Science.gov

Sample records for agent-based model abm

  1. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  2. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data.

    PubMed

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.

  3. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

    PubMed Central

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589

  4. Agent-Based Modeling in Systems Pharmacology.

    PubMed

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  5. Techniques and Issues in Agent-Based Modeling Validation

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui

    2012-01-01

    Validation of simulation models is extremely important. It ensures that the right model has been built and lends confidence to the use of that model to inform critical decisions. Agent-based models (ABM) have been widely deployed in different fields for studying the collective behavior of large numbers of interacting agents. However, researchers have only recently started to consider the issues of validation. Compared to other simulation models, ABM has many differences in model development, usage and validation. An ABM is inherently easier to build than a classical simulation, but more difficult to describe formally since they are closer to human cognition. Using multi-agent models to study complex systems has attracted criticisms because of the challenges involved in their validation [1]. In this report, we describe the challenge of ABM validation and present a novel approach we recently developed for an ABM system.

  6. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  7. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  8. Applications of agent-based simulation for human socio-cultural behavior modeling.

    PubMed

    Jiang, Hong; Karwowski, Waldemar; Ahram, Tareq Z

    2012-01-01

    Agent-based modeling and simulation (ABMS) has gained wide attention over the past few years. ABMS is a powerful simulation modeling technique that has a number of applications, including applications to real-world business problems [1]. This modeling technique has been used by scientists to analyze complex system-level behavior by simulating the system from the bottom up. The major application of ABMS includes social, political, biology, and economic sciences. This paper provides an overview of ABMS applications with the emphasis on modeling human socio-cultural behavior (HSCB).

  9. Agent-based modelling of consumer energy choices

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  10. Validating agent based models through virtual worlds.

    SciTech Connect

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  11. Agent based modeling in tactical wargaming

    NASA Astrophysics Data System (ADS)

    James, Alex; Hanratty, Timothy P.; Tuttle, Daniel C.; Coles, John B.

    2016-05-01

    Army staffs at division, brigade, and battalion levels often plan for contingency operations. As such, analysts consider the impact and potential consequences of actions taken. The Army Military Decision-Making Process (MDMP) dictates identification and evaluation of possible enemy courses of action; however, non-state actors often do not exhibit the same level and consistency of planned actions that the MDMP was originally designed to anticipate. The fourth MDMP step is a particular challenge, wargaming courses of action within the context of complex social-cultural behaviors. Agent-based Modeling (ABM) and its resulting emergent behavior is a potential solution to model terrain in terms of the human domain and improve the results and rigor of the traditional wargaming process.

  12. On agent-based modeling and computational social science

    PubMed Central

    Conte, Rosaria; Paolucci, Mario

    2014-01-01

    In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS. PMID:25071642

  13. On agent-based modeling and computational social science.

    PubMed

    Conte, Rosaria; Paolucci, Mario

    2014-01-01

    In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS.

  14. A Systematic Review of Agent-Based Modelling and Simulation Applications in the Higher Education Domain

    ERIC Educational Resources Information Center

    Gu, X.; Blackmore, K. L.

    2015-01-01

    This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…

  15. Brief introductory guide to agent-based modeling and an illustration from urban health research.

    PubMed

    Auchincloss, Amy H; Garcia, Leandro Martin Totaro

    2015-11-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.

  16. Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim; Farris, Amy Voss; Satabdi, Basu

    2016-01-01

    In this paper, we present a third-grade ecology learning environment that integrates two forms of modeling--embodied modeling and agent-based modeling (ABMs)--through the generation of mathematical representations that are common to both forms of modeling. The term "agent" in the context of ABMs indicates individual computational objects…

  17. Optimal harvesting for a predator-prey agent-based model using difference equations.

    PubMed

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  18. Agent-based modeling to simulate the dengue spread

    NASA Astrophysics Data System (ADS)

    Deng, Chengbin; Tao, Haiyan; Ye, Zhiwei

    2008-10-01

    In this paper, we introduce a novel method ABM in simulating the unique process for the dengue spread. Dengue is an acute infectious disease with a long history of over 200 years. Unlike the diseases that can be transmitted directly from person to person, dengue spreads through a must vector of mosquitoes. There is still no any special effective medicine and vaccine for dengue up till now. The best way to prevent dengue spread is to take precautions beforehand. Thus, it is crucial to detect and study the dynamic process of dengue spread that closely relates to human-environment interactions where Agent-Based Modeling (ABM) effectively works. The model attempts to simulate the dengue spread in a more realistic way in the bottom-up way, and to overcome the limitation of ABM, namely overlooking the influence of geographic and environmental factors. Considering the influence of environment, Aedes aegypti ecology and other epidemiological characteristics of dengue spread, ABM can be regarded as a useful way to simulate the whole process so as to disclose the essence of the evolution of dengue spread.

  19. Agent-based modeling of noncommunicable diseases: a systematic review.

    PubMed

    Nianogo, Roch A; Arah, Onyebuchi A

    2015-03-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application.

  20. Agent-Based Modeling of Noncommunicable Diseases: A Systematic Review

    PubMed Central

    Arah, Onyebuchi A.

    2015-01-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application. PMID:25602871

  1. Forecasting Effects of MISO Actions: An ABM Methodology

    DTIC Science & Technology

    2013-12-01

    MISO ACTIONS: AN ABM METHODOLOGY Chris Weimer J.O. Miller Mark Friend Janet Miller Department of Operational Sciences Graduate School of...AFB,OH 45433 USA Wright Patterson AFB, OH 45433, USA ABSTRACT Agent-based models ( ABM ) have been used successfully in the field of generative...develop an ABM to investigate factors that affect the growth of rebel uprisings in a notional population. Our ABM expands the civil violence model

  2. Towards strength and stability : agent-based modeling of infrastructure markets.

    SciTech Connect

    North, M. J.; Decision and Information Sciences

    2001-01-01

    Complex Adaptive Systems (CASs) can be applied to investigate complex infrastructures and infrastructure interdependencies. Agent-based modeling (ABM) is a new CAS-based approach to the construction of models. The CAS agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) ABMs allow investigation of the electric power infrastructure, the natural gas infrastructure, and their interdependencies. The Swarm-based SMART models use sets of agents and interconnections to represent electric power and natural gas systems. A prototype virtual reality (VR) interface has also been constructed for a version of the SMART model. This tool is intended to explore the use of advanced interactive three-dimensional visualization in agent-based modeling. The Java-based FAST model is currently under construction. FAST is a complete redesign of the SMART models that includes improvements in the modeling environment, model detail, and representational fidelity. Developing ABMs is difficult but can be rewarding.

  3. Improving Agent Based Models and Validation through Data Fusion

    PubMed Central

    Laskowski, Marek; Demianyk, Bryan C.P.; Friesen, Marcia R.; McLeod, Robert D.; Mukhi, Shamir N.

    2011-01-01

    This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level. PMID:23569606

  4. Dynamic calibration of agent-based models using data assimilation.

    PubMed

    Ward, Jonathan A; Evans, Andrew J; Malleson, Nicolas S

    2016-04-01

    A widespread approach to investigating the dynamical behaviour of complex social systems is via agent-based models (ABMs). In this paper, we describe how such models can be dynamically calibrated using the ensemble Kalman filter (EnKF), a standard method of data assimilation. Our goal is twofold. First, we want to present the EnKF in a simple setting for the benefit of ABM practitioners who are unfamiliar with it. Second, we want to illustrate to data assimilation experts the value of using such methods in the context of ABMs of complex social systems and the new challenges these types of model present. We work towards these goals within the context of a simple question of practical value: how many people are there in Leeds (or any other major city) right now? We build a hierarchy of exemplar models that we use to demonstrate how to apply the EnKF and calibrate these using open data of footfall counts in Leeds.

  5. Dynamic calibration of agent-based models using data assimilation

    PubMed Central

    Ward, Jonathan A.; Evans, Andrew J.; Malleson, Nicolas S.

    2016-01-01

    A widespread approach to investigating the dynamical behaviour of complex social systems is via agent-based models (ABMs). In this paper, we describe how such models can be dynamically calibrated using the ensemble Kalman filter (EnKF), a standard method of data assimilation. Our goal is twofold. First, we want to present the EnKF in a simple setting for the benefit of ABM practitioners who are unfamiliar with it. Second, we want to illustrate to data assimilation experts the value of using such methods in the context of ABMs of complex social systems and the new challenges these types of model present. We work towards these goals within the context of a simple question of practical value: how many people are there in Leeds (or any other major city) right now? We build a hierarchy of exemplar models that we use to demonstrate how to apply the EnKF and calibrate these using open data of footfall counts in Leeds. PMID:27152214

  6. Optimization and Control of Agent-Based Models in Biology: A Perspective.

    PubMed

    An, G; Fitzpatrick, B G; Christley, S; Federico, P; Kanarek, A; Neilan, R Miller; Oremland, M; Salinas, R; Laubenbacher, R; Lenhart, S

    2017-01-01

    Agent-based models (ABMs) have become an increasingly important mode of inquiry for the life sciences. They are particularly valuable for systems that are not understood well enough to build an equation-based model. These advantages, however, are counterbalanced by the difficulty of analyzing and using ABMs, due to the lack of the type of mathematical tools available for more traditional models, which leaves simulation as the primary approach. As models become large, simulation becomes challenging. This paper proposes a novel approach to two mathematical aspects of ABMs, optimization and control, and it presents a few first steps outlining how one might carry out this approach. Rather than viewing the ABM as a model, it is to be viewed as a surrogate for the actual system. For a given optimization or control problem (which may change over time), the surrogate system is modeled instead, using data from the ABM and a modeling framework for which ready-made mathematical tools exist, such as differential equations, or for which control strategies can explored more easily. Once the optimization problem is solved for the model of the surrogate, it is then lifted to the surrogate and tested. The final step is to lift the optimization solution from the surrogate system to the actual system. This program is illustrated with published work, using two relatively simple ABMs as a demonstration, Sugarscape and a consumer-resource ABM. Specific techniques discussed include dimension reduction and approximation of an ABM by difference equations as well systems of PDEs, related to certain specific control objectives. This demonstration illustrates the very challenging mathematical problems that need to be solved before this approach can be realistically applied to complex and large ABMs, current and future. The paper outlines a research program to address them.

  7. A Hybrid Sensitivity Analysis Approach for Agent-based Disease Spread Models

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui

    2012-01-01

    Agent-based models (ABM) have been widely deployed in different fields for studying the collective behavior of large numbers of interacting agents. Of particular interest lately is the application of agent-based and hybrid models to epidemiology, specifically Agent-based Disease Spread Models (ABDSM). Validation (one aspect of the means to achieve dependability) of ABDSM simulation models is extremely important. It ensures that the right model has been built and lends confidence to the use of that model to inform critical decisions. In this report, we describe our preliminary efforts in ABDSM validation by using hybrid model fusion technology.

  8. Using Model Replication to Improve the Reliability of Agent-Based Models

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  9. Spatial process and data models : toward integration of agent-based models and GIS.

    SciTech Connect

    Brown, D. G.; North, M. J.; Robinson, D. T.; Riolo, R.; Rand, W.; Decision and Information Sciences; Univ. of Michigan

    2007-10-01

    The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.

  10. Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS

    NASA Astrophysics Data System (ADS)

    Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun

    2015-12-01

    Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.

  11. Advancing complementary and alternative medicine through social network analysis and agent-based modeling.

    PubMed

    Frantz, Terrill L

    2012-01-01

    This paper introduces the contemporary perspectives and techniques of social network analysis (SNA) and agent-based modeling (ABM) and advocates applying them to advance various aspects of complementary and alternative medicine (CAM). SNA and ABM are invaluable methods for representing, analyzing and projecting complex, relational, social phenomena; they provide both an insightful vantage point and a set of analytic tools that can be useful in a wide range of contexts. Applying these methods in the CAM context can aid the ongoing advances in the CAM field, in both its scientific aspects and in developing broader acceptance in associated stakeholder communities.

  12. Integrated PK-PD and agent-based modeling in oncology.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Cristini, Vittorio; Deisboeck, Thomas S

    2015-04-01

    Mathematical modeling has become a valuable tool that strives to complement conventional biomedical research modalities in order to predict experimental outcome, generate new medical hypotheses, and optimize clinical therapies. Two specific approaches, pharmacokinetic-pharmacodynamic (PK-PD) modeling, and agent-based modeling (ABM), have been widely applied in cancer research. While they have made important contributions on their own (e.g., PK-PD in examining chemotherapy drug efficacy and resistance, and ABM in describing and predicting tumor growth and metastasis), only a few groups have started to combine both approaches together in an effort to gain more insights into the details of drug dynamics and the resulting impact on tumor growth. In this review, we focus our discussion on some of the most recent modeling studies building on a combined PK-PD and ABM approach that have generated experimentally testable hypotheses. Some future directions are also discussed.

  13. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  14. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  15. An agent based model for simulating the spread of sexually transmitted infections.

    PubMed

    Rutherford, Grant; Friesen, Marcia R; McLeod, Robert D

    2012-01-01

    This work uses agent-based modelling (ABM) to simulate sexually transmitted infection (STIs) spread within a population of 1000 agents over a 10-year period, as a preliminary investigation of the suitability of ABM methodology to simulate STI spread. The work contrasts compartmentalized mathematical models that fail to account for individual agents, and ABMs commonly applied to simulate the spread of respiratory infections. The model was developed in C++ using the Boost 1.47.0 libraries for the normal distribution and OpenGL for visualization. Sixteen agent parameters interact individually and in combination to govern agent profiles and behaviours relative to infection probabilities. The simulation results provide qualitative comparisons of STI mitigation strategies, including the impact of condom use, promiscuity, the form of the friend network, and mandatory STI testing. Individual and population-wide impacts were explored, with individual risk being impacted much more dramatically by population-level behaviour changes as compared to individual behaviour changes.

  16. Evaluating Water Demand Using Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  17. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  18. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    NASA Technical Reports Server (NTRS)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  19. An agent based model of genotype editing

    SciTech Connect

    Rocha, L. M.; Huang, C. F.

    2004-01-01

    This paper presents our investigation on an agent-based model of Genotype Editing. This model is based on several characteristics that are gleaned from the RNA editing system as observed in several organisms. The incorporation of editing mechanisms in an evolutionary agent-based model provides a means for evolving agents with heterogenous post-transcriptional processes. The study of this agent-based genotype-editing model has shed some light into the evolutionary implications of RNA editing as well as established an advantageous evolutionary computation algorithm for machine learning. We expect that our proposed model may both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in agent-based optimization.

  20. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  1. ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi

    NASA Astrophysics Data System (ADS)

    Jumadi, Carver, Steve; Quincey, Duncan

    2016-05-01

    Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.

  2. Attribute Assignment to a Synthetic Population in Support of Agent-Based Disease Modeling.

    PubMed

    Cajka, James C; Cooley, Philip C; Wheaton, William D

    2010-09-01

    Communicable-disease transmission models are useful for the testing of prevention and intervention strategies. Agent-based models (ABMs) represent a new and important class of the many types of disease transmission models in use. Agent-based disease models benefit from their ability to assign disease transmission probabilities based on characteristics shared by individual agents. These shared characteristics allow ABMs to apply transmission probabilities when agents come together in geographic space. Modeling these types of social interactions requires data, and the results of the model largely depend on the quality of these input data. We initially generated a synthetic population for the United States, in support of the Models of Infectious Disease Agent Study. Subsequently, we created shared characteristics to use in ABMs. The specific goals for this task were to assign the appropriately aged populations to schools, workplaces, and public transit. Each goal presented its own challenges and problems; therefore, we used different techniques to create each type of shared characteristic. These shared characteristics have allowed disease models to more realistically predict the spread of disease, both spatially and temporally.

  3. Multiscale agent-based consumer market modeling.

    SciTech Connect

    North, M. J.; Macal, C. M.; St. Aubin, J.; Thimmapuram, P.; Bragen, M.; Hahn, J.; Karr, J.; Brigham, N.; Lacy, M. E.; Hampton, D.; Decision and Information Sciences; Procter & Gamble Co.

    2010-05-01

    Consumer markets have been studied in great depth, and many techniques have been used to represent them. These have included regression-based models, logit models, and theoretical market-level models, such as the NBD-Dirichlet approach. Although many important contributions and insights have resulted from studies that relied on these models, there is still a need for a model that could more holistically represent the interdependencies of the decisions made by consumers, retailers, and manufacturers. When the need is for a model that could be used repeatedly over time to support decisions in an industrial setting, it is particularly critical. Although some existing methods can, in principle, represent such complex interdependencies, their capabilities might be outstripped if they had to be used for industrial applications, because of the details this type of modeling requires. However, a complementary method - agent-based modeling - shows promise for addressing these issues. Agent-based models use business-driven rules for individuals (e.g., individual consumer rules for buying items, individual retailer rules for stocking items, or individual firm rules for advertizing items) to determine holistic, system-level outcomes (e.g., to determine if brand X's market share is increasing). We applied agent-based modeling to develop a multi-scale consumer market model. We then conducted calibration, verification, and validation tests of this model. The model was successfully applied by Procter & Gamble to several challenging business problems. In these situations, it directly influenced managerial decision making and produced substantial cost savings.

  4. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  5. An agent-based model for queue formation of powered two-wheelers in heterogeneous traffic

    NASA Astrophysics Data System (ADS)

    Lee, Tzu-Chang; Wong, K. I.

    2016-11-01

    This paper presents an agent-based model (ABM) for simulating the queue formation of powered two-wheelers (PTWs) in heterogeneous traffic at a signalized intersection. The main novelty is that the proposed interaction rule describing the position choice behavior of PTWs when queuing in heterogeneous traffic can capture the stochastic nature of the decision making process. The interaction rule is formulated as a multinomial logit model, which is calibrated by using a microscopic traffic trajectory dataset obtained from video footage. The ABM is validated against the survey data for the vehicular trajectory patterns, queuing patterns, queue lengths, and discharge rates. The results demonstrate that the proposed model is capable of replicating the observed queue formation process for heterogeneous traffic.

  6. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  7. Agent-based modelling in synthetic biology

    PubMed Central

    2016-01-01

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. PMID:27903820

  8. A Parallel Sliding Region Algorithm to Make Agent-Based Modeling Possible for a Large-Scale Simulation: Modeling Hepatitis C Epidemics in Canada.

    PubMed

    Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla

    2016-11-01

    Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.

  9. Agent based models for testing city evacuation strategies under a flood event as strategy to reduce flood risk

    NASA Astrophysics Data System (ADS)

    Medina, Neiler; Sanchez, Arlex; Nokolic, Igor; Vojinovic, Zoran

    2016-04-01

    This research explores the uses of Agent Based Models (ABM) and its potential to test large scale evacuation strategies in coastal cities at risk from flood events due to extreme hydro-meteorological events with the final purpose of disaster risk reduction by decreasing human's exposure to the hazard. The first part of the paper corresponds to the theory used to build the models such as: Complex adaptive systems (CAS) and the principles and uses of ABM in this field. The first section outlines the pros and cons of using AMB to test city evacuation strategies at medium and large scale. The second part of the paper focuses on the central theory used to build the ABM, specifically the psychological and behavioral model as well as the framework used in this research, specifically the PECS reference model is cover in this section. The last part of this section covers the main attributes or characteristics of human beings used to described the agents. The third part of the paper shows the methodology used to build and implement the ABM model using Repast-Symphony as an open source agent-based modelling and simulation platform. The preliminary results for the first implementation in a region of the island of Sint-Maarten a Dutch Caribbean island are presented and discussed in the fourth section of paper. The results obtained so far, are promising for a further development of the model and its implementation and testing in a full scale city

  10. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome.

    PubMed

    O'Sullivan, David; Evans, Tom; Manson, Steven; Metcalf, Sara; Ligmann-Zielinska, Arika; Bone, Chris

    In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances - in terms of model complexity, model evaluation, and model structure - can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from 'yet another model' to doing better science with models.

  11. A standard protocol for describing individual-based and agent-based models

    USGS Publications Warehouse

    Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen, Sigrunn; Ginot, Vincent; Giske, Jarl; Goss-Custard, John; Grand, Tamara; Heinz, Simone K.; Huse, Geir; Huth, Andreas; Jepsen, Jane U.; Jorgensen, Christian; Mooij, Wolf M.; Muller, Birgit; Pe'er, Guy; Piou, Cyril; Railsback, Steven F.; Robbins, Andrew M.; Robbins, Martha M.; Rossmanith, Eva; Ruger, Nadja; Strand, Espen; Souissi, Sami; Stillman, Richard A.; Vabo, Rune; Visser, Ute; DeAngelis, Donald L.

    2006-01-01

    Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers.

  12. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome

    PubMed Central

    O’Sullivan, David; Evans, Tom; Manson, Steven; Metcalf, Sara; Ligmann-Zielinska, Arika; Bone, Chris

    2015-01-01

    In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances – in terms of model complexity, model evaluation, and model structure – can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from ‘yet another model’ to doing better science with models. PMID:27158257

  13. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  14. A Novel Framework for Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence (CSSSA2016)

    EPA Science Inventory

    Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...

  15. Equation-free analysis of agent-based models and systematic parameter determination

    NASA Astrophysics Data System (ADS)

    Thomas, Spencer A.; Lloyd, David J. B.; Skeldon, Anne C.

    2016-12-01

    Agent based models (ABM)s are increasingly used in social science, economics, mathematics, biology and computer science to describe time dependent systems in circumstances where a description in terms of equations is difficult. Yet few tools are currently available for the systematic analysis of ABM behaviour. Numerical continuation and bifurcation analysis is a well-established tool for the study of deterministic systems. Recently, equation-free (EF) methods have been developed to extend numerical continuation techniques to systems where the dynamics are described at a microscopic scale and continuation of a macroscopic property of the system is considered. To date, the practical use of EF methods has been limited by; (1) the over-head of application-specific implementation; (2) the laborious configuration of problem-specific parameters; and (3) large ensemble sizes (potentially) leading to computationally restrictive run-times. In this paper we address these issues with our tool for the EF continuation of stochastic systems, which includes algorithms to systematically configuration problem specific parameters and enhance robustness to noise. Our tool is generic and can be applied to any 'black-box' simulator and determines the essential EF parameters prior to EF analysis. Robustness is significantly improved using our convergence-constraint with a corrector-repeat (C3R) method. This algorithm automatically detects outliers based on the dynamics of the underlying system enabling both an order of magnitude reduction in ensemble size and continuation of systems at much higher levels of noise than classical approaches. We demonstrate our method with application to several ABM models, revealing parameter dependence, bifurcation and stability analysis of these complex systems giving a deep understanding of the dynamical behaviour of the models in a way that is not otherwise easily obtainable. In each case we demonstrate our systematic parameter determination stage for

  16. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    NASA Astrophysics Data System (ADS)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  17. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    PubMed

    Florent, Querini; Enrico, Benetto

    2015-02-03

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents.

  18. Agent Based Model of Livestock Movements

    NASA Astrophysics Data System (ADS)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  19. Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling

    NASA Technical Reports Server (NTRS)

    Campbell, Kenyth

    2012-01-01

    The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.

  20. Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model

    PubMed Central

    Sherman, Blake P.; Lindley, Emily M.; Turner, A. Simon; Seim III, Howard B.; Benedict, James; Burger, Evalina L.

    2010-01-01

    A prospective, randomized study was performed in an ovine model to compare the efficacy of an anorganic bovine-derived hydroxyapatite matrix combined with a synthetic 15 amino acid residue (ABM/P-15) in facilitating lumbar interbody fusion when compared with autogenous bone harvested from the iliac crest. P-15 is a biomimetic to the cell-binding site of Type-I collagen for bone-forming cells. When combined with ABM, it creates the necessary scaffold to initiate cell invasion, binding, and subsequent osteogenesis. In this study, six adult ewes underwent anterior-lateral interbody fusion at L3/L4 and L4/L5 using PEEK interbody rings filled with autogenous bone at one level and ABM/P-15 at the other level and no additional instrumentation. Clinical CT scans were obtained at 3 and 6 months; micro-CT scans and histomorphometry analyses were performed after euthanization at 6 months. Clinical CT scan analysis showed that all autograft and ABM/P-15 treated levels had radiographically fused outside of the rings at the 3-month study time point. Although the clinical CT scans of the autograft treatment group showed significantly better fusion within the PEEK rings than ABM/P-15 at 3 months, micro-CT scans, clinical CT scans, and histomorphometric analyses showed there were no statistical differences between the two treatment groups at 6 months. Thus, ABM/P-15 was as successful as autogenous bone graft in producing lumbar spinal fusion in an ovine model, and it should be further evaluated in clinical studies. PMID:20694847

  1. Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model.

    PubMed

    Sherman, Blake P; Lindley, Emily M; Turner, A Simon; Seim, Howard B; Benedict, James; Burger, Evalina L; Patel, Vikas V

    2010-12-01

    A prospective, randomized study was performed in an ovine model to compare the efficacy of an anorganic bovine-derived hydroxyapatite matrix combined with a synthetic 15 amino acid residue (ABM/P-15) in facilitating lumbar interbody fusion when compared with autogenous bone harvested from the iliac crest. P-15 is a biomimetic to the cell-binding site of Type-I collagen for bone-forming cells. When combined with ABM, it creates the necessary scaffold to initiate cell invasion, binding, and subsequent osteogenesis. In this study, six adult ewes underwent anterior-lateral interbody fusion at L3/L4 and L4/L5 using PEEK interbody rings filled with autogenous bone at one level and ABM/P-15 at the other level and no additional instrumentation. Clinical CT scans were obtained at 3 and 6 months; micro-CT scans and histomorphometry analyses were performed after euthanization at 6 months. Clinical CT scan analysis showed that all autograft and ABM/P-15 treated levels had radiographically fused outside of the rings at the 3-month study time point. Although the clinical CT scans of the autograft treatment group showed significantly better fusion within the PEEK rings than ABM/P-15 at 3 months, micro-CT scans, clinical CT scans, and histomorphometric analyses showed there were no statistical differences between the two treatment groups at 6 months. Thus, ABM/P-15 was as successful as autogenous bone graft in producing lumbar spinal fusion in an ovine model, and it should be further evaluated in clinical studies.

  2. Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation.

    PubMed

    Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto

    2016-07-01

    The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking.

  3. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  4. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    PubMed

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  5. Agent-based models of financial markets

    NASA Astrophysics Data System (ADS)

    Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T.

    2007-03-01

    This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont

  6. Comparing stochastic differential equations and agent-based modelling and simulation for early-stage cancer.

    PubMed

    Figueredo, Grazziela P; Siebers, Peer-Olaf; Owen, Markus R; Reps, Jenna; Aickelin, Uwe

    2014-01-01

    There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours rather than aggregates and individual memory. In this paper we investigate the potential contribution of agent-based modelling and simulation when contrasted with stochastic versions of ODE models using early-stage cancer examples. We seek answers to the following questions: (1) Does this new stochastic formulation produce similar results to the agent-based version? (2) Can these methods be used interchangeably? (3) Do agent-based models outcomes reveal any benefit when compared to the Gillespie results? To answer these research questions we investigate three well-established mathematical models describing interactions between tumour cells and immune elements. These case studies were re-conceptualised under an agent-based perspective and also converted to the Gillespie algorithm formulation. Our interest in this work, therefore, is to establish a methodological discussion regarding the usability of different simulation approaches, rather than provide further biological insights into the investigated case studies. Our results show that it is possible to obtain equivalent models that implement the same mechanisms; however, the incapacity of the Gillespie algorithm to retain individual memory of past events affects the similarity of some results. Furthermore, the emergent behaviour of ABMS produces extra patters of behaviour in the system, which was not obtained by the Gillespie algorithm.

  7. Reducing the complexity of an agent-based local heroin market model.

    PubMed

    Heard, Daniel; Bobashev, Georgiy V; Morris, Robert J

    2014-01-01

    This project explores techniques for reducing the complexity of an agent-based model (ABM). The analysis involved a model developed from the ethnographic research of Dr. Lee Hoffer in the Larimer area heroin market, which involved drug users, drug sellers, homeless individuals and police. The authors used statistical techniques to create a reduced version of the original model which maintained simulation fidelity while reducing computational complexity. This involved identifying key summary quantities of individual customer behavior as well as overall market activity and replacing some agents with probability distributions and regressions. The model was then extended to allow external market interventions in the form of police busts. Extensions of this research perspective, as well as its strengths and limitations, are discussed.

  8. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  9. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model

    NASA Astrophysics Data System (ADS)

    Kocabas, Verda; Dragicevic, Suzana

    2013-10-01

    Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

  10. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    PubMed

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  11. The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach

    NASA Astrophysics Data System (ADS)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as

  12. Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources

    NASA Astrophysics Data System (ADS)

    Al-Amin, S.

    2015-12-01

    Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.

  13. Design of an Agent-Based Model to Examine Population-Environment Interactions in Nang Rong District, Thailand.

    PubMed

    Walsh, Stephen J; Malanson, George P; Entwisle, Barbara; Rindfuss, Ronald R; Mucha, Peter J; Heumann, Benjamin W; McDaniel, Philip M; Frizzelle, Brian G; Verdery, Ashton M; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng

    2013-05-01

    The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT - Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT - Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules - the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that

  14. Design of an Agent-Based Model to Examine Population-Environment Interactions in Nang Rong District, Thailand

    PubMed Central

    Walsh, Stephen J.; Malanson, George P.; Entwisle, Barbara; Rindfuss, Ronald R.; Mucha, Peter J.; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Verdery, Ashton M.; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng

    2013-01-01

    The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT – Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT – Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules – the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment

  15. Diffusion of a Sustainable Farming Technique in Sri Lanka: An Agent-Based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Jacobi, J. H.; Gilligan, J. M.; Carrico, A. R.; Truelove, H. B.; Hornberger, G.

    2012-12-01

    We live in a changing world - anthropogenic climate change is disrupting historic climate patterns and social structures are shifting as large scale population growth and massive migrations place unprecedented strain on natural and social resources. Agriculture in many countries is affected by these changes in the social and natural environments. In Sri Lanka, rice farmers in the Mahaweli River watershed have seen increases in temperature and decreases in precipitation. In addition, a government led resettlement project has altered the demographics and social practices in villages throughout the watershed. These changes have the potential to impact rice yields in a country where self-sufficiency in rice production is a point of national pride. Studies of the climate can elucidate physical effects on rice production, while research on social behaviors can illuminate the influence of community dynamics on agricultural practices. Only an integrated approach, however, can capture the combined and interactive impacts of these global changes on Sri Lankan agricultural. As part of an interdisciplinary team, we present an agent-based modeling (ABM) approach to studying the effects of physical and social changes on farmers in Sri Lanka. In our research, the diffusion of a sustainable farming technique, the system of rice intensification (SRI), throughout a farming community is modeled to identify factors that either inhibit or promote the spread of a more sustainable approach to rice farming. Inputs into the ABM are both physical and social and include temperature, precipitation, the Palmer Drought Severity Index (PDSI), community trust, and social networks. Outputs from the ABM demonstrate the importance of meteorology and social structure on the diffusion of SRI throughout a farming community.

  16. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    PubMed

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-04-02

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  17. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection.

    PubMed

    Peer, Xavier; An, Gary

    2014-10-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of

  18. Projecting Sexual and Injecting HIV Risks into Future Outcomes with Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Bobashev, Georgiy V.; Morris, Robert J.; Zule, William A.

    Longitudinal studies of health outcomes for HIV could be very costly cumbersome and not representative of the risk population. Conversely, cross-sectional approaches could be representative but rely on the retrospective information to estimate prevalence and incidence. We present an Agent-based Modeling (ABM) approach where we use behavioral data from a cross-sectional representative study and project the behavior into the future so that the risks of acquiring HIV could be studied in a dynamical/temporal sense. We show how the blend of behavior and contact network factors (sexual, injecting) play the role in the risk of future HIV acquisition and time till obtaining HIV. We show which subjects are the most likely persons to get HIV in the next year, and whom they are likely to infect. We examine how different behaviors are related to the increase or decrease of HIV risks and how to estimate the quantifiable risk measures such as survival HIV free.

  19. Agent-Based Modeling of Growth Processes

    ERIC Educational Resources Information Center

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  20. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease.

    PubMed

    Manore, Carrie A; Hickmann, Kyle S; Hyman, James M; Foppa, Ivo M; Davis, Justin K; Wesson, Dawn M; Mores, Christopher N

    2015-01-01

    Mosquito-borne diseases cause significant public health burden and are widely re-emerging or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in diverse populations and geographies are ongoing modelling challenges. We propose a hybrid network-patch model for the spread of mosquito-borne pathogens that accounts for individual movement through mosquito habitats, extending the capabilities of existing agent-based models (ABMs) to include vector-borne diseases. The ABM are coupled with differential equations representing 'clouds' of mosquitoes in patches accounting for mosquito ecology. We adapted an ABM for humans using this method and investigated the importance of heterogeneity in pathogen spread, motivating the utility of models of individual behaviour. We observed that the final epidemic size is greater in patch models with a high risk patch frequently visited than in a homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the spread of mosquito-borne pathogens, guiding mitigation strategies.

  1. A Large Scale, High Resolution Agent-Based Insurgency Model

    DTIC Science & Technology

    2013-09-30

    for understanding and analyzing human behavior in a civil violence paradigm. This model employed two types of agents: an agent that can become...cognitions and behaviors. Unlike previous agent-based models of civil violence , this work includes the use of a hidden Markov process for simulating...these models can portray real insurgent environments. Keywords simulation · agent based model · insurgency · civil violence · graphics processing

  2. Using stylized agent-based models for population-environment research: A case study from the Galápagos Islands.

    PubMed

    Miller, Brian W; Breckheimer, Ian; McCleary, Amy L; Guzmán-Ramirez, Liza; Caplow, Susan C; Jones-Smith, Jessica C; Walsh, Stephen J

    2010-05-01

    Agent Based Models (ABMs) are powerful tools for population-environment research but are subject to trade-offs between model complexity and abstraction. This study strikes a compromise between abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to explore policy scenarios in a setting that is facing substantial conservation and development challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC) dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We implement the model using the NetLogo software platform, a free program that requires relatively little programming experience. The landscape is composed of a satellite-derived distribution of a problematic invasive species (common guava) and a stylized representation of the Galápagos National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The agent module is based on publicly available data and household interviews, and represents the primary livelihoods of the population in the Galápagos Islands - tourism, fisheries, and agriculture. We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive guava and assess the resulting population and land cover dynamics. Findings suggest that spatially explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research, as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing alternative scenarios, and (3) uncovering critical data gaps.

