Science.gov

Sample records for agents ba detonators

  1. Detonation control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2016-10-25

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  2. Detonating apparatus

    DOEpatents

    Johnston, Lawrence H.

    1976-01-01

    1. Apparatus for detonation of high explosive in uniform timing comprising in combination, an outer case, spark gap electrodes insulatedly supported in spaced relationship within said case to form a spark gap, high explosive of the class consisting of pentaerythritol tetranitrate and trimethylene trinitramine substantially free from material sensitive to detonation by impact compressed in surrounding relation to said electrodes including said spark gap under a pressure from about 100 psi to about 500 psi, said spark gap with said compressed explosive therein requiring at least 1000 volts for sparking, and means for impressing at least 1000 volts on said spark gap.

  3. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  4. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  5. Detonation Wave Profile

    SciTech Connect

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  6. Detonation command and control

    SciTech Connect

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  7. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2016-05-31

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  8. Bidirectional slapper detonator

    DOEpatents

    McCormick, Robert N.; Boyd, Melissa D.

    1984-01-01

    The disclosure is directed to a bidirectional slapper detonator. One embodiment utilizes a single bridge circuit to detonate a pair of opposing initiating pellets. A line generator embodiment uses a plurality of bridges in electrical series to generate opposing cylindrical wavefronts.

  9. Exploding bridgewire detonator simulator

    NASA Technical Reports Server (NTRS)

    Sullivan, R. R.; Tarley, R. C.; Tarpley, R. C.

    1969-01-01

    Tests indicate that electric detonator simulators of the exploding bridgewire type will not fire as a result of the application of a direct current power of one watt for 5 minutes. The detonator also will not fire if the protective gap fails and the firing stimulus is inadvertently applied.

  10. Propagation Mechanism of Cylindrical Cellular Detonation

    NASA Astrophysics Data System (ADS)

    Han, Wen-Hu; Wang, Cheng; Ning, Jian-Guo

    2012-10-01

    We investigate the evolution of cylindrical cellular detonation with different instabilities. The numerical results show that with decreasing initial temperature, detonation becomes more unstable and the cells of the cylindrical detonation tend to be irregular. For stable detonation, a divergence of cylindrical detonation cells is formed eventually due to detonation instability resulting from a curved detonation front. For mildly unstable detonation, local overdriven detonation occurs. The detonation cell diverges and its size decreases. For highly unstable detonation, locally driven detonation is more obvious and the front is highly wrinkled. As a result, the diverging cylindrical detonation cell becomes highly irregular.

  11. Development of detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principle of a controlled condensed detonation. In this engine the gas products that are expelled from the engine to produce thrust are generated by the condensed detonation reaction. The engine is constructed of two basic sections consisting of a detonation wave generator section and a condensed detonation reaction section.

  12. Detonation Front Curvatures and Detonation Rates

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark

    2015-06-01

    We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  14. Theory of gaseous detonations.

    PubMed

    Clavin, Paul

    2004-09-01

    The objective of the present paper is to review some developments that have occurred in detonation theory over the last ten years. They concern nonlinear dynamics of detonation fronts, namely patterns of pulsating and/or cellular fronts, selection of the cell size, dynamical self-quenching, direct (blast) or spontaneous initiation, and transition from deflagration to detonation. These phenomena are all well documented by experiments since the sixties but remained unexplained until recently. In the first part of the paper, the patterns of cellular detonations are described by an asymptotic solution to nonlinear hyperbolic equations (reactive Euler equations) in the form of unsteady (sometime chaotic) and multidimensional traveling-waves. In the second part, turning points of quasi-steady solutions are shown to correspond to critical conditions of fully unsteady problems, either for (direct or spontaneous) initiation or for spontaneous failure (self-quenching). Physical insights are tentatively presented rather than technical aspects. The challenge is to identify the physical mechanisms with their relevant parameters, and more specifically to explain how the length-scales involved in detonation dynamics are larger by two order of magnitude (at least) than the length-scale involved in the steady planar traveling-wave solution (detonation thickness). PMID:15446993

  15. Theory of gaseous detonations.

    PubMed

    Clavin, Paul

    2004-09-01

    The objective of the present paper is to review some developments that have occurred in detonation theory over the last ten years. They concern nonlinear dynamics of detonation fronts, namely patterns of pulsating and/or cellular fronts, selection of the cell size, dynamical self-quenching, direct (blast) or spontaneous initiation, and transition from deflagration to detonation. These phenomena are all well documented by experiments since the sixties but remained unexplained until recently. In the first part of the paper, the patterns of cellular detonations are described by an asymptotic solution to nonlinear hyperbolic equations (reactive Euler equations) in the form of unsteady (sometime chaotic) and multidimensional traveling-waves. In the second part, turning points of quasi-steady solutions are shown to correspond to critical conditions of fully unsteady problems, either for (direct or spontaneous) initiation or for spontaneous failure (self-quenching). Physical insights are tentatively presented rather than technical aspects. The challenge is to identify the physical mechanisms with their relevant parameters, and more specifically to explain how the length-scales involved in detonation dynamics are larger by two order of magnitude (at least) than the length-scale involved in the steady planar traveling-wave solution (detonation thickness).

  16. The History of the Study of Detonation

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the main concepts of detonative combustion. Concepts of slow and fast combustion, of detonation adiabat are introduced. Landmark works on experimental and semi-empirical detonation study are presented. We reviewed Chapman-Jouguet stationary detonation and spin detonation. Various mathematical model of detonation wave…

  17. Reverse slapper detonator

    SciTech Connect

    Weingart, Richard C.

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  18. Pulse detonation engines: Technical approaches

    NASA Astrophysics Data System (ADS)

    Nikitin, V. F.; Dushin, V. R.; Phylippov, Y. G.; Legros, J. C.

    2009-01-01

    The paper contains analysis of the problems preventing from wide use of pulse detonation engines (PDE), and provides suggestions to overcome those problems. In particular, the results of theoretical investigations of basic operating cycle in PDE—deflagration-to-detonation transition (DDT) processes in combustible gaseous mixtures and transmission of detonation into large chambers—are presented. The paper investigates the effect of implosion shock waves on the onset of detonation in gases, and suggests the scheme of detonation transmission from a narrow gap into a wide chamber, which makes it possible to reduce the predetonation length thus shortening the necessary length of the engine.

  19. Clamp for detonating fuze

    NASA Technical Reports Server (NTRS)

    Holderman, E. J.

    1968-01-01

    Quick acting clamp provides physical support for a closely confined detonating fuse in an application requiring removal and replacement at frequent intervals during test. It can be designed with a base of any required strength and configuration to permit the insertion of an object.

