems Biology in Cancer: Modeling Methods and Applications

    PubMed Central

    Materi, Wayne; Wishart, David S.

    2007-01-01

    In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, growth, apoptosis, vascularization and therapy. PMID:19936081

  13. Simulating an emergency department: the importance of modeling the interactions between physicians and delegates in a discrete event simulation.

    PubMed

    Lim, Morgan E; Worster, Andrew; Goeree, Ron; Tarride, Jean-Éric

    2013-05-22

    Computer simulation studies of the emergency department (ED) are often patient driven and consider the physician as a human resource whose primary activity is interacting directly with the patient. In many EDs, physicians supervise delegates such as residents, physician assistants and nurse practitioners each with different skill sets and levels of independence. The purpose of this study is to present an alternative approach where physicians and their delegates in the ED are modeled as interacting pseudo-agents in a discrete event simulation (DES) and to compare it with the traditional approach ignoring such interactions. The new approach models a hierarchy of heterogeneous interacting pseudo-agents in a DES, where pseudo-agents are entities with embedded decision logic. The pseudo-agents represent a physician and delegate, where the physician plays a senior role to the delegate (i.e. treats high acuity patients and acts as a consult for the delegate). A simple model without the complexity of the ED is first created in order to validate the building blocks (programming) used to create the pseudo-agents and their interaction (i.e. consultation). Following validation, the new approach is implemented in an ED model using data from an Ontario hospital. Outputs from this model are compared with outputs from the ED model without the interacting pseudo-agents. They are compared based on physician and delegate utilization, patient waiting time for treatment, and average length of stay. Additionally, we conduct sensitivity analyses on key parameters in the model. In the hospital ED model, comparisons between the approach with interaction and without showed physician utilization increase from 23% to 41% and delegate utilization increase from 56% to 71%. Results show statistically significant mean time differences for low acuity patients between models. Interaction time between physician and delegate results in increased ED length of stay and longer waits for beds. This example shows the importance of accurately modeling physician relationships and the roles in which they treat patients. Neglecting these relationships could lead to inefficient resource allocation due to inaccurate estimates of physician and delegate time spent on patient related activities and length of stay.

  14. Computational Modeling of Cultural Dimensions in Adversary Organizations

    DTIC Science & Technology

    2010-01-01

    Nodes”, In the Proceedings of the 9th Conference on Uncertainty in Artificial Intelli - gence, 1993. [8] Pearl, J. Probabilistic Reasoning in...the artificial life simulations; in con- trast, models with only a few agents typically employ quite sophisticated cognitive agents capa- ble of...Model Construction 45 cisions as to how to allocate scarce ISR assets (two Unmanned Air Systems, UAS ) among the two Red activities while at the same

  15. Multi-agent robotic systems and applications for satellite missions

    NASA Astrophysics Data System (ADS)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.

  16. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    NASA Astrophysics Data System (ADS)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  17. Computer-based simulation training in emergency medicine designed in the light of malpractice cases.

    PubMed

    Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih

    2014-07-27

    Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.

  18. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries.

    PubMed

    Vali, Alireza; Abla, Adib A; Lawton, Michael T; Saloner, David; Rayz, Vitaliy L

    2017-01-04

    In vivo measurement of blood velocity fields and flow descriptors remains challenging due to image artifacts and limited resolution of current imaging methods; however, in vivo imaging data can be used to inform and validate patient-specific computational fluid dynamics (CFD) models. Image-based CFD can be particularly useful for planning surgical interventions in complicated cases such as fusiform aneurysms of the basilar artery, where it is crucial to alter pathological hemodynamics while preserving flow to the distal vasculature. In this study, patient-specific CFD modeling was conducted for two basilar aneurysm patients considered for surgical treatment. In addition to velocity fields, transport of contrast agent was simulated for the preoperative and postoperative conditions using two approaches. The transport of a virtual contrast passively following the flow streamlines was simulated to predict post-surgical flow regions prone to thrombus deposition. In addition, the transport of a mixture of blood with an iodine-based contrast agent was modeled to compare and verify the CFD results with X-ray angiograms. The CFD-predicted patterns of contrast flow were qualitatively compared to in vivo X-ray angiograms acquired before and after the intervention. The results suggest that the mixture modeling approach, accounting for the flow rates and properties of the contrast injection, is in better agreement with the X-ray angiography data. The virtual contrast modeling assessed the residence time based on flow patterns unaffected by the injection procedure, which makes the virtual contrast modeling approach better suited for prediction of thrombus deposition, which is not limited to the peri-procedural state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Simulated Environments with Animated Agents: Effects on Visual Attention, Emotion, Performance, and Perception

    ERIC Educational Resources Information Center

    Romero-Hall, E.; Watson, G. S.; Adcock, A.; Bliss, J.; Adams Tufts, K.

    2016-01-01

    This research assessed how emotive animated agents in a simulation-based training affect the performance outcomes and perceptions of the individuals interacting in real time with the training application. A total of 56 participants consented to complete the study. The material for this investigation included a nursing simulation in which…

  20. Engineering perceptions of female and male K-12 students: effects of a multimedia overview on elementary, middle-, and high-school students

    NASA Astrophysics Data System (ADS)

    Johnson, Amy M.; Ozogul, Gamze; DiDonato, Matt D.; Reisslein, Martin

    2013-10-01

    Computer-based multimedia presentations employing animated agents (avatars) can positively impact perceptions about engineering; the current research advances our understanding of this effect to pre-college populations, the main target for engineering outreach. The study examines the effectiveness of a brief computer-based intervention with animated agents in improving perceptions about engineering. Five hundred sixty-five elementary, middle-, and high-school students in the southwestern USA viewed a short computer-based multimedia overview of four engineering disciplines (electrical, chemical, biomedical, and environmental) with embedded animated agents. Students completed identical surveys measuring five subscales of engineering perceptions immediately before and after the intervention. Analyses of pre- and post-surveys demonstrated that the computer presentation significantly improved perceptions for each student group, and that effects were stronger for elementary school students, compared to middle- and high-school students.

  1. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  2. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  3. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.

    PubMed

    Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A

    2017-01-01

    Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.

  4. The Agent-based Approach: A New Direction for Computational Models of Development.

    ERIC Educational Resources Information Center

    Schlesinger, Matthew; Parisi, Domenico

    2001-01-01

    Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…

  5. Detoxification of Chemical Warfare Agents Using a Zr6 -Based Metal-Organic Framework/Polymer Mixture.

    PubMed

    Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K

    2016-10-10

    Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evacuation Simulation in Kalayaan Residence Hall, up Diliman Using Gama Simulation Software

    NASA Astrophysics Data System (ADS)

    Claridades, A. R. C.; Villanueva, J. K. S.; Macatulad, E. G.

    2016-09-01

    Agent-Based Modeling (ABM) has recently been adopted in some studies for the modelling of events as a dynamic system given a set of events and parameters. In principle, ABM employs individual agents with assigned attributes and behaviors and simulates their behavior around their environment and interaction with other agents. This can be a useful tool in both micro and macroscale-applications. In this study, a model initially created and applied to an academic building was implemented in a dormitory. In particular, this research integrates three-dimensional Geographic Information System (GIS) with GAMA as the multi-agent based evacuation simulation and is implemented in Kalayaan Residence Hall. A three-dimensional GIS model is created based on the floor plans and demographic data of the dorm, including respective pathways as networks, rooms, floors, exits and appropriate attributes. This model is then re-implemented in GAMA. Different states of the agents and their effect on their evacuation time were then observed. GAMA simulation with varying path width was also implemented. It has been found out that compared to their original states, panic, eating and studying will hasten evacuation, and on the other hand, sleeping and being on the bathrooms will be impedances. It is also concluded that evacuation time will be halved when path widths are doubled, however it is recommended for further studies for pathways to be modeled as spaces instead of lines. A more scientific basis for predicting agent behavior in these states is also recommended for more realistic results.

  7. UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis

    DTIC Science & Technology

    2013-06-01

    CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should

  8. Blood-pool contrast agent for pre-clinical computed tomography

    NASA Astrophysics Data System (ADS)

    Cruje, Charmainne; Tse, Justin J.; Holdsworth, David W.; Gillies, Elizabeth R.; Drangova, Maria

    2017-03-01

    Advances in nanotechnology have led to the development of blood-pool contrast agents for micro-computed tomography (micro-CT). Although long-circulating nanoparticle-based agents exist for micro-CT, they are predominantly based on iodine, which has a low atomic number. Micro-CT contrast increases when using elements with higher atomic numbers (i.e. lanthanides), particularly at higher energies. The purpose of our work was to develop and evaluate a lanthanide-based blood-pool contrast agent that is suitable for in vivo micro-CT. We synthesized a contrast agent in the form of polymer-encapsulated Gd nanoparticles and evaluated its stability in vitro. The synthesized nanoparticles were shown to have an average diameter of 127 +/- 6 nm, with good size dispersity. Particle size distribution - evaluated by dynamic light scattering over the period of two days - demonstrated no change in size of the contrast agent in water and saline. Additionally, our contrast agent was stable in a mouse serum mimic for up to 30 minutes. CT images of the synthesized contrast agent (containing 27 mg/mL of Gd) demonstrated an attenuation of over 1000 Hounsfield Units. This approach to synthesizing a Gd-based blood-pool contrast agent promises to enhance the capabilities of micro-CT imaging.

  9. A Computer Simulation of Employee Vaccination to Mitigate an Influenza Epidemic

    PubMed Central

    Lee, Bruce Y.; Brown, Shawn T.; Cooley, Philip C.; Zimmerman, Richard K.; Wheaton, William D.; Zimmer, Shanta M.; Grefenstette, John J.; Assi, Tina-Marie; Furphy, Timothy J.; Wagener, Diane K.; Burke, Donald S.

    2010-01-01

    Background Determining the effects of varying vaccine coverage, compliance, administration rates, prioritization, and timing among employees during an influenza pandemic. Methods As part of the Models of Infectious Disease Agent Study (MIDAS) network’s H1N1 influenza planning efforts, an agent-based computer simulation model (ABM) was developed of the Washington, DC metropolitan region, encompassing five metropolitan statistical areas. Each simulation run involved introducing 100 infectious individuals to initiate a 1.3 reproductive rate (R0) epidemic, consistent with H1N1 parameters to date. Another set of scenarios represented a R0=1.6 epidemic. Results An unmitigated epidemic resulted in substantial productivity losses (a mean of $112.6 million for a serologic 15% attack rate and $193.8 million for a serologic 25% attack rate), even with the relatively low estimated mortality impact of H1N1. While vaccinating Advisory Committee on Immunization Practices (ACIP) priority groups resulted in the largest savings, vaccinating all remaining workers captured additional savings and, in fact, reduced healthcare workers’ and critical infrastructure workers’ chances of infection. While employee vaccination compliance affected the epidemic, once 20% compliance was achieved, additional increases in compliance provided less incremental benefit. Even though a vast majority of the workplaces in the DC Metro region had fewer than 100 employees, focusing on vaccinating only those in larger firms (≥100 employees) was just as effective in mitigating the epidemic as trying to vaccinate all workplaces. Conclusions Timely vaccination of at least 20% of the large company workforce can play an important role in epidemic mitigation. PMID:20042311

  10. Studies of Opinion Stability for Small Dynamic Networks with Opportunistic Agents

    NASA Astrophysics Data System (ADS)

    Sobkowicz, Pawel

    There are numerous examples of societies with extremely stable mix of contrasting opinions. We argue that this stability is a result of an interplay between society network topology adjustment and opinion changing processes. To support this position we present a computer model of opinion formation based on some novel assumptions, designed to bring the model closer to social reality. In our model, the agents, in addition to changing their opinions due to influence of the rest of society and external propaganda, have the ability to modify their social network, forming links with agents sharing the same opinions and cutting the links with those they disagree with. To improve the model further we divide the agents into "fanatics" and "opportunists," depending on how easy it is to change their opinions. The simulations show significant differences compared to traditional models, where network links are static. In particular, for the dynamical model where inter-agent links are adjustable, the final network structure and opinion distribution is shown to resemble real world observations, such as social structures and persistence of minority groups even when most of the society is against them and the propaganda is strong.