  3. AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*

    PubMed Central

    Bruch, Elizabeth; Atwell, Jon

    2014-01-01

    Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351

  4. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  5. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling.

    PubMed

    Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T

    2016-04-22

    Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment.

  6. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling

    PubMed Central

    Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T.

    2016-01-01

    Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment. PMID:27110790

  7. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    USGS Publications Warehouse

    Sibly, Richard M.; Grimm, Volker; Martin, Benjamin T.; Johnston, Alice S.A.; Kulakowska, Katarzyna; Topping, Christopher J.; Calow, Peter; Nabe-Nielsen, Jacob; Thorbek, Pernille; DeAngelis, Donald L.

    2013-01-01

    1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.

  8. A hybrid agent-based approach for modeling microbiological systems.

    PubMed

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  9. Agent-based modeling: case study in cleavage furrow models.

    PubMed

    Mogilner, Alex; Manhart, Angelika

    2016-11-07

    The number of studies in cell biology in which quantitative models accompany experiments has been growing steadily. Roughly, mathematical and computational techniques of these models can be classified as "differential equation based" (DE) or "agent based" (AB). Recently AB models have started to outnumber DE models, but understanding of AB philosophy and methodology is much less widespread than familiarity with DE techniques. Here we use the history of modeling a fundamental biological problem-positioning of the cleavage furrow in dividing cells-to explain how and why DE and AB models are used. We discuss differences, advantages, and shortcomings of these two approaches.

  10. A framework for the use of agent based modeling to simulate ...

    EPA Pesticide Factsheets

    Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc

  11. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  12. A Model of Rapid Radicalization Behavior Using Agent-Based Modeling and Quorum Sensing

    NASA Technical Reports Server (NTRS)

    Schwartz, Noah; Drucker, Nick; Campbell, Kenyth

    2012-01-01

    Understanding the dynamics of radicalization, especially rapid radicalization, has become increasingly important to US policy in the past several years. Traditionally, radicalization is considered a slow process, but recent social and political events demonstrate that the process can occur quickly. Examining this rapid process, in real time, is impossible. However, recreating an event using modeling and simulation (M&S) allows researchers to study some of the complex dynamics associated with rapid radicalization. We propose to adapt the biological mechanism of quorum sensing as a tool to explore, or possibly explain, rapid radicalization. Due to the complex nature of quorum sensing, M&S allows us to examine events that we could not otherwise examine in real time. For this study, we employ Agent Based Modeling (ABM), an M&S paradigm suited to modeling group behavior. The result of this study was the successful creation of rapid radicalization using quorum sensing. The Battle of Mogadishu was the inspiration for this model and provided the testing conditions used to explore quorum sensing and the ideas behind rapid radicalization. The final product has wider applicability however, using quorum sensing as a possible tool for examining other catalytic rapid radicalization events.

  13. Agent based modeling of "crowdinforming" as a means of load balancing at emergency departments.

    PubMed

    Neighbour, Ryan; Oppenheimer, Luis; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D

    2010-01-01

    This work extends ongoing development of a framework for modeling the spread of contact-transmission infectious diseases. The framework is built upon Agent Based Modeling (ABM), with emphasis on urban scale modelling integrated with institutional models of hospital emergency departments. The method presented here includes ABM modeling an outbreak of influenza-like illness (ILI) with concomitant surges at hospital emergency departments, and illustrates the preliminary modeling of 'crowdinforming' as an intervention. 'Crowdinforming', a component of 'crowdsourcing', is characterized as the dissemination of collected and processed information back to the 'crowd' via public access. The objective of the simulation is to allow for effective policy evaluation to better inform the public of expected wait times as part of their decision making process in attending an emergency department or clinic. In effect, this is a means of providing additional decision support garnered from a simulation, prior to real world implementation. The conjecture is that more optimal service delivery can be achieved under balanced patient loads, compared to situations where some emergency departments are overextended while others are underutilized. Load balancing optimization is a common notion in many operations, and the simulation illustrates that 'crowdinforming' is a potential tool when used as a process control parameter to balance the load at emergency departments as well as serving as an effective means to direct patients during an ILI outbreak with temporary clinics deployed. The information provided in the 'crowdinforming' model is readily available in a local context, although it requires thoughtful consideration in its interpretation. The extension to a wider dissemination of information via a web service is readily achievable and presents no technical obstacles, although political obstacles may be present. The 'crowdinforming' simulation is not limited to arrivals of patients at

  14. Group-Wise Herding Behavior in Financial Markets: An Agent-Based Modeling Approach

    PubMed Central

    Kim, Minsung; Kim, Minki

    2014-01-01

    In this paper, we shed light on the dynamic characteristics of rational group behaviors and the relationship between monetary policy and economic units in the financial market by using an agent-based model (ABM), the Hurst exponent, and the Shannon entropy. First, an agent-based model is used to analyze the characteristics of the group behaviors at different levels of irrationality. Second, the Hurst exponent is applied to analyze the characteristics of the trend-following irrationality group. Third, the Shannon entropy is used to analyze the randomness and unpredictability of group behavior. We show that in a system that focuses on macro-monetary policy, steep fluctuations occur, meaning that the medium-level irrationality group has the highest Hurst exponent and Shannon entropy among all of the groups. However, in a system that focuses on micro-monetary policy, all group behaviors follow a stable trend, and the medium irrationality group thus remains stable, too. Likewise, in a system that focuses on both micro- and macro-monetary policies, all groups tend to be stable. Consequently, we find that group behavior varies across economic units at each irrationality level for micro- and macro-monetary policy in the financial market. Together, these findings offer key insights into monetary policy. PMID:24714635

  15. Group-wise herding behavior in financial markets: an agent-based modeling approach.

    PubMed

    Kim, Minsung; Kim, Minki

    2014-01-01

    In this paper, we shed light on the dynamic characteristics of rational group behaviors and the relationship between monetary policy and economic units in the financial market by using an agent-based model (ABM), the Hurst exponent, and the Shannon entropy. First, an agent-based model is used to analyze the characteristics of the group behaviors at different levels of irrationality. Second, the Hurst exponent is applied to analyze the characteristics of the trend-following irrationality group. Third, the Shannon entropy is used to analyze the randomness and unpredictability of group behavior. We show that in a system that focuses on macro-monetary policy, steep fluctuations occur, meaning that the medium-level irrationality group has the highest Hurst exponent and Shannon entropy among all of the groups. However, in a system that focuses on micro-monetary policy, all group behaviors follow a stable trend, and the medium irrationality group thus remains stable, too. Likewise, in a system that focuses on both micro- and macro-monetary policies, all groups tend to be stable. Consequently, we find that group behavior varies across economic units at each irrationality level for micro- and macro-monetary policy in the financial market. Together, these findings offer key insights into monetary policy.

  16. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  17. Diversity and Community: The Role of Agent-Based Modeling.

    PubMed

    Stivala, Alex

    2017-03-13

    Community psychology involves several dialectics between potentially opposing ideals, such as theory and practice, rights and needs, and respect for human diversity and sense of community. Some recent papers in the American Journal of Community Psychology have examined the diversity-community dialectic, some with the aid of agent-based modeling and concepts from network science. This paper further elucidates these concepts and suggests that research in community psychology can benefit from a useful dialectic between agent-based modeling and the real-world concerns of community psychology.

  18. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models.

  19. Modeling civil violence: An agent-based computational approach

    PubMed Central

    Epstein, Joshua M.

    2002-01-01

    This article presents an agent-based computational model of civil violence. Two variants of the civil violence model are presented. In the first a central authority seeks to suppress decentralized rebellion. In the second a central authority seeks to suppress communal violence between two warring ethnic groups. PMID:11997450

  20. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  1. The fractional volatility model: An agent-based interpretation

    NASA Astrophysics Data System (ADS)

    Vilela Mendes, R.

    2008-06-01

    Based on the criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, some features of the model are reviewed and extended to account for leverage effects. Using agent-based models, one tries to find which agent strategies and (or) properties of the financial institutions might be responsible for the features of the fractional volatility model.

  2. Friendship Network and Dental Brushing Behavior among Middle School Students: An Agent Based Modeling Approach

    PubMed Central

    Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman

    2017-01-01

    By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals’ dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network’s nodes’ in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students’ brushing frequency was demonstrated by simulation results. PMID:28103260

  3. Friendship Network and Dental Brushing Behavior among Middle School Students: An Agent Based Modeling Approach.

    PubMed

    Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman

    2017-01-01

    By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals' dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network's nodes' in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students' brushing frequency was demonstrated by simulation results.

  4. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.

    PubMed

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.

  5. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    PubMed Central

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  6. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  7. Adding ecosystem function to agent-based land use models

    PubMed Central

    Yadav, V.; Del Grosso, S.J.; Parton, W.J.; Malanson, G.P.

    2015-01-01

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeochemical models are needed in order to calculate such fluxes. The Century model is described with particular attention to the land use choices that it can encompass. When Century is applied to a land use problem the combinatorial choices lead to a potentially unmanageable number of simulation runs. Century is also parameter-intensive. Three ways of including Century output in agent-based models, ranging from separately calculated look-up tables to agents running Century within the simulation, are presented. The latter may be most efficient, but it moves the computing costs to where they are most problematic. Concern for computing costs should not be a roadblock. PMID:26191077

  8. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  9. Integrating GIS and ABM to Explore Spatiotemporal Dynamics

    NASA Astrophysics Data System (ADS)

    Sun, M.; Jiang, Y.; Yang, C.

    2013-12-01

    Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.

  10. A risk assessment example for soil invertebrates using spatially explicit agent-based models.

    PubMed

    Reed, Melissa; Alvarez, Tania; Chelinho, Sónia; Forbes, Valery; Johnston, Alice; Meli, Mattia; Voss, Frank; Pastorok, Rob

    2016-01-01

    Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier, population-level effects are assessed using semifield and field trials at a higher tier because modeling methods for extrapolating available lower-tier information to population effects have not yet been implemented. Field trials are expensive, time consuming, and cannot be applied to variable landscape scenarios. Mechanistic modeling of the toxicological effects of PPPs on individuals and their responses combined with simulation of population-level response shows great potential in fulfilling such a need, aiding ecologically informed extrapolation. Here, we introduce and demonstrate the potential of 2 population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed "overall"], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover within 1 year after pesticide application, regardless of application method. The population modeling for both soil organisms also illustrated that a lower predicted average environmental concentration in soil (PECsoil) could potentially lead to greater effects at the population level, depending on the spatial heterogeneity of the pesticide and the behavior of the soil organisms. Population-level effects of spatial-temporal variations in exposure were elucidated in the

  11. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    NASA Astrophysics Data System (ADS)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland

  12. Agent Based Modeling of “Crowdinforming” as a Means of Load Balancing at Emergency Departments

    PubMed Central

    Neighbour, Ryan; Oppenheimer, Luis; Mukhi, Shamir N.; Friesen, Marcia R.; McLeod, Robert D.

    2010-01-01

    This work extends ongoing development of a framework for modeling the spread of contact-transmission infectious diseases. The framework is built upon Agent Based Modeling (ABM), with emphasis on urban scale modelling integrated with institutional models of hospital emergency departments. The method presented here includes ABM modeling an outbreak of influenza-like illness (ILI) with concomitant surges at hospital emergency departments, and illustrates the preliminary modeling of ‘crowdinforming’ as an intervention. ‘Crowdinforming’, a component of ‘crowdsourcing’, is characterized as the dissemination of collected and processed information back to the ‘crowd’ via public access. The objective of the simulation is to allow for effective policy evaluation to better inform the public of expected wait times as part of their decision making process in attending an emergency department or clinic. In effect, this is a means of providing additional decision support garnered from a simulation, prior to real world implementation. The conjecture is that more optimal service delivery can be achieved under balanced patient loads, compared to situations where some emergency departments are overextended while others are underutilized. Load balancing optimization is a common notion in many operations, and the simulation illustrates that ‘crowdinforming’ is a potential tool when used as a process control parameter to balance the load at emergency departments as well as serving as an effective means to direct patients during an ILI outbreak with temporary clinics deployed. The information provided in the ‘crowdinforming’ model is readily available in a local context, although it requires thoughtful consideration in its interpretation. The extension to a wider dissemination of information via a web service is readily achievable and presents no technical obstacles, although political obstacles may be present. The ‘crowdinforming’ simulation is not limited to

  13. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides

    PubMed Central

    Johnston, A.S.A.; Hodson, M.E.; Thorbek, P.; Alvarez, T.; Sibly, R.M.

    2014-01-01

    Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing

  14. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.

  15. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis

    PubMed Central

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  16. Who's your neighbor? neighbor identification for agent-based modeling.

    SciTech Connect

    Macal, C. M.; Howe, T. R.; Decision and Information Sciences; Univ. of Chicago

    2006-01-01

    Agent-based modeling and simulation, based on the cellular automata paradigm, is an approach to modeling complex systems comprised of interacting autonomous agents. Open questions in agent-based simulation focus on scale-up issues encountered in simulating large numbers of agents. Specifically, how many agents can be included in a workable agent-based simulation? One of the basic tenets of agent-based modeling and simulation is that agents only interact and exchange locally available information with other agents located in their immediate proximity or neighborhood of the space in which the agents are situated. Generally, an agent's set of neighbors changes rapidly as a simulation proceeds through time and as the agents move through space. Depending on the topology defined for agent interactions, proximity may be defined by spatial distance for continuous space, adjacency for grid cells (as in cellular automata), or by connectivity in social networks. Identifying an agent's neighbors is a particularly time-consuming computational task and can dominate the computational effort in a simulation. Two challenges in agent simulation are (1) efficiently representing an agent's neighborhood and the neighbors in it and (2) efficiently identifying an agent's neighbors at any time in the simulation. These problems are addressed differently for different agent interaction topologies. While efficient approaches have been identified for agent neighborhood representation and neighbor identification for agents on a lattice with general neighborhood configurations, other techniques must be used when agents are able to move freely in space. Techniques for the analysis and representation of spatial data are applicable to the agent neighbor identification problem. This paper extends agent neighborhood simulation techniques from the lattice topology to continuous space, specifically R2. Algorithms based on hierarchical (quad trees) or non-hierarchical data structures (grid cells) are

  17. An Agent Based Model for Social Class Emergence

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxiang; Rodriguez Segura, Daniel; Lin, Fei; Mazilu, Irina

    We present an open system agent-based model to analyze the effects of education and the society-specific wealth transactions on the emergence of social classes. Building on previous studies, we use realistic functions to model how years of education affect the income level. Numerical simulations show that the fraction of an individual's total transactions that is invested rather than consumed can cause wealth gaps between different income brackets in the long run. In an attempt to incorporate the network effects, we also explore how the probability of interactions among agents depending on the spread of their income brackets affects wealth distribution.

  18. Modelling of robotic work cells using agent based-approach

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  19. Climate Shocks and Migration: An Agent-Based Modeling Approach.

    PubMed

    Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-09-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.

  20. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    PubMed

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  1. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    PubMed Central

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  2. Agent-based model to rural urban migration analysis

    NASA Astrophysics Data System (ADS)

    Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.

    2006-05-01

    In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.

  3. Agent-Based Computational Modeling of Cell Culture ...

    EPA Pesticide Factsheets

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  4. Statistical Agent Based Modelization of the Phenomenon of Drug Abuse

    NASA Astrophysics Data System (ADS)

    di Clemente, Riccardo; Pietronero, Luciano

    2012-07-01

    We introduce a statistical agent based model to describe the phenomenon of drug abuse and its dynamical evolution at the individual and global level. The agents are heterogeneous with respect to their intrinsic inclination to drugs, to their budget attitude and social environment. The various levels of drug use were inspired by the professional description of the phenomenon and this permits a direct comparison with all available data. We show that certain elements have a great importance to start the use of drugs, for example the rare events in the personal experiences which permit to overcame the barrier of drug use occasionally. The analysis of how the system reacts to perturbations is very important to understand its key elements and it provides strategies for effective policy making. The present model represents the first step of a realistic description of this phenomenon and can be easily generalized in various directions.

  5. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    NASA Astrophysics Data System (ADS)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  6. An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data

    PubMed Central

    Chapes, Stephen K.; Ben-Arieh, David; Wu, Chih-Hang

    2016-01-01

    We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as “sepsis”. Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies. PMID:27556404

  7. Leveraging social influence to address overweight and obesity using agent-based models: the role of adolescent social networks.

    PubMed

    Zhang, J; Tong, L; Lamberson, P J; Durazo-Arvizu, R A; Luke, A; Shoham, D A

    2015-01-01

    The prevalence of adolescent overweight and obesity (hereafter, simply "overweight") in the US has increased over the past several decades. Individually-targeted prevention and treatment strategies targeting individuals have been disappointing, leading some to propose leveraging social networks to improve interventions. We hypothesized that social network dynamics (social marginalization; homophily on body mass index, BMI) and the strength of peer influence would increase or decrease the proportion of network member (agents) becoming overweight over a simulated year, and that peer influence would operate differently in social networks with greater overweight. We built an agent-based model (ABM) using results from R-SIENA. ABMs allow for the exploration of potential interventions using simulated agents. Initial model specifications were drawn from Wave 1 of the National Longitudinal Study of Adolescent Health (Add Health). We focused on a single saturation school with complete network and BMI data over two waves (n = 624). The model was validated against empirical observations at Wave 2. We focused on overall overweight prevalence after a simulated year. Five experiments were conducted: (1) changing attractiveness of high-BMI agents; (2) changing homophily on BMI; (3) changing the strength of peer influence; (4) shifting the overall BMI distribution; and (5) targeting dietary interventions to highly connected individuals. Increasing peer influence showed a dramatic decrease in the prevalence of overweight; making peer influence negative (i.e., doing the opposite of friends) increased overweight. However, the effect of peer influence varied based on the underlying distribution of BMI; when BMI was increased overall, stronger peer influence increased proportion of overweight. Other interventions, including targeted dieting, had little impact. Peer influence may be a viable target in overweight interventions, but the distribution of body size in the population needs to

  8. Domination and evolution in agent based model of an economy

    NASA Astrophysics Data System (ADS)

    Kazmi, Syed S.

    We introduce Agent Based Model of a pure exchange economy and a simple economy that includes production, consumption and distributions. Markets are described by Edgeworth Exchange in both models. Trades are binary bilateral trades at prices that are set in each trade. We found that the prices converge over time to a value that is not the standard Equilibrium value given by the Walrasian Tattonement fiction. The average price, and the distributions of Wealth, depends on the degree of Domination (persuasive power) we introduced based on differentials in trading "leverage" due to wealth differences. The full economy model is allowed to evolve by replacement of agents that do not survive with agents having random properties. We found that, depending upon the average productivity compared to the average consumption, very different kinds of behavior emerged. The Economy as a whole reaches a steady state by the population adapting to the conditions of productivity and consumption. Correlations develop in a population between what would be for each individual a random assignment of Productivity, Labor power, Wealth, and Preferences. The population adapts to the economic environment by development of these Correlations and without any learning process. We see signs of emerging social structure as a result of necessity of survival.

  9. E-laboratories : agent-based modeling of electricity markets.

    SciTech Connect

    North, M.; Conzelmann, G.; Koritarov, V.; Macal, C.; Thimmapuram, P.; Veselka, T.

    2002-05-03

    Electricity markets are complex adaptive systems that operate under a wide range of rules that span a variety of time scales. These rules are imposed both from above by society and below by physics. Many electricity markets are undergoing or are about to undergo a transition from centrally regulated systems to decentralized markets. Furthermore, several electricity markets have recently undergone this transition with extremely unsatisfactory results, most notably in California. These high stakes transitions require the introduction of largely untested regulatory structures. Suitable laboratories that can be used to test regulatory structures before they are applied to real systems are needed. Agent-based models can provide such electronic laboratories or ''e-laboratories.'' To better understand the requirements of an electricity market e-laboratory, a live electricity market simulation was created. This experience helped to shape the development of the Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential as an e-laboratory, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.

  10. Agent-based modeling of host–pathogen systems: The successes and challenges

    PubMed Central

    Bauer, Amy L.; Beauchemin, Catherine A.A.; Perelson, Alan S.

    2009-01-01

    Agent-based models have been employed to describe numerous processes in immunology. Simulations based on these types of models have been used to enhance our understanding of immunology and disease pathology. We review various agent-based models relevant to host–pathogen systems and discuss their contributions to our understanding of biological processes. We then point out some limitations and challenges of agent-based models and encourage efforts towards reproducibility and model validation. PMID:20161146

  11. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations

    PubMed Central

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Background Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. Methodology/Principal Findings In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. Conclusion/Significance The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms

  12. An agent-based model to simulate tsetse fly distribution and control techniques: a case study in Nguruman, Kenya

    PubMed Central

    Lin, Shengpan; DeVisser, Mark H.; Messina, Joseph P.

    2015-01-01

    Background African trypanosomiasis, also known as “sleeping sickness” in humans and “nagana” in livestock is an important vector-borne disease in Sub-Saharan Africa. Control of trypanosomiasis has focused on eliminating the vector, the tsetse fly (Glossina, spp.). Effective tsetse fly control planning requires models to predict tsetse population and distribution changes over time and space. Traditional planning models have used statistical tools to predict tsetse distributions and have been hindered by limited field survey data. Methodology/Results We developed an Agent-Based Model (ABM) to provide timing and location information for tsetse fly control without presence/absence training data. The model is driven by daily remotely-sensed environment data. The model provides a flexible tool linking environmental changes with individual biology to analyze tsetse control methods such as aerial insecticide spraying, wild animal control, releasing irradiated sterile tsetse males, and land use and cover modification. Significance This is a bottom-up process-based model with freely available data as inputs that can be easily transferred to a new area. The tsetse population simulation more closely approximates real conditions than those using traditional statistical models making it a useful tool in tsetse fly control planning. PMID:26309347

  13. A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia

    PubMed Central

    Macleod, Ewan T.; Anderson, Neil E.; Schaten, Kathrin; Kuleszo, Joanna; Simuunza, Martin; Welburn, Susan C.; Atkinson, Peter M.

    2016-01-01

    Background This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. Methods The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. Results Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5–10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. Conclusion ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale. PMID:28027323

  14. A Watershed-Scale Agent-Based Model Incorporating Agent Learning and Interaction of Farmers' Decisions Subject to Carbon and Miscanthus Prices

    NASA Astrophysics Data System (ADS)

    Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.

    2010-12-01

    Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of

  15. Agent-Based Model and System Dynamics Model for Peace-Keeping Operations

    DTIC Science & Technology

    2014-09-01

    other in such characteristics as size, location . . . ” [10] Thus, ABM is a method for representing the world through modeling of the environment, and...e.g., about the environment or other agents) and the preferred state of the world that the agent wishes to bring about • Desires (i.e., Goals): states...characterized DES in terms of a process/resource " world view," which is sub- stantially different from the Event Graph world view discussed in Section 1.2

  16. Hybrid equation/agent-based model of ischemia-induced hyperemia and pressure ulcer formation predicts greater propensity to ulcerate in subjects with spinal cord injury.

    PubMed

    Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram

    2013-01-01

    Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation.

  17. Agent-based modeling: case study in cleavage furrow models

    PubMed Central

    Mogilner, Alex; Manhart, Angelika

    2016-01-01

    The number of studies in cell biology in which quantitative models accompany experiments has been growing steadily. Roughly, mathematical and computational techniques of these models can be classified as “differential equation based” (DE) or “agent based” (AB). Recently AB models have started to outnumber DE models, but understanding of AB philosophy and methodology is much less widespread than familiarity with DE techniques. Here we use the history of modeling a fundamental biological problem—positioning of the cleavage furrow in dividing cells—to explain how and why DE and AB models are used. We discuss differences, advantages, and shortcomings of these two approaches. PMID:27811328

  18. FishMORPH - An agent-based model to predict salmonid growth and distribution responses under natural and low flows.

    PubMed

    Phang, S C; Stillman, R A; Cucherousset, J; Britton, J R; Roberts, D; Beaumont, W R C; Gozlan, R E

    2016-07-19

    Predicting fish responses to modified flow regimes is becoming central to fisheries management. In this study we present an agent-based model (ABM) to predict the growth and distribution of young-of-the-year (YOY) and one-year-old (1+) Atlantic salmon and brown trout in response to flow change during summer. A field study of a real population during both natural and low flow conditions provided the simulation environment and validation patterns. Virtual fish were realistic both in terms of bioenergetics and feeding. We tested alternative movement rules to replicate observed patterns of body mass, growth rates, stretch distribution and patch occupancy patterns. Notably, there was no calibration of the model. Virtual fish prioritising consumption rates before predator avoidance replicated observed growth and distribution patterns better than a purely maximising consumption rule. Stream conditions of low predation and harsh winters provide ecological justification for the selection of this behaviour during summer months. Overall, the model was able to predict distribution and growth patterns well across both natural and low flow regimes. The model can be used to support management of salmonids by predicting population responses to predicted flow impacts and associated habitat change.

  19. FishMORPH - An agent-based model to predict salmonid growth and distribution responses under natural and low flows

    PubMed Central

    Phang, S. C.; Stillman, R. A.; Cucherousset, J.; Britton, J. R.; Roberts, D.; Beaumont, W. R. C.; Gozlan, R. E.

    2016-01-01

    Predicting fish responses to modified flow regimes is becoming central to fisheries management. In this study we present an agent-based model (ABM) to predict the growth and distribution of young-of-the-year (YOY) and one-year-old (1+) Atlantic salmon and brown trout in response to flow change during summer. A field study of a real population during both natural and low flow conditions provided the simulation environment and validation patterns. Virtual fish were realistic both in terms of bioenergetics and feeding. We tested alternative movement rules to replicate observed patterns of body mass, growth rates, stretch distribution and patch occupancy patterns. Notably, there was no calibration of the model. Virtual fish prioritising consumption rates before predator avoidance replicated observed growth and distribution patterns better than a purely maximising consumption rule. Stream conditions of low predation and harsh winters provide ecological justification for the selection of this behaviour during summer months. Overall, the model was able to predict distribution and growth patterns well across both natural and low flow regimes. The model can be used to support management of salmonids by predicting population responses to predicted flow impacts and associated habitat change. PMID:27431787

  20. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    PubMed

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  1. The Agent-based Approach: A New Direction for Computational Models of Development.

    ERIC Educational Resources Information Center

    Schlesinger, Matthew; Parisi, Domenico

    2001-01-01

    Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…

  2. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    PubMed

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  3. Agent-based modeling and systems dynamics model reproduction.

    SciTech Connect

    North, M. J.; Macal, C. M.

    2009-01-01

    Reproducibility is a pillar of the scientific endeavour. We view computer simulations as laboratories for electronic experimentation and therefore as tools for science. Recent studies have addressed model reproduction and found it to be surprisingly difficult to replicate published findings. There have been enough failed simulation replications to raise the question, 'can computer models be fully replicated?' This paper answers in the affirmative by reporting on a successful reproduction study using Mathematica, Repast and Swarm for the Beer Game supply chain model. The reproduction process was valuable because it demonstrated the original result's robustness across modelling methodologies and implementation environments.

  4. Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions

    PubMed Central

    Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.

    2016-01-01

    The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380

  5. Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.

    PubMed

    Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A

    2016-05-26

    The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.

  6. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  7. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    PubMed

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-04-03

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally.

  8. An agent based model of integrin clustering: Exploring the role of ligand clustering, integrin homo-oligomerization, integrin-ligand affinity, membrane crowdedness and ligand mobility

    NASA Astrophysics Data System (ADS)

    Jamali, Yousef; Jamali, Tahereh; Mofrad, Mohammad R. K.

    2013-07-01

    Integrins are cell-surface protein heterodimers that coordinate cellular responses to mechanochemical cues from the extracellular matrix (ECM) and stimulate the assembly of small adhesion complexes, which are the initial sites of cell-ECM adhesion. Clustering of integrins is known to mediate signaling through a variety of signal transduction pathways. Yet, the molecular mechanisms of integrin clustering are poorly understood. In this paper, we develop computational models, using agent based modeling (ABM) techniques, to explore two key underlying mechanisms of integrin clustering, namely ligand organization and integrin homo-oligomerization. Our models help to shed light on the potential roles ligand clustering and integrin homo-oligomerization may play in controlling integrin clustering. A potential mechanism for the clustering of integrin is discussed and the effects of other parameters such as integrin-ligand affinity, membrane crowdedness and ligand mobility on integrin clustering are examined.

  9. Development of a Spatial and Temporal Agent-Based Model for Studying Water and Health Relationships: The Case Study of Two Villages in Limpopo, South Africa

    PubMed Central

    Demarest, Jeffrey; Pagsuyoin, Sheree; Learmonth, Gerard; Mellor, Jonathan; Dillingham, Rebecca

    2014-01-01

    Diarrhea, the second leading cause of child morbidity and mortality, can have detrimental effects in the physical and cognitive development of children in developing countries. Health interventions (e.g., increased access to health services and safe water) designed to address this problem are difficult to implement in resource-limited settings. In this paper, we present a tool for understanding the complex relationship between water and public health in rural areas of a developing country. A spatial and temporal agent-based model (ABM) was developed to simulate the current water, sanitation, and health status in two villages in Limpopo Province, South Africa. The model was calibrated using empirical data and published sources. It was used to simulate the effects of poor water quality on the frequency of diarrheal episodes in children, and consequently on child development. Preliminary simulation results show that at the current total coliform levels in the water sources of the studied villages, children are expected to experience stunting by as much as −1.0 standard deviations from the World Health Organization height norms. With minor modifications, the calibrated ABM can be used to design and evaluate intervention strategies for improving child health in these villages. The model can also be applied to other regions worldwide that face the same environmental challenges and conditions as the studied villages. PMID:25530709

  10. Using an Agent-Based Model to Examine the Role of Dynamic Bacterial Virulence Potential in the Pathogenesis of Surgical Site Infection

    PubMed Central

    Gopalakrishnan, Vissagan; Kim, Moses; An, Gary

    2013-01-01

    Objective Despite clinical advances, surgical site infections (SSIs) remain a problem. The development of SSIs involves a complex interplay between the cellular and molecular mechanisms of wound healing and contaminating bacteria, and here, we utilize an agent-based model (ABM) to investigate the role of bacterial virulence potential in the pathogenesis of SSI. Approach The Muscle Wound ABM (MWABM) incorporates muscle cells, neutrophils, macrophages, myoblasts, abstracted blood vessels, and avirulent/virulent bacteria to simulate the pathogenesis of SSIs. Simulated bacteria with virulence potential can mutate to possess resistance to reactive oxygen species and increased invasiveness. Simulated experiments (t=7 days) involved parameter sweeps of initial wound size to identify transition zones between healed and nonhealed wounds/SSIs, and to evaluate the effect of avirulent/virulent bacteria. Results The MWABM reproduced the dynamics of normal successful healing, including a transition zone in initial wound size beyond which healing was significantly impaired. Parameter sweeps with avirulent bacteria demonstrated that smaller wound sizes were associated with healing failure. This effect was even more pronounced with the addition of virulence potential to the contaminating bacteria. Innovation The MWABM integrates the myriad factors involved in the healing of a normal wound and the pathogenesis of SSIs. This type of model can serve as a useful framework into which more detailed mechanistic knowledge can be embedded. Conclusion Future work will involve more comprehensive representation of host factors, and especially the ability of those host factors to activate virulence potential in the microbes involved. PMID:24761337

  11. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    PubMed Central

    An, Gary

    2008-01-01

    Background One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. Results and Discussion ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems Conclusion A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting

  12. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  13. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  14. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  15. Agent-Based vs. Equation-based Epidemiological Models:A Model Selection Case Study

    SciTech Connect

    Sukumar, Sreenivas R; Nutaro, James J

    2012-01-01

    This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation based model and an agent based model of the 1918 Spanish flu and we leverage data published in the literature for our case- study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigm to another. We conclude with a discussion of our experience and document future ideas for a model validation framework.

  16. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    possible. A conceptual architecture for a generalized agent- based modeling environment (GAME) based upon design principles from OR/MS systems was created...conceptual architecture for a generalized agent-based modeling environment (GAME) based upon design principles from OR/MS systems was created that...handle the event, and subsequently form the relevant plans. One of these plans will be selected, and either pushed to the top of the current

  17. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  18. Going beyond the unitary curve: incorporating richer cognition into agent-based water resources models

    NASA Astrophysics Data System (ADS)

    Kock, B. E.

    2008-12-01

    The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.

  19. Disaggregation and Refinement of System Dynamics Models via Agent-based Modeling

    SciTech Connect

    Nutaro, James J; Ozmen, Ozgur; Schryver, Jack C

    2014-01-01

    System dynamics models are usually used to investigate aggregate level behavior, but these models can be decomposed into agents that have more realistic individual behaviors. Here we develop a simple model of the STEM workforce to illuminate the impacts that arise from the disaggregation and refinement of system dynamics models via agent-based modeling. Particularly, alteration of Poisson assumptions, adding heterogeneity to decision-making processes of agents, and discrete-time formulation are investigated and their impacts are illustrated. The goal is to demonstrate both the promise and danger of agent-based modeling in the context of a relatively simple model and to delineate the importance of modeling decisions that are often overlooked.

  20. Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model.

    PubMed

    Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C

    2014-01-01

    Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement.

  1. Agent-Based Multicellular Modeling for Predictive Toxicology

    EPA Science Inventory

    Biological modeling is a rapidly growing field that has benefited significantly from recent technological advances, expanding traditional methods with greater computing power, parameter-determination algorithms, and the development of novel computational approaches to modeling bi...

  2. Model-Drive Architecture for Agent-Based Systems

    NASA Technical Reports Server (NTRS)

    Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.

    2004-01-01

    The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.

  3. Dynamic Exploration of Helicopter Reconnaissance Through Agent-Based Modeling

    DTIC Science & Technology

    2000-09-01

    Multi - Agent System modeling to develop a simulation of tactical helicopter performance while conducting armed reconnaissance. It focuses on creating a model to support planning for the Test and Evaluation phas of the Comanche helicopter acquisition cycle. The model serves as an initial simulation laboratory for scenario planning, requirements forecasting, and platform comparison analyses. The model implements adaptive tactical movement with agent sensory and weaponry system characteristics. Agents are able to determine their movement direction and paths based on

  4. Agent-based modeling for the landuse change of hunter-gather societies and the impacts on biodiversity in Guyana

    NASA Astrophysics Data System (ADS)

    Iwamura, T.; Fragoso, J.; Lambin, E.