  20. Rotary detonation engine

    SciTech Connect

    Eidelman, S.

    1988-05-03

    In an engine of the type wherein the combustion of the fuel mixture is carried out by a detonation wave, the improvement is described comprising: (a) an elongated shaft having a central longitudinal chamber, the chamber being supplied with a detonatable fuel mixture; (b) axisymmetrical elements integral with the shaft and disposed along the length thereof; (c) means for selectively introducing the detonatable mixture from the central chamber into the initiation chamber of each axisymmetrical element and the ducts of the axisymmetrical element; and (d) means for selectively initiating detonation of the fuel mixture in the initiation chamber of each the axisymmetrical element, whereby ignition and detonation of fuel mixture in the initiation chamber will produce a detonation wave which travels outward from such initiation chamber in the ducts to initiate fast combustion of the fuel mixture in the ducts. The combustion products are exhausted from the exhaust openings in the form of high speed jets oriented to produce a rotational moment in the element and the shaft.

  1. Oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1980-01-01

    Two conceptual designs of the oblique detonation wave ramjet are presented. The performance is evaluated for stoichiometric hydrogen-air equivalence ratios of phi = 1/3, 2/3 and 1 for a range of flight Mach numbers from 6 to 10.

  2. Environmentally Benign Stab Detonators

    SciTech Connect

    Gash, A

    2005-12-21

    Many energetic systems can be activated via mechanical means. Percussion primers in small caliber ammunition and stab detonators used in medium caliber ammunition are just two examples. Current medium caliber (20-60mm) munitions are detonated through the use of impact sensitive stab detonators. Stab detonators are very sensitive and must be small, as to meet weight and size limitations. A mix of energetic powders, sensitive to mechanical stimulus, is typically used to ignite such devices. Stab detonators are mechanically activated by forcing a firing pin through the closure disc of the device and into the stab initiating mix. Rapid heating caused by mechanically driven compression and friction of the mixture results in its ignition. The rapid decomposition of these materials generates a pressure/temperature pulse that is sufficient to initiate a transfer charge, which has enough output energy to detonate the main charge. This general type of ignition mix is used in a large variety of primers, igniters, and detonators.[1] Common primer mixes, such as NOL-130, are made up of lead styphnate (basic) 40%, lead azide (dextrinated) 20%, barium nitrate 20%, antimony sulfide 15%, and tetrazene 5%.[1] These materials pose acute and chronic toxicity hazards during mixing of the composition and later in the item life cycle after the item has been field functioned. There is an established need to replace these mixes on toxicity, health, and environmental hazard grounds. This effort attempts to demonstrate that environmentally acceptable energetic solgel coated flash metal multilayer nanocomposites can be used to replace current impact initiated devices (IIDs), which have hazardous and toxic components. Successful completion of this project will result in IIDs that include innocuous compounds, have sufficient output energy for initiation, meet current military specifications, are small, cost competitive, and perform as well as or better than current devices. We expect flash

  3. Immunosuppressive agents in the treatment of inhibitors in congenital haemophilia A and B--a systematic literature review.

    PubMed

    Laros-van Gorkom, Britta Antonia Petra; Falaise, Céline; Astermark, Jan

    2014-08-01

    The development of inhibitory antibodies to factor VIII (FVIII) or factor IX (FIX) in patients with haemophilia is a serious complication of treatment with coagulation factor concentrates. Antibodies develop in 10-15% of haemophilia A and in up to 5% of haemophilia B patients. Several strategies have been developed over the years to facilitate the eradication of inhibitors and reduce the cost. These include plasmapheresis and/or extracorporeal protein A absorption to remove the inhibitor from the plasma, and immunosuppression and/or immune modulation to suppress the production of inhibitory antibodies. Different immunosuppressive (IS) agents have been described with varying success. To evaluate the outcome of these agents, we performed a systematic literature review using the PubMed database. The total number of articles identified was 345; 299 papers were excluded leaving 46 papers to be included in the study. No randomised studies were identified, only case reports and case series. The most frequently used agents in the 46 case reports and cohort studies identified were cyclophosphamide and rituximab. All cases exposed to cyclophosphamide, rituximab and other IS agents had a complete success rate of 40-44%, 40-63% and 33-56%, respectively. However, the definition of success was not consistent among the studies. In conclusion, our review of the literature indicates that IS agents in combination with FVIII or FIX could be an option and may be cost-effective in many patients. The risk of adverse events seems to be relatively low. To fully explore the effect of IS agents, randomised studies are warranted.

  4. Detonation Jet Engine. Part 2--Construction Features

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  5. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, Jr., Robert W.; Kopczewski, Michael R.; Schwarz, Alfred C.

    1986-01-01

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

  6. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1985-01-04

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

  7. Safeguarding against sympathetic detonations

    SciTech Connect

    Glenn, J.G. . Energetic Materials Branch); Gunger, M. )

    1994-02-01

    This article describes research to develop explosives with superior blasting power that can survive accidental initiation. The importance of being able to prevent detonations can be gleaned from the Air Force's inventory of hundreds of thousands of 500-pound general-purpose bombs, which are its main weapons. A 500-pound bomb contains approximately 200 pounds of high explosive; the remainder of the bomb's weight is its steel casing. The explosive used is a combination of TNT and aluminum. The chemists at the US Air Force's High Explosives Research and Development (HERD) facility are working on modifying the formulation so that it will be insensitive to the kind of jolt emanating from the detonation of a nearby bomb. At the same time, the bomb must maintain high performance.

  8. Detonation properties of bromonitromethane

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd L.; Sheffield, Stephen A.; Engelke, Ray

    2000-04-01

    Bromonitromethane (CH2BrNO2)(BrNM) is chemically similar to nitromethane (NM), with one hydrogen atom replaced by bromine. It is a liquid explosive with an initial density of 2.009 g/cm3. We have shown its sensitivity to shock to be similar to neat NM. Its von Neumann spike pressure is calculated to be nearly twice that of NM while the CJ pressure appears to be only slightly higher than NM. The sound speed of BrNM was measured to be 1.16 km/s and was used in the Universal Liquid Hugoniot (1). Shock Hugoniot measurements were shown to be consistent with this prediction. In addition, we report the results of failure diameter measurements, and the diameter effect curve in brass confinement. Detonation wave profiles obtained using VISARs that record the interface particle velocity between detonating BrNM and a poly(methyl methacrylate) window are also reported.

  9. Chemical Equilibrium Detonation

    NASA Astrophysics Data System (ADS)

    Bastea, Sorin; Fried, Laurence E.

