Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.
ERIC Educational Resources Information Center
Baylor, Amy L.
2002-01-01
Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…
ERIC Educational Resources Information Center
Fujimoto, Toru
2010-01-01
The purpose of this research was to design and evaluate a web-based self-learning environment for historical inquiry embedded with different types of instructional support featuring story-based pedagogical agents. This research focused on designing a learning environment by integrating story-based instruction and pedagogical agents as a means to…
EVA: Collaborative Distributed Learning Environment Based in Agents.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Tellez, Rolando Quintero
In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…
Needs, Pains, and Motivations in Autonomous Agents.
Starzyk, Janusz A; Graham, James; Puzio, Leszek
This paper presents the development of a motivated learning (ML) agent with symbolic I/O. Our earlier work on the ML agent was enhanced, giving it autonomy for interaction with other agents. Specifically, we equipped the agent with drives and pains that establish its motivations to learn how to respond to desired and undesired events and create related abstract goals. The purpose of this paper is to explore the autonomous development of motivations and memory in agents within a simulated environment. The ML agent has been implemented in a virtual environment created within the NeoAxis game engine. Additionally, to illustrate the benefits of an ML-based agent, we compared the performance of our algorithm against various reinforcement learning (RL) algorithms in a dynamic test scenario, and demonstrated that our ML agent learns better than any of the tested RL agents.This paper presents the development of a motivated learning (ML) agent with symbolic I/O. Our earlier work on the ML agent was enhanced, giving it autonomy for interaction with other agents. Specifically, we equipped the agent with drives and pains that establish its motivations to learn how to respond to desired and undesired events and create related abstract goals. The purpose of this paper is to explore the autonomous development of motivations and memory in agents within a simulated environment. The ML agent has been implemented in a virtual environment created within the NeoAxis game engine. Additionally, to illustrate the benefits of an ML-based agent, we compared the performance of our algorithm against various reinforcement learning (RL) algorithms in a dynamic test scenario, and demonstrated that our ML agent learns better than any of the tested RL agents.
Multi-Agent Framework for Virtual Learning Spaces.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Nunez, Gustavo
1999-01-01
Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…
Reinforcement learning algorithms for robotic navigation in dynamic environments.
Yen, Gary G; Hickey, Travis W
2004-04-01
The purpose of this study was to examine improvements to reinforcement learning (RL) algorithms in order to successfully interact within dynamic environments. The scope of the research was that of RL algorithms as applied to robotic navigation. Proposed improvements include: addition of a forgetting mechanism, use of feature based state inputs, and hierarchical structuring of an RL agent. Simulations were performed to evaluate the individual merits and flaws of each proposal, to compare proposed methods to prior established methods, and to compare proposed methods to theoretically optimal solutions. Incorporation of a forgetting mechanism did considerably improve the learning times of RL agents in a dynamic environment. However, direct implementation of a feature-based RL agent did not result in any performance enhancements, as pure feature-based navigation results in a lack of positional awareness, and the inability of the agent to determine the location of the goal state. Inclusion of a hierarchical structure in an RL agent resulted in significantly improved performance, specifically when one layer of the hierarchy included a feature-based agent for obstacle avoidance, and a standard RL agent for global navigation. In summary, the inclusion of a forgetting mechanism, and the use of a hierarchically structured RL agent offer substantially increased performance when compared to traditional RL agents navigating in a dynamic environment.
Application of Mobile Agents in Web-Based Learning Environment.
ERIC Educational Resources Information Center
Hong Hong, Kinshuk; He, Xiaoqin; Patel, Ashok; Jesshope, Chris
Web-based learning environments are strongly driven by the information revolution and the Internet, but they have a number of common deficiencies, such as slow access, no adaptivity to the individual student, limitation by bandwidth, and more. This paper outlines the benefits of mobile agents technology, and describes its application in Web-based…
ERIC Educational Resources Information Center
Mayer, Richard E.; Dow, Gayle T.; Mayer, Sarah
2003-01-01
Students learned about electric motors by asking questions and receiving answers from an on-screen pedagogical agent named Dr. Phyz who stood next to an on-screen drawing of an electric motor. Results are consistent with a cognitive theory of multimedia learning and yield principles for the design of interactive multimedia learning environments.…
Opportunistic Behavior in Motivated Learning Agents.
Graham, James; Starzyk, Janusz A; Jachyra, Daniel
2015-08-01
This paper focuses on the novel motivated learning (ML) scheme and opportunistic behavior of an intelligent agent. It extends previously developed ML to opportunistic behavior in a multitask situation. Our paper describes the virtual world implementation of autonomous opportunistic agents learning in a dynamically changing environment, creating abstract goals, and taking advantage of arising opportunities to improve their performance. An opportunistic agent achieves better results than an agent based on ML only. It does so by minimizing the average value of all need signals rather than a dominating need. This paper applies to the design of autonomous embodied systems (robots) learning in real-time how to operate in a complex environment.
EVA: An Interactive Web-Based Collaborative Learning Environment
ERIC Educational Resources Information Center
Sheremetov, Leonid; Arenas, Adolfo Guzman
2002-01-01
In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…
Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.
ERIC Educational Resources Information Center
Solomos, Konstantinos; Avouris, Nikolaos
1999-01-01
Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)
NASA Astrophysics Data System (ADS)
Frechette, M. Casey
One important but under-researched area of instructional technology concerns the effects of animated pedagogical agents (APAs), or lifelike characters designed to enhance learning in computer-based environments. This research sought to broaden what is currently known about APAs' instructional value by investigating the effects of agents' visual presence and nonverbal communication. A theoretical framework based on APA literature published in the past decade guided the design of the study. This framework sets forth that APAs impact learning through their presence and communication. The communication displayed by an APA involves two distinct kinds of nonverbal cues: cognitive (hand and arm gestures) and affective (facial expressions). It was predicted that the presence of an agent would enhance learning and that nonverbal communication would amplify these effects. The research utilized a between-subjects experimental design. Participants were randomly assigned to treatment conditions in a controlled lab setting, and group means were compared with a MANCOVA. Participants received (1) a non-animated agent, (2) an agent with hand and arm gestures, (3) an agent with facial expressions, or (4) a fully animated agent. The agent appeared in a virtual learning environment focused on Kepler's laws of planetary motion. A control group did not receive the visual presence of an agent. Two effects were studied: participants' perceptions and their learning outcomes. Perceptions were measured with an attitudinal survey with five subscales. Learning outcomes were measured with an open-ended recall test, a multiple choice comprehension test, and an open-ended transfer test. Learners presented with an agent with affective nonverbal communication comprehended less than learners exposed to a non-animated agent. No significant differences were observed when a group exposed to a fully animated agent was compared to a group with a non-animated agent. Adding both nonverbal communication channels mitigated the disadvantages of adding just one kind of nonverbal cue. No statistically significant differences were observed on measures of recall or transfer, or on the attitudinal survey. The research supports the notion that invoking a human-like presence in a virtual learning environment prompts strong expectations about the character's realism. When these expectations are not met, learning is hindered.
Teachable Agents and the Protege Effect: Increasing the Effort towards Learning
ERIC Educational Resources Information Center
Chase, Catherine C.; Chin, Doris B.; Oppezzo, Marily A.; Schwartz, Daniel L.
2009-01-01
Betty's Brain is a computer-based learning environment that capitalizes on the social aspects of learning. In Betty's Brain, students instruct a character called a Teachable Agent (TA) which can reason based on how it is taught. Two studies demonstrate the "protege effect": students make greater effort to learn for their TAs than they do…
ERIC Educational Resources Information Center
Kim, Yanghee; Lim, Jae Hoon
2013-01-01
This study examined whether or not embodied-agent-based learning would help middle-grade females have more positive mathematics learning experiences. The study used an explanatory mixed methods research design. First, a classroom-based experiment was conducted with one hundred twenty 9th graders learning introductory algebra (53% male and 47%…
Agent Reward Shaping for Alleviating Traffic Congestion
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.
Effect of reinforcement learning on coordination of multiangent systems
NASA Astrophysics Data System (ADS)
Bukkapatnam, Satish T. S.; Gao, Greg
2000-12-01
For effective coordination of distributed environments involving multiagent systems, learning ability of each agent in the environment plays a crucial role. In this paper, we develop a simple group learning method based on reinforcement, and study its effect on coordination through application to a supply chain procurement scenario involving a computer manufacturer. Here, all parties are represented by self-interested, autonomous agents, each capable of performing specific simple tasks. They negotiate with each other to perform complex tasks and thus coordinate supply chain procurement. Reinforcement learning is intended to enable each agent to reach a best negotiable price within a shortest possible time. Our simulations of the application scenario under different learning strategies reveals the positive effects of reinforcement learning on an agent's as well as the system's performance.
NASA Astrophysics Data System (ADS)
Hibbard, Bill
2012-05-01
Orseau and Ring, as well as Dewey, have recently described problems, including self-delusion, with the behavior of agents using various definitions of utility functions. An agent's utility function is defined in terms of the agent's history of interactions with its environment. This paper argues, via two examples, that the behavior problems can be avoided by formulating the utility function in two steps: 1) inferring a model of the environment from interactions, and 2) computing utility as a function of the environment model. Basing a utility function on a model that the agent must learn implies that the utility function must initially be expressed in terms of specifications to be matched to structures in the learned model. These specifications constitute prior assumptions about the environment so this approach will not work with arbitrary environments. But the approach should work for agents designed by humans to act in the physical world. The paper also addresses the issue of self-modifying agents and shows that if provided with the possibility to modify their utility functions agents will not choose to do so, under some usual assumptions.
Multi-agent Reinforcement Learning Model for Effective Action Selection
NASA Astrophysics Data System (ADS)
Youk, Sang Jo; Lee, Bong Keun
Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.
Personalized Messages That Promote Science Learning in Virtual Environments
ERIC Educational Resources Information Center
Moreno, Roxana; Mayer, Richard E.
2004-01-01
College students learned how to design the roots, stem, and leaves of plants to survive in five different virtual reality environments through an agent-based multimedia educational game. For each student, the agent used personalized speech (e.g., including I and you) or nonpersonalized speech (e.g., 3rd-person monologue), and the game was…
NASA Astrophysics Data System (ADS)
Zhou, Changjiu; Meng, Qingchun; Guo, Zhongwen; Qu, Wiefen; Yin, Bo
2002-04-01
Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.
Incremental learning of skill collections based on intrinsic motivation
Metzen, Jan H.; Kirchner, Frank
2013-01-01
Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265
ERIC Educational Resources Information Center
Lai, K. Robert; Lan, Chung Hsien
2006-01-01
This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…
Design Principles of an Open Agent Architecture for Web-Based Learning Community.
ERIC Educational Resources Information Center
Jin, Qun; Ma, Jianhua; Huang, Runhe; Shih, Timothy K.
A Web-based learning community involves much more than putting learning materials into a Web site. It can be seen as a complex virtual organization involved with people, facilities, and cyber-environment. Tremendous work and manpower for maintaining, upgrading, and managing facilities and the cyber-environment are required. There is presented an…
ERIC Educational Resources Information Center
Johnson, A. M.; Ozogul, G.; Reisslein, M.
2015-01-01
An experiment examined the effects of visual signalling to relevant information in multiple external representations and the visual presence of an animated pedagogical agent (APA). Students learned electric circuit analysis using a computer-based learning environment that included Cartesian graphs, equations and electric circuit diagrams. The…
Fostering Multimedia Learning of Science: Exploring the Role of an Animated Agent's Image
ERIC Educational Resources Information Center
Dunsworth, Qi; Atkinson, Robert K.
2007-01-01
Research suggests that students learn better when studying a picture coupled with narration rather than on-screen text in a computer-based multimedia learning environment. Moreover, combining narration with the visual presence of an animated pedagogical agent may also encourage students to process information deeper than narration or on-screen…
Agent Supported Serious Game Environment
ERIC Educational Resources Information Center
Terzidou, Theodouli; Tsiatsos, Thrasyvoulos; Miliou, Christina; Sourvinou, Athanasia
2016-01-01
This study proposes and applies a novel concept for an AI enhanced serious game collaborative environment as a supplementary learning tool in tertiary education. It is based on previous research that investigated pedagogical agents for a serious game in the OpenSim environment. The proposed AI features to support the serious game are the…
Fuzzy Q-Learning for Generalization of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.
Agent Prompts: Scaffolding for Productive Reflection in an Intelligent Learning Environment
ERIC Educational Resources Information Center
Wu, Longkai; Looi, Chee-Kit
2012-01-01
Recent research has emphasized the importance of reflection for students in intelligent learning environments. This study tries to investigate whether agent prompts, acting as scaffolding, can promote students' reflection when they act as tutor through teaching the agent tutee in a learning-by-teaching environment. Two types of agent prompts are…
Designing Distributed Learning Environments with Intelligent Software Agents
ERIC Educational Resources Information Center
Lin, Fuhua, Ed.
2005-01-01
"Designing Distributed Learning Environments with Intelligent Software Agents" reports on the most recent advances in agent technologies for distributed learning. Chapters are devoted to the various aspects of intelligent software agents in distributed learning, including the methodological and technical issues on where and how intelligent agents…
Open Learning Environments and the Impact of a Pedagogical Agent
ERIC Educational Resources Information Center
Clarebout, Geraldine; Elen, Jan
2006-01-01
Research reveals that in highly structured learning environments pedagogical agents can act as tools to direct students' learning processes by providing content or problem solving guidance. It has not yet been addressed whether pedagogical agents have a similar impact in more open learning environments that aim at fostering students' acquisition…
The Ontologies of Complexity and Learning about Complex Systems
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; So, Hyo-Jeong; Lee, June
2011-01-01
This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that…
ERIC Educational Resources Information Center
Xiang, Lin
2011-01-01
This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…
The Role of Agent Age and Gender for Middle-Grade Girls
ERIC Educational Resources Information Center
Kim, Yanghee
2016-01-01
Compared to boys, many girls are more aware of a social context in the learning process and perform better when the environment supports frequent interactions and social relationships. For these girls, embodied agents (animated on-screen characters acting as tutors) could afford simulated social interactions in computer-based learning and thereby…
ERIC Educational Resources Information Center
Roscoe, Rod D.; Segedy, James R.; Sulcer, Brian; Jeong, Hogyeong; Biswas, Gautam
2013-01-01
To support self-regulated learning (SRL), computer-based learning environments (CBLEs) are often designed to be open-ended and multidimensional. These systems incorporate diverse features that allow students to enact and reveal their SRL strategies via the choices they make. However, research shows that students' use of such features is limited;…
A Teachable Agent Game Engaging Primary School Children to Learn Arithmetic Concepts and Reasoning
ERIC Educational Resources Information Center
Pareto, Lena
2014-01-01
In this paper we will describe a learning environment designed to foster conceptual understanding and reasoning in mathematics among younger school children. The learning environment consists of 48 2-player game variants based on a graphical model of arithmetic where the mathematical content is intrinsically interwoven with the game idea. The…
Quantum Speedup for Active Learning Agents
NASA Astrophysics Data System (ADS)
Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.
2014-07-01
Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
Reinforcement Learning in a Nonstationary Environment: The El Farol Problem
NASA Technical Reports Server (NTRS)
Bell, Ann Maria
1999-01-01
This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim; Farris, Amy Voss; Satabdi, Basu
2016-01-01
In this paper, we present a third-grade ecology learning environment that integrates two forms of modeling--embodied modeling and agent-based modeling (ABMs)--through the generation of mathematical representations that are common to both forms of modeling. The term "agent" in the context of ABMs indicates individual computational objects…
Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning.
Chalmers, Eric; Contreras, Edgar Bermudez; Robertson, Brandon; Luczak, Artur; Gruber, Aaron
2017-04-17
The reinforcement learning (RL) paradigm allows agents to solve tasks through trial-and-error learning. To be capable of efficient, long-term learning, RL agents should be able to apply knowledge gained in the past to new tasks they may encounter in the future. The ability to predict actions' consequences may facilitate such knowledge transfer. We consider here domains where an RL agent has access to two kinds of information: agent-centric information with constant semantics across tasks, and environment-centric information, which is necessary to solve the task, but with semantics that differ between tasks. For example, in robot navigation, environment-centric information may include the robot's geographic location, while agent-centric information may include sensor readings of various nearby obstacles. We propose that these situations provide an opportunity for a very natural style of knowledge transfer, in which the agent learns to predict actions' environmental consequences using agent-centric information. These predictions contain important information about the affordances and dangers present in a novel environment, and can effectively transfer knowledge from agent-centric to environment-centric learning systems. Using several example problems including spatial navigation and network routing, we show that our knowledge transfer approach can allow faster and lower cost learning than existing alternatives.
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
The Role of Web-Based Simulations in Technology Education
ERIC Educational Resources Information Center
Page, Tom
2009-01-01
This paper discusses the theoretical underpinning and main aspects of the development and application of the web-orientation agent (WOA) and presents preliminary results concerning its use in university studies. The web-orientation agent (WOA) is a software based tool which produces an interactive learning environment offering support and guidance…
Avatars, Pedagogical Agents, and Virtual Environments: Social Learning Systems Online
ERIC Educational Resources Information Center
Ausburn, Lynna J.; Martens, Jon; Dotterer, Gary; Calhoun, Pat
2009-01-01
This paper presents a review of literature that introduces major concepts and issues in using avatars and pedagogical agents in first- and second-person virtual environments (VEs) for learning online. In these VEs, avatars and pedagogical agents represent self and other learners/participants or serve as personal learning "guides". The…
ICCE/ICCAI 2000 Full & Short Papers (Creative Learning).
ERIC Educational Resources Information Center
2000
This document contains the following full and short papers on creative learning from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple Agents" (Takashi Ohno, Kenji…
EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes
NASA Astrophysics Data System (ADS)
Wagh, Aditi; Wilensky, Uri
2018-04-01
Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
Clipping in neurocontrol by adaptive dynamic programming.
Fairbank, Michael; Prokhorov, Danil; Alonso, Eduardo
2014-10-01
In adaptive dynamic programming, neurocontrol, and reinforcement learning, the objective is for an agent to learn to choose actions so as to minimize a total cost function. In this paper, we show that when discretized time is used to model the motion of the agent, it can be very important to do clipping on the motion of the agent in the final time step of the trajectory. By clipping, we mean that the final time step of the trajectory is to be truncated such that the agent stops exactly at the first terminal state reached, and no distance further. We demonstrate that when clipping is omitted, learning performance can fail to reach the optimum, and when clipping is done properly, learning performance can improve significantly. The clipping problem we describe affects algorithms that use explicit derivatives of the model functions of the environment to calculate a learning gradient. These include backpropagation through time for control and methods based on dual heuristic programming. However, the clipping problem does not significantly affect methods based on heuristic dynamic programming, temporal differences learning, or policy-gradient learning algorithms.
ERIC Educational Resources Information Center
Nunez Esquer, Gustavo; Sheremetov, Leonid
This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a…
ERIC Educational Resources Information Center
Gregg, Dawn G.
2007-01-01
Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…
ERIC Educational Resources Information Center
Govindasamy, Malliga K.
2014-01-01
Agent technology has become one of the dynamic and most interesting areas of computer science in recent years. The dynamism of this technology has resulted in computer generated characters, known as pedagogical agent, entering the digital learning environments in increasing numbers. Commonly deployed in implementing tutoring strategies, these…
ERIC Educational Resources Information Center
Manouselis, Nikos; Sampson, Demetrios
This paper focuses on the way a multi-criteria decision making methodology is applied in the case of agent-based selection of offered learning objects. The problem of selection is modeled as a decision making one, with the decision variables being the learner model and the learning objects' educational description. In this way, selection of…
Construction of a Learning Agent Handling Its Rewards According to Environmental Situations
NASA Astrophysics Data System (ADS)
Moriyama, Koichi; Numao, Masayuki
The authors aim at constructing an agent which learns appropriate actions in a Multi-Agent environment with and without social dilemmas. For this aim, the agent must have nonrationality that makes it give up its own profit when it should do that. Since there are many studies on rational learning that brings more and more profit, it is desirable to utilize them for constructing the agent. Therefore, we use a reward-handling manner that makes internal evaluation from the agent's rewards, and then the agent learns actions by a rational learning method with the internal evaluation. If the agent has only a fixed manner, however, it does not act well in the environment with and without dilemmas. Thus, the authors equip the agent with several reward-handling manners and criteria for selecting an effective one for the environmental situation. In the case of humans, what generates the internal evaluation is usually called emotion. Hence, this study also aims at throwing light on emotional activities of humans from a constructive view. In this paper, we divide a Multi-Agent environment into three situations and construct an agent having the reward-handling manners and the criteria. We observe that the agent acts well in all the three Multi-Agent situations composed of homogeneous agents.
ERIC Educational Resources Information Center
Liew, Tze Wei; Zin, Nor Azan Mat; Sahari, Noraidah; Tan, Su-Mae
2016-01-01
The present study aimed to test the hypothesis that a smiling expression on the face of a talking pedagogical agent could positively affect a learner's emotions, motivation, and learning outcomes in a virtual learning environment. Contrary to the hypothesis, results from Experiment 1 demonstrated that the pedagogical agent's smile induced negative…
Face-to-Face Interaction with Pedagogical Agents, Twenty Years Later
ERIC Educational Resources Information Center
Johnson, W. Lewis; Lester, James C.
2016-01-01
Johnson et al. ("International Journal of Artificial Intelligence in Education," 11, 47-78, 2000) introduced and surveyed a new paradigm for interactive learning environments: animated pedagogical agents. The article argued for combining animated interface agent technologies with intelligent learning environments, yielding intelligent…
Static force field representation of environments based on agents' nonlinear motions
NASA Astrophysics Data System (ADS)
Campo, Damian; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo
2017-12-01
This paper presents a methodology that aims at the incremental representation of areas inside environments in terms of attractive forces. It is proposed a parametric representation of velocity fields ruling the dynamics of moving agents. It is assumed that attractive spots in the environment are responsible for modifying the motion of agents. A switching model is used to describe near and far velocity fields, which in turn are used to learn attractive characteristics of environments. The effect of such areas is considered radial over all the scene. Based on the estimation of attractive areas, a map that describes their effects in terms of their localizations, ranges of action, and intensities is derived in an online way. Information of static attractive areas is added dynamically into a set of filters that describes possible interactions between moving agents and an environment. The proposed approach is first evaluated on synthetic data; posteriorly, the method is applied on real trajectories coming from moving pedestrians in an indoor environment.
Homeostatic Agent for General Environment
NASA Astrophysics Data System (ADS)
Yoshida, Naoto
2018-03-01
One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.
Impacts of Pedagogical Agent Gender in an Accessible Learning Environment
ERIC Educational Resources Information Center
Schroeder, Noah L.; Adesope, Olusola O.
2015-01-01
Advances in information technologies have resulted in the use of pedagogical agents to facilitate learning. Although several studies have been conducted to examine the effects of pedagogical agents on learning, little is known about gender stereotypes of agents and how those stereotypes influence student learning and attitudes. This study…
Making predictions in a changing world-inference, uncertainty, and learning.
O'Reilly, Jill X
2013-01-01
To function effectively, brains need to make predictions about their environment based on past experience, i.e., they need to learn about their environment. The algorithms by which learning occurs are of interest to neuroscientists, both in their own right (because they exist in the brain) and as a tool to model participants' incomplete knowledge of task parameters and hence, to better understand their behavior. This review focusses on a particular challenge for learning algorithms-how to match the rate at which they learn to the rate of change in the environment, so that they use as much observed data as possible whilst disregarding irrelevant, old observations. To do this algorithms must evaluate whether the environment is changing. We discuss the concepts of likelihood, priors and transition functions, and how these relate to change detection. We review expected and estimation uncertainty, and how these relate to change detection and learning rate. Finally, we consider the neural correlates of uncertainty and learning. We argue that the neural correlates of uncertainty bear a resemblance to neural systems that are active when agents actively explore their environments, suggesting that the mechanisms by which the rate of learning is set may be subject to top down control (in circumstances when agents actively seek new information) as well as bottom up control (by observations that imply change in the environment).
ERIC Educational Resources Information Center
Hong, Zeng-Wei; Chen, Yen-Lin; Lan, Chien-Ho
2014-01-01
Animated agents are virtual characters who demonstrate facial expressions, gestures, movements, and speech to facilitate students' engagement in the learning environment. Our research developed a courseware that supports a XML-based markup language and an authoring tool for teachers to script animated pedagogical agents in teaching materials. The…
The Impact of Learner Attributes and Learner Choice in an Agent-Based Environment
ERIC Educational Resources Information Center
Kim, Yanghee; Wei, Quan
2011-01-01
This study examined the impact of learners' attributes (gender and ethnicity) on their choice of a pedagogical agent and the impact of the attributes and choice on their perceptions of agent affability, task-specific attitudes, task-specific self-efficacy, and learning gains. Participants were 210 high-school male and female, Caucasian and…
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Vengerov, David
1999-01-01
Successful operations of future multi-agent intelligent systems require efficient cooperation schemes between agents sharing learning experiences. We consider a pseudo-realistic world in which one or more opportunities appear and disappear in random locations. Agents use fuzzy reinforcement learning to learn which opportunities are most worthy of pursuing based on their promise rewards, expected lifetimes, path lengths and expected path costs. We show that this world is partially observable because the history of an agent influences the distribution of its future states. We consider a cooperation mechanism in which agents share experience by using and-updating one joint behavior policy. We also implement a coordination mechanism for allocating opportunities to different agents in the same world. Our results demonstrate that K cooperative agents each learning in a separate world over N time steps outperform K independent agents each learning in a separate world over K*N time steps, with this result becoming more pronounced as the degree of partial observability in the environment increases. We also show that cooperation between agents learning in the same world decreases performance with respect to independent agents. Since cooperation reduces diversity between agents, we conclude that diversity is a key parameter in the trade off between maximizing utility from cooperation when diversity is low and maximizing utility from competitive coordination when diversity is high.
Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models
Najnin, Shamima; Banerjee, Bonny
2018-01-01
Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The “novel words to novel objects” language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task. PMID:29441027
A comparison of plan-based and abstract MDP reward shaping
NASA Astrophysics Data System (ADS)
Efthymiadis, Kyriakos; Kudenko, Daniel
2014-01-01
Reward shaping has been shown to significantly improve an agent's performance in reinforcement learning. As attention is shifting away from tabula-rasa approaches many different reward shaping methods have been developed. In this paper, we compare two different methods for reward shaping; plan-based, in which an agent is provided with a plan and extra rewards are given according to the steps of the plan the agent satisfies, and reward shaping via abstract Markov decision process (MDPs), in which an abstract high-level MDP of the environment is solved and the resulting value function is used to shape the agent. The comparison is conducted in terms of total reward, convergence speed and scaling up to more complex environments. Empirical results demonstrate the need to correctly select and set up reward shaping methods according to the needs of the environment the agents are acting in. This leads to the more interesting question, is there a reward shaping method which is universally better than all other approaches regardless of the environment dynamics?
Model-based reinforcement learning with dimension reduction.