    2012-12-01

    The interactions with animals are vital to the Amerindian, indigenous people, of Rupunini savannah-forest in Guyana. Their connections extend from basic energy and protein resource to spiritual bonding through "paring" to a certain animal in the forest. We collected extensive dataset of 23 indigenous communities for 3.5 years, consisting 9900 individuals from 1307 households, as well as animal observation data in 8 transects per communities (47,000 data entries). In this presentation, our research interest is to model the driver of land use change of the indigenous communities and its impacts on the ecosystem in the Rupunini area under global change. Overarching question we would like to answer with this program is to find how and why "tipping-point" from hunting gathering society to the agricultural society occurs in the future. Secondary question is what is the implication of the change to agricultural society in terms of biodiversity and carbon stock in the area, and eventually the well-being of Rupunini people. To answer the questions regarding the society shift in agriculture activities, we built as simulation with Agent-Based Modeling (Multi Agents Simulation). We developed this simulation by using Netlogo, the programming environment specialized for spatially explicit agent-based modeling (ABM). This simulation consists of four different process in the Rupunini landscape; forest succession, animal population growth, hunting of animals, and land clearing for agriculture. All of these processes are carried out by a set of computational unit, called "agents". In this program, there are four types of agents - patches, villages, households, and animals. Here, we describe the impacts of hunting on the biodiversity based on actual demographic data from one village named Crush Water. Animal population within the hunting territory of the village stabilized but Agouti/Paca dominates the landscape with little population of armadillos and peccaries. White-tailed deers

  5. Agent based modeling of the coevolution of hostility and pacifism

    NASA Astrophysics Data System (ADS)

    Dalmagro, Fermin; Jimenez, Juan

    2015-01-01

    We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.

  6. An agent-based computational model for tuberculosis spreading on age-structured populations

    NASA Astrophysics Data System (ADS)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  7. Multi-agent-based Order Book Model of financial markets

    NASA Astrophysics Data System (ADS)

    Preis, T.; Golke, S.; Paul, W.; Schneider, J. J.

    2006-08-01

    We introduce a simple model for simulating financial markets, based on an order book, in which several agents trade one asset at a virtual exchange continuously. For a stationary market the structure of the model, the order flow rates of the different kinds of order types and the used price time priority matching algorithm produce only a diffusive price behavior. We show that a market trend, i.e. an asymmetric order flow of any type, leads to a non-trivial Hurst exponent for the price development, but not to "fat-tailed" return distributions. When one additionally couples the order entry depth to the prevailing trend, also the stylized empirical fact of "fat tails" can be reproduced by our Order Book Model.

  8. Empirical Data Sets for Agent Based Modeling of Crowd Scenarios

    DTIC Science & Technology

    2009-08-06

    Conclusion 2UNCLASSIFIED- Approved for Public Release Crowd Research • Large numbers • Heterogeneous • Individual Actors • Interdependence • Language ... Barriers • Empirical testing is difficult • Simulations require models based on real data, otherwise they are fiction 3UNCLASSIFIED- Approved for

  9. Statistical properties of agent-based market area model

    NASA Astrophysics Data System (ADS)

    Kuscsik, Zoltán; Horváth, Denis

    One dimensional stylized model taking into account spatial activity of firms with uniformly distributed customers is proposed. The spatial selling area of each firm is defined by a short interval cut out from selling space (large interval). In this represen- tation, the firm size is directly associated with the size of its selling interval.

  10. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  11. Pattern-oriented modeling of agent-based complex systems: lessons from ecology.

    PubMed

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M; Railsback, Steven F; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L

    2005-11-11

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  12. Efficient Agent-Based Models for Non-Genomic Evolution

    NASA Technical Reports Server (NTRS)

    Gupta, Nachi; Agogino, Adrian; Tumer, Kagan

    2006-01-01

    Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.

  13. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models

    SciTech Connect

    Paul M. Torrens; Atsushi Nara; Xun Li; Haojie Zhu; William A. Griffin; Scott B. Brown

    2012-01-01

    Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be 'good enough' for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.

  14. An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard W.

    This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.

  15. Agent-Based Knowledge Discovery for Modeling and Simulation

    SciTech Connect

    Haack, Jereme N.; Cowell, Andrew J.; Marshall, Eric J.; Fligg, Alan K.; Gregory, Michelle L.; McGrath, Liam R.

    2009-09-15

    This paper describes an approach to using agent technology to extend the automated discovery mechanism of the Knowledge Encapsulation Framework (KEF). KEF is a suite of tools to enable the linking of knowledge inputs (relevant, domain-specific evidence) to modeling and simulation projects, as well as other domains that require an effective collaborative workspace for knowledge-based tasks. This framework can be used to capture evidence (e.g., trusted material such as journal articles and government reports), discover new evidence (covering both trusted and social media), enable discussions surrounding domain-specific topics and provide automatically generated semantic annotations for improved corpus investigation. The current KEF implementation is presented within a semantic wiki environment, providing a simple but powerful collaborative space for team members to review, annotate, discuss and align evidence with their modeling frameworks. The novelty in this approach lies in the combination of automatically tagged and user-vetted resources, which increases user trust in the environment, leading to ease of adoption for the collaborative environment.

  16. Agent-based modeling of lane discipline in heterogeneous traffic

    NASA Astrophysics Data System (ADS)

    Dailisan, Damian N.; Lim, May T.

    2016-09-01

    Designating lanes for different vehicle types is ideal road safety-wise. Practical considerations, however, require road sharing. Using a modified Nagel-Schreckenberg cellular automata model for two vehicle types (cars and motorcycles), we analyzed the interplay of lane discipline, lane changing, and vehicle density. In the absence of lane changing, the transition between free flow and congested states occurs at a higher vehicle (road occupation) density when the ratio of cars to motorcycles is increased. When lane changing is allowed, the smaller motorcycles tend to fill in unused spaces, until the point when the wider cars effectively block their way at high vehicle densities. When the condition of lane discipline is not imposed, i.e. staying wholly within lane boundaries is not required, further improvement in throughput becomes possible at the cost of required driver attentiveness.

  17. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  18. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  19. Examining the Impact of the Walking School Bus With an Agent-Based Model

    PubMed Central

    Diez-Roux, Ana; Evenson, Kelly R.; Colabianchi, Natalie

    2014-01-01

    We used an agent-based model to examine the impact of the walking school bus (WSB) on children’s active travel to school. We identified a synergistic effect of the WSB with other intervention components such as an educational campaign designed to improve attitudes toward active travel to school. Results suggest that to maximize active travel to school, children should arrive on time at “bus stops” to allow faster WSB walking speeds. We also illustrate how an agent-based model can be used to identify the location of routes maximizing the effects of the WSB on active travel. Agent-based models can be used to examine plausible effects of the WSB on active travel to school under various conditions and to identify ways of implementing the WSB that maximize its effectiveness. PMID:24832410

  20. Demeter, persephone, and the search for emergence in agent-based models.

    SciTech Connect

    North, M. J.; Howe, T. R.; Collier, N. T.; Vos, J. R.; Decision and Information Sciences; Univ. of Chicago; PantaRei Corp.; Univ. of Illinois

    2006-01-01

    In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent or potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.

  1. Consentaneous Agent-Based and Stochastic Model of the Financial Markets

    PubMed Central

    Gontis, Vygintas; Kononovicius, Aleksejus

    2014-01-01

    We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation. PMID:25029364

  2. Consentaneous agent-based and stochastic model of the financial markets.

    PubMed

    Gontis, Vygintas; Kononovicius, Aleksejus

    2014-01-01

    We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation.

  3. Lapse of time effects on tax evasion in an agent-based econophysics model

    NASA Astrophysics Data System (ADS)

    Seibold, Götz; Pickhardt, Michael

    2013-05-01

    We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.

  4. Data-driven agent-based modeling, with application to rooftop solar adoption

    DOE PAGES

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...

    2016-01-25

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less

  5. Data-driven agent-based modeling, with application to rooftop solar adoption

    SciTech Connect

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; Lakkaraju, Kiran

    2016-01-25

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends and provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.

  6. Synthesized Population Databases: A US Geospatial Database for Agent-Based Models.

    PubMed

    Wheaton, William D; Cajka, James C; Chasteen, Bernadette M; Wagener, Diane K; Cooley, Philip C; Ganapathi, Laxminarayana; Roberts, Douglas J; Allpress, Justine L

    2009-05-01

    Agent-based models simulate large-scale social systems. They assign behaviors and activities to "agents" (individuals) within the population being modeled and then allow the agents to interact with the environment and each other in complex simulations. Agent-based models are frequently used to simulate infectious disease outbreaks, among other uses.RTI used and extended an iterative proportional fitting method to generate a synthesized, geospatially explicit, human agent database that represents the US population in the 50 states and the District of Columbia in the year 2000. Each agent is assigned to a household; other agents make up the household occupants.For this database, RTI developed the methods for generating synthesized households and personsassigning agents to schools and workplaces so that complex interactions among agents as they go about their daily activities can be taken into accountgenerating synthesized human agents who occupy group quarters (military bases, college dormitories, prisons, nursing homes).In this report, we describe both the methods used to generate the synthesized population database and the final data structure and data content of the database. This information will provide researchers with the information they need to use the database in developing agent-based models.Portions of the synthesized agent database are available to any user upon request. RTI will extract a portion (a county, region, or state) of the database for users who wish to use this database in their own agent-based models.

  7. Research on monocentric model of urbanization by agent-based simulation

    NASA Astrophysics Data System (ADS)

    Xue, Ling; Yang, Kaizhong

    2008-10-01

    Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.

  8. The ABM Treaty

    SciTech Connect

    Stutzle, W.; Jasani, B.; Cowen, R.

    1987-01-01

    The foremost challenge of this age and the next is to harness our political resources to prevent the East-West relationship from turning into a conflict. Among the measures employed to stabilize the strategic relationship, the 1972 Anti-Ballistic Missile (ABM) Treaty is of profound importance. It codifies the central principle of the nuclear age: a co-operative approach in limiting offensive and defensive strategic forces. This principle has been challenged-both by failures in East and West to resist the allure of technology and by a more general errosion of political will to tackle together the problems of the nuclear offence-defence relationship. This paper makes a contribution to the debate over the strategic relationship, in particular the role of the ABM Treaty. It is first in a series of Strategic Issue Papers (SIP) that address topical issues of international peace and security. In order to contribute to a better understanding of the problems involved and to stimulate debate, SIPRI has produced this book before the commencement of the third ABM Treaty Review Conference.

  9. Linking agent-based models and stochastic models of financial markets.

    PubMed

    Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H Eugene

    2012-05-29

    It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that "fat" tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting.

  10. Linking agent-based models and stochastic models of financial markets

    PubMed Central

    Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H. Eugene

    2012-01-01

    It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that “fat” tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting. PMID:22586086

  11. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  12. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry.

  13. Numerical Problems and Agent-Based Models for a Mass Transfer Course

    ERIC Educational Resources Information Center

    Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.

    2009-01-01

    Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…

  14. High performance computing for three-dimensional agent-based molecular models.

    PubMed

    Pérez-Rodríguez, G; Pérez-Pérez, M; Fdez-Riverola, F; Lourenço, A

    2016-07-01

    Agent-based simulations are increasingly popular in exploring and understanding cellular systems, but the natural complexity of these systems and the desire to grasp different modelling levels demand cost-effective simulation strategies and tools. In this context, the present paper introduces novel sequential and distributed approaches for the three-dimensional agent-based simulation of individual molecules in cellular events. These approaches are able to describe the dimensions and position of the molecules with high accuracy and thus, study the critical effect of spatial distribution on cellular events. Moreover, two of the approaches allow multi-thread high performance simulations, distributing the three-dimensional model in a platform independent and computationally efficient way. Evaluation addressed the reproduction of molecular scenarios and different scalability aspects of agent creation and agent interaction. The three approaches simulate common biophysical and biochemical laws faithfully. The distributed approaches show improved performance when dealing with large agent populations while the sequential approach is better suited for small to medium size agent populations. Overall, the main new contribution of the approaches is the ability to simulate three-dimensional agent-based models at the molecular level with reduced implementation effort and moderate-level computational capacity. Since these approaches have a generic design, they have the major potential of being used in any event-driven agent-based tool.

  15. Agent based simulations in disease modeling Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Pappalardo, Francesco; Pennisi, Marzio

    2016-07-01

    Fibrosis represents a process where an excessive tissue formation in an organ follows the failure of a physiological reparative or reactive process. Mathematical and computational techniques may be used to improve the understanding of the mechanisms that lead to the disease and to test potential new treatments that may directly or indirectly have positive effects against fibrosis [1]. In this scenario, Ben Amar and Bianca [2] give us a broad picture of the existing mathematical and computational tools that have been used to model fibrotic processes at the molecular, cellular, and tissue levels. Among such techniques, agent based models (ABM) can give a valuable contribution in the understanding and better management of fibrotic diseases.

  16. Modeling the Information Age Combat Model: An Agent-Based Simulation of Network Centric Operations

    NASA Technical Reports Server (NTRS)

    Deller, Sean; Rabadi, Ghaith A.; Bell, Michael I.; Bowling, Shannon R.; Tolk, Andreas

    2010-01-01

    The Information Age Combat Model (IACM) was introduced by Cares in 2005 to contribute to the development of an understanding of the influence of connectivity on force effectiveness that can eventually lead to quantitative prediction and guidelines for design and employment. The structure of the IACM makes it clear that the Perron-Frobenius Eigenvalue is a quantifiable metric with which to measure the organization of a networked force. The results of recent experiments presented in Deller, et aI., (2009) indicate that the value of the Perron-Frobenius Eigenvalue is a significant measurement of the performance of an Information Age combat force. This was accomplished through the innovative use of an agent-based simulation to model the IACM and represents an initial contribution towards a new generation of combat models that are net-centric instead of using the current platform-centric approach. This paper describes the intent, challenges, design, and initial results of this agent-based simulation model.

  17. Agent-based model for rural-urban migration: A dynamic consideration

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid

    2015-10-01

    This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.

  18. Architectural considerations for agent-based national scale policy models : LDRD final report.

    SciTech Connect

    Backus, George A.; Strip, David R.

    2007-09-01

    The need to anticipate the consequences of policy decisions becomes ever more important as the magnitude of the potential consequences grows. The multiplicity of connections between the components of society and the economy makes intuitive assessments extremely unreliable. Agent-based modeling has the potential to be a powerful tool in modeling policy impacts. The direct mapping between agents and elements of society and the economy simplify the mapping of real world functions into the world of computation assessment. Our modeling initiative is motivated by the desire to facilitate informed public debate on alternative policies for how we, as a nation, provide healthcare to our population. We explore the implications of this motivation on the design and implementation of a model. We discuss the choice of an agent-based modeling approach and contrast it to micro-simulation and systems dynamics approaches.

  19. An Agent-Based Model of New Venture Creation: Conceptual Design for Simulating Entrepreneurship

    NASA Technical Reports Server (NTRS)

    Provance, Mike; Collins, Andrew; Carayannis, Elias

    2012-01-01

    There is a growing debate over the means by which regions can foster the growth of entrepreneurial activity in order to stimulate recovery and growth of their economies. On one side, agglomeration theory suggests the regions grow because of strong clusters that foster knowledge spillover locally; on the other side, the entrepreneurial action camp argues that innovative business models are generated by entrepreneurs with unique market perspectives who draw on knowledge from more distant domains. We will show you the design for a novel agent-based model of new venture creation that will demonstrate the relationship between agglomeration and action. The primary focus of this model is information exchange as the medium for these agent interactions. Our modeling and simulation study proposes to reveal interesting relationships in these perspectives, offer a foundation on which these disparate theories from economics and sociology can find common ground, and expand the use of agent-based modeling into entrepreneurship research.

  20. An agent-based model of signal transduction in bacterial chemotaxis.

    PubMed

    Miller, Jameson; Parker, Miles; Bourret, Robert B; Giddings, Morgan C

    2010-05-13

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  1. Addressing the translational dilemma: dynamic knowledge representation of inflammation using agent-based modeling.

    PubMed

    An, Gary; Christley, Scott

    2012-01-01

    Given the panoply of system-level diseases that result from disordered inflammation, such as sepsis, atherosclerosis, cancer, and autoimmune disorders, understanding and characterizing the inflammatory response is a key target of biomedical research. Untangling the complex behavioral configurations associated with a process as ubiquitous as inflammation represents a prototype of the translational dilemma: the ability to translate mechanistic knowledge into effective therapeutics. A critical failure point in the current research environment is a throughput bottleneck at the level of evaluating hypotheses of mechanistic causality; these hypotheses represent the key step toward the application of knowledge for therapy development and design. Addressing the translational dilemma will require utilizing the ever-increasing power of computers and computational modeling to increase the efficiency of the scientific method in the identification and evaluation of hypotheses of mechanistic causality. More specifically, development needs to focus on facilitating the ability of non-computer trained biomedical researchers to utilize and instantiate their knowledge in dynamic computational models. This is termed "dynamic knowledge representation." Agent-based modeling is an object-oriented, discrete-event, rule-based simulation method that is well suited for biomedical dynamic knowledge representation. Agent-based modeling has been used in the study of inflammation at multiple scales. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggest that this modeling framework is well suited for addressing the translational dilemma. This review describes agent-based modeling, gives examples of its applications in the study of inflammation, and introduces a proposed general expansion of the use of modeling and simulation to augment the generation and evaluation of knowledge

  2. Fluctuation complexity of agent-based financial time series model by stochastic Potts system

    NASA Astrophysics Data System (ADS)

    Hong, Weijia; Wang, Jun

    2015-03-01

    Financial market is a complex evolved dynamic system with high volatilities and noises, and the modeling and analyzing of financial time series are regarded as the rather challenging tasks in financial research. In this work, by applying the Potts dynamic system, a random agent-based financial time series model is developed in an attempt to uncover the empirical laws in finance, where the Potts model is introduced to imitate the trading interactions among the investing agents. Based on the computer simulation in conjunction with the statistical analysis and the nonlinear analysis, we present numerical research to investigate the fluctuation behaviors of the proposed time series model. Furthermore, in order to get a robust conclusion, we consider the daily returns of Shanghai Composite Index and Shenzhen Component Index, and the comparison analysis of return behaviors between the simulation data and the actual data is exhibited.

  3. Electricity Market Games: How Agent-Based Modeling Can Help under High Penetrations of Variable Generation

    SciTech Connect

    Gallo, Giulia

    2016-03-01

    Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.

  4. An Advanced Computational Approach to System of Systems Analysis & Architecting Using Agent-Based Behavioral Model

    DTIC Science & Technology

    2012-09-30

    The Wave Process Model provides a framework for an agent-based modeling methodology, which is used to abstract the non- utopian behavioral aspects...that SoS participants exhibit nominal behavior ( utopian behavior), but deviation from nominal motivation leads to complications and disturbances in... characteristics . Figure 2 outlines the agent architecture components and flow of information among components. Own Process Control (OPC) Cooperation

  5. 75 FR 11937 - ABM Janitorial Services, Subsidiary of ABM Industries, Inc., Janitorial Division, Formerly...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration ABM Janitorial Services, Subsidiary of ABM Industries, Inc..., 2009 on behalf of workers of ABM Janitorial Services, subsidiary of ABM Industries, Inc.,...

  6. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  7. Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.

    2014-12-01

    Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.

  8. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems: A Case Study on Vocal Fold Inflammation and Healing.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2016-05-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.

  9. Pain expressiveness and altruistic behavior: an exploration using agent-based modeling.

    PubMed

    de C Williams, Amanda C; Gallagher, Elizabeth; Fidalgo, Antonio R; Bentley, Peter J

    2016-03-01

    Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.

  10. Investigating mathematical models of immuno-interactions with early-stage cancer under an agent-based modelling perspective

    PubMed Central

    2013-01-01

    Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena. PMID:23734575

  11. Investigating mathematical models of immuno-interactions with early-stage cancer under an agent-based modelling perspective.

    PubMed

    Figueredo, Grazziela P; Siebers, Peer-Olaf; Aickelin, Uwe

    2013-01-01

    Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena.

  12. An agent-based model of collective emotions in online communities

    NASA Astrophysics Data System (ADS)

    Schweitzer, F.; Garcia, D.

    2010-10-01

    We develop an agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agent’s individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent’s arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.

  13. Using an agent-based model to simulate children’s active travel to school

    PubMed Central

    2013-01-01

    Background Despite the multiple advantages of active travel to school, only a small percentage of US children and adolescents walk or bicycle to school. Intervention studies are in a relatively early stage and evidence of their effectiveness over long periods is limited. The purpose of this study was to illustrate the utility of agent-based models in exploring how various policies may influence children’s active travel to school. Methods An agent-based model was developed to simulate children’s school travel behavior within a hypothetical city. The model was used to explore the plausible implications of policies targeting two established barriers to active school travel: long distance to school and traffic safety. The percent of children who walk to school was compared for various scenarios. Results To maximize the percent of children who walk to school the school locations should be evenly distributed over space and children should be assigned to the closest school. In the case of interventions to improve traffic safety, targeting a smaller area around the school with greater intensity may be more effective than targeting a larger area with less intensity. Conclusions Despite the challenges they present, agent based models are a useful complement to other analytical strategies in studying the plausible impact of various policies on active travel to school. PMID:23705953

  14. Financial price dynamics and agent-based models as inspired by Benoit Mandelbrot

    NASA Astrophysics Data System (ADS)

    LeBaron, Blake

    2016-12-01

    This short note draws some connections between Mandelbrot‗s empirical legacy, and the interdisciplinary work that followed in finance. Much of this work is now labeled econophysics, but some has always been more in the realm of economics than physics. In a few areas the overlap is even becoming quite complete as in market microstructure. I will also give some ideas about the various successes and failures in this area, and some directions for the future of agent- based modeling in particular.

  15. A Novel Application of Agent-based Modeling: Projecting Water Access and Availability Using a Coupled Hydrologic Agent-based Model in the Nzoia Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Le, A.; Pricope, N. G.

    2015-12-01

    Projections indicate that increasing population density, food production, and urbanization in conjunction with changing climate conditions will place stress on water resource availability. As a result, a holistic understanding of current and future water resource distribution is necessary for creating strategies to identify the most sustainable means of accessing this resource. Currently, most water resource management strategies rely on the application of global climate predictions to physically based hydrologic models to understand potential changes in water availability. However, the need to focus on understanding community-level social behaviors that determine individual water usage is becoming increasingly evident, as predictions derived only from hydrologic models cannot accurately represent the coevolution of basin hydrology and human water and land usage. Models that are better equipped to represent the complexity and heterogeneity of human systems and satellite-derived products in place of or in conjunction with historic data significantly improve preexisting hydrologic model accuracy and application outcomes. We used a novel agent-based sociotechnical model that combines the Soil and Water Assessment Tool (SWAT) and Agent Analyst and applied it in the Nzoia Basin, an area in western Kenya that is becoming rapidly urbanized and industrialized. Informed by a combination of satellite-derived products and over 150 household surveys, the combined sociotechnical model provided unique insight into how populations self-organize and make decisions based on water availability. In addition, the model depicted how population organization and current management alter water availability currently and in the future.

  16. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    SciTech Connect

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  17. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies

    SciTech Connect

    Gallo, Giulia

    2016-01-08

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  18. A Harris-Todaro Agent-Based Model to Rural-Urban Migration

    NASA Astrophysics Data System (ADS)

    Espíndola, Aquino L.; Silveira, Jaylson J.; Penna, T. J. P.

    2006-09-01

    The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.

  19. A mathematical framework for agent based models of complex biological networks.

    PubMed

    Hinkelmann, Franziska; Murrugarra, David; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2011-07-01

    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models, it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis. This mathematical framework can also accommodate other model types such as Boolean networks and the more general logical models, as well as Petri nets.

  20. Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)

    2002-01-01

    The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.

  1. Uses of Agent-Based Modeling for Health Communication: the TELL ME Case Study.

    PubMed

    Barbrook-Johnson, Peter; Badham, Jennifer; Gilbert, Nigel

    2016-07-19

    Government communication is an important management tool during a public health crisis, but understanding its impact is difficult. Strategies may be adjusted in reaction to developments on the ground and it is challenging to evaluate the impact of communication separately from other crisis management activities. Agent-based modeling is a well-established research tool in social science to respond to similar challenges. However, there have been few such models in public health. We use the example of the TELL ME agent-based model to consider ways in which a non-predictive policy model can assist policy makers. This model concerns individuals' protective behaviors in response to an epidemic, and the communication that influences such behavior. Drawing on findings from stakeholder workshops and the results of the model itself, we suggest such a model can be useful: (i) as a teaching tool, (ii) to test theory, and (iii) to inform data collection. We also plot a path for development of similar models that could assist with communication planning for epidemics.

  2. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    SciTech Connect

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  3. An agent-based model for domestic water management in Valladolid metropolitan area

    NASA Astrophysics Data System (ADS)

    GaláN, José M.; López-Paredes, Adolfo; Del Olmo, Ricardo

    2009-05-01

    In this work we demonstrate that the combination of agent-based modeling and simulation constitutes a useful methodological approach to dealing with the complexity derived from multiple factors with influence in the domestic water management in emergent metropolitan areas. In particular, we adapt and integrate different social submodels, models of urban dynamics, water consumption, and technological and opinion diffusion, in an agent-based model that is, in turn, linked with a geographic information system. The result is a computational environment that enables simulating and comparing various water demand scenarios. We have parameterized our general model for the metropolitan area of Valladolid (Spain).The model shows the influence of urban dynamics (e.g., intrapopulation movements, residence typology, and changes in the territorial model) and other socio-geographic effects (technological and opinion dynamics) in domestic water demand. The conclusions drawn in this way would have been difficult to obtain using other approaches, such as conventional forecasting methods, given the need to integrate different socioeconomic and geographic aspects in one single model. We illustrate that the described methodology can complement conventional approaches, providing descriptive and formal additional insights into domestic water demand management problems.

  4. A spatial web/agent-based model to support stakeholders' negotiation regarding land development.

    PubMed

    Pooyandeh, Majeed; Marceau, Danielle J

    2013-11-15

    Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second

  5. An Agent-Based Model of Farmer Decision Making in Jordan

    NASA Astrophysics Data System (ADS)

    Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim

    2016-04-01

    We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.

  6. Agent-based Model for the Coupled Human-Climate System

    NASA Astrophysics Data System (ADS)

    Zvoleff, A.; Werner, B.

    2006-12-01

    Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.

  7. Simulating the elimination of sleeping sickness with an agent-based model

    PubMed Central

    Grébaut, Pascal; Girardin, Killian; Fédérico, Valentine; Bousquet, François

    2016-01-01

    Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci. PMID:28008825

  8. An Agent-Based Model of Centralized Institutions, Social Network Technology, and Revolution

    PubMed Central

    Makowsky, Michael D.; Rubin, Jared

    2013-01-01

    This paper sheds light on the general mechanisms underlying large-scale social and institutional change. We employ an agent-based model to test the impact of authority centralization and social network technology on preference falsification and institutional change. We find that preference falsification is increasing with centralization and decreasing with social network range. This leads to greater cascades of preference revelation and thus more institutional change in highly centralized societies and this effect is exacerbated at greater social network ranges. An empirical analysis confirms the connections that we find between institutional centralization, social radius, preference falsification, and institutional change. PMID:24278280

  9. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  10. Preliminary analysis of an agent-based model for a tick-borne disease.

    PubMed

    Gaff, Holly

    2011-04-01

    Ticks have a unique life history including a distinct set of life stages and a single blood meal per life stage. This makes tick-host interactions more complex from a mathematical perspective. In addition, any model of these interactions must involve a significant degree of stochasticity on the individual tick level. In an attempt to quantify these relationships, I have developed an individual-based model of the interactions between ticks and their hosts as well as the transmission of tick-borne disease between the two populations. The results from this model are compared with those from previously published differential equation based population models. The findings show that the agent-based model produces significantly lower prevalence of disease in both the ticks and their hosts than what is predicted by a similar differential equation model.

  11. SDI and the ABM treaty

    SciTech Connect

    Graybeal, S.N.

    1988-01-01

    This article analyses compatibility and conflict between the SDI research program and the ABM Treaty; includes a scenario for managing conflicts that may arise from SDI technological advances and research.

  12. Agent-based modeling of the immune system: NetLogo, a promising framework.

    PubMed

    Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

  13. Agent-Based Modeling of the Immune System: NetLogo, a Promising Framework

    PubMed Central

    Chiacchio, Ferdinando; Russo, Giulia; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms. PMID:24864263

  14. iCrowd: agent-based behavior modeling and crowd simulator

    NASA Astrophysics Data System (ADS)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  15. Agent-based modeling of osteogenic differentiation of mesenchymal stem cells in porous biomaterials.

    PubMed

    Bayrak, Elif S; Mehdizadeh, Hamidreza; Akar, Banu; Somo, Sami I; Brey, Eric M; Cinar, Ali

    2014-01-01

    Mesenchymal stem cells (MSC) have shown promise in tissue engineering applications due to their potential for differentiating into mesenchymal tissues such as osteocytes, chondrocytes, and adipocytes and releasing proteins to promote tissue regeneration. One application involves seeding MSCs in biomaterial scaffolds to promote osteogenesis in the repair of bone defects following implantation. However, predicting in vivo survival and differentiation of MSCs in biomaterials is challenging. Rapid and stable vascularization of scaffolds is required to supply nutrients and oxygen that MSCs need to survive as well as to go through osteogenic differentiation. The objective of this study is to develop an agent-based model and simulator that can be used to investigate the effects of using gradient growth factors on survival and differentiation of MSCs seeded in scaffolds. An agent-based model is developed to simulate the MSC behavior. The effect of vascular endothelial growth factor (VEGF) and bone morphogenic protein-2 (BMP-2) on both survival and osteogenic differentiation is studied. Results showed that the survival ratio of MSCs can be enhanced by increasing VEGF concentration. BMP-2 caused a slight increase on survival ratio. Osteogenesis strongly depends on the VEGF concentration as well because of its effect on vascularization. BMP-2 increased the osteogenic differentiation of MSCs.

  16. Estimating impacts of climate change policy on land use: an agent-based modelling approach.

    PubMed

    Morgan, Fraser J; Daigneault, Adam J

    2015-01-01

    Agriculture is important to New Zealand's economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer's decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises.

  17. Estimating Impacts of Climate Change Policy on Land Use: An Agent-Based Modelling Approach

    PubMed Central

    2015-01-01

    Agriculture is important to New Zealand’s economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer’s decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises. PMID:25996591

  18. Linking MODFLOW with an agent-based land-use model to support decision making

    USGS Publications Warehouse

    Reeves, H.W.; Zellner, M.L.

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  19. Linking MODFLOW with an agent-based land-use model to support decision making.

    PubMed

    Reeves, Howard W; Zellner, Moira L

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time.

  20. An agent-based simulation model to study accountable care organizations.

    PubMed

    Liu, Pai; Wu, Shinyi

    2016-03-01

    Creating accountable care organizations (ACOs) has been widely discussed as a strategy to control rapidly rising healthcare costs and improve quality of care; however, building an effective ACO is a complex process involving multiple stakeholders (payers, providers, patients) with their own interests. Also, implementation of an ACO is costly in terms of time and money. Immature design could cause safety hazards. Therefore, there is a need for analytical model-based decision-support tools that can predict the outcomes of different strategies to facilitate ACO design and implementation. In this study, an agent-based simulation model was developed to study ACOs that considers payers, healthcare providers, and patients as agents under the shared saving payment model of care for congestive heart failure (CHF), one of the most expensive causes of sometimes preventable hospitalizations. The agent-based simulation model has identified the critical determinants for the payment model design that can motivate provider behavior changes to achieve maximum financial and quality outcomes of an ACO. The results show nonlinear provider behavior change patterns corresponding to changes in payment model designs. The outcomes vary by providers with different quality or financial priorities, and are most sensitive to the cost-effectiveness of CHF interventions that an ACO implements. This study demonstrates an increasingly important method to construct a healthcare system analytics model that can help inform health policy and healthcare management decisions. The study also points out that the likely success of an ACO is interdependent with payment model design, provider characteristics, and cost and effectiveness of healthcare interventions.

  1. CystiSim - An Agent-Based Model for Taenia solium Transmission and Control.

    PubMed

    Braae, Uffe Christian; Devleesschauwer, Brecht; Gabriël, Sarah; Dorny, Pierre; Speybroeck, Niko; Magnussen, Pascal; Torgerson, Paul; Johansen, Maria Vang

    2016-12-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities-pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential

  2. CystiSim – An Agent-Based Model for Taenia solium Transmission and Control

    PubMed Central

    Gabriël, Sarah; Dorny, Pierre; Speybroeck, Niko; Magnussen, Pascal; Torgerson, Paul; Johansen, Maria Vang

    2016-01-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities—pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential

  3. Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems

    PubMed Central

    Chen, Jun-Jie; Zheng, Bo; Tan, Lei

    2013-01-01

    Background For complex financial systems, the negative and positive return-volatility correlations, i.e., the so-called leverage and anti-leverage effects, are particularly important for the understanding of the price dynamics. However, the microscopic origination of the leverage and anti-leverage effects is still not understood, and how to produce these effects in agent-based modeling remains open. On the other hand, in constructing microscopic models, it is a promising conception to determine model parameters from empirical data rather than from statistical fitting of the results. Methods To study the microscopic origination of the return-volatility correlation in financial systems, we take into account the individual and collective behaviors of investors in real markets, and construct an agent-based model. The agents are linked with each other and trade in groups, and particularly, two novel microscopic mechanisms, i.e., investors’ asymmetric trading and herding in bull and bear markets, are introduced. Further, we propose effective methods to determine the key parameters in our model from historical market data. Results With the model parameters determined for six representative stock-market indices in the world, respectively, we obtain the corresponding leverage or anti-leverage effect from the simulation, and the effect is in agreement with the empirical one on amplitude and duration. At the same time, our model produces other features of the real markets, such as the fat-tail distribution of returns and the long-term correlation of volatilities. Conclusions We reveal that for the leverage and anti-leverage effects, both the investors’ asymmetric trading and herding are essential generation mechanisms. Among the six markets, however, the investors’ trading is approximately symmetric for the five markets which exhibit the leverage effect, thus contributing very little. These two microscopic mechanisms and the methods for the determination of the key

  4. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    NASA Astrophysics Data System (ADS)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  5. A three-dimensional multi-agent-based model for the evolution of Chagas' disease.