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. The fundamental principles outlined in this chapter pertain to the study of detonation in both gas-phase and condensed-phase energetic materials, but our main focus will be on the condensed ones, particularly on high explosives (HEs). They share many properties with other classes of condensed energetic compounds such as propellants and pyrotechnics, but a detailed understanding of detonation is especially important for numerous HE applications. The usage and study of HE materials goes back more than a century, but many questions remain to be answered, e.g., on their reaction pathways at high pressures and temperatures, chemical properties, etc.

  10. Detonation Properties of Bromonitromethane

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd L.; Sheffield, Stephen A.; Engelke, Ray

    1999-06-01

    Bromonitromethane (CH_2BrNO_2)(BrNM) is chemically similar to nitromethane (NM), with one hydrogen atom replaced by bromine. It is a liquid explosive with an initial density of 2.009 g/cm^3. We have shown its sensitivity to shock to be similar to neat NM. However, its performance (CJ pressure) appears to be about twice that of NM. The sound speed of BrNM was measured to be 1.16 km/s and was used in the Universal Liquid Hugoniot (R. W. Woolfolk, M. Cowperthwaite and R. Shaw, Thermochimica Acta, 5), 409 (1983). to predict the unreacted Hugoniot. Shock Hugoniot measurements were shown to be consistent with this prediction. In addition, we report the BrNM detonation velocity, failure diameter in brass, and diameter effect curve. Detonation wave profiles obtained using VISAR to record the interface particle velocity between the detonating BrNM and a polymethyl methacrylate (PMMA) window have also been measured. There are interesting features in these measurements that may provide information about the reactions occurring in the BrNM and/or the effect of the confinement.

  11. Recent work on gaseous detonations

    NASA Astrophysics Data System (ADS)

    Nettleton, M. A.

    The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.

  12. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  13. Non ideal detonation of emulsion explosives mixed with metal particles

    NASA Astrophysics Data System (ADS)

    Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.

    2011-06-01

    The detonation of ammonium nitrate based compositions like emulsion explosives (EX) mixed with metal particles has been investigated experimentally. Aluminium powder with a mean particle size of 10 μm was used, and the mass concentration of aluminum on the explosive charge was ranged from 0 to 30%. The values of the detonation velocity, the pressure attenuation - P(x) - of detonation front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressure-times histories have been evaluated using the multi fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allow a quasi continuous evaluation of the detonation wave run propagation and the assessment to spatial resolved measurements of the shock wave induced in the PMMA barrier which in turns allows a detailed characterization of the detonation reaction zone structure. Results of that characterization process are presented and discussed for aluminized and non aluminized EX. Moreover, the effect of the mass concentration of the sensitizing agent (hollow glass micro-balloons) on the non monotonic detonation velocity variation, for EX, will be discussed.

  14. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  15. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  16. Pulse Detonation Engine Modeled

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    Pulse Detonation Engine Technology is currently being investigated at Glenn for both airbreathing and rocket propulsion applications. The potential for both mechanical simplicity and high efficiency due to the inherent near-constant-volume combustion process, may make Pulse Detonation Engines (PDE's) well suited for a number of mission profiles. Assessment of PDE cycles requires a simulation capability that is both fast and accurate. It should capture the essential physics of the system, yet run at speeds that allow parametric analysis. A quasi-one-dimensional, computational-fluid-dynamics-based simulation has been developed that may meet these requirements. The Euler equations of mass, momentum, and energy have been used along with a single reactive species transport equation, and submodels to account for dominant loss mechanisms (e.g., viscous losses, heat transfer, and valving) to successfully simulate PDE cycles. A high-resolution numerical integration scheme was chosen to capture the discontinuities associated with detonation, and robust boundary condition procedures were incorporated to accommodate flow reversals that may arise during a given cycle. The accompanying graphs compare experimentally measured and computed performance over a range of operating conditions for a particular PDE. Experimental data were supplied by Fred Schauer and Jeff Stutrud from the Air Force Research Laboratory at Wright-Patterson AFB and by Royce Bradley from Innovative Scientific Solutions, Inc. The left graph shows thrust and specific impulse, Isp, as functions of equivalence ratio for a PDE cycle in which the tube is completely filled with a detonable hydrogen/air mixture. The right graph shows thrust and specific impulse as functions of the fraction of the tube that is filled with a stoichiometric mixture of hydrogen and air. For both figures, the operating frequency was 16 Hz. The agreement between measured and computed values is quite good, both in terms of trend and

  17. Detonator-activated ball shutter

    DOEpatents

    McWilliams, R.A.; Holle, W.G. von.

    1983-08-16

    A detonator-activated ball shutter for closing an aperture in about 300[mu] seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture. 3 figs.

  18. Detonator-activated ball shutter

    DOEpatents

    McWilliams, Roy A.; von Holle, William G.

    1983-01-01

    A detonator-activated ball shutter for closing an aperture in about 300.mu. seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture.

  19. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  20. Diamonds in detonation soot

    NASA Technical Reports Server (NTRS)

    Greiner, N. Roy; Phillips, Dave; Johnson, J. D.; Volk, Fred

    1990-01-01

    Diamonds 4 to 7 nm in diameter have been identified and partially isolated from soot formed in detonations of carbon-forming composite explosives. The morphology of the soot has been examined by transmission electron microscopy (TEM), and the identity of the diamond has been established by the electron diffraction pattern of the TEM samples and by the X-ray diffraction (XRD) pattern of the isolated solid. Graphite is also present in the form of ribbons of turbostatic structure with a thickness of 2 to 4 nm. A fraction, about 25 percent of the soot by weight, was recovered from the crude soot after oxidation of the graphite with fuming perchloric acid. This fraction showed a distinct XRD pattern of diamond and the diffuse band of amorphous carbon. The IR spectrum of these diamonds closely matches that of diamonds recovered from meteorites (Lewis et al., 1987), perhaps indicating similar surface properties after the oxidation. If these diamonds are produced in the detonation itself or during the initial expansion, they exhibit a phenomenal crystal growth rate (5 nm/0.00001 s equal 1.8 m/hr) in a medium with a very low hydrogen/carbon ratio. Because the diamonds will be carried along with the expanding gases, they will be accelerated to velocities approaching 8 km/s.

  1. Simple detonation meter

    NASA Astrophysics Data System (ADS)

    Sukhov, N.