Tangkaratt, Voot; Morimoto, Jun; Sugiyama, Masashi
2016-12-01
The goal of reinforcement learning is to learn an optimal policy which controls an agent to acquire the maximum cumulative reward. The model-based reinforcement learning approach learns a transition model of the environment from data, and then derives the optimal policy using the transition model. However, learning an accurate transition model in high-dimensional environments requires a large amount of data which is difficult to obtain. To overcome this difficulty, in this paper, we propose to combine model-based reinforcement learning with the recently developed least-squares conditional entropy (LSCE) method, which simultaneously performs transition model estimation and dimension reduction. We also further extend the proposed method to imitation learning scenarios. The experimental results show that policy search combined with LSCE performs well for high-dimensional control tasks including real humanoid robot control. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moreno, Roxana Arleen
The present dissertation tested the hypothesis that software pedagogical agents can promote constructivist learning in a discovery-based multimedia environment. In a preliminary study, students who received a computer-based lesson on environmental science performed better on subsequent tests of problem solving and motivation when they learned with the mediation of a fictional agent compared to when they learned the same material from text. In order to investigate further the basis for this personal agent effect, I varied whether the agent's words were presented as speech or on-screen text and whether or not the agent's image appeared on the screen. Both with a fictional agent (Experiment 1) and a video of a human face (Experiment 2), students performed better on tests of retention, problem-solving transfer, and program ratings when words were presented as speech rather than on-screen text (producing a modality effect) but visual presence of the agent did not affect test performance (producing no image effect). Next, I varied whether or not the agent's words were presented in conversational style (i.e., as dialogue) or formal style (i.e., as monologue) both using speech (Experiment 3) and on-screen text (Experiment 4). In both experiments, there was a dialogue effect in which conversational-style produced better retention and transfer performance. Students who learned with conversational-style text rated the program more favorably than those who learned with monologue-style text. The results support cognitive principles of multimedia learning which underlie the understanding of a computer lesson about a complex scientific system.
A study on expertise of agents and its effects on cooperative Q-learning.
Araabi, Babak Nadjar; Mastoureshgh, Sahar; Ahmadabadi, Majid Nili
2007-04-01
Cooperation in learning (CL) can be realized in a multiagent system, if agents are capable of learning from both their own experiments and other agents' knowledge and expertise. Extra resources are exploited into higher efficiency and faster learning in CL as compared to that of individual learning (IL). In the real world, however, implementation of CL is not a straightforward task, in part due to possible differences in area of expertise (AOE). In this paper, reinforcement-learning homogenous agents are considered in an environment with multiple goals or tasks. As a result, they become expert in different domains with different amounts of expertness. Each agent uses a one-step Q-learning algorithm and is capable of exchanging its Q-table with those of its teammates. Two crucial questions are addressed in this paper: "How the AOE of an agent can be extracted?" and "How agents can improve their performance in CL by knowing their AOEs?" An algorithm is developed to extract the AOE based on state transitions as a gold standard from a behavioral point of view. Moreover, it is discussed that the AOE can be implicitly obtained through agents' expertness in the state level. Three new methods for CL through the combination of Q-tables are developed and examined for overall performance after CL. The performances of developed methods are compared with that of IL, strategy sharing (SS), and weighted SS (WSS). Obtained results show the superior performance of AOE-based methods as compared to that of existing CL methods, which do not use the notion of AOE. These results are very encouraging in support of the idea that "cooperation based on the AOE" performs better than the general CL methods.
Learning classifier systems for single and multiple mobile robots in unstructured environments
NASA Astrophysics Data System (ADS)
Bay, John S.
1995-12-01
The learning classifier system (LCS) is a learning production system that generates behavioral rules via an underlying discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; i.e., by posted-message communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent shared resource. In this paper, we adapt the LCS to the problem of mobile robot navigation in completely unstructured environments. We consider the model of the robot itself, including its sensor and actuator structures, to be part of this environment, in addition to the world-model that includes a goal and obstacles at unknown locations. This requires a robot to learn its own I/O characteristics in addition to solving its navigation problem, but results in a learning controller that is equally applicable, unaltered, in robots with a wide variety of kinematic structures and sensing capabilities. We show the effectiveness of this LCS-based controller through both simulation and experimental trials with a small robot. We then propose a new architecture, the Distributed Learning Classifier System (DLCS), which generalizes the message-passing behavior of the LCS from internal messages within a single agent to broadcast massages among multiple agents. This communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The DLCS is shown to have potential application as a learning controller for multiple intelligent agents.
Conversational Agents in E-Learning
NASA Astrophysics Data System (ADS)
Kerry, Alice; Ellis, Richard; Bull, Susan
This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.
Scenario-Based Spoken Interaction with Virtual Agents
ERIC Educational Resources Information Center
Morton, Hazel; Jack, Mervyn A.
2005-01-01
This paper describes a CALL approach which integrates software for speaker independent continuous speech recognition with embodied virtual agents and virtual worlds to create an immersive environment in which learners can converse in the target language in contextualised scenarios. The result is a self-access learning package: SPELL (Spoken…
Software Agents to Assist in Distance Learning Environments
ERIC Educational Resources Information Center
Choy, Sheung-On; Ng, Sin-Chun; Tsang, Yiu-Chung
2005-01-01
The Open University of Hong Kong (OUHK) is a distance education university with about 22,500 students. In fulfilling its mission, the university has adopted various Web-based and electronic means to support distance learning. For instance, OUHK uses a Web-based course management system (CMS) to provide students with a flexible way to obtain course…
Does Environmental Knowledge Inhibit Hominin Dispersal?
Wren, Colin D; Costopoulos, Andre
2015-07-01
We investigated the relationship between the dispersal potential of a hominin population, its local-scale foraging strategies, and the characteristics of the resource environment using an agent-based modeling approach. In previous work we demonstrated that natural selection can favor a relatively low capacity for assessing and predicting the quality of the resource environment, especially when the distribution of resources is highly clustered. That work also suggested that the more knowledge foraging populations had about their environment, the less likely they were to abandon the landscape they know and disperse into novel territory. The present study gives agents new individual and social strategies for learning about their environment. For both individual and social learning, natural selection favors decreased levels of environmental knowledge, particularly in low-heterogeneity environments. Social acquisition of detailed environmental knowledge results in crowding of agents, which reduces available reproductive space and relative fitness. Agents with less environmental knowledge move away from resource clusters and into areas with more space available for reproduction. These results suggest that, rather than being a requirement for successful dispersal, environmental knowledge strengthens the ties to particular locations and significantly reduces the dispersal potential as a result. The evolved level of environmental knowledge in a population depends on the characteristics of the resource environment and affects the dispersal capacity of the population.
Toward Agent Programs with Circuit Semantics
NASA Technical Reports Server (NTRS)
Nilsson, Nils J.
1992-01-01
New ideas are presented for computing and organizing actions for autonomous agents in dynamic environments-environments in which the agent's current situation cannot always be accurately discerned and in which the effects of actions cannot always be reliably predicted. The notion of 'circuit semantics' for programs based on 'teleo-reactive trees' is introduced. Program execution builds a combinational circuit which receives sensory inputs and controls actions. These formalisms embody a high degree of inherent conditionality and thus yield programs that are suitably reactive to their environments. At the same time, the actions computed by the programs are guided by the overall goals of the agent. The paper also speculates about how programs using these ideas could be automatically generated by artificial intelligence planning systems and adapted by learning methods.
Projective simulation for artificial intelligence
NASA Astrophysics Data System (ADS)
Briegel, Hans J.; de Las Cuevas, Gemma
2012-05-01
We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.
Projective simulation for artificial intelligence
Briegel, Hans J.; De las Cuevas, Gemma
2012-01-01
We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690
Hybrid evolutionary computing model for mobile agents of wireless Internet multimedia
NASA Astrophysics Data System (ADS)
Hortos, William S.
2001-03-01
The ecosystem is used as an evolutionary paradigm of natural laws for the distributed information retrieval via mobile agents to allow the computational load to be added to server nodes of wireless networks, while reducing the traffic on communication links. Based on the Food Web model, a set of computational rules of natural balance form the outer stage to control the evolution of mobile agents providing multimedia services with a wireless Internet protocol WIP. The evolutionary model shows how mobile agents should behave with the WIP, in particular, how mobile agents can cooperate, compete and learn from each other, based on an underlying competition for radio network resources to establish the wireless connections to support the quality of service QoS of user requests. Mobile agents are also allowed to clone themselves, propagate and communicate with other agents. A two-layer model is proposed for agent evolution: the outer layer is based on the law of natural balancing, the inner layer is based on a discrete version of a Kohonen self-organizing feature map SOFM to distribute network resources to meet QoS requirements. The former is embedded in the higher OSI layers of the WIP, while the latter is used in the resource management procedures of Layer 2 and 3 of the protocol. Algorithms for the distributed computation of mobile agent evolutionary behavior are developed by adding a learning state to the agent evolution state diagram. When an agent is in an indeterminate state, it can communicate to other agents. Computing models can be replicated from other agents. Then the agents transitions to the mutating state to wait for a new information-retrieval goal. When a wireless terminal or station lacks a network resource, an agent in the suspending state can change its policy to submit to the environment before it transitions to the searching state. The agents learn the facts of agent state information entered into an external database. In the cloning process, two agents on a host station sharing a common goal can be merged or married to compose a new agent. Application of the two-layer set of algorithms for mobile agent evolution, performed in a distributed processing environment, is made to the QoS management functions of the IP multimedia IM sub-network of the third generation 3G Wideband Code-division Multiple Access W-CDMA wireless network.
Agent-Based Models in Social Physics
NASA Astrophysics Data System (ADS)
Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo
2018-06-01
We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.
ERIC Educational Resources Information Center
Chang, Ju-Yu
2013-01-01
Cognitive load theorists claim that problem-centered instruction is not an effective instruction because it is not compatible with human cognitive structure. They argue that the nature of problem-centered instruction tends to over-load learner working memory capacity. That is why many problem-centered practices fail. To better support students and…
Designing Multimedia Learning Environments Using Animated Pedagogical Agents: Factors and Issues
ERIC Educational Resources Information Center
Woo, H. L.
2009-01-01
Animated pedagogical agents (APAs) are known to possess great potential in supporting learning because of their ability to simulate a real classroom learning environment. But research in this area has produced mixed results. The reason for this remains puzzling. This paper is written with two purposes: (1) to examine some recent research and…
ERIC Educational Resources Information Center
Jones, Greg; Warren, Scott
2009-01-01
Using video games, virtual simulations, and other digital spaces for learning can be a time-consuming process; aside from technical issues that may absorb class time, students take longer to achieve gains in learning in virtual environments. Greg Jones and Scott Warren describe how intelligent agents, in-game characters that respond to the context…
Adaptivity in Agent-Based Routing for Data Networks
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan
2000-01-01
Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.
Knowledge-Based Reinforcement Learning for Data Mining
NASA Astrophysics Data System (ADS)
Kudenko, Daniel; Grzes, Marek
Data Mining is the process of extracting patterns from data. Two general avenues of research in the intersecting areas of agents and data mining can be distinguished. The first approach is concerned with mining an agent’s observation data in order to extract patterns, categorize environment states, and/or make predictions of future states. In this setting, data is normally available as a batch, and the agent’s actions and goals are often independent of the data mining task. The data collection is mainly considered as a side effect of the agent’s activities. Machine learning techniques applied in such situations fall into the class of supervised learning. In contrast, the second scenario occurs where an agent is actively performing the data mining, and is responsible for the data collection itself. For example, a mobile network agent is acquiring and processing data (where the acquisition may incur a certain cost), or a mobile sensor agent is moving in a (perhaps hostile) environment, collecting and processing sensor readings. In these settings, the tasks of the agent and the data mining are highly intertwined and interdependent (or even identical). Supervised learning is not a suitable technique for these cases. Reinforcement Learning (RL) enables an agent to learn from experience (in form of reward and punishment for explorative actions) and adapt to new situations, without a teacher. RL is an ideal learning technique for these data mining scenarios, because it fits the agent paradigm of continuous sensing and acting, and the RL agent is able to learn to make decisions on the sampling of the environment which provides the data. Nevertheless, RL still suffers from scalability problems, which have prevented its successful use in many complex real-world domains. The more complex the tasks, the longer it takes a reinforcement learning algorithm to converge to a good solution. For many real-world tasks, human expert knowledge is available. For example, human experts have developed heuristics that help them in planning and scheduling resources in their work place. However, this domain knowledge is often rough and incomplete. When the domain knowledge is used directly by an automated expert system, the solutions are often sub-optimal, due to the incompleteness of the knowledge, the uncertainty of environments, and the possibility to encounter unexpected situations. RL, on the other hand, can overcome the weaknesses of the heuristic domain knowledge and produce optimal solutions. In the talk we propose two techniques, which represent first steps in the area of knowledge-based RL (KBRL). The first technique [1] uses high-level STRIPS operator knowledge in reward shaping to focus the search for the optimal policy. Empirical results show that the plan-based reward shaping approach outperforms other RL techniques, including alternative manual and MDP-based reward shaping when it is used in its basic form. We showed that MDP-based reward shaping may fail and successful experiments with STRIPS-based shaping suggest modifications which can overcome encountered problems. The STRIPSbased method we propose allows expressing the same domain knowledge in a different way and the domain expert can choose whether to define an MDP or STRIPS planning task. We also evaluated the robustness of the proposed STRIPS-based technique to errors in the plan knowledge. In case that STRIPS knowledge is not available, we propose a second technique [2] that shapes the reward with hierarchical tile coding. Where the Q-function is represented with low-level tile coding, a V-function with coarser tile coding can be learned in parallel and used to approximate the potential for ground states. In the context of data mining, our KBRL approaches can also be used for any data collection task where the acquisition of data may incur considerable cost. In addition, observing the data collection agent in specific scenarios may lead to new insights into optimal data collection behaviour in the respective domains. In future work, we intend to demonstrate and evaluate our techniques on concrete real-world data mining applications.
Learning Negotiation Policies Using IB3 and Bayesian Networks
NASA Astrophysics Data System (ADS)
Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.
This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.
Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study.
Tîrnăucă, Cristina; Montaña, José L; Ontañón, Santiago; González, Avelino J; Pardo, Luis M
2016-06-24
Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent's actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches.
Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning
Zhang, Yue; Song, Bin; Zhang, Ying; Du, Xiaojiang; Guizani, Mohsen
2016-01-01
Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resources are limited. By viewing ESNs as multi-agent environments, we model them with an agent-based modelling (ABM) method and deal with resource allocation problems with market models, after describing users’ patterns. Reinforcement learning methods are introduced to estimate users’ patterns and verify the outcomes in our market models. Experimental results show the efficiency of our methods, which are also capable of guiding topology management. PMID:27916841
ERIC Educational Resources Information Center
Romero-Hall, Enilda; Watson, Ginger; Papelis, Yiannnis
2014-01-01
To examine the visual attention, emotional responses, learning, perceptions and attitudes of learners interacting with an animated pedagogical agent, this study compared a multimedia learning environment with an emotionally-expressive animated pedagogical agent, with a non-expressive animated pedagogical agent, and without an agent. Visual…
Team-Based Curriculum Design as an Agent of Change
ERIC Educational Resources Information Center
Burrell, Andrew R.; Cavanagh, Michael; Young, Sherman; Carter, Helen
2015-01-01
Curriculum design in higher education environments, namely the consideration of aims, learning outcomes, syllabus, pedagogy and assessment, can often be ad hoc and driven by informal cultural habits. Academics with disciplinary expertise may be resistant to (or ignorant of) pedagogical approaches beyond existing practice. In an environment where…
ERIC Educational Resources Information Center
Davis, Robert; Antonenko, Pavlo
2017-01-01
Pedagogical agents (PAs) are lifelike characters in virtual environments that help facilitate learning through social interactions and the virtual real relationships with the learners. This study explored whether and how PA gesture design impacts learning and agent social acceptance when used with elementary students learning foreign language…
ERIC Educational Resources Information Center
van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth
2015-01-01
This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students' perceptions of task relevance and self-efficacy. Given the under-representation of girls in science classrooms, special attention was given to…
'Proactive' use of cue-context congruence for building reinforcement learning's reward function.
Zsuga, Judit; Biro, Klara; Tajti, Gabor; Szilasi, Magdolna Emma; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf
2016-10-28
Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount factor) and the agent's knowledge of the environment embodied by the reward function and hidden environmental factors given by the transition probability. The central objective of reinforcement learning is to solve these two functions outside the agent's control either using, or not using a model. In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain creates simplified representations of the environment, and how these representations are organized to support the identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by suggesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. Based on this we propose that the OFC assesses cue-context congruence to activate the most context frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE signal may be used to update the reward-related information of context frames and the policy underlying action selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are discussed.
The Effects of Pedagogical Agents on Mathematics Anxiety and Mathematics Learning
ERIC Educational Resources Information Center
Wei, Quan
2010-01-01
The purpose of this study was to investigate the impact of the mathematics anxiety treatment messages in a computer-based environment on ninth-grade students' mathematics anxiety and mathematics learning. The study also examined whether the impact of the treatment messages would be differentiated by learner's gender and by learner's prior…
Learning Science in Virtual Reality Multimedia Environments: Role of Methods and Media.
ERIC Educational Resources Information Center
Moreno, Roxana; Mayer, Richard E.
2002-01-01
College students learned about botany through an agent-based multimedia game. Students received either spoken or identical on-screen text explanations. Results reveal that students scored higher on retention, transfer, and program ratings in narration conditions than in text conditions. The media--desktop displays or headmounted displays--did not…
A Measure of Real-Time Intelligence
NASA Astrophysics Data System (ADS)
Gavane, Vaibhav
2013-03-01
We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.
ERIC Educational Resources Information Center
Choi, Sunhee; Clark, Richard E.
2006-01-01
This study compared the use of an animated pedagogical agent (agent) with an electronic arrow and voice narration (arrow and voice) in a multimedia learning environment where 74 college level English as a Second Language (ESL) students learned English relative clauses. No significant differences in learning or performance were found between the…
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong
2017-09-20
Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.
Do Pedagogical Agents Make a Difference to Student Motivation and Learning?
ERIC Educational Resources Information Center
Heidig, Steffi; Clarebout, Geraldine
2011-01-01
Pedagogical agents, characters that guide through multimedia learning environments, recently gained increasing interest. A review was published by Clarebout, Elen, Johnson and Shaw in 2002 where a lot of promises were made, but research on the motivational and learning effects of pedagogical agents was scarce. More than 70 articles on pedagogical…
Pedagogical Agents as Learning Companions: The Impact of Agent Emotion and Gender
ERIC Educational Resources Information Center
Kim, Yanghee; Baylor, A. L.; Shen, E.
2007-01-01
The potential of emotional interaction between human and computer has recently interested researchers in human-computer interaction. The instructional impact of this interaction in learning environments has not been established, however. This study examined the impact of emotion and gender of a pedagogical agent as a learning companion (PAL) on…
Multiagent cooperation and competition with deep reinforcement learning.
Tampuu, Ardi; Matiisen, Tambet; Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul
2017-01-01
Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments.
Multiagent cooperation and competition with deep reinforcement learning
Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul
2017-01-01
Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments. PMID:28380078
Exploration for Agents with Different Personalities in Unknown Environments
NASA Astrophysics Data System (ADS)
Doumit, Sarjoun; Minai, Ali
We present in this paper a personality-based architecture (PA) that combines elements from the subsumption architecture and reinforcement learning to find alternate solutions for problems facing artificial agents exploring unknown environments. The underlying PA algorithm is decomposed into layers according to the different (non-contiguous) stages that our agent passes in, which in turn are influenced by the sources of rewards present in the environment. The cumulative rewards collected by an agent, in addition to its internal composition serve as factors in shaping its personality. In missions where multiple agents are deployed, our solution-goal is to allow each of the agents develop its own distinct personality in order for the collective to reach a balanced society, which then can accumulate the largest possible amount of rewards for the agent and society as well. The architecture is tested in a simulated matrix world which embodies different types of positive rewards and negative rewards. Varying experiments are performed to compare the performance of our algorithm with other algorithms under the same environment conditions. The use of our architecture accelerates the overall adaptation of the agents to their environment and goals by allowing the emergence of an optimal society of agents with different personalities. We believe that our approach achieves much efficient results when compared to other more restrictive policy designs.
A Neural Network Model to Learn Multiple Tasks under Dynamic Environments
NASA Astrophysics Data System (ADS)
Tsumori, Kenji; Ozawa, Seiichi
When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
NASA Astrophysics Data System (ADS)
Narayan Ray, Dip; Majumder, Somajyoti
2014-07-01
Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.
Intelligent judgements over health risks in a spatial agent-based model.
Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana
2018-03-20
Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time. Our results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.
Teachable Agents and the Protégé Effect: Increasing the Effort Towards Learning
NASA Astrophysics Data System (ADS)
Chase, Catherine C.; Chin, Doris B.; Oppezzo, Marily A.; Schwartz, Daniel L.
2009-08-01
Betty's Brain is a computer-based learning environment that capitalizes on the social aspects of learning. In Betty's Brain, students instruct a character called a Teachable Agent (TA) which can reason based on how it is taught. Two studies demonstrate the protégé effect: students make greater effort to learn for their TAs than they do for themselves. The first study involved 8th-grade students learning biology. Although all students worked with the same Betty's Brain software, students in the TA condition believed they were teaching their TAs, while in another condition, they believed they were learning for themselves. TA students spent more time on learning activities (e.g., reading) and also learned more. These beneficial effects were most pronounced for lower achieving children. The second study used a verbal protocol with 5th-grade students to determine the possible causes of the protégé effect. As before, students learned either for their TAs or for themselves. Like study 1, students in the TA condition spent more time on learning activities. These children treated their TAs socially by attributing mental states and responsibility to them. They were also more likely to acknowledge errors by displaying negative affect and making attributions for the causes of failures. Perhaps having a TA invokes a sense of responsibility that motivates learning, provides an environment in which knowledge can be improved through revision, and protects students' egos from the psychological ramifications of failure.
NASA Astrophysics Data System (ADS)
Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.
2008-12-01
In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non-cooperative environment with which different institutional setups and incentive systems can be studied so to identify reasonable ways to reach desirable, Pareto--optimal allocation outcomes. Preliminary results from an application to the Syr Darya river basin in Central Asia will be presented and discussed. The Syr Darya River is a classic example of a transboundary river basin in which basin-wide efficiency gains identified in optimization studies have not been sufficient to induce cooperative management of the river by the riparian states.
The evolution of continuous learning of the structure of the environment
Kolodny, Oren; Edelman, Shimon; Lotem, Arnon
2014-01-01
Continuous, ‘always on’, learning of structure from a stream of data is studied mainly in the fields of machine learning or language acquisition, but its evolutionary roots may go back to the first organisms that were internally motivated to learn and represent their environment. Here, we study under what conditions such continuous learning (CL) may be more adaptive than simple reinforcement learning and examine how it could have evolved from the same basic associative elements. We use agent-based computer simulations to compare three learning strategies: simple reinforcement learning; reinforcement learning with chaining (RL-chain) and CL that applies the same associative mechanisms used by the other strategies, but also seeks statistical regularities in the relations among all items in the environment, regardless of the initial association with food. We show that a sufficiently structured environment favours the evolution of both RL-chain and CL and that CL outperforms the other strategies when food is relatively rare and the time for learning is limited. This advantage of internally motivated CL stems from its ability to capture statistical patterns in the environment even before they are associated with food, at which point they immediately become useful for planning. PMID:24402920
Co-Evolution of Social Learning and Evolutionary Preparedness in Dangerous Environments
Lindström, Björn; Selbing, Ida; Olsson, Andreas
2016-01-01
Danger is a fundamental aspect of the lives of most animals. Adaptive behavior therefore requires avoiding actions, objects, and environments associated with danger. Previous research has shown that humans and non-human animals can avoid such dangers through two types of behavioral adaptions, (i) genetic preparedness to avoid certain stimuli or actions, and (ii) social learning. These adaptive mechanisms reduce the fitness costs associated with danger but still allow flexible behavior. Despite the empirical prevalence and importance of both these mechanisms, it is unclear when they evolve and how they interact. We used evolutionary agent-based simulations, incorporating empirically based learning mechanisms, to clarify if preparedness and social learning typically both evolve in dangerous environments, and if these mechanisms generally interact synergistically or antagonistically. Our simulations showed that preparedness and social learning often co-evolve because they provide complimentary benefits: genetic preparedness reduced foraging efficiency, but resulted in a higher rate of survival in dangerous environments, while social learning generally came to dominate the population, especially when the environment was stochastic. However, even in this case, genetic preparedness reliably evolved. Broadly, our results indicate that the relationship between preparedness and social learning is important as it can result in trade-offs between behavioral flexibility and safety, which can lead to seemingly suboptimal behavior if the evolutionary environment of the organism is not taken into account. PMID:27487079
Co-Evolution of Social Learning and Evolutionary Preparedness in Dangerous Environments.
Lindström, Björn; Selbing, Ida; Olsson, Andreas
2016-01-01
Danger is a fundamental aspect of the lives of most animals. Adaptive behavior therefore requires avoiding actions, objects, and environments associated with danger. Previous research has shown that humans and non-human animals can avoid such dangers through two types of behavioral adaptions, (i) genetic preparedness to avoid certain stimuli or actions, and (ii) social learning. These adaptive mechanisms reduce the fitness costs associated with danger but still allow flexible behavior. Despite the empirical prevalence and importance of both these mechanisms, it is unclear when they evolve and how they interact. We used evolutionary agent-based simulations, incorporating empirically based learning mechanisms, to clarify if preparedness and social learning typically both evolve in dangerous environments, and if these mechanisms generally interact synergistically or antagonistically. Our simulations showed that preparedness and social learning often co-evolve because they provide complimentary benefits: genetic preparedness reduced foraging efficiency, but resulted in a higher rate of survival in dangerous environments, while social learning generally came to dominate the population, especially when the environment was stochastic. However, even in this case, genetic preparedness reliably evolved. Broadly, our results indicate that the relationship between preparedness and social learning is important as it can result in trade-offs between behavioral flexibility and safety, which can lead to seemingly suboptimal behavior if the evolutionary environment of the organism is not taken into account.
NASA Technical Reports Server (NTRS)
HolmesParker, Chris; Taylor, Mathew E.; Tumer, Kagan; Agogino, Adrian
2014-01-01
Learning in multiagent systems can be slow because agents must learn both how to behave in a complex environment and how to account for the actions of other agents. The inability of an agent to distinguish between the true environmental dynamics and those caused by the stochastic exploratory actions of other agents creates noise in each agent's reward signal. This learning noise can have unforeseen and often undesirable effects on the resultant system performance. We define such noise as exploratory action noise, demonstrate the critical impact it can have on the learning process in multiagent settings, and introduce a reward structure to effectively remove such noise from each agent's reward signal. In particular, we introduce Coordinated Learning without Exploratory Action Noise (CLEAN) rewards and empirically demonstrate their benefits
Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming
2012-01-31
Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.
Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning.
Fernandez-Gauna, Borja; Etxeberria-Agiriano, Ismael; Graña, Manuel
2015-01-01
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.
ERIC Educational Resources Information Center
Graesser, Arthur; McNamara, Danielle
2010-01-01
This article discusses the occurrence and measurement of self-regulated learning (SRL) both in human tutoring and in computer tutors with agents that hold conversations with students in natural language and help them learn at deeper levels. One challenge in building these computer tutors is to accommodate, encourage, and scaffold SRL because these…
The Impact of a Peer-Learning Agent Based on Pair Programming in a Programming Course
ERIC Educational Resources Information Center
Han, Keun-Woo; Lee, EunKyoung; Lee, YoungJun
2010-01-01
This paper analyzes the educational effects of a peer-learning agent based on pair programming in programming courses. A peer-learning agent system was developed to facilitate the learning of a programming language through the use of pair programming strategies. This system is based on the role of a peer-learning agent from pedagogical and…
What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics
NASA Astrophysics Data System (ADS)
Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj
Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.
A Multi-Agent Question-Answering System for E-Learning and Collaborative Learning Environment
ERIC Educational Resources Information Center
Alinaghi, Tannaz; Bahreininejad, Ardeshir
2011-01-01
The increasing advances of new Internet technologies in all application domains have changed life styles and interactions. E-learning and collaborative learning environment systems are originated through such changes and aim at providing facilities for people in different times and geographical locations to cooperate, collaborate, learn and work…
Coordinating Decentralized Learning and Conflict Resolution across Agent Boundaries
ERIC Educational Resources Information Center
Cheng, Shanjun
2012-01-01
It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes especially challenging in the context of multiagent systems because of scalability, partial information accessibility and complex interaction of agents. It is a challenge for agents to learn good policies, when they need to plan and…
Reliability and Factor Structure of the Attitude toward Tutoring Agent Scale (ATTAS)
ERIC Educational Resources Information Center
Adcock, Amy B.; Van Eck, Richard N.