    PubMed

    Galvão, Viviane; Miranda, José Garcia Vivas

    2010-06-01

    A better understanding of Chagas' disease is important because the knowledge about the progression and the participation of the different types of cells in this disease are still lacking. To clarify this system, the kinetics of inflammatory cells and parasite nests was shown in an experiment. Using this experimental data, we have developed a three-dimensional multi-agent-based computational model for the evolution of Chagas' disease. Our model includes five different types of agents: inflammatory cell, fibrosis, cardiomyocyte, fibroblast, and Trypanosoma cruzi. Fibrosis is fixed and the other types of agents can move through the empty space. They move randomly by using the Moore neighborhood. This model reproduces the acute and chronic phases of Chagas' disease and the volume occupied by all different types of cells in the cardiac tissue.

  6. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  7. Minority persistence in agent based model using information and emotional arousal as control variables

    NASA Astrophysics Data System (ADS)

    Sobkowicz, Pawel

    2013-07-01

    We present detailed analysis of the behavior of an agent based model of opinion formation, using a discrete variant of cusp catastrophe behavior of single agents. The agent opinion about a particular issue is determined by its information about the issue and its emotional arousal. It is possible that for agitated agents the same information would lead to different opinions. This results in a nontrivial individual opinion dynamics. The agents communicate via messages, which allows direct application of the model to ICT based communities. We study the dependence of the composition of an agent society on the range of interactions and the rate of emotional arousal. Despite the minimal number of adjustable parameters, the model reproduces several phenomena observed in real societies, for example nearly perfectly balanced results of some highly contested elections or the fact that minorities seldom perceive themselves to be a minority.

  8. Study of the attractor structure of an agent-based sociological model

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2011-03-01

    The Sznajd model is a sociophysics model that is based in the Potts model, and used for describing opinion propagation in a society. It employs an agent-based approach and interaction rules favouring pairs of agreeing agents. It has been successfully employed in modeling some properties and scale features of both proportional and majority elections (see for instance the works of A. T. Bernardes and R. N. Costa Filho), but its stationary states are always consensus states. In order to explain more complicated behaviours, we have modified the bounded confidence idea (introduced before in other opinion models, like the Deffuant model), with the introduction of prejudices and biases (we called this modification confidence rules), and have adapted it to the discrete Sznajd model. This generalized Sznajd model is able to reproduce almost all of the previous versions of the Sznajd model, by using appropriate choices of parameters. We solved the attractor structure of the resulting model in a mean-field approach and made Monte Carlo simulations in a Barabási-Albert network. These simulations show great similarities with the mean-field, for the tested cases of 3 and 4 opinions. The dynamical systems approach that we devised allows for a deeper understanding of the potential of the Sznajd model as an opinion propagation model and can be easily extended to other models, like the voter model. Our modification of the bounded confidence rule can also be readily applied to other opinion propagation models.

  9. Evolving Nutritional Strategies in the Presence of Competition: A Geometric Agent-Based Model

    PubMed Central

    Senior, Alistair M.; Charleston, Michael A.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2015-01-01

    Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term ‘nutritional latitude’; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts. PMID:25815976

  10. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy

    PubMed Central

    Martin, Kyle S.; Peirce, Shayn M.

    2015-01-01

    Skeletal muscle is highly responsive to use. In particular, muscle atrophy attributable to decreased activity is a common problem among the elderly and injured/immobile. However, each muscle does not respond the same way. We developed an agent-based model that generates a tissue-level skeletal muscle response to disuse/immobilization. The model incorporates tissue-specific muscle fiber architecture parameters and simulates changes in muscle fiber size as a result of disuse-induced atrophy that are consistent with published experiments. We created simulations of 49 forelimb and hindlimb muscles of the rat by incorporating eight fiber-type and size parameters to explore how these parameters, which vary widely across muscles, influence sensitivity to disuse-induced atrophy. Of the 49 muscles modeled, the soleus exhibited the greatest atrophy after 14 days of simulated immobilization (51% decrease in fiber size), whereas the extensor digitorum communis atrophied the least (32%). Analysis of these simulations revealed that both fiber-type distribution and fiber-size distribution influence the sensitivity to disuse atrophy even though no single tissue architecture parameter correlated with atrophy rate. Additionally, software agents representing fibroblasts were incorporated into the model to investigate cellular interactions during atrophy. Sensitivity analyses revealed that fibroblast agents have the potential to affect disuse-induced atrophy, albeit with a lesser effect than fiber type and size. In particular, muscle atrophy elevated slightly with increased initial fibroblast population and increased production of TNF-α. Overall, the agent-based model provides a novel framework for investigating both tissue adaptations and cellular interactions in skeletal muscle during atrophy. PMID:25722379

  11. Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi

    Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both

  12. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  13. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    SciTech Connect

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease states in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.

  14. An adaptive scheduling model for a multi-agent based VEPR data collection actions.

    PubMed

    Vieira-Marques, Pedro; Jácome, Jorge; Hilário-Patriarca, José; Cruz-Correia, Ricardo

    2015-01-01

    With the purpose of improving the access to departmental legacy information systems, a multi agent based Virtual Electronic Patient Record (VEPR) was deployed at a major Portuguese Hospital. The agent module (MAID) is in charge of identifying new data produced (reports), collecting and making it available through an integrated web interface. The deployed MAID system uses a static interval for checking the existence of new data, however from the gathered data regarding each department data production it is observable a variable rate throughout the day. In order to address this variability an adaptive model was developed and tested in a simulated environment with real data. The model takes in consideration the past report production profiles for determining a variable query frequency in order to reduce the average time to make data available minimizing the number of departmental requests.

  15. Determination of the periodicity and synchronization of anticipative agent based supply-demand model

    NASA Astrophysics Data System (ADS)

    Škraba, A.; Bren, M.; Kofjač, D.

    2017-02-01

    The paper presents the transformation of cobweb model by including the anticipation about the supply and demand. Developed transformation leads to oscillatory behaviour. The periodic conditions of the model have been analytically determined by the application of z-transform. Periodic solutions of the system are presented in the form of an inverse Farey tree, where the Golden Ratio path could be observed. The table of periodic conditions is given up to period 8. The agent-based system was developed in order to show the possibility of controlling the system by varying the key parameter, which determines the frequency response of agents and their interaction. A note on application in the stock market has been provided.

  16. Agent based model of effects of task allocation strategies in flat organizations

    NASA Astrophysics Data System (ADS)

    Sobkowicz, Pawel

    2016-09-01

    A common practice in many organizations is to pile the work on the best performers. It is easy to implement by the management and, despite the apparent injustice, appears to be working in many situations. In our work we present a simple agent based model, constructed to simulate this practice and to analyze conditions under which the overall efficiency of the organization (for example measured by the backlog of unresolved issues) breaks down, due to the cumulative effect of the individual overloads. The model confirms that the strategy mentioned above is, indeed, rational: it leads to better global results than an alternative one, using equal workload distribution among all workers. The presented analyses focus on the behavior of the organizations close to the limit of the maximum total throughput and provide results for the growth of the unprocessed backlog in several situations, as well as suggestions related to avoiding such buildup.

  17. Microscopic understanding of heavy-tailed return distributions in an agent-based model

    NASA Astrophysics Data System (ADS)

    Schmitt, Thilo A.; Schäfer, Rudi; Münnix, Michael C.; Guhr, Thomas

    2012-11-01

    The distribution of returns in financial time series exhibits heavy tails. It has been found that gaps between the orders in the order book lead to large price shifts and thereby to these heavy tails. We set up an agent-based model to study this issue and, in particular, how the gaps in the order book emerge. The trading mechanism in our model is based on a double-auction order book. In situations where the order book is densely occupied with limit orders we do not observe fat-tailed distributions. As soon as less liquidity is available, a gap structure forms which leads to return distributions with heavy tails. We show that return distributions with heavy tails are an order-book effect if the available liquidity is constrained. This is largely independent of specific trading strategies.

  18. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    NASA Astrophysics Data System (ADS)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  19. Impact of urban planning on household's residential decisions: An agent-based simulation model for Vienna☆

    PubMed Central

    Gaube, Veronika; Remesch, Alexander

    2013-01-01

    Interest in assessing the sustainability of socio-ecological systems of urban areas has increased notably, with additional attention generated due to the fact that half the world's population now lives in cities. Urban areas face both a changing urban population size and increasing sustainability issues in terms of providing good socioeconomic and environmental living conditions. Urban planning has to deal with both challenges. Households play a major role by being affected by urban planning decisions on the one hand and by being responsible – among many other factors – for the environmental performance of a city (e.g. energy use). We here present an agent-based decision model referring to the city of Vienna, the capital of Austria, with a population of about 1.7 million (2.3 million within the metropolitan area, the latter being more than 25% of Austria's total population). Since the early 1990s, after decades of negative population growth, Vienna has been experiencing a steady increase in population, mainly driven by immigration. The aim of the agent-based decision model is to simulate new residential patterns of different household types based on demographic development and migration scenarios. Model results were used to assess spatial patterns of energy use caused by different household types in the four scenarios (1) conventional urban planning, (2) sustainable urban planning, (3) expensive centre and (4) no green area preference. Outcomes show that changes in preferences of households relating to the presence of nearby green areas have the most important impact on the distribution of households across the small-scaled city area. Additionally, the results demonstrate the importance of the distribution of different household types regarding spatial patterns of energy use. PMID:27667962

  20. Impact of urban planning on household's residential decisions: An agent-based simulation model for Vienna.

    PubMed

    Gaube, Veronika; Remesch, Alexander

    2013-07-01

    Interest in assessing the sustainability of socio-ecological systems of urban areas has increased notably, with additional attention generated due to the fact that half the world's population now lives in cities. Urban areas face both a changing urban population size and increasing sustainability issues in terms of providing good socioeconomic and environmental living conditions. Urban planning has to deal with both challenges. Households play a major role by being affected by urban planning decisions on the one hand and by being responsible - among many other factors - for the environmental performance of a city (e.g. energy use). We here present an agent-based decision model referring to the city of Vienna, the capital of Austria, with a population of about 1.7 million (2.3 million within the metropolitan area, the latter being more than 25% of Austria's total population). Since the early 1990s, after decades of negative population growth, Vienna has been experiencing a steady increase in population, mainly driven by immigration. The aim of the agent-based decision model is to simulate new residential patterns of different household types based on demographic development and migration scenarios. Model results were used to assess spatial patterns of energy use caused by different household types in the four scenarios (1) conventional urban planning, (2) sustainable urban planning, (3) expensive centre and (4) no green area preference. Outcomes show that changes in preferences of households relating to the presence of nearby green areas have the most important impact on the distribution of households across the small-scaled city area. Additionally, the results demonstrate the importance of the distribution of different household types regarding spatial patterns of energy use.

  1. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery

    PubMed Central

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526

  2. Re-Examining of Moffitt's Theory of Delinquency through Agent Based Modeling.

    PubMed

    Leaw, Jia Ning; Ang, Rebecca P; Huan, Vivien S; Chan, Wei Teng; Cheong, Siew Ann

    2015-01-01

    Moffitt's theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome.

  3. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    PubMed

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  4. Improving an Agent-Based Model by Using Interdisciplinary Approaches for Analyzing Structural Change in Agriculture

    NASA Astrophysics Data System (ADS)

    Appel, Franziska; Ostermeyer, Arlette; Balmann, Alfons; Larsen, Karin

    Structural change in the German dairy sector seems to be lagged behind. Heterogeneous farm structures, a low efficiency and profitability are persistent although farms operate under similar market and policy conditions. This raises the questions whether these structures are path dependent and how they can eventually be overcome. To answer these questions we use the agent-based model AgriPoliS. The aim of our project is to improve assumptions in AgriPoliS by using it as an experimental laboratory. In a second part AgriPoliS will be used in stakeholder workshops to define scenarios for the dairy sector and communicate and discuss results to practitioners and decision makers.

  5. Agent-based models for the emergence and evolution of grammar.

    PubMed

    Steels, Luc

    2016-08-19

    Human languages are extraordinarily complex adaptive systems. They feature intricate hierarchical sound structures, are able to express elaborate meanings and use sophisticated syntactic and semantic structures to relate sound to meaning. What are the cognitive mechanisms that speakers and listeners need to create and sustain such a remarkable system? What is the collective evolutionary dynamics that allows a language to self-organize, become more complex and adapt to changing challenges in expressive power? This paper focuses on grammar. It presents a basic cycle observed in the historical language record, whereby meanings move from lexical to syntactic and then to a morphological mode of expression before returning to a lexical mode, and discusses how we can discover and validate mechanisms that can cause these shifts using agent-based models.This article is part of the themed issue 'The major synthetic evolutionary transitions'.

  6. The Evolution of ICT Markets: An Agent-Based Model on Complex Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li

    Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.

  7. Re-Examining of Moffitt’s Theory of Delinquency through Agent Based Modeling

    PubMed Central

    Leaw, Jia Ning; Ang, Rebecca P.; Huan, Vivien S.; Chan, Wei Teng; Cheong, Siew Ann

    2015-01-01

    Moffitt’s theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome. PMID:26062022

  8. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model

    PubMed Central

    An, Gary

    2015-01-01

    Agent-based modeling has been used to characterize the nested control loops and non-linear dynamics associated with inflammatory and immune responses, particularly as a means of visualizing putative mechanistic hypotheses. This process is termed dynamic knowledge representation and serves a critical role in facilitating the ability to test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical research environment. Importantly, dynamic computational modeling aids in identifying useful abstractions, a fundamental scientific principle that pervades the physical sciences. Recognizing the critical scientific role of abstraction provides an intellectual and methodological counterweight to the tendency in biology to emphasize comprehensive description as the primary manifestation of biological knowledge. Transplant immunology represents yet another example of the challenge of identifying sufficient understanding of the inflammatory/immune response in order to develop and refine clinically effective interventions. Advances in immunosuppressive therapies have greatly improved solid organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. The end goal of these transplant immune strategies is to facilitate effective control of the balance between regulatory T cells and the effector/cytotoxic T-cell populations in order to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of immune cell populations and the interactive feedback loops that lead to graft rejection or tolerance is extremely challenging, but is necessary if rational modulation to induce transplant tolerance is to be accomplished. Herein is presented the solid organ agent-based model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly reproduces the cellular and molecular components of the immune response to SOT. Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute

  9. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model.

    PubMed

    An, Gary

    2015-01-01

    Agent-based modeling has been used to characterize the nested control loops and non-linear dynamics associated with inflammatory and immune responses, particularly as a means of visualizing putative mechanistic hypotheses. This process is termed dynamic knowledge representation and serves a critical role in facilitating the ability to test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical research environment. Importantly, dynamic computational modeling aids in identifying useful abstractions, a fundamental scientific principle that pervades the physical sciences. Recognizing the critical scientific role of abstraction provides an intellectual and methodological counterweight to the tendency in biology to emphasize comprehensive description as the primary manifestation of biological knowledge. Transplant immunology represents yet another example of the challenge of identifying sufficient understanding of the inflammatory/immune response in order to develop and refine clinically effective interventions. Advances in immunosuppressive therapies have greatly improved solid organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. The end goal of these transplant immune strategies is to facilitate effective control of the balance between regulatory T cells and the effector/cytotoxic T-cell populations in order to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of immune cell populations and the interactive feedback loops that lead to graft rejection or tolerance is extremely challenging, but is necessary if rational modulation to induce transplant tolerance is to be accomplished. Herein is presented the solid organ agent-based model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly reproduces the cellular and molecular components of the immune response to SOT. Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute

  10. Combination HIV prevention among MSM in South Africa: results from agent-based modeling.

    PubMed

    Brookmeyer, Ron; Boren, David; Baral, Stefan D; Bekker, Linda-Gail; Phaswana-Mafuya, Nancy; Beyrer, Chris; Sullivan, Patrick S

    2014-01-01

    HIV prevention trials have demonstrated the effectiveness of a number of behavioral and biomedical interventions. HIV prevention packages are combinations of interventions and offer potential to significantly increase the effectiveness of any single intervention. Estimates of the effectiveness of prevention packages are important for guiding the development of prevention strategies and for characterizing effect sizes before embarking on large scale trials. Unfortunately, most research to date has focused on testing single interventions rather than HIV prevention packages. Here we report the results from agent-based modeling of the effectiveness of HIV prevention packages for men who have sex with men (MSM) in South Africa. We consider packages consisting of four components: antiretroviral therapy for HIV infected persons with CD4 count <350; PrEP for high risk uninfected persons; behavioral interventions to reduce rates of unprotected anal intercourse (UAI); and campaigns to increase HIV testing. We considered 163 HIV prevention packages corresponding to different intensity levels of the four components. We performed 2252 simulation runs of our agent-based model to evaluate those packages. We found that a four component package consisting of a 15% reduction in the rate of UAI, 50% PrEP coverage of high risk uninfected persons, 50% reduction in persons who never test for HIV, and 50% ART coverage over and above persons already receiving ART at baseline, could prevent 33.9% of infections over 5 years (95% confidence interval, 31.5, 36.3). The package components with the largest incremental prevention effects were UAI reduction and PrEP coverage. The impact of increased HIV testing was magnified in the presence of PrEP. We find that HIV prevention packages that include both behavioral and biomedical components can in combination prevent significant numbers of infections with levels of coverage, acceptance and adherence that are potentially achievable among MSM in

  11. From Agents to Continuous Change via Aesthetics: Learning Mechanics with Visual Agent-Based Computational Modeling

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Farris, Amy Voss; Wright, Mason

    2012-01-01

    Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…

  12. An agent-based hydroeconomic model to evaluate water policies in Jordan

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Gorelick, S.

    2014-12-01

    Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.

  13. Using simple agent-based modeling to inform and enhance neighborhood walkability

    PubMed Central

    2013-01-01

    Background Pedestrian-friendly neighborhoods with proximal destinations and services encourage walking and decrease car dependence, thereby contributing to more active and healthier communities. Proximity to key destinations and services is an important aspect of the urban design decision making process, particularly in areas adopting a transit-oriented development (TOD) approach to urban planning, whereby densification occurs within walking distance of transit nodes. Modeling destination access within neighborhoods has been limited to circular catchment buffers or more sophisticated network-buffers generated using geoprocessing routines within geographical information systems (GIS). Both circular and network-buffer catchment methods are problematic. Circular catchment models do not account for street networks, thus do not allow exploratory ‘what-if’ scenario modeling; and network-buffering functionality typically exists within proprietary GIS software, which can be costly and requires a high level of expertise to operate. Methods This study sought to overcome these limitations by developing an open-source simple agent-based walkable catchment tool that can be used by researchers, urban designers, planners, and policy makers to test scenarios for improving neighborhood walkable catchments. A simplified version of an agent-based model was ported to a vector-based open source GIS web tool using data derived from the Australian Urban Research Infrastructure Network (AURIN). The tool was developed and tested with end-user stakeholder working group input. Results The resulting model has proven to be effective and flexible, allowing stakeholders to assess and optimize the walkability of neighborhood catchments around actual or potential nodes of interest (e.g., schools, public transport stops). Users can derive a range of metrics to compare different scenarios modeled. These include: catchment area versus circular buffer ratios; mean number of streets crossed; and

  14. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.

    PubMed

    Rouillard, Andrew D; Holmes, Jeffrey W

    2014-08-01

    Following myocardial infarction, damaged muscle is gradually replaced by collagenous scar tissue. The structural and mechanical properties of the scar are critical determinants of heart function, as well as the risk of serious post-infarction complications such as infarct rupture, infarct expansion, and progression to dilated heart failure. A number of therapeutic approaches currently under development aim to alter infarct mechanics in order to reduce complications, such as implantation of mechanical restraint devices, polymer injection, and peri-infarct pacing. Because mechanical stimuli regulate scar remodeling, the long-term consequences of therapies that alter infarct mechanics must be carefully considered. Computational models have the potential to greatly improve our ability to understand and predict how such therapies alter heart structure, mechanics, and function over time. Toward this end, we developed a straightforward method for coupling an agent-based model of scar formation to a finite-element model of tissue mechanics, creating a multi-scale model that captures the dynamic interplay between mechanical loading, scar deformation, and scar material properties. The agent-based component of the coupled model predicts how fibroblasts integrate local chemical, structural, and mechanical cues as they deposit and remodel collagen, while the finite-element component predicts local mechanics at any time point given the current collagen fiber structure and applied loads. We used the coupled model to explore the balance between increasing stiffness due to collagen deposition and increasing wall stress due to infarct thinning and left ventricular dilation during the normal time course of healing in myocardial infarcts, as well as the negative feedback between strain anisotropy and the structural anisotropy it promotes in healing scar. The coupled model reproduced the observed evolution of both collagen fiber structure and regional deformation following coronary

  15. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    NASA Astrophysics Data System (ADS)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-06-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.

  16. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    PubMed

    Gorochowski, Thomas E; Matyjaszkiewicz, Antoni; Todd, Thomas; Oak, Neeraj; Kowalska, Kira; Reid, Stephen; Tsaneva-Atanasova, Krasimira T; Savery, Nigel J; Grierson, Claire S; di Bernardo, Mario

    2012-01-01

    Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  17. Agent-based modeling supporting the migration of registry systems to grid based architectures.

    PubMed

    Cryer, Martin E; Frey, Lewis

    2009-03-01

    With the increasing age and cost of operation of the existing NCI SEER platform core technologies, such essential resources in the fight against cancer as these will eventually have to be migrated to Grid based systems. In order to model this migration, a simulation is proposed based upon an agent modeling technology. This modeling technique allows for simulation of complex and distributed services provided by a large scale Grid computing platform such as the caBIG(™) project's caGRID. In order to investigate such a migration to a Grid based platform technology, this paper proposes using agent-based modeling simulations to predict the performance of current and Grid configurations of the NCI SEER system integrated with the existing translational opportunities afforded by caGRID. The model illustrates how the use of Grid technology can potentially improve system response time as systems under test are scaled. In modeling SEER nodes accessing multiple registry silos, we show that the performance of SEER applications re-implemented in a Grid native manner exhibits a nearly constant user response time with increasing numbers of distributed registry silos, compared with the current application architecture which exhibits a linear increase in response time for increasing numbers of silos.

  18. An agent-based model of stock markets incorporating momentum investors

    NASA Astrophysics Data System (ADS)

    Wei, J. R.; Huang, J. P.; Hui, P. M.

    2013-06-01

    It has been widely accepted that there exist investors who adopt momentum strategies in real stock markets. Understanding the momentum behavior is of both academic and practical importance. For this purpose, we propose and study a simple agent-based model of trading incorporating momentum investors and random investors. The random investors trade randomly all the time. The momentum investors could be idle, buying or selling, and they decide on their action by implementing an action threshold that assesses the most recent price movement. The model is able to reproduce some of the stylized facts observed in real markets, including the fat-tails in returns, weak long-term correlation and scaling behavior in the kurtosis of returns. An analytic treatment of the model relates the model parameters to several quantities that can be extracted from real data sets. To illustrate how the model can be applied, we show that real market data can be used to constrain the model parameters, which in turn provide information on the behavior of momentum investors in different markets.

  19. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units

    PubMed Central

    2011-01-01

    Multiscale agent-based modeling (MABM) has been widely used to simulate Glioblastoma Multiforme (GBM) and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa). At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU)-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated. PMID:22176732

  20. Quantitative Agent Based Model of Opinion Dynamics: Polish Elections of 2015

    PubMed Central

    Sobkowicz, Pawel

    2016-01-01

    We present results of an abstract, agent based model of opinion dynamics simulations based on the emotion/information/opinion (E/I/O) approach, applied to a strongly polarized society, corresponding to the Polish political scene between 2005 and 2015. Under certain conditions the model leads to metastable coexistence of two subcommunities of comparable size (supporting the corresponding opinions)—which corresponds to the bipartisan split found in Poland. Spurred by the recent breakdown of this political duopoly, which occurred in 2015, we present a model extension that describes both the long term coexistence of the two opposing opinions and a rapid, transitory change due to the appearance of a third party alternative. We provide quantitative comparison of the model with the results of polls and elections in Poland, testing the assumptions related to the modeled processes and the parameters used in the simulations. It is shown, that when the propaganda messages of the two incumbent parties differ in emotional tone, the political status quo may be unstable. The asymmetry of the emotions within the support bases of the two parties allows one of them to be ‘invaded’ by a newcomer third party very quickly, while the second remains immune to such invasion. PMID:27171226

  1. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  2. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    PubMed

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2016-11-28

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks.

  3. Putting agent-based modeling to work: results of the 4th International Project Albert Workshop

    NASA Astrophysics Data System (ADS)

    Horne, Gary E.; Bjorkman, Eileen A.; Colton, Trevor

    2002-07-01

    Project Albert is an initiative of the US Marine Corps which uses a series of new models and tools, multidisciplinary teams, and the scientific method to explore questions of interest to military planners. Project Albert attempts to address key areas that traditional modeling and simulation techniques often do not capture satisfactorily and uses two data management concepts, data farming and data mining, to assist in identifying areas of interest. The current suite of models used by Project Albert includes four agent-based models that allow agents to interact with each other and produce emergent behaviors. The 4th International Project Albert Workshop was held 6-9 August 2001 in Australia. Workshop participants split into five groups, each of which attempted to apply various combinations of the Project Albert models to answer a series of questions in five areas: Control Operations; Reconnaissance, Surveillance, and Intelligence Force Mix; Precision Maneuver; Mission Area Analysis; and Peace Support Operations. This paper focuses on the methodology used during the workshop, the results of the workshop, and a summary of follow-on work since the workshop.

  4. Stimulating household flood risk mitigation investments through insurance and subsidies: an Agent-Based Modelling approach

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen

    2015-04-01

    In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.

  5. Partner choice promotes cooperation: the two faces of testing with agent-based models.

    PubMed

    Campennì, Marco; Schino, Gabriele

    2014-03-07

    Reciprocity is one of the most debated among the mechanisms that have been proposed to explain the evolution of cooperation. While a distinction can be made between two general processes that can underlie reciprocation (within-pair temporal relations between cooperative events, and partner choice based on benefits received), theoretical modelling has concentrated on the former, while the latter has been often neglected. We developed a set of agent-based models in which agents adopted a strategy of obligate cooperation and partner choice based on benefits received. Our models tested the ability of partner choice both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Populations formed by agents adopting a strategy of obligate cooperation and partner choice based on benefits received showed differentiated "social relationships" and a positive correlation between cooperation given and received, two common phenomena in animal cooperation. When selection across multiple generations was added to the model, agents adopting a strategy of partner choice based on benefits received outperformed selfish agents that did not cooperate. Our results suggest partner choice is a significant aspect of cooperation and provides a possible mechanism for its evolution.

  6. An agent-based approach to modelling the effects of extreme events on global food prices

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Otto, Christian; Frieler, Katja

    2015-04-01

    Extreme climate events such as droughts or heat waves affect agricultural production in major food producing regions and therefore can influence the price of staple foods on the world market. There is evidence that recent dramatic spikes in grain prices were at least partly triggered by actual and/or expected supply shortages. The reaction of the market to supply changes is however highly nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and export restrictions. Here we present for the first time an agent-based modelling framework that accounts, in simplified terms, for these processes and allows to estimate the reaction of world food prices to supply shocks on a short (monthly) timescale. We test the basic model using observed historical supply, demand, and price data of wheat as a major food grain. Further, we illustrate how the model can be used in conjunction with biophysical crop models to assess the effect of future changes in extreme event regimes on the volatility of food prices. In particular, the explicit representation of storage dynamics makes it possible to investigate the potentially nonlinear interaction between simultaneous extreme events in different food producing regions, or between several consecutive events in the same region, which may both occur more frequently under future global warming.

  7. An agent-based model of dialect evolution in killer whales.

    PubMed

    Filatova, Olga A; Miller, Patrick J O

    2015-05-21

    The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects.

  8. The Hunt Opinion Model-An Agent Based Approach to Recurring Fashion Cycles.

    PubMed

    Apriasz, Rafał; Krueger, Tyll; Marcjasz, Grzegorz; Sznajd-Weron, Katarzyna

    2016-01-01

    We study a simple agent-based model of the recurring fashion cycles in the society that consists of two interacting communities: "snobs" and "followers" (or "opinion hunters", hence the name of the model). Followers conform to all other individuals, whereas snobs conform only to their own group and anticonform to the other. The model allows to examine the role of the social structure, i.e. the influence of the number of inter-links between the two communities, as well as the role of the stability of links. The latter is accomplished by considering two versions of the same model-quenched (parameterized by fraction L of fixed inter-links) and annealed (parameterized by probability p that a given inter-link exists). Using Monte Carlo simulations and analytical treatment (the latter only for the annealed model), we show that there is a critical fraction of inter-links, above which recurring cycles occur. For p ≤ 0.5 we derive a relation between parameters L and p that allows to compare both models and show that the critical value of inter-connections, p*, is the same for both versions of the model (annealed and quenched) but the period of a fashion cycle is shorter for the quenched model. Near the critical point, the cycles are irregular and a change of fashion is difficult to predict. For the annealed model we also provide a deeper theoretical analysis. We conjecture on topological grounds that the so-called saddle node heteroclinic bifurcation appears at p*. For p ≥ 0.5 we show analytically the existence of the second critical value of p, for which the system undergoes Hopf's bifurcation.

  9. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    NASA Technical Reports Server (NTRS)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  10. Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies

    NASA Astrophysics Data System (ADS)

    Laciana, Carlos E.; Rovere, Santiago L.

    2011-03-01

    The well-known Ising model used in statistical physics was adapted to a social dynamics context to simulate the adoption of a technological innovation. The model explicitly combines (a) an individual's perception of the advantages of an innovation and (b) social influence from members of the decision-maker's social network. The micro-level adoption dynamics are embedded into an agent-based model that allows exploration of macro-level patterns of technology diffusion throughout systems with different configurations (number and distributions of early adopters, social network topologies). In the present work we carry out many numerical simulations. We find that when the gap between the individual's perception of the options is high, the adoption speed increases if the dispersion of early adopters grows. Another test was based on changing the network topology by means of stochastic connections to a common opinion reference (hub), which resulted in an increment in the adoption speed. Finally, we performed a simulation of competition between options for both regular and small world networks.

  11. An Observation-Driven Agent-Based Modeling and Analysis Framework for C. elegans Embryogenesis.

    PubMed

    Wang, Zi; Ramsey, Benjamin J; Wang, Dali; Wong, Kwai; Li, Husheng; Wang, Eric; Bao, Zhirong

    2016-01-01

    With cutting-edge live microscopy and image analysis, biologists can now systematically track individual cells in complex tissues and quantify cellular behavior over extended time windows. Computational approaches that utilize the systematic and quantitative data are needed to understand how cells interact in vivo to give rise to the different cell types and 3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis framework is presented in this paper to study C. elegans embryogenesis. The framework is designed to incorporate the large amounts of experimental observations on cellular behavior and reserve data structures/interfaces that allow regulatory mechanisms to be added as more insights are gained. Observed cellular behaviors are organized into lineage identity, timing and direction of cell division, and path of cell movement. The framework also includes global parameters such as the eggshell and a clock. Division and movement behaviors are driven by statistical models of the observations. Data structures/interfaces are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global parameters until the descriptive model is replaced by a regulatory mechanism. This approach provides a framework to handle the ongoing experiments of single-cell analysis of complex tissues where mechanistic insights lag data collection and need to be validated on complex observations.

  12. Reverse engineering a social agent-based hidden markov model--visage.

    PubMed

    Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A

    2008-12-01

    We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.

  13. An Observation-Driven Agent-Based Modeling and Analysis Framework for C. elegans Embryogenesis

    PubMed Central

    Wang, Zi; Ramsey, Benjamin J.; Wang, Dali; Wong, Kwai; Li, Husheng; Wang, Eric; Bao, Zhirong

    2016-01-01

    With cutting-edge live microscopy and image analysis, biologists can now systematically track individual cells in complex tissues and quantify cellular behavior over extended time windows. Computational approaches that utilize the systematic and quantitative data are needed to understand how cells interact in vivo to give rise to the different cell types and 3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis framework is presented in this paper to study C. elegans embryogenesis. The framework is designed to incorporate the large amounts of experimental observations on cellular behavior and reserve data structures/interfaces that allow regulatory mechanisms to be added as more insights are gained. Observed cellular behaviors are organized into lineage identity, timing and direction of cell division, and path of cell movement. The framework also includes global parameters such as the eggshell and a clock. Division and movement behaviors are driven by statistical models of the observations. Data structures/interfaces are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global parameters until the descriptive model is replaced by a regulatory mechanism. This approach provides a framework to handle the ongoing experiments of single-cell analysis of complex tissues where mechanistic insights lag data collection and need to be validated on complex observations. PMID:27851808

  14. Buying on margin, selling short in an agent-based market model

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Li, Honggang

    2013-09-01

    Credit trading, or leverage trading, which includes buying on margin and selling short, plays an important role in financial markets, where agents tend to increase their leverages for increased profits. This paper presents an agent-based asset market model to study the effect of the permissive leverage level on traders’ wealth and overall market indicators. In this model, heterogeneous agents can assume fundamental value-converging expectations or trend-persistence expectations, and their effective demands of assets depend both on demand willingness and wealth constraints, where leverage can relieve the wealth constraints to some extent. The asset market price is determined by a market maker, who watches the market excess demand, and is influenced by noise factors. By simulations, we examine market results for different leverage ratios. At the individual level, we focus on how the leverage ratio influences agents’ wealth accumulation. At the market level, we focus on how the leverage ratio influences changes in the asset price, volatility, and trading volume. Qualitatively, our model provides some meaningful results supported by empirical facts. More importantly, we find a continuous phase transition as we increase the leverage threshold, which may provide a further prospective of credit trading.

  15. Agent-based model with multi-level herding for complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-02-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.