    1985-01-01

    A new instrument for measuring the detonation factor (sound distortion caused by parasitic frequency modulation within the 0.2 to 200 Hz range) has been built with only three transistors and two microcircuit chips, but it performs as well as the existing commercial 41 instrument. This instrument can operate from any unipolar 14 + or - 1 V d.c. source with a voltage ripple not exceeding 0.5 mV, drawing a maximum current of 25 mA. Its alignment and calibration require only a d.c. voltmeter with 10 kohm/V input resistance and a 3150 Hz sine-wave or square-wave generator. It can then be used for checking tape recorders with the use of test tapes already carrying phonograms of 3150 Hz signals. Three readings must be taken, at the beginning and at the end of a cassette or spool as well as somewhere in the middle, the highest reading being the conclusive one. The detonation factor in the test tape must be smaller than one third of the measured one. The instrument can also be used without test tapes, but the procedure is then more laborious.

  2. Detonation spreading in fine TATBs

    SciTech Connect

    Kennedy, J.E.; Lee, K.Y.; Spontarelli, T.; Stine, J.R.

    1998-12-31

    A test has been devised that permits rapid evaluation of the detonation-spreading (or corner-turning) properties of detonations in insensitive high explosives. The test utilizes a copper witness plate as the medium to capture performance data. Dent depth and shape in the copper are used as quantitative measures of the detonation output and spreading behavior. The merits of the test are that it is easy to perform with no dynamic instrumentation, and the test requires only a few grams of experimental explosive materials.

  3. New generation detonics

    SciTech Connect

    Souers, P.C.

    1996-12-15

    Modern theory is being used to accelerate the development of new high performance explosive molecules. Combining quantum chemistry calculations with synthesis of promising candidate molecules may enable the advance of the state of the art in this field by more than 50 years. We have established a high explosive performance prediction code by linking the thermochemical code CHEETAH with the ab initio electronic structure code GAUSSIAN and the molecular packing code MOLPAK. GAUSSIAN is first used to determine the shape of the molecule and its binding energy; the molecules are then packed together into a low energy configuration by MOLPAK. Finally, CHEETAH is used to transform the crystal energy and density into explosive performance measures such as detonation velocity, pressure, and energy. Over 70 target molecules have been created, and several of these show promise in combining performance, chemical stability, and ease of synthesis.

  4. Preparation of C60 by Detonation Technique

    NASA Astrophysics Data System (ADS)

    Wei, Xianfeng; Han, Yong; Long, Xinping

    2012-11-01

    A mixture of TNT (Trinitrotoluene) and natural graphite was detonated in a vacuum container which was immersed into cooling water; detonation products were collected for detecting. The results of mass spectroscopy, high performance liquid chromatography showed significant signals of C60, which proved that C60 could be synthesized by detonating the mixture of TNT/graphite and the detonation pressure was around 12.3 GPa and the detonation temperature was around 1985 K.

  5. Gaseous hydrocarbon-air detonations

    SciTech Connect

    Tieszen, S.R.; Stamps, D.W.; Westbrook, C.K.; Pitz, W.J.

    1988-01-01

    Detonation cell width measurements are made on mixtures of air and methane, ethane, dimethyl-ether, nitroethane, ethylene, acetylene, propane, 1,2-epoxypropane, n-hexane, 1-nitrohexane, mixed primary hexylnitrate, n-octane, 2,2,4-trimethylpentane, cyclooctane, 1-octene, cis-cyclooctene, 1-7-octadiene, 1-octyne, n-decane, 1,2-epoxydecane, pentyl-ether, and JP4. There is a slight decrease in detonation cell width that is within the uncertainty of the data for stoichiometric alkanes, alkenes, and alkynes with increasing temperature between 25 and 100/degree/C. Also there appears to be no effect of molecular weight from ethane to decane, on detonation cell width for stoichiometric alkanes. Molecular structure is found to affect detonability for C/sub 8/ hydrocarbons, where the saturated ring structure is more sensitive than the straight-chain alkane. Unsaturated alkenes and alkynes are more sensitive to detonation than saturated alkanes. However, the degree of sensitization decreases with increasing molecular weight. Addition of functional groups such as nitro, nitrate, epoxy, and ethers are found to significantly reduce the detonation cell width from the parent n-alkane. Nitrated n-alkanes can be more sensitive than hydrogen-air mixtures. The increase in sensitivity of epoxy groups appears to be related to the oxygen to carbon ratio of the molecule. Good results are obtained between the data and predictions from a ZND model with detailed chemical kinetics. 46 refs., 8 figs., 4 tabs.

  6. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding

  7. Diminishing detonator effectiveness through electromagnetic effects

    DOEpatents

    Schill, Jr, Robert A.

    2016-09-20

    An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.

  8. Detonation in TATB Hemispheres

    SciTech Connect

    Druce, B; Souers, P C; Chow, C; Roeske, F; Vitello, P; Hrousis, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.

  9. 29 CFR 1926.908 - Use of detonating cord.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... kinks, or angles that direct the cord back toward the oncoming line of detonation. (g) All detonating... direction in which the detonation is to proceed. (j) Detonators for firing the trunkline shall not...

  10. DETONATION PRESSURE MEASUREMENTS ON PETN

    SciTech Connect

    Green, L G; Lee, E L

    2006-06-23

    PETN is widely recognized as an example of nearly ideal detonation performance. The chemical composition is such that little or no carbon is produced in the detonation products. The reaction zone width is less than currently detectable. (<1 ns) Observations on PETN have thus become a baseline for EOS model predictions. It has therefore become important to characterize the detonation parameters as accurately as possible in order to provide the most exacting comparisons of EOS predictions with experimental results. We undertook a painstaking review of the detonation pressure measurements reported in an earlier work that was presented at the Fifth Detonation Symposium and found that corrections were required in determining the shock velocity in the PMMA witness material. We also refined the impedance calculation to account for the difference between the usual ''acoustic'' method and the more accurate Riemann integral. Our review indicates that the CJ pressures previously reported for full density PETN require an average lowering of about 6 percent. The lower densities require progressively smaller corrections. We present analysis of the records, supporting hydrodynamic simulations, the Riemann integral results, and EOS parameter values derived from the revised results.

  11. Gaseous hydrocarbon-air detonations

    SciTech Connect

    Tieszen, S.R.; Stamps, D.W. ); Westbrook, C.K.; Pitz, W.J. )

    1991-04-01

    Detonation cell width measurements were made on mixtures of air and methane, ethane, dimethyl-ether, nitroethane, ethylene, acetylene, propane, 1,2-epoxypropane, n-hexane, 1-nitrohexane, mixed primary hexylnitrate, n-octane, 2,2,4-trimethylpentane, cyclooctane, 1-octene, cis-cyclooctene, 1,7-octadiene, 1-octyne, n-decane, 1,2-epoxydecane, pentyl-ether, and JP4. Cell width measurements were carried out at 25 and 100 {degrees} C for some of these fuel-air mixtures. For the stoichiometric alkanes, alkenes, and alkynes, there is a very slight decrease in the detonation cell width with increasing initial temperature from 25 {degrees} C to 100 {degrees} C, although the differences are within the experimentally uncertainties in cell width measurements. Also within the uncertainty limits of the measurements, there is no variation in detonation cell width with increase fuel molecular weight for n-alkanes from ethane to n-decane. Molecular structure is found to affect detonability for C{sub 8} hydrocarbons, where the saturated ring structure is more sensitive than the straight-chain alkane, which is more sensitive than the branched-chain alkane. Unsaturated alkenes and alkynes are more sensitive to detonation than saturated alkanes.