  11. Agent-Based Phytoplankton Models of Cellular and Population Processes: Fostering Individual-Based Learning in Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.

    2016-02-01

    Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).

  12. Optimizing agent-based transmission models for infectious diseases.

    PubMed

    Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan

    2015-06-02

    Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.

  13. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  14. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors.

    PubMed

    Cenek, Martin; Dahl, Spencer K

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  15. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  16. Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara P.; Katopodes, Nikolaos D.

    2015-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. Additionally, a physical prototype is built to test the real-time feasibility of this computational flow control model. The prototype is a blower wind-tunnel with an elongated test section with the capability of sensing (via digital camera) an injected `contaminant' (propylene glycol smoke), and then mitigating that contaminant using actuators (compressed air operated vacuum nozzles) which are operated by a set of pressure regulators and a programmable controller. Finally, an agent-based model is developed to simulate ``agents'' (i.e. building occupants) as they evacuate a public space, and is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. NSF-CMMI #0856438.

  17. Approaching neuropsychological tasks through adaptive neurorobots

    NASA Astrophysics Data System (ADS)

    Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio

    2015-04-01

    Neuropsychological phenomena have been modelized mainly, by the mainstream approach, by attempting to reproduce their neural substrate whereas sensory-motor contingencies have attracted less attention. In this work, we introduce a simulator based on the evolutionary robotics platform Evorobot* in order to setting up in silico neuropsychological tasks. Moreover, in this study we trained artificial embodied neurorobotic agents equipped with a pan/tilt camera, provided with different neural and motor capabilities, to solve a well-known neuropsychological test: the cancellation task in which an individual is asked to cancel target stimuli surrounded by distractors. Results showed that embodied agents provided with additional motor capabilities (a zooming/attentional actuator) outperformed simple pan/tilt agents, even those equipped with more complex neural controllers and that the zooming ability is exploited to correctly categorising presented stimuli. We conclude that since the sole neural computational power cannot explain the (artificial) cognition which emerged throughout the adaptive process, such kind of modelling approach can be fruitful in neuropsychological modelling where the importance of having a body is often neglected.

  18. An Application of Artificial Intelligence to the Implementation of Electronic Commerce

    NASA Astrophysics Data System (ADS)

    Srivastava, Anoop Kumar

    In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.

  19. Autonomous Agent-Based Systems and Their Applications in Fluid Dynamics, Particle Separation, and Co-evolving Networks

    NASA Astrophysics Data System (ADS)

    Graeser, Oliver

    This thesis comprises three parts, reporting research results in Fluid Dynamics (Part I), Particle Separation (Part II) and Co-evolving Networks (Part III). Part I deals with the simulation of fluid dynamics using the lattice-Boltzmann method. Microfluidic devices often feature two-dimensional, repetitive arrays. Flows through such devices are pressure-driven and confined by solid walls. We have defined new adaptive generalised periodic boundary conditions to represent the effects of outer solid walls, and are thus able to exploit the periodicity of the array by simulating the flow through one unit cell in lieu of the entire device. The so-calculated fully developed flow describes the flow through the entire array accurately, but with computational requirements that are reduced according to the dimensions of the array. Part II discusses the problem of separating macromolecules like proteins or DNA coils. The reliable separation of such molecules is a crucial task in molecular biology. The use of Brownian ratchets as mechanisms for the separation of such particles has been proposed and discussed during the last decade. Pressure-driven flows have so far been dismissed as possible driving forces for Brownian ratchets, as they do not generate ratchet asymmetry. We propose a microfluidic design that uses pressure-driven flows to create asymmetry and hence allows particle separation. The dependence of the asymmetry on various factors of the microfluidic geometry is discussed. We further exemplify the feasibility of our approach using Brownian dynamics simulations of particles of different sizes in such a device. The results show that ratchet-based particle separation using flows as the driving force is possible. Simulation results and ratchet theory predictions are in excellent agreement. Part III deals with the co-evolution of networks and dynamic models. A group of agents occupies the nodes of a network, which defines the relationship between these agents. The evolution of the agents is defined by the rules of the dynamic model and depends on the relationship between agents, i.e., the state of the network. In return, the evolution of the network depends on the state of the dynamic model. The concept is introduced through the adaptive SIS model. We show that the previously used criterion determining the critical infected fraction, i.e., the number of infected agents required to sustain the epidemic, is inappropriate for this model. We introduce a different criterion and show that the critical infected fraction so determined is in good agreement with results obtained by numerical simulations. We further discuss the concept of co-evolving dynamics using the Snowdrift Game as a model paradigm. Co-evolution occurs through agents cutting dissatisfied links and rewiring to other agents at random. The effect of co-evolution on the emergence of cooperation is discussed using a mean-field theory and numerical simulations. A transition between a connected and a disconnected, highly cooperative state of the system is observed, and explained using the mean-field model. Quantitative deviations regarding the level of cooperation in the disconnected regime can be fully resolved through an improved mean-field theory that includes the effect of random fluctuations into its model.

  20. In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp® simulator platform.

    PubMed

    Spanakis, Marios; Marias, Kostas

    2014-12-01

    Gadofosveset is a Gd-based contrast agent used for magnetic resonance imaging (MRI). Gadolinium kinetic distribution models are implemented in T1-weighted dynamic contrast-enhanced perfusion MRI for characterization of lesion sites in the body. Physiology changes in a disease state potentially can influence the pharmacokinetics of drugs and to this respect modify the distribution properties of contrast agents. This work focuses on the in silico modelling of pharmacokinetic properties of gadofosveset in different population groups through the application of physiologically-based pharmacokinetic models (PBPK) embedded in Simcyp® population pharmacokinetics platform. Physicochemical and pharmacokinetic properties of gadofosveset were introduced into Simcyp® simulator platform and a min-PBPK model was applied. In silico clinical trials were generated simulating the administration of the recommended dose for the contrast agent (i.v., 30 mg/kg) in population cohorts of healthy volunteers, obese, renal and liver impairment, and in a generated virtual oncology population. Results were evaluated regarding basic pharmacokinetic parameters of Cmax, AUC and systemic CL and differences were assessed through ANOVA and estimation of ratio of geometric mean between healthy volunteers and the other population groups. Simcyp® predicted a mean Cmax = 551.60 mg/l, a mean AUC = 4079.12 mg/L*h and a mean systemic CL = 0.56 L/h for the virtual population of healthy volunteers. Obese population showed a modulation in Cmax and CL, attributed to increased administered dose. In renal and liver impairment cohorts a significant modulation in Cmax, AUC and CL of gadofosveset is predicted. Oncology population exhibited statistical significant differences regarding AUC when compared with healthy volunteers. This work employed Simcyp® population pharmacokinetics platform in order to compute gadofosveset's pharmacokinetic profiles through PBPK models and in silico clinical trials and evaluate possible differences between population groups. The approach showed promising results that could provide new insights regarding administration of contrast agents in special population cohorts. In silico pharmacokinetics could further be used for evaluating of possible toxicity, interpretation of MRI PK image maps and development of novel contrast agents.

  1. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    PubMed

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  2. A demonstrative model of a lunar base simulation on a personal computer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The initial demonstration model of a lunar base simulation is described. This initial model was developed on the personal computer level to demonstrate feasibility and technique before proceeding to a larger computer-based model. Lotus Symphony Version 1.1 software was used to base the demonstration model on an personal computer with an MS-DOS operating system. The personal computer-based model determined the applicability of lunar base modeling techniques developed at an LSPI/NASA workshop. In addition, the personnal computer-based demonstration model defined a modeling structure that could be employed on a larger, more comprehensive VAX-based lunar base simulation. Refinement of this personal computer model and the development of a VAX-based model is planned in the near future.

  3. Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model

    DTIC Science & Technology

    2009-08-01

    has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System

  4. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  5. Multi-Agent Methods for the Configuration of Random Nanocomputers

    NASA Technical Reports Server (NTRS)

    Lawson, John W.

    2004-01-01

    As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.

  6. Chaotic genetic algorithm and Adaboost ensemble metamodeling approach for optimum resource planning in emergency departments.

    PubMed

    Yousefi, Milad; Yousefi, Moslem; Ferreira, Ricardo Poley Martins; Kim, Joong Hoon; Fogliatto, Flavio S

    2018-01-01

    Long length of stay and overcrowding in emergency departments (EDs) are two common problems in the healthcare industry. To decrease the average length of stay (ALOS) and tackle overcrowding, numerous resources, including the number of doctors, nurses and receptionists need to be adjusted, while a number of constraints are to be considered at the same time. In this study, an efficient method based on agent-based simulation, machine learning and the genetic algorithm (GA) is presented to determine optimum resource allocation in emergency departments. GA can effectively explore the entire domain of all 19 variables and identify the optimum resource allocation through evolution and mimicking the survival of the fittest concept. A chaotic mutation operator is used in this study to boost GA performance. A model of the system needs to be run several thousand times through the GA evolution process to evaluate each solution, hence the process is computationally expensive. To overcome this drawback, a robust metamodel is initially constructed based on an agent-based system simulation. The simulation exhibits ED performance with various resource allocations and trains the metamodel. The metamodel is created with an ensemble of the adaptive neuro-fuzzy inference system (ANFIS), feedforward neural network (FFNN) and recurrent neural network (RNN) using the adaptive boosting (AdaBoost) ensemble algorithm. The proposed GA-based optimization approach is tested in a public ED, and it is shown to decrease the ALOS in this ED case study by 14%. Additionally, the proposed metamodel shows a 26.6% improvement compared to the average results of ANFIS, FFNN and RNN in terms of mean absolute percentage error (MAPE). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. On the Effectiveness of Social Norms Intervention in College Drinking: The Roles of Identity Verification and Peer Influence.