  16. Hybrid agent-based model for quantitative in-silico cell-free protein synthesis.

    PubMed

    Semenchenko, Anton; Oliveira, Guilherme; Atman, A P F

    2016-12-01

    An advanced vision of the mRNA translation is presented through a hybrid modeling approach. The dynamics of the polysome formation was investigated by computer simulation that combined agent-based model and fine-grained Markov chain representation of the chemical kinetics. This approach allowed for the investigation of the polysome dynamics under non-steady-state and non-continuum conditions. The model is validated by the quantitative comparison of the simulation results and Luciferase protein production in cell-free system, as well as by testing of the hypothesis regarding the two possible mechanisms of the Edeine antibiotic. Calculation of the Hurst exponent demonstrated a relationship between the microscopic properties of amino acid elongation and the fractal dimension of the translation duration time series. The temporal properties of the amino acid elongation have indicated an anti-persistent behavior under low mRNA occupancy and evinced the appearance of long range interactions within the mRNA-ribosome system for high ribosome density. The dynamic and temporal characteristics of the polysomal system presented here can have a direct impact on the studies of the co-translation protein folding and provide a validated platform for cell-free system studies.

  17. Evolutionary Agent-based Models to design distributed water management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a

  18. Shooting down the ABM Treaty

    SciTech Connect

    Mendelsohn, J.; Rhinelander, J.B.

    1994-09-01

    The Clinton administration is on a path to undermine the Anti-Ballistic Missile (ABM) Treaty by proposing {open_quotes}clarifications{close_quotes} to the treaty that would permit the deployment of an extensive, highly capable anti-theater ballistic missile (ATBM) defense system.

  19. An Exploratory Study of the Butterfly Effect Using Agent-Based Modeling

    NASA Technical Reports Server (NTRS)

    Khasawneh, Mahmoud T.; Zhang, Jun; Shearer, Nevan E. N.; Rodriquez-Velasquez, Elkin; Bowling, Shannon R.

    2010-01-01

    This paper provides insights about the behavior of chaotic complex systems, and the sensitive dependence of the system on the initial starting conditions. How much does a small change in the initial conditions of a complex system affect it in the long term? Do complex systems exhibit what is called the "Butterfly Effect"? This paper uses an agent-based modeling approach to address these questions. An existing model from NetLogo library was extended in order to compare chaotic complex systems with near-identical initial conditions. Results show that small changes in initial starting conditions can have a huge impact on the behavior of chaotic complex systems. The term the "butterfly effect" is attributed to the work of Edward Lorenz [1]. It is used to describe the sensitive dependence of the behavior of chaotic complex systems on the initial conditions of these systems. The metaphor refers to the notion that a butterfly flapping its wings somewhere may cause extreme changes in the ecological system's behavior in the future, such as a hurricane.

  20. The Influence of Seasonal Forecast Accuracy on Farmer Behavior: An Agent-Based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Jacobi, J. H.; Nay, J.; Gilligan, J. M.

    2013-12-01

    Seasonal climates dictate the livelihoods of farmers in developing countries. While farmers in developed countries often have seasonal forecasts on which to base their cropping decisions, developing world farmers usually make plans for the season without such information. Climate change increases the seasonal uncertainty, making things more difficult for farmers. Providing seasonal forecasts to these farmers is seen as a way to help buffer these typically marginal groups from the effects of climate change, though how to do so and the efficacy of such an effort is still uncertain. In Sri Lanka, an effort is underway to provide such forecasts to farmers. The accuracy of these forecasts is likely to have large impacts on how farmers accept and respond to the information they receive. We present an agent-based model to explore how the accuracy of seasonal rainfall forecasts affects the growing decisions and behavior of farmers in Sri Lanka. Using a decision function based on prospect theory, this model simulates farmers' behavior in the face of a wet, dry, or normal forecast. Farmers can either choose to grow paddy rice or plant a cash crop. Prospect theory is used to evaluate outcomes of the growing season; the farmer's memory of the level of success under a certain set of conditions affects next season's decision. Results from this study have implications for policy makers and seasonal forecasters.

  1. Provider dismissal policies and clustering of vaccine-hesitant families: an agent-based modeling approach.

    PubMed

    Buttenheim, Alison M; Cherng, Sarah T; Asch, David A

    2013-08-01

    Many pediatric practices have adopted vaccine policies that require parents who refuse to vaccinate according to the ACIP schedule to find another health care provider. Such policies may inadvertently cluster unvaccinated patients into practices that tolerate non vaccination or alternative schedules, turning them into risky pockets of low herd immunity. The objective of this study was to assess the effect of provider zero-tolerance vaccination policies on the clustering of intentionally unvaccinated children. We developed an agent-based model of parental vaccine hesitancy, provider non-vaccination tolerance, and selection of patients into pediatric practices. We ran 84 experiments across a range of parental hesitancy and provider tolerance scenarios. When the model is initialized, all providers accommodate refusals and intentionally unvaccinated children are evenly distributed across providers. As provider tolerance decreases, hesitant children become more clustered in a smaller number of practices and eventually are not able to find a practice that will accept them. Each of these effects becomes more pronounced as the level of hesitancy in the population rises. Heterogeneity in practice tolerance to vaccine-hesitant parents has the unintended result of concentrating susceptible individuals within a small number of tolerant practices, while providing little if any compensatory protection to adherent individuals. These externalities suggest an agenda for stricter policy regulation of individual practice decisions.

  2. Temporal asymmetries in Interbank Market: an empirically grounded Agent-Based Model

    NASA Astrophysics Data System (ADS)

    Zlatic, Vinko; Popovic, Marko; Abraham, Hrvoje; Caldarelli, Guido; Iori, Giulia

    2014-03-01

    We analyse the changes in the topology of the structure of the E-mid interbank market in the period from September 1st 1999 to September 1st 2009. We uncover a type of temporal irreversibility in the growth of the largest component of the interbank trading network, which is not common to any of the usual network growth models. Such asymmetry, which is also detected on the growth of the clustering and reciprocity coefficient, reveals that the trading mechanism is driven by different dynamics at the beginning and at the end of the day. We are able to recover the complexity of the system by means of a simple Agent Based Model in which the probability of matching between counter parties depends on a time varying vertex fitness (or attractiveness) describing banks liquidity needs. We show that temporal irreversibility is associated with heterogeneity in the banking system and emerges when the distribution of liquidity shocks across banks is broad. We acknowledge support from FET project FOC-II.

  3. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model's prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  4. Retail Location Choice with Complementary Goods: An Agent-Based Model

    NASA Astrophysics Data System (ADS)

    Huang, Arthur; Levinson, David

    This paper models the emergence of retail clusters on a supply chain network comprised of suppliers, retailers, and consumers. Firstly, an agent-based model is proposed to investigate retail location distribution in a market of two complementary goods. The methodology controls for supplier locales and unit sales prices of retailers and suppliers, and a consumer’s willingness to patronize a retailer depends on the total travel distance of buying both goods. On a circle comprised of discrete locations, retailers play a non-cooperative game of location choice to maximize individual profits. Our findings suggest that the probability distribution of the number of clusters in equilibrium follows power law and that hierarchical distribution patterns are much more likely to occur than the spread-out ones. In addition, retailers of complementary goods tend to co-locate at supplier locales. Sensitivity tests on the number of retailers are also performed. Secondly, based on the County Business Patterns (CBP) data of Minneapolis-St. Paul from US Census 2000 database, we find that the number of clothing stores and the distribution of food stores at the zip code level follows power-law distribution.

  5. An agent-based model of exposure to human toxocariasis: a multi-country validation.

    PubMed

    Kanobana, K; Devleesschauwer, B; Polman, K; Speybroeck, N

    2013-07-01

    Seroprevalence data illustrate that human exposure to Toxocara is frequent. Environmental contamination with Toxocara spp. eggs is assumed to be the best indicator of human exposure, but increased risk of exposure has also been associated with many other factors. Reported associations are inconsistent, however, and there is still ambiguity regarding the factors driving the onset of Toxocara antibody positivity. The objective of this work was to assess the validity of our current conceptual understanding of the key processes driving human exposure to Toxocara. We constructed an agent-based model predicting Toxocara antibody positivity (as a measure of exposure) in children. Exposure was assumed to depend on the joint probability of 3 parameters: (1) environmental contamination with Toxocara spp. eggs, (2) larvation of these eggs and (3) the age-related contact with these eggs. This joint probability was linked to processes of acquired humoral immunity, influencing the rate of antibody seroreversion. The results of the simulation were validated against published data from 5 different geographical settings. Using simple rules and a stochastic approach with parameter estimates derived from the respective contexts, plausible serological patterns emerged from the model in nearly all settings. Our approach leads to novel insights in the transmission dynamics of Toxocara.

  6. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  7. Agent Based Modelling Helps in Understanding the Rules by Which Fibroblasts Support Keratinocyte Colony Formation

    PubMed Central

    Sun, Tao; McMinn, Phil; Holcombe, Mike; Smallwood, Rod; MacNeil, Sheila

    2008-01-01

    Background Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine

  8. Finding shared decisions in stakeholder networks: An agent-based approach

    NASA Astrophysics Data System (ADS)

    Le Pira, Michela; Inturri, Giuseppe; Ignaccolo, Matteo; Pluchino, Alessandro; Rapisarda, Andrea

    2017-01-01

    We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations' results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.

  9. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  10. Fortune Favours the Bold: An Agent-Based Model Reveals Adaptive Advantages of Overconfidence in War

    PubMed Central

    Johnson, Dominic D. P.; Weidmann, Nils B.; Cederman, Lars-Erik

    2011-01-01

    Overconfidence has long been considered a cause of war. Like other decision-making biases, overconfidence seems detrimental because it increases the frequency and costs of fighting. However, evolutionary biologists have proposed that overconfidence may also confer adaptive advantages: increasing ambition, resolve, persistence, bluffing opponents, and winning net payoffs from risky opportunities despite occasional failures. We report the results of an agent-based model of inter-state conflict, which allows us to evaluate the performance of different strategies in competition with each other. Counter-intuitively, we find that overconfident states predominate in the population at the expense of unbiased or underconfident states. Overconfident states win because: (1) they are more likely to accumulate resources from frequent attempts at conquest; (2) they are more likely to gang up on weak states, forcing victims to split their defences; and (3) when the decision threshold for attacking requires an overwhelming asymmetry of power, unbiased and underconfident states shirk many conflicts they are actually likely to win. These “adaptive advantages” of overconfidence may, via selection effects, learning, or evolved psychology, have spread and become entrenched among modern states, organizations and decision-makers. This would help to explain the frequent association of overconfidence and war, even if it no longer brings benefits today. PMID:21731627

  11. An Agent-Based Modeling Approach for Determining Corn Stover Removal Rate and Transboundary Effects

    NASA Astrophysics Data System (ADS)

    Gan, Jianbang; Langeveld, J. W. A.; Smith, C. T.

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers.

  12. Agent Based Modeling of Atherosclerosis: A Concrete Help in Personalized Treatments

    NASA Astrophysics Data System (ADS)

    Pappalardo, Francesco; Cincotti, Alessandro; Motta, Alfredo; Pennisi, Marzio

    Atherosclerosis, a pathology affecting arterial blood vessels, is one of most common diseases of the developed countries. We present studies on the increased atherosclerosis risk using an agent based model of atherogenesis that has been previously validated using clinical data. It is well known that the major risk in atherosclerosis is the persistent high level of low density lipoprotein (LDL) concentration. However, it is not known if short period of high LDL concentration can cause irreversible damage and if reduction of the LDL concentration (either by life style or drug) can drastically or partially reduce the already acquired risk. We simulated four different clinical situations in a large set of virtual patients (200 per clinical scenario). In the first one the patients lifestyle maintains the concentration of LDL in a no risk range. This is the control case simulation. The second case is represented by patients having high level of LDL with a delay to apply appropriate treatments; The third scenario is characterized by patients with high LDL levels treated with specific drugs like statins. Finally we simulated patients that are characterized by several oxidative events (smoke, sedentary life style, assumption of alcoholic drinks and so on so forth) that effective increase the risk of LDL oxidation. Those preliminary results obviously need to be clinically investigated. It is clear, however, that SimAthero has the power to concretely help medical doctors and clinicians in choosing personalized treatments for the prevention of the atherosclerosis damages.

  13. Fortune favours the bold: an agent-based model reveals adaptive advantages of overconfidence in war.

    PubMed

    Johnson, Dominic D P; Weidmann, Nils B; Cederman, Lars-Erik

    2011-01-01

    Overconfidence has long been considered a cause of war. Like other decision-making biases, overconfidence seems detrimental because it increases the frequency and costs of fighting. However, evolutionary biologists have proposed that overconfidence may also confer adaptive advantages: increasing ambition, resolve, persistence, bluffing opponents, and winning net payoffs from risky opportunities despite occasional failures. We report the results of an agent-based model of inter-state conflict, which allows us to evaluate the performance of different strategies in competition with each other. Counter-intuitively, we find that overconfident states predominate in the population at the expense of unbiased or underconfident states. Overconfident states win because: (1) they are more likely to accumulate resources from frequent attempts at conquest; (2) they are more likely to gang up on weak states, forcing victims to split their defences; and (3) when the decision threshold for attacking requires an overwhelming asymmetry of power, unbiased and underconfident states shirk many conflicts they are actually likely to win. These "adaptive advantages" of overconfidence may, via selection effects, learning, or evolved psychology, have spread and become entrenched among modern states, organizations and decision-makers. This would help to explain the frequent association of overconfidence and war, even if it no longer brings benefits today.

  14. An agent-based modeling approach for determining corn stover removal rate and transboundary effects.

    PubMed

    Gan, Jianbang; Langeveld, J W A; Smith, C T

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers.

  15. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  16. Evaluating Infection Prevention Strategies in Out-Patient Dialysis Units Using Agent-Based Modeling.

    PubMed

    Wares, Joanna R; Lawson, Barry; Shemin, Douglas; D'Agata, Erika M C

    2016-01-01

    Patients receiving chronic hemodialysis (CHD) are among the most vulnerable to infections caused by multidrug-resistant organisms (MDRO), which are associated with high rates of morbidity and mortality. Current guidelines to reduce transmission of MDRO in the out-patient dialysis unit are targeted at patients considered to be high-risk for transmitting these organisms: those with infected skin wounds not contained by a dressing, or those with fecal incontinence or uncontrolled diarrhea. Here, we hypothesize that targeting patients receiving antimicrobial treatment would more effectively reduce transmission and acquisition of MDRO. We also hypothesize that environmental contamination plays a role in the dissemination of MDRO in the dialysis unit. To address our hypotheses, we built an agent-based model to simulate different treatment strategies in a dialysis unit. Our results suggest that reducing antimicrobial treatment, either by reducing the number of patients receiving treatment or by reducing the duration of the treatment, markedly reduces overall colonization rates and also the levels of environmental contamination in the dialysis unit. Our results also suggest that improving the environmental decontamination efficacy between patient dialysis treatments is an effective method for reducing colonization and contamination rates. These findings have important implications for the development and implementation of future infection prevention strategies.

  17. An agent-based model of dune interactions produces the emergence of patterns in deserts

    NASA Astrophysics Data System (ADS)

    Génois, M.; Courrech Du Pont, S.

    2013-12-01

    Crescent-shaped barchan dunes are highly mobile dunes which are ubiquitous on Earth and other solar system bodies. Although they are unstable when considered separately, they form large assemblies in deserts and spatially organize in narrow corridors that extend in the wind direction. Collision of barchans has been proposed as a mechanism to redistribute sand between dunes and prevent the formation of very large dunes. Here, we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan fields. We tune the dune field density by changing the sand load/lost ratio and follow the transition between dilute fields, where barchans barely interact, and dense fields, where dune collisions control and stabilize the dune field. In this dense regime, barchans have a small, well selected size and form flocks: the dune field self-organizes in narrow corridors of dunes, as it is observed in real dense barchan deserts. Simulated dense barchan field, with spatial structuring along the wind direction.

  18. An agent-based model of dune interactions produces the emergence of patterns in deserts

    NASA Astrophysics Data System (ADS)

    GéNois, Mathieu; Pont, Sylvain Courrech; Hersen, Pascal; GréGoire, Guillaume

    2013-08-01

    Crescent-shaped barchan dunes are highly mobile dunes which are ubiquitous on Earth and other solar system bodies. Although they are unstable when considered separately, they form large assemblies in deserts and spatially organize in narrow corridors that extend in the wind direction. Collision of barchans has been proposed as a mechanism to redistribute sand between dunes and prevent the formation of very large dunes. Here we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan fields. We tune the dune field density by changing the sand load/lost ratio and follow the transition between dilute fields, where barchans barely interact, and dense fields, where dune collisions control and stabilize the dune field. In this dense regime, barchans have a small, well-selected size and form flocks: the dune field self-organizes in narrow corridors of dunes, as it is observed in real dense barchan deserts.

  19. Coevolution in management fashion: an agent-based model of consultant-driven innovation.

    PubMed

    Strang, David; David, Robert J; Akhlaghpour, Saeed

    2014-07-01

    The rise of management consultancy has been accompanied by increasingly marked faddish cycles in management techniques, but the mechanisms that underlie this relationship are not well understood. The authors develop a simple agent-based framework that models innovation adoption and abandonment on both the supply and demand sides. In opposition to conceptions of consultants as rhetorical wizards who engineer waves of management fashion, firms and consultants are treated as boundedly rational actors who chase the secrets of success by mimicking their highest-performing peers. Computational experiments demonstrate that consultant-driven versions of this dynamic in which the outcomes of firms are strongly conditioned by their choice of consultant are robustly faddish. The invasion of boom markets by low-quality consultants undercuts popular innovations while simultaneously restarting the fashion cycle by prompting the flight of high-quality consultants into less densely occupied niches. Computational experiments also indicate conditions involving consultant mobility, aspiration levels, mimic probabilities, and client-provider matching that attenuate faddishness.

  20. Agent-based modeling of oxygen-responsive transcription factors in Escherichia coli.

    PubMed

    Bai, Hao; Rolfe, Matthew D; Jia, Wenjing; Coakley, Simon; Poole, Robert K; Green, Jeffrey; Holcombe, Mike

    2014-04-01

    In the presence of oxygen (O2) the model bacterium Escherichia coli is able to conserve energy by aerobic respiration. Two major terminal oxidases are involved in this process - Cyo has a relatively low affinity for O2 but is able to pump protons and hence is energetically efficient; Cyd has a high affinity for O2 but does not pump protons. When E. coli encounters environments with different O2 availabilities, the expression of the genes encoding the alternative terminal oxidases, the cydAB and cyoABCDE operons, are regulated by two O2-responsive transcription factors, ArcA (an indirect O2 sensor) and FNR (a direct O2 sensor). It has been suggested that O2-consumption by the terminal oxidases located at the cytoplasmic membrane significantly affects the activities of ArcA and FNR in the bacterial nucleoid. In this study, an agent-based modeling approach has been taken to spatially simulate the uptake and consumption of O2 by E. coli and the consequent modulation of ArcA and FNR activities based on experimental data obtained from highly controlled chemostat cultures. The molecules of O2, transcription factors and terminal oxidases are treated as individual agents and their behaviors and interactions are imitated in a simulated 3-D E. coli cell. The model implies that there are two barriers that dampen the response of FNR to O2, i.e. consumption of O2 at the membrane by the terminal oxidases and reaction of O2 with cytoplasmic FNR. Analysis of FNR variants suggested that the monomer-dimer transition is the key step in FNR-mediated repression of gene expression.

  1. Deriving effective vaccine allocation strategies for pandemic influenza: Comparison of an agent-based simulation and a compartmental model

    PubMed Central

    Dalgıç, Özden O.; Özaltın, Osman Y.; Ciccotelli, William A.; Erenay, Fatih S.

    2017-01-01

    Individuals are prioritized based on their risk profiles when allocating limited vaccine stocks during an influenza pandemic. Computationally expensive but realistic agent-based simulations and fast but stylized compartmental models are typically used to derive effective vaccine allocation strategies. A detailed comparison of these two approaches, however, is often omitted. We derive age-specific vaccine allocation strategies to mitigate a pandemic influenza outbreak in Seattle by applying derivative-free optimization to an agent-based simulation and also to a compartmental model. We compare the strategies derived by these two approaches under various infection aggressiveness and vaccine coverage scenarios. We observe that both approaches primarily vaccinate school children, however they may allocate the remaining vaccines in different ways. The vaccine allocation strategies derived by using the agent-based simulation are associated with up to 70% decrease in total cost and 34% reduction in the number of infections compared to the strategies derived by using the compartmental model. Nevertheless, the latter approach may still be competitive for very low and/or very high infection aggressiveness. Our results provide insights about potential differences between the vaccine allocation strategies derived by using agent-based simulations and those derived by using compartmental models. PMID:28222123

  2. Aerobraking Maneuver (ABM) Report Generator

    NASA Technical Reports Server (NTRS)

    Fisher, Forrest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    abmREPORT Version 3.1 is a Perl script that extracts vital summarization information from the Mars Reconnaissance Orbiter (MRO) aerobraking ABM build process. This information facilitates sequence reviews, and provides a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files and burn magnitude configuration files and presents them in a single, easy-to-check report that provides the majority of the parameters necessary for cross check and verification during the sequence review process. This means that needed information, formerly spread across a number of different files and each in a different format, is all available in this one application. This program is built on the capabilities developed in dragReport and then the scripts evolved as the two tools continued to be developed in parallel.

  3. An agent-based model for the transmission dynamics of Toxoplasma gondii.

    PubMed

    Jiang, Wen; Sullivan, Adam M; Su, Chunlei; Zhao, Xiaopeng

    2012-01-21

    Toxoplasma gondii (T. gondii) is a unicellular protozoan that infects up to one-third of the world's human population. Numerous studies revealed that a latent infection of T. gondii can cause life-threatening encephalitis in immunocompromised people and also has significant effects on the behavior of healthy people and animals. However, the overall transmission of T. gondii has not been well understood although many factors affecting this process have been found out by different biologists separately. Here we synthesize what is currently known about the natural history of T. gondii by developing a prototype agent-based model to mimic the transmission process of T. gondii in a farm system. The present model takes into account the complete life cycle of T. gondii, which includes the transitions of the parasite from cats to environment through feces, from contaminated environment to mice through oocysts, from mice to cats through tissue cysts, from environment to cats through oocysts as well as the vertical transmission among mice. Although the current model does not explicitly include humans and other end-receivers, the effect of the transition to end-receivers is estimated by a developed infection risk index. The current model can also be extended to include human activities and thus be used to investigate the influences of human management on disease control. Simulation results reveal that most cats are infected through preying on infected mice while mice are infected through vertical transmission more often than through infection with oocysts, which clearly suggests the important role of mice during the transmission of T. gondii. Furthermore, our simulation results show that decreasing the number of mice on a farm can lead to the eradication of the disease and thus can lower the infection risk of other intermediate hosts on the farm. In addition, with the assumption that the relation between virulence and transmission satisfies a normal function, we show that

  4. Toward an Agent-Based Model of Socially Optimal Water Rights Markets

    NASA Astrophysics Data System (ADS)

    Ehlen, M. A.

    2004-12-01

    There has been considerable interest lately in using public markets for buying and selling the rights to local water usage. Such water rights markets, if designed correctly, should be socially optimal, that is, should sell rights at prices that reflect the true value of water in the region, taking into account that water rights buyers and sellers represent a disparate group of private industry, public authorities, and private users, each having different water needs and different priority to local government. Good market design, however, is hard. As was experienced in California short-run electric power markets, a market design that on paper looks reasonable but in practice is mal-constructed can have devastating effects: firms can learn to manipulate prices by `playing' both sides of the market, and sellers can under-provide so as to create exorbitant prices which buyers have no choice but to pay. Economic theory provides several frameworks for developing a good water rights market design; for example, the structure-conduct-performance paradigm (SCPP) suggests that, among other things, the number and types of buyers and sellers (structure), and transaction clearing rules and government policies (conduct) affect in very particular ways the prices and quantities (performance) in the market. In slow-moving or static markets, SCPP has been a useful predictor of market performance; in faster markets the market dynamics that endogenously develop over time are often too complex to predict with SCPP or other existing modeling techniques. New, more sophisticated combinations of modeling and simulation are needed. Toward developing a good (i.e., socially optimal) water rights market design that can take into account the dynamics inherent in the water sector, we are developing an agent-based model of water rights markets. The model serves two purposes: first, it provides an SCPP-based framework of water rights markets that takes into account the particular structure of

  5. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  6. On Religion and Language Evolutions Seen Through Mathematical and Agent Based Models

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    Religions and languages are social variables, like age, sex, wealth or political opinions, to be studied like any other organizational parameter. In fact, religiosity is one of the most important sociological aspects of populations. Languages are also obvious characteristics of the human species. Religions, languages appear though also disappear. All religions and languages evolve and survive when they adapt to the society developments. On the other hand, the number of adherents of a given religion, or the number of persons speaking a language is not fixed in time, - nor space. Several questions can be raised. E.g. from a oscopic point of view : How many religions/languages exist at a given time? What is their distribution? What is their life time? How do they evolve? From a "microscopic" view point: can one invent agent based models to describe oscopic aspects? Do simple evolution equations exist? How complicated must be a model? These aspects are considered in the present note. Basic evolution equations are outlined and critically, though briefly, discussed. Similarities and differences between religions and languages are summarized. Cases can be illustrated with historical facts and data. It is stressed that characteristic time scales are different. It is emphasized that "external fields" are historically very relevant in the case of religions, rending the study more " interesting" within a mechanistic approach based on parity and symmetry of clusters concepts. Yet the modern description of human societies through networks in reported simulations is still lacking some mandatory ingredients, i.e. the non scalar nature of the nodes, and the non binary aspects of nodes and links, though for the latter this is already often taken into account, including directions. From an analytical point of view one can consider a population independently of the others. It is intuitively accepted, but also found from the statistical analysis of the frequency distribution that an

  7. Designing across ages: Multi-agent-based models and learning electricity

    NASA Astrophysics Data System (ADS)

    Sengupta, Pratim

    Electricity is regarded as one of the most challenging topics for students at all levels -- middle school -- college (Cohen, Eylon, & Ganiel, 1983; Belcher & Olbert, 2003; Eylon & Ganiel, 1990; Steinberg et al., 1985). Several researchers have suggested that naive misconceptions about electricity stem from a deep incommensurability (Slotta & Chi, 2006; Chi, 2005) or incompatibility (Chi, Slotta & Leauw, 1994; Reiner, Slotta, Chi, & Resnick, 2000) between naive and expert knowledge structures. I first present an alternative theoretical framework that adopts an emergent levels-based perspective as proposed by Wilensky & Resnick (1999). From this perspective, macro-level phenomena such as electric current and resistance, as well as behavior of linear electric circuits, can be conceived of as emergent from simple, body-syntonic interactions between electrons and ions in a circuit. I argue that adopting such a perspective enables us to reconceive commonly noted misconceptions in electricity as behavioral evidences of "slippage between levels" -- i.e., these misconceptions appear when otherwise productive knowledge elements are sometimes inappropriately activated due to certain macro-level phenomenological cues only -- and, that the same knowledge elements when activated due to phenomenological cues at both micro- and macro-levels, can engender a deeper, expert-like understanding. I will then introduce NIELS (NetLogo Investigations In Electromagnetism, Sengupta & Wilensky, 2006, 2008, 2009), a low-threshold high-ceiling (LTHC) learning environment of multi-agent-based computational models that represent phenomena such as electric current and resistance, as well as the behavior of linear electric circuits, as emergent. I also present results from implementations of NIELS in 5th, 7th and 12th grade classrooms that show the following: (a) how leveraging certain "design elements" over others in NIELS models can create new phenomenological cues, which in turn can be

  8. Agent-based modeling of the spread of influenza-like illness in an emergency department: a simulation study.

    PubMed

    Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D

    2011-11-01

    The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.

  9. Simulating Land-Use Change using an Agent-Based Land Transaction Model

    NASA Astrophysics Data System (ADS)

    Bakker, M. M.; van Dijk, J.; Alam, S. J.

    2013-12-01

    In the densely populated cultural landscapes of Europe, the vast majority of all land is owned by private parties, be it farmers (the majority), nature organizations, property developers, or citizens. Therewith, the vast majority of all land-use change arises from land transactions between different owner types: successful farms expand at the expense of less successful farms, and meanwhile property developers, individual citizens, and nature organizations also actively purchase land. These land transactions are driven by specific properties of the land, by governmental policies, and by the (economic) motives of both buyers and sellers. Climate/global change can affect these drivers at various scales: at the local scale changes in hydrology can make certain land less or more desirable; at the global scale the agricultural markets will affect motives of farmers to buy or sell land; while at intermediate (e.g. provincial) scales property developers and nature conservationists may be encouraged or discouraged to purchase land. The cumulative result of all these transactions becomes manifest in changing land-use patterns, and consequent environmental responses. Within the project Climate Adaptation for Rural Areas an agent-based land-use model was developed that explores the future response of individual land users to climate change, within the context of wider global change (i.e. policy and market change). It simulates the exchange of land among farmers and between farmers and nature organizations and property developers, for a specific case study area in the east of the Netherlands. Results show that local impacts of climate change can result in a relative stagnation in the land market in waterlogged areas. Furthermore, the increase in dairying at the expense of arable cultivation - as has been observed in the area in the past - is slowing down as arable produce shows a favourable trend in the agricultural world market. Furthermore, budgets for nature managers are

  10. Impact of Different Policies on Unhealthy Dietary Behaviors in an Urban Adult Population: An Agent-Based Simulation Model

    PubMed Central

    Giabbanelli, Philippe J.; Arah, Onyebuchi A.; Zimmerman, Frederick J.

    2014-01-01

    Objectives. Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. Methods. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Results. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Conclusions. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems. PMID:24832414

  11. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    NASA Astrophysics Data System (ADS)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development

  12. Research Review: Attention Bias Modification (ABM)--A Novel Treatment for Anxiety Disorders

    ERIC Educational Resources Information Center

    Bar-Haim, Yair

    2010-01-01

    Attention bias modification (ABM) is a newly emerging therapy for anxiety disorders that is rooted in current cognitive models of anxiety and in established experimental data on threat-related attentional biases in anxiety. This review describes the evidence indicating that ABM has the potential to become an enhancing tool for current…

  13. Evaluation of outbreak response immunization in the control of pertussis using agent-based modeling

    PubMed Central

    Qian, Weicheng; Osgood, Nathaniel D.

    2016-01-01

    Background Pertussis control remains a challenge due to recently observed effects of waning immunity to acellular vaccine and suboptimal vaccine coverage. Multiple outbreaks have been reported in different ages worldwide. For certain outbreaks, public health authorities can launch an outbreak response immunization (ORI) campaign to control pertussis spread. We investigated effects of an outbreak response immunization targeting young adolescents in averting pertussis cases. Methods We developed an agent-based model for pertussis transmission representing disease mechanism, waning immunity, vaccination schedule and pathogen transmission in a spatially-explicit 500,000-person contact network representing a typical Canadian Public Health district. Parameters were derived from literature and calibration. We used published cumulative incidence and dose-specific vaccine coverage to calibrate the model’s epidemiological curves. We endogenized outbreak response by defining thresholds to trigger simulated immunization campaigns in the 10–14 age group offering 80% coverage. We ran paired simulations with and without outbreak response immunization and included those resulting in a single ORI within a 10-year span. We calculated the number of cases averted attributable to outbreak immunization campaign in all ages, in the 10–14 age group and in infants. The count of cases averted were tested using Mann–Whitney U test to determine statistical significance. Numbers needed to vaccinate during immunization campaign to prevent a single case in respective age groups were derived from the model. We varied adult vaccine coverage, waning immunity parameters, immunization campaign eligibility and tested stronger vaccination boosting effect in sensitivity analyses. Results 189 qualified paired-runs were analyzed. On average, ORI was triggered every 26 years. On a per-run basis, there were an average of 124, 243 and 429 pertussis cases averted across all age groups within 1, 3 and

  14. Identity in agent-based models : modeling dynamic multiscale social processes.

    SciTech Connect

    Ozik, J.; Sallach, D. L.; Macal, C. M.; Decision and Information Sciences; Univ. of Chicago

    2008-07-01

    Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework

  15. Agent Based Computing Machine

    DTIC Science & Technology

    2005-12-09

    coordinates as in cellular automata systems. But using biology as a model suggests that the most general systems must provide for partial, but constrained...17. SECURITY CLASSIFICATION OF 118. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRA REPORT THIS PAGE ABSTRACT...system called an "agent based computing" machine (ABC Machine). The ABC Machine is motivated by cellular biochemistry and it is based upon a concept

  16. Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model

    DTIC Science & Technology

    2009-08-01

    model in a complex multi -agent social context (including alignment of model parameters, scenarios and underlying assumptions). This validation in...both a wargame and a simulator that allows multi -sided multiplayer wargaming. CAEN’s primary focus is close combat infantry battles and as such it...hours worked. Town cadastral town data is used to match businesses and residences to brick and mortar buildings. The generated families and workforce

  17. Collaborative Multi-Agent Based Simulations: Stakeholder-Focused Innovation in Water Resources Management and Decision-Support Modeling

    NASA Astrophysics Data System (ADS)

    Kock, B. E.

    2006-12-01

    The combined use of multi-agent based simulations and collaborative modeling approaches is emerging as a highly effective tool for representing complex coupled social-biophysical water resource systems. A collaboratively-designed, multi-agent based simulation can be used both as a decision-support tool and as a didactic method for improving stakeholder understanding and engagement with water resources policymaking and management. Major technical and non-technical obstacles remain to the efficient and effective development of multi-agent models of human society, to integrating these models with GIS and other numerical models, and to building a process for engaging stakeholders with model design, implementation and use. It is proposed here to tackle some of these obstacles through a collaborative multi-agent based simulation process framework, intended for practical use in resolving disputes and environmental challenges over sustainable irrigated agriculture in the Western United States. A practical implementation of this framework will be conducted in collaboration with a diverse stakeholder group representing farmers and local, state and federal water managers. Through the use of simulation gaming, interviewing and computer-based knowledge elicitation, a multi-agent model representing local and regional social dynamics will be developed to support the acceptable and sustainable implementation of management alternatives for reducing regional problems of salinization and high selenium concentrations in soils and irrigation water. The development of a socially and scientifically credible simulation platform in this setting can make a significant contribution to ensuring the non-adversarial use of high quality science, enhance the engagement of stakeholders with policymaking, and help meet the challenges of integrating dynamic models of human society with more traditional biophysical systems models.