  12. Bidirectional slapper detonators in spherical explosion systems

    NASA Astrophysics Data System (ADS)

    Martinez, Ernest C.

    1990-11-01

    A bidirectional slapper detonator has been proven effective for producing a spherically expanding shock wave. Two bridge foils are used to propel flyers in opposite directions, thereby initiating two explosive pellets, each embedded in one hemisphere of a spherical system. This detonation system produces a nearly perfect spherically expanding detonation front.

  13. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  14. Equation of state for detonation products. [Detonation products

    SciTech Connect

    Davis, W.C.

    1985-01-01

    The concepts of hydrodynamics and thermodynamics as they apply to equations of state for explosive products are collected and discussed. The physics behind the behavior of dense gases is considered. Some ideas about applications are presented. This paper is intended as an introduction to the subject of equation of state for detonation products. 7 references, 3 figures.

  15. Environmentally Benign Stab Detonators

    SciTech Connect

    Gash, A E

    2006-07-07

    The coupling of energetic metallic multilayers (a.k.a. flash metal) with energetic sol-gel synthesis and processing is an entirely new approach to forming energetic devices for several DoD and DOE needs. They are also practical and commercially viable manufacturing techniques. Improved occupational safety and health, performance, reliability, reproducibility, and environmentally acceptable processing can be achieved using these methodologies and materials. The development and fielding of this technology will enhance mission readiness and reduce the costs, environmental risks and the necessity of resolving environmental concerns related to maintaining military readiness while simultaneously enhancing safety and health. Without sacrificing current performance, we will formulate new impact initiated device (IID) compositions to replace materials from the current composition that pose significant environmental, health, and safety problems associated with functions such as synthesis, material receipt, storage, handling, processing into the composition, reaction products from testing, and safe disposal. To do this, we will advance the use of nanocomposite preparation via the use of multilayer flash metal and sol-gel technologies and apply it to new small IIDs. This work will also serve to demonstrate that these technologies and resultant materials are relevant and practical to a variety of energetic needs of DoD and DOE. The goal will be to produce an IID whose composition is acceptable by OSHA, EPA, the Clean Air Act, Clean Water Act, Resource Recovery Act, etc. standards, without sacrificing current performance. The development of environmentally benign stab detonators and igniters will result in the removal of hazardous and toxic components associated with their manufacturing, handling, and use. This will lead to improved worker safety during manufacturing as well as reduced exposure of Service personnel during their storage and or use in operations. The

  16. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  17. Sensitized Liquid Hydrazine Detonation Studies

    NASA Technical Reports Server (NTRS)

    Rathgeber, K. A.; Keddy, C. P.; Bunker, R. L.

    1999-01-01

    Vapor-phase hydrazine (N2H4) is known to be very sensitive to detonation while liquid hydrazine is very insensitive to detonation, theoretically requiring extremely high pressures to induce initiation. A review of literature on solid and liquid explosives shows that when pure explosive substances are infiltrated with gas cavities, voids, and/or different phase contaminants, the energy or shock pressure necessary to induce detonation can decrease by an order of magnitude. Tests were conducted with liquid hydrazine in a modified card-gap configuration. Sensitization was attempted by bubbling helium gas through and/or suspending ceramic microspheres in the liquid. The hydrazine was subjected to the shock pressure from a 2 lb (0.9 kg) Composition C-4 explosive charge. The hydrazine was contained in a 4 in. (10.2 cm) diameter stainless steel cylinder with a 122 in(sup 3) (2 L) volume and sealed with a polyethylene cap. Blast pressures from the events were recorded by 63 high speed pressure transducers located on three radial legs extending from 4 to 115 ft (1.2 to 35.1 in) from ground zero. Comparison of the neat hydrazine and water baseline tests with the "sensitized" hydrazine tests indicates the liquid hydrazine did not detonate under these conditions.

  18. Airbreathing Pulse Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents performance results for pulse detonation engines taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.

  19. Airbreathing Pulse Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents performance results for pulse detonation engines (PDE) taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.

  20. Pulse detonation engines and components thereof

    NASA Technical Reports Server (NTRS)

    Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)

    2009-01-01

    A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.

  1. Elevated silver, barium and strontium in antlers, vegetation and soils sourced from CWD cluster areas: do Ag/Ba/Sr piezoelectric crystals represent the transmissible pathogenic agent in TSEs?

    PubMed

    Purdey, Mark

    2004-01-01

    their structure. These ferrimagnetically ordered crystals multireplicate and choke up the PrP-proteoglycan conduits of electrical conduction throughout the CNS. The second stage of pathogenesis comes into play when the pressure energy from incoming shock bursts of low frequency acoustic waves from low fly jets, explosions, earthquakes, etc. (a key eco-characteristic of TSE cluster environments) are absorbed by the rogue 'piezoelectric' crystals, which duly convert the mechanical pressure energy into an electrical energy which accumulates in the crystal-PrP-ferritin aggregates (the fibrils) until a point of 'saturation polarization' is reached. Magnetic fields are generated on the crystal surface, which initiate chain reactions of deleterious free radical mediated spongiform neurodegeneration in surrounding tissues. Since Ag, Ba, Sr or Mn based piezoelectric crystals are heat resistant and carry a magnetic field inducing pathogenic capacity, it is proposed that these ferroelectric crystal pollutants represent the transmissible, pathogenic agents that initiate TSE. PMID:15236778

  2. Elevated silver, barium and strontium in antlers, vegetation and soils sourced from CWD cluster areas: do Ag/Ba/Sr piezoelectric crystals represent the transmissible pathogenic agent in TSEs?