2005-01-01
Pedagogical agents are gaining acceptance as effective learning tools (Baylor & Ryu, 2003; Moreno, Mayer, Spires & Lester 2001; Moreno, 2004). The increase in the use of agents highlights the need for standardized measurements for evaluating user performance in these environments. While learning gains are a primary variable of interest in such…
The Influence of a Pedagogical Agent on Learners' Cognitive Load
ERIC Educational Resources Information Center
Schroeder, Noah L.
2017-01-01
According to cognitive load theorists, the incorporation of extraneous features, such as pedagogical agents, into the learning environment can introduce extraneous cognitive load and thus interfere with learning outcome scores. In this study, the influence of a pedagogical agent's presence in an instructional video was compared to a video that did…
Coupled replicator equations for the dynamics of learning in multiagent systems
NASA Astrophysics Data System (ADS)
Sato, Yuzuru; Crutchfield, James P.
2003-01-01
Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
Learning and exploration in action-perception loops.
Little, Daniel Y; Sommer, Friedrich T
2013-01-01
Discovering the structure underlying observed data is a recurring problem in machine learning with important applications in neuroscience. It is also a primary function of the brain. When data can be actively collected in the context of a closed action-perception loop, behavior becomes a critical determinant of learning efficiency. Psychologists studying exploration and curiosity in humans and animals have long argued that learning itself is a primary motivator of behavior. However, the theoretical basis of learning-driven behavior is not well understood. Previous computational studies of behavior have largely focused on the control problem of maximizing acquisition of rewards and have treated learning the structure of data as a secondary objective. Here, we study exploration in the absence of external reward feedback. Instead, we take the quality of an agent's learned internal model to be the primary objective. In a simple probabilistic framework, we derive a Bayesian estimate for the amount of information about the environment an agent can expect to receive by taking an action, a measure we term the predicted information gain (PIG). We develop exploration strategies that approximately maximize PIG. One strategy based on value-iteration consistently learns faster than previously developed reward-free exploration strategies across a diverse range of environments. Psychologists believe the evolutionary advantage of learning-driven exploration lies in the generalized utility of an accurate internal model. Consistent with this hypothesis, we demonstrate that agents which learn more efficiently during exploration are later better able to accomplish a range of goal-directed tasks. We will conclude by discussing how our work elucidates the explorative behaviors of animals and humans, its relationship to other computational models of behavior, and its potential application to experimental design, such as in closed-loop neurophysiology studies.
Real-time modeling of primitive environments through wavelet sensors and Hebbian learning
NASA Astrophysics Data System (ADS)
Vaccaro, James M.; Yaworsky, Paul S.
1999-06-01
Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.
PLATE: Powerful Learning and Teaching Environments
ERIC Educational Resources Information Center
Housand, Angela
2009-01-01
The environment has a profound effect on the ability of students to regulate their behavior or disposition and effectively engage in the learning processes. Active engagement is important because it increases performance. Certain types of environmental structures actually increase students' ability to be agents of their own learning. These…
Human-level control through deep reinforcement learning.
Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare, Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis
2015-02-26
The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Human-level control through deep reinforcement learning
NASA Astrophysics Data System (ADS)
Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis
2015-02-01
The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Teaching with a Dual-Channel Classroom Feedback System in the Digital Classroom Environment
ERIC Educational Resources Information Center
Yu, Yuan-Chih
2017-01-01
Teaching with a classroom feedback system can benefit both teaching and learning practices of interactivity. In this paper, we propose a dual-channel classroom feedback system integrated with a back-end e-Learning system. The system consists of learning agents running on the students' computers and a teaching agent running on the instructor's…
NASA Astrophysics Data System (ADS)
Hasanah, N.; Hayashi, Y.; Hirashima, T.
2017-02-01
Arithmetic word problems remain one of the most difficult area of teaching mathematics. Learning by problem posing has been suggested as an effective way to improve students’ understanding. However, the practice in usual classroom is difficult due to extra time needed for assessment and giving feedback to students’ posed problems. To address this issue, we have developed a tablet PC software named Monsakun for learning by posing arithmetic word problems based on Triplet Structure Model. It uses the mechanism of sentence-integration, an efficient implementation of problem-posing that enables agent-assessment of posed problems. The learning environment has been used in actual Japanese elementary school classrooms and the effectiveness has been confirmed in previous researches. In this study, ten Indonesian elementary school students living in Japan participated in a learning session of problem posing using Monsakun in Indonesian language. We analyzed their learning activities and show that students were able to interact with the structure of simple word problem using this learning environment. The results of data analysis and questionnaire suggested that the use of Monsakun provides a way of creating an interactive and fun environment for learning by problem posing for Indonesian elementary school students.
Performance Evaluation of an Online Argumentation Learning Assistance Agent
ERIC Educational Resources Information Center
Huang, Chenn-Jung; Wang, Yu-Wu; Huang, Tz-Hau; Chen, Ying-Chen; Chen, Heng-Ming; Chang, Shun-Chih
2011-01-01
Recent research indicated that students' ability to construct evidence-based explanations in classrooms through scientific inquiry is critical to successful science education. Structured argumentation support environments have been built and used in scientific discourse in the literature. To the best of our knowledge, no research work in the…
ERIC Educational Resources Information Center
Basu, Satabdi; Sengupta, Pratim; Biswas, Gautam
2015-01-01
Students from middle school to college have difficulties in interpreting and understanding complex systems such as ecological phenomena. Researchers have suggested that students experience difficulties in reconciling the relationships between individuals, populations, and species, as well as the interactions between organisms and their environment…
Designing for expansive science learning and identification across settings
NASA Astrophysics Data System (ADS)
Stromholt, Shelley; Bell, Philip
2017-10-01
In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.
An intelligent agent for optimal river-reservoir system management
NASA Astrophysics Data System (ADS)
Rieker, Jeffrey D.; Labadie, John W.
2012-09-01
A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.
Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf
2016-02-01
Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).
Learning to select useful landmarks.
Greiner, R; Isukapalli, R
1996-01-01
To navigate effectively, an autonomous agent must be able to quickly and accurately determine its current location. Given an initial estimate of its position (perhaps based on dead-reckoning) and an image taken of a known environment, our agent first attempts to locate a set of landmarks (real-world objects at known locations), then uses their angular separation to obtain an improved estimate of its current position. Unfortunately, some landmarks may not be visible, or worse, may be confused with other landmarks, resulting in both time wasted in searching for the undetected landmarks, and in further errors in the agent's estimate of its position. To address these problems, we propose a method that uses previous experiences to learn a selection function that, given the set of landmarks that might be visible, returns the subset that can be used to reliably provide an accurate registration of the agent's position. We use statistical techniques to prove that the learned selection function is, with high probability, effectively at a local optimum in the space of such functions. This paper also presents empirical evidence, using real-world data, that demonstrate the effectiveness of our approach.
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
Deep imitation learning for 3D navigation tasks.
Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina
2018-01-01
Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.
NASA Astrophysics Data System (ADS)
Seely, Brian J.
This study aims to advance learning outdoors with mobile devices. As part of the ongoing Tree Investigators design-based research study, this research investigated a mobile application to support observation, identification, and explanation of the tree life cycle within an authentic, outdoor setting. Recognizing the scientific and conceptual complexity of this topic for young children, the design incorporated technological and design scaffolds within a narrative-based learning environment. In an effort to support learning, 14 participants (aged 5-9) were guided through the mobile app on tree life cycles by a comic-strip pedagogical agent, "Nutty the Squirrel", as they looked to explore and understand through guided observational practices and artifact creation tasks. In comparison to previous iterations of this DBR study, the overall patterns of talk found in this study were similar, with perceptual and conceptual talk being the first and second most frequently coded categories, respectively. However, this study coded considerably more instances of affective talk. This finding of the higher frequency of affective talk could possibly be explained by the relatively younger age of this iteration's participants, in conjunction with the introduced pedagogical agent, who elicited playfulness and delight from the children. The results also indicated a significant improvement when comparing the pretest results (mean score of .86) with the posttest results (mean score of 4.07, out of 5). Learners were not only able to recall the phases of a tree life cycle, but list them in the correct order. The comparison reports a significant increase, showing evidence of increased knowledge and appropriation of scientific vocabulary. The finding suggests the narrative was effective in structuring the complex material into a story for sense making. Future research with narratives should consider a design to promote learner agency through more interactions with the pedagogical agent and a conditional branching scenario framework to further evoke interest and engagement.
ERIC Educational Resources Information Center
Smith, Prapanna Randall
2013-01-01
This article reports the quantitative phase of a mixed-methods study that was conducted to investigate the relationships between psychosocial learning environments and student satisfaction with their education as mediated by Agentic Personal Meaning. The interdisciplinary approach of the study integrated the fields of learning environment…
B-tree search reinforcement learning for model based intelligent agent
NASA Astrophysics Data System (ADS)
Bhuvaneswari, S.; Vignashwaran, R.
2013-03-01
Agents trained by learning techniques provide a powerful approximation of active solutions for naive approaches. In this study using B - Trees implying reinforced learning the data search for information retrieval is moderated to achieve accuracy with minimum search time. The impact of variables and tactics applied in training are determined using reinforcement learning. Agents based on these techniques perform satisfactory baseline and act as finite agents based on the predetermined model against competitors from the course.
A Multi-Agent System Approach for Distance Learning Architecture
ERIC Educational Resources Information Center
Turgay, Safiye
2005-01-01
The goal of this study is to suggest the agent systems by intelligence and adaptability properties in distance learning environment. The suggested system has flexible, agile, intelligence and cooperation features. System components are teachers, students (learners), and resources. Inter component relations are modeled and reviewed by using the…
Emerging CAE technologies and their role in Future Ambient Intelligence Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2011-03-01
Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.
NASA Astrophysics Data System (ADS)
Hanford, Scott D.
Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the object of interest has been detected, the Soar agent uses the topological map to make decisions about how to efficiently return to the location where the mission began. Additionally, the CRS can send an email containing step-by-step directions using the intersections in the environment as landmarks that describe a direct path from the mission's start location to the object of interest. The CRS has displayed several characteristics of intelligent behavior, including reasoning, planning, learning, and communication of learned knowledge, while autonomously performing two missions. The CRS has also demonstrated how Soar can be integrated with common robotic motor and perceptual systems that complement the strengths of Soar for unmanned vehicles and is one of the few systems that use perceptual systems such as occupancy grid, computer vision, and fuzzy logic algorithms with cognitive architectures for robotics. The use of these perceptual systems to generate symbolic information about the environment during the indoor search mission allowed the CRS to use Soar's planning and learning mechanisms, which have rarely been used by agents to control mobile robots in real environments. Additionally, the system developed for the indoor search mission represents the first known use of a topological map with a cognitive architecture on a mobile robot. The ability to learn both a topological map and production rules allowed the Soar agent used during the indoor search mission to make intelligent decisions and behave more efficiently as it learned about its environment. While the CRS has been applied to two different missions, it has been developed with the intention that it be extended in the future so it can be used as a general system for mobile robot control. The CRS can be expanded through the addition of new sensors and sensor processing algorithms, development of Soar agents with more production rules, and the use of new architectural mechanisms in Soar.
NASA Astrophysics Data System (ADS)
Blikstein, Paulo
The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.
Model learning for robot control: a survey.
Nguyen-Tuong, Duy; Peters, Jan
2011-11-01
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.
Animated Pedagogical Agents in Interactive Learning Environment: The Future of Air Force Training?
2008-02-01
confusion and disorder. Players enhance their skills of strategy and tactics as they advance through the game and destroy the enemy (Prensky, 2001b...based learning, individual learners control avatars in a 3D world where a CBRNE event has occurred. Participants can also be dispersed. Learners ...how effective the technology is for achieving training goals or 7 where it would be best to apply the technology. Johnson, Rickel, and Lester (2000
ERIC Educational Resources Information Center
Minnesota Univ., Minneapolis. School of Public Health.
The School Health Initiative: Environment, Learning, and Disease (SHIELD) study examined children's exposure to complex mixtures of environmental agents (i.e., volatile organic chemicals, environmental tobacco smoke, allergens, bioaerosols, metals, and pesticides). Environmental, personal, and biological data were collected on ethnically and…
Individual Differences: Interplay of Learner Characteristics and Learning Environment
ERIC Educational Resources Information Center
Dornyei, Zoltan
2009-01-01
The notion of language as a complex adaptive system has been conceived within an agent-based framework, which highlights the significance of individual-level variation in the characteristics and contextual circumstances of the learner/speaker. Yet, in spite of this emphasis, currently we know relatively little about the interplay among language,…
Integrating robotic action with biologic perception: A brain-machine symbiosis theory
NASA Astrophysics Data System (ADS)
Mahmoudi, Babak
In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and NAcc for the development of a full closed-loop system. The Actor-Critic decoding architecture was able to solve the brain-controlled reaching task using a robotic arm by capturing the interdependency between the simultaneous action representation in MI and reward expectation in NAcc.
Basic emotions and adaptation. A computational and evolutionary model.
Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio
2017-01-01
The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions.
The Effect of Contextualized Conversational Feedback in a Complex Open-Ended Learning Environment
ERIC Educational Resources Information Center
Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam
2013-01-01
Betty's Brain is an open-ended learning environment in which students learn about science topics by teaching a virtual agent named Betty through the construction of a visual causal map that represents the relevant science phenomena. The task is complex, and success requires the use of metacognitive strategies that support knowledge acquisition,…
2010-08-12
Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT
Influences of Agents with a Self-Reputation Awareness Component in an Evolutionary Spatial IPD Game
Huang, Chung-Yuan; Lee, Chun-Liang
2014-01-01
Iterated prisoner’s dilemma (IPD) researchers have shown that strong positive reputations plus an efficient reputation evaluation system encourages both sides to pursue long-term collaboration and to avoid falling into mutual defection cycles. In agent-based environments with reliable reputation rating systems, agents interested in maximizing their private interests must show concern for other agents as well as their own self-reputations–an important capability that standard IPD game agents lack. Here we present a novel learning agent model possessing self-reputation awareness. Agents in our proposed model are capable of evaluating self-behaviors based on a mix of public and private interest considerations, and of testing various solutions aimed at meeting social standards. Simulation results indicate multiple outcomes from the addition of a small percentage of self-reputation awareness agents: faster cooperation, faster movement toward stability in an agent society, a higher level of public interest in the agent society, the resolution of common conflicts between public and private interests, and a lower potential for rational individual behavior to transform into irrational group behavior. PMID:24945966
Wains: a pattern-seeking artificial life species.
de Buitléir, Amy; Russell, Michael; Daly, Mark
2012-01-01
We describe the initial phase of a research project to develop an artificial life framework designed to extract knowledge from large data sets with minimal preparation or ramp-up time. In this phase, we evolved an artificial life population with a new brain architecture. The agents have sufficient intelligence to discover patterns in data and to make survival decisions based on those patterns. The species uses diploid reproduction, Hebbian learning, and Kohonen self-organizing maps, in combination with novel techniques such as using pattern-rich data as the environment and framing the data analysis as a survival problem for artificial life. The first generation of agents mastered the pattern discovery task well enough to thrive. Evolution further adapted the agents to their environment by making them a little more pessimistic, and also by making their brains more efficient.
The influence of active vision on the exoskeleton of intelligent agents
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2016-04-01
Chameleonization occurs when a self-learning autonomous mobile system's (SLAMR) active vision scans the surface of which it is perched causing the exoskeleton to changes colors exhibiting a chameleon effect. Intelligent agents having the ability to adapt to their environment and exhibit key survivability characteristics of its environments would largely be due in part to the use of active vision. Active vision would allow the intelligent agent to scan its environment and adapt as needed in order to avoid detection. The SLAMR system would have an exoskeleton, which would change, based on the surface it was perched on; this is known as the "chameleon effect." Not in the common sense of the term, but from the techno-bio inspired meaning as addressed in our previous paper. Active vision, utilizing stereoscopic color sensing functionality would enable the intelligent agent to scan an object within its close proximity, determine the color scheme, and match it; allowing the agent to blend with its environment. Through the use of its' optical capabilities, the SLAMR system would be able to further determine its position, taking into account spatial and temporal correlation and spatial frequency content of neighboring structures further ensuring successful background blending. The complex visual tasks of identifying objects, using edge detection, image filtering, and feature extraction are essential for an intelligent agent to gain additional knowledge about its environmental surroundings.
An Active Learning Exercise for Introducing Agent-Based Modeling
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2013-01-01
Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…
Design and Control of Large Collections of Learning Agents
NASA Technical Reports Server (NTRS)
Agogino, Adrian
2001-01-01
The intelligent control of multiple autonomous agents is an important yet difficult task. Previous methods used to address this problem have proved to be either too brittle, too hard to use, or not scalable to large systems. The 'Collective Intelligence' project at NASA/Ames provides an elegant, machine-learning approach to address these problems. This approach mathematically defines some essential properties that a reward system should have to promote coordinated behavior among reinforcement learners. This work has focused on creating additional key properties and algorithms within the mathematics of the Collective Intelligence framework. One of the additions will allow agents to learn more quickly, in a more coordinated manner. The other will let agents learn with less knowledge of their environment. These additions will allow the framework to be applied more easily, to a much larger domain of multi-agent problems.
Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments
NASA Technical Reports Server (NTRS)
Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette
2015-01-01
We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.
ERIC Educational Resources Information Center
Hoppe, H. Ulrich
2016-01-01
The 1998 paper by Martin Mühlenbrock, Frank Tewissen, and myself introduced a multi-agent architecture and a component engineering approach for building open distributed learning environments to support group learning in different types of classroom settings. It took up prior work on "multiple student modeling" as a method to configure…
ERIC Educational Resources Information Center
Wang, Chih-Chien; Yeh, Wei-Jyh
2013-01-01
The study focused on the use of pedagogical agents with sex appeal in a computer-assisted learning environment. The study adopted a 2 (male/female) × 3 (demure/seductive/overtly sexual) experimental design. The primary analysis consisted of 2 parts: (a) comparing the impact of effective learning on students' perceptions of demure, seductive, or…
ERIC Educational Resources Information Center
Blikstein, Paulo; Wilensky, Uri
2009-01-01
This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…
ERIC Educational Resources Information Center
Farias, Cláudio; Hastie, Peter Andrew; Mesquita, Isabel
2017-01-01
This study was designed to examine and intervene into student behaviours to promote a democratic, inclusive and participatory focus within Sport Education. To achieve an increased understanding of and changes within student behaviours, a collaborative participatory action research methodology was applied to provide voice to students as agents of…
Context transfer in reinforcement learning using action-value functions.
Mousavi, Amin; Nadjar Araabi, Babak; Nili Ahmadabadi, Majid
2014-01-01
This paper discusses the notion of context transfer in reinforcement learning tasks. Context transfer, as defined in this paper, implies knowledge transfer between source and target tasks that share the same environment dynamics and reward function but have different states or action spaces. In other words, the agents learn the same task while using different sensors and actuators. This requires the existence of an underlying common Markov decision process (MDP) to which all the agents' MDPs can be mapped. This is formulated in terms of the notion of MDP homomorphism. The learning framework is Q-learning. To transfer the knowledge between these tasks, the feature space is used as a translator and is expressed as a partial mapping between the state-action spaces of different tasks. The Q-values learned during the learning process of the source tasks are mapped to the sets of Q-values for the target task. These transferred Q-values are merged together and used to initialize the learning process of the target task. An interval-based approach is used to represent and merge the knowledge of the source tasks. Empirical results show that the transferred initialization can be beneficial to the learning process of the target task.
Context Transfer in Reinforcement Learning Using Action-Value Functions
Mousavi, Amin; Nadjar Araabi, Babak; Nili Ahmadabadi, Majid
2014-01-01
This paper discusses the notion of context transfer in reinforcement learning tasks. Context transfer, as defined in this paper, implies knowledge transfer between source and target tasks that share the same environment dynamics and reward function but have different states or action spaces. In other words, the agents learn the same task while using different sensors and actuators. This requires the existence of an underlying common Markov decision process (MDP) to which all the agents' MDPs can be mapped. This is formulated in terms of the notion of MDP homomorphism. The learning framework is Q-learning. To transfer the knowledge between these tasks, the feature space is used as a translator and is expressed as a partial mapping between the state-action spaces of different tasks. The Q-values learned during the learning process of the source tasks are mapped to the sets of Q-values for the target task. These transferred Q-values are merged together and used to initialize the learning process of the target task. An interval-based approach is used to represent and merge the knowledge of the source tasks. Empirical results show that the transferred initialization can be beneficial to the learning process of the target task. PMID:25610457
Collaborating Fuzzy Reinforcement Learning Agents
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1997-01-01
Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.
Reinforcement learning or active inference?
Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J
2009-07-29
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.
Safe Exploration Algorithms for Reinforcement Learning Controllers.
Mannucci, Tommaso; van Kampen, Erik-Jan; de Visser, Cornelis; Chu, Qiping
2018-04-01
Self-learning approaches, such as reinforcement learning, offer new possibilities for autonomous control of uncertain or time-varying systems. However, exploring an unknown environment under limited prediction capabilities is a challenge for a learning agent. If the environment is dangerous, free exploration can result in physical damage or in an otherwise unacceptable behavior. With respect to existing methods, the main contribution of this paper is the definition of a new approach that does not require global safety functions, nor specific formulations of the dynamics or of the environment, but relies on interval estimation of the dynamics of the agent during the exploration phase, assuming a limited capability of the agent to perceive the presence of incoming fatal states. Two algorithms are presented with this approach. The first is the Safety Handling Exploration with Risk Perception Algorithm (SHERPA), which provides safety by individuating temporary safety functions, called backups. SHERPA is shown in a simulated, simplified quadrotor task, for which dangerous states are avoided. The second algorithm, denominated OptiSHERPA, can safely handle more dynamically complex systems for which SHERPA is not sufficient through the use of safety metrics. An application of OptiSHERPA is simulated on an aircraft altitude control task.
Zhu, Lusha; Mathewson, Kyle E.; Hsu, Ming
2012-01-01
Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents’ beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs. PMID:22307594
ERIC Educational Resources Information Center
Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan
2015-01-01
In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…
What Do Learners and Pedagogical Agents Discuss When Given Opportunities for Open-Ended Dialogue?
ERIC Educational Resources Information Center
Veletsianos, George; Russell, Gregory S.
2013-01-01
Researchers claim that pedagogical agents engender opportunities for social learning in digital environments. Prior literature, however, has not thoroughly examined the discourse between agents and learners. To address this gap, we analyzed a data corpus of interactions between agents and learners using open coding methods. Analysis revealed that:…
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu
2007-01-01
This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
Using Agent-Based Technologies to Enhance Learning in Educational Games
ERIC Educational Resources Information Center
Tumenayu, Ogar Ofut; Shabalina, Olga; Kamaev, Valeriy; Davtyan, Alexander
2014-01-01
Recent research has shown that educational games positively motivate learning. However, there is a little evidence that they can trigger learning to a large extent if the game-play is supported by additional activities. We aim to support educational games development with an Agent-Based Technology (ABT) by using intelligent pedagogical agents that…
The Effect of Pacing on Learners' Perceptions of Pedagogical Agents
ERIC Educational Resources Information Center
Schroeder, Noah L.; Craig, Scotty D.
2017-01-01
This study examined the influence of three levels of learner control on learners' perceptions when learning with a pedagogical agent. Pedagogical agents have shown promise for improving learning and connections with learning materials within video-based instruction, and research has shown that agent design choices can influence how agents are…
Learning Activity Models for Multiple Agents in a Smart Space
NASA Astrophysics Data System (ADS)
Crandall, Aaron; Cook, Diane J.
With the introduction of more complex intelligent environment systems, the possibilities for customizing system behavior have increased dramatically. Significant headway has been made in tracking individuals through spaces using wireless devices [1, 18, 26] and in recognizing activities within the space based on video data (see chapter by Brubaker et al. and [6, 8, 23]), motion sensor data [9, 25], wearable sensors [13] or other sources of information [14, 15, 22]. However, much of the theory and most of the algorithms are designed to handle one individual in the space at a time. Resident tracking, activity recognition, event prediction, and behavior automation becomes significantly more difficult for multi-agent situations, when there are multiple residents in the environment.
Web-based health care agents; the case of reminders and todos, too (R2Do2).
Silverman, B G; Andonyadis, C; Morales, A
1998-11-01
This paper describes efforts to develop and field an agent-based, healthcare middleware framework that securely connects practice rule sets to patient records to anticipate health todo items and to remind and alert users about these items over the web. Reminders and todos, too (R2Do2) is an example of merging data- and document-centric architectures, and of integrating agents into patient-provider collaboration environments. A test of this capability verifies that R2Do2 is progressing toward its two goals: (1) an open standards framework for middleware in the healthcare field; and (2) an implementation of the 'principle of optimality' to derive the best possible health plans for each user. This paper concludes with lessons learned to date.
Online Bahavior Aquisition of an Agent based on Coaching as Learning Assistance
NASA Astrophysics Data System (ADS)
Hirokawa, Masakazu; Suzuki, Kenji
This paper describes a novel methodology, namely ``Coaching'', which allows humans to give a subjective evaluation to an agent in an iterative manner. This is an interactive learning method to improve the reinforcement learning by modifying a reward function dynamically according to given evaluations by a trainer and the learning situation of the agent. We demonstrate that the agent can learn different reward functions by given instructions such as ``good or bad'' by human's observation, and can also obtain a set of behavior based on the learnt reward functions through several experiments.
Human Aided Reinforcement Learning in Complex Environments
learn to solve tasks through a trial -and- error process. As an agent takes ...task faster andmore accurately, a human expert can be added to the system to guide an agent in solving the task. This project seeks to expand on current...theenvironment, which works particularly well for reactive tasks . In more complex tasks , these systems do not work as intended. The manipulation
An incremental approach to genetic-algorithms-based classification.
Guan, Sheng-Uei; Zhu, Fangming
2005-04-01
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multiagent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an "integration" operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed.
A spatial web/agent-based model to support stakeholders' negotiation regarding land development.