    PubMed

    Fitzpatrick, Ben G; Martinez, Jason; Polidan, Elizabeth; Angelis, Ekaterini

    2016-01-01

    The application of social norms theory in the study of college drinking centers on the ideas that incorrect perceptions of drinking norms encourage problematic drinking behavior and that correcting misperceptions can mitigate problems. The design and execution of social norms interventions can be improved with a deeper understanding of causal mechanisms connecting misperception to drinking behavior. We develop an agent-based computational simulation that uses identity control theory and peer influence (PI) to model interactions that affect drinking. Using data from the College Alcohol Survey and Social Norms Marketing Research Project, we inform model parameters for agent drinking identities and perceptions. We simulate social norms campaigns that reach progressively larger fractions of the student population, and we consider the strength of the campaign in terms of changing student perception and resulting behavior. We observe a general reduction in heavy episodic drinking (HED) as students are affected by the intervention. As campaigns reached larger fractions of students, the reduction rate diminishes, in some cases actually making a slight reverse. The way in which students "take the message to heart" can have a significant impact as well: The psychological factors involved in identity control and PI have both positive and negative effects on HED rates. With whom agents associate at drinking events also impacts drinking behavior and intervention effectiveness. Simulations suggest that reducing misperception can reduce HED. When agents adhere strongly to identity verification and when misperceptions affect identity appraisals, social norms campaigns can bring about large reductions. PI, self-monitoring, and socializing with like-drinking peers appear to moderate the effect. Copyright © 2015 by the Research Society on Alcoholism.

  8. Constructing Agent Model for Virtual Training Systems

    NASA Astrophysics Data System (ADS)

    Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru

    Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.

  9. Use of agents to implement an integrated computing environment

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.

  10. Simulating storm surge inundation and damage potential within complex port facilities

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.

  11. Optimization of space system development resources

    NASA Astrophysics Data System (ADS)

    Kosmann, William J.; Sarkani, Shahram; Mazzuchi, Thomas

    2013-06-01

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level cost growths ranging from 23% to 77%. A new study of 26 historical NASA Science instrument set developments using expert judgment to reallocate key development resources has an average cost growth of 73.77%. Twice in history, a barter-based mechanism has been used to reallocate key development resources during instrument development. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to reallocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource reallocation simulation was used to perform 300 instrument development simulations, using barter to reallocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource reallocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource reallocation should work on spacecraft development as well as it has worked on instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource reallocation has never been tried in a spacecraft development, no historical results exist, and a simulation of using that approach must be developed. The instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource reallocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource reallocation will result in lower expected cost growth.

  12. Agent-Based Simulation to Support the Effectiveness, Procurement, and Employment of Non-Lethal Weapon Systems

    DTIC Science & Technology

    2017-06-01

    cases have the most significant impact on reducing the number of lethal shots fired in the simulation. Table 10 shows the reduction in the average...Figure ES-2 was developed to show the results of the focused study on maximum effective range. After analyzing the results of the 1,700 simulated...toward other agents based on whose side they are on at that time. This attribute is critical to this study as the sidedness of the local population is

  13. Improving Search Algorithms by Using Intelligent Coordinates

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  14. Improving search algorithms by using intelligent coordinates

    NASA Astrophysics Data System (ADS)

    Wolpert, David; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent η is self-interested; it sets its variable to maximize its own function gη. Three factors govern such a distributed algorithm’s performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit all three factors by modifying a search algorithm’s exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based “player” engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  15. Good coupling for the multiscale patch scheme on systems with microscale heterogeneity

    NASA Astrophysics Data System (ADS)

    Bunder, J. E.; Roberts, A. J.; Kevrekidis, I. G.

    2017-05-01

    Computational simulation of microscale detailed systems is frequently only feasible over spatial domains much smaller than the macroscale of interest. The 'equation-free' methodology couples many small patches of microscale computations across space to empower efficient computational simulation over macroscale domains of interest. Motivated by molecular or agent simulations, we analyse the performance of various coupling schemes for patches when the microscale is inherently 'rough'. As a canonical problem in this universality class, we systematically analyse the case of heterogeneous diffusion on a lattice. Computer algebra explores how the dynamics of coupled patches predict the large scale emergent macroscale dynamics of the computational scheme. We determine good design for the coupling of patches by comparing the macroscale predictions from patch dynamics with the emergent macroscale on the entire domain, thus minimising the computational error of the multiscale modelling. The minimal error on the macroscale is obtained when the coupling utilises averaging regions which are between a third and a half of the patch. Moreover, when the symmetry of the inter-patch coupling matches that of the underlying microscale structure, patch dynamics predicts the desired macroscale dynamics to any specified order of error. The results confirm that the patch scheme is useful for macroscale computational simulation of a range of systems with microscale heterogeneity.

  16. KODAMA and VPC based Framework for Ubiquitous Systems and its Experiment

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenichi; Amamiya, Satoshi; Iwao, Tadashige; Zhong, Guoqiang; Kainuma, Tatsuya; Amamiya, Makoto

    Recently, agent technologies have attracted a lot of interest as an emerging programming paradigm. With such agent technologies, services are provided through collaboration among agents. At the same time, the spread of mobile technologies and communication infrastructures has made it possible to access the network anytime and from anywhere. Using agents and mobile technologies to realize ubiquitous computing systems, we propose a new framework based on KODAMA and VPC. KODAMA provides distributed management mechanisms by using the concept of community and communication infrastructure to deliver messages among agents without agents being aware of the physical network. VPC provides a method of defining peer-to-peer services based on agent communication with policy packages. By merging the characteristics of both KODAMA and VPC functions, we propose a new framework for ubiquitous computing environments. It provides distributed management functions according to the concept of agent communities, agent communications which are abstracted from the physical environment, and agent collaboration with policy packages. Using our new framework, we conducted a large-scale experiment in shopping malls in Nagoya, which sent advertisement e-mails to users' cellular phones according to user location and attributes. The empirical results showed that our new framework worked effectively for sales in shopping malls.

  17. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  18. Users matter : multi-agent systems model of high performance computing cluster users.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Hood, C. S.; Decision and Information Sciences

    2005-01-01

    High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less

  19. Artificial Exo-Society Modeling: a New Tool for SETI Research

    NASA Astrophysics Data System (ADS)

    Gardner, James N.

    2002-01-01

    One of the newest fields of complexity research is artificial society modeling. Methodologically related to artificial life research, artificial society modeling utilizes agent-based computer simulation tools like SWARM and SUGARSCAPE developed by the Santa Fe Institute, Los Alamos National Laboratory and the Bookings Institution in an effort to introduce an unprecedented degree of rigor and quantitative sophistication into social science research. The broad aim of artificial society modeling is to begin the development of a more unified social science that embeds cultural evolutionary processes in a computational environment that simulates demographics, the transmission of culture, conflict, economics, disease, the emergence of groups and coadaptation with an environment in a bottom-up fashion. When an artificial society computer model is run, artificial societal patterns emerge from the interaction of autonomous software agents (the "inhabitants" of the artificial society). Artificial society modeling invites the interpretation of society as a distributed computational system and the interpretation of social dynamics as a specialized category of computation. Artificial society modeling techniques offer the potential of computational simulation of hypothetical alien societies in much the same way that artificial life modeling techniques offer the potential to model hypothetical exobiological phenomena. NASA recently announced its intention to begin exploring the possibility of including artificial life research within the broad portfolio of scientific fields comprised by the interdisciplinary astrobiology research endeavor. It may be appropriate for SETI researchers to likewise commence an exploration of the possible inclusion of artificial exo-society modeling within the SETI research endeavor. Artificial exo-society modeling might be particularly useful in a post-detection environment by (1) coherently organizing the set of data points derived from a detected ETI signal, (2) mapping trends in the data points over time (assuming receipt of an extended ETI signal), and (3) projecting such trends forward to derive alternative cultural evolutionary scenarios for the exo-society under analysis. The latter exercise might be particularly useful to compensate for the inevitable time lag between generation of an ETI signal and receipt of an ETI signal on Earth. For this reason, such an exercise might be a helpful adjunct to the decisional process contemplated by Paragraph 9 of the Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence.

  20. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Shorebird Migration Patterns in Response to Climate Change: A Modeling Approach

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2010-01-01

    The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies offer new opportunities for the application of mechanistic models to predict how continental scale bird migration patterns may change in response to environmental change. In earlier studies, we explored the phenotypic plasticity of a migratory population of Pectoral sandpipers by simulating the movement patterns of an ensemble of 10,000 individual birds in response to changes in stopover locations as an indicator of the impacts of wetland loss and inter-annual variability on the fitness of migratory shorebirds. We used an individual based, biophysical migration model, driven by remotely sensed land surface data, climate data, and biological field data. Mean stop-over durations and stop-over frequency with latitude predicted from our model for nominal cases were consistent with results reported in the literature and available field data. In this study, we take advantage of new computing capabilities enabled by recent GP-GPU computing paradigms and commodity hardware (general purchase computing on graphics processing units). Several aspects of our individual based (agent modeling) approach lend themselves well to GP-GPU computing. We have been able to allocate compute-intensive tasks to the graphics processing units, and now simulate ensembles of 400,000 birds at varying spatial resolutions along the central North American flyway. We are incorporating additional, species specific, mechanistic processes to better reflect the processes underlying bird phenotypic plasticity responses to different climate change scenarios in the central U.S.

  2. Evolutionary computation in zoology and ecology.

    PubMed

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  3. Evolutionary computation in zoology and ecology

    PubMed Central

    2017-01-01

    Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029

  4. Agent-based computational models to explore diffusion of medical innovations among cardiologists.

    PubMed

    Borracci, Raul A; Giorgi, Mariano A

    2018-04-01

    Diffusion of medical innovations among physicians rests on a set of theoretical assumptions, including learning and decision-making under uncertainty, social-normative pressures, medical expert knowledge, competitive concerns, network performance effects, professional autonomy or individualism and scientific evidence. The aim of this study was to develop and test four real data-based, agent-based computational models (ABM) to qualitatively and quantitatively explore the factors associated with diffusion and application of innovations among cardiologists. Four ABM were developed to study diffusion and application of medical innovations among cardiologists, considering physicians' network connections, leaders' opinions, "adopters' categories", physicians' autonomy, scientific evidence, patients' pressure, affordability for the end-user population, and promotion from companies. Simulations demonstrated that social imitation among local cardiologists was sufficient for innovation diffusion, as long as opinion leaders did not act as detractors of the innovation. Even in the absence of full scientific evidence to support innovation, up to one-fifth of cardiologists could accept it when local leaders acted as promoters. Patients' pressure showed a large effect size (Cohen's d > 1.2) on the proportion of cardiologists applying an innovation. Two qualitative patterns (speckled and granular) appeared associated to traditional Gompertz and sigmoid cumulative distributions. These computational models provided a semiquantitative insight on the emergent collective behavior of a physician population facing the acceptance or refusal of medical innovations. Inclusion in the models of factors related to patients' pressure and accesibility to medical coverage revealed the contrast between accepting and effectively adopting a new product or technology for population health care. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Computational Modeling and Simulation of Genital Tubercle ...

    EPA Pesticide Factsheets

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating male embryos. The model, constructed in CompuCell3D, implemented spatially dynamic signals from SHH, FGF10, and androgen signaling pathways. These signals modulated stochastic cell behaviors, such as differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent property of the model that was quantitatively dependent on SHH and FGF10 induced effects on mesenchymal proliferation and endodermal apoptosis, ultimately linked to androgen signaling. In the absence of androgenization, simulated genital tubercle development defaulted to the female condition. Intermediate phenotypes associated with partial androgen deficiency resulted in incomplete closure. Using this computer model, complex relationships between urethral tube closure defects and disruption of underlying signaling pathways could be probed theoretically in multiplex disturbance scenarios and modeled into probabilistic predictions for individual risk for hypospadias and potentially other developmental defects of the male genital tubercle. We identify the minimal molecular network that determines the outcome of male genital tubercle development in mice.