    PubMed

    Purdey, Mark

    2004-01-01

    their structure. These ferrimagnetically ordered crystals multireplicate and choke up the PrP-proteoglycan conduits of electrical conduction throughout the CNS. The second stage of pathogenesis comes into play when the pressure energy from incoming shock bursts of low frequency acoustic waves from low fly jets, explosions, earthquakes, etc. (a key eco-characteristic of TSE cluster environments) are absorbed by the rogue 'piezoelectric' crystals, which duly convert the mechanical pressure energy into an electrical energy which accumulates in the crystal-PrP-ferritin aggregates (the fibrils) until a point of 'saturation polarization' is reached. Magnetic fields are generated on the crystal surface, which initiate chain reactions of deleterious free radical mediated spongiform neurodegeneration in surrounding tissues. Since Ag, Ba, Sr or Mn based piezoelectric crystals are heat resistant and carry a magnetic field inducing pathogenic capacity, it is proposed that these ferroelectric crystal pollutants represent the transmissible, pathogenic agents that initiate TSE.

  3. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  4. Non-detonable explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  5. Improved detonation modeling with CHEETAH

    SciTech Connect

    Heller, A.

    1997-11-01

    A Livermore software program called CHEETAH, an important, even indispensable tool for energetic materials researchers worldwide, was made more powerful in the summer of 1997 with the release of CHEETAH 2.0, an advanced version that simulates a wider variety of detonations. Derived from more than 40 years of experiments on high explosives at Lawrence Livermore and Los Alamos national laboratories, CHEETAH predicts the results from detonating a mixture of specified reactants. It operates by solving thermodynamic equations to predict detonation products and such properties as temperature, pressure, volume, and total energy released. The code is prized by synthesis chemists and other researchers because it allows them to vary the starting molecules and conditions to optimize the desired performance properties. One of the Laboratory`s most popular computer codes, CHEETAH is used at more than 200 sites worldwide, including ones in England, Canada, Sweden, Switzerland, and France. Most sites are defense-related, although a few users, such as Japanese fireworks researchers, are in the civilian sector.

  6. Detonation interaction with an interface

    NASA Astrophysics Data System (ADS)

    Lieberman, D. H.; Shepherd, J. E.

    2007-09-01

    Detonation interaction with an interface was investigated, where the interface separated a combustible from an oxidizing or inert mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone (TMZ) that resulted from the interaction. Sharp interfaces were created by using a nitro-cellulose membrane to separate the two mixtures. The membrane was mounted on a wood frame and inserted in the experimental test section at a 45° angle to the bulk flow direction. The membrane was destroyed by the detonation wave. The interaction resulted in a transmitted and reflected wave at a node point similar to regular shock refraction. A detonation refraction analysis was carried out to compare with the measured shock angles. It was observed that the measured angle is consistently lower than the predicted value. An uncertainty analysis revealed possible explanations for this systematic variation pointing to factors such as the incident wave curvature and the role of the nitro-cellulose diaphragm. Analysis of the TMZ and Mach stem formed from the reflection of the transmitted shock wave off the solid boundary were carried out and found to justify the size and strength of these features as a function of the test gas composition. The role of secondary combustion in the TMZ was also investigated and found to have a small influence on the wave structure.

  7. Optically triggered fire set/detonator system

    DOEpatents

    Chase, Jay B.; Pincosy, Philip A.; Chato, Donna M.; Kirbie, Hugh; James, Glen F.

    2007-03-20

    The present invention is directed to a system having a plurality of capacitor discharge units (CDUs) that includes electrical bridge type detonators operatively coupled to respective explosives. A pulse charging circuit is adapted to provide a voltage for each respective capacitor in each CDU. Such capacitors are discharged through the electrical bridge type detonators upon receiving an optical signal to detonate respective operatively coupled explosives at substantially the same time.

  8. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae. PMID:15245271

  9. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  10. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

  11. Effect of Aluminium Confinement on ANFO Detonation

    NASA Astrophysics Data System (ADS)

    Short, Mark; Jackson, Scott; Kiyanda, Charles; Shinas, Mike; Hare, Steve; Briggs, Matt

    2013-06-01

    Detonations in confined non-ideal high explosives often have velocities below the confiner sound speed. The effect on detonation propagation of the resulting subsonic flow in the confiner (such as confiner stress waves traveling ahead of the main detonation front or upstream wall deflection into the HE) has yet to be fully understood. Previous work by Sharpe and Bdzil (J. Eng. Math, 2006) has shown that for subsonic confiner flow, there is no limiting thickness for which the detonation dynamics are uninfluenced by further increases in wall thickness. The critical parameters influencing detonation behavior are the wall thickness relative to the HE reaction zone size, and the difference in the detonation velocity and confiner sound speed. Additional possible outcomes of subsonic flow are that for increasing thickness, the confiner is increasingly deflected into the HE upstream of the detonation, and that for sufficiently thick confiners, the detonation speed could be driven up to the sound speed in the confiner. We report here on a further series of experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminum confiners with varying HE charge diameter and confiner thickness, and compare the results with the outcomes suggested by Sharpe and Bdzil.

  12. Radioactive Fallout from Terrorist Nuclear Detonations

    SciTech Connect

    Marrs, R E

    2007-05-03

    Responding correctly during the first hour after a terrorist nuclear detonation is the key to reducing casualties from a low-yield surface burst, and a correct response requires an understanding of the rapidly changing dose rate from fallout. This report provides an empirical formula for dose rate as a function of time and location that can guide the response to an unexpected nuclear detonation. At least one post-detonation radiation measurement is required if the yield and other characteristics of the detonation are unknown.

  13. Two phase detonation studies conducted in 1971

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.

    1972-01-01

    A report is presented describing the research conducted on five phases: (1) ignition of fuel drops by a shock wave and passage of a shock wave over a burning drop, (2) the energy release pattern of a two-phase detonation with controlled drop sizes, (3) the attenuation of shock and detonation waves passing over an acoustic liner, (4) experimental and theoretical studies of film detonations, and (5) a simplified analytical model of a rotating two-phase detonation wave in a rocket motor.

  14. A summary of hydrogen-air detonation experiments

    SciTech Connect

    Guirao, C.M.; Knystautas, R.; Lee, J.H.

    1989-05-01

    Dynamic detonation parameters are reviewed for hydrogen-air-diluent detonations and deflagration-to-detonation transitions (DDT). These parameters include the characteristic chemical length scale, such as the detonation cell width, associated with the three-dimensional cellular structure of detonation waves, critical transmission conditions of confined detonations into unconfined environments, critical initiation energy for unconfined detonations, detonability limits, and critical conditions for DDT. The detonation cell width, which depends on hydrogen and diluent concentrations, pressure, and temperature, is an important parameter in the prediction of critical geometry-dependent conditions for the transmission of confined detonations into unconfined environments and the critical energies for the direct initiation of unconfined detonations. Detonability limits depend on both initial and boundary conditions and the limit has been defined as the onset of single head spin. Four flame propagation regimes have been identified and the criterion for DDT in a smooth tube is discussed. 108 refs., 28 figs., 5 tabs.