Pooyandeh, Majeed; Marceau, Danielle J
2013-11-15
Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second scenario. The proposed web/agent-based model facilitates the interaction and learning among stakeholders when facing multiple alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Virtual Learning Environments as Sociomaterial Agents in the Network of Teaching Practice
ERIC Educational Resources Information Center
Johannesen, Monica; Erstad, Ola; Habib, Laurence
2012-01-01
This article presents findings related to the sociomaterial agency of educators and their practice in Norwegian education. Using actor-network theory, we ask how Virtual Learning Environments (VLEs) negotiate the agency of educators and how they shape their teaching practice. Since the same kinds of VLE tools have been widely implemented…
A Hybrid Approach for Supporting Adaptivity in E-Learning Environments
ERIC Educational Resources Information Center
Al-Omari, Mohammad; Carter, Jenny; Chiclana, Francisco
2016-01-01
Purpose: The purpose of this paper is to identify a framework to support adaptivity in e-learning environments. The framework reflects a novel hybrid approach incorporating the concept of the event-condition-action (ECA) model and intelligent agents. Moreover, a system prototype is developed reflecting the hybrid approach to supporting adaptivity…
Designing a Teachable Agent System for Mathematics Learning
ERIC Educational Resources Information Center
Song, Donggil
2017-01-01
Learning-by-teaching has been identified as one of the more effective approaches to learning. Recently, educational researchers have investigated virtual environments in order to utilize the learning-by-teaching pedagogy. In a face-to-face learning-by-teaching situation, the role of the learners is to teach their peers or instructors. In virtual…
ERIC Educational Resources Information Center
Reeve, Johnmarshall
2013-01-01
The present study introduced "agentic engagement" as a newly proposed student-initiated pathway to greater achievement and greater motivational support. Study 1 developed the brief, construct-congruent, and psychometrically strong Agentic Engagement Scale. Study 2 provided evidence for the scale's construct and predictive validity, as…
Lifelong Transfer Learning for Heterogeneous Teams of Agents in Sequential Decision Processes
2016-06-01
making (SDM) tasks in dynamic environments with simulated and physical robots . 15. SUBJECT TERMS Sequential decision making, lifelong learning, transfer...sequential decision-making (SDM) tasks in dynamic environments with both simple benchmark tasks and more complex aerial and ground robot tasks. Our work...and ground robots in the presence of disturbances: We applied our methods to the problem of learning controllers for robots with novel disturbances in
Personalized E- learning System Based on Intelligent Agent
NASA Astrophysics Data System (ADS)
Duo, Sun; Ying, Zhou Cai
Lack of personalized learning is the key shortcoming of traditional e-Learning system. This paper analyzes the personal characters in e-Learning activity. In order to meet the personalized e-learning, a personalized e-learning system based on intelligent agent was proposed and realized in the paper. The structure of system, work process, the design of intelligent agent and the realization of intelligent agent were introduced in the paper. After the test use of the system by certain network school, we found that the system could improve the learner's initiative participation, which can provide learners with personalized knowledge service. Thus, we thought it might be a practical solution to realize self- learning and self-promotion in the lifelong education age.
Basic emotions and adaptation. A computational and evolutionary model
2017-01-01
The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual “sensations” based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual’s life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions. PMID:29107988
Emergence of trend trading and its effects in minority game
NASA Astrophysics Data System (ADS)
Liu, Xing-Hua; Liang, Xiao-Bei; Wang, Nai-Jing
2006-09-01
In this paper, we extended Minority Game (MG) by equipping agents with both value and trend strategies. In the new model, agents (we call them strong-adaptation agents) can autonomically select to act as trend trader or value trader when they game and learn in system. So the new model not only can reproduce stylized factors but also has the potential to investigate into the process of some problems of securities market. We investigated the dynamics of trend trading and its impacts on securities market based on the new model. Our research found that trend trading is inevitable when strong-adaptation agents make decisions by inductive reasoning. Trend trading (of strong-adaptation agents) is not irrational behavior but shows agent's strong-adaptation intelligence, because strong-adaptation agents can take advantage of the pure value agents when they game together in hybrid system. We also found that strong-adaptation agents do better in real environment. The results of our research are different with those of behavior finance researches.
Agent-Customized Training for Human Learning Performance Enhancement
ERIC Educational Resources Information Center
Blake, M. Brian; Butcher-Green, Jerome D.
2009-01-01
Training individuals from diverse backgrounds and in changing environments requires customized training approaches that align with the individual learning styles and ever-evolving organizational needs. Scaffolding is a well-established instructional approach that facilitates learning by incrementally removing training aids as the learner…
Agent-based modeling: a new approach for theory building in social psychology.
Smith, Eliot R; Conrey, Frederica R
2007-02-01
Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.
Adaptive quantum computation in changing environments using projective simulation
NASA Astrophysics Data System (ADS)
Tiersch, M.; Ganahl, E. J.; Briegel, H. J.
2015-08-01
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.
Adaptive quantum computation in changing environments using projective simulation
Tiersch, M.; Ganahl, E. J.; Briegel, H. J.
2015-01-01
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263
Agent-specific learning signals for self–other distinction during mentalising
Dolan, Raymond J.; Kurth-Nelson, Zeb
2018-01-01
Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self–other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self–other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self–other distinction also had a reduced behavioural capacity for self–other distinction and displayed more marked subclinical psychopathological traits. The neural self–other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self–other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker. PMID:29689053
Agent-specific learning signals for self-other distinction during mentalising.
Ereira, Sam; Dolan, Raymond J; Kurth-Nelson, Zeb
2018-04-01
Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.
Learning comunication strategies for distributed artificial intelligence
NASA Astrophysics Data System (ADS)
Kinney, Michael; Tsatsoulis, Costas
1992-08-01
We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.
Machine learning for a Toolkit for Image Mining
NASA Technical Reports Server (NTRS)
Delanoy, Richard L.
1995-01-01
A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.
Education Technology and Hidden Ideological Contradictions
ERIC Educational Resources Information Center
Amory, Alan
2010-01-01
This article examined, through a Cultural Historical Activity Theory lens, how immersive- or pervasive environments and pedagogical agents could more easily support social collaboration as foundation of contemporary learning theory. It is argued that the fundamentalism-liberationism contradiction (learn "from" versus learn "with" technology) is no…
NASA Technical Reports Server (NTRS)
Rossomando, Philip J.
1992-01-01
A description is given of UNICORN, a prototype system developed for the purpose of investigating artificial intelligence (AI) concepts supporting spacecraft autonomy. UNICORN employs thematic reasoning, of the type first described by Rodger Schank of Northwestern University, to allow the context-sensitive control of multiple intelligent agents within a blackboard based environment. In its domain of application, UNICORN demonstrates the ability to reason teleologically with focused knowledge. Also presented are some of the lessons learned as a result of this effort. These lessons apply to any effort wherein system level autonomy is the objective.
NASA Astrophysics Data System (ADS)
Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.
2016-02-01
Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).
The Effects of Animated Agents on Students' Achievement and Attitudes
ERIC Educational Resources Information Center
Unal-Colak, Figen; Ozan, Ozlem
2012-01-01
Animated agents are electronic agents that interact with learners through voice, visuals or text and that carry human-like characteristics such as gestures and facial expressions with the purpose of creating a social learning environment, and provide information and guidance and when required feedback and motivation to students during their…
ERIC Educational Resources Information Center
Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto
2018-01-01
Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…
Quantum machine learning with glow for episodic tasks and decision games
NASA Astrophysics Data System (ADS)
Clausen, Jens; Briegel, Hans J.
2018-02-01
We consider a general class of models, where a reinforcement learning (RL) agent learns from cyclic interactions with an external environment via classical signals. Perceptual inputs are encoded as quantum states, which are subsequently transformed by a quantum channel representing the agent's memory, while the outcomes of measurements performed at the channel's output determine the agent's actions. The learning takes place via stepwise modifications of the channel properties. They are described by an update rule that is inspired by the projective simulation (PS) model and equipped with a glow mechanism that allows for a backpropagation of policy changes, analogous to the eligibility traces in RL and edge glow in PS. In this way, the model combines features of PS with the ability for generalization, offered by its physical embodiment as a quantum system. We apply the agent to various setups of an invasion game and a grid world, which serve as elementary model tasks allowing a direct comparison with a basic classical PS agent.
ERIC Educational Resources Information Center
Kinnebrew, John S.; Biswas, Gautam
2012-01-01
Our learning-by-teaching environment, Betty's Brain, captures a wealth of data on students' learning interactions as they teach a virtual agent. This paper extends an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs sequence mining techniques to…
Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies
NASA Astrophysics Data System (ADS)
Fournier-Viger, Philippe; Nkambou, Roger; Faghihi, Usef; Nguifo, Engelbert Mephu
We propose two mechanisms for agent learning based on the idea of mining temporal patterns from agent behavior. The first one consists of extracting temporal patterns from the perceived behavior of other agents accomplishing a task, to learn the task. The second learning mechanism consists in extracting temporal patterns from an agent's own behavior. In this case, the agent then reuses patterns that brought self-satisfaction. In both cases, no assumption is made on how the observed agents' behavior is internally generated. A case study with a real application is presented to illustrate each learning mechanism.
ERIC Educational Resources Information Center
Moreno, Roxana
2009-01-01
Participants in the present study were 87 college students who learned about botany using an agent-based instructional program with three different learning approaches: individual, jigsaw, or cooperative learning. Results showed no differences among learning approaches on retention. Students in jigsaw groups reported higher cognitive load during…
2006-03-01
represented by the set of tiles that it lies in. A variation on tile coding is Berenji and Vengerov’s [4, 5] use of fuzzy state aggregation (FSA) as a means...approximation with Q-learning is not a new or unusual concept [1, 3]. Berenji and Vengerov [4, 5] advanced this work in their application of Q-learning and... Berenji and Vengerov [4, 5]. The simplified Tileworld consists of agents, reward spikes, and deformations. The agent must select which reward to pursue
Research on Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Lobeck, William E.
2002-01-01
Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.
Research on Intelligent Synthesis Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.; Loftin, R. Bowen
2002-12-01
Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.
The Role of the Practice Trainer as an Agent of Co-Configuration
ERIC Educational Resources Information Center
Reid, Anne-Marie
2015-01-01
Professional and vocational learning requires the sharing of expertise across physical, social and cultural boundaries in developing and delivering programmes of study. Contemporary understandings of workplace learning emphasise the criticality of contextualised learning which considers how learners and workplace environments are reciprocally…
A Proposed Intelligent Policy-Based Interface for a Mobile eHealth Environment
NASA Astrophysics Data System (ADS)
Tavasoli, Amir; Archer, Norm
Users of mobile eHealth systems are often novices, and the learning process for them may be very time consuming. In order for systems to be attractive to potential adopters, it is important that the interface should be very convenient and easy to learn. However, the community of potential users of a mobile eHealth system may be quite varied in their requirements, so the system must be able to adapt easily to suit user preferences. One way to accomplish this is to have the interface driven by intelligent policies. These policies can be refined gradually, using inputs from potential users, through intelligent agents. This paper develops a framework for policy refinement for eHealth mobile interfaces, based on dynamic learning from user interactions.
ERIC Educational Resources Information Center
Marsick, Victoria J.; Volpe, F. Marie; Brooks, Ann; Cseh, Maria; Lovin, Barbara Keelor; Vernon, Sally; Watkins, Karen E.; Ziegler, Mary
The concept of the free agent learner, which has roots in self-directed and informal learning theory, has recently emerged as a factor important to attracting, developing, and keeping knowledge workers. The literature on free agent learning holds important lessons for today's free agent learners, human resource developers, and work organizations.…
The Emerging Technology of Avatars: Some Educational Considerations
ERIC Educational Resources Information Center
Blake, Anne M.; Moseley, James L.
2010-01-01
Avatars are gaining popularity as an emerging technology to facilitate learning and instruction. Avatars can be used as agents of e-learning applications or as part of immersive learning environments such as Second Life. Research indicates that avatar use has numerous potential benefits, including increased student engagement and opportunities for…
Stochastic abstract policies: generalizing knowledge to improve reinforcement learning.
Koga, Marcelo L; Freire, Valdinei; Costa, Anna H R
2015-01-01
Reinforcement learning (RL) enables an agent to learn behavior by acquiring experience through trial-and-error interactions with a dynamic environment. However, knowledge is usually built from scratch and learning to behave may take a long time. Here, we improve the learning performance by leveraging prior knowledge; that is, the learner shows proper behavior from the beginning of a target task, using the knowledge from a set of known, previously solved, source tasks. In this paper, we argue that building stochastic abstract policies that generalize over past experiences is an effective way to provide such improvement and this generalization outperforms the current practice of using a library of policies. We achieve that contributing with a new algorithm, AbsProb-PI-multiple and a framework for transferring knowledge represented as a stochastic abstract policy in new RL tasks. Stochastic abstract policies offer an effective way to encode knowledge because the abstraction they provide not only generalizes solutions but also facilitates extracting the similarities among tasks. We perform experiments in a robotic navigation environment and analyze the agent's behavior throughout the learning process and also assess the transfer ratio for different amounts of source tasks. We compare our method with the transfer of a library of policies, and experiments show that the use of a generalized policy produces better results by more effectively guiding the agent when learning a target task.
A Symbiotic Brain-Machine Interface through Value-Based Decision Making
Mahmoudi, Babak; Sanchez, Justin C.
2011-01-01
Background In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). Methodology The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. Conclusions Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward interdependency in the brain. PMID:21423797
Reinforcement learning: Solving two case studies
NASA Astrophysics Data System (ADS)
Duarte, Ana Filipa; Silva, Pedro; dos Santos, Cristina Peixoto
2012-09-01
Reinforcement Learning algorithms offer interesting features for the control of autonomous systems, such as the ability to learn from direct interaction with the environment, and the use of a simple reward signalas opposed to the input-outputs pairsused in classic supervised learning. The reward signal indicates the success of failure of the actions executed by the agent in the environment. In this work, are described RL algorithmsapplied to two case studies: the Crawler robot and the widely known inverted pendulum. We explore RL capabilities to autonomously learn a basic locomotion pattern in the Crawler, andapproach the balancing problem of biped locomotion using the inverted pendulum.
Optimization through satisficing with prospects
NASA Astrophysics Data System (ADS)
Oyo, Kuratomo; Takahashi, Tatsuji
2017-07-01
As the broadening scope of reinforcement learning calls for a rational and more efficient heuristics, we test a satisficing strategy named RS, based on the theory of bounded rationality that considers the limited resources in agents. In K-armed bandit problems, despite its simpler form than the previous formalization of satisficing, RS shows better-than-optimal performances when the optimal aspiration level is given. We also show that RS shows a scalability for the number of actions, K, and an adaptability in the face of an infinite number of actions. It may be an efficient means for online learning in a complex or real environments.
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
Christopoulos, George I; King-Casas, Brooks
2015-01-01
In social environments, it is crucial that decision-makers take account of the impact of their actions not only for oneself, but also on other social agents. Previous work has identified neural signals in the striatum encoding value-based prediction errors for outcomes to oneself; also, recent work suggests that neural activity in prefrontal cortex may similarly encode value-based prediction errors related to outcomes to others. However, prior work also indicates that social valuations are not isomorphic, with social value orientations of decision-makers ranging on a cooperative to competitive continuum; this variation has not been examined within social learning environments. Here, we combine a computational model of learning with functional neuroimaging to examine how individual differences in orientation impact neural mechanisms underlying 'other-value' learning. Across four experimental conditions, reinforcement learning signals for other-value were identified in medial prefrontal cortex, and were distinct from self-value learning signals identified in striatum. Critically, the magnitude and direction of the other-value learning signal depended strongly on an individual's cooperative or competitive orientation toward others. These data indicate that social decisions are guided by a social orientation-dependent learning system that is computationally similar but anatomically distinct from self-value learning. The sensitivity of the medial prefrontal learning signal to social preferences suggests a mechanism linking such preferences to biases in social actions and highlights the importance of incorporating heterogeneous social predispositions in neurocomputational models of social behavior. Published by Elsevier Inc.
With you or against you: Social orientation dependent learning signals guide actions made for others
Christopoulos, George I.; King-Casas, Brooks
2014-01-01
In social environments, it is crucial that decision-makers take account of the impact of their actions not only for oneself, but also on other social agents. Previous work has identified neural signals in the striatum encoding value-based prediction errors for outcomes to oneself; also, recent work suggests neural activity in prefrontal cortex may similarly encode value-based prediction errors related to outcomes to others. However, prior work also indicates that social valuations are not isomorphic, with social value orientations of decision-makers ranging on a cooperative to competitive continuum; this variation has not been examined within social learning environments. Here, we combine a computational model of learning with functional neuroimaging to examine how individual differences in orientation impact neural mechanisms underlying ‘other-value’ learning. Across four experimental conditions, reinforcement learning signals for other-value were identified in medial prefrontal cortex, and were distinct from self-value learning signals identified in striatum. Critically, the magnitude and direction of the other-value learning signal depended strongly on an individual’s cooperative or competitive orientation towards others. These data indicate that social decisions are guided by a social orientation-dependent learning system that is computationally similar but anatomically distinct from self-value learning. The sensitivity of the medial prefrontal learning signal to social preferences suggests a mechanism linking such preferences to biases in social actions and highlights the importance of incorporating heterogeneous social predispositions in neurocomputational models of social behavior. PMID:25224998
Time-Extended Policies in Mult-Agent Reinforcement Learning
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2004-01-01
Reinforcement learning methods perform well in many domains where a single agent needs to take a sequence of actions to perform a task. These methods use sequences of single-time-step rewards to create a policy that tries to maximize a time-extended utility, which is a (possibly discounted) sum of these rewards. In this paper we build on our previous work showing how these methods can be extended to a multi-agent environment where each agent creates its own policy that works towards maximizing a time-extended global utility over all agents actions. We show improved methods for creating time-extended utilities for the agents that are both "aligned" with the global utility and "learnable." We then show how to crate single-time-step rewards while avoiding the pi fall of having rewards aligned with the global reward leading to utilities not aligned with the global utility. Finally, we apply these reward functions to the multi-agent Gridworld problem. We explicitly quantify a utility's learnability and alignment, and show that reinforcement learning agents using the prescribed reward functions successfully tradeoff learnability and alignment. As a result they outperform both global (e.g., team games ) and local (e.g., "perfectly learnable" ) reinforcement learning solutions by as much as an order of magnitude.
High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)
2009-01-01
Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning
Teodorescu, Kinneret; Erev, Ido
2014-10-01
Exposure to uncontrollable outcomes has been found to trigger learned helplessness, a state in which the agent, because of lack of exploration, fails to take advantage of regained control. Although the implications of this phenomenon have been widely studied, its underlying cause remains undetermined. One can learn not to explore because the environment is uncontrollable, because the average reinforcement for exploring is low, or because rewards for exploring are rare. In the current research, we tested a simple experimental paradigm that contrasts the predictions of these three contributors and offers a unified psychological mechanism that underlies the observed phenomena. Our results demonstrate that learned helplessness is not correlated with either the perceived controllability of one's environment or the average reward, which suggests that reward prevalence is a better predictor of exploratory behavior than the other two factors. A simple computational model in which exploration decisions were based on small samples of past experiences captured the empirical phenomena while also providing a cognitive basis for feelings of uncontrollability. © The Author(s) 2014.
Intelligent Agents for Dynamic Optimization of Learner Performances in an Online System
ERIC Educational Resources Information Center
Kamsa, Imane; Elouahbi, Rachid; El Khoukhi, Fatima
2017-01-01
Aim/Purpose: To identify and rectify the learning difficulties of online learners. Background: The major cause of learners' failure and non-acquisition of knowledge relates to their weaknesses in certain areas necessary for optimal learning. We focus on e-learning because, within this environment, the learner is mostly affected by these…
ERIC Educational Resources Information Center
Hassani, Kaveh; Nahvi, Ali; Ahmadi, Ali
2016-01-01
In this paper, we present an intelligent architecture, called intelligent virtual environment for language learning, with embedded pedagogical agents for improving listening and speaking skills of non-native English language learners. The proposed architecture integrates virtual environments into the Intelligent Computer-Assisted Language…
Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
Qureshi, Ahmed Hussain; Nakamura, Yutaka; Yoshikawa, Yuichiro; Ishiguro, Hiroshi
2018-03-26
For a natural social human-robot interaction, it is essential for a robot to learn the human-like social skills. However, learning such skills is notoriously hard due to the limited availability of direct instructions from people to teach a robot. In this paper, we propose an intrinsically motivated reinforcement learning framework in which an agent gets the intrinsic motivation-based rewards through the action-conditional predictive model. By using the proposed method, the robot learned the social skills from the human-robot interaction experiences gathered in the real uncontrolled environments. The results indicate that the robot not only acquired human-like social skills but also took more human-like decisions, on a test dataset, than a robot which received direct rewards for the task achievement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Observer-based distributed adaptive iterative learning control for linear multi-agent systems
NASA Astrophysics Data System (ADS)
Li, Jinsha; Liu, Sanyang; Li, Junmin
2017-10-01
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.
Evolution of social learning when high expected payoffs are associated with high risk of failure.
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W; Lotem, Arnon
2011-11-07
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals.
Evolution of social learning when high expected payoffs are associated with high risk of failure
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon
2011-01-01
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals. PMID:21508013
Towards a genetics-based adaptive agent to support flight testing
NASA Astrophysics Data System (ADS)
Cribbs, Henry Brown, III
Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.
Building an adaptive agent to monitor and repair the electrical power system of an orbital satellite
NASA Technical Reports Server (NTRS)
Tecuci, Gheorghe; Hieb, Michael R.; Dybala, Tomasz
1995-01-01
Over several years we have developed a multistrategy apprenticeship learning methodology for building knowledge-based systems. Recently we have developed and applied our methodology to building intelligent agents. This methodology allows a subject matter expert to build an agent in the same way in which the expert would teach a human apprentice. The expert will give the agent specific examples of problems and solutions, explanations of these solutions, or supervise the agent as it solves new problems. During such interactions, the agent learns general rules and concepts, continuously extending and improving its knowledge base. In this paper we present initial results on applying this methodology to build an intelligent adaptive agent for monitoring and repair of the electrical power system of an orbital satellite, stressing the interaction with the expert during apprenticeship learning.
ERIC Educational Resources Information Center
Ahmed, Iftikhar; Sadeq, Muhammad Jafar
2006-01-01
Current distance learning systems are increasingly packing highly data-intensive contents on servers, resulting in the congestion of network and server resources at peak service times. A distributed learning system based on faded information field (FIF) architecture that employs mobile agents (MAs) has been proposed and simulated in this work. The…
Construction and Evaluation of Animated Teachable Agents
ERIC Educational Resources Information Center
Bodenheimer, Bobby; Williams, Betsy; Kramer, Mattie Ruth; Viswanath, Karun; Balachandran, Ramya; Belynne, Kadira; Biswas, Gautam
2009-01-01
This article describes the design decisions, technical approach, and evaluation of the animation and interface components for an agent-based system that allows learners to learn by teaching. Students learn by teaching an animated agent using a visual representation. The agent can answer questions about what she has been taught and take quizzes.…
ERIC Educational Resources Information Center
Trevors, Gregory; Duffy, Melissa; Azevedo, Roger
2014-01-01
Hypermedia learning environments (HLE) unevenly present new challenges and opportunities to learning processes and outcomes depending on learner characteristics and instructional supports. In this experimental study, we examined how one such HLE--MetaTutor, an intelligent, multi-agent tutoring system designed to scaffold cognitive and…
The New Technology: Agent of Transformation.
ERIC Educational Resources Information Center
Lowenstein, Ronnie; Barbee, David E.
New technologies available today can be used to improve accountability, establish and manage learning environments, and extend contextual learning. To harness these technologies, however, beliefs and practices must be redefined in education, training, and human development. If technology is developed according to a systems approach, new…
QUICR-learning for Multi-Agent Coordination
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2006-01-01
Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.
ERIC Educational Resources Information Center
Thompson, Kate; Reimann, Peter
2010-01-01
A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?
Learning consensus in adversarial environments
NASA Astrophysics Data System (ADS)
Vamvoudakis, Kyriakos G.; García Carrillo, Luis R.; Hespanha, João. P.
2013-05-01
This work presents a game theory-based consensus problem for leaderless multi-agent systems in the presence of adversarial inputs that are introducing disturbance to the dynamics. Given the presence of enemy components and the possibility of malicious cyber attacks compromising the security of networked teams, a position agreement must be reached by the networked mobile team based on environmental changes. The problem is addressed under a distributed decision making framework that is robust to possible cyber attacks, which has an advantage over centralized decision making in the sense that a decision maker is not required to access information from all the other decision makers. The proposed framework derives three tuning laws for every agent; one associated with the cost, one associated with the controller, and one with the adversarial input.
NASA Technical Reports Server (NTRS)
Birisan, Mihnea; Beling, Peter
2011-01-01
New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation of fielded sensors and supporting capacity for processing and displaying data will translate into ever more capable platforms, but with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their current task using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real time model of the analysts' task and subsequently use the model to dynamically retrieve relevant content. This paper presents results from a pilot experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle traffic environment. We compare agent performance between MIL aided trials and unaided trials.
NASA Astrophysics Data System (ADS)
Lachowicz, Mirosław
2016-03-01
The very stimulating paper [6] discusses an approach to perception and learning in a large population of living agents. The approach is based on a generalization of kinetic theory methods in which the interactions between agents are described in terms of game theory. Such an approach was already discussed in Ref. [2-4] (see also references therein) in various contexts. The processes of perception and learning are based on the interactions between agents and therefore the general kinetic theory is a suitable tool for modeling them. However the main question that rises is how the perception and learning processes may be treated in the mathematical modeling. How may we precisely deliver suitable mathematical structures that are able to capture various aspects of perception and learning?
Moral Learning: Conceptual foundations and normative relevance.
Railton, Peter
2017-10-01
What is distinctive about a bringing a learning perspective to moral psychology? Part of the answer lies in the remarkable transformations that have taken place in learning theory over the past two decades, which have revealed how powerful experience-based learning can be in the acquisition of abstract causal and evaluative representations, including generative models capable of attuning perception, cognition, affect, and action to the physical and social environment. When conjoined with developments in neuroscience, these advances in learning theory permit a rethinking of fundamental questions about the acquisition of moral understanding and its role in the guidance of behavior. For example, recent research indicates that spatial learning and navigation involve the formation of non-perspectival as well as ego-centric models of the physical environment, and that spatial representations are combined with learned information about risk and reward to guide choice and potentiate further learning. Research on infants provides evidence that they form non-perspectival expected-value representations of agents and actions as well, which help them to navigate the human environment. Such representations can be formed by highly-general mental processes such as causal and empathic simulation, and thus afford a foundation for spontaneous moral learning and action that requires no innate moral faculty and can exhibit substantial autonomy with respect to community norms. If moral learning is indeed integral with the acquisition and updating of casual and evaluative models, this affords a new way of understanding well-known but seemingly puzzling patterns in intuitive moral judgment-including the notorious "trolley problems." Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen
2016-01-01
Objective To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. Setting A nursing course at a university in central Taiwan. Participants 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Design and methods Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a ‘preferred environment aligned with perceived learning environment’ group and a ‘preferred environment discordant with perceived learning environment’ group. Learning outcomes were analysed by group. Outcome measures Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. Conclusions As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. PMID:27207620
Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen
2016-05-20
To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. A nursing course at a university in central Taiwan. 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a 'preferred environment aligned with perceived learning environment' group and a 'preferred environment discordant with perceived learning environment' group. Learning outcomes were analysed by group. Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Visual Stereotypes and Virtual Pedagogical Agents
ERIC Educational Resources Information Center
Haake, Magnus; Gulz, Agneta
2008-01-01
The paper deals with the use of visual stereotypes in virtual pedagogical agents and its potential impact in digital learning environments. An analysis of the concept of visual stereotypes is followed by a discussion of affordances and drawbacks as to their use in the context of traditional media. Next, the paper explores whether virtual…
USDA-ARS?s Scientific Manuscript database
The objectives of risk assessment are to learn about whether a candidate agent would be safe to use in the environment where release is planned, and to present such information in a clear, understandable format to regulators, stakeholders, and the public. Plant pathogens evaluated for biological co...
ERIC Educational Resources Information Center
Samur, Yavuz
2011-01-01
In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…
Hierarchical extreme learning machine based reinforcement learning for goal localization
NASA Astrophysics Data System (ADS)
AlDahoul, Nouar; Zaw Htike, Zaw; Akmeliawati, Rini
2017-03-01
The objective of goal localization is to find the location of goals in noisy environments. Simple actions are performed to move the agent towards the goal. The goal detector should be capable of minimizing the error between the predicted locations and the true ones. Few regions need to be processed by the agent to reduce the computational effort and increase the speed of convergence. In this paper, reinforcement learning (RL) method was utilized to find optimal series of actions to localize the goal region. The visual data, a set of images, is high dimensional unstructured data and needs to be represented efficiently to get a robust detector. Different deep Reinforcement models have already been used to localize a goal but most of them take long time to learn the model. This long learning time results from the weights fine tuning stage that is applied iteratively to find an accurate model. Hierarchical Extreme Learning Machine (H-ELM) was used as a fast deep model that doesn’t fine tune the weights. In other words, hidden weights are generated randomly and output weights are calculated analytically. H-ELM algorithm was used in this work to find good features for effective representation. This paper proposes a combination of Hierarchical Extreme learning machine and Reinforcement learning to find an optimal policy directly from visual input. This combination outperforms other methods in terms of accuracy and learning speed. The simulations and results were analysed by using MATLAB.