  18. Linking Bayesian and Agent-Based Models to Simulate Complex Social-Ecological Systems in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Pope, A.; Gimblett, R.

    2013-12-01

    Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent's water demand. Depth-to-groundwater was then used as an indicator of unique vegetation guilds within the riparian corridor. Each vegetation guild provides varying levels of ecosystem services, the changes of which, along with changes in depth-to-groundwater, feedback to influence agent behavior. Using this modeling approach allowed us to examine resilience of semi-arid riparian corridors and agent behavior under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.

  19. The ABM treaty and Western security

    SciTech Connect

    Durch, W.J.

    1987-01-01

    This book reveals how the debate over SDI and the ABM Treaty is not about hardware feasibility but about the future nuclear strategies of East and West, about how much cooperation they can risk and how much competition they can stand. The author examines the issues that drive it: the major threats to the ABM Treaty, ranging from Soviet radar deployments to the testing of weapons in space; the role of defense constraints in offensive arms reduction; the possible risk of an unconstrained arms race should ABM limits be eased or removed; and the conflict reports about Soviet arms control compliance practices. He assesses three paths for U.S. policy: away from the ABM Treaty toward nationwide missile defense; away from SDI toward strengthened ABM Treaty; or toward limited defense for strategic forces.

  20. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  1. Foundations of “new” social science: Institutional legitimacy from philosophy, complexity science, postmodernism, and agent-based modeling

    PubMed Central

    Henrickson, Leslie; McKelvey, Bill

    2002-01-01

    Since the death of positivism in the 1970s, philosophers have turned their attention to scientific realism, evolutionary epistemology, and the Semantic Conception of Theories. Building on these trends, Campbellian Realism allows social scientists to accept real-world phenomena as criterion variables against which theories may be tested without denying the reality of individual interpretation and social construction. The Semantic Conception reduces the importance of axioms, but reaffirms the role of models and experiments. Philosophers now see models as “autonomous agents” that exert independent influence on the development of a science, in addition to theory and data. The inappropriate molding effects of math models on social behavior modeling are noted. Complexity science offers a “new” normal science epistemology focusing on order creation by self-organizing heterogeneous agents and agent-based models. The more responsible core of postmodernism builds on the idea that agents operate in a constantly changing web of interconnections among other agents. The connectionist agent-based models of complexity science draw on the same conception of social ontology as do postmodernists. These recent developments combine to provide foundations for a “new” social science centered on formal modeling not requiring the mathematical assumptions of agent homogeneity and equilibrium conditions. They give this “new” social science legitimacy in scientific circles that current social science approaches lack. PMID:12011408

  2. Foundations of "new" social science: institutional legitimacy from philosophy, complexity science, postmodernism, and agent-based modeling.

    PubMed

    Henrickson, Leslie; McKelvey, Bill

    2002-05-14

    Since the death of positivism in the 1970s, philosophers have turned their attention to scientific realism, evolutionary epistemology, and the Semantic Conception of Theories. Building on these trends, Campbellian Realism allows social scientists to accept real-world phenomena as criterion variables against which theories may be tested without denying the reality of individual interpretation and social construction. The Semantic Conception reduces the importance of axioms, but reaffirms the role of models and experiments. Philosophers now see models as "autonomous agents" that exert independent influence on the development of a science, in addition to theory and data. The inappropriate molding effects of math models on social behavior modeling are noted. Complexity science offers a "new" normal science epistemology focusing on order creation by self-organizing heterogeneous agents and agent-based models. The more responsible core of postmodernism builds on the idea that agents operate in a constantly changing web of interconnections among other agents. The connectionist agent-based models of complexity science draw on the same conception of social ontology as do postmodernists. These recent developments combine to provide foundations for a "new" social science centered on formal modeling not requiring the mathematical assumptions of agent homogeneity and equilibrium conditions. They give this "new" social science legitimacy in scientific circles that current social science approaches lack.

  3. Modeling hairy root tissue growth in in vitro environments using an agent-based, structured growth model.

    PubMed

    Lenk, Felix; Sürmann, Almuth; Oberthür, Patrick; Schneider, Mandy; Steingroewer, Juliane; Bley, Thomas

    2014-06-01

    An agent-based model for simulating the in vitro growth of Beta vulgaris hairy root cultures is described. The model fitting is based on experimental results and can be used as a virtual experimentator for root networks. It is implemented in the JAVA language and is designed to be easily modified to describe the growth of diverse biological root networks. The basic principles of the model are outlined, with descriptions of all of the relevant algorithms using the ODD protocol, and a case study is presented in which it is used to simulate the development of hairy root cultures of beetroot (Beta vulgaris) in a Petri dish. The model can predict various properties of the developing network, including the total root length, branching point distribution, segment distribution and secondary metabolite accumulation. It thus provides valuable information that can be used when optimizing cultivation parameters (e.g., medium composition) and the cultivation environment (e.g., the cultivation temperature) as well as how constructional parameters change the morphology of the root network. An image recognition solution was used to acquire experimental data that were used when fitting the model and to evaluate the agreement between the simulated results and practical experiments. Overall, the case study simulation closely reproduced experimental results for the cultures grown under equivalent conditions to those assumed in the simulation. A 3D-visualization solution was created to display the simulated results relating to the state of the root network and its environment (e.g., oxygen and nutrient levels).

  4. Deciphering chemokine properties by a hybrid agent-based model of Aspergillus fumigatus infection in human alveoli

    PubMed Central

    Pollmächer, Johannes; Figge, Marc Thilo

    2015-01-01

    The ubiquitous airborne fungal pathogen Aspergillus fumigatus is inhaled by humans every day. In the lung, it is able to quickly adapt to the humid environment and, if not removed within a time frame of 4–8 h, the pathogen may cause damage by germination and invasive growth. Applying a to-scale agent-based model of human alveoli to simulate early A. fumigatus infection under physiological conditions, we recently demonstrated that alveolar macrophages require chemotactic cues to accomplish the task of pathogen detection within the aforementioned time frame. The objective of this study is to specify our general prediction on the as yet unidentified chemokine by a quantitative analysis of its expected properties, such as the diffusion coefficient and the rates of secretion and degradation. To this end, the rule-based implementation of chemokine diffusion in the initial agent-based model is revised by numerically solving the spatio-temporal reaction-diffusion equation in the complex structure of the alveolus. In this hybrid agent-based model, alveolar macrophages are represented as migrating agents that are coupled to the interactive layer of diffusing molecule concentrations by the kinetics of chemokine receptor binding, internalization and re-expression. Performing simulations for more than a million virtual infection scenarios, we find that the ratio of secretion rate to the diffusion coefficient is the main indicator for the success of pathogen detection. Moreover, a subdivision of the parameter space into regimes of successful and unsuccessful parameter combination by this ratio is specific for values of the migration speed and the directional persistence time of alveolar macrophages, but depends only weakly on chemokine degradation rates. PMID:26074897

  5. The role of research efficiency in the evolution of scientific productivity and impact: An agent-based model

    NASA Astrophysics Data System (ADS)

    You, Zhi-Qiang; Han, Xiao-Pu; Hadzibeganovic, Tarik

    2016-02-01

    We introduce an agent-based model to investigate the effects of production efficiency (PE) and hot field tracing capability (HFTC) on productivity and impact of scientists embedded in a competitive research environment. Agents compete to publish and become cited by occupying the nodes of a citation network calibrated by real-world citation datasets. Our Monte-Carlo simulations reveal that differences in individual performance are strongly related to PE, whereas HFTC alone cannot provide sustainable academic careers under intensely competitive conditions. Remarkably, the negative effect of high competition levels on productivity can be buffered by elevated research efficiency if simultaneously HFTC is sufficiently low.

  6. Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States

    PubMed Central

    Manson, Steven M.; Evans, Tom

    2007-01-01

    We combine mixed-methods research with integrated agent-based modeling to understand land change and economic decision making in the United States and Mexico. This work demonstrates how sustainability science benefits from combining integrated agent-based modeling (which blends methods from the social, ecological, and information sciences) and mixed-methods research (which interleaves multiple approaches ranging from qualitative field research to quantitative laboratory experiments and interpretation of remotely sensed imagery). We test assumptions of utility-maximizing behavior in household-level landscape management in south-central Indiana, linking parcel data, land cover derived from aerial photography, and findings from laboratory experiments. We examine the role of uncertainty and limited information, preferences, differential demographic attributes, and past experience and future time horizons. We also use evolutionary programming to represent bounded rationality in agriculturalist households in the southern Yucatán of Mexico. This approach captures realistic rule of thumb strategies while identifying social and environmental factors in a manner similar to econometric models. These case studies highlight the role of computational models of decision making in land-change contexts and advance our understanding of decision making in general. PMID:18093928

  7. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    NASA Astrophysics Data System (ADS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd2+ ions and complexity of tracking of individual atoms of Cd at the same time.

  8. Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    PubMed Central

    Niazi, Muaz A.

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135

  9. Emergence of a snake-like structure in mobile distributed agents: an exploratory agent-based modeling approach.

    PubMed

    Niazi, Muaz A

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems.

  10. Using Geographic Information Systems to Define and Map Commuting Patterns as Inputs to Agent-Based Models

    PubMed Central

    Chrest, David P.; Wheaton, William D.

    2010-01-01

    By understanding the movement patterns of people, mathematical modelers can develop models that can better analyze and predict the spread of infectious diseases. People can come into close contact in their workplaces. This report describes methods to develop georeferenced commuting patterns that can be used to characterize the work-related movement of US populations and help agent-based modelers predict workplace contacts that result in disease transmission. We used a census data product called “Census Spatial Tabulation: Census Track of Work by Census Tract of Residence (STP64)” as the data source to develop commuting pattern data for agent-based synthesized populations databases and to develop map products to visualize commuting patterns in the United States. The three primary maps we developed show inbound, outbound, and net change levels of inbound versus outbound commuters by census tract for the year 2000. Net change counts of commuters are visualized as elevations. The results can be used to quantify and assign commuting patterns of synthesized populations among different census tracts. PMID:20505785

  11. Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model.

    PubMed

    Nguyen-Trong, Khanh; Nguyen-Thi-Ngoc, Anh; Nguyen-Ngoc, Doanh; Dinh-Thi-Hai, Van

    2017-01-01

    The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%.

  12. Incorporating GIS data into an agent-based model to support planning policy making for the development of creative industries

    NASA Astrophysics Data System (ADS)

    Liu, Helin; Silva, Elisabete A.; Wang, Qian

    2016-07-01

    This paper presents an extension to the agent-based model "Creative Industries Development-Urban Spatial Structure Transformation" by incorporating GIS data. Three agent classes, creative firms, creative workers and urban government, are considered in the model, and the spatial environment represents a set of GIS data layers (i.e. road network, key housing areas, land use). With the goal to facilitate urban policy makers to draw up policies locally and optimise the land use assignment in order to support the development of creative industries, the improved model exhibited its capacity to assist the policy makers conducting experiments and simulating different policy scenarios to see the corresponding dynamics of the spatial distributions of creative firms and creative workers across time within a city/district. The spatiotemporal graphs and maps record the simulation results and can be used as a reference by the policy makers to adjust land use plans adaptively at different stages of the creative industries' development process.

  13. Environmental Sustainability and Effects on Urban Micro Region using Agent-Based Modeling of Urbanisation in Select Major Indian Cities

    NASA Astrophysics Data System (ADS)

    Aithal, B. H.

    2015-12-01

    Abstract: Urbanisation has gained momentum with globalization in India. Policy decisions to set up commercial, industrial hubs have fuelled large scale migration, added with population upsurge has contributed to the fast growing urban region that needs to be monitored in order to design sustainable urban cities. Unplanned urbanization have resulted in the growth of peri-urban region referred to as urban sprawl, are often devoid of basic amenities and infrastructure leading to large scale environmental problems that are evident. Remote sensing data acquired through space borne sensors at regular interval helps in understanding urban dynamics aided by Geoinformatics which has proved very effective in mapping and monitoring for sustainable urban planning. Cellular automata (CA) is a robust approach for the spatially explicit simulation of land-use land cover dynamics. CA uses rules, states, conditions that are vital factors in modelling urbanisation. This communication effectively introduces simulation assistances of CA with the agent based modelling supported by its fuzzy characteristics and weightages through analytical hierarchal process (AHP). This has been done considering perceived agents such as industries, natural resource etc. Respective agent's role in development of a particular regions into an urban area has been examined with weights and its influence of each of these agents based on its characteristics functions. Validation was performed obtaining a high kappa coefficient indicating the quality and the allocation performance of the model & validity of the model to predict future projections. The prediction using the proposed model was performed for 2030. Further environmental sustainability of each of these cities are explored such as water features, environment, greenhouse gas emissions, effects on human human health etc., Modeling suggests trend of various land use classes transformation with the spurt in urban expansions based on specific regions and

  14. Research review: Attention bias modification (ABM): a novel treatment for anxiety disorders.

    PubMed

    Bar-Haim, Yair

    2010-08-01

    Attention bias modification (ABM) is a newly emerging therapy for anxiety disorders that is rooted in current cognitive models of anxiety and in established experimental data on threat-related attentional biases in anxiety. This review describes the evidence indicating that ABM has the potential to become an enhancing tool for current psychological and pharmacological treatments for anxiety or even a novel standalone treatment. The review also outlines the gaps in need of bridging before ABM techniques could be routinely applied and incorporated into standard treatment protocols.

  15. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling

    SciTech Connect

    Tang, Jonathan; Enderling, Heiko; Becker-Weimann, Sabine; Pham, Christopher; Polyzos, Aris; Chen, Chen-Yi; Costes, Sylvain V

    2011-02-18

    We introduce an agent-based model of epithelial cell morphogenesis to explore the complex interplay between apoptosis, proliferation, and polarization. By varying the activity levels of these mechanisms we derived phenotypic transition maps of normal and aberrant morphogenesis. These maps identify homeostatic ranges and morphologic stability conditions. The agent-based model was parameterized and validated using novel high-content image analysis of mammary acini morphogenesis in vitro with focus on time-dependent cell densities, proliferation and death rates, as well as acini morphologies. Model simulations reveal apoptosis being necessary and sufficient for initiating lumen formation, but cell polarization being the pivotal mechanism for maintaining physiological epithelium morphology and acini sphericity. Furthermore, simulations highlight that acinus growth arrest in normal acini can be achieved by controlling the fraction of proliferating cells. Interestingly, our simulations reveal a synergism between polarization and apoptosis in enhancing growth arrest. After validating the model with experimental data from a normal human breast line (MCF10A), the system was challenged to predict the growth of MCF10A where AKT-1 was overexpressed, leading to reduced apoptosis. As previously reported, this led to non growth-arrested acini, with very large sizes and partially filled lumen. However, surprisingly, image analysis revealed a much lower nuclear density than observed for normal acini. The growth kinetics indicates that these acini grew faster than the cells comprising it. The in silico model could not replicate this behavior, contradicting the classic paradigm that ductal carcinoma in situ is only the result of high proliferation and low apoptosis. Our simulations suggest that overexpression of AKT-1 must also perturb cell-cell and cell-ECM communication, reminding us that extracellular context can dictate cellular behavior.

  16. Analyzing the Surface Warfare Operational Effectiveness of an Offshore Patrol Vessel using Agent Based Modeling

    DTIC Science & Technology

    2012-09-01

    Plot ................................................................45 Figure 17. OSN Model Partition Tree Plot (1st Split ...Model Partition Tree Plot (2nd Split ) .......................................................48 Figure 20. OSN Model Actual by Predicted Plot (Gun...Absent & SSM 1 Equipped) ......49 Figure 21. OSN Model Partition Tree Plot ( Splits 1- 4) ...................................................50 Figure 22

  17. Frequency analysis of tick quotes on the foreign exchange market and agent-based modeling: A spectral distance approach

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2007-08-01

    High-frequency financial data of the foreign exchange market (EUR/CHF, EUR/GBP, EUR/JPY, EUR/NOK, EUR/SEK, EUR/USD, NZD/USD, USD/CAD, USD/CHF, USD/JPY, USD/NOK, and USD/SEK) are analyzed by utilizing the Kullback-Leibler divergence between two normalized spectrograms of the tick frequency and the generalized Jensen-Shannon divergence among them. The temporal structure variations of the similarity between currency pairs is detected and characterized. A simple agent-based model in which N market participants exchange M currency pairs is proposed. The equation for the tick frequency is approximately derived theoretically. Based on the analysis of this model, the spectral distance of the tick frequency is associated with the similarity of the behavior (perception and decision) of the market participants in exchanging these currency pairs.

  18. Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields

    NASA Astrophysics Data System (ADS)

    Génois, Mathieu; Hersen, Pascal; du Pont, Sylvain Courrech; Grégoire, Guillaume

    2013-11-01

    In order to test parameters of the peculiar dynamics occurring in barchan fields, and compute statistical analysis over large numbers of dunes, we build and study an agent-based model, which includes the well-known physics of an isolated barchan, and observations of interactions between dunes. We showed in a previous study that such a model, where barchans interact through short-range sand recapture and collisions, reproduces the peculiar behaviours of real fields, namely its spatial structuring along the wind direction, and the size selection by the local density. In this paper we focus on the mechanisms that drives these features. In particular, we show that eolian remote sand transfer between dunes ensures that a dense field structures itself into a very heterogeneous pattern, which alternates dense and diluted stripes in the wind direction. In these very dense clusters of dunes, the accumulation of collisions leads to the local emergence of a new size for the dunes.

  19. A place for agent-based models. Comment on "Statistical physics of crime: A review" by M.R. D'Orsogna and M. Perc

    NASA Astrophysics Data System (ADS)

    Barbaro, Alethea

    2015-03-01

    Agent-based models have been widely applied in theoretical ecology to explain migrations and other collective animal movements [2,5,8]. As D'Orsogna and Perc have expertly highlighted in [6], the recent emergence of crime modeling has opened another interesting avenue for mathematical investigation. The area of crime modeling is particularly suited to agent-based models, because these models offer a great deal of flexibility within the model and also ease of communication among criminologist, law enforcement and modelers.

  20. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  1. An agent-based modeling framework for evaluating hypotheses on risks for developing autism: effects of the gut microbial environment.

    PubMed

    Weston, Bronson; Fogal, Benjamin; Cook, Daniel; Dhurjati, Prasad

    2015-04-01

    The number of cases diagnosed with Autism Spectrum Disorders is rising at an alarming rate with the Centers for Disease Control estimating the 2014 incidence rate as 1 in 68. Recently, it has been hypothesized that gut bacteria may contribute to the development of autism. Specifically, the relative balances between the inflammatory microbes clostridia and desulfovibrio and the anti-inflammatory microbe bifidobacteria may become destabilized prior to autism development. The imbalance leads to a leaky gut, characterized by a more porous epithelial membrane resulting in microbial toxin release into the blood, which may contribute to brain inflammation and autism development. To test how changes in population dynamics of the gut microbiome may lead to the imbalanced microbial populations associated with autism patients, we constructed a novel agent-based model of clostridia, desulfovibrio, and bifidobacteria population interactions in the gut. The model demonstrates how changing physiological conditions in the gut can affect the population dynamics of the microbiome. Simulations using our agent-based model indicate that despite large perturbations to initial levels of bacteria, the populations robustly achieve a single steady-state given similar gut conditions. These simulation results suggests that disturbance such as a prebiotic or antibiotic treatment may only transiently affect the gut microbiome. However, sustained prebiotic treatments may correct low population counts of bifidobacteria. Furthermore, our simulations suggest that clostridia growth rate is a key determinant of risk of autism development. Treatment of high-risk infants with supra-physiological levels of lysozymes may suppress clostridia growth rate, resulting in a steep decrease in the clostridia population and therefore reduced risk of autism development.

  2. Approach and development strategy for an agent-based model of economic confidence.

    SciTech Connect

    Sprigg, James A.; Pryor, Richard J.; Jorgensen, Craig Reed

    2004-08-01

    We are extending the existing features of Aspen, a powerful economic modeling tool, and introducing new features to simulate the role of confidence in economic activity. The new model is built from a collection of autonomous agents that represent households, firms, and other relevant entities like financial exchanges and governmental authorities. We simultaneously model several interrelated markets, including those for labor, products, stocks, and bonds. We also model economic tradeoffs, such as decisions of households and firms regarding spending, savings, and investment. In this paper, we review some of the basic principles and model components and describe our approach and development strategy for emulating consumer, investor, and business confidence. The model of confidence is explored within the context of economic disruptions, such as those resulting from disasters or terrorist events.

  3. Agent Based Modeling and Simulation Framework for Supply Chain Risk Management

    DTIC Science & Technology

    2012-03-01

    timed Petri net based simulation (Tuncel and Alpan 2010), and Monte Carlo (White 1995, Wu and Olson 2008, and Schmitt and Singh 2009). More detail...benefit costs. (Li and Li 2008) 26 Chen, Zhou, and Hu propose an agent-oriented Petri net model for an inventory- scheduling model, with focus on the...problems of analysis and modeling of multi-agent systems. Petri net aims at researching the organization structure and dynamic behavior of a system

  4. Agent-Based Modeling of Physical Factors That May Control the Growth of Coccidioides immitis (Valley Fever Fungus) in Soils

    NASA Astrophysics Data System (ADS)

    Gettings, M. E.; Fisher, F. S.

    2003-12-01

    A model of the spread and survival of the fungus Coccidioides immitis in soil via wind-borne spore transport has been completed using public domain agent-based modeling software. The hypothetical model posits that for a successful new site to become established, four factors must be simultaneously satisfied. 1) There must be transport of spores from a source site to sites with favorable soil geology, texture, topographic aspect, and lack of biomass competition. 2) There must be sufficient moisture for fungal growth. 3) Temperature of the surface and soil must be favorable for growth. Finally, 4) the temperature and moisture must remain in favorable ranges for a long enough time interval for the fungus to grow down to depths at which spores will survive subsequent heat, aridity, and ultraviolet radiation of the hot, dry season typical of the Southwest U.S. climate. Using agent-based modeling software, a model was built so that the effects of combinations of these controlling factors could be evaluated using realistic temperature, rain and wind models. The rain probability and amount, temperature annual and diurnal variation, and wind direction and intensity were based on the weather records at Tucson, Arizona for the 107-year period from 1894 to 2001. Favorable ground was defined using a fractal tree algorithm that emulates a drainage network in accordance with observations that favorable sites are often adjacent to drainage channels. Numerous model runs produced the following five conclusions. 1) If any property is not isotropic, for example wind direction or narrow paths of rainstorms, parts of the favorable areas will never become colonized no matter how long the model runs. 2)The spread of sites is extremely sensitive to moisture duration. The amount of wind and temperature after a rain control the length of time before a site becomes too dry. 3) The distribution of wind and rainstorm direction relative to that of the favorable sites is a strong control on the

  5. Understanding the relationship between safety investment and safety performance of construction projects through agent-based modeling.

    PubMed

    Lu, Miaojia; Cheung, Clara Man; Li, Heng; Hsu, Shu-Chien

    2016-09-01

    The construction industry in Hong Kong increased its safety investment by 300% in the past two decades; however, its accident rate has plateaued to around 50% for one decade. Against this backdrop, researchers have found inconclusive results on the causal relationship between safety investment and safety performance. Using agent-based modeling, this study takes an unconventional bottom-up approach to study safety performance on a construction site as an outcome of a complex system defined by interactions among a worksite, individual construction workers, and different safety investments. Instead of focusing on finding the absolute relationship between safety investment and safety performance, this study contributes to providing a practical framework to investigate how different safety investments interacting with different parameters such as human and environmental factors could affect safety performance. As a result, we could identify cost-effective safety investments under different construction scenarios for delivering optimal safety performance.

  6. An Agent-based Model Simulation of Multiple Collaborating Mobile Ad Hoc Networks (MANET)

    DTIC Science & Technology

    2011-06-01

    RESULTS: Agent Learning Profiles Discounted Positive Reinforcement Learning Learning and Forgetting Forgetting is triggered by task conditions that...disable rational and deliberate mental models –forcing the agent to ignore (or forget) routine processes. Positive reinforcement is earned by an...deliberate behavior of agents as rational entities (model-based functions). 6.Experiment with positive reinforcement learning (with incremental gain over

  7. Agent-Based Model of Human Alveoli Predicts Chemotactic Signaling by Epithelial Cells during Early Aspergillus fumigatus Infection

    PubMed Central

    Pollmächer, Johannes; Figge, Marc Thilo

    2014-01-01

    Aspergillus fumigatus is one of the most important human fungal pathogens, causing life-threatening diseases. Since humans inhale hundreds to thousands of fungal conidia every day, the lower respiratory tract is the primary site of infection. Current interaction networks of the innate immune response attribute fungal recognition and detection to alveolar macrophages, which are thought to be the first cells to get in contact with the fungus. At present, these networks are derived from in vitro or in situ assays, as the peculiar physiology of the human lung makes in vivo experiments, including imaging on the cell-level, hard to realize. We implemented a spatio-temporal agent-based model of a human alveolus in order to perform in silico experiments of a virtual infection scenario, for an alveolus infected with A. fumigatus under physiological conditions. The virtual analog captures the three-dimensional alveolar morphology consisting of the two major alveolar epithelial cell types and the pores of Kohn as well as the dynamic process of respiration. To the best of our knowledge this is the first agent-based model of a dynamic human alveolus in the presence of respiration. A key readout of our simulations is the first-passage-time of alveolar macrophages, which is the period of time that elapses until the first physical macrophage-conidium contact is established. We tested for random and chemotactic migration modes of alveolar macrophages and varied their corresponding parameter sets. The resulting first-passage-time distributions imply that randomly migrating macrophages fail to find the conidium before the start of germination, whereas guidance by chemotactic signals derived from the alveolar epithelial cell associated with the fungus enables a secure and successful discovery of the pathogen in time. PMID:25360787

  8. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix.

    PubMed

    D'Antonio, Gianluca; Macklin, Paul; Preziosi, Luigi

    2013-02-01

    The basement membrane (BM) and extracellular matrix (ECM) play critical roles in developmental and cancer biology, and are of great interest in biomathematics. We introduce a model of mechanical cell-BM-ECM interactions that extends current (visco)elastic models (e.g. [8,16]), and connects to recent agent-based cell models (e.g. [2,3,20,26]). We model the BM as a linked series of Hookean springs, each with time-varying length, thickness, and spring constant. Each BM spring node exchanges adhesive and repulsive forces with the cell agents using potential functions. We model elastic BM-ECM interactions with analogous ECM springs. We introduce a new model of plastic BM and ECM reorganization in response to prolonged strains, and new constitutive relations that incorporate molecular-scale effects of plasticity into the spring constants. We find that varying the balance of BM and ECM elasticity alters the node spacing along cell boundaries, yielding a nonuniform BM thickness. Uneven node spacing generates stresses that are relieved by plasticity over long times. We find that elasto-viscoplastic cell shape response is critical to relieving uneven stresses in the BM. Our modeling advances and results highlight the importance of rigorously modeling of cell-BM-ECM interactions in clinically important conditions with significant membrane deformations and time-varying membrane properties, such as aneurysms and progression from in situ to invasive carcinoma.

  9. Theory of agent-based market models with controlled levels of greed and anxiety

    NASA Astrophysics Data System (ADS)

    Papadopoulos, P.; Coolen, A. C. C.

    2010-01-01

    We use generating functional analysis to study minority-game-type market models with generalized strategy valuation updates that control the psychology of agents' actions. The agents' choice between trend-following and contrarian trading, and their vigor in each, depends on the overall state of the market. Even in 'fake history' models, the theory now involves an effective overall bid process (coupled to the effective agent process) which can exhibit profound remanence effects and new phase transitions. For some models the bid process can be solved directly, others require Maxwell-construction-type approximations.

  10. Dynamical systems approach to the study of a sociophysics agent-based model

    SciTech Connect

    Timpanaro, Andre M.; Prado, Carmen P. C.

    2011-03-24

    The Sznajd model is a Potts-like model that has been studied in the context of sociophysics [1,2](where spins are interpreted as opinions). In a recent work [3], we generalized the Sznajd model to include assymetric interactions between the spins (interpreted as biases towards opinions) and used dynamical systems techniques to tackle its mean-field version, given by the flow: {eta}{sub {sigma}} = {Sigma}{sub {sigma}}'{sup M} = 1{eta}{sub {sigma}}{eta}{sigma}'({eta}{sub {sigma}}{rho}{sigma}'{yields}{sigma}-{sigma}'{rho}{sigma}{yields}{sigma}').Where hs is the proportion of agents with opinion (spin){sigma}', M is the number of opinions and {sigma}'{yields}{sigma}' is the probability weight for an agent with opinion {sigma} being convinced by another agent with opinion {sigma}'. We made Monte Carlo simulations of the model in a complex network (using Barabasi-Albert networks [4]) and they displayed the same attractors than the mean-field. Using linear stability analysis, we were able to determine the mean-field attractor structure analytically and to show that it has connections with well known graph theory problems (maximal independent sets and positive fluxes in directed graphs). Our dynamical systems approach is quite simple and can be used also in other models, like the voter model.

  11. Dynamical systems approach to the study of a sociophysics agent-based model

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2011-03-01

    The Sznajd model is a Potts-like model that has been studied in the context of sociophysics [1,2] (where spins are interpreted as opinions). In a recent work [3], we generalized the Sznajd model to include assymetric interactions between the spins (interpreted as biases towards opinions) and used dynamical systems techniques to tackle its mean-field version, given by the flow: ησ = ∑ σ' = 1Mησησ'(ησρσ'→σ-σ'ρσ→σ'). Where hs is the proportion of agents with opinion (spin) σ', M is the number of opinions and σ'→σ' is the probability weight for an agent with opinion σ being convinced by another agent with opinion σ'. We made Monte Carlo simulations of the model in a complex network (using Barabási-Albert networks [4]) and they displayed the same attractors than the mean-field. Using linear stability analysis, we were able to determine the mean-field attractor structure analytically and to show that it has connections with well known graph theory problems (maximal independent sets and positive fluxes in directed graphs). Our dynamical systems approach is quite simple and can be used also in other models, like the voter model.

  12. An agent-based model for the bibliometric h-index

    NASA Astrophysics Data System (ADS)

    Ionescu, Georgia; Chopard, Bastien

    2013-10-01

    We model a virtual scientific community in which authors publish and cite articles. Citations are attributed according to a preferential attachment mechanism. From the numerical simulations, the h-index can be computed. This bottom-up approach reproduces well real bibliometric data. We consider two versions of our model. (1) The single-scientist is controlled by two parameters which can be tuned to reproduce the value of the h-index of many real scientists. Moreover, this model shows how the h-index grows with the number of citations, for a fixed number of articles. We also define an average h-index that can be used to compare the scientific productivity of institutions of different sizes. (2) The multi-scientist model considers a population of scientists and allows us to study the impact of removing citations from the low h-index researchers on the community. Simulations on real bibilometric data, as well as the predictions of the model, show that the h-index eco-system can be strongly affected by such a filtering.

  13. Modeling of agent-based complex network under cyber-violence

    NASA Astrophysics Data System (ADS)

    Huang, Chuanchao; Hu, Bin; Jiang, Guoyin; Yang, Ruixian

    2016-09-01

    Public opinion reversal arises frequently in modern society, due to the continual interactions between individuals and their surroundings. To explore the underlying mechanism of the interesting social phenomenon, we introduce here a new model which takes the relationship between the individual cognitive bias and their corresponding choice behavior into account. Experimental results show that the proposed model can provide an accurate description of the entire process of public opinion reversal under the internet environment and the distribution of cognitive bias plays the role of a measure for the reversal probability. In particular, the application to cyber violence, a typical example of public opinion reversal, suggests that public opinion is prone to be seriously affected by the spread of misleading and harmful information. Furthermore, our model is very robust and thus can be employed to other empirical studies that concern the sudden change of public and personal opinion on internet.

  14. The Importance of Neighborhood Scheme Selection in Agent-based Tumor Growth Modeling.

    PubMed

    Tzedakis, Georgios; Tzamali, Eleftheria; Marias, Kostas; Sakkalis, Vangelis

    2015-01-01

    Modeling tumor growth has proven a very challenging problem, mainly due to the fact that tumors are highly complex systems that involve dynamic interactions spanning multiple scales both in time and space. The desire to describe interactions in various scales has given rise to modeling approaches that use both continuous and discrete variables, known as hybrid approaches. This work refers to a hybrid model on a 2D square lattice focusing on cell movement dynamics as they play an important role in tumor morphology, invasion and metastasis and are considered as indicators for the stage of malignancy used for early prognosis and effective treatment. Considering various distributions of the microenvironment, we explore how Neumann vs. Moore neighborhood schemes affects tumor growth and morphology. The results indicate that the importance of neighborhood selection is critical under specific conditions that include i) increased hapto/chemo-tactic coefficient, ii) a rugged microenvironment and iii) ECM degradation.

  15. An Advanced Computational Approach to System of Systems Analysis & Architecting Using Agent-Based Behavioral Model

    DTIC Science & Technology

    2013-03-29

    color or single word description. An overall evaluation, that combines several attributes, is still largely a gestalt of component attribute values...limits on our capacity for processing information. Psychological Review, 63(2), 81-97. NDIA. (11 October 2011). Best Practices Model for SoS Systems

  16. An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks.

    PubMed

    Getz, Wayne M; Carlson, Colin; Dougherty, Eric; Porco Francis, Travis C; Salter, Richard

    2016-04-01

    The winter 2014-15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a 'send unvaccinated students home' policy in low coverage counties is extremely effective at shutting down outbreaks of measles.

  17. An Agent-Based Model for Navigation Simulation in a Heterogeneous Environment

    ERIC Educational Resources Information Center

    Shanklin, Teresa A.

    2012-01-01

    Complex navigation (e.g. indoor and outdoor environments) can be studied as a system-of-systems problem. The model is made up of disparate systems that can aid a user in navigating from one location to another, utilizing whatever sensor system or information is available. By using intelligent navigation sensors and techniques (e.g. RFID, Wifi,…

  18. Agent-Based Modeling of Collaborative Problem Solving. Research Report. ETS RR-16-27

    ERIC Educational Resources Information Center

    Bergner, Yoav; Andrews, Jessica J.; Zhu, Mengxiao; Gonzales, Joseph E.