  15. Investigation of organic dust detonation in the presence of chemically inert particles

    SciTech Connect

    Klemens, R.; Kapuscinski, M.; Wolinski, M.; Wolanski, P. . Instytut Techniki Cieplnej); Sichel, M. . Dept. of Aerospace Engineering)

    1994-12-01

    The results of experimental studies of organic dust detonation in the presence of chemically inert particles are presented. Tests were carried out using a vertical detonation tube, and direct streak pictures showing the flame acceleration and pressure and temperature records were obtained. Flax dust, dispersed in an oxygen atmosphere, was used as the fuel, and two kinds of quartz sand were introduced as nonreacting particles. It was found that addition of inert particles caused a linear decrease of the detonation wave velocity but had no special influence on the transition distance. Calculations using the Gordon McBride Code showed that propagation of the detonation wave in a dust-oxygen mixture requires that the dust particles burnout at a level of about 70% but addition of inert particles increased the necessary burnout level to over 80% (with a significant decrease of the detonation wave velocity). The aim of this work was to investigate the processes of flame self acceleration and transition to detonation in mixtures of organic dust with oxygen and to investigate the influence of chemically neutral particles (used as a flame inhibiting agent) on these processes.

  16. Detonation diffraction through different geometries

    NASA Astrophysics Data System (ADS)

    Sorin, Rémy; Zitoun, Ratiba; Khasainov, Boris; Desbordes, Daniel

    2009-04-01

    We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c = k c · λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter ( D/ d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/ λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/ d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/ λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/ λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.

  17. Diagnostics for slapper detonator systems

    SciTech Connect

    Boberg, R.E.; Lee, R.E.; Lee, R.S.; Von Holle, W.

    1989-03-28

    This report discusses diagnostics which have been used to evaluate CDU characteristics and performance, slapper characteristics and performance and the response of a HE detonator output pellet to a slapper stimulus. Many of the diagnostics discussed are appropriate for development and production testing. These include CVR current measurements, voltage probe measurements, time-of-flight measurements, threshold measurements, function time measurements, use of steel witness plates and determination of design margin. Some of the more-sophisticated, expensive diagnostics discussed have yielded very useful information, but are not required for development and production testing. 8 refs., 9 figs., 1 tab.

  18. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho

    1993-07-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar{mu}s/cm{sup 2}. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/{mu}s under a loading pressure rate of several Mbar/{mu}s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/{mu}s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/{mu}s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/{mu}s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  19. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho.

    1993-01-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar[mu]s/cm[sup 2]. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/[mu]s under a loading pressure rate of several Mbar/[mu]s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/[mu]s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/[mu]s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/[mu]s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  20. Detonation transfer understanding applied to aerospace problems

    NASA Technical Reports Server (NTRS)

    Schimmel, M. L.

    1974-01-01

    Summary of the findings obtained from a two-year investigation aimed at a quantitative understanding of explosive stimulus transfer. It is felt that the improved understanding achieved on detonation transfer mechanisms will make possible better output tests and specifications, and should result in improved detonators and initiation methods.

  1. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Bolme, C. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.

    2007-12-01

    Several experiments will be presented that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation, to full detonation, to transition, to booster and booster detonation. High-speed multiframe schlieren imagery has been used to study several explosive initiation events, such as exploding bridgewires (EBWs), exploding foil initiators (EFIs or "slappers"), direct optical initiation (DOI), and electrostatic discharge. Additionally, a series of tests has been performed on "cut-back" detonators with varying initial pressing heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events, such as boosters and insensitive high explosives booster evaluation, will be discussed. The EPIC finite element code has been used to analyze the shock fronts from the schlieren images to solve iteratively for consistent boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator.

  2. 14 CFR 33.47 - Detonation test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Detonation test. 33.47 Section 33.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.47 Detonation test. Each...

  3. 14 CFR 33.47 - Detonation test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Detonation test. 33.47 Section 33.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.47 Detonation test. Each...

  4. 14 CFR 33.47 - Detonation test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Detonation test. 33.47 Section 33.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.47 Detonation test. Each...

  5. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  6. Detonation in tungsten-loaded HMX

    SciTech Connect

    Goldstein, S.; Mader, C.L.

    1985-01-01

    The detonation behavior of X-0233, a heavily tungsten-loaded HMX explosive, has been studied using failure diameter measurements, plate dents, and aquarium tests. A model with features resembling those of a weak detonation describe the experimental results. 7 refs., 10 figs.

  7. Electrostatic discharge effects on EBW detonators

    SciTech Connect

    Lee, R S; Lee, R E

    1991-04-01

    With appropriate circuit resistance and inductance and sufficient stored energy, discharging a charged human body or component through an exploding bridgewire (EBW) detonator may cause the detonator to function or may damage the detonator. We have studied the effects of electrostatic discharge (ESD) on a number of exploding bridgewire detonators which were subjected to discharges which passed directly through the bridgewires (pin-to-pin), as well as discharges which passed from the bridge to the metal case of the detonator (pin-to-case). We have performed calculations to determine the values of inductance and resistance for which burst and melt may occur for given ESD sources, using a phenomenological model of bridgewire burst in a computer code called FIRESET. Bridge melt was computed using the same computer code, but using experimental values of bridge resistivity and specific heat up to melt. 13 refs., 5 figs.

  8. Performance characterization of the NASA standard detonator

    SciTech Connect

    Tarbell, W.W.; Burke, T.L.; Solomon, S.E.

    1995-05-01

    The NASA Standard Detonator (NSD) is employed in support of a number of current applications, including the Space Shuttle. This effort was directed towards providing test results to characterize the output of this device for its use in a safe and arm device. As part of the investigation, flash X-ray was used to provide stop-motion photographs of the flying metal plate that is created by initiation of the detonator. This provided researchers with a better understanding of the shape and character of the high-velocity disk as it propagated across the gap between the detonator and next assembly. The second portion of the study used a velocity interferometer to evaluate the acceleration and velocity histories of the flying plate, providing a quantified assessment of the detonator`s ability to initiate the explosive in the next explosive.

  9. Pulse detonation assembly and hybrid engine

    NASA Technical Reports Server (NTRS)

    Rasheed, Adam (Inventor); Dean, Anthony John (Inventor); Vandervort, Christian Lee (Inventor)

    2010-01-01

    A pulse detonation (PD) assembly includes a number of PD chambers adapted to expel respective detonation product streams and a number of barriers disposed between respective pairs of PD chambers. The barriers define, at least in part, a number of sectors that contain at least one PD chamber. A hybrid engine includes a number of PD chambers and barriers. The hybrid engine further includes a turbine assembly having at least one turbine stage, being in flow communication with the PD chambers and being configured to be at least partially driven by the detonation product streams. A segmented hybrid engine includes a number of PD chambers and segments configured to receive and direct the detonation product streams from respective PD chambers. The segmented hybrid engine further includes a turbine assembly configured to be at least partially driven by the detonation product streams.