  6. Modeling the Effects of Lipid Composition on Stratum Corneum Bilayers Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Huzil, J. Torin; Sivaloganathan, Siv; Kohandel, Mohammad; Foldvari, Marianna

    2011-11-01

    The advancement of dermal and transdermal drug delivery requires the development of delivery systems that are suitable for large protein and nucleic acid-based therapeutic agents. However, a complete mechanistic understanding of the physical barrier properties associated with the epidermis, specifically the membrane structures within the stratum corneum, has yet to be developed. Here, we describe the assembly and computational modeling of stratum corneum lipid bilayers constructed from varying ratios of their constituent lipids (ceramide, free fatty acids and cholesterol) to determine if there is a difference in the physical properties of stratum corneum compositions.

  7. A systems approach to healthcare: agent-based modeling, community mental health, and population well-being.

    PubMed

    Silverman, Barry G; Hanrahan, Nancy; Bharathy, Gnana; Gordon, Kim; Johnson, Dan

    2015-02-01

    Explore whether agent-based modeling and simulation can help healthcare administrators discover interventions that increase population wellness and quality of care while, simultaneously, decreasing costs. Since important dynamics often lie in the social determinants outside the health facilities that provide services, this study thus models the problem at three levels (individuals, organizations, and society). The study explores the utility of translating an existing (prize winning) software for modeling complex societal systems and agent's daily life activities (like a Sim City style of software), into a desired decision support system. A case study tests if the 3 levels of system modeling approach is feasible, valid, and useful. The case study involves an urban population with serious mental health and Philadelphia's Medicaid population (n=527,056), in particular. Section 3 explains the models using data from the case study and thereby establishes feasibility of the approach for modeling a real system. The models were trained and tuned using national epidemiologic datasets and various domain expert inputs. To avoid co-mingling of training and testing data, the simulations were then run and compared (Section 4.1) to an analysis of 250,000 Philadelphia patient hospital admissions for the year 2010 in terms of re-hospitalization rate, number of doctor visits, and days in hospital. Based on the Student t-test, deviations between simulated vs. real world outcomes are not statistically significant. Validity is thus established for the 2008-2010 timeframe. We computed models of various types of interventions that were ineffective as well as 4 categories of interventions (e.g., reduced per-nurse caseload, increased check-ins and stays, etc.) that result in improvement in well-being and cost. The 3 level approach appears to be useful to help health administrators sort through system complexities to find effective interventions at lower costs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The ultimatum game: Discrete vs. continuous offers

    NASA Astrophysics Data System (ADS)

    Dishon-Berkovits, Miriam; Berkovits, Richard

    2014-09-01

    In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.

  9. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  10. Gryphon: A Hybrid Agent-Based Modeling and Simulation Platform for Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Wang, Jijun; McGowan, Michael; Vaidyanathan, Ganesh; Younger, Kristofer

    In this paper we present Gryphon, a hybrid agent-based stochastic modeling and simulation platform developed for characterizing the geographic spread of infectious diseases and the effects of interventions. We study both local and non-local transmission dynamics of stochastic simulations based on the published parameters and data for SARS. The results suggest that the expected numbers of infections and the timeline of control strategies predicted by our stochastic model are in reasonably good agreement with previous studies. These preliminary results indicate that Gryphon is able to characterize other future infectious diseases and identify endangered regions in advance.

  11. Affinity extraction of emerging contaminants from water based on bovine serum albumin as a binding agent.

    PubMed

    Papastavros, Efthimia; Remmers, Rachael A; Snow, Daniel D; Cassada, David A; Hage, David S

    2018-03-01

    Affinity sorbents using bovine serum albumin as a binding agent were developed and tested for the extraction of environmental contaminants from water. Computer simulations based on a countercurrent distribution model were also used to study the behavior of these sorbents. Several model drugs, pesticides, and hormones of interest as emerging contaminants were considered in this work, with carbamazepine being used as a representative analyte when coupling the albumin column on-line with liquid chromatography and tandem mass spectrometry. The albumin column was found to be capable of extracting carbamazepine from aqueous solutions that contained trace levels of this analyte. Further studies of the bovine serum albumin sorbent indicated that it had higher retention under aqueous conditions than a traditional C 18 support for most of the tested emerging contaminants. Potential advantages of using these protein-based sorbents included the low cost of bovine serum albumin and its ability to bind to a relatively wide range of drugs and related compounds. It was also shown how simulations could be used to describe the elution behavior of the model compounds on the bovine serum albumin sorbents as an aid in optimizing the retention and selectivity of these supports for use with liquid chromatography or methods such as liquid chromatography with tandem mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour

    PubMed Central

    Wynn, Michelle L.; Kulesa, Paul M.; Schnell, Santiago

    2012-01-01

    Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell–cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell–cell contact. PMID:22219399

  13. Interaction and Communication of Agents in Networks and Language Complexity Estimates

    NASA Technical Reports Server (NTRS)

    Smid, Jan; Obitko, Marek; Fisher, David; Truszkowski, Walt

    2004-01-01

    Knowledge acquisition and sharing are arguably the most critical activities of communicating agents. We report about our on-going project featuring knowledge acquisition and sharing among communicating agents embedded in a network. The applications we target range from hardware robots to virtual entities such as internet agents. Agent experiments can be simulated using a convenient simulation language. We analyzed the complexity of communicating agent simulations using Java and Easel. Scenarios we have studied are listed below. The communication among agents can range from declarative queries to sub-natural language queries. 1) A set of agents monitoring an object are asked to build activity profiles based on exchanging elementary observations; 2) A set of car drivers form a line, where every car is following its predecessor. An unsafe distance cm create a strong wave in the line. Individual agents are asked to incorporate and apply directions how to avoid the wave. 3) A set of micro-vehicles form a grid and are asked to propagate information and concepts to a central server.

  14. Multi-Agent Framework for Virtual Learning Spaces.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Nunez, Gustavo

    1999-01-01

    Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…

  15. A Computer Simulation of Community Pharmacy Practice for Educational Use.

    PubMed

    Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-11-15

    To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.

  16. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  17. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  18. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  19. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  20. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    PubMed

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  1. Re-Examining of Moffitt’s Theory of Delinquency through Agent Based Modeling

    PubMed Central

    Leaw, Jia Ning; Ang, Rebecca P.; Huan, Vivien S.; Chan, Wei Teng; Cheong, Siew Ann

    2015-01-01

    Moffitt’s theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome. PMID:26062022

  2. Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study

    PubMed Central

    2013-01-01

    Background To explore novel platinum-based anticancer agents that are distinct from the structure and interaction mode of the traditional cisplatin by forming the bifunctional intrastrand 1,2 GpG adduct, the monofunctional platinum + DNA adducts with extensive non-covalent interactions had been studied. It was reported that the monofunctional testosterone-based platinum(II) agents present the high anticancer activity. Moreover, it was also found that the testosterone-based platinum agents could cause the DNA helix to undergo significant unwinding and bending over the non-testosterone-based platinum agents. However, the interaction mechanisms of these platinum agents with DNA at the atomic level are not yet clear so far. Results In the present work, we used molecular dynamics (MD) simulations and DNA conformational dynamics calculations to study the DNA distortion properties of the testosterone-based platinum + DNA, the improved testosterone-based platinum + DNA and the non-testosterone-based platinum + DNA adducts. The results show that the intercalative interaction of the improved flexible testosterone-based platinum agent with DNA molecule could cause larger DNA conformational distortion than the groove-face interaction of the rigid testosterone-based platinum agent with DNA molecule. Further investigations for the non-testosterone-based platinum agent reveal the occurrence of insignificant change of DNA conformation due to the absence of testosterone ligand in such agent. Based on the DNA dynamics analysis, the DNA base motions relating to DNA groove parameter changes and hydrogen bond destruction of DNA base pairs were also discussed in this work. Conclusions The flexible linker in the improved testosterone-based platinum agent causes an intercalative interaction with DNA in the improved testosterone-based platinum + DNA adduct, which is different from the groove-face interaction caused by a rigid linker in the testosterone-based platinum agent. The present investigations provide useful information of DNA conformation affected by a testosterone-based platinum complex at the atomic level. PMID:23517640

  3. Transition to parenthood: the role of social interaction and endogenous networks.

    PubMed

    Diaz, Belinda Aparicio; Fent, Thomas; Prskawetz, Alexia; Bernardi, Laura

    2011-05-01

    Empirical studies indicate that the transition to parenthood is influenced by an individual's peer group. To study the mechanisms creating interdependencies across individuals' transition to parenthood and its timing, we apply an agent-based simulation model. We build a one-sex model and provide agents with three different characteristics: age, intended education, and parity. Agents endogenously form their network based on social closeness. Network members may then influence the agents' transition to higher parity levels. Our numerical simulations indicate that accounting for social interactions can explain the shift of first-birth probabilities in Austria during the period 1984 to 2004. Moreover, we apply our model to forecast age-specific fertility rates up to 2016.

  4. Mission planning and simulation via intelligent agents

    NASA Technical Reports Server (NTRS)

    Gargan, Robert A., Jr.; Tilley, Randall W.

    1987-01-01

    A system that can operate from a flight manifest to plan and simulate payload preparation and transport via Shuttle flights is described. The design alternatives and the prototype implementation of the payload hardware and inventory tracking system are discussed. It is shown how intelligent agents can be used to generate mission schedules, and how, through the use of these intelligent agents, knowledge becomes separated into small manageable knowledge bases.

  5. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment;HDR; Uterine cervix cancer; Vaginal balloon packing; Contrast; Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.

    2011-07-15

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less

  6. Simulation of trading strategies in the electricity market

    NASA Astrophysics Data System (ADS)

    Charkiewicz, Kamil; Nowak, Robert

    2011-10-01

    The main objective of the energy market existence is reduction of the total cost of production, transport and distribution of energy, and so the prices paid by terminal consumers. Energy market contains few markets that are varying on operational rules, the important segments: the Futures Contract Market and Next Day Market are analyzed in presented approach. The computer system was developed to simulate the Polish Energy Market. This system use the multi-agent approach, where each agent is the separate shared library with defined interface. The software was used to compare strategies for players in energy market, where the strategies uses auto-regression, k-nearest neighbours, neural network and mixed algorithm, to predict the next price.

  7. Evaluating a Computational Model of Emotion

    DTIC Science & Technology

    2006-01-01

    empathy and intrinsic motivation in a learning-by-teaching system. Simulation-driven approaches aim at simulating the cognitive process underlying...9, pp. 1-44, 1999. [9] K. Ryokai, C. Vaucelle, and J. Cassell, "Virtual Peers as Partners in Storytelling and Literacy Learning," Journal of...Australia, 2003. [28] M. Cavazza, F. Charles, and S. J. Mead, "Agents’ Interaction in Virtual Storytelling ," presented at Third Interna- tional Workshop on

  8. Seldon v.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nina; Ko, Teresa; Shneider, Max

    Seldon is an agent-based social simulation framework that uniquely integrates concepts from a variety of different research areas including psychology, social science, and agent-based modeling. Development has been taking place for a number of years, previously focusing on gang and terrorist recruitment. The toolkit consists of simple agents (individuals) and abstract agents (groups of individuals representing social/institutional concepts) that interact according to exchangeable rule sets (i.e. linear attraction, linear reinforcement). Each agent has a set of customizable attributes that get modified during the interactions. Interactions create relationships between agents, and each agent has a maximum amount of relationship energy thatmore » it can expend. As relationships evolve, they form multiple levels of social networks (i.e. acquaintances, friends, cliques) that in turn drive future interactions. Agents can also interact randomly if they are not connected through a network, mimicking the chance interactions that real people have in everyday life. We are currently integrating Seldon with the cognitive framework (also developed at Sandia). Each individual agent has a lightweight cognitive model that is created automatically from textual sources. Cognitive information is exchanged during interactions, and can also be injected into a running simulation. The entire framework has been parallelized to allow for larger simulations in an HPC environment. We have also added more detail to the agents themselves (a"Big Five" personality model) and their interactions (an enhanced relationship model) for a more realistic representation.« less

  9. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    PubMed

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-07

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  10. Mitigating active shooter impact: Analysis for policy options based on agent/computer-based modeling.