    2016-01-01

    Collaborative problem solving (CPS) is a critical competency in a variety of contexts, including the workplace, school, and home. However, only recently have assessment and curriculum reformers begun to focus to a greater extent on the acquisition and development of CPS skill. One of the major challenges in psychometric modeling of CPS is…

  19. A Framework for Model-Based Inquiry through Agent-Based Programming

    ERIC Educational Resources Information Center

    Xiang, Lin; Passmore, Cynthia

    2015-01-01

    There has been increased recognition in the past decades that model-based inquiry (MBI) is a promising approach for cultivating deep understandings by helping students unite phenomena and underlying mechanisms. Although multiple technology tools have been used to improve the effectiveness of MBI, there are not enough detailed examinations of how…

  20. An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks

    PubMed Central

    Getz, Wayne M.; Carlson, Colin; Dougherty, Eric; Porco, Travis C.; Salter, Richard

    2016-01-01

    The winter 2014–15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a ‘send unvaccinated students home’ policy in low coverage counties is extremely effective at shutting down outbreaks of measles. PMID:27668297

  1. An Empirical Agent-Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework.

    PubMed

    Kandiah, Venu; Binder, Andrew R; Berglund, Emily Z

    2017-01-11

    Water reuse can serve as a sustainable alternative water source for urban areas. However, the successful implementation of large-scale water reuse projects depends on community acceptance. Because of the negative perceptions that are traditionally associated with reclaimed water, water reuse is often not considered in the development of urban water management plans. This study develops a simulation model for understanding community opinion dynamics surrounding the issue of water reuse, and how individual perceptions evolve within that context, which can help in the planning and decision-making process. Based on the social amplification of risk framework, our agent-based model simulates consumer perceptions, discussion patterns, and their adoption or rejection of water reuse. The model is based on the "risk publics" model, an empirical approach that uses the concept of belief clusters to explain the adoption of new technology. Each household is represented as an agent, and parameters that define their behavior and attributes are defined from survey data. Community-level parameters-including social groups, relationships, and communication variables, also from survey data-are encoded to simulate the social processes that influence community opinion. The model demonstrates its capabilities to simulate opinion dynamics and consumer adoption of water reuse. In addition, based on empirical data, the model is applied to investigate water reuse behavior in different regions of the United States. Importantly, our results reveal that public opinion dynamics emerge differently based on membership in opinion clusters, frequency of discussion, and the structure of social networks.

  2. The impacts of information-sharing mechanisms on spatial market formation based on agent-based modeling.

    PubMed

    Li, Qianqian; Yang, Tao; Zhao, Erbo; Xia, Xing'ang; Han, Zhangang

    2013-01-01

    There has been an increasing interest in the geographic aspects of economic development, exemplified by P. Krugman's logical analysis. We show in this paper that the geographic aspects of economic development can be modeled using multi-agent systems that incorporate multiple underlying factors. The extent of information sharing is assumed to be a driving force that leads to economic geographic heterogeneity across locations without geographic advantages or disadvantages. We propose an agent-based market model that considers a spectrum of different information-sharing mechanisms: no information sharing, information sharing among friends and pheromone-like information sharing. Finally, we build a unified model that accommodates all three of these information-sharing mechanisms based on the number of friends who can share information. We find that the no information-sharing model does not yield large economic zones, and more information sharing can give rise to a power-law distribution of market size that corresponds to the stylized fact of city size and firm size distributions. The simulations show that this model is robust. This paper provides an alternative approach to studying economic geographic development, and this model could be used as a test bed to validate the detailed assumptions that regulate real economic agglomeration.

  3. The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates

    PubMed Central

    Lum, Kristian; Swarup, Samarth; Eubank, Stephen; Hawdon, James

    2014-01-01

    We build an agent-based model of incarceration based on the susceptible–infected–suspectible (SIS) model of infectious disease propagation. Our central hypothesis is that the observed racial disparities in incarceration rates between Black and White Americans can be explained as the result of differential sentencing between the two demographic groups. We demonstrate that if incarceration can be spread through a social influence network, then even relatively small differences in sentencing can result in large disparities in incarceration rates. Controlling for effects of transmissibility, susceptibility and influence network structure, our model reproduces the observed large disparities in incarceration rates given the differences in sentence lengths for White and Black drug offenders in the USA without extensive parameter tuning. We further establish the suitability of the SIS model as applied to incarceration by demonstrating that the observed structural patterns of recidivism are an emergent property of the model. In fact, our model shows a remarkably close correspondence with California incarceration data. This work advances efforts to combine the theories and methods of epidemiology and criminology. PMID:24966237

  4. Proposal of an agent-based analytical model to convert industrial areas in industrial eco-systems.

    PubMed

    Romero, Elena; Ruiz, M Carmen

    2014-01-15

    The transformation of industrial areas towards greater sustainability results from a strategic objective to address the effects of economic and environmental crisis. Such transformation, however, requires methodologies and tools that support and facilitate the process. This paper proposes an analytical model that favours the redesign of industrial areas based on sustainable strategies for eco-industrial parks. The proposed model is enhanced by the definition of building blocks of an agent-based modelling method. The methodology that was followed favours the detailed description of the objectives of the system, with individual elements and adaptation to the surrounding environment, amongst other features. The proposed model integrates a knowledge database that supports the process of identification of cooperative strategies such as material exchange networks in industrial areas. The underlying theory for the assessment of cooperative interactions is game theory, which supports the resolution of problems with strategic choices. This work covers the stage of analytical model formulation that is essential for advancement towards the inference process based on simulation models.

  5. The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates.

    PubMed

    Lum, Kristian; Swarup, Samarth; Eubank, Stephen; Hawdon, James

    2014-09-06

    We build an agent-based model of incarceration based on the susceptible-infected-suspectible (SIS) model of infectious disease propagation. Our central hypothesis is that the observed racial disparities in incarceration rates between Black and White Americans can be explained as the result of differential sentencing between the two demographic groups. We demonstrate that if incarceration can be spread through a social influence network, then even relatively small differences in sentencing can result in large disparities in incarceration rates. Controlling for effects of transmissibility, susceptibility and influence network structure, our model reproduces the observed large disparities in incarceration rates given the differences in sentence lengths for White and Black drug offenders in the USA without extensive parameter tuning. We further establish the suitability of the SIS model as applied to incarceration by demonstrating that the observed structural patterns of recidivism are an emergent property of the model. In fact, our model shows a remarkably close correspondence with California incarceration data. This work advances efforts to combine the theories and methods of epidemiology and criminology.

  6. The Impacts of Information-Sharing Mechanisms on Spatial Market Formation Based on Agent-Based Modeling

    PubMed Central

    Li, Qianqian; Yang, Tao; Zhao, Erbo; Xia, Xing’ang; Han, Zhangang

    2013-01-01

    There has been an increasing interest in the geographic aspects of economic development, exemplified by P. Krugman’s logical analysis. We show in this paper that the geographic aspects of economic development can be modeled using multi-agent systems that incorporate multiple underlying factors. The extent of information sharing is assumed to be a driving force that leads to economic geographic heterogeneity across locations without geographic advantages or disadvantages. We propose an agent-based market model that considers a spectrum of different information-sharing mechanisms: no information sharing, information sharing among friends and pheromone-like information sharing. Finally, we build a unified model that accommodates all three of these information-sharing mechanisms based on the number of friends who can share information. We find that the no information-sharing model does not yield large economic zones, and more information sharing can give rise to a power-law distribution of market size that corresponds to the stylized fact of city size and firm size distributions. The simulations show that this model is robust. This paper provides an alternative approach to studying economic geographic development, and this model could be used as a test bed to validate the detailed assumptions that regulate real economic agglomeration. PMID:23484007

  7. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.

    PubMed

    Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D

    2014-09-12

    A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection.

  8. Statistical mechanics of competitive resource allocation using agent-based models

    NASA Astrophysics Data System (ADS)

    Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.

    2015-01-01

    Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.

  9. [Research on multi-agent based modeling and simulation of hospital system].

    PubMed

    Zhao, Junping; Yang, Hongqiao; Guo, Huayuan; Li, Yi; Zhang, Zhenjiang; Li, Shuzhang

    2010-12-01

    In this paper, the theory of complex adaptive system (CAS) and its modeling method are introduced. The complex characters of the hospital system is analyzed. The agile manufacturing and cell reconstruction technologies are used to reconstruct the hospital system. Then we set forth a research for simulation of hospital system based on the methodology of Multi-Agent technology and high level architecture (HLA). Finally, a simulation framework based on HLA for hospital system is presented.

  10. Personality and Cultural Modeling for Agent-Based Representation of a Terrorist Cell, Phase 1

    DTIC Science & Technology

    2003-01-01

    1992). Four ways five factors are basic. Personality and Individual Differences , Vol. 13, pp 653-665. Digman, J. M. (1997). Higher order factors of the...five factor model. Personality and Individual Differences , Vol. 21(2), pp. 303-307. Greene, R. L. (1991). The MMPI-2/MMPI: An Interpretive Manual...Personality Inventory and the MMPI-2 Psychopathology Five in the prediction of aggression. Personality and Individual Differences , Vol. 31(4), pp 505-518

  11. Agent-based models for latent liquidity and concave price impact.

    PubMed

    Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe

    2014-04-01

    We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011)], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.

  12. Agent-based models for latent liquidity and concave price impact

    NASA Astrophysics Data System (ADS)

    Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe

    2014-04-01

    We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011), 10.1103/PhysRevX.1.021006], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.

  13. Autonomous Agent-Based Simulation of a Model Simulating the Human Air-Threat Assessment Process

    DTIC Science & Technology

    2004-03-01

    multi - agent system (MAS) technology and is implemented in Java programming language. This research is a portion of Red Intent Project whose goal is to ultimately implement a model to predict the intent of any given track in the environment. For any air track in the simulation, two sets of agents are created, one for controlling track actions and one for predicting its identity and intent based on information received from track, the geopolitical situation and intelligence. The simulation is also capable of identifying coordinated actions between air tracks. We

  14. An agent-based simulation model of patient choice of health care providers in accountable care organizations.

    PubMed

    Alibrahim, Abdullah; Wu, Shinyi

    2016-10-04

    Accountable care organizations (ACO) in the United States show promise in controlling health care costs while preserving patients' choice of providers. Understanding the effects of patient choice is critical in novel payment and delivery models like ACO that depend on continuity of care and accountability. The financial, utilization, and behavioral implications associated with a patient's decision to forego local health care providers for more distant ones to access higher quality care remain unknown. To study this question, we used an agent-based simulation model of a health care market composed of providers able to form ACO serving patients and embedded it in a conditional logit decision model to examine patients capable of choosing their care providers. This simulation focuses on Medicare beneficiaries and their congestive heart failure (CHF) outcomes. We place the patient agents in an ACO delivery system model in which provider agents decide if they remain in an ACO and perform a quality improving CHF disease management intervention. Illustrative results show that allowing patients to choose their providers reduces the yearly payment per CHF patient by $320, reduces mortality rates by 0.12 percentage points and hospitalization rates by 0.44 percentage points, and marginally increases provider participation in ACO. This study demonstrates a model capable of quantifying the effects of patient choice in a theoretical ACO system and provides a potential tool for policymakers to understand implications of patient choice and assess potential policy controls.

  15. Agent-Based Models of Strategies for the Emergence and Evolution of Grammatical Agreement

    PubMed Central

    Beuls, Katrien; Steels, Luc

    2013-01-01

    Grammatical agreement means that features associated with one linguistic unit (for example number or gender) become associated with another unit and then possibly overtly expressed, typically with morphological markers. It is one of the key mechanisms used in many languages to show that certain linguistic units within an utterance grammatically depend on each other. Agreement systems are puzzling because they can be highly complex in terms of what features they use and how they are expressed. Moreover, agreement systems have undergone considerable change in the historical evolution of languages. This article presents language game models with populations of agents in order to find out for what reasons and by what cultural processes and cognitive strategies agreement systems arise. It demonstrates that agreement systems are motivated by the need to minimize combinatorial search and semantic ambiguity, and it shows, for the first time, that once a population of agents adopts a strategy to invent, acquire and coordinate meaningful markers through social learning, linguistic self-organization leads to the spontaneous emergence and cultural transmission of an agreement system. The article also demonstrates how attested grammaticalization phenomena, such as phonetic reduction and conventionalized use of agreement markers, happens as a side effect of additional economizing principles, in particular minimization of articulatory effort and reduction of the marker inventory. More generally, the article illustrates a novel approach for studying how key features of human languages might emerge. PMID:23527055

  16. Agent based modeling of Treg-Teff cross regulation in relapsing-remitting multiple sclerosis

    PubMed Central

    2013-01-01

    Background Multiple sclerosis (MS) is a disease of central nervous system that causes the removal of fatty myelin sheath from axons of the brain and spinal cord. Autoimmunity plays an important role in this pathology outcome and body's own immune system attacks on the myelin sheath causing the damage. The etiology of the disease is partially understood and the response to treatment cannot easily be predicted. Results We presented the results obtained using 8 genetically predisposed randomly chosen individuals reproducing both the absence and presence of malfunctions of the Teff-Treg cross-balancing mechanisms at a local level. For simulating the absence of a local malfunction we supposed that both Teff and Treg populations had similar maximum duplication rates. Results presented here suggest that presence of a genetic predisposition is not always a sufficient condition for developing the disease. Other conditions such as a breakdown of the mechanisms that regulate and allow peripheral tolerance should be involved. Conclusions The presented model allows to capture the essential dynamics of relapsing-remitting MS despite its simplicity. It gave useful insights that support the hypothesis of a breakdown of Teff-Treg cross balancing mechanisms. PMID:24564794

  17. A three-state kinetic agent-based model to analyze tax evasion dynamics

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno

    2014-11-01

    In this work we study the problem of tax evasion on a fully-connected population. For this purpose, we consider that the agents may be in three different states, namely honest tax payers, tax evaders and undecided, that are individuals in an intermediate class among honests and evaders. Every individual can change his/her state following a kinetic exchange opinion dynamics, where the agents interact by pairs with competitive negative (with probability q) and positive (with probability 1-q) couplings, representing agreement/disagreement between pairs of agents. In addition, we consider the punishment rules of the Zaklan econophysics model, for which there is a probability pa of an audit each agent is subject to in every period and a length of time k detected tax evaders remain honest. Our results suggest that below the critical point qc=1/4 of the opinion dynamics the compliance is high, and the punishment rules have a small effect in the population. On the other hand, for q>qc the tax evasion can be considerably reduced by the enforcement mechanism. We also discuss the impact of the presence of the undecided agents in the evolution of the system.

  18. Exploring the cooperative regimes in an agent-based model: indirect reciprocity vs. selfish incentives

    NASA Astrophysics Data System (ADS)

    Fort, H.

    2003-08-01

    The self-organization in cooperative regimes in a simple mean-field version of a model based on “selfish” agents which play the Prisoner's Dilemma (PD) game is studied. The agents have no memory and use strategies not based on direct reciprocity nor “tags”. Two variables are assigned to each agent k at time t, measuring its capital C( k; t) and its probability of cooperation p( k; t). At each time step t a pair of agents interact by playing the PD game. These two agents update their probability of cooperation p( k; t) as follows: they compare the profits they made in this interaction δC( k; t) with an estimator ε( k; t) and, if δC( k; t)⩾ ε( k; t), agent i increases its p( k; t) while if δC( k; t)< ε( k; t) the agent decreases p( k; t). The 4!=24 different cases produced by permuting the four Prisoner's Dilemma canonical payoffs 3, 0, 1, and 5-corresponding, respectively, to R (reward), S (sucker's payoff), T (temptation to defect) and P (punishment)-are analyzed. It turns out that for all these 24 possibilities, after a transient, the system self-organizes into a stationary state with average equilibrium probability of cooperation p¯∞= constant>0 . Depending on the payoff matrix, there are different equilibrium states characterized by their average probability of cooperation and average equilibrium per capita income ( p¯∞, δC¯∞) .

  19. Impacts of land-use management on ecosystem services and biodiversity: an agent-based modelling approach.

    PubMed

    Habib, Thomas J; Heckbert, Scott; Wilson, Jeffrey J; Vandenbroeck, Andrew J K; Cranston, Jerome; Farr, Daniel R

    2016-01-01

    The science of ecosystem service (ES) mapping has become increasingly sophisticated over the past 20 years, and examples of successfully integrating ES into management decisions at national and sub-national scales have begun to emerge. However, increasing model sophistication and accuracy-and therefore complexity-may trade-off with ease of use and applicability to real-world decision-making contexts, so it is vital to incorporate the lessons learned from implementation efforts into new model development. Using successful implementation efforts for guidance, we developed an integrated ES modelling system to quantify several ecosystem services: forest timber production and carbon storage, water purification, pollination, and biodiversity. The system is designed to facilitate uptake of ES information into land-use decisions through three principal considerations: (1) using relatively straightforward models that can be readily deployed and interpreted without specialized expertise; (2) using an agent-based modelling framework to enable the incorporation of human decision-making directly within the model; and (3) integration among all ES models to simultaneously demonstrate the effects of a single land-use decision on multiple ES. We present an implementation of the model for a major watershed in Alberta, Canada, and highlight the system's capabilities to assess a suite of ES under future management decisions, including forestry activities under two alternative timber harvest strategies, and through a scenario modelling analysis exploring different intensities of hypothetical agricultural expansion. By using a modular approach, the modelling system can be readily expanded to evaluate additional ecosystem services or management questions of interest in order to guide land-use decisions to achieve socioeconomic and environmental objectives.

  20. Impacts of land-use management on ecosystem services and biodiversity: an agent-based modelling approach

    PubMed Central

    Heckbert, Scott; Wilson, Jeffrey J.; Vandenbroeck, Andrew J. K.; Cranston, Jerome; Farr, Daniel R.

    2016-01-01

    The science of ecosystem service (ES) mapping has become increasingly sophisticated over the past 20 years, and examples of successfully integrating ES into management decisions at national and sub-national scales have begun to emerge. However, increasing model sophistication and accuracy—and therefore complexity—may trade-off with ease of use and applicability to real-world decision-making contexts, so it is vital to incorporate the lessons learned from implementation efforts into new model development. Using successful implementation efforts for guidance, we developed an integrated ES modelling system to quantify several ecosystem services: forest timber production and carbon storage, water purification, pollination, and biodiversity. The system is designed to facilitate uptake of ES information into land-use decisions through three principal considerations: (1) using relatively straightforward models that can be readily deployed and interpreted without specialized expertise; (2) using an agent-based modelling framework to enable the incorporation of human decision-making directly within the model; and (3) integration among all ES models to simultaneously demonstrate the effects of a single land-use decision on multiple ES. We present an implementation of the model for a major watershed in Alberta, Canada, and highlight the system’s capabilities to assess a suite of ES under future management decisions, including forestry activities under two alternative timber harvest strategies, and through a scenario modelling analysis exploring different intensities of hypothetical agricultural expansion. By using a modular approach, the modelling system can be readily expanded to evaluate additional ecosystem services or management questions of interest in order to guide land-use decisions to achieve socioeconomic and environmental objectives. PMID:28028479

  1. Agent-based modeling to simulate contamination events and evaluate threat management strategies in water distribution systems.

    PubMed

    Zechman, Emily M

    2011-05-01

    In the event of contamination of a water distribution system, decisions must be made to mitigate the impact of the contamination and to protect public health. Making threat management decisions while a contaminant spreads through the network is a dynamic and interactive process. Response actions taken by the utility managers and water consumption choices made by the consumers will affect the hydraulics, and thus the spread of the contaminant plume, in the network. A modeling framework that allows the simulation of a contamination event under the effects of actions taken by utility managers and consumers will be a useful tool for the analysis of alternative threat mitigation and management strategies. This article presents a multiagent modeling framework that combines agent-based, mechanistic, and dynamic methods. Agents select actions based on a set of rules that represent an individual's autonomy, goal-based desires, and reaction to the environment and the actions of other agents. Consumer behaviors including ingestion, mobility, reduction of water demands, and word-of-mouth communication are simulated. Management strategies are evaluated, including opening hydrants to flush the contaminant and broadcasts. As actions taken by consumer agents and utility operators affect demands and flows in the system, the mechanistic model is updated. Management strategies are evaluated based on the exposure of the population to the contaminant. The framework is designed to consider the typical issues involved in water distribution threat management and provides valuable analysis of threat containment strategies for water distribution system contamination events.

  2. Use of agent-based modeling to explore the mechanisms of intracellular phosphorus heterogeneity in cultured phytoplankton.

    PubMed

    Fredrick, Neil D; Berges, John A; Twining, Benjamin S; Nuñez-Milland, Daliangelis; Hellweger, Ferdi L

    2013-07-01

    There can be significant intraspecific individual-level heterogeneity in the intracellular P of phytoplankton, which can affect the population-level growth rate. Several mechanisms can create this heterogeneity, including phenotypic variability in various physiological functions (e.g., nutrient uptake rate). Here, we use modeling to explore the contribution of various mechanisms to the heterogeneity in phytoplankton grown in a laboratory culture. An agent-based model simulates individual cells and their intracellular P. Heterogeneity is introduced by randomizing parameters (e.g., maximum uptake rate) of daughter cells at division. The model was calibrated to observations of the P quota of individual cells of the centric diatom Thalassiosira pseudonana, which were obtained using synchrotron X-ray fluorescence (SXRF). A number of simulations, with individual mechanisms of heterogeneity turned off, then were performed. Comparison of the coefficient of variation (CV) of these and the baseline simulation (i.e., all mechanisms turned on) provides an estimate of the relative contribution of these mechanisms. The results show that the mechanism with the largest contribution to variability is the parameter characterizing the maximum intracellular P, which, when removed, results in a CV of 0.21 compared to a CV of 0.37 with all mechanisms turned on. This suggests that nutrient/element storage capabilities/mechanisms are important determinants of intrapopulation heterogeneity.

  3. Dynamic impact of social stratification and social influence on smoking prevalence by gender: An agent-based model.

    PubMed

    Chao, Dingding; Hashimoto, Hideki; Kondo, Naoki

    2015-12-01

    Smoking behavior is tightly related to socioeconomic status and gender, though the dynamic and non-linear association of smoking prevalence across socioeconomic status and gender groups has not been fully examined. With a special focus on gender-bound differences in the susceptibility to social influence of surrounding others' behaviors, we developed an agent-based model to explore how socioeconomic disparity between and within gender groups affects changes in smoking prevalence. Our developed base model reasonably reproduced the actual trend changes by gender groups over the past 5 years in Japan. Counterfactual experiments with the developed model revealed that closing within- and between-gender disparities in socioeconomic status had a limited impact on reducing smoking prevalence. To the contrary, greater socioeconomic disparity facilitated the reduction in prevalence among males, but it impeded that reduction in females. The counterfactual scenario with equalizing gender-bound susceptibility to social influence among women to men's level showed a dramatic reduction in female prevalence without changing the reduction in male prevalence. Simulation results may provide alternative explanation of the growing disparity in smoking prevalence despite improved welfare equality observed in many developed countries, and suggest that redistribution policies may have side effects of widening health gap. Instead, social policy to reduce social pressures to smoking and support interventions to enhance resilience to the pressure targeting the vulnerable population (in this study, women) would be a more effective strategy in combating the tobacco epidemic and closing the health gap.

  4. Agent based modeling of the effects of potential treatments over the blood-brain barrier in multiple sclerosis.

    PubMed

    Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2015-12-01

    Multiple sclerosis is a disease of the central nervous system that involves the destruction of the insulating sheath of axons, causing severe disabilities. Since the etiology of the disease is not yet fully understood, the use of novel techniques that may help to understand the disease, to suggest potential therapies and to test the effects of candidate treatments is highly advisable. To this end we developed an agent based model that demonstrated its ability to reproduce the typical oscillatory behavior observed in the most common form of multiple sclerosis, relapsing-remitting multiple sclerosis. The model has then been used to test the potential beneficial effects of vitamin D over the disease. Many scientific studies underlined the importance of the blood-brain barrier and of the mechanisms that influence its permeability on the development of the disease. In the present paper we further extend our previously developed model with a mechanism that mimics the blood-brain barrier behavior. The goal of our work is to suggest the best strategies to follow for developing new potential treatments that intervene in the blood-brain barrier. Results suggest that the best treatments should potentially prevent the opening of the blood-brain barrier, as treatments that help in recovering the blood-brain barrier functionality could be less effective.

  5. Anthropogenic habitat disturbance and the dynamics of hantavirus using remote sensing, GIS, and a spatially explicit agent-based model

    NASA Astrophysics Data System (ADS)

    Cao, Lina

    Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that

  6. Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.

    PubMed

    Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-09-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies.

  7. Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework.

    PubMed

    Zhao, Jianshi; Cai, Ximing; Wang, Zhongjing

    2013-07-15

    Water allocation can be undertaken through administered systems (AS), market-based systems (MS), or a combination of the two. The debate on the performance of the two systems has lasted for decades but still calls for attention in both research and practice. This paper compares water users' behavior under AS and MS through a consistent agent-based modeling framework for water allocation analysis that incorporates variables particular to both MS (e.g., water trade and trading prices) and AS (water use violations and penalties/subsidies). Analogous to the economic theory of water markets under MS, the theory of rational violation justifies the exchange of entitled water under AS through the use of cross-subsidies. Under water stress conditions, a unique water allocation equilibrium can be achieved by following a simple bargaining rule that does not depend upon initial market prices under MS, or initial economic incentives under AS. The modeling analysis shows that the behavior of water users (agents) depends on transaction, or administrative, costs, as well as their autonomy. Reducing transaction costs under MS or administrative costs under AS will mitigate the effect that equity constraints (originating with primary water allocation) have on the system's total net economic benefits. Moreover, hydrologic uncertainty is shown to increase market prices under MS and penalties/subsidies under AS and, in most cases, also increases transaction, or administrative, costs.

  8. Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity.

    PubMed

    Hunt, C Anthony; Kennedy, Ryan C; Kim, Sean H J; Ropella, Glen E P

    2013-01-01

    A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework--a dynamic knowledge repository--wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline.

  9. Agent-based mathematical modeling as a tool for estimating Trypanosoma cruzi vector-host contact rates.

    PubMed

    Yong, Kamuela E; Mubayi, Anuj; Kribs, Christopher M

    2015-11-01

    The parasite Trypanosoma cruzi, spread by triatomine vectors, affects over 100 mammalian species throughout the Americas, including humans, in whom it causes Chagas' disease. In the U.S., only a few autochthonous cases have been documented in humans, but prevalence is high in sylvatic hosts (primarily raccoons in the southeast and woodrats in Texas). The sylvatic transmission of T. cruzi is spread by the vector species Triatoma sanguisuga and Triatoma gerstaeckeri biting their preferred hosts and thus creating multiple interacting vector-host cycles. The goal of this study is to quantify the rate of contacts between different host and vector species native to Texas using an agent-based model framework. The contact rates, which represent bites, are required to estimate transmission coefficients, which can be applied to models of infection dynamics. In addition to quantitative estimates, results confirm host irritability (in conjunction with host density) and vector starvation thresholds and dispersal as determining factors for vector density as well as host-vector contact rates.

  10. Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity

    PubMed Central

    Hunt, C Anthony; Kennedy, Ryan C; Kim, Sean H J; Ropella, Glen E P

    2013-01-01

    A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework—a dynamic knowledge repository—wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline. © 2013 Wiley Periodicals, Inc. PMID:23737142

  11. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.

    PubMed

    Reinhardt, James W; Gooch, Keith J

    2014-02-01

    Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix

  12. Modelling Temporal Schedule of Urban Trains Using Agent-Based Simulation and NSGA2-BASED Multiobjective Optimization Approaches

    NASA Astrophysics Data System (ADS)

    Sahelgozin, M.; Alimohammadi, A.

    2015-12-01

    Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  13. Modeling the 2014 Ebola Virus Epidemic - Agent-Based Simulations, Temporal Analysis and Future Predictions for Liberia and Sierra Leone.

    PubMed

    Siettos, Constantinos; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2015-03-09

    We developed an agent-based model to investigate the epidemic dynamics of Ebola virus disease (EVD) in Liberia and Sierra Leone from May 27 to December 21, 2014. The dynamics of the agent-based simulator evolve on small-world transmission networks of sizes equal to the population of each country, with adjustable densities to account for the effects of public health intervention policies and individual behavioral responses to the evolving epidemic. Based on time series of the official case counts from the World Health Organization (WHO), we provide estimates for key epidemiological variables by employing the so-called Equation-Free approach. The underlying transmission networks were characterized by rather random structures in the two countries with densities decreasing by ~19% from the early (May 27-early August) to the last period (mid October-December 21). Our estimates for the values of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate, are very close to the ones reported by the WHO Ebola response team during the early period of the epidemic (until September 14) that were calculated based on clinical data. Specifically, regarding the effective reproductive number Re, our analysis suggests that until mid October, Re was above 2.3 in both countries; from mid October to December 21, Re dropped well below unity in Liberia, indicating a saturation of the epidemic, while in Sierra Leone it was around 1.9, indicating an ongoing epidemic. Accordingly, a ten-week projection from December 21 estimated that the epidemic will fade out in Liberia in early March; in contrast, our results flashed a note of caution for Sierra Leone since the cumulative number of cases could reach as high as 18,000, and the number of deaths might exceed 5,000, by early March 2015. However, by processing the reported data of the very last period (December 21, 2014-January 18, 2015), we obtained more optimistic estimates indicative of a remission of

  14. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach

    PubMed Central

    2016-01-01

    Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235

  15. Assortative Mating and the Reversal of Gender Inequality in Education in Europe: An Agent-Based Model

    PubMed Central

    Grow, André; Van Bavel, Jan

    2015-01-01

    While men have always received more education than women in the past, this gender imbalance in education has turned around in large parts of the world. In many countries, women now excel men in terms of participation and success in higher education. This implies that, for the first time in history, there are more highly educated women than men reaching the reproductive ages and looking for a partner. We develop an agent-based computational model that explicates the mechanisms that may have linked the reversal of gender inequality in education with observed changes in educational assortative mating. Our model builds on the notion that individuals search for spouses in a marriage market and evaluate potential candidates based on preferences. Based on insights from earlier research, we assume that men and women prefer partners with similar educational attainment and high earnings prospects, that women tend to prefer men who are somewhat older than themselves, and that men prefer women who are in their mid-twenties. We also incorporate the insight that the educational system structures meeting opportunities on the marriage market. We assess the explanatory power of our model with systematic computational experiments, in which we simulate marriage market dynamics in 12 European countries among individuals born between 1921 and 2012. In these experiments, we make use of realistic agent populations in terms of educational attainment and earnings prospects and validate model outcomes with data from the European Social Survey. We demonstrate that the observed changes in educational assortative mating can be explained without any change in male or female preferences. We argue that our model provides a useful computational laboratory to explore and quantify the implications of scenarios for the future. PMID:26039151

  16. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  17. Assortative mating and the reversal of gender inequality in education in europe: an agent-based model.

    PubMed

    Grow, André; Van Bavel, Jan

    2015-01-01

    While men have always received more education than women in the past, this gender imbalance in education has turned around in large parts of the world. In many countries, women now excel men in terms of participation and success in higher education. This implies that, for the first time in history, there are more highly educated women than men reaching the reproductive ages and looking for a partner. We develop an agent-based computational model that explicates the mechanisms that may have linked the reversal of gender inequality in education with observed changes in educational assortative mating. Our model builds on the notion that individuals search for spouses in a marriage market and evaluate potential candidates based on preferences. Based on insights from earlier research, we assume that men and women prefer partners with similar educational attainment and high earnings prospects, that women tend to prefer men who are somewhat older than themselves, and that men prefer women who are in their mid-twenties. We also incorporate the insight that the educational system structures meeting opportunities on the marriage market. We assess the explanatory power of our model with systematic computational experiments, in which we simulate marriage market dynamics in 12 European countries among individuals born between 1921 and 2012. In these experiments, we make use of realistic agent populations in terms of educational attainment and earnings prospects and validate model outcomes with data from the European Social Survey. We demonstrate that the observed changes in educational assortative mating can be explained without any change in male or female preferences. We argue that our model provides a useful computational laboratory to explore and quantify the implications of scenarios for the future.

  18. Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate

    PubMed Central

    Zhang, Le; Strouthos, Costas G.; Wang, Zhihui; Deisboeck, Thomas S.

    2008-01-01

    We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells’ phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model’s biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell ‘search precisions’. The in silico results show that microscopic tumor heterogeneity can impact the tumor system’s multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed. PMID:20047002

  19. Towards thresholds of disaster management performance under demographic change: exploring functional relationships using agent-based modeling

    NASA Astrophysics Data System (ADS)

    Dressler, Gunnar; Müller, Birgit; Frank, Karin; Kuhlicke, Christian

    2016-10-01

    Effective disaster management is a core feature for the protection of communities against natural disasters such as floods. Disaster management organizations (DMOs) are expected to contribute to ensuring this protection. However, what happens when their resources to cope with a flood are at stake or the intensity and frequency of the event exceeds their capacities? Many cities in the Free State of Saxony, Germany, were strongly hit by several floods in the last years and are additionally challenged by demographic change, with an ageing society and out-migration leading to population shrinkage in many parts of Saxony. Disaster management, which is mostly volunteer-based in Germany, is particularly affected by this change, leading to a loss of members. We propose an agent-based simulation model that acts as a "virtual lab" to explore the impact of various changes on disaster management performance. Using different scenarios we examine the impact of changes in personal resources of DMOs, their access to operation relevant information, flood characteristics as well as differences between geographic regions. A loss of DMOs and associated manpower caused by demographic change has the most profound impact on the performance. Especially in rural, upstream regions population decline in combination with very short lead times can put disaster management performance at risk.

  20. Measure of Landscape Heterogeneity by Agent-Based Methodology

    NASA Astrophysics Data System (ADS)

    Wirth, E.; Szabó, Gy.; Czinkóczky, A.

    2016-06-01

    With the rapid increase of the world's population, the efficient food production is one of the key factors of the human survival. Since biodiversity and heterogeneity is the basis of the sustainable agriculture, the authors tried to measure the heterogeneity of a chosen landscape. The EU farming and subsidizing policies (EEA, 2014) support landscape heterogeneity and diversity, nevertheless exact measurements and calculations apart from statistical parameters (standard deviation, mean), do not really exist. In the present paper the authors' goal is to find an objective, dynamic method that measures landscape heterogeneity. It is achieved with the so called agent-based modelling, where randomly dispatched dynamic scouts record the observed land cover parameters and sum up the features of a new type of land. During the simulation the agents collect a Monte Carlo integral as a diversity landscape potential which can be considered as the unit of the `greening' measure. As a final product of the ABM method, a landscape potential map is obtained that can serve as a tool for objective decision making to support agricultural diversity.