Towards a model of temporal attention for on-line learning in a mobile robot
NASA Astrophysics Data System (ADS)
Marom, Yuval; Hayes, Gillian
2001-06-01
We present a simple attention system, capable of bottom-up signal detection adaptive to subjective internal needs. The system is used by a robotic agent, learning to perform phototaxis and obstacle avoidance by following a teacher agent around a simulated environment, and deciding when to form associations between perceived information and imitated actions. We refer to this kind of decision-making as on-line temporal attention. The main role of the attention system is perception of change; the system is regulated through feedback about cognitive effort. We show how different levels of effort affect both the ability to learn a task, and to execute it.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.
The Role of Affective and Motivational Factors in Designing Personalized Learning Environments
ERIC Educational Resources Information Center
Kim, ChanMin
2012-01-01
In this paper, guidelines for designing virtual change agents (VCAs) are proposed to support students' affective and motivational needs in order to promote personalized learning in online remedial mathematics courses. Automated, dynamic, and personalized support is emphasized in the guidelines through maximizing "interactions" between VCAs and…
Multi-issue Agent Negotiation Based on Fairness
NASA Astrophysics Data System (ADS)
Zuo, Baohe; Zheng, Sue; Wu, Hong
Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.
Conversational Agents Improve Peer Learning through Building on Prior Knowledge
ERIC Educational Resources Information Center
Tegos, Stergios; Demetriadis, Stavros
2017-01-01
Research in computer-supported collaborative learning has indicated that conversational agents can be pedagogically beneficial when used to scaffold students' online discussions. In this study, we investigate the impact of an agile conversational agent that triggers student dialogue by making interventions based on the academically productive talk…
Liu, Chunming; Xu, Xin; Hu, Dewen
2013-04-29
Reinforcement learning is a powerful mechanism for enabling agents to learn in an unknown environment, and most reinforcement learning algorithms aim to maximize some numerical value, which represents only one long-term objective. However, multiple long-term objectives are exhibited in many real-world decision and control problems; therefore, recently, there has been growing interest in solving multiobjective reinforcement learning (MORL) problems with multiple conflicting objectives. The aim of this paper is to present a comprehensive overview of MORL. In this paper, the basic architecture, research topics, and naive solutions of MORL are introduced at first. Then, several representative MORL approaches and some important directions of recent research are reviewed. The relationships between MORL and other related research are also discussed, which include multiobjective optimization, hierarchical reinforcement learning, and multi-agent reinforcement learning. Finally, research challenges and open problems of MORL techniques are highlighted.
Reverse engineering a social agent-based hidden markov model--visage.
Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A
2008-12-01
We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.
Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung
2014-01-01
Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.
Argumentation Based Joint Learning: A Novel Ensemble Learning Approach
Xu, Junyi; Yao, Li; Li, Le
2015-01-01
Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359
ERIC Educational Resources Information Center
Sengupta, Pratim; Farris, Amy Voss; Wright, Mason
2012-01-01
Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…
Agent-based real-time signal coordination in congested networks.
DOT National Transportation Integrated Search
2014-01-01
This study is the continuation of a previous NEXTRANS study on agent-based reinforcement : learning methods for signal coordination in congested networks. In the previous study, the : formulation of a real-time agent-based traffic signal control in o...
ERIC Educational Resources Information Center
Akyuz, Halil Ibrahim; Keser, Hafize
2015-01-01
The aim of this study is to investigate the effect of an educational agent, used in online task based learning media, and its form characteristics on problem solving ability perceptions of students. 2x2 factorial design is used in this study. The first study factor is the role of the educational agent and the second factor is form characteristics…
Pre-Service English Teachers in Blended Learning Environment in Respect to Their Learning Approaches
ERIC Educational Resources Information Center
Yilmaz, M. Betul; Orhan, Feza
2010-01-01
Blended learning environment (BLE) is increasingly used in the world, especially in university degrees and it is based on integrating web-based learning and face-to-face (FTF) learning environments. Besides integrating different learning environments, BLE also addresses to students with different learning approaches. The "learning…
Neural computations underlying inverse reinforcement learning in the human brain
Pauli, Wolfgang M; Bossaerts, Peter; O'Doherty, John
2017-01-01
In inverse reinforcement learning an observer infers the reward distribution available for actions in the environment solely through observing the actions implemented by another agent. To address whether this computational process is implemented in the human brain, participants underwent fMRI while learning about slot machines yielding hidden preferred and non-preferred food outcomes with varying probabilities, through observing the repeated slot choices of agents with similar and dissimilar food preferences. Using formal model comparison, we found that participants implemented inverse RL as opposed to a simple imitation strategy, in which the actions of the other agent are copied instead of inferring the underlying reward structure of the decision problem. Our computational fMRI analysis revealed that anterior dorsomedial prefrontal cortex encoded inferences about action-values within the value space of the agent as opposed to that of the observer, demonstrating that inverse RL is an abstract cognitive process divorceable from the values and concerns of the observer him/herself. PMID:29083301
Vers une Theorie de l'Education/Apprentissage
NASA Astrophysics Data System (ADS)
Goulet, Georges
1986-12-01
The author has attempted to clarify the idea of the curriculum as a distinct area of knowledge which is characteristic of educational science within the wider framework of educational sciences. Inspired by the method of a comparative analysis which was developed by George Z. Bereday, the author analyzes the data which are used referring to a typology of definitions based on the Aristotelian idea of causality. In the article a meta-theory of the curriculum is proposed and defined based on the consensus discovered among the authors whose views are analyzed. The present curriculum is examined with respect to its original meaning as proposed by John Dewey in order to establish the process of organized and intentional education/learning. However, the plan or programme of education/learning which is often identified as the notion of the curriculum, is presented here as being only one of the parametres determining the nature of the whole process of organized education/learning. The convergence of the remaining four parametres constitutes a special process of education/learning realized to suit each learner as the beneficiary agent (learner), the initiating agent (intervener), the physical and social environment as well as the knowledge or the culture to be transmitted. The theory goes on to deal with the paradigmatic nature of the process and the four levels of intentionality characterizing the planning and actualization of each process. The theory presents the curriculum as if it were a phenomenon which functions like an open system, i.e. where the total or the `Gestalt' constitutes the realized learning by each learner, referring to the laws of equifinality and homeostasis. The article closes by presenting a spiral model which seeks to represent the web of real and perceptual influences which contribute to the learning aimed at by the whole institution of education/learning.
Metacognitive components in smart learning environment
NASA Astrophysics Data System (ADS)
Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.
2018-03-01
Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.
ERIC Educational Resources Information Center
Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner
2016-01-01
Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…
Learning Icelandic Language and Culture in Virtual Reykjavik: Starting to Talk
ERIC Educational Resources Information Center
Bédi, Branislav; Arnbjörnsdóttir, Birna; Vilhjálmsson, Hannes Högni; Helgadóttir, Hafdís Erla; Ólafsson, Stefán; Björgvinsson, Elías
2016-01-01
This paper describes how beginners of Icelandic as a foreign and second language responded to playing the first scene in Virtual Reykjavik, a video game-like environment where learners interact with virtual characters--Embodied Conversational Agents (ECAs). This game enables learners to practice speaking and listening skills, to learn about the…
ERIC Educational Resources Information Center
Olaniran, Bolanle A.
2010-01-01
The semantic web describes the process whereby information content is made available for machine consumption. With increased reliance on information communication technologies, the semantic web promises effective and efficient information acquisition and dissemination of products and services in the global economy, in particular, e-learning.…
A neural network-based exploratory learning and motor planning system for co-robots
Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640
A neural network-based exploratory learning and motor planning system for co-robots.
Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.
Evolvable mathematical models: A new artificial Intelligence paradigm
NASA Astrophysics Data System (ADS)
Grouchy, Paul
We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.
Web-Based Learning Environment Based on Students’ Needs
NASA Astrophysics Data System (ADS)
Hamzah, N.; Ariffin, A.; Hamid, H.
2017-08-01
Traditional learning needs to be improved since it does not involve active learning among students. Therefore, in the twenty-first century, the development of internet technology in the learning environment has become the main needs of each student. One of the learning environments to meet the needs of the teaching and learning process is a web-based learning environment. This study aims to identify the characteristics of a web-based learning environment that supports students’ learning needs. The study involved 542 students from fifteen faculties in a public higher education institution in Malaysia. A quantitative method was used to collect the data via a questionnaire survey by randomly. The findings indicate that the characteristics of a web-based learning environment that support students’ needs in the process of learning are online discussion forum, lecture notes, assignments, portfolio, and chat. In conclusion, the students overwhelmingly agreed that online discussion forum is the highest requirement because the tool can provide a space for students and teachers to share knowledge and experiences related to teaching and learning.
Integrating Learning, Problem Solving, and Engagement in Narrative-Centered Learning Environments
ERIC Educational Resources Information Center
Rowe, Jonathan P.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.
2011-01-01
A key promise of narrative-centered learning environments is the ability to make learning engaging. However, there is concern that learning and engagement may be at odds in these game-based learning environments. This view suggests that, on the one hand, students interacting with a game-based learning environment may be engaged but unlikely to…
NASA Astrophysics Data System (ADS)
Haus, Jana Maria
2018-05-01
This work uses new materialist perspectives (Barad 2007; Lenz Taguchi 2014; Rautio in Children's Geographies, 11(4), 394-408, 2013) to examine an exploration of concepts as agents and the question how intra-action of human and non-human bodies lead to the investigation of scientific concepts, relying on an article by de Freitas and Palmer (Cultural Studies of Science Education, 11(4), 1201-1222, 2016). Through an analysis of video stills of a case study, a focus on classroom assemblages shows how the intra-actions of human and non-human bodies (one 5-year-old boy, a piece of paper that becomes a paper plane and the concepts of force and flight) lead to an intertwining and intersecting of play, learning, and becoming. Video recordings were used to qualitatively analyze three questions, which emerged through and resulted from the intra-action of researcher and data. This paper aims at addressing a prevalent gap in the research literature on science learning from a materialist view. Findings of the analysis show that human and non-human bodies together become through and for another to jointly and agentically intra-act in exploring and learning about science. Implications for learning and teaching science are that teachers could attempt to focus on setting up the learning environment differently, so that children have time and access to materials that matter to them and that, as "Hultman (2011) claims […] `whisper, answer, demand and offer'" (Areljung forthcoming, p. 77) themselves to children in the learning and teaching environment.
Learning Sequences of Actions in Collectives of Autonomous Agents
NASA Technical Reports Server (NTRS)
Turner, Kagan; Agogino, Adrian K.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)
2001-01-01
In this paper we focus on the problem of designing a collective of autonomous agents that individually learn sequences of actions such that the resultant sequence of joint actions achieves a predetermined global objective. We are particularly interested in instances of this problem where centralized control is either impossible or impractical. For single agent systems in similar domains, machine learning methods (e.g., reinforcement learners) have been successfully used. However, applying such solutions directly to multi-agent systems often proves problematic, as agents may work at cross-purposes, or have difficulty in evaluating their contribution to achievement of the global objective, or both. Accordingly, the crucial design step in multiagent systems centers on determining the private objectives of each agent so that as the agents strive for those objectives, the system reaches a good global solution. In this work we consider a version of this problem involving multiple autonomous agents in a grid world. We use concepts from collective intelligence to design goals for the agents that are 'aligned' with the global goal, and are 'learnable' in that agents can readily see how their behavior affects their utility. We show that reinforcement learning agents using those goals outperform both 'natural' extensions of single agent algorithms and global reinforcement, learning solutions based on 'team games'.
Social Dynamics in Web Page through Inter-Agent Interaction
NASA Astrophysics Data System (ADS)
Takeuchi, Yugo; Katagiri, Yasuhiro
Social persuasion abounds in human-human interactions. Attitudes and behaviors of people are invariably influenced by the attitudes and behaviors of other people as well as our social roles/relationships toward them. In the pedagogic scene, the relationship between teacher and learner produces one of the most typical interactions, in which the teacher makes the learner spontaneously study what he/she teaches. This study is an attempt to elucidate the nature and effectiveness of social persuasion in human-computer interaction environments. We focus on the social dynamics of multi-party interactions that involve both human-agent and inter-agent interactions. An experiment is conducted in a virtual web-instruction setting employing two types of agents: conductor agents who accompany and guide each learner throughout his/her learning sessions, and domain-expert agents who provide explanations and instructions for each stage of the instructional materials. In this experiment, subjects are assigned two experimental conditions: the authorized condition, in which an agent respectfully interacts with another agent, and the non-authorized condition, in which an agent carelessly interacts with another agent. The results indicate performance improvements in the authorized condition of inter-agent interactions. An analysis is given from the perspective of the transfer of authority from inter-agent to human-agent interactions based on social conformity. We argue for pedagogic advantages of social dynamics created by multiple animated character agents.
A multi-agent intelligent environment for medical knowledge.
Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder
2003-03-01
AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).
Robust reinforcement learning.
Morimoto, Jun; Doya, Kenji
2005-02-01
This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.
An Immune Agent for Web-Based AI Course
ERIC Educational Resources Information Center
Gong, Tao; Cai, Zixing
2006-01-01
To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…
A Distributed Intelligent E-Learning System
ERIC Educational Resources Information Center
Kristensen, Terje
2016-01-01
An E-learning system based on a multi-agent (MAS) architecture combined with the Dynamic Content Manager (DCM) model of E-learning, is presented. We discuss the benefits of using such a multi-agent architecture. Finally, the MAS architecture is compared with a pure service-oriented architecture (SOA). This MAS architecture may also be used within…
Team Formation in Partially Observable Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2004-01-01
Sets of multi-agent teams often need to maximize a global utility rating the performance of the entire system where a team cannot fully observe other teams agents. Such limited observability hinders team-members trying to pursue their team utilities to take actions that also help maximize the global utility. In this article, we show how team utilities can be used in partially observable systems. Furthermore, we show how team sizes can be manipulated to provide the best compromise between having easy to learn team utilities and having them aligned with the global utility, The results show that optimally sized teams in a partially observable environments outperform one team in a fully observable environment, by up to 30%.
Development and Evaluation of Intelligent Agent-Based Teaching Assistant in e-Learning Portals
ERIC Educational Resources Information Center
Rouhani, Saeed; Mirhosseini, Seyed Vahid
2015-01-01
Today, several educational portals established by organizations to enhance web E-learning. Intelligence agent's usage is necessary to improve the system's quality and cover limitations such as face-to-face relation. In this research, after finding two main approaches in this field that are fundamental use of intelligent agents in systems design…
The Cost of Performance? Students' Learning about Acting as Change Agents in Their Schools
ERIC Educational Resources Information Center
Kehoe, Ian
2015-01-01
This paper explores how performance culture could affect students' learning about, and disposition towards, acting as organisational change agents in schools. This is based on findings from an initiative aimed to enable students to experience acting as change agents on an aspect of the school's culture that concerned them. The initiative was…
NASA Astrophysics Data System (ADS)
Taniguchi, Tadahiro; Sawaragi, Tetsuo
In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.
Online Resource-Based Learning Environment: Case Studies in Primary Classrooms
ERIC Educational Resources Information Center
So, Winnie Wing Mui; Ching, Fiona Ngai Ying
2012-01-01
This paper discusses the creation of learning environments with online resources by three primary school teachers for pupil's learning of science-related topics with reference to the resource-based e-learning environments (RBeLEs) framework. Teachers' choice of contexts, resources, tools, and scaffolds in designing the learning environments are…
Short-memory traders and their impact on group learning in financial markets
LeBaron, Blake
2002-01-01
This article highlights several issues from simulating agent-based financial markets. These all center around the issue of learning in a multiagent setting, and specifically the question of whether the trading behavior of short-memory agents could interfere with the learning process of the market as whole. It is shown in a simple example that short-memory traders persist in generating excess volatility and other features common to actual markets. Problems related to short-memory trader behavior can be eliminated by using several different methods. These are discussed along with their relevance to agent-based models in general. PMID:11997443
Animated Agents Teaching Helping Skills in an Online Environment: A Pilot Study
ERIC Educational Resources Information Center
Duggan, Molly H.; Adcock, Amy B.
2007-01-01
Human service educators constantly struggle with how to best teach students the communication skills required of entry-level human service professionals. While teaching such skills is easier in a traditional face-to-face environment, teaching communication skills via distance learning presents its own challenges. Developing interactive web-based…
ERIC Educational Resources Information Center
Gilbert, Steven G.; Miller, Elise; Martin, Joyce; Abulafia, Laura
2010-01-01
Damage to the brain or nervous system at an early developmental stage creates lifelong challenges for the individual. To examine one source of harm to the developing nervous system, the Collaborative on Health and the Environment's (CHE) Learning and Developmental Disabilities Initiative (LDDI) (Collaborative on Health and the Environment, 2009)…
Evolution of a multi-agent system in a cyclical environment.
Baptista, Tiago; Costa, Ernesto
2008-06-01
The synchronisation phenomena in biological systems is a current and recurring subject of scientific study. This topic, namely that of circadian clocks, served as inspiration to develop an agent-based simulation that serves the main purpose of being a proof-of-concept of the model used in the BitBang framework, that implements a modern autonomous agent model. Despite having been extensively studied, circadian clocks still have much to be investigated. Rather than wanting to learn more about the internals of this biological process, we look to study the emergence of this kind of adaptation to a daily cycle. To that end we implemented a world with a day/night cycle, and analyse the ways the agents adapt to that cycle. The results show the evolution of the agents' ability to gather food. If we look at the total number of agents over the course of an experiment, we can pinpoint the time when reproductive technology emerges. We also show that the agents adapt to the daily cycle. This circadian rhythm can be shown by analysing the variation on the agents metabolic rate, which is affected by the variation of their movement patterns. In the experiments conducted we can observe that the metabolic rate of the agents varies according to the daily cycle.
SLAM algorithm applied to robotics assistance for navigation in unknown environments.
Cheein, Fernando A Auat; Lopez, Natalia; Soria, Carlos M; di Sciascio, Fernando A; Pereira, Fernando Lobo; Carelli, Ricardo
2010-02-17
The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.
Memoryless cooperative graph search based on the simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Gang-Feng; Fan, Zhen
2011-04-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
Learning to cooperate in solving the traveling salesman problem.
Qi, Dehu; Sun, Ron
2005-01-01
A cooperative team of agents may perform many tasks better than single agents. The question is how cooperation among self-interested agents should be achieved. It is important that, while we encourage cooperation among agents in a team, we maintain autonomy of individual agents as much as possible, so as to maintain flexibility and generality. This paper presents an approach based on bidding utilizing reinforcement values acquired through reinforcement learning. We tested and analyzed this approach and demonstrated that a team indeed performed better than the best single agent as well as the average of single agents.
Situated learning theory: adding rate and complexity effects via Kauffman's NK model.
Yuan, Yu; McKelvey, Bill
2004-01-01
For many firms, producing information, knowledge, and enhancing learning capability have become the primary basis of competitive advantage. A review of organizational learning theory identifies two approaches: (1) those that treat symbolic information processing as fundamental to learning, and (2) those that view the situated nature of cognition as fundamental. After noting that the former is inadequate because it focuses primarily on behavioral and cognitive aspects of individual learning, this paper argues the importance of studying learning as interactions among people in the context of their environment. It contributes to organizational learning in three ways. First, it argues that situated learning theory is to be preferred over traditional behavioral and cognitive learning theories, because it treats organizations as complex adaptive systems rather than mere information processors. Second, it adds rate and nonlinear learning effects. Third, following model-centered epistemology, it uses an agent-based computational model, in particular a "humanized" version of Kauffman's NK model, to study the situated nature of learning. Using simulation results, we test eight hypotheses extending situated learning theory in new directions. The paper ends with a discussion of possible extensions of the current study to better address key issues in situated learning.
Take the Wheel on the Road to Health Literacy
ERIC Educational Resources Information Center
Deal, Tami Benham; Deal, Laurence O.; Hudson, Nancy
2010-01-01
Schools are often viewed as the primary change agent for any new health crisis that gains national or local attention. Schools should play a role in creating a healthy learning environment because many of these health problems can impact student learning. But is it reasonable to hold schools and school leaders responsible for fixing the health…
A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
Chung, Michael Jae-Yoon; Friesen, Abram L; Fox, Dieter; Meltzoff, Andrew N; Rao, Rajesh P N
2015-01-01
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.
A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning
Chung, Michael Jae-Yoon; Friesen, Abram L.; Fox, Dieter; Meltzoff, Andrew N.; Rao, Rajesh P. N.
2015-01-01
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration. PMID:26536366
ERIC Educational Resources Information Center
Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi
2015-01-01
The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…
Applying Dynamic Fuzzy Petri Net to Web Learning System
ERIC Educational Resources Information Center
Chen, Juei-Nan; Huang, Yueh-Min; Chu, William
2005-01-01
This investigation presents a DFPN (Dynamic Fuzzy Petri Net) model to increase the flexibility of the tutoring agent's behaviour and thus provide a learning content structure for a lecture course. The tutoring agent is a software assistant for a single user, who may be an expert in an e-Learning course. Based on each learner's behaviour, the…
Distributing vs. Blocking Learning Questions in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Kapp, Felix; Proske, Antje; Narciss, Susanne; Körndle, Hermann
2015-01-01
Effective studying in web-based learning environments (web-LEs) requires cognitive engagement and demands learners to regulate their learning activities. One way to support learners in web-LEs is to provide interactive learning questions within the learning environment. Even though research on learning questions has a long tradition, there are…
Issues of Dynamic Coalition Formation Among Rational Agents
2002-04-01
approaches of forming stable coalitions among rational agents. Issues and problems of dynamic coalition environments are discussed in section 3 while...2.2. 2.1.2 Coalition Algorithm, Coalition Formation Environment and Model Rational agents which are involved in a co-operative game (A,v) are...publicly available simulation environment for coalition formation among rational information agents based on selected classic coalition theories is, for
Multidimensional Learner Model In Intelligent Learning System
NASA Astrophysics Data System (ADS)
Deliyska, B.; Rozeva, A.
2009-11-01
The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.
A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment.
Hung, Shao-Ming; Givigi, Sidney N
2017-01-01
In the past two decades, unmanned aerial vehicles (UAVs) have demonstrated their efficacy in supporting both military and civilian applications, where tasks can be dull, dirty, dangerous, or simply too costly with conventional methods. Many of the applications contain tasks that can be executed in parallel, hence the natural progression is to deploy multiple UAVs working together as a force multiplier. However, to do so requires autonomous coordination among the UAVs, similar to swarming behaviors seen in animals and insects. This paper looks at flocking with small fixed-wing UAVs in the context of a model-free reinforcement learning problem. In particular, Peng's Q(λ) with a variable learning rate is employed by the followers to learn a control policy that facilitates flocking in a leader-follower topology. The problem is structured as a Markov decision process, where the agents are modeled as small fixed-wing UAVs that experience stochasticity due to disturbances such as winds and control noises, as well as weight and balance issues. Learned policies are compared to ones solved using stochastic optimal control (i.e., dynamic programming) by evaluating the average cost incurred during flight according to a cost function. Simulation results demonstrate the feasibility of the proposed learning approach at enabling agents to learn how to flock in a leader-follower topology, while operating in a nonstationary stochastic environment.
NASA Astrophysics Data System (ADS)
Lőrincz, András; Lázár, Katalin A.; Palotai, Zsolt
2007-05-01
To what extent does the communication make a goal-oriented community efficient in different topologies? In order to gain insight into this problem, we study the influence of learning method as well as that of the topology of the environment on the communication efficiency of crawlers in quest of novel information in different topics on the Internet. Individual crawlers employ selective learning, function approximation-based reinforcement learning (RL), and their combination. Selective learning, in effect, modifies the starting URL lists of the crawlers, whilst RL alters the URL orderings. Real data have been collected from the web and scale-free worlds, scale-free small world (SFSW), and random world environments (RWEs) have been created by link reorganization. In our previous experiments [ Zs. Palotai, Cs. Farkas, A. Lőrincz, Is selection optimal in scale-free small worlds?, ComPlexUs 3 (2006) 158-168], the crawlers searched for novel, genuine documents and direct communication was not possible. Herein, our finding is reproduced: selective learning performs the best and RL the worst in SFSW, whereas the combined, i.e., selective learning coupled with RL is the best-by a slight margin-in scale-free worlds. This effect is demonstrated to be more pronounced when the crawlers search for different topic-specific documents: the relative performance of the combined learning algorithm improves in all worlds, i.e., in SFSW, in SFW, and in RWE. If the tasks are more complex and the work sharing is enforced by the environment then the combined learning algorithm becomes at least equal, even superior to both the selective and the RL algorithms in most cases, irrespective of the efficiency of communication. Furthermore, communication improves the performance by a large margin and adaptive communication is advantageous in the majority of the cases.
Reinforcement learning in supply chains.
Valluri, Annapurna; North, Michael J; Macal, Charles M
2009-10-01
Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.
Model-free learning on robot kinematic chains using a nested multi-agent topology
NASA Astrophysics Data System (ADS)
Karigiannis, John N.; Tzafestas, Costas S.
2016-11-01
This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state-action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.
Data-driven agent-based modeling, with application to rooftop solar adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua
Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less
Data-driven agent-based modeling, with application to rooftop solar adoption
Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...
2016-01-25
Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less
The Agent-based Approach: A New Direction for Computational Models of Development.
ERIC Educational Resources Information Center
Schlesinger, Matthew; Parisi, Domenico
2001-01-01
Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…
ERIC Educational Resources Information Center
Pike, Gary R.; Smart, John C.; Ethington, Corinna A.
2012-01-01
This research examined the relationships among students' academic majors, levels of engagement, and learning outcomes within the context of Holland's person-environment theory of vocational and educational behavior. The study focused on the role of student engagement as a mediating agent in the relationships between academic majors and student…
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Ochi, Kento; Kamiura, Moto
2015-09-01
A multi-armed bandit problem is a search problem on which a learning agent must select the optimal arm among multiple slot machines generating random rewards. UCB algorithm is one of the most popular methods to solve multi-armed bandit problems. It achieves logarithmic regret performance by coordinating balance between exploration and exploitation. Since UCB algorithms, researchers have empirically known that optimistic value functions exhibit good performance in multi-armed bandit problems. The terms optimistic or optimism might suggest that the value function is sufficiently larger than the sample mean of rewards. The first definition of UCB algorithm is focused on the optimization of regret, and it is not directly based on the optimism of a value function. We need to think the reason why the optimism derives good performance in multi-armed bandit problems. In the present article, we propose a new method, which is called Overtaking method, to solve multi-armed bandit problems. The value function of the proposed method is defined as an upper bound of a confidence interval with respect to an estimator of expected value of reward: the value function asymptotically approaches to the expected value of reward from the upper bound. If the value function is larger than the expected value under the asymptote, then the learning agent is almost sure to be able to obtain the optimal arm. This structure is called sand-sifter mechanism, which has no regrowth of value function of suboptimal arms. It means that the learning agent can play only the current best arm in each time step. Consequently the proposed method achieves high accuracy rate and low regret and some value functions of it can outperform UCB algorithms. This study suggests the advantage of optimism of agents in uncertain environment by one of the simplest frameworks. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Local Learning Strategies for Wake Identification
NASA Astrophysics Data System (ADS)
Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva
2017-11-01
Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.