    PubMed

    Anklam, Charles; Kirby, Adam; Sharevski, Filipo; Dietz, J Eric

    2015-01-01

    Active shooting violence at confined settings, such as educational institutions, poses serious security concerns to public safety. In studying the effects of active shooter scenarios, the common denominator associated with all events, regardless of reason/intent for shooter motives, or type of weapons used, was the location chosen and time expended between the beginning of the event and its culmination. This in turn directly correlates to number of casualties incurred in any given event. The longer the event protracts, the more casualties are incurred until law enforcement or another barrier can react and culminate the situation. Using AnyLogic technology, devise modeling scenarios to test multiple hypotheses against free-agent modeling simulation to determine the best method to reduce casualties associated with active shooter scenarios. Test four possible scenarios of responding to active shooter in a public school setting using agent-based computer modeling techniques-scenario 1: basic scenario where no access control or any type of security is used within the school; scenario 2, scenario assumes that concealed carry individual(s) (5-10 percent of the work force) are present in the school; scenario 3, scenario assumes that the school has assigned resource officer; scenario 4, scenario assumes that the school has assigned resource officer and concealed carry individual(s) (5-10 percent) present in the school. Statistical data from modeling scenarios indicating which tested hypothesis resulted in fewer casualties and quicker culmination of event. The use of AnyLogic proved the initial hypothesis that a decrease on response time to an active shooter scenario directly reduced victim casualties. Modeling tests show statistically significant fewer casualties in scenarios where on scene armed responders such as resource officers and concealed carry personnel were present.

  11. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.

  12. Anticipating surprise: Using agent-based alternative futures simulation modeling to identify and map surprising fires in the Willamette Valley, Oregon USA

    Treesearch

    David Hulse; Allan Branscomb; Chris Enright; Bart Johnson; Cody Evers; John Bolte; Alan Ager

    2016-01-01

    This article offers a literature-supported conception and empirically grounded analysis of surprise by exploring the capacity of scenario-driven, agent-based simulation models to better anticipate it. Building on literature-derived definitions and typologies of surprise, and using results from a modeled 81,000 ha study area in a wildland-urban interface of western...

  13. Agent-Based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm

    DTIC Science & Technology

    2011-06-01

    de Investigacion, Programas y Desarrollo de la Armada Armada de Chile CHILE 10. CAPT Jeffrey Kline, USN(ret.) Naval Postgraduate School Monterey, California 91 ...this de - fensive swarm system, an agent-based simulation model is developed, and appropriate designs of experiments and statistical analyses are... de - velopment and implementation of counter UAV technology from readily-available commercial products. The organization leverages the “largest

  14. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department.

    PubMed

    Kittipittayakorn, Cholada; Ying, Kuo-Ching

    2016-01-01

    Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries' healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES) and agent-based simulation (ABS) to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department.

  15. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department

    PubMed Central

    Kittipittayakorn, Cholada

    2016-01-01

    Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries' healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES) and agent-based simulation (ABS) to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department. PMID:27195606

  16. On System Engineering a Barter-Based Re-allocation of Space System Key Development Resources

    NASA Astrophysics Data System (ADS)

    Kosmann, William J.

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level development cost growths ranging from 23 to 77%. A new study of 26 historical NASA science instrument set developments using expert judgment to re-allocate key development resources has an average cost growth of 73.77%. Twice in history, during the Cassini and EOS-Terra science instrument developments, a barter-based mechanism has been used to re-allocate key development resources. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to re-allocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource re-allocation simulation was used to perform 300 instrument development simulations, using barter to re-allocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource re-allocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource re-allocation should work on science spacecraft development as well as it has worked on science instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource re-allocation has never been tried in a spacecraft development, no historical results exist, and an inference on the means test is not possible. A simulation of using barter-based resource re-allocation should be developed. The NetLogo instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource re-allocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource re-allocation will result in lower expected cost growth.

  17. NanoDesign: Concepts and Software for a Nanotechnology Based on Functionalized Fullerenes

    NASA Technical Reports Server (NTRS)

    Globus, Al; Jaffe, Richard; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Eric Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. While attractive, diamonoid nanotechnology is not physically accessible with straightforward extensions of current laboratory techniques. We propose a nanotechnology based on functionalized fullerenes and investigate carbon nanotube based gears with teeth added via a benzyne reaction known to occur with C60. The gears are single-walled carbon nanotubes with appended coenzyme groups for teeth. Fullerenes are in widespread laboratory use and can be functionalized in many ways. Companion papers computationally demonstrate the properties of these gears (they appear to work) and the accessibility of the benzyne/nanotube reaction. This paper describes the molecular design techniques and rationale as well as the software that implements these design techniques. The software is a set of persistent C++ objects controlled by TCL command scripts. The c++/tcl interface is automatically generated by a software system called tcl_c++ developed by the author and described here. The objects keep track of different portions of the molecular machinery to allow different simulation techniques and boundary conditions to be applied as appropriate. This capability has been required to demonstrate (computationally) our gear's feasibility. A new distributed software architecture featuring a WWW universal client, CORBA distributed objects, and agent software is under consideration. The software architecture is intended to eventually enable a widely disbursed group to develop complex simulated molecular machines.

  18. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  19. Movie magic in the clinic: computer-generated characters for automated health counseling.

    PubMed

    Bickmore, Timothy

    2008-11-06

    In this presentation, I demonstrate how many of the technologies used in movie special effects and games have been successfully used in health education and behavior change interventions. Computer-animated health counselors simulate human face-to-face dialogue as a computer interface medium, including not only verbal behavior but nonverbal conversational behavior such as hand gesture, body posture shifts, and facial display of emotion. This technology has now been successfully used in a wide range of health interventions for education and counseling of patients and consumers, including applications in physical activity promotion, medication adherence, and hospital discharge. These automated counselors have been deployed on home computers, hospital-based touch screen kiosks, and mobile devices with integrated health behavior sensing capability. Development of these agents is an interdisciplinary endeavor spanning the fields of character modeling and animation, computational linguistics, artificial intelligence, health communication and behavioral medicine. I will give demonstrations of several fielded systems, describe the technologies and methodologies underlying their development, and present results from five randomized controlled trials that have been completed or are in progress.

  20. AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*

    PubMed Central

    Bruch, Elizabeth; Atwell, Jon

    2014-01-01

    Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351

  1. Impact of different policies on unhealthy dietary behaviors in an urban adult population: an agent-based simulation model.

    PubMed

    Zhang, Donglan; Giabbanelli, Philippe J; Arah, Onyebuchi A; Zimmerman, Frederick J

    2014-07-01

    Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems.

  2. A market-based optimization approach to sensor and resource management

    NASA Astrophysics Data System (ADS)

    Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.

    2006-05-01

    Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.

  3. Mechanical positioning of multiple nuclei in muscle cells.

    PubMed

    Manhart, Angelika; Windner, Stefanie; Baylies, Mary; Mogilner, Alex

    2018-06-01

    Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers.

  4. BUDEM: an urban growth simulation model using CA for Beijing metropolitan area

    NASA Astrophysics Data System (ADS)

    Long, Ying; Shen, Zhenjiang; Du, Liqun; Mao, Qizhi; Gao, Zhanping

    2008-10-01

    It is in great need of identifying the future urban form of Beijing, which faces challenges of rapid growth in urban development projects implemented in Beijing. We develop Beijing Urban Developing Model (BUDEM in short) to support urban planning and corresponding policies evaluation. BUDEM is the spatio-temporal dynamic model for simulating urban growth in Beijing metropolitan area, using cellular automata (CA) and Multi-agent system (MAS) approaches. In this phase, the computer simulation using CA in Beijing metropolitan area is conducted, which attempts to provide a premise of urban activities including different kinds of urban development projects for industrial plants, shopping facilities, houses. In the paper, concept model of BUDEM is introduced, which is established basing on prevalent urban growth theories. The method integrating logistic regression and MonoLoop is used to retrieve weights in the transition rule by MCE. After model sensibility analysis, we apply BUDEM into three aspects of urban planning practices: (1) Identifying urban growth mechanism in various historical phases since 1986; (2) Identifying urban growth policies needed to implement desired urban form (BEIJING2020), namely planned urban form; (3) Simulating urban growth scenarios of 2049 (BEIJING2049) basing on the urban form and parameter set of BEIJING2020.

  5. Mitigating randomness of consumer preferences under certain conditional choices

    NASA Astrophysics Data System (ADS)

    Bothos, John M. A.; Thanos, Konstantinos-Georgios; Papadopoulou, Eirini; Daveas, Stelios; Thomopoulos, Stelios C. A.

    2017-05-01

    Agent-based crowd behaviour consists a significant field of research that has drawn a lot of attention in recent years. Agent-based crowd simulation techniques have been used excessively to forecast the behaviour of larger or smaller crowds in terms of certain given conditions influenced by specific cognition models and behavioural rules and norms, imposed from the beginning. Our research employs conditional event algebra, statistical methodology and agent-based crowd simulation techniques in developing a behavioural econometric model about the selection of certain economic behaviour by a consumer that faces a spectre of potential choices when moving and acting in a multiplex mall. More specifically we try to analyse the influence of demographic, economic, social and cultural factors on the economic behaviour of a certain individual and then we try to link its behaviour with the general behaviour of the crowds of consumers in multiplex malls using agent-based crowd simulation techniques. We then run our model using Generalized Least Squares and Maximum Likelihood methods to come up with the most probable forecast estimations, regarding the agent's behaviour. Our model is indicative about the formation of consumers' spectre of choices in multiplex malls under the condition of predefined preferences and can be used as a guide for further research in this area.