  1. Examining the Pathogenesis of Breast Cancer Using a Novel Agent-Based Model of Mammary Ductal Epithelium Dynamics

    PubMed Central

    Chapa, Joaquin; Bourgo, Ryan J.; Greene, Geoffrey L.; Kulkarni, Swati; An, Gary

    2013-01-01

    The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the

  2. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics.

    PubMed

    Chapa, Joaquin; Bourgo, Ryan J; Greene, Geoffrey L; Kulkarni, Swati; An, Gary

    2013-01-01

    The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the

  3. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    EPA Science Inventory

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  4. Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services.

    PubMed

    Chen, Xiaodong; Lupi, Frank; An, Li; Sheely, Ryan; Viña, Andrés; Liu, Jianguo

    2012-03-24

    Conservation investments are increasingly being implemented through payments for ecosystem services (PES) for the protection and restoration of ecosystem services around the world. Previous studies suggested that social norms have substantial impacts on environmental behaviors of humans, including enrollment of PES programs. However, it is still not well understood how social norms are affected by the design of PES programs and how the evolution of social norms may affect the efficiency of conservation investments. In this paper, we developed an agent-based simulation model to demonstrate the evolution and impacts of social norms on the enrollment of agricultural land in a PES program. We applied the model to land plots that have been enrolled in China's Grain-to-Green Program (GTGP) to examine reenrollment in an alternative payment program when the current payments ceased. The study was conducted in Wolong Nature Reserve where several thousand plant and animal species, including giant pandas, may benefit from the reenrollment. We found that over 15% more GTGP land can be reenrolled at the same payment if social norms were leveraged by allowing more than ten rounds of interactions among landholders regarding their reenrollment decisions. With only three rounds of interactions, an additional 7.5% GTGP land was reenrolled at the same payment due to the effects of social norms. In addition, the effects of social norms were largest at intermediate payments and were smaller at much higher or much smaller payments. Even in circumstances where frequent interactions among landholders about their enrollment decisions are not feasible, policy arrangements that divide households into multiple waves for sequential enrollment can enroll over 11% more land at a given payment level. The approach presented in this paper can be used to improve the efficiency of existing PES programs and many other conservation investments worldwide.

  5. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    NASA Astrophysics Data System (ADS)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  6. Applying an agent-based model of agricultural terraces coupled with a landscape evolution model to explore the impact of human decision-making on terraced terrain

    NASA Astrophysics Data System (ADS)

    Glaubius, Jennifer

    2016-04-01

    Agricultural terraces impact landscape evolution as a result of long-term human-landscape interactions, including decisions regarding terrace maintenance and abandonment. Modeling simulations are often employed to examine the sensitivity of landscapes to various factors, such as rainfall and land cover. Landscape evolution models, erosion models, and hydrological models have all previously been used to simulate the impact of agricultural terrace construction on terrain evolution, soil erosion, and hydrological connectivity. Human choices regarding individual terraces have not been included in these models to this point, despite recent recognition that maintenance and abandonment decisions alter transport and storage patterns of soil and water in terraced terrain. An agent-based model of human decisions related to agricultural terraces is implemented based on a conceptual model of agricultural terrace life cycle stages created from a literature review of terracing impacts. The agricultural terracing agent-based model is then coupled with a landscape evolution model to explore the role of human decisions in the evolution of terraced landscapes. To fully explore this type of co-evolved landscape, human decision-making and its feedbacks must be included in landscape evolution models. Project results may also have implications for management of terraced terrain based on how human choices in these environments affect soil loss and land degradation.

  7. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    PubMed

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model.

  8. Simulating the time series of a selected gene expression profile in an agent-based tumor model

    NASA Astrophysics Data System (ADS)

    Mansury, Yuri; Deisboeck, Thomas S.

    2004-09-01

    To elucidate the role of environmental conditions in molecular-level dynamics and to study their impact on macroscopic brain tumor growth patterns, the expression of the genes Tenascin C and PCNA in a 2D agent-based model for the migratory trait is calibrated using experimental data from the literature, while the expression of these genes for the proliferative trait is obtained as the model output. Numerical results confirm that the gene expression of Tenascin C is indeed consistently higher in the migratory glioma cell phenotype and show that the expression of PCNA is consistently higher among proliferating tumor cells. Intriguingly, the time series of the tumor cells’ gene expression exhibit a sudden change in behavior during the invasion of the tumor into a nutrient-abundant region, showing a robust positive correlation between the expression of Tenascin C and the tumor’s diameter, yet a strong negative correlation between the expression of PCNA and the diameter. These molecular-level dynamics correspond to the emergence of a structural asymmetry in the form of a bulging tumor rim in the nutrient-abundant region. The simulated time series thus supports the critical role of the migratory cell phenotype during both the tumor system’s overall macroscopic expansion and the evolvement of regional growth patterns, particularly in the later stages. Furthermore, detrended fluctuation analysis (DFA) suggests that for prediction purposes, the simulated gene expression profiles of Tenascin C and PCNA that were determined separately for the migrating and proliferating phenotypes exhibit lesser predictability than those of the phenotypic mixture combining all viable tumor cells typically found in clinical biopsies. Finally, partitioning the tumor into distinct geographic regions of interest (ROI) reveals that the gene expression profile of tumor cells in the quadrant close to the nutrient-abundant region is representative for the entire tumor whereas the expression

  9. Star Wars testing and the ABM treaty

    SciTech Connect

    Bunn, M.

    1988-04-01

    In the defense authorization act, Congress has limited testing of the Strategic Defense Initiative (SDI) to those tests described by the Defense Department as within the bounds of the traditional interpretation of the treaty through fiscal year 1988. For the moment, the administration cannot move to implement its broad interpretation of the ABM Treaty, which would allow unlimited testing of exotic-technology Star Wars systems. Unfortunately, this victory over the broad interpretation is threatened by the administration's twisting of the traditional view. By stretching ambiguities in the treaty's language, the Defense Department is attempting to justify tests that press far into grey areas. A strong case can be made that some of the tests currently planned are likely to violate a reasonable reading of the traditional interpretation of the treaty. Other planned tests, while complying with the letter of the treaty, are clear efforts to circumvent the agreement's intent, undermining the effectiveness of the treaty regime. If the US justifies such tests by making unverifiable distinctions and exploiting loopholes, we will have no grounds for complaint when the USSR does the same, and we will ultimately lose the security benefits provided by the ABM Treaty. To clarify the compliance issues raised by SDI's current plans, this analysis describes the major past and planned SDI tests that may affect the ABM Treaty Regime.

  10. An Economic Analysis of Strategies to Control Clostridium Difficile Transmission and Infection Using an Agent-Based Simulation Model

    PubMed Central

    Nelson, Richard E.; Jones, Makoto; Leecaster, Molly; Samore, Matthew H.; Ray, William; Huttner, Angela; Huttner, Benedikt; Khader, Karim; Stevens, Vanessa W.; Gerding, Dale; Schweizer, Marin L.; Rubin, Michael A.

    2016-01-01

    Background A number of strategies exist to reduce Clostridium difficile (C. difficile) transmission. We conducted an economic evaluation of “bundling” these strategies together. Methods We constructed an agent-based computer simulation of nosocomial C. difficile transmission and infection in a hospital setting. This model included the following components: interactions between patients and health care workers; room contamination via C. difficile shedding; C. difficile hand carriage and removal via hand hygiene; patient acquisition of C. difficile via contact with contaminated rooms or health care workers; and patient antimicrobial use. Six interventions were introduced alone and "bundled" together: (a) aggressive C. difficile testing; (b) empiric isolation and treatment of symptomatic patients; (c) improved adherence to hand hygiene and (d) contact precautions; (e) improved use of soap and water for hand hygiene; and (f) improved environmental cleaning. Our analysis compared these interventions using values representing 3 different scenarios: (1) base-case (BASE) values that reflect typical hospital practice, (2) intervention (INT) values that represent implementation of hospital-wide efforts to reduce C. diff transmission, and (3) optimal (OPT) values representing the highest expected results from strong adherence to the interventions. Cost parameters for each intervention were obtained from published literature. We performed our analyses assuming low, normal, and high C. difficile importation prevalence and transmissibility of C. difficile. Results INT levels of the “bundled” intervention were cost-effective at a willingness-to-pay threshold of $100,000/quality-adjusted life-year in all importation prevalence and transmissibility scenarios. OPT levels of intervention were cost-effective for normal and high importation prevalence and transmissibility scenarios. When analyzed separately, hand hygiene compliance, environmental decontamination, and empiric

  11. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  12. An integrated modeling framework of socio-economic, biophysical, and hydrological processes in Midwest landscapes: Remote sensing data, agro-hydrological model, and agent-based model

    NASA Astrophysics Data System (ADS)

    Ding, Deng

    Intensive human-environment interactions are taking place in Midwestern agricultural systems. An integrated modeling framework is suitable for predicting dynamics of key variables of the socio-economic, biophysical, hydrological processes as well as exploring the potential transitions of system states in response to changes of the driving factors. The purpose of this dissertation is to address issues concerning the interacting processes and consequent changes in land use, water balance, and water quality using an integrated modeling framework. This dissertation is composed of three studies in the same agricultural watershed, the Clear Creek watershed in East-Central Iowa. In the first study, a parsimonious hydrologic model, the Threshold-Exceedance-Lagrangian Model (TELM), is further developed into RS-TELM (Remote Sensing TELM) to integrate remote sensing vegetation data for estimating evapotranspiration. The goodness of fit of RS-TELM is comparable to a well-calibrated SWAT (Soil and Water Assessment Tool) and even slightly superior in capturing intra-seasonal variability of stream flow. The integration of RS LAI (Leaf Area Index) data improves the model's performance especially over the agriculture dominated landscapes. The input of rainfall datasets with spatially explicit information plays a critical role in increasing the model's goodness of fit. In the second study, an agent-based model is developed to simulate farmers' decisions on crop type and fertilizer application in response to commodity and biofuel crop prices. The comparison between simulated crop land percentage and crop rotations with satellite-based land cover data suggest that farmers may be underestimating the effects that continuous corn production has on yields (yield drag). The simulation results given alternative market scenarios based on a survey of agricultural land owners and operators in the Clear Creek Watershed show that, farmers see cellulosic biofuel feedstock production in the form

  13. Fluorescent probe ABM and estimation of immune state in patients with different pathologies (review article).

    PubMed

    Kalnina, Inta; Bruvere, Ruta; Zvagule, Tija; Gabruseva, Natalija; Klimkane, Laura; Kirilova, Elena; Meirovics, Imants; Kizane, Gunta

    2010-01-01

    The fluorescent probe ABM (3-aminobenzanthrone derivative) one of the fluorescent probes synthesized in Riga Technical University proved to be an excellent, independent model for studying cell membranes. In our work we have investigated the possibility of using the fluorescent probe ABM for detection of immune state in patients with different pathologies. There is a strong correlation among all studied ABM spectral parameters, immunological characteristics, clinical and laboratory investigations of the all observed patients groups. The obtained results suggest that ABM spectral parameters in cell suspension reflect the alterations of the cellular mechanisms of immunity. Therefore fluorescent method could be used as preliminary screening test in immune diagnostics instead of more expensive, time consuming methods (subset detection, radioisotope method etc.) used as routine in clinics. Spectral parameters of ABM reflect a wide range of interrelated (interdependent) characteristics of cells (physico-chemical state and microviscosity of membrane, proliferating and lipid metabolic activity of cells, distribution of cells among subsets). The observed change of the studied parameters reflects alterations of the cellular mechanisms of immunity which is a main focus for its application as preliminary screening test in immune diagnostics. The fluorescence based method is sensitive, less expensive and time consuming, technically simple and convenient.

  14. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  15. Reducing complexity in an agent based reaction model-Benefits and limitations of simplifications in relation to run time and system level output.

    PubMed

    Rhodes, David M; Holcombe, Mike; Qwarnstrom, Eva E

    2016-09-01

    Agent based modelling is a methodology for simulating a variety of systems across a broad spectrum of fields. However, due to the complexity of the systems it is often impossible or impractical to model them at a one to one scale. In this paper we use a simple reaction rate model implemented using the FLAME framework to test the impact of common methods for reducing model complexity such as reducing scale, increasing iteration duration and reducing message overheads. We demonstrate that such approaches can have significant impact on simulation runtime albeit with increasing risk of aberrant system behaviour and errors, as the complexity of the model is reduced.

  16. Results and Lessons Learned from a Coupled Social and Physical Hydrology Model: Testing Alternative Water Management Policies and Institutional Structures Using Agent-Based Modeling and Regional Hydrology

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Lammers, R. B.; Prousevitch, A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Kliskey, A. D.; Alessa, L.

    2015-12-01

    Water Management in the U.S. Southwest is under increasing scrutiny as many areas endure persistent drought. The impact of these prolonged dry conditions is a product of regional climate and hydrological conditions, but also of a highly engineered water management infrastructure and a complex web of social arrangements whereby water is allocated, shared, exchanged, used, re-used, and finally consumed. We coupled an agent-based model with a regional hydrological model to understand the dynamics in one richly studied and highly populous area: southern Arizona, U.S.A., including metropolitan Phoenix and Tucson. There, multiple management entities representing an array of municipalities and other water providers and customers, including private companies and Native American tribes are enmeshed in a complex legal and economic context in which water is bought, leased, banked, and exchanged in a variety of ways and on multiple temporal and physical scales. A recurrent question in the literature of adaptive management is the impact of management structure on overall system performance. To explore this, we constructed an agent-based model to capture this social complexity, and coupled this with a physical hydrological model that we used to drive the system under a variety of water stress scenarios and to assess the regional impact of the social system's performance. We report the outcomes of ensembles of runs in which varieties of alternative policy constraints and management strategies are considered. We hope to contribute to policy discussions in this area and connected and legislatively similar areas (such as California) as current conditions change and existing legal and policy structures are revised. Additionally, we comment on the challenges of integrating models that ostensibly are in different domains (physical and social) but that independently represent a system in which physical processes and human actions are closely intertwined and difficult to disentangle.

  17. Senators appear skeptical of ABM treaty modifications

    SciTech Connect

    Lockwood, D.

    1994-04-01

    At a March 10 Senate Foreign Relations Committee hearing, several senators questioned the wisdom of the Clinton administration`s proposal to try to {open_quotes}clarify{close_quotes} a key provision in the Anti-Ballistic Missile (ABM) Treaty that would permit the development and deployment of highly capable theater ballistic missile interceptors. The senators stressed that the executive branch should not try to change the pact in this manner without Senate approval. In response to questions, Arms Control and Disarmament Agency (ACDA) Director John Holum said without the proposed changes, the United States may not test new anti-tactical ballistic missile (ATBM) defense systems currently under development.

  18. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  19. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection.

    PubMed

    Sershen, Cheryl L; Plimpton, Steven J; May, Elebeoba E

    2014-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.

  20. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    DOE PAGES

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less

  1. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    SciTech Connect

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.

  2. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  3. Complex systems approach to scientific publication and peer-review system: development of an agent-based model calibrated with empirical journal data.

    PubMed

    Kovanis, Michail; Porcher, Raphaël; Ravaud, Philippe; Trinquart, Ludovic

    Scientific peer-review and publication systems incur a huge burden in terms of costs and time. Innovative alternatives have been proposed to improve the systems, but assessing their impact in experimental studies is not feasible at a systemic level. We developed an agent-based model by adopting a unified view of peer review and publication systems and calibrating it with empirical journal data in the biomedical and life sciences. We modeled researchers, research manuscripts and scientific journals as agents. Researchers were characterized by their scientific level and resources, manuscripts by their scientific value, and journals by their reputation and acceptance or rejection thresholds. These state variables were used in submodels for various processes such as production of articles, submissions to target journals, in-house and external peer review, and resubmissions. We collected data for a sample of biomedical and life sciences journals regarding acceptance rates, resubmission patterns and total number of published articles. We adjusted submodel parameters so that the agent-based model outputs fit these empirical data. We simulated 105 journals, 25,000 researchers and 410,000 manuscripts over 10 years. A mean of 33,600 articles were published per year; 19 % of submitted manuscripts remained unpublished. The mean acceptance rate was 21 % after external peer review and rejection rate 32 % after in-house review; 15 % publications resulted from the first submission, 47 % the second submission and 20 % the third submission. All decisions in the model were mainly driven by the scientific value, whereas journal targeting and persistence in resubmission defined whether a manuscript would be published or abandoned after one or many rejections. This agent-based model may help in better understanding the determinants of the scientific publication and peer-review systems. It may also help in assessing and identifying the most promising alternative systems of peer

  4. Modelling Skylarks (Alauda arvensis) to Predict Impacts of Changes in Land Management and Policy: Development and Testing of an Agent-Based Model

    PubMed Central

    Topping, Christopher J.; Odderskær, Peter; Kahlert, Johnny

    2013-01-01

    Agent-based simulation models provide a viable approach for developing applied models of species and systems for predictive management. However, there has been some reluctance to use these models for policy applications due to complexity and the need for improved testing and communication of the models. We present the development and testing of a comprehensive model for Skylark (Alauda arvensis) in Danish agricultural landscapes. The model is part of the ALMaSS system, which considers not only individual skylarks, but also the detailed dynamic environment from which they obtain the information necessary to simulate their behaviour. Population responses emerge from individuals interacting with each other and the environment. Model development and testing was carried out using pattern-oriented modelling. The testing procedure was based on the model's ability to represent detailed real world patterns of distribution and density, reproductive performance and seasonal changes in territory numbers. Data to support this was collected over a 13-year period and comprised detailed field observations of breeding birds and intensive surveys. The model was able to recreate the real world data patterns accurately; it was also able to simultaneously fit a number of other secondary system properties which were not formally a part of the testing procedure. The correspondence of model output to real world data and sensitivity analysis are presented and discussed, and the model's description is provided in ODdox format (a formal description inter-linked to the program code). Detailed and stringent tests for model performance were carried out, and standardised model description and open access to the source code were provided to open development of the skylark model to others. Over and above documenting the utility of the model, this open process is essential to engender the user trust and ensure continued development of these comprehensive systems for applied purposes. PMID:23762430

  5. Modelling Skylarks (Alauda arvensis) to predict impacts of changes in land management and policy: development and testing of an agent-based model.

    PubMed

    Topping, Christopher J; Odderskær, Peter; Kahlert, Johnny

    2013-01-01

    Agent-based simulation models provide a viable approach for developing applied models of species and systems for predictive management. However, there has been some reluctance to use these models for policy applications due to complexity and the need for improved testing and communication of the models. We present the development and testing of a comprehensive model for Skylark (Alauda arvensis) in Danish agricultural landscapes. The model is part of the ALMaSS system, which considers not only individual skylarks, but also the detailed dynamic environment from which they obtain the information necessary to simulate their behaviour. Population responses emerge from individuals interacting with each other and the environment. Model development and testing was carried out using pattern-oriented modelling. The testing procedure was based on the model's ability to represent detailed real world patterns of distribution and density, reproductive performance and seasonal changes in territory numbers. Data to support this was collected over a 13-year period and comprised detailed field observations of breeding birds and intensive surveys. The model was able to recreate the real world data patterns accurately; it was also able to simultaneously fit a number of other secondary system properties which were not formally a part of the testing procedure. The correspondence of model output to real world data and sensitivity analysis are presented and discussed, and the model's description is provided in ODdox format (a formal description inter-linked to the program code). Detailed and stringent tests for model performance were carried out, and standardised model description and open access to the source code were provided to open development of the skylark model to others. Over and above documenting the utility of the model, this open process is essential to engender the user trust and ensure continued development of these comprehensive systems for applied purposes.

  6. Combining exploratory scenarios and participatory backcasting: using an agent-based model in participatory policy design for a multi-functional landscape.

    PubMed

    Van Berkel, Derek B; Verburg, Peter H

    While the merits of local participatory policy design are widely recognised, limited use is made of model-based scenario results to inform such stakeholder involvement. In this paper we present the findings of a study using an agent based model to help stakeholders consider, discuss and incorporate spatial and temporal processes in a backcasting exercise for rural development. The study is carried out in the Dutch region called the Achterhoek. Region-specific scenarios were constructed based on interviews with local experts. The scenarios are simulated in an agent based model incorporating rural residents and farmer characteristics, the environment and different policy interventions for realistic projection of landscape evolution. Results of the model simulations were presented to stakeholders representing different rural sectors at a workshop. The results indicate that illustration of the spatial configuration of landscape changes is appreciated by stakeholders. Testing stakeholders' solutions by way of model simulations revealed that the effectiveness of local interventions is strongly related to exogenous processes such as market competition and endogenous processes like local willingness to engage in multifunctional activities. The integration of multi-agent modelling and participatory backcasting is effective as it offers a possibility to initiate discussion between experts and stakeholders bringing together different expertise.

  7. Computational Model-Based Analysis of Strategies to Enhance Scaffold Vascularization

    PubMed Central

    Bayrak, Elif Seyma; Akar, Banu; Somo, Sami I.; Lu, Chenlin; Xiao, Nan; Brey, Eric M.; Cinar, Ali

    2016-01-01

    Abstract Stable and extensive blood vessel networks are required for cell function and survival in engineered tissues. A number of different strategies are currently being investigated to enhance biomaterial vascularization with screening primarily through extensive in vitro and in vivo experiments. In this article, we describe an agent-based model (ABM) developed to evaluate various strategies in silico, including design of optimal biomaterial structure, delivery of angiogenic factors, and application of prevascularized biomaterials. The model predictions are evaluated using experimental data. The ABM developed provides insight into different strategies currently applied for scaffold vascularization and will enable researchers to rapidly screen new hypotheses and explore alternative strategies for enhancing vascularization. PMID:27965914

  8. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    NASA Astrophysics Data System (ADS)

    Xiang, Lin

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8 th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on natural selection implemented in a charter school of a major California city during spring semester of 2009. Eight 8th grade students, two boys and six girls, participated in this study. All of them were low socioeconomic status (SES). English was a second language for all of them, but they had been identified as fluent English speakers at least a year before the study. None of them had learned either natural selection or programming before the study. The study spanned over 7 weeks and was comprised of two study phases. In phase one the subject students learned natural selection in science classroom and how to do programming in NetLogo, an ABPM tool, in a computer lab; in phase two, the subject students were asked to program a simulation of adaptation based on the natural selection model in NetLogo. Both qualitative and quantitative data were collected in this study. The data resources included (1) pre and post test questionnaire, (2) student in-class worksheet, (3) programming planning sheet, (4) code-conception matching sheet, (5) student NetLogo projects, (6) videotaped programming processes, (7) final interview, and (8) investigator's field notes. Both qualitative and quantitative approaches were applied to analyze the gathered data. The findings suggested that students made progress on understanding adaptation phenomena and natural selection at the end of ABPM-supported MBI learning but the progress was limited. These students still held some misconceptions in their conceptual models, such as the idea that animals need to "learn" to adapt into the environment. Besides, their models of natural selection appeared to be

  9. Exploration of the Parameter Space in AN Agent-Based Model of Tuberculosis Spread: Emergence of Drug Resistance in Developing VS Developed Countries

    NASA Astrophysics Data System (ADS)

    Espindola, Aquino L.; Girardi, Daniel; Penna, Thadeu J. P.; Bauch, Chris T.; Martinez, Alexandre S.; Cabella, Brenno C. T.

    2012-06-01

    In this work we present an agent-based model for the spread of tuberculosis where the individuals can be infected with either drug-susceptible or drug-resistant strains and can also receive a treatment. The dynamics of the model and the role of each one of the parameters are explained. The whole set of parameters is explored to check their importance in the numerical simulation results. The model captures the beneficial impact of the adequate treatment on the prevalence of tuberculosis. Nevertheless, depending on the treatment parameters range, it also captures the emergence of drug resistance. Drug resistance emergence is particularly likely to occur for parameter values corresponding to less efficacious treatment, as usually found in developing countries.

  10. Anomalous diffusion in the evolution of soccer championship scores: Real data, mean-field analysis, and an agent-based model

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Vainstein, Mendeli H.; Gonçalves, Sebastián; Paula, Felipe S. F.

    2013-08-01

    Statistics of soccer tournament scores based on the double round robin system of several countries are studied. Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer tournaments obtained by an agent-based model which successfully describes the final scoring distribution [da Silva , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2012.10.030 184, 661 (2013)]. Such model yields random walks of scores over time with the same anomalous diffusion as observed in real data.

  11. Thread Group Multithreading: Accelerating the Computation of an Agent-Based Power System Modeling and Simulation Tool -- C GridLAB-D

    SciTech Connect

    Jin, Shuangshuang; Chassin, David P.

    2014-01-06

    GridLAB-DTM is an open source next generation agent-based smart-grid simulator that provides unprecedented capability to model the performance of smart grid technologies. Over the past few years, GridLAB-D has been used to conduct important analyses of smart grid concepts, but it is still quite limited by its computational performance. In order to break through the performance bottleneck to meet the need for large scale power grid simulations, we develop a thread group mechanism to implement highly granular multithreaded computation in GridLAB-D. We achieve close to linear speedups on multithreading version compared against the single-thread version of the same code running on general purpose multi-core commodity for a benchmark simple house model. The performance of the multithreading code shows favorable scalability properties and resource utilization, and much shorter execution time for large-scale power grid simulations.

  12. ABM Drag_Pass Report Generator

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.

  13. A framework for the use of agent based modeling to simulate inter- and intraindividual variation in human behaviors

    EPA Science Inventory

    Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an ag...

  14. Learning to Measure Biodiversity: Two Agent-Based Models that Simulate Sampling Methods & Provide Data for Calculating Diversity Indices

    ERIC Educational Resources Information Center

    Jones, Thomas; Laughlin, Thomas

    2009-01-01

    Nothing could be more effective than a wilderness experience to demonstrate the importance of conserving biodiversity. When that is not possible, though, there are computer models with several features that are helpful in understanding how biodiversity is measured. These models are easily used when natural resources, transportation, and time…

  15. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis

    PubMed Central

    2011-01-01

    Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new

  16. Agent-Based Modeling and Simulation: Proposal for Department of Defense Support to the Whole of Government Approach In Afghanistan

    DTIC Science & Technology

    2012-05-11

    the civil-military cooperation that is the subject of agreement in the ICMCP. A wholistic approach to use of A-B M&S could lead to an aggregate...another than they are naturally. Great care must be taken in the A-B M&S process to build proper distinctions in the rules of agents with different...the primary decision maker for security. A critical analysis of the VMASC model follows: The VMASC model was based on a premise that because

  17. Competitive allocation of resources on a network: an agent-based model of air companies competing for the best routes

    NASA Astrophysics Data System (ADS)

    Gurtner, Gérald; Valori, Luca; Lillo, Fabrizio

    2015-05-01

    We present a stylized model of the allocation of resources on a network. By considering as a concrete example the network of sectors of the airspace, where each node is a sector characterized by a maximal number of simultaneously present aircraft, we consider the problem of air companies competing for the allocation of the airspace. Each company is characterized by a cost function, weighting differently punctuality and length of the flight. We consider the model in the presence of pure and mixed populations of types of airline companies and we study how the equilibria depends on the characteristics of the network.

  18. Characteristic time scales of tick quotes on foreign currency markets: an empirical study and agent-based model

    NASA Astrophysics Data System (ADS)

    Sato, A.-H.

    2006-03-01

    Power spectrum densities for the number of tick quotes per minute (market activity) on three currency markets (USD/JPY, EUR/USD, and JPY/EUR) for periods from January 1999 to December 2000 are analyzed. We find some peaks on the power spectrum densities at a few minutes. We develop the double-threshold agent model and confirm that stochastic resonance occurs for the market activity of this model. We propose a hypothesis that the periodicities found on the power spectrum densities can be observed due to stochastic resonance.

  19. Diffusion of innovations in social interaction systems. An agent-based model for the introduction of new drugs in markets.

    PubMed

    Pombo-Romero, Julio; Varela, Luis M; Ricoy, Carlos J

    2013-06-01

    The existence of imitative behavior among consumers is a well-known phenomenon in the field of Economics. This behavior is especially common in markets determined by a high degree of innovation, asymmetric information and/or price-inelastic demand, features that exist in the pharmaceutical market. This paper presents evidence of the existence of imitative behavior among primary care physicians in Galicia (Spain) when choosing treatments for their patients. From this and other evidence, we propose a dynamic model for determining the entry of new drugs into the market. To do this, we introduce the structure of the organization of primary health care centers and the presence of groups of doctors who are specially interrelated, as well as the existence of commercial pressure on doctors. For modeling purposes, physicians are treated as spins connected in an exponentially distributed complex network of the Watts-Strogatz type. The proposed model provides an explanation for the differences observed in the patterns of the introduction of technological innovations in different regions. The main cause of these differences is the different structure of relationships among consumers, where the existence of small groups that show a higher degree of coordination over the average is particularly influential. The evidence presented, together with the proposed model, might be useful for the design of optimal strategies for the introduction of new drugs, as well as for planning policies to manage pharmaceutical expenditure.

  20. Biking with Particles: Junior Triathletes' Learning about Drafting through Exploring Agent-Based Models and Inventing New Tactics

    ERIC Educational Resources Information Center

    Hirsh, Alon; Levy, Sharona T.

    2013-01-01

    The present research addresses a curious finding: how learning physical principles enhanced athletes' biking performance but not their conceptual understanding. The study involves a model-based triathlon training program, Biking with Particles, concerning aerodynamics of biking in groups (drafting). A conceptual framework highlights several…

  1. A Constructionist Approach to Student Modelling: Tracing a Student's Constructions through an Agent-Based Tutoring Architecture

    ERIC Educational Resources Information Center

    Beuls, Katrien

    2013-01-01

    Construction Grammar (CxG) is a well-established linguistic theory that takes the notion of a construction as the basic unit of language. Yet, because the potential of this theory for language teaching or SLA has largely remained ignored, this paper demonstrates the benefits of adopting the CxG approach for modelling a student's linguistic…

  2. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  3. An Advanced Computational Approach to System of Systems Analysis & Architecting Using Agent-Based Behavioral Model: Phase 2

    DTIC Science & Technology

    2013-11-18

    development of dynamic water treatment SoS architecture, development of dynamic Air Traffic Management SoS, and development of autonomous ground...model in various applications including data allocation problems in information servers, resource allocation and task distribution, and pollution ...regions include all waters subject to U.S. jurisdiction and international waters in the Atlantic, Pacific, and Arctic Oceans and the Gulf of Mexico

  4. Multi-Scale Behavioral Modeling and Analysis Promoting a Fundamental Understanding of Agent-Based System Design and Operation

    DTIC Science & Technology

    2007-03-01

    concept of heterogeneous agents where agents are composed of various combinations of Core Competencies. 7 Electrical circuit designers are guided...current*voltage). Circuit designers currently benefit from a wide range of tools to model designs (transistor designs) such that the design...intended to provide for MAS designers what circuit designers now enjoy – understanding of the first principles of MAS behaviors and the ability to design

  5. Analysis of Tsunami Evacuation Issues Using Agent Based Modeling. A Case Study of the 2011 Tohoku Tsunami in Yuriage, Natori.

    NASA Astrophysics Data System (ADS)

    Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.

    2014-12-01

    The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.

  6. Agent-based spin model for financial markets on complex networks: Emergence of two-phase phenomena

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Kim, Hong-Joo; Yook, Soon-Hyung

    2008-09-01

    We study a microscopic model for financial markets on complex networks, motivated by the dynamics of agents and their structure of interaction. The model consists of interacting agents (spins) with local ferromagnetic coupling and global antiferromagnetic coupling. In order to incorporate more realistic situations, we also introduce an external field which changes in time. From numerical simulations, we find that the model shows two-phase phenomena. When the local ferromagnetic interaction is balanced with the global antiferromagnetic interaction, the resulting return distribution satisfies a power law having a single peak at zero values of return, which corresponds to the market equilibrium phase. On the other hand, if local ferromagnetic interaction is dominant, then the return distribution becomes double peaked at nonzero values of return, which characterizes the out-of-equilibrium phase. On random networks, the crossover between two phases comes from the competition between two different interactions. However, on scale-free networks, not only the competition between the different interactions but also the heterogeneity of underlying topology causes the two-phase phenomena. Possible relationships between the critical phenomena of spin system and the two-phase phenomena are discussed.

  7. Incorporating fault tolerance in distributed agent based systems by simulating bio-computing model of stress pathways

    NASA Astrophysics Data System (ADS)

    Bansal, Arvind K.

    2006-05-01

    Bio-computing model of 'Distributed Multiple Intelligent Agents Systems' (BDMIAS) models agents as genes, a cooperating group of agents as operons - commonly regulated groups of genes, and the complex task as a set of interacting pathways such that the pathways involve multiple cooperating operons. The agents (or groups of agents) interact with each other using message passing and pattern based bindings that may reconfigure agent's function temporarily. In this paper, a technique has been described for incorporating fault tolerance in BDMIAS. The scheme is based upon simulating BDMIAS, exploiting the modeling of biological stress pathways, integration of fault avoidance, and distributed fault recovery of the crashed agents. Stress pathways are latent pathways in biological system that gets triggered very quickly, regulate the complex biological system by temporarily regulating or inactivating the undesirable pathways, and are essential to avoid catastrophic failures. Pattern based interaction between messages and agents allow multiple agents to react concurrently in response to single condition change represented by a message broadcast. The fault avoidance exploits the integration of the intelligent processing rate control using message based loop feedback and temporary reconfiguration that alters the data flow between functional modules within an agent, and may alter. The fault recovery exploits the concept of semi passive shadow agents - one on the local machine and other on the remote machine, dynamic polling of machines, logically time stamped messages to avoid message losses, and distributed archiving of volatile part of agent state on distributed machines. Various algorithms have been described.

  8. An Agent-Based Model of Private Woodland Owner Management Behavior Using Social Interactions, Information Flow, and Peer-To-Peer Networks.

    PubMed

    Huff, Emily Silver; Leahy, Jessica E; Hiebeler, David; Weiskittel, Aaron R; Noblet, Caroline L

    2015-01-01

    Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner's management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of 'harvest readiness' and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The