ERIC Educational Resources Information Center
Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit
2015-01-01
This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…
Federally sponsored multidisciplinary research centers: Learning, evaluation, and vicious circles.
Youtie, Jan; Corley, Elizabeth A
2011-02-01
Despite the increasing investment in multi-year federally funded science and technology centers in universities, there are few studies of how these centers engage in learning and change based on information submitted from various agents in the oversight and evaluation process. One challenge is how to manage and respond to this evaluative information, especially when it is conflicting. Although the center can learn and adapt in response to this information, it can also become subject to a vicious circle of continuous restructuring and production of documentation to address various and potentially inconsistent recommendations. In this paper we illustrate the effects of such a dynamic based on our experiences as external evaluators of the $25 million NSF-funded Learning in Informal and Formal Environments (LIFE) Center. The case study presents an analysis of annual reports and strategic planning documents along with other sources of evidence to illustrate the evolution of center organizational approaches in response to evaluations by external review panels, center evaluators, program managers, and other external stakeholders. We conclude with suggestions for how evaluators may help centers ease the cost of learning and reduce the likelihood of a vicious circle. 2010 Elsevier Ltd. All rights reserved.
The autonomous sciencecraft constellations
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2003-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Attention control learning in the decision space using state estimation
NASA Astrophysics Data System (ADS)
Gharaee, Zahra; Fatehi, Alireza; Mirian, Maryam S.; Nili Ahmadabadi, Majid
2016-05-01
The main goal of this paper is modelling attention while using it in efficient path planning of mobile robots. The key challenge in concurrently aiming these two goals is how to make an optimal, or near-optimal, decision in spite of time and processing power limitations, which inherently exist in a typical multi-sensor real-world robotic application. To efficiently recognise the environment under these two limitations, attention of an intelligent agent is controlled by employing the reinforcement learning framework. We propose an estimation method using estimated mixture-of-experts task and attention learning in perceptual space. An agent learns how to employ its sensory resources, and when to stop observing, by estimating its perceptual space. In this paper, static estimation of the state space in a learning task problem, which is examined in the WebotsTM simulator, is performed. Simulation results show that a robot learns how to achieve an optimal policy with a controlled cost by estimating the state space instead of continually updating sensory information.
Curiosity driven reinforcement learning for motion planning on humanoids
Frank, Mikhail; Leitner, Jürgen; Stollenga, Marijn; Förster, Alexander; Schmidhuber, Jürgen
2014-01-01
Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment. PMID:24432001
Agent-based traffic management and reinforcement learning in congested intersection network.
DOT National Transportation Integrated Search
2012-08-01
This study evaluates the performance of traffic control systems based on reinforcement learning (RL), also called approximate dynamic programming (ADP). Two algorithms have been selected for testing: 1) Q-learning and 2) approximate dynamic programmi...
TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds
ERIC Educational Resources Information Center
Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien
2013-01-01
Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…
Access Control for Cooperation Systems Based on Group Situation
NASA Astrophysics Data System (ADS)
Kim, Minsoo; Joshi, James B. D.; Kim, Minkoo
Cooperation systems characterize many emerging environments such as ubiquitous and pervasive systems. Agent based cooperation systems have been proposed in the literature to address challenges of such emerging application environments. A key aspect of such agent based cooperation system is the group situation that changes dynamically and governs the requirements of the cooperation. While individual agent context is important, the overall cooperation behavior is more driven by the group context because of relationships and interactions between agents. Dynamic access control based on group situation is a crucial challenge in such cooperation systems. In this paper we propose a dynamic role based access control model for cooperation systems based on group situation. The model emphasizes capability based agent to role mapping and group situation based permission assignment to allow capturing dynamic access policies that evolve continuously.
Workload-Based Automated Interface Mode Selection
2012-03-22
Process . . . . . . . . . . . . . . . . . . . . . 31 3.5.10 Agent Reward Function . . . . . . . . . . . . . . . . 31 3.5.11 Accelerated Learning... Strategies . . . . . . . . . . . . 31 4. Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 System Engineering Methodology...26 5. Agent state function. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6. Agent reward function
Chronic Heart Failure Follow-up Management Based on Agent Technology.
Mohammadzadeh, Niloofar; Safdari, Reza
2015-10-01
Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.
ERIC Educational Resources Information Center
Wilson, Linda L.; Mott, Donald W.; Batman, Deb
2004-01-01
This article provides a description of the "Asset-Based Context Matrix" (ABC Matrix). The ABC Matrix is an assessment tool for designing interventions for children in natural learning environments. The tool is based on research evidence indicating that children's learning is enhanced in contextually meaningful learning environments. The ABC Matrix…
ERIC Educational Resources Information Center
Lee, Hye Yeon; Lee, Hyeon Woo
2018-01-01
Recently, there has been a transition from traditional paper or computer-based learning environments to smartpad-based learning environments, which are based on touch and involve various cognitive strategies such as touch operation and note taking. Accordingly, the use of smartpads can provide an effective learning environment through…
ERIC Educational Resources Information Center
Nguyen, ThuyUyen H.; Charity, Ian; Robson, Andrew
2016-01-01
This study investigates students' perceptions of computer-based learning environments, their attitude towards business statistics, and their academic achievement in higher education. Guided by learning environments concepts and attitudinal theory, a theoretical model was proposed with two instruments, one for measuring the learning environment and…
An embodiment effect in computer-based learning with animated pedagogical agents.
Mayer, Richard E; DaPra, C Scott
2012-09-01
How do social cues such as gesturing, facial expression, eye gaze, and human-like movement affect multimedia learning with onscreen agents? To help address this question, students were asked to twice view a 4-min narrated presentation on how solar cells work in which the screen showed an animated pedagogical agent standing to the left of 11 successive slides. Across three experiments, learners performed better on a transfer test when a human-voiced agent displayed human-like gestures, facial expression, eye gaze, and body movement than when the agent did not, yielding an embodiment effect. In Experiment 2 the embodiment effect was found when the agent spoke in a human voice but not in a machine voice. In Experiment 3, the embodiment effect was found both when students were told the onscreen agent was consistent with their choice of agent characteristics and when inconsistent. Students who viewed a highly embodied agent also rated the social attributes of the agent more positively than did students who viewed a nongesturing agent. The results are explained by social agency theory, in which social cues in a multimedia message prime a feeling of social partnership in the learner, which leads to deeper cognitive processing during learning, and results in a more meaningful learning outcome as reflected in transfer test performance.
Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation
2006-09-01
risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level
Advanced Agent Methods in Adversarial Environment
2005-11-30
2 Contents Contents 1 Introduction – Technical Statement of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1...37 5.4.1 Deriving Trust Observations from Coalition Cooperation Results . . . . . . . . . . . 37 Contents 3 5.4.2 Iterative Learning of...85 4 Contents A.3.5 Class Finder
A Multi-Agent System for Intelligent Online Education.
ERIC Educational Resources Information Center
O'Riordan, Colm; Griffith, Josephine
1999-01-01
Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…
Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt
2013-09-01
Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
After Action Review Tools For Team Training with Chat Communications
2009-11-01
collaborative learning environments. The most relevant work is being done by the CALO ( Cognitive Agent that Learns and Organizes) project, a joint...emoticons, and other common stylistic practices. To a lesser degree, some research has yielded methods and tools to analyze or visualize chat...information sources, and overall cognitive effort. AAR Challenges The most significant challenge to conducting an effective after action review of
ERIC Educational Resources Information Center
Loh, Christian Sebastian
2001-01-01
Examines how mobile computers, or personal digital assistants (PDAs), can be used in a Web-based learning environment. Topics include wireless networks on college campuses; online learning; Web-based learning technologies; synchronous and asynchronous communication via the Web; content resources; Web connections; and collaborative learning. (LRW)
ERIC Educational Resources Information Center
Wijnia, Lisette; Loyens, Sofie M. M.; Derous, Eva
2011-01-01
This study examines the effects of two learning environments (i.e., problem-based learning [PBL] versus lecture-based [LB] environments) on undergraduates' study motivation. Survey results demonstrated that PBL students scored higher on competence but did not differ from LB students on autonomous motivation. Analyses of focus groups further…
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng
2010-01-01
The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…
NASA Astrophysics Data System (ADS)
Zhang, Danhui; Bobis, Janette; Wu, Xiaolu; Cui, Yiran
2018-04-01
Increasing student exposure to autonomy-supportive teaching approaches has been linked to enhanced student intrinsic motivation to learn. However, such approaches are rare in mainland Chinese science classrooms. An intervention-based study with quasi-experimental design and mixed methods was conducted to explore the impact of a 9-month-long autonomy-supportive teaching intervention on a physics teacher and 147 grade 8 students attending a middle school in China. Data collected through questionnaires, interviews, and observations were analyzed to elicit and track shifts in teacher practices and students' perceptions of learning physics at pre-, post-, and follow-up intervention phases. General linear modeling confirmed significant changes in students' perceptions of their learning environment over time in terms autonomy, satisfaction of autonomy needs, and agentic engagement. Interview and observational data analyses confirmed increased use of autonomy-supportive teaching behaviors and provided further insights into teacher and students' perceptions of the impact on student learning.
Risk-Seeking Versus Risk-Avoiding Investments in Noisy Periodic Environments
NASA Astrophysics Data System (ADS)
Navarro-Barrientos, J. Emeterio; Walter, Frank E.; Schweitzer, Frank
We study the performance of various agent strategies in an artificial investment scenario. Agents are equipped with a budget, x(t), and at each time step invest a particular fraction, q(t), of their budget. The return on investment (RoI), r(t), is characterized by a periodic function with different types and levels of noise. Risk-avoiding agents choose their fraction q(t) proportional to the expected positive RoI, while risk-seeking agents always choose a maximum value qmax if they predict the RoI to be positive ("everything on red"). In addition to these different strategies, agents have different capabilities to predict the future r(t), dependent on their internal complexity. Here, we compare "zero-intelligent" agents using technical analysis (such as moving least squares) with agents using reinforcement learning or genetic algorithms to predict r(t). The performance of agents is measured by their average budget growth after a certain number of time steps. We present results of extensive computer simulations, which show that, for our given artificial environment, (i) the risk-seeking strategy outperforms the risk-avoiding one, and (ii) the genetic algorithm was able to find this optimal strategy itself, and thus outperforms other prediction approaches considered.
Sustaining Teacher Control in a Blog-Based Personal Learning Environment
ERIC Educational Resources Information Center
Tomberg, Vladimir; Laanpere, Mart; Ley, Tobias; Normak, Peeter
2013-01-01
Various tools and services based on Web 2.0 (mainly blogs, wikis, social networking tools) are increasingly used in formal education to create personal learning environments, providing self-directed learners with more freedom, choice, and control over their learning. In such distributed and personalized learning environments, the traditional role…
Visualising Learning Design in LAMS: A Historical View
ERIC Educational Resources Information Center
Dalziel, James
2011-01-01
The Learning Activity Management System (LAMS) provides a web-based environment for the creation, sharing, running and monitoring of Learning Designs. A central feature of LAMS is the visual authoring environment, where educators use a drag-and-drop environment to create sequences of learning activities. The visualisation is based on boxes…
NASA Astrophysics Data System (ADS)
Walker, Robin A.
2013-02-01
Hungarian physicist Dennis Gabor won the Pulitzer Prize for his 1947 introduction of basic holographic principles, but it was not until the invention of the laser in 1960 that research scientists, physicians, technologists and the general public began to seriously consider the interdisciplinary potentiality of holography. Questions around whether and when Three-Dimensional (3-D) images and systems would impact American entertainment and the arts would be answered before educators, instructional designers and students would discover how much Three-Dimensional Hologram Technology (3DHT) would affect teaching practices and learning environments. In the following International Symposium on Display Holograms (ISDH) poster presentation, the author features a traditional board game as well as a reflection hologram to illustrate conventional and evolving Three-Dimensional representations and technology for education. Using elements from the American children's toy Operation® (Hasbro, 2005) as well as a reflection hologram of a human brain (Ko, 1998), this poster design highlights the pedagogical effects of 3-D images, games and systems on learning science. As teaching agents, holograms can be considered substitutes for real objects, (human beings, organs, and animated characters) as well as agents (pedagogical, avatars, reflective) in various learning environments using many systems (direct, emergent, augmented reality) and electronic tools (cellphones, computers, tablets, television). In order to understand the particular importance of utilizing holography in school, clinical and public settings, the author identifies advantages and benefits of using 3-D images and technology as instructional tools.
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
ERIC Educational Resources Information Center
Dickes, Amanda Catherine; Sengupta, Pratim
2013-01-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…
Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.
Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin
2017-01-01
In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.
Chuang, Shih-Chyueh; Hwang, Fu-Kwun; Tsai, Chin-Chung
2008-04-01
The purpose of this study was to investigate the perceptions of Internet users of a physics virtual laboratory, Demolab, in Taiwan. Learners' perceptions of Internet-based learning environments were explored and the role of gender was examined by using preferred and actual forms of a revised Constructivist Internet-based Learning Environment Survey (CILES). The students expressed a clear gap between ideal and reality, and they showed higher preferences for many features of constructivist Internet-based learning environments than for features they had actually learned in Demolab. The results further suggested that male users prefer to be involved in the process of discussion and to show critical judgments. In addition, male users indicated they enjoyed the process of negotiation and discussion with others and were able to engage in reflective thoughts while learning in Demolab. In light of these findings, male users seemed to demonstrate better adaptability to the constructivist Internet-based learning approach than female users did. Although this study indicated certain differences between males and females in their responses to Internet-based learning environments, they also shared numerous similarities. A well-established constructivist Internet-based learning environment may encourage more female learners to participate in the science community.
Safe motion planning for mobile agents: A model of reactive planning for multiple mobile agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Kikuo.
1990-01-01
The problem of motion planning for multiple mobile agents is studied. Each planning agent independently plans its own action based on its map which contains a limited information about the environment. In an environment where more than one mobile agent interacts, the motions of the robots are uncertain and dynamic. A model for reactive agents is described and simulation results are presented to show their behavior patterns. 18 refs., 2 figs.
Conducting and Supporting a Goal-Based Scenario Learning Environment.
ERIC Educational Resources Information Center
Montgomery, Joel; And Others
1994-01-01
Discussion of goal-based scenario (GBS) learning environments focuses on a training module designed to prepare consultants with new skills in managing clients, designing user-friendly graphical computer interfaces, and working in a client/server computing environment. Transforming the environment from teaching focused to learning focused is…
ERIC Educational Resources Information Center
Baartman, L. K. J.; Kilbrink, N.; de Bruijn, E.
2018-01-01
In vocational education, students learn in different school-based and workplace-based learning environments and engage with different types of knowledge in these environments. Students are expected to integrate these experiences and make meaning of them in relation to their own professional knowledge base. This study focuses both on…
SLAM algorithm applied to robotics assistance for navigation in unknown environments
2010-01-01
Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). Methods In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. Conclusions The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation. PMID:20163735
ERIC Educational Resources Information Center
Chen, Chih-Ming; Chang, Chia-Cheng
2014-01-01
Many studies have identified web-based cooperative learning as an increasingly popular educational paradigm with potential to increase learner satisfaction and interactions. However, peer-to-peer interaction often suffers barriers owing to a failure to explore useful social interaction information in web-based cooperative learning environments.…
Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F
2015-12-22
The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.
ERIC Educational Resources Information Center
Huang, Yong-Ming; Chen, Chao-Chun; Wang, Ding-Chau
2012-01-01
Ubiquitous learning receives much attention in these few years due to its wide spectrum of applications, such as the T-learning application. The learner can use mobile devices to watch the digital TV based course content, and thus, the T-learning provides the ubiquitous learning environment. However, in real-world data broadcast environments, the…
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
Baeten, Marlies; Dochy, Filip; Struyven, Katrien
2013-09-01
Research in higher education on the effects of student-centred versus lecture-based learning environments generally does not take into account the psychological need support provided in these learning environments. From a self-determination theory perspective, need support is important to study because it has been associated with benefits such as autonomous motivation and achievement. The purpose of the study is to investigate the effects of different learning environments on students' motivation for learning and achievement, while taking into account the perceived need support. First-year student teachers (N= 1,098) studying a child development course completed questionnaires assessing motivation and perceived need support. In addition, a prior knowledge test and case-based assessment were administered. A quasi-experimental pre-test/post-test design was set up consisting of four learning environments: (1) lectures, (2) case-based learning (CBL), (3) alternation of lectures and CBL, and (4) gradual implementation with lectures making way for CBL. Autonomous motivation and achievement were higher in the gradually implemented CBL environment, compared to the CBL environment. Concerning achievement, two additional effects were found; students in the lecture-based learning environment scored higher than students in the CBL environment, and students in the gradually implemented CBL environment scored higher than students in the alternated learning environment. Additionally, perceived need support was positively related to autonomous motivation, and negatively to controlled motivation. The study shows the importance of gradually introducing students to CBL, in terms of their autonomous motivation and achievement. Moreover, the study emphasizes the importance of perceived need support for students' motivation. © 2012 The British Psychological Society.
Hypercompetitive Environments: An Agent-based model approach
NASA Astrophysics Data System (ADS)
Dias, Manuel; Araújo, Tanya
Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.
ERIC Educational Resources Information Center
Chu, Regina Juchun; Chu, Anita Zichun; Weng, Cathy; Tsai, Chin-Chung; Lin, Chia-chun
2012-01-01
This research explores the relationships between self-directed learning readiness and transformative learning theory (TLT) reflected by the Constructivist Internet-based Learning Environment Scale (CILES). A questionnaire survey about adult learner's perceptions of Internet-based learning was administered to adults enrolled in classes in community…
When Does Diversity Trump Ability (and Vice Versa) in Group Decision Making? A Simulation Study
Luan, Shenghua; Katsikopoulos, Konstantinos V.; Reimer, Torsten
2012-01-01
It is often unclear which factor plays a more critical role in determining a group's performance: the diversity among members of the group or their individual abilities. In this study, we addressed this “diversity vs. ability” issue in a decision-making task. We conducted three simulation studies in which we manipulated agents' individual ability (or accuracy, in the context of our investigation) and group diversity by varying (1) the heuristics agents used to search task-relevant information (i.e., cues); (2) the size of their groups; (3) how much they had learned about a good cue search order; and (4) the magnitude of errors in the information they searched. In each study, we found that a manipulation reducing agents' individual accuracy simultaneously increased their group's diversity, leading to a conflict between the two. These conflicts enabled us to identify certain conditions under which diversity trumps individual accuracy, and vice versa. Specifically, we found that individual accuracy is more important in task environments in which cues differ greatly in the quality of their information, and diversity matters more when such differences are relatively small. Changing the size of a group and the amount of learning by an agent had a limited impact on this general effect of task environment. Furthermore, we found that a group achieves its highest accuracy when there is an intermediate amount of errors in the cue information, regardless of the environment and the heuristic used, an effect that we believe has not been previously reported and warrants further investigation. PMID:22359562
NASA Astrophysics Data System (ADS)
Wang, W.; Wang, D.; Peng, Z. H.
2017-09-01
Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.
ERIC Educational Resources Information Center
Yang, Fang-Ying; Chang, Cheng-Chieh
2009-01-01
The purpose of the study is to explore three kinds of personal affective traits among high-school students and their effects on web-based concept learning. The affective traits include personal preferences about web-based learning environments, personal epistemological beliefs, and beliefs about web-based learning. One hundred 11th graders…
Benefits of Informal Learning Environments: A Focused Examination of STEM-Based Program Environments
ERIC Educational Resources Information Center
Denson, Cameron D.; Austin Stallworth, Chandra; Hailey, Christine; Householder, Daniel L.
2015-01-01
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We…
Trust-based learning and behaviors for convoy obstacle avoidance
NASA Astrophysics Data System (ADS)
Mikulski, Dariusz G.; Karlsen, Robert E.
2015-05-01
In many multi-agent systems, robots within the same team are regarded as being fully trustworthy for cooperative tasks. However, the assumption of trustworthiness is not always justified, which may not only increase the risk of mission failure, but also endanger the lives of friendly forces. In prior work, we addressed this issue by using RoboTrust to dynamically adjust to observed behaviors or recommendations in order to mitigate the risks of illegitimate behaviors. However, in the simulations in prior work, all members of the convoy had knowledge of the convoy goal. In this paper, only the lead vehicle has knowledge of the convoy goals and the follow vehicles must infer trustworthiness strictly from lead vehicle performance. In addition, RoboTrust could only respond to observed performance and did not dynamically learn agent behavior. In this paper, we incorporate an adaptive agent-specific bias into the RoboTrust algorithm that modifies its trust dynamics. This bias is learned incrementally from agent interactions, allowing good agents to benefit from faster trust growth and slower trust decay and bad agents to be penalized with slower trust growth and faster trust decay. We then integrate this new trust model into a trust-based controller for decentralized autonomous convoy operations. We evaluate its performance in an obstacle avoidance mission, where the convoy attempts to learn the best speed and following distances combinations for an acceptable obstacle avoidance probability.
Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
Time-Extended Payoffs for Collectives of Autonomous Agents
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2002-01-01
A collective is a set of self-interested agents which try to maximize their own utilities, along with a a well-defined, time-extended world utility function which rates the performance of the entire system. In this paper, we use theory of collectives to design time-extended payoff utilities for agents that are both aligned with the world utility, and are "learnable", i.e., the agents can readily see how their behavior affects their utility. We show that in systems where each agent aims to optimize such payoff functions, coordination arises as a byproduct of the agents selfishly pursuing their own goals. A game theoretic analysis shows that such payoff functions have the net effect of aligning the Nash equilibrium, Pareto optimal solution and world utility optimum, thus eliminating undesirable behavior such as agents working at cross-purposes. We then apply collective-based payoff functions to the token collection in a gridworld problem where agents need to optimize the aggregate value of tokens collected across an episode of finite duration (i.e., an abstracted version of rovers on Mars collecting scientifically interesting rock samples, subject to power limitations). We show that, regardless of the initial token distribution, reinforcement learning agents using collective-based payoff functions significantly outperform both natural extensions of single agent algorithms and global reinforcement learning solutions based on "team games".
Modeling social learning of language and skills.
Vogt, Paul; Haasdijk, Evert
2010-01-01
We present a model of social learning of both language and skills, while assuming—insofar as possible—strict autonomy, virtual embodiment, and situatedness. This model is built by integrating various previous models of language development and social learning, and it is this integration that, under the mentioned assumptions, provides novel challenges. The aim of the article is to investigate what sociocognitive mechanisms agents should have in order to be able to transmit language from one generation to the next so that it can be used as a medium to transmit internalized rules that represent skill knowledge. We have performed experiments where this knowledge solves the familiar poisonous-food problem. Simulations reveal under what conditions, regarding population structure, agents can successfully solve this problem. In addition to issues relating to perspective taking and mutual exclusivity, we show that agents need to coordinate interactions so that they can establish joint attention in order to form a scaffold for language learning, which in turn forms a scaffold for the learning of rule-based skills. Based on these findings, we conclude by hypothesizing that social learning at one level forms a scaffold for the social learning at another, higher level, thus contributing to the accumulation of cultural knowledge.
Chronic Heart Failure Follow-up Management Based on Agent Technology
Safdari, Reza
2015-01-01
Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038
The relationships between trait anxiety, place recognition memory, and learning strategy.
Hawley, Wayne R; Grissom, Elin M; Dohanich, Gary P
2011-01-20
Rodents learn to navigate mazes using various strategies that are governed by specific regions of the brain. The type of strategy used when learning to navigate a spatial environment is moderated by a number of factors including emotional states. Heightened anxiety states, induced by exposure to stressors or administration of anxiogenic agents, have been found to bias male rats toward the use of a striatum-based stimulus-response strategy rather than a hippocampus-based place strategy. However, no study has yet examined the relationship between natural anxiety levels, or trait anxiety, and the type of learning strategy used by rats on a dual-solution task. In the current experiment, levels of inherent anxiety were measured in an open field and compared to performance on two separate cognitive tasks, a Y-maze task that assessed place recognition memory, and a visible platform water maze task that assessed learning strategy. Results indicated that place recognition memory on the Y-maze correlated with the use of place learning strategy on the water maze. Furthermore, lower levels of trait anxiety correlated positively with better place recognition memory and with the preferred use of place learning strategy. Therefore, competency in place memory and bias in place strategy are linked to the levels of inherent anxiety in male rats. Copyright © 2010 Elsevier B.V. All rights reserved.
Reusable Reinforcement Learning via Shallow Trails.
Yu, Yang; Chen, Shi-Yong; Da, Qing; Zhou, Zhi-Hua
2018-06-01
Reinforcement learning has shown great success in helping learning agents accomplish tasks autonomously from environment interactions. Meanwhile in many real-world applications, an agent needs to accomplish not only a fixed task but also a range of tasks. For this goal, an agent can learn a metapolicy over a set of training tasks that are drawn from an underlying distribution. By maximizing the total reward summed over all the training tasks, the metapolicy can then be reused in accomplishing test tasks from the same distribution. However, in practice, we face two major obstacles to train and reuse metapolicies well. First, how to identify tasks that are unrelated or even opposite with each other, in order to avoid their mutual interference in the training. Second, how to characterize task features, according to which a metapolicy can be reused. In this paper, we propose the MetA-Policy LEarning (MAPLE) approach that overcomes the two difficulties by introducing the shallow trail. It probes a task by running a roughly trained policy. Using the rewards of the shallow trail, MAPLE automatically groups similar tasks. Moreover, when the task parameters are unknown, the rewards of the shallow trail also serve as task features. Empirical studies on several controlling tasks verify that MAPLE can train metapolicies well and receives high reward on test tasks.
Learning How to Design a Technology Supported Inquiry-Based Learning Environment
ERIC Educational Resources Information Center
Hakverdi-Can, Meral; Sonmez, Duygu
2012-01-01
This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…
Using Design-Based Research in Informal Environments
ERIC Educational Resources Information Center
Reisman, Molly
2008-01-01
Design-Based Research (DBR) has been a tool of the learning sciences since the early 1990s, used as a way to improve and study learning environments. Using an iterative process of design with the goal of reining theories of learning, researchers and educators now use DBR seek to identify "how" to make a learning environment work. They then draw…
Language Evolution by Iterated Learning with Bayesian Agents
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Kalish, Michael L.
2007-01-01
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
The Effects of Study Tasks in a Computer-Based Chemistry Learning Environment
ERIC Educational Resources Information Center
Urhahne, Detlef; Nick, Sabine; Poepping, Anna Christin; Schulz , Sarah Jayne
2013-01-01
The present study examines the effects of different study tasks on the acquisition of knowledge about acids and bases in a computer-based learning environment. Three different task formats were selected to create three treatment conditions: learning with gap-fill and matching tasks, learning with multiple-choice tasks, and learning only from text…
Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation
ERIC Educational Resources Information Center
Levy, S. T.; Lahav, O.
2012-01-01
This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…
Self Regulated Learning for Developing Nursing Skills via Web-Based
ERIC Educational Resources Information Center
Razak, Rafiza Abdul; Hua, Khor Bee
2013-01-01
The purpose of this study is to find out whether the first year student nurses able to learn and develop the psychomotor skills for basic nursing care using web-based learning environment. More importantly, the researcher investigated whether web-based learning environment using self regulated learning strategy able to help students to apply the…
Multi-agents and learning: Implications for Webusage mining.