  6. Quantitative Agent Based Model of User Behavior in an Internet Discussion Forum

    PubMed Central

    Sobkowicz, Pawel

    2013-01-01

    The paper presents an agent based simulation of opinion evolution, based on a nonlinear emotion/information/opinion (E/I/O) individual dynamics, to an actual Internet discussion forum. The goal is to reproduce the results of two-year long observations and analyses of the user communication behavior and of the expressed opinions and emotions, via simulations using an agent based model. The model allowed to derive various characteristics of the forum, including the distribution of user activity and popularity (outdegree and indegree), the distribution of length of dialogs between the participants, their political sympathies and the emotional content and purpose of the comments. The parameters used in the model have intuitive meanings, and can be translated into psychological observables. PMID:24324606

  7. Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim; Farris, Amy Voss; Satabdi, Basu

    2016-01-01

    In this paper, we present a third-grade ecology learning environment that integrates two forms of modeling--embodied modeling and agent-based modeling (ABMs)--through the generation of mathematical representations that are common to both forms of modeling. The term "agent" in the context of ABMs indicates individual computational objects…

  8. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  9. Using an agent-based model to analyze the dynamic communication network of the immune response

    PubMed Central

    2011-01-01

    Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies. PMID:21247471

  10. Development of an E-Prime Based Computer Simulation of an Interactive Human Rights Violation Negotiation Script (Developpement d’un Programme de Simulation par Ordinateur Fonde sur le Logiciel E Prime pour la Negociation Interactive en cas de Violation des Droits de la Personne)

    DTIC Science & Technology

    2010-12-01

    Base ( CFB ) Kingston. The computer simulation developed in this project is intended to be used for future research and as a possible training platform...DRDC Toronto No. CR 2010-055 Development of an E-Prime based computer simulation of an interactive Human Rights Violation negotiation script...Abstract This report describes the method of developing an E-Prime computer simulation of an interactive Human Rights Violation (HRV) negotiation. An

  11. Fusing terrain and goals: agent control in urban environments

    NASA Astrophysics Data System (ADS)

    Kaptan, Varol; Gelenbe, Erol

    2006-04-01

    The changing face of contemporary military conflicts has forced a major shift of focus in tactical planning and evaluation from the classical Cold War battlefield to an asymmetric guerrilla-type warfare in densely populated urban areas. The new arena of conflict presents unique operational difficulties due to factors like complex mobility restrictions and the necessity to preserve civilian lives and infrastructure. In this paper we present a novel method for autonomous agent control in an urban environment. Our approach is based on fusing terrain information and agent goals for the purpose of transforming the problem of navigation in a complex environment with many obstacles into the easier problem of navigation in a virtual obstacle-free space. The main advantage of our approach is its ability to act as an adapter layer for a number of efficient agent control techniques which normally show poor performance when applied to an environment with many complex obstacles. Because of the very low computational and space complexity at runtime, our method is also particularly well suited for simulation or control of a huge number of agents (military as well as civilian) in a complex urban environment where traditional path-planning may be too expensive or where a just-in-time decision with hard real-time constraints is required.

  12. Effects of vascularization on cancer nanochemotherapy outcomes

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  13. Agent-based model for rural-urban migration: A dynamic consideration

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid

    2015-10-01

    This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.

  14. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    NASA Astrophysics Data System (ADS)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  15. An evolutionary strategy based on partial imitation for solving optimization problems

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2016-12-01

    In this work we introduce an evolutionary strategy to solve combinatorial optimization tasks, i.e. problems characterized by a discrete search space. In particular, we focus on the Traveling Salesman Problem (TSP), i.e. a famous problem whose search space grows exponentially, increasing the number of cities, up to becoming NP-hard. The solutions of the TSP can be codified by arrays of cities, and can be evaluated by fitness, computed according to a cost function (e.g. the length of a path). Our method is based on the evolution of an agent population by means of an imitative mechanism, we define 'partial imitation'. In particular, agents receive a random solution and then, interacting among themselves, may imitate the solutions of agents with a higher fitness. Since the imitation mechanism is only partial, agents copy only one entry (randomly chosen) of another array (i.e. solution). In doing so, the population converges towards a shared solution, behaving like a spin system undergoing a cooling process, i.e. driven towards an ordered phase. We highlight that the adopted 'partial imitation' mechanism allows the population to generate solutions over time, before reaching the final equilibrium. Results of numerical simulations show that our method is able to find, in a finite time, both optimal and suboptimal solutions, depending on the size of the considered search space.

  16. Discovery Learning, Representation, and Explanation within a Computer-Based Simulation: Finding the Right Mix

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.; Tzeng, Shyh-Chii; Tribble, Kelly

    2004-01-01

    The purpose of this research was to explore how adult users interact and learn during an interactive computer-based simulation supplemented with brief multimedia explanations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion of a simple…

  17. Feedback and Elaboration within a Computer-Based Simulation: A Dual Coding Perspective.

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.; And Others

    The purpose of this study was to explore how adult users interact and learn during a computer-based simulation given visual and verbal forms of feedback coupled with embedded elaborations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion…

  18. Inhibitor design strategy based on an enzyme structural flexibility: a case of bacterial MurD ligase.

    PubMed

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-05-27

    Increasing bacterial resistance to available antibiotics stimulated the discovery of novel efficacious antibacterial agents. The biosynthesis of the bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of the UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. In our previous computational studies, the C-terminal domain motion of the MurD ligase was investigated using Targeted Molecular Dynamic (TMD) simulation and the Off-Path Simulation (OPS) technique. In this study, we present a drug design strategy using multiple protein structures for the identification of novel MurD ligase inhibitors. Our main focus was the ATP-binding site of the MurD enzyme. In the first stage, three MurD protein conformations were selected based on the obtained OPS/TMD data as the initial criterion. Subsequently, a two-stage virtual screening approach was utilized combining derived structure-based pharmacophores with molecular docking calculations. Selected compounds were then assayed in the established enzyme binding assays, and compound 3 from the aminothiazole class was discovered to act as a dual MurC/MurD inhibitor in the micomolar range. A steady-state kinetic study was performed on the MurD enzyme to provide further information about the mechanistic aspects of its inhibition. In the final stage, all used conformations of the MurD enzyme with compound 3 were simulated in classical molecular dynamics (MD) simulations providing atomistic insights of the experimental results. Overall, the study depicts several challenges that need to be addressed when trying to hit a flexible moving target such as the presently studied bacterial MurD enzyme and show the possibilities of how computational tools can be proficiently used at all stages of the drug discovery process.

  19. Modeling formalisms in Systems Biology

    PubMed Central

    2011-01-01

    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422

  20. Consensus-based distributed estimation in multi-agent systems with time delay

    NASA Astrophysics Data System (ADS)

    Abdelmawgoud, Ahmed

    During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.

  1. Agent Models for Self-Motivated Home-Assistant Bots

    NASA Astrophysics Data System (ADS)

    Merrick, Kathryn; Shafi, Kamran

    2010-01-01

    Modern society increasingly relies on technology to support everyday activities. In the past, this technology has focused on automation, using computer technology embedded in physical objects. More recently, there is an expectation that this technology will not just embed reactive automation, but also embed intelligent, proactive automation in the environment. That is, there is an emerging desire for novel technologies that can monitor, assist, inform or entertain when required, and not just when requested. This paper presents three self-motivated, home-assistant bot applications using different self-motivated agent models. Self-motivated agents use a computational model of motivation to generate goals proactively. Technologies based on self-motivated agents can thus respond autonomously and proactively to stimuli from their environment. Three prototypes of different self-motivated agent models, using different computational models of motivation, are described to demonstrate these concepts.

  2. Research on application of intelligent computation based LUCC model in urbanization process

    NASA Astrophysics Data System (ADS)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.

  3. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223

  4. Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model.

    PubMed

    Ohhara, Yoshihito; Oshima, Marie; Iwai, Toshinori; Kitajima, Hiroaki; Yajima, Yasuharu; Mitsudo, Kenji; Krdy, Absy; Tohnai, Iwai

    2016-02-04

    Patient-specific modelling in clinical studies requires a realistic simulation to be performed within a reasonable computational time. The aim of this study was to develop simple but realistic outflow boundary conditions for patient-specific blood flow simulation which can be used to clarify the distribution of the anticancer agent in intra-arterial chemotherapy for oral cancer. In this study, the boundary conditions are expressed as a zero dimension (0D) resistance model of the peripheral vessel network based on the fractal characteristics of branching arteries combined with knowledge of the circulatory system and the energy minimization principle. This resistance model was applied to four patient-specific blood flow simulations at the region where the common carotid artery bifurcates into the internal and external carotid arteries. Results of these simulations with the proposed boundary conditions were compared with the results of ultrasound measurements for the same patients. The pressure was found to be within the physiological range. The difference in velocity in the superficial temporal artery results in an error of 5.21 ± 0.78 % between the numerical results and the measurement data. The proposed outflow boundary conditions, therefore, constitute a simple resistance-based model and can be used for performing accurate simulations with commercial fluid dynamics software.

  5. An Investigation of Computer-based Simulations for School Crises Management.

    ERIC Educational Resources Information Center

    Degnan, Edward; Bozeman, William

    2001-01-01

    Describes development of a computer-based simulation program for training school personnel in crisis management. Addresses the data collection and analysis involved in developing a simulated event, the systems requirements for simulation, and a case study of application and use of the completed simulation. (Contains 21 references.) (Authors/PKP)

  6. Multiagent Work Practice Simulation: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Shaffe, Michael G. (Technical Monitor)

    2001-01-01

    Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and a computer system. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3D space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).

  7. Multiagent Work Practice Simulation: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten

    2002-01-01

    Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and computer systems. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3d space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).

  8. A Virtual Look at Epstein–Barr Virus Infection: Biological Interpretations

    PubMed Central

    Delgado-Eckert, Edgar; Hadinoto, Vey; Jarrah, Abdul S; Laubenbacher, Reinhard; Lee, Kichol; Luzuriaga, Katherine; Polys, Nicholas F; Thorley-Lawson, David A

    2007-01-01

    The possibility of using computer simulation and mathematical modeling to gain insight into biological and other complex systems is receiving increased attention. However, it is as yet unclear to what extent these techniques will provide useful biological insights or even what the best approach is. Epstein–Barr virus (EBV) provides a good candidate to address these issues. It persistently infects most humans and is associated with several important diseases. In addition, a detailed biological model has been developed that provides an intricate understanding of EBV infection in the naturally infected human host and accounts for most of the virus' diverse and peculiar properties. We have developed an agent-based computer model/simulation (PathSim, Pathogen Simulation) of this biological model. The simulation is performed on a virtual grid that represents the anatomy of the tonsils of the nasopharyngeal cavity (Waldeyer ring) and the peripheral circulation—the sites of EBV infection and persistence. The simulation is presented via a user friendly visual interface and reproduces quantitative and qualitative aspects of acute and persistent EBV infection. The simulation also had predictive power in validation experiments involving certain aspects of viral infection dynamics. Moreover, it allows us to identify switch points in the infection process that direct the disease course towards the end points of persistence, clearance, or death. Lastly, we were able to identify parameter sets that reproduced aspects of EBV-associated diseases. These investigations indicate that such simulations, combined with laboratory and clinical studies and animal models, will provide a powerful approach to investigating and controlling EBV infection, including the design of targeted anti-viral therapies. PMID:17953479

  9. Molecular and dissociative adsorption of DMMP, Sarin and Soman on dry and wet TiO2(110) using density functional theory

    NASA Astrophysics Data System (ADS)

    Quintero, Yenny Cardona; Nagarajan, Ramanathan

    2018-09-01

    Titania, among the metal oxides, has shown promising characteristics for the adsorption and decontamination of chemical warfare nerve agents, due to its high stability and rapid decomposition rates. In this study, the adsorption energy and geometry of the nerve agents Sarin and Soman, and their simulant dimethyl methyl phosphonate (DMMP) on TiO2 rutile (110) surface were calculated using density functional theory. The molecular and dissociative adsorption of the agents and simulant on dry as well as wet metal oxide surfaces were considered. For the wet system, computations were done for the cases of both molecularly adsorbed water (hydrated conformation) and dissociatively adsorbed water (hydroxylated conformation). DFT calculations show that dissociative adsorption of the agents and simulant is preferred over molecular adsorption for both dry and wet TiO2. The dissociative adsorption on hydrated TiO2 shows higher stability among the different configurations considered. The dissociative structure of DMMP on hydrated TiO2 (the most stable one) was identified as the dissociation of a methyl group and its adsorption on the TiO2 surface. For the nerve agents Sarin and Soman on hydrated TiO2 the dissociative structure was by the dissociation of the F atom from the molecule and its interaction with a Ti atom from the surface, which could indicate a reduction in the toxicity of the products. This study shows the relevance of water adsorption on the metal oxide surface for the stability and dissociation of the simulant DMMP and the nerve agents Sarin and Soman on TiO2.

  10. A water market simulator considering pair-wise trades between agents

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Erfani, T.; Harou, J. J.

    2012-04-01

    In many basins in England no further water abstraction licences are available. Trading water between water rights holders has been recognized as a potentially effective and economically efficient strategy to mitigate increasing scarcity. A screening tool that could assess the potential for trade through realistic simulation of individual water rights holders would help assess the solution's potential contribution to local water management. We propose an optimisation-driven water market simulator that predicts pair-wise trade in a catchment and represents its interaction with natural hydrology and engineered infrastructure. A model is used to emulate licence-holders' willingness to engage in short-term trade transactions. In their simplest form agents are represented using an economic benefit function. The working hypothesis is that trading behaviour can be partially predicted based on differences in marginal values of water over space and time and estimates of transaction costs on pair-wise trades. We discuss the further possibility of embedding rules, norms and preferences of the different water user sectors to more realistically represent the behaviours, motives and constraints of individual licence holders. The potential benefits and limitations of such a social simulation (agent-based) approach is contrasted with our simulator where agents are driven by economic optimization. A case study based on the Dove River Basin (UK) demonstrates model inputs and outputs. The ability of the model to suggest impacts of water rights policy reforms on trading is discussed.

  11. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  12. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  13. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  14. Evolving Agents as a Metaphor for the Developing Child

    ERIC Educational Resources Information Center

    Schlesinger, Matthew

    2004-01-01

    The emerging field of Evolutionary Computation (EC), inspired by neo-Darwinian principles (e.g. natural selection, mutation, etc.), offers developmental psychologists a wide array of mathematical tools for simulating ontogenetic processes. In this brief review, I begin by highlighting three of the approaches that EC researchers employ (Artificial…

  15. Economic agents and markets as emergent phenomena

    PubMed Central

    Tesfatsion, Leigh

    2002-01-01

    An overview of recent work in agent-based computational economics is provided, with a stress on the research areas highlighted in the National Academy of Sciences Sackler Colloquium session “Economic Agents and Markets as Emergent Phenomena” held in October 2001. PMID:12011395

  16. Who messed up my lake?

    EPA Science Inventory

    Initial results from a lake-wide agent based simulation releasing virtual drifters from multiple tributaries over time. We examine the use of agent based modeling to break down the sources contributing to the composition of nearshore waters. Knowing that flow is highly biased in ...

  17. A Novel Framework for Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence (CSSSA2016)

    EPA Science Inventory

    Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...

  18. A framework for the use of agent based modeling to simulate ...

    EPA Pesticide Factsheets

    Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc

  19. Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations.

    PubMed

    Monti, Susanna; Bramanti, Emilia; Della Porta, Valentina; Onor, Massimo; D'Ulivo, Alessandro; Barone, Vincenzo

    2013-09-21

    The binding of chlorosulphonated paraffins to collagen triple helices is studied by means of classical molecular dynamics simulations and experimental spectroscopic techniques in order to disclose the principal characteristics of their interaction during the leather fattening process. Indeed, collagen is the main target to develop new leather modifying agents with specific characteristics, and an accurate design of the collagen binders, supported by predictive computational strategies, could be a successful tool to obtain new effective eco-compatible compounds able to impart to the leather the required functionalities and distinctive mechanical properties. Possible effects caused by the tanning agents on the collagen matrix have been identified from both experimental and theoretical points of view. Computational data in agreement with experiment have revealed that chlorosulphonated paraffins can interact favorably with the collagen residues having amine groups in their side chains (Arg, Lys, Asn and Gln) and reduce the tendency of the solvated collagen matrix to swell. However, the interference of chlorosulphonated paraffins with the unfolding process, which is operated mainly by the action of water, can be due both to covalent cross-linking of the collagen chains and intermolecular hydrogen bonding interactions involving also the hydroxyl groups of Hyp, Ser and Thr residues.

  20. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such modelsmore » do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3« less

  1. Iterated learning and the evolution of language.

    PubMed

    Kirby, Simon; Griffiths, Tom; Smith, Kenny

    2014-10-01

    Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  3. Perception Modelling of Visitors in Vargas Museum Using Agent-Based Simulation and Visibility Analysis

    NASA Astrophysics Data System (ADS)

    Carcellar, B. G., III

    2017-10-01

    Museum exhibit management is one of the usual undertakings of museum facilitators. Art works must be strategically placed to achieve maximum viewing from the visitors. The positioning of the artworks also highly influences the quality of experience of the visitors. One solution in such problems is to utilize GIS and Agent-Based Modelling (ABM). In ABM, persistent interacting objects are modelled as agents. These agents are given attributes and behaviors that describe their properties as well as their motion. In this study, ABM approach that incorporates GIS is utilized to perform analyticcal assessment on the placement of the artworks in the Vargas Museum. GIS serves as the backbone for the spatial aspect of the simulation such as the placement of the artwork exhibits, as well as possible obstructions to perception such as the columns, walls, and panel boards. Visibility Analysis is also done to the model in GIS to assess the overall visibility of the artworks. The ABM is done using the initial GIS outputs and GAMA, an open source ABM software. Visitors are modelled as agents, moving inside the museum following a specific decision tree. The simulation is done in three use cases: the 10 %, 20 %, and 30 % chance of having a visitor in the next minute. For the case of the said museum, the 10 % chance is determined to be the closest simulation case to the actual and the recommended minimum time to achieve a maximum artwork perception is 1 hour and 40 minutes. Initial assessment of the results shows that even after 3 hours of simulation, small parts of the exhibit show lack of viewers, due to its distance from the entrance. A more detailed decision tree for the visitor agents can be incorporated to have a more realistic simulation.

  4. BioASF: a framework for automatically generating executable pathway models specified in BioPAX.

    PubMed

    Haydarlou, Reza; Jacobsen, Annika; Bonzanni, Nicola; Feenstra, K Anton; Abeln, Sanne; Heringa, Jaap

    2016-06-15

    Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF CONTACT: j.heringa@vu.nl. © The Author 2016. Published by Oxford University Press.

  5. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos to Teach Challenging Climate Change and Nature of Science Concepts

    ERIC Educational Resources Information Center

    Cohen, Edward Charles

    2013-01-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…

  6. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  7. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  8. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  9. Micromotor-based on-off fluorescence detection of sarin and soman simulants.

    PubMed

    Singh, Virendra V; Kaufmann, Kevin; Orozco, Jahir; Li, Jinxing; Galarnyk, Michael; Arya, Gaurav; Wang, Joseph

    2015-06-30

    Self-propelled micromotor-based fluorescent "On-Off" detection of nerve agents is described. The motion-based assay utilizes Si/Pt Janus micromotors coated with fluoresceinamine toward real-time "on-the-fly" field detection of sarin and soman simulants.

  10. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    PubMed

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  11. ModelforAnalyzing Human Communication Network Based onAgent-Based Simulation

    NASA Astrophysics Data System (ADS)

    Matsuyama, Shinako; Terano, Takao

    This paper discusses dynamic properties of human communications networks, which appears as a result of informationexchanges among people. We propose agent-based simulation (ABS) to examine implicit mechanisms behind the dynamics. The ABS enables us to reveal the characteristics and the differences of the networks regarding the specific communicationgroups. We perform experiments on the ABS with activity data from questionnaires survey and with virtual data which isdifferent from the activity data. We compare the difference between them and show the effectiveness of the ABS through theexperiments.

  12. The Simultaneous Production Model; A Model for the Construction, Testing, Implementation and Revision of Educational Computer Simulation Environments.

    ERIC Educational Resources Information Center

    Zillesen, Pieter G. van Schaick

    This paper introduces a hardware and software independent model for producing educational computer simulation environments. The model, which is based on the results of 32 studies of educational computer simulations program production, implies that educational computer simulation environments are specified, constructed, tested, implemented, and…

  13. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2004-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  14. TSARINA: A computer model for assessing conventional and chemical attacks on air bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, D.E.; Wegner, L.H.

    This Note describes the latest version of the TSARINA (TSAR INputs using AIDA) airbase damage assessment computer program that has been developed to estimate the on-base concentration of toxic agents that would be deposited by a chemical attack and to assess losses to various on-base resources from conventional attacks, as well as the physical damage to runways, taxiways, buildings, and other facilities. Although the model may be used as a general-purpose, complex-target damage assessment model, its primary role in intended to be in support of the TSAR (Theater Simulation of Airbase Resources) aircraft sortie generation simulation program. When used withmore » TSAR, multiple trials of a multibase airbase-attack campaign can be assessed with TSARINA, and the impact of those attacks on sortie generation can be derived using the TSAR simulation model. TSARINA, as currently configured, permits damage assessments of attacks on an airbase (or other) complex that is compassed of up to 1000 individual targets (buildings, taxiways, etc,), and 2500 packets of resources. TSARINA determines the actual impact points (pattern centroids for CBUs and container burst point for chemical weapons) by Monte Carlo procedures-i.e., by random selections from the appropriate error distributions. Uncertainties in wind velocity and heading are also considered for chemical weapons. Point-impact weapons that impact within a specified distance of each target type are classed as hits, and estimates of the damage to the structures and to the various classes of support resources are assessed using cookie-cutter weapon-effects approximations.« less

  15. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  16. A Novel Machine Learning Classifier Based on a Qualia Modeling Agent (QMA)

    DTIC Science & Technology

    Information Theory (IIT) of Consciousness , which proposes that the fundamental structural elements of consciousness are qualia. By modeling the...This research develops a computational agent, which overcomes this problem. The Qualia Modeling Agent (QMA) is modeled after two cognitive theories

  17. Approaches to Classroom-Based Computational Science.

    ERIC Educational Resources Information Center

    Guzdial, Mark

    Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…

  18. Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.

    ERIC Educational Resources Information Center

    Knerr, Bruce W.; And Others

    Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…

  19. Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan

    2011-04-01

    This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.

  20. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    PubMed

    Orr, Mark G; Thrush, Roxanne; Plaut, David C

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  1. 20170312 - In Silico Dynamics: computer simulation in a ...