Lotfy, Hewayda M S; Khamis, Soheir M S; Aboghazalah, Maie M
2016-03-01
Characterization of user activities is an important issue in the design and maintenance of websites. Server weblog files have abundant information about the user's current interests. This information can be mined and analyzed therefore the administrators may be able to guide the users in their browsing activity so they may obtain relevant information in a shorter span of time to obtain user satisfaction. Web-based technology facilitates the creation of personally meaningful and socially useful knowledge through supportive interactions, communication and collaboration among educators, learners and information. This paper suggests a new methodology based on learning techniques for a Web-based Multiagent-based application to discover the hidden patterns in the user's visited links. It presents a new approach that involves unsupervised, reinforcement learning, and cooperation between agents. It is utilized to discover patterns that represent the user's profiles in a sample website into specific categories of materials using significance percentages. These profiles are used to make recommendations of interesting links and categories to the user. The experimental results of the approach showed successful user pattern recognition, and cooperative learning among agents to obtain user profiles. It indicates that combining different learning algorithms is capable of improving user satisfaction indicated by the percentage of precision, recall, the progressive category weight and F 1-measure.
Multi-agents and learning: Implications for Webusage mining
Lotfy, Hewayda M.S.; Khamis, Soheir M.S.; Aboghazalah, Maie M.
2015-01-01
Characterization of user activities is an important issue in the design and maintenance of websites. Server weblog files have abundant information about the user’s current interests. This information can be mined and analyzed therefore the administrators may be able to guide the users in their browsing activity so they may obtain relevant information in a shorter span of time to obtain user satisfaction. Web-based technology facilitates the creation of personally meaningful and socially useful knowledge through supportive interactions, communication and collaboration among educators, learners and information. This paper suggests a new methodology based on learning techniques for a Web-based Multiagent-based application to discover the hidden patterns in the user’s visited links. It presents a new approach that involves unsupervised, reinforcement learning, and cooperation between agents. It is utilized to discover patterns that represent the user’s profiles in a sample website into specific categories of materials using significance percentages. These profiles are used to make recommendations of interesting links and categories to the user. The experimental results of the approach showed successful user pattern recognition, and cooperative learning among agents to obtain user profiles. It indicates that combining different learning algorithms is capable of improving user satisfaction indicated by the percentage of precision, recall, the progressive category weight and F1-measure. PMID:26966569
ERIC Educational Resources Information Center
Mitchell-White, Kathleen
2010-01-01
Continued improvement of the training and preparation of Federal Bureau of Investigation (FBI) special agents is critical to the organization's ability to protect the national security of the United States. Too little attention has been paid to the factors that improve new agent trainees' (NATs) ability to learn and succeed in their training…
ERIC Educational Resources Information Center
Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah
2016-01-01
In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…
Web-Based Learning Support System
NASA Astrophysics Data System (ADS)
Fan, Lisa
Web-based learning support system offers many benefits over traditional learning environments and has become very popular. The Web is a powerful environment for distributing information and delivering knowledge to an increasingly wide and diverse audience. Typical Web-based learning environments, such as Web-CT, Blackboard, include course content delivery tools, quiz modules, grade reporting systems, assignment submission components, etc. They are powerful integrated learning management systems (LMS) that support a number of activities performed by teachers and students during the learning process [1]. However, students who study a course on the Internet tend to be more heterogeneously distributed than those found in a traditional classroom situation. In order to achieve optimal efficiency in a learning process, an individual learner needs his or her own personalized assistance. For a web-based open and dynamic learning environment, personalized support for learners becomes more important. This chapter demonstrates how to realize personalized learning support in dynamic and heterogeneous learning environments by utilizing Adaptive Web technologies. It focuses on course personalization in terms of contents and teaching materials that is according to each student's needs and capabilities. An example of using Rough Set to analyze student personal information to assist students with effective learning and predict student performance is presented.
ERIC Educational Resources Information Center
Arantes do Amaral, Joao Alberto; Gonçalves, Paulo; Hess, Aurélio
2015-01-01
This article describes the project-based learning environment created to support project management graduate courses. The paper will focus on the learning context and procedures followed for 13 years, in 47 project-based learning MBA courses, involving approximately 1,400 students and 34 community partners.
Constructing of Research-Oriented Learning Mode Based on Network Environment
ERIC Educational Resources Information Center
Wang, Ying; Li, Bing; Xie, Bai-zhi
2007-01-01
Research-oriented learning mode that based on network is significant to cultivate comprehensive-developing innovative person with network teaching in education for all-around development. This paper establishes a research-oriented learning mode by aiming at the problems existing in research-oriented learning based on network environment, and…
ERIC Educational Resources Information Center
Dickey, Michele D.
2011-01-01
The purpose of this research is to investigate the impact of narrative design in a game-based learning environment. Specifically, this investigation focuses the narrative design in an adventure-styled, game-based learning environment for fostering argumentation writing by looking at how the game narrative impacted player/learner (1) intrinsic…
Agent Based Fault Tolerance for the Mobile Environment
NASA Astrophysics Data System (ADS)
Park, Taesoon
This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.
ERIC Educational Resources Information Center
Horton, Lucas; Liu, Min; Olmanson, Justin; Toprac, Paul
2011-01-01
In this paper we explore students' engagement in a new media enhanced problem-based learning (PBL) environment and investigate the characteristics of these environments that facilitate learning. We investigated both student experiences using a new media enhanced PBL environment and the specific elements students found most supportive of their…
A Computer Environment for Beginners' Learning of Sorting Algorithms: Design and Pilot Evaluation
ERIC Educational Resources Information Center
Kordaki, M.; Miatidis, M.; Kapsampelis, G.
2008-01-01
This paper presents the design, features and pilot evaluation study of a web-based environment--the SORTING environment--for the learning of sorting algorithms by secondary level education students. The design of this environment is based on modeling methodology, taking into account modern constructivist and social theories of learning while at…
High performance cellular level agent-based simulation with FLAME for the GPU.
Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela
2010-05-01
Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.
Construction of a Digital Learning Environment Based on Cloud Computing
ERIC Educational Resources Information Center
Ding, Jihong; Xiong, Caiping; Liu, Huazhong
2015-01-01
Constructing the digital learning environment for ubiquitous learning and asynchronous distributed learning has opened up immense amounts of concrete research. However, current digital learning environments do not fully fulfill the expectations on supporting interactive group learning, shared understanding and social construction of knowledge.…
A Simultaneous Mobile E-Learning Environment and Application
ERIC Educational Resources Information Center
Karal, Hasan; Bahcekapili, Ekrem; Yildiz, Adil
2010-01-01
The purpose of the present study was to design a mobile learning environment that enables the use of a teleconference application used in simultaneous e-learning with mobile devices and to evaluate this mobile learning environment based on students' views. With the mobile learning environment developed in the study, the students are able to follow…
Using Scenarios to Design Complex Technology-Enhanced Learning Environments
ERIC Educational Resources Information Center
de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.
2012-01-01
Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…
Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
Hu, Yujing; Gao, Yang; An, Bo
2015-07-01
An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.
Cultural Geography Modeling and Analysis in Helmand Province
2010-10-01
the application of an agent-based model called “Cultural Geography” to represent the civilian populace. This project uses a multi-agent system ...represent the civilian populace. This project uses a multi-agent system consisting of an environment, agents, objects (things), operations that can be...environments[1]. The model is patterned after the conflict eco- system described by Kilcullen[2] in an attempt to capture the complexities of irregular
Formal Assurance for Cognitive Architecture Based Autonomous Agent
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Eskridge, Thomas; Neogi, Natasha; Carvalho, Marco
2017-01-01
Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.
Learning with Collaborative Inquiry: A Science Learning Environment for Secondary Students
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit; Xie, Wenting
2017-01-01
When inquiry-based learning is designed for a collaborative context, the interactions that arise in the learning environment can become fairly complex. While the learning effectiveness of such learning environments has been reported in the literature, there have been fewer studies on the students' learning processes. To address this, the article…
Co-Regulation of Learning in Computer-Supported Collaborative Learning Environments: A Discussion
ERIC Educational Resources Information Center
Chan, Carol K. K.
2012-01-01
This discussion paper for this special issue examines co-regulation of learning in computer-supported collaborative learning (CSCL) environments extending research on self-regulated learning in computer-based environments. The discussion employs a socio-cognitive perspective focusing on social and collective views of learning to examine how…
The Acquisition of Integrated Science Process Skills in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Saat, Rohaida Mohd
2004-01-01
Web-based learning is becoming prevalent in science learning. Some use specially designed programs, while others use materials available on the Internet. This qualitative case study examined the process of acquisition of integrated science process skills, particularly the skill of controlling variables, in a web-based learning environment among…
Problem-Based Educational Game Becomes Student-Centered Learning Environment
ERIC Educational Resources Information Center
Rodkroh, Pornpimon; Suwannatthachote, Praweenya; Kaemkate, Wannee
2013-01-01
Problem-based educational games are able to provide a fun and motivating environment for teaching and learning of certain subjects. However, most educational game models do not address the learning elements of problem-based educational games. This study aims to synthesize and to propose the important elements to facilitate the learning process and…
Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments
ERIC Educational Resources Information Center
Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine
2012-01-01
Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…
Personalisation in Web-Based Learning Environments
ERIC Educational Resources Information Center
Santally, Mohammad Issack; Alain, Senteni
2006-01-01
It is postulated that one of the main problems with e-learning environments is their lack of personalisation. This article presents a comprehensive review of the current work in the field and proposes a framework for research in promoting personalisation in Web-based learning environments. The concepts of adaptability, adaptivity and the…
Evaluating and Implementing Learning Environments: A United Kingdom Experience.
ERIC Educational Resources Information Center
Ingraham, Bruce; Watson, Barbara; McDowell, Liz; Brockett, Adrian; Fitzpatrick, Simon
2002-01-01
Reports on ongoing work at five universities in northeastern England that have been evaluating and implementing online learning environments known as virtual learning environments (VLEs) or managed learning environments (MLEs). Discusses do-it-yourself versus commercial systems; transferability; Web-based versus client-server; integration with…
ERIC Educational Resources Information Center
Coyle, Do; Halbach, Ana; Meyer, Oliver; Schuck, Kevin
2018-01-01
This article explores how a group of educators and researchers enacted an inclusive process of conceptual growth involving teachers and teacher educators as active agents, knowledge builders and meaning-makers in the development of a Pluriliteracies approach to Teaching for Learning (PTL). The evolution of a working model based on five emergent…
A Novel Approach for Enhancing Lifelong Learning Systems by Using Hybrid Recommender System
ERIC Educational Resources Information Center
Kardan, Ahmad A.; Speily, Omid R. B.; Modaberi, Somayyeh
2011-01-01
The majority of current web-based learning systems are closed learning environments where courses and learning materials are fixed, and the only dynamic aspect is the organization of the material that can be adapted to allow a relatively individualized learning environment. In this paper, we propose an evolving web-based learning system which can…
DYNACLIPS (DYNAmic CLIPS): A dynamic knowledge exchange tool for intelligent agents
NASA Technical Reports Server (NTRS)
Cengeloglu, Yilmaz; Khajenoori, Soheil; Linton, Darrell
1994-01-01
In a dynamic environment, intelligent agents must be responsive to unanticipated conditions. When such conditions occur, an intelligent agent may have to stop a previously planned and scheduled course of actions and replan, reschedule, start new activities and initiate a new problem solving process to successfully respond to the new conditions. Problems occur when an intelligent agent does not have enough knowledge to properly respond to the new situation. DYNACLIPS is an implementation of a framework for dynamic knowledge exchange among intelligent agents. Each intelligent agent is a CLIPS shell and runs a separate process under SunOS operating system. Intelligent agents can exchange facts, rules, and CLIPS commands at run time. Knowledge exchange among intelligent agents at run times does not effect execution of either sender and receiver intelligent agent. Intelligent agents can keep the knowledge temporarily or permanently. In other words, knowledge exchange among intelligent agents would allow for a form of learning to be accomplished.
Cyr, André; Boukadoum, Mounir; Thériault, Frédéric
2014-01-01
In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors. PMID:25120464
Cyr, André; Boukadoum, Mounir; Thériault, Frédéric
2014-01-01
In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors.
Word Learning and Attention Allocation Based on Word Class and Category Knowledge
ERIC Educational Resources Information Center
Hupp, Julie M.
2015-01-01
Attention allocation in word learning may vary developmentally based on the novelty of the object. It has been suggested that children differentially learn verbs based on the novelty of the agent, but adults do not because they automatically infer the object's category and thus treat it like a familiar object. The current research examined…
A Novel Machine Learning Classifier Based on a Qualia Modeling Agent (QMA)
Information Theory (IIT) of Consciousness , which proposes that the fundamental structural elements of consciousness are qualia. By modeling the...This research develops a computational agent, which overcomes this problem. The Qualia Modeling Agent (QMA) is modeled after two cognitive theories
A development framework for distributed artificial intelligence
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1989-01-01
The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.
Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.
Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar
2017-03-01
We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.
NASA Astrophysics Data System (ADS)
Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.
2017-12-01
This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.
A survey on adaptive engine technology for serious games
NASA Astrophysics Data System (ADS)
Rasim, Langi, Armein Z. R.; Munir, Rosmansyah, Yusep
2016-02-01
Serious Games has become a priceless tool in learning because it can simulate abstract concept to appear more realistic. The problem faced is that the players have different ability in playing the games. This causes the players to become frustrated if the game is too difficult or to get bored if it is too easy. Serious games have non-player character (NPC) in it. The NPC should be able to adapt to the players in such a way so that the players can feel comfortable in playing the games. Because of that, serious games development must involve an adaptive engine, which is by applying a learning machine that can adapt to different players. The development of adaptive engine can be viewed in terms of the frameworks and the algorithms. Frameworks include rules based, plan based, organization description based, proficiency of player based, and learning style and cognitive state based. Algorithms include agents based and non-agent based
University Students' Emotions, Interest and Activities in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Nummenmaa, Minna; Nummenmaa, Lauri
2008-01-01
Background: Within academic settings, students experience varied emotions and interest towards learning. Although both emotions and interest can increase students' likelihood to engage in traditional learning, little is known about the influence of emotions and interest in learning activities in a web-based learning environment (WBLE). Aims: This…
ERIC Educational Resources Information Center
Kim, Heesung; Ke, Fengfeng; Paek, Insu
2017-01-01
This experimental study was intended to examine whether game-based learning (GBL) that encompasses four particular game characteristics (challenges, a storyline, immediate rewards and the integration of game-play with learning content) in an OpenSimulator-supported virtual reality learning environment can improve perceived motivational quality of…
ERIC Educational Resources Information Center
Sabourin, Jennifer L.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.
2013-01-01
Self-regulated learning behaviors such as goal setting and monitoring have been found to be crucial to students' success in computer-based learning environments. Consequently, understanding students' self-regulated learning behavior has been the subject of increasing attention. Unfortunately, monitoring these behaviors in real-time has…
NASA Astrophysics Data System (ADS)
Rienow, A.; Menz, G.
2015-12-01
Since the beginning of the millennium, artificial intelligence techniques as cellular automata (CA) and multi-agent systems (MAS) have been incorporated into land-system simulations to address the complex challenges of transitions in urban areas as open, dynamic systems. The study presents a hybrid modeling approach for modeling the two antagonistic processes of urban sprawl and urban decline at once. The simulation power of support vector machines (SVM), cellular automata (CA) and multi-agent systems (MAS) are integrated into one modeling framework and applied to the largest agglomeration of Central Europe: the Ruhr. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) functions as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. The machine learning algorithm of SVM is applied in order to enhance SLEUTH. Thus, the stochastic variability of the CA is reduced and information about the human and ecological forces driving the local suitability of urban sprawl is incorporated. Subsequently, the supported CA is coupled with the MAS ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). The MAS models population patterns, housing prices, and housing demand in shrinking regions based on interactions between household and city agents. Semi-explicit urban weights are introduced as a possibility of modeling from and to the pixel simultaneously. Three scenarios of changing housing preferences reveal the urban development of the region in terms of quantity and location. They reflect the dissemination of sustainable thinking among stakeholders versus the steady dream of owning a house in sub- and exurban areas. Additionally, the outcomes are transferred into a digital petri dish reflecting a synthetic environment with perfect conditions of growth. Hence, the generic growth elements affecting the future face of post-industrial cities are revealed. Finally, the advantages and limitations of linking pixels and people by combining AI and machine learning techniques in a multi-scale geosimulation approach are to be discussed.
Gendered Practices of Constructing an Engineering Identity in a Problem-Based Learning Environment
ERIC Educational Resources Information Center
Du, Xiang-Yun
2006-01-01
This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data from a qualitative study of an electrical and…
ERIC Educational Resources Information Center
Jung, Jung,; Kim, Dongsik; Na, Chungsoo
2016-01-01
This study investigated the effectiveness of various types of worked-out examples used in pre-training to optimize the cognitive load and enhance learners' comprehension of the content in an animation-based learning environment. An animation-based learning environment was developed specifically for this study. The participants were divided into…
On-lattice agent-based simulation of populations of cells within the open-source Chaste framework.
Figueredo, Grazziela P; Joshi, Tanvi V; Osborne, James M; Byrne, Helen M; Owen, Markus R
2013-04-06
Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction-diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the 'what if' scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system.
ERIC Educational Resources Information Center
Chang, Yoo Kyung
2010-01-01
Metacognition is widely studied for its influence on the effectiveness of learning. With Exploratory Computer-Based Learning Environments (ECBLE), metacognition is found to be especially important because these environments require adaptive metacognitive control by the learners due to their open-ended structure that allows for multiple learning…
Web-based learning resources - new opportunities for competency development.
Moen, Anne; Nygård, Kathrine A; Gauperaa, Torunn
2009-01-01
Creating web-based learning environments holds great promise for on the job training and competence development in nursing. The web-based learning environment was designed and customized by four professional development nurses. We interviewed five RNs that pilot tested the web-based resource. Our findings give some insight into how the web-based design tool are perceived and utilized, and how content is represented in the learning environment. From a competency development perspective, practicing authentic tasks in a web-based learning environment can be useful to train skills and keep up important routines. The approach found in this study also needs careful consideration. Emphasizing routines and skills can be important to reduce variation and ensure more streamlined practice from an institution-wide quality improvement efforts. How the emphasis on routines and skills plays out towards the individual's overall professional development needs further careful studies.
Hybrid Multiagent System for Automatic Object Learning Classification
NASA Astrophysics Data System (ADS)
Gil, Ana; de La Prieta, Fernando; López, Vivian F.
The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.
Teacher in a Problem-Based Learning Environment--Jack of All Trades?
ERIC Educational Resources Information Center
Dahms, Mona Lisa; Spliid, Claus Monrad; Nielsen, Jens Frederik Dalsgaard
2017-01-01
Problem-based learning (PBL) is one among several approaches to active learning. Being a teacher in a PBL environment can, however, be a challenge because of the need to support students' learning within a broad "landscape of learning". In this article we will analyse the landscape of learning by use of the study activity model (SAM)…
ERIC Educational Resources Information Center
Lyman, Emily
2013-01-01
In this study a post-assessment survey was analyzed to seek for social learning preferences among women in a competency-based online learning environment. The survey asked what learning resources students used to prepare for the assessment. Each learning resource was given a relative sociability rating. This rating acts as the weighting for a…
The value of less connected agents in Boolean networks
NASA Astrophysics Data System (ADS)
Epstein, Daniel; Bazzan, Ana L. C.
2013-11-01
In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality that help to see how agents are organized.
Issues of Learning Games: From Virtual to Real
ERIC Educational Resources Information Center
Carron, Thibault; Pernelle, Philippe; Talbot, Stéphane
2013-01-01
Our research work deals with the development of new learning environments, and we are particularly interested in studying the different aspects linked to users' collaboration in these environments. We believe that Game-based Learning can significantly enhance learning. That is why we have developed learning environments grounded on graphical…
Interactive Multimedia-Based E-Learning: A Study of Effectiveness
ERIC Educational Resources Information Center
Zhang, Dongsong
2005-01-01
The author conducted two experiments to assess effectiveness of interactive e-learning. Students in a fully interactive multimedia-based e-learning environment achieved better performance and higher levels of satisfaction than those in a traditional classroom and those in a less interactive e-learning environment.
OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support
NASA Astrophysics Data System (ADS)
Pedrazzoli, Attilio
2010-06-01
AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.
Biobotic insect swarm based sensor networks for search and rescue
NASA Astrophysics Data System (ADS)
Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong
2014-06-01
The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.
Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.
Lin, Chuan-Kai
2005-04-01
A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.
ERIC Educational Resources Information Center
Lin, Hung-Ming; Tsai, Chin-Chung
2011-01-01
This study investigates the differences between students' conceptions of learning management via traditional instruction and Web-based learning environments. The Conceptions of Learning Management Inventory (COLM) was administered to 259 Taiwanese college students majoring in Business Administration. The COLM has six factors (categories), namely,…
Cognitive Tools for Assessment and Learning in a High Information Flow Environment.
ERIC Educational Resources Information Center
Lajoie, Susanne P.; Azevedo, Roger; Fleiszer, David M.
1998-01-01
Describes the development of a simulation-based intelligent tutoring system for nurses working in a surgical intensive care unit. Highlights include situative learning theories and models of instruction, modeling expertise, complex decision making, linking theories of learning to the design of computer-based learning environments, cognitive task…
Exploring social structure effect on language evolution based on a computational model
NASA Astrophysics Data System (ADS)
Gong, Tao; Minett, James; Wang, William
2008-06-01
A compositionality-regularity coevolution model is adopted to explore the effect of social structure on language emergence and maintenance. Based on this model, we explore language evolution in three experiments, and discuss the role of a popular agent in language evolution, the relationship between mutual understanding and social hierarchy, and the effect of inter-community communications and that of simple linguistic features on convergence of communal languages in two communities. This work embodies several important interactions during social learning, and introduces a new approach that manipulates individuals' probabilities to participate in social interactions to study the effect of social structure. We hope it will stimulate further theoretical and empirical explorations on language evolution in a social environment.
Multiagent data warehousing and multiagent data mining for cerebrum/cerebellum modeling
NASA Astrophysics Data System (ADS)
Zhang, Wen-Ran
2002-03-01
An algorithm named Neighbor-Miner is outlined for multiagent data warehousing and multiagent data mining. The algorithm is defined in an evolving dynamic environment with autonomous or semiautonomous agents. Instead of mining frequent itemsets from customer transactions, the new algorithm discovers new agents and mining agent associations in first-order logic from agent attributes and actions. While the Apriori algorithm uses frequency as a priory threshold, the new algorithm uses agent similarity as priory knowledge. The concept of agent similarity leads to the notions of agent cuboid, orthogonal multiagent data warehousing (MADWH), and multiagent data mining (MADM). Based on agent similarities and action similarities, Neighbor-Miner is proposed and illustrated in a MADWH/MADM approach to cerebrum/cerebellum modeling. It is shown that (1) semiautonomous neurofuzzy agents can be identified for uniped locomotion and gymnastic training based on attribute relevance analysis; (2) new agents can be discovered and agent cuboids can be dynamically constructed in an orthogonal MADWH, which resembles an evolving cerebrum/cerebellum system; and (3) dynamic motion laws can be discovered as association rules in first order logic. Although examples in legged robot gymnastics are used to illustrate the basic ideas, the new approach is generally suitable for a broad category of data mining tasks where knowledge can be discovered collectively by a set of agents from a geographically or geometrically distributed but relevant environment, especially in scientific and engineering data environments.
Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C.
2017-01-01
Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs). Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages. PMID:28883801
Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C
2017-01-01
Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs) . Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages.
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.
Tucker, Patricia; Vanderloo, Leigh M; Burke, Shauna M; Irwin, Jennifer D; Johnson, Andrew M
2015-09-18
Recent research has highlighted the need for increased evidence regarding the sedentary activity levels of preschoolers. Given the large proportion of time this population spends in various early learning facilities, the exploration of sedentary behaviors within this particular environment should be a priority. The purpose of the study was two-fold: (1) to compare sedentary time of preschoolers in three different early learning environments (i.e., full-day kindergarten [FDK], center-, and home-based childcare); and (2) to assess which characteristics (i.e., staff behaviors, sedentary environment, fixed play environment, portable play environment, sedentary opportunities) of these early learning environments influence preschoolers' sedentary time. Data collection occurred between September 2011 and June 2012. Preschoolers' sedentary time was measured using Actical(™) accelerometers at a 15 s epoch. The Environment and Policy Assessment and Observation (EPAO) tool was used to assess the sedentary environment of participating early learning classrooms, and those subscales (n = 5) that were evidence-informed as potentially influencing sedentary time in early learning centers were explored in the current study. A linear mixed model ANCOVA was carried out to determine the differences in sedentary time based on type of early learning environment while direct entry regression analyses were performed to describe the relationships between sedentary time and the five sedentary-specific EPAO subscale. Preschoolers (n = 218) from 28 early learning programs (i.e., 8 FDK, 9 centre-, and 8 home-based childcare facilities) participated. Accelerometry data revealed that preschoolers attending centre-based childcare engaged in the highest rate of sedentary time (41.62 mins/hr, SD = 3.78) compared to preschoolers in home-based childcare (40.72 mins/hr, SD = 6.34) and FDK (39.68 mins/hr, SD = 3.43). The models for FDK, center-based childcare, and home-based childcare, comprised each of the five EPAO subscales accounted for 10.5%, 5.9%, and 40.78% of the variability in sedentary time, respectively. Only the models for FDK and home-based childcare were found to be statistically significant (p < .05). This is the first exploration of differences in sedentary time among preschoolers in different early learning arrangements. Findings highlight the substantial portion of the day preschoolers spend in sedentary pursuits, and subsequently, the ongoing need to reduce preschoolers' sedentary time in early learning programs, particularly among those attending centre-based childcare facilities.
ERIC Educational Resources Information Center
Ünal, Erhan; Çakir, Hasan
2017-01-01
The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…
Modelling sociocognitive aspects of students' learning
NASA Astrophysics Data System (ADS)
Koponen, I. T.; Kokkonen, T.; Nousiainen, M.
2017-03-01
We present a computational model of sociocognitive aspects of learning. The model takes into account a student's individual cognition and sociodynamics of learning. We describe cognitive aspects of learning as foraging for explanations in the epistemic landscape, the structure (set by instructional design) of which guides the cognitive development through success or failure in foraging. We describe sociodynamic aspects as an agent-based model, where agents (learners) compare and adjust their conceptions of their own proficiency (self-proficiency) and that of their peers (peer-proficiency) in using explanatory schemes of different levels. We apply the model here in a case involving a three-tiered system of explanatory schemes, which can serve as a generic description of some well-known cases studied in empirical research on learning. The cognitive dynamics lead to the formation of dynamically robust outcomes of learning, seen as a strong preference for a certain explanatory schemes. The effects of social learning, however, can account for half of one's success in adopting higher-level schemes and greater proficiency. The model also predicts a correlation of dynamically emergent interaction patterns between agents and the learning outcomes.
For whom will the Bayesian agents vote?
NASA Astrophysics Data System (ADS)
Caticha, Nestor; Cesar, Jonatas; Vicente, Renato
2015-04-01
Within an agent-based model where moral classifications are socially learned, we ask if a population of agents behaves in a way that may be compared with conservative or liberal positions in the real political spectrum. We assume that agents first experience a formative period, in which they adjust their learning style acting as supervised Bayesian adaptive learners. The formative phase is followed by a period of social influence by reinforcement learning. By comparing data generated by the agents with data from a sample of 15000 Moral Foundation questionnaires we found the following. 1. The number of information exchanges in the formative phase correlates positively with statistics identifying liberals in the social influence phase. This is consistent with recent evidence that connects the dopamine receptor D4-7R gene, political orientation and early age social clique size. 2. The learning algorithms that result from the formative phase vary in the way they treat novelty and corroborative information with more conservative-like agents treating it more equally than liberal-like agents. This is consistent with the correlation between political affiliation and the Openness personality trait reported in the literature. 3. Under the increase of a model parameter interpreted as an external pressure, the statistics of liberal agents resemble more those of conservative agents, consistent with reports on the consequences of external threats on measures of conservatism. We also show that in the social influence phase liberal-like agents readapt much faster than conservative-like agents when subjected to changes on the relevant set of moral issues. This suggests a verifiable dynamical criterium for attaching liberal or conservative labels to groups.