    EPA Pesticide Factsheets

    Abstract: Utilizing cell biological information to predict higher order biological processes is a significant challenge in predictive toxicology. This is especially true for highly dynamical systems such as the embryo where morphogenesis, growth and differentiation require precisely orchestrated interactions between diverse cell populations. In patterning the embryo, genetic signals setup spatial information that cells then translate into a coordinated biological response. This can be modeled as ‘biowiring diagrams’ representing genetic signals and responses. Because the hallmark of multicellular organization resides in the ability of cells to interact with one another via well-conserved signaling pathways, multiscale computational (in silico) models that enable these interactions provide a platform to translate cellular-molecular lesions perturbations into higher order predictions. Just as ‘the Cell’ is the fundamental unit of biology so too should it be the computational unit (‘Agent’) for modeling embryogenesis. As such, we constructed multicellular agent-based models (ABM) with ‘CompuCell3D’ (www.compucell3d.org) to simulate kinematics of complex cell signaling networks and enable critical tissue events for use in predictive toxicology. Seeding the ABMs with HTS/HCS data from ToxCast demonstrated the potential to predict, quantitatively, the higher order impacts of chemical disruption at the cellular or bioche

  2. The Theory of Reasoned Action as Parallel Constraint Satisfaction: Towards a Dynamic Computational Model of Health Behavior

    PubMed Central

    Orr, Mark G.; Thrush, Roxanne; Plaut, David C.

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual’s pre-existing belief structure and the beliefs of others in the individual’s social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics. PMID:23671603

  3. In Silico Dynamics: computer simulation in a Virtual Embryo ...

    EPA Pesticide Factsheets

    Abstract: Utilizing cell biological information to predict higher order biological processes is a significant challenge in predictive toxicology. This is especially true for highly dynamical systems such as the embryo where morphogenesis, growth and differentiation require precisely orchestrated interactions between diverse cell populations. In patterning the embryo, genetic signals setup spatial information that cells then translate into a coordinated biological response. This can be modeled as ‘biowiring diagrams’ representing genetic signals and responses. Because the hallmark of multicellular organization resides in the ability of cells to interact with one another via well-conserved signaling pathways, multiscale computational (in silico) models that enable these interactions provide a platform to translate cellular-molecular lesions perturbations into higher order predictions. Just as ‘the Cell’ is the fundamental unit of biology so too should it be the computational unit (‘Agent’) for modeling embryogenesis. As such, we constructed multicellular agent-based models (ABM) with ‘CompuCell3D’ (www.compucell3d.org) to simulate kinematics of complex cell signaling networks and enable critical tissue events for use in predictive toxicology. Seeding the ABMs with HTS/HCS data from ToxCast demonstrated the potential to predict, quantitatively, the higher order impacts of chemical disruption at the cellular or biochemical level. This is demonstrate

  4. Impact of Different Policies on Unhealthy Dietary Behaviors in an Urban Adult Population: An Agent-Based Simulation Model

    PubMed Central

    Giabbanelli, Philippe J.; Arah, Onyebuchi A.; Zimmerman, Frederick J.

    2014-01-01

    Objectives. Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. Methods. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Results. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Conclusions. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems. PMID:24832414

  5. An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma

    NASA Astrophysics Data System (ADS)

    Chen, L. Leon; Ulmer, Stephan; Deisboeck, Thomas S.

    2010-01-01

    We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.

  6. An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma.

    PubMed

    Chen, L Leon; Ulmer, Stephan; Deisboeck, Thomas S

    2010-01-21

    We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.

  7. The Effect of Teacher Involvement on Student Performance in a Computer-Based Science Simulation.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    Designed to investigate whether or not science teachers can positively influence student achievement in, and attitude toward, science, this study focused on a specific teaching strategy and utilization of a computer-based simulation. The software package used in the study was the simulation, Volcanoes, by Earthware Computer Services. The sample…

  8. Exploring the Perceptions of College Instructors towards Computer Simulation Software Programs: A Quantitative Study

    ERIC Educational Resources Information Center

    Punch, Raymond J.

    2012-01-01

    The purpose of the quantitative regression study was to explore and to identify relationships between attitudes toward use and perceptions of value of computer-based simulation programs, of college instructors, toward computer based simulation programs. A relationship has been reported between attitudes toward use and perceptions of the value of…

  9. Is the whole the sum of its parts? Agent-based modelling of wastewater treatment systems.

    PubMed

    Schuler, A J; Majed, N; Bucci, V; Hellweger, F L; Tu, Y; Gu, A Z

    2011-01-01

    Agent-based models (ABMS) simulate individual units within a system, such as the bacteria in a biological wastewater treatment system. This paper outlines past, current and potential future applications of ABMs to wastewater treatment. ABMs track heterogeneities within microbial populations, and this has been demonstrated to yield different predictions of bulk behaviors than the conventional, "lumped" approaches for enhanced biological phosphorus removal (EBPR) completely mixed reactors systems. Current work included the application of the ABM approach to bacterial adaptation/evolution, using the model system of individual EBPR bacteria that are allowed to evolve a kinetic parameter (maximum glycogen storage) in a competitive environment. The ABM approach was successfully implemented to a simple anaerobic-aerobic system and it was found the differing initial states converged to the same optimal solution under uncertain hydraulic residence times associated with completely mixed hydraulics. In another study, an ABM was developed and applied to simulate the heterogeneity in intracellular polymer storage compounds, including polyphosphate (PP), in functional microbial populations in enhanced biological phosphorus removal (EBPR) process. The simulation results were compared to the experimental measurements of single-cell abundance of PP in polyphosphate accumulating organisms (PAOs), performed using Raman microscopy. The model-predicted heterogeneity was generally consistent with observations, and it was used to investigate the relative contribution of external (different life histories) and internal (biological) mechanisms leading to heterogeneity. In the future, ABMs could be combined with computational fluid dynamics (CFD) models to understand incomplete mixing, more intracellular states and mechanisms can be incorporated, and additional experimental verification is needed.

  10. An agent-based simulation combined with group decision-making technique for improving the performance of an emergency department.

    PubMed

    Yousefi, M; Ferreira, R P M

    2017-03-30

    This study presents an agent-based simulation modeling in an emergency department. In a traditional approach, a supervisor (or a manager) allocates the resources (receptionist, nurses, doctors, etc.) to different sections based on personal experience or by using decision-support tools. In this study, each staff agent took part in the process of allocating resources based on their observation in their respective sections, which gave the system the advantage of utilizing all the available human resources during the workday by being allocated to a different section. In this simulation, unlike previous studies, all staff agents took part in the decision-making process to re-allocate the resources in the emergency department. The simulation modeled the behavior of patients, receptionists, triage nurses, emergency room nurses and doctors. Patients were able to decide whether to stay in the system or leave the department at any stage of treatment. In order to evaluate the performance of this approach, 6 different scenarios were introduced. In each scenario, various key performance indicators were investigated before and after applying the group decision-making. The outputs of each simulation were number of deaths, number of patients who leave the emergency department without being attended, length of stay, waiting time and total number of discharged patients from the emergency department. Applying the self-organizing approach in the simulation showed an average of 12.7 and 14.4% decrease in total waiting time and number of patients who left without being seen, respectively. The results showed an average increase of 11.5% in total number of discharged patients from emergency department.

  11. An agent-based simulation combined with group decision-making technique for improving the performance of an emergency department

    PubMed Central

    Yousefi, M.; Ferreira, R.P.M.

    2017-01-01

    This study presents an agent-based simulation modeling in an emergency department. In a traditional approach, a supervisor (or a manager) allocates the resources (receptionist, nurses, doctors, etc.) to different sections based on personal experience or by using decision-support tools. In this study, each staff agent took part in the process of allocating resources based on their observation in their respective sections, which gave the system the advantage of utilizing all the available human resources during the workday by being allocated to a different section. In this simulation, unlike previous studies, all staff agents took part in the decision-making process to re-allocate the resources in the emergency department. The simulation modeled the behavior of patients, receptionists, triage nurses, emergency room nurses and doctors. Patients were able to decide whether to stay in the system or leave the department at any stage of treatment. In order to evaluate the performance of this approach, 6 different scenarios were introduced. In each scenario, various key performance indicators were investigated before and after applying the group decision-making. The outputs of each simulation were number of deaths, number of patients who leave the emergency department without being attended, length of stay, waiting time and total number of discharged patients from the emergency department. Applying the self-organizing approach in the simulation showed an average of 12.7 and 14.4% decrease in total waiting time and number of patients who left without being seen, respectively. The results showed an average increase of 11.5% in total number of discharged patients from emergency department. PMID:28380196

  12. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  13. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    PubMed Central

    Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314

  14. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.

    PubMed

    Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  15. Nature as a network of morphological infocomputational processes for cognitive agents

    NASA Astrophysics Data System (ADS)

    Dodig-Crnkovic, Gordana

    2017-01-01

    This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted.

  16. Dialogue-Based CALL: An Overview of Existing Research

    ERIC Educational Resources Information Center

    Bibauw, Serge; François, Thomas; Desmet, Piet

    2015-01-01

    Dialogue-based Computer-Assisted Language Learning (CALL) covers applications and systems allowing a learner to practice the target language in a meaning-focused conversational activity with an automated agent. We first present a common definition for dialogue-based CALL, based on three features: dialogue as the activity unit, computer as the…

  17. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  18. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  19. Optical clearing of vaginal tissues, ex vivo, for minimally invasive laser treatment of female stress urinary incontinence

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2017-01-01

    Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA's were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall.

  20. Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model.

    PubMed

    Kim, Moses; Christley, Scott; Alverdy, John C; Liu, Donald; An, Gary

    2012-02-01

    Necrotizing enterocolitis (NEC) is a complex disease involving prematurity, enteral feeding, and bacterial effects. We propose that the underlying initial condition in its pathogenesis is reduced ability of the neonatal gut epithelial cells (NGECs) to clear oxidative stress (OS), and that when such a NGEC population is exposed to enteral feeding, the increased metabolic OS tips the population toward apoptosis, inflammation, bacterial activation, and eventual necrosis. The multi-factorial complexity of NEC requires characterization with computational modeling, and herein, we used an agent-based model (ABM) to instantiate and examine our unifying hypothesis of the pathogenesis of NEC. An ABM of the neonatal gut was created with NGEC computational agents incorporating rules for pathways for OS, p53, tight junctions, Toll-like receptor (TLR)-4, nitric oxide, and nuclear factor-kappa beta (NF-κB). The modeled bacteria activated TLR-4 on contact with NGECs. Simulations included parameter sweeps of OS response, response to feeding, addition of bacteria, and alterations in gut mucus production. The ABM reproduced baseline cellular respiration and clearance of OS. Reduction in OS clearance consistent with clinical NEC led to senescence, apoptosis, or inflammation, with disruption of tight junctions, but rarely to NGEC necrosis. An additional "hit" of bacteria activating TLR-4 potentiated a shift to NGEC necrosis across the entire population. The mucus layer was modeled to limit bacterial-NGEC interactions and reduce this effect, but concomitant apoptosis in the goblet cell population reduced the efficacy of the mucus layer and limited its protective effect in simulated experiments. This finding suggests a means by which increased apoptosis at the cellular population level can lead to a transition to the necrosis outcome. Our ABM incorporates known components of NEC and demonstrates that impaired OS management can lead to apoptosis and inflammation of NGECs, rendering the system susceptible to an additional insult involving regionalized mucus barrier failure and TLR-4 activation, which potentiates the necrosis outcome. This type of integrative dynamic knowledge representation can be a useful adjunct to help guide and contextualize research.

Top