ERIC Educational Resources Information Center
Choi, Ikseon; Lee, Sang Joon; Kang, Jeongwan
2009-01-01
This study explores how students' learning styles influence their learning while solving complex problems when a case-based e-learning environment is implemented in a conventional lecture-oriented classroom. Seventy students from an anaesthesiology class at a dental school participated in this study over a 3-week period. Five learning-outcome…
Programming secure mobile agents in healthcare environments using role-based permissions.
Georgiadis, C K; Baltatzis, J; Pangalos, G I
2003-01-01
The healthcare environment consists of vast amounts of dynamic and unstructured information, distributed over a large number of information systems. Mobile agent technology is having an ever-growing impact on the delivery of medical information. It supports acquiring and manipulating information distributed in a large number of information systems. Moreover is suitable for the computer untrained medical stuff. But the introduction of mobile agents generates advanced threads to the sensitive healthcare information, unless the proper countermeasures are taken. By applying the role-based approach to the authorization problem, we ease the sharing of information between hospital information systems and we reduce the administering part. The different initiative of the agent's migration method, results in different methods of assigning roles to the agent.
Peer Feedback to Facilitate Project-Based Learning in an Online Environment
ERIC Educational Resources Information Center
Ching, Yu-Hui; Hsu, Yu-Chang
2013-01-01
There has been limited research examining the pedagogical benefits of peer feedback for facilitating project-based learning in an online environment. Using a mixed method approach, this paper examines graduate students' participation and perceptions of peer feedback activity that supports project-based learning in an online instructional design…
ERIC Educational Resources Information Center
Kinnebrew, John S.; Segedy, James R.; Biswas, Gautam
2017-01-01
Research in computer-based learning environments has long recognized the vital role of adaptivity in promoting effective, individualized learning among students. Adaptive scaffolding capabilities are particularly important in open-ended learning environments, which provide students with opportunities for solving authentic and complex problems, and…
ERIC Educational Resources Information Center
Hawke, Geof; Chappell, Clive
2008-01-01
This Support Document was produced by the authors based on their research for the report, "Investigating Learning through Work: The Development of the 'Provider Learning Environment Scale'" (ED503392). It provides readers with a complete copy of the "Provider Learning Environment Scale" (version 2.0); and an accompanying user…
Energy Optimization Using a Case-Based Reasoning Strategy
Herrera-Viedma, Enrique
2018-01-01
At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates. The systems proposed so far have not succeeded in optimizing the energy consumption associated with a HVAC system because they do not monitor all the variables involved in electricity consumption. For this reason, this article presents an agent approach that benefits from the advantages provided by a Multi-Agent architecture (MAS) deployed in a Cloud environment with a wireless sensor network (WSN) in order to achieve energy savings. The agents of the MAS learn social behavior thanks to the collection of data and the use of an artificial neural network (ANN). The proposed system has been assessed in an office building achieving an average energy savings of 41% in the experimental group offices. PMID:29543729
Energy Optimization Using a Case-Based Reasoning Strategy.
González-Briones, Alfonso; Prieto, Javier; De La Prieta, Fernando; Herrera-Viedma, Enrique; Corchado, Juan M
2018-03-15
At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates. The systems proposed so far have not succeeded in optimizing the energy consumption associated with a HVAC system because they do not monitor all the variables involved in electricity consumption. For this reason, this article presents an agent approach that benefits from the advantages provided by a Multi-Agent architecture (MAS) deployed in a Cloud environment with a wireless sensor network (WSN) in order to achieve energy savings. The agents of the MAS learn social behavior thanks to the collection of data and the use of an artificial neural network (ANN). The proposed system has been assessed in an office building achieving an average energy savings of 41% in the experimental group offices.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
ERIC Educational Resources Information Center
Westling Allodi, Mara
2007-01-01
The Goals, Attitudes and Values in School (GAVIS) questionnaire was developed on the basis of theoretical frameworks concerning learning environments, universal human values and studies of students' experience of learning environments. The theory hypothesises that learning environments can be described and structured in a circumplex model using…
Blackboard as an Online Learning Environment: What Do Teacher Education Students and Staff Think?
ERIC Educational Resources Information Center
Heirdsfield, Ann; Walker, Susan; Tambyah, Mallihai; Beutel, Denise
2011-01-01
As online learning environments now have an established presence in higher education we need to ask the question: How effective are these environments for student learning? Online environments can provide a different type of learning experience than traditional face-to-face contexts (for on-campus students) or print-based materials (for distance…
Restrepo-Palacio, Sonia; Amaya-Guio, Jairo
2016-01-01
To describe the contributions of a pedagogical strategy based on the construction of chronicles, using a Virtual Learning Environment for training medical students from Universidad de La Sabana on social determinants of health. Descriptive study with a qualitative approach. Design and implementation of a Virtual Learning Environment based on the ADDIE instructional model. A Virtual Learning Environment was implemented with an instructional design based on the five phases of the ADDIE model, on the grounds of meaningful learning and social constructivism, and through the narration of chronicles or life stories as a pedagogical strategy. During the course, the structural determinants and intermediaries were addressed, and nine chronicles were produced by working groups made up of four or five students, who demonstrated meaningful learning from real life stories, presented a coherent sequence, and kept a thread; 82% of these students incorporated in their contents most of the social determinants of health, emphasizing on the concepts of equity or inequity, equality or inequality, justice or injustice and social cohesion. A Virtual Learning Environment, based on an appropriate instructional design, allows to facilitate learning of social determinants of health through a constructivist pedagogical approach by analyzing chronicles or life stories created by ninth-semester students of medicine from Universidad de La Sabana.
KODAMA and VPC based Framework for Ubiquitous Systems and its Experiment
NASA Astrophysics Data System (ADS)
Takahashi, Kenichi; Amamiya, Satoshi; Iwao, Tadashige; Zhong, Guoqiang; Kainuma, Tatsuya; Amamiya, Makoto
Recently, agent technologies have attracted a lot of interest as an emerging programming paradigm. With such agent technologies, services are provided through collaboration among agents. At the same time, the spread of mobile technologies and communication infrastructures has made it possible to access the network anytime and from anywhere. Using agents and mobile technologies to realize ubiquitous computing systems, we propose a new framework based on KODAMA and VPC. KODAMA provides distributed management mechanisms by using the concept of community and communication infrastructure to deliver messages among agents without agents being aware of the physical network. VPC provides a method of defining peer-to-peer services based on agent communication with policy packages. By merging the characteristics of both KODAMA and VPC functions, we propose a new framework for ubiquitous computing environments. It provides distributed management functions according to the concept of agent communities, agent communications which are abstracted from the physical environment, and agent collaboration with policy packages. Using our new framework, we conducted a large-scale experiment in shopping malls in Nagoya, which sent advertisement e-mails to users' cellular phones according to user location and attributes. The empirical results showed that our new framework worked effectively for sales in shopping malls.
NASA Astrophysics Data System (ADS)
Nasrudin, Ajeng Ratih; Setiawan, Wawan; Sanjaya, Yayan
2017-05-01
This study is titled the impact of audio narrated animation on students' understanding in learning humanrespiratory system based on gender. This study was conducted in eight grade of junior high school. This study aims to investigate the difference of students' understanding and learning environment at boys and girls classes in learning human respiratory system using audio narrated animation. Research method that is used is quasy experiment with matching pre-test post-test comparison group design. The procedures of study are: (1) preliminary study and learning habituation using audio narrated animation; (2) implementation of learning using audio narrated animation and taking data; (3) analysis and discussion. The result of analysis shows that there is significant difference on students' understanding and learning environment at boys and girls classes in learning human respiratory system using audio narrated animation, both in general and specifically in achieving learning indicators. The discussion related to the impact of audio narrated animation, gender characteristics, and constructivist learning environment. It can be concluded that there is significant difference of students' understanding at boys and girls classes in learning human respiratory system using audio narrated animation. Additionally, based on interpretation of students' respond, there is the difference increment of agreement level in learning environment.
NASA Technical Reports Server (NTRS)
Wakim, Nagi T.; Srivastava, Sadanand; Bousaidi, Mehdi; Goh, Gin-Hua
1995-01-01
Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents.
The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton
2013-01-01
Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…
An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen
2012-01-01
This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…
ERIC Educational Resources Information Center
Veermans, Koen; van Joolingen, Wouter; de Jong, Ton
2006-01-01
This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…
ERIC Educational Resources Information Center
Waragai, Ikumi; Ohta, Tatsuya; Kurabayashi, Shuichi; Kiyoki, Yasushi; Sato, Yukiko; Brückner, Stefan
2017-01-01
This paper presents the prototype of a foreign language learning space, based on the construction of an integrated formal/informal learning environment. Before the background of the continued innovation of information technology that places conventional learning styles and educational methods into new contexts based on new value-standards,…
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2012-01-01
Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…
Medical Students' Evaluation of Physiology Learning Environments in Two Nigerian Medical Schools
ERIC Educational Resources Information Center
Anyaehie, U. S. B.; Nwobodo, E.; Oze, G.; Nwagha, U. I.; Orizu, I.; Okeke, T.; Anyanwu, G. E.
2011-01-01
The expansion of biomedical knowledge and the pursuit of more meaningful learning have led to world-wide evidence-based innovative changes in medical education and curricula. The recent emphasis on problem-based learning (PBL) and student-centred learning environments are, however, not being implemented in Nigerian medical schools. Traditional…
A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments
ERIC Educational Resources Information Center
Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich
2015-01-01
This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…
ERIC Educational Resources Information Center
Zhang, Ke; Peng, Shiang Wuu; Hung, Jui-long
2009-01-01
This case study investigated undergraduate students' first experience in online collaborative learning in a project-based learning (PBL) environment in Taiwan. Data were collected through interviews of 48 students, instructor's field notes, researchers' online observations, students' online discourse, and group artifacts. The findings revealed…
A Qualitative Research on Active Learning Practices in Pre-School Education
ERIC Educational Resources Information Center
Pekdogan, Serpil; Kanak, Mehmet
2016-01-01
In educational environments prepared based on the active learning method, children learn with interest and pleasure, doing and experiencing, and directly through their own experiences. Considering the contributions of the active learning method and the educational environments designed based on it to children's development, it can be said that…
A FAQ-Based e-Learning Environment to Support Japanese Language Learning
ERIC Educational Resources Information Center
Liu, Yuqin; Yin, Chengjiu; Ogata, Hiroaki; Qiao, Guojun; Yano, Yoneo
2011-01-01
In traditional classes, having many questions from learners is important because these questions indicate difficult points for learners and for teachers. This paper proposes a FAQ-based e-Learning environment to support Japanese language learning that focuses on learner questions. This knowledge sharing system enables learners to interact and…
ERIC Educational Resources Information Center
Bailly, Sophie; Ciekanski, Maud; Guély-Costa, Eglantine
2013-01-01
This article describes the rationale for pedagogical, technological and organizational choices in the design of a web-based and open virtual learning environment (VLE) promoting and sustaining self-directed language learning. Based on the last forty years of research on learner autonomy at the CRAPEL according to Holec's definition (1988), we…
ERIC Educational Resources Information Center
Kaarby, Karen Marie Eid; Lindboe, Inger Marie
2016-01-01
The article focuses on the workplace as a learning environment in work-based early childhood teacher education in Norway. The main question is: Which understandings of the workplace as a learning environment are to be found in regulations and policy documents, among students and among staff managers? Taking as the point of departure, a theoretical…
ERIC Educational Resources Information Center
Stegeman, Cynthia A.
2011-01-01
The purpose of this study was to compare the effects of a student-centered, interactive, case-based, multimedia learning environment to a traditional tutorial-based, multimedia learning environment on second-year dental hygiene students (n = 29). Surveys were administered at four points to measure attainment and retention of knowledge, attitude,…
ERIC Educational Resources Information Center
Sadiig, I. Ahmed M. J.
2005-01-01
The traditional learning paradigm involving face-to-face interaction with students is shifting to highly data-intensive electronic learning with the advances in Information and Communication Technology. An important component of the e-learning process is the delivery of the learning contents to their intended audience over a network. A distributed…
Interactive knowledge networks for interdisciplinary course navigation within Moodle.
Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael
2012-12-01
Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.
Taradi, Suncana Kukolja; Taradi, Milan; Radic, Kresimir; Pokrajac, Niksa
2005-03-01
World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology.
Some single-machine scheduling problems with learning effects and two competing agents.
Li, Hongjie; Li, Zeyuan; Yin, Yunqiang
2014-01-01
This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.
Mala-Maung; Abdullah, Azman; Abas, Zoraini W
2011-12-01
This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.
ERIC Educational Resources Information Center
Fells, Stephanie
2012-01-01
The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…
Self-Efficacy in Internet-Based Learning Environments: A Literature Review
ERIC Educational Resources Information Center
Tsai, Chin-Chung; Chuang, Shih-Chyueh; Liang, Jyh-Chong; Tsai, Meng-Jung
2011-01-01
This paper reviews 46 papers from 1999 to 2009 regarding self-efficacy in Internet-based learning environments, and discusses three major categories of research: (1) learners' Internet self-efficacy, assessing learners' confidence in their skills or knowledge of operating general Internet functions or applications in Internet-based learning; (2)…
Web-Based History Learning Environments: Helping All Students Learn and Like History
ERIC Educational Resources Information Center
Okolo, Cynthia M.; Englert, Carol Sue; Bouck, Emily C.; Heutsche, Anne M.
2007-01-01
This article explores the benefits of the Internet to enhance history instruction for all learners. The authors describe a Web-based learning environment, the Virtual History Museum (VHM), that helps teachers create motivating, inquiry-based history units. VHM also allows teachers to build supports for learners with disabilities or other learning…
ERIC Educational Resources Information Center
Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min
2015-01-01
This study investigated three aspects: how project-based collaborative learning facilitates cross-cultural understanding; how students perceive project-based collaborative learning implementation in a collaborative cyber community (3C) online environment; and what types of communication among students are used. A qualitative case study approach…
Development and Evaluation of Mechatronics Learning System in a Web-Based Environment
ERIC Educational Resources Information Center
Shyr, Wen-Jye
2011-01-01
The development of remote laboratory suitable for the reinforcement of undergraduate level teaching of mechatronics is important. For the reason, a Web-based mechatronics learning system, called the RECOLAB (REmote COntrol LABoratory), for remote learning in engineering education has been developed in this study. The web-based environment is an…
Assessing the Impact of Student Learning Style Preferences
NASA Astrophysics Data System (ADS)
Davis, Stacey M.; Franklin, Scott V.
2004-09-01
Students express a wide range of preferences for learning environments. We are trying to measure the manifestation of learning styles in various learning environments. In particular, we are interested in performance in an environment that disagrees with the expressed learning style preference, paying close attention to social (group vs. individual) and auditory (those who prefer to learn by listening) environments. These are particularly relevant to activity-based curricula which typically emphasize group-work and de-emphasize lectures. Our methods include multiple-choice assessments, individual student interviews, and a study in which we attempt to isolate the learning environment.
ERIC Educational Resources Information Center
Salmi, Laura
2013-01-01
Interaction and community building are essential elements of a well functioning online learning environment, especially in learning environments based on investigative learning with a strong emphasis on teamwork. In this paper, practical solutions covering quality criteria for interaction in online education are presented for a simple…
2015-05-01
1 LEXICAL LINK ANALYSIS (LLA) APPLICATION: IMPROVING WEB SERVICE TO DEFENSE ACQUISITION VISIBILITY ENVIRONMENT(DAVE) May 13-14, 2015 Dr. Ying...REPORT DATE MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Lexical Link Analysis (LLA) Application...Making 3 2 1 3 L L A Methods • Lexical Link Analysis (LLA) Core – LLA Reports and Visualizations • Collaborative Learning Agents (CLA) for
A Web-Based Learning Support System for Inquiry-Based Learning
NASA Astrophysics Data System (ADS)
Kim, Dong Won; Yao, Jingtao
The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.
Bierer, S Beth; Dannefer, Elaine F
2016-11-01
The move toward competency-based education will require medical schools and postgraduate training programs to restructure learning environments to motivate trainees to take personal ownership for learning. This qualitative study explores how medical students select and implement study strategies while enrolled in a unique, nontraditional program that emphasizes reflection on performance and competence rather than relying on high-stakes examinations or grades to motivate students to learn and excel. Fourteen first-year medical students volunteered to participate in three, 45-minute interviews (42 overall) scheduled three months apart during 2013-2014. Two medical educators used structured interview guides to solicit students' previous assessment experiences, preferred learning strategies, and performance monitoring processes. Interviews were digitally recorded and transcribed verbatim. Participants confirmed accuracy of transcripts. Researchers independently read transcripts and met regularly to discuss transcripts and judge when themes achieved saturation. Medical students can adopt an assessment for learning mind-set with faculty guidance and implement appropriate study strategies for mastery-learning demands. Though students developed new strategies at different rates during the year, they all eventually identified study and performance monitoring strategies to meet learning needs. Students who had diverse learning experiences in college embraced mastery-based study strategies sooner than peers after recognizing that the learning environment did not reward performance-based strategies. Medical students can take ownership for their learning and implement specific strategies to regulate behavior when learning environments contain building blocks emphasized in self-determination theory. Findings should generalize to educational programs seeking strategies to design learning environments that promote self-regulated learning.
ERIC Educational Resources Information Center
Aharony, Noa
2006-01-01
Background: The learning context is learning English in an Internet environment. The examination of this learning process was based on the Biggs and Moore's teaching-learning model (Biggs & Moore, 1993). Aim: The research aims to explore the use of the deep and surface strategies in an Internet environment among EFL students who come from…
ERIC Educational Resources Information Center
Paulsson, Fredrik; Naeve, Ambjorn
2006-01-01
Based on existing Learning Object taxonomies, this article suggests an alternative Learning Object taxonomy, combined with a general Service Oriented Architecture (SOA) framework, aiming to transfer the modularized concept of Learning Objects to modularized Virtual Learning Environments. The taxonomy and SOA-framework exposes a need for a clearer…
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.
Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)
2008-03-01
4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python
Simons, Mary R; Morgan, Michael Kerin; Davidson, Andrew Stewart
2012-10-01
Can information literacy (IL) be embedded into the curriculum and clinical environment to facilitate patient care and lifelong learning? The Australian School of Advanced Medicine (ASAM) provides competence-based programs incorporating patient-centred care and lifelong learning. ASAM librarians use outcomes-based educational theory to embed and assess IL into ASAM's educational and clinical environments. A competence-based IL program was developed where learning outcomes were linked to current patients and assessed with checklists. Weekly case presentations included clinicians' literature search strategies, results, and conclusions. Librarians provided support to clinicians' literature searches and assessed their presentations using a checklist. Outcome data showed clinicians' searching skills improved over time; however, advanced MEDLINE searching remained challenging for some. Recommendations are provided. IL learning that takes place in context using measurable outcomes is more meaningful, is enduring, and likely contributes to patient care. Competence-based assessment drives learning in this environment.
Method, apparatus and system for managing queue operations of a test bench environment
Ostler, Farrell Lynn
2016-07-19
Techniques and mechanisms for performing dequeue operations for agents of a test bench environment. In an embodiment, a first group of agents are each allocated a respective ripe reservation and a second set of agents are each allocated a respective unripe reservation. Over time, queue management logic allocates respective reservations to agents and variously changes one or more such reservations from unripe to ripe. In another embodiment, an order of servicing agents allocated unripe reservations is based on relative priorities of the unripe reservations with respect to one another. An order of servicing agents allocated ripe reservations is on a first come, first served basis.
ERIC Educational Resources Information Center
Gogoulou, Agoritsa; Gouli, Evangelia; Grigoriadou, Maria; Samarakou, Maria; Chinou, Dionisia
2007-01-01
In this paper, we present a web-based educational setting, referred to as SCALE (Supporting Collaboration and Adaptation in a Learning Environment), which aims to serve learning and assessment. SCALE enables learners to (i) work on individual and collaborative activities proposed by the environment with respect to learners' knowledge level, (ii)…
ERIC Educational Resources Information Center
Lin, Yu-Shih; Chang, Yi-Chun; Liew, Keng-Hou; Chu, Chih-Ping
2016-01-01
Computerised testing and diagnostics are critical challenges within an e-learning environment, where the learners can assess their learning performance through tests. However, a test result based on only a single score is insufficient information to provide a full picture of learning performance. In addition, because test results implicitly…
ERIC Educational Resources Information Center
Herring, Mary Corwin
2004-01-01
In response to societal shifts, K-12 teachers are struggling to design effective learning environments. The advent of increased access to world-linking technology has extended the use of distance education to enrich and expand the learning landscape for students. A number of individuals have suggested that a body of learning theory,…
ERIC Educational Resources Information Center
Li, Yanyan; Dong, Mingkai; Huang, Ronghuai
2011-01-01
The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…
ERIC Educational Resources Information Center
Bernacki, Matthew
2010-01-01
This study examined how learners construct textbase and situation model knowledge in hypertext computer-based learning environments (CBLEs) and documented the influence of specific self-regulated learning (SRL) tactics, prior knowledge, and characteristics of the learner on posttest knowledge scores from exposure to a hypertext. A sample of 160…
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
ERIC Educational Resources Information Center
Ak, Oguz; Kutlu, Birgul
2017-01-01
The aim of this study was to investigate the effectiveness of traditional, 2D and 3D game-based environments assessed by student achievement scores and to reveal student perceptions of the value of these learning environments. A total of 60 university students from the Faculty of Education who were registered in three sections of a required…
ERIC Educational Resources Information Center
Iordanou, Kalypso; Constantinou, Costas P.
2015-01-01
The aim of this study was to examine how students used evidence in argumentation while they engaged in argumentive and reflective activities in the context of a designed learning environment. A Web-based learning environment, SOCRATES, was developed, which included a rich data base on the topic of climate change. Sixteen 11th graders, working with…
ERIC Educational Resources Information Center
Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre
2016-01-01
This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…
Lessons Learned from Autonomous Sciencecraft Experiment
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce;
2005-01-01
An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.
The LUE data model for representation of agents and fields
NASA Astrophysics Data System (ADS)
de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2017-04-01
Traditionally, agents-based and field-based modelling environments use different data models to represent the state of information they manipulate. In agent-based modelling, involving the representation of phenomena as objects bounded in space and time, agents are often represented by classes, each of which represents a particular kind of agent and all its properties. Such classes can be used to represent entities like people, birds, cars and countries. In field-based modelling, involving the representation of the environment as continuous fields, fields are often represented by a discretization of space, using multidimensional arrays, each storing mostly a single attribute. Such arrays can be used to represent the elevation of the land-surface, the pH of the soil, or the population density in an area, for example. Representing a population of agents by class instances grouped in collections is an intuitive way of organizing information. A drawback, though, is that models in which class instances grouping properties are stored in collections are less efficient (execute slower) than models in which collections of properties are grouped. The field representation, on the other hand, is convenient for the efficient execution of models. Another drawback is that, because the data models used are so different, integrating agent-based and field-based models becomes difficult, since the model builder has to deal with multiple concepts, and often multiple modelling environments. With the development of the LUE data model [1] we aim at representing agents and fields within a single paradigm, by combining the advantages of the data models used in agent-based and field-based data modelling. This removes the barrier for writing integrated agent-based and field-based models. The resulting data model is intuitive to use and allows for efficient execution of models. LUE is both a high-level conceptual data model and a low-level physical data model. The LUE conceptual data model is a generalization of the data models used in agent-based and field-based modelling. The LUE physical data model [2] is an implementation of the LUE conceptual data model in HDF5. In our presentation we will provide details of our approach to organizing information about agents and fields. We will show examples of agent and field data represented by the conceptual and physical data model. References: [1] de Bakker, M.P., de Jong, K., Schmitz, O., Karssenberg, D., 2016. Design and demonstration of a data model to integrate agent-based and field-based modelling. Environmental Modelling and Software. http://dx.doi.org/10.1016/j.envsoft.2016.11.016 [2] de Jong, K., 2017. LUE source code. https://github.com/pcraster/lue
ERIC Educational Resources Information Center
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-01-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are…
Babybot: a biologically inspired developing robotic agent
NASA Astrophysics Data System (ADS)
Metta, Giorgio; Panerai, Francesco M.; Sandini, Giulio
2000-10-01
The study of development, either artificial or biological, can highlight the mechanisms underlying learning and adaptive behavior. We shall argue whether developmental studies might provide a different and potentially interesting perspective either on how to build an artificial adaptive agent, or on understanding how the brain solves sensory, motor, and cognitive tasks. It is our opinion that the acquisition of the proper behavior might indeed be facilitated because within an ecological context, the agent, its adaptive structure and the environment dynamically interact thus constraining the otherwise difficult learning problem. In very general terms we shall describe the proposed approach and supporting biological related facts. In order to further analyze these aspects from the modeling point of view, we shall demonstrate how a twelve degrees of freedom baby humanoid robot acquires orienting and reaching behaviors, and what advantages the proposed framework might offer. In particular, the experimental setup consists of five degrees-of-freedom (dof) robot head, and an off-the-shelf six dof robot manipulator, both mounted on a rotating base: i.e. the torso. From the sensory point of view, the robot is equipped with two space-variant cameras, an inertial sensor simulating the vestibular system, and proprioceptive information through motor encoders. The biological parallel is exploited at many implementation levels. It is worth mentioning, for example, the space- variant eyes, exploiting foveal and peripheral vision in a single arrangement, the inertial sensor providing efficient image stabilization (vestibulo-ocular reflex).
ERIC Educational Resources Information Center
Stranieri, Andrew; Yearwood, John
2008-01-01
This paper describes a narrative-based interactive learning environment which aims to elucidate reasoning using interactive scenarios that may be used in training novices in decision-making. Its design is based on an approach to generating narrative from knowledge that has been modelled in specific decision/reasoning domains. The approach uses a…
Using Videoconferencing to Provide Mentorship in Inquiry-Based Urban and Rural Secondary Classrooms
ERIC Educational Resources Information Center
Li, Qing; Dyjur, Patricia; Nicholson, Natalya; Moorman, Lynn
2009-01-01
The main purpose of this design-based research study is to examine the effects of an inquiry-based learning environment, with the support of videoconferencing, on both rural and urban secondary students' mathematics and science learning. An important aspect of this learning environment is the use of videoconferencing to connect classes with…
ERIC Educational Resources Information Center
Al-Furaih, Suad Abdul Aziz
2017-01-01
This study explored the perceptions of 88 pre-service teachers on the design of a learning environment using the Seven Principles of Good Practice and its effect on participants' abilities to create their Cloud Learning Environment (CLE). In designing the learning environment, a conceptual model under the name 7 Principles and Integrated Learning…
Creating and Nurturing Distributed Asynchronous Learning Environments.
ERIC Educational Resources Information Center
Kochtanek, Thomas R.; Hein, Karen K.
2000-01-01
Describes the evolution of a university course from a face-to-face experience to a Web-based asynchronous learning environment. Topics include cognition and learning; distance learning and distributed learning; student learning communities and the traditional classroom; the future as it relates to education and technology; collaborative student…
ERIC Educational Resources Information Center
Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam
2015-01-01
Researchers have long recognized the potential benefits of open-ended computer- based learning environments (OELEs) to help students develop self-regulated learning (SRL) behaviours. However, measuring self-regulation in these environments is a difficult task. In this paper, we present our work in developing and evaluating "coherence…
Learning System Design Consideration in Creating an Online Learning Environment.
ERIC Educational Resources Information Center
Schaffer, Scott
This paper describes the design of a Web-based learning environment for leadership facilitators in a United States military organization. The overall aim of this project was to design a prototype of an online learning environment that supports leadership facilitators' knowledge development in the content area of motivation. The learning…