  10. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  11. Detonation wave compression in gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1986-01-01

    A study was made of the concept of augmenting the performance of low pressure ratio gas turbines by detonation wave compression of part of the flow. The concept exploits the constant volume heat release of detonation waves to increase the efficiency of the Brayton cycle. In the models studied, a fraction of the compressor output was channeled into detonation ducts where it was processed by transient transverse detonation waves. Gas dynamic studies determined the maximum cycling frequency of detonation ducts, proved that upstream propagation of pressure pulses represented no problems and determined the variations of detonation duct output with time. Mixing and wave compression were used to recombine the combustor and detonation duct flows and a concept for a spiral collector to further smooth the pressure and temperature pulses was presented as an optional component. The best performance was obtained with a single firing of the ducts so that the flow could be re-established before the next detonation was initiated. At the optimum conditions of maximum frequency of the detonation ducts, the gas turbine efficiency was found to be 45 percent while that of a corresponding pressure ratio 5 conventional gas turbine was only 26%. Comparable improvements in specific fuel consumption data were found for gas turbines operating as jet engines, turbofans, and shaft output machines. Direct use of the detonation duct output for jet propulsion proved unsatisfactory. Careful analysis of the models of the fluid flow phenomena led to the conclusion that even more elaborate calculations would not diminish the uncertainties in the analysis of the system. Feasibility of the concept to work as an engine now requires validation in an engineering laboratory experiment.

  12. Initiation of Gaseous Detonation by Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  13. Initiation of the Detonation in the Gravitationally Confined Detonation Model of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Meakin, Casey A.; Lamb, Don Q.; Truran, James W.

    2009-07-01

    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and

  14. Autoignitions and detonations in engines and ducts.

    PubMed

    Bradley, Derek

    2012-02-13

    The origins of autoignition at hot spots are analysed and the pressure pulses that arise from them are related to knock in gasoline engines and to developing detonations in ducts. In controlled autoignition engines, autoignition is benign with little knock. There are several modes of autoignition and the existence of an operational peninsula, within which detonations can develop at a hot spot, helps to explain the performance of various engines. Earlier studies by Urtiew and Oppenheim of the development of autoignitions and detonations ahead of a deflagration in ducts are interpreted further, using a simple one-dimensional theory of the generation of shock waves ahead of a turbulent flame. The theory is able to indicate entry into the domain of autoignition in an 'explosion in the explosion'. Importantly, it shows the influence of the turbulent burning velocity, and particularly its maximum attainable value, upon autoignition. This value is governed by localized flame extinctions for both turbulent and laminar flames. The theory cannot show any details of the transition to a detonation, but regimes of eventually stable or unstable detonations can be identified on the operational peninsula. Both regimes exhibit transverse waves, triple points and a cellular structure. In the case of unstable detonations, transverse waves are essential to the continuing propagation. For hazard assessment, more needs to be known about the survival, or otherwise, of detonations that emerge from a duct into the same mixture at atmospheric pressure. PMID:22213665

  15. Autoignitions and detonations in engines and ducts.

    PubMed

    Bradley, Derek

    2012-02-13

    The origins of autoignition at hot spots are analysed and the pressure pulses that arise from them are related to knock in gasoline engines and to developing detonations in ducts. In controlled autoignition engines, autoignition is benign with little knock. There are several modes of autoignition and the existence of an operational peninsula, within which detonations can develop at a hot spot, helps to explain the performance of various engines. Earlier studies by Urtiew and Oppenheim of the development of autoignitions and detonations ahead of a deflagration in ducts are interpreted further, using a simple one-dimensional theory of the generation of shock waves ahead of a turbulent flame. The theory is able to indicate entry into the domain of autoignition in an 'explosion in the explosion'. Importantly, it shows the influence of the turbulent burning velocity, and particularly its maximum attainable value, upon autoignition. This value is governed by localized flame extinctions for both turbulent and laminar flames. The theory cannot show any details of the transition to a detonation, but regimes of eventually stable or unstable detonations can be identified on the operational peninsula. Both regimes exhibit transverse waves, triple points and a cellular structure. In the case of unstable detonations, transverse waves are essential to the continuing propagation. For hazard assessment, more needs to be known about the survival, or otherwise, of detonations that emerge from a duct into the same mixture at atmospheric pressure.

  16. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  17. On the Existence of Pathological Detonation Waves

    SciTech Connect

    Tarver, C M

    2003-07-11

    Pathological detonation waves with velocities greater than Chapman-Jouguet (C-J) have been proposed theoretically but never observed experimentally in gaseous, liquid or solid explosives. Two types of pathological chemical reaction zones have been identified within the Zeldovich-von Neumann-Doring (ZND) model: an exothermic chemical decomposition with a mole decrease during from the von Neumann spike state to the C-J state and an exothermic reaction followed by an endothermic reaction (eigenvalue detonation). The high temperatures reached in detonation reaction zones cause sufficient radial and atom formation to insure overall mole increases in gaseous H{sub 2} + O{sub 2} detonations. Aluminized explosives exhibit a slight mole decrease when the solid aluminum particles are oxidized, but this does not negate the large mole increase that occurs during explosive decomposition. Porous solid explosives whose products form with more cold compression energy than that of the solid are an unlikely possibility for pathological detonation. Eigenvalue detonations have been postulated for H{sub 2} + Cl{sub 2} gas phase detonations and for plastic bonded solid explosives if endothermic binder decomposition follows exothermic explosive decomposition. Chemical kinetic and physical arguments are presented to eliminate these possible pathological detonations. In the case of H{sub 2} + Cl{sub 2}, highly vibrationally excited HCl molecules dissociate Cl{sub 2} molecules during the exothermic portion of the reaction zone rather than later in the flow process. In the plastic bonded explosives, the binders are located on the surfaces of explosive particles and thus are exposed to ''hot spots'' created by the three-dimensional Mach stem shock front. Any remaining binder material rapidly reacts in collisions with the high, vibrationally excited reaction products formed during explosive decomposition. Therefore eigenvalue detonations are extremely unlikely to occur in gaseous, liquid or

  18. Preliminary Experimental Investigation on Detonation Initiation in the Ejector of a Pulse Detonation Rocket Engine

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Fan, Wei; Mu, Yang

    2012-12-01

    A small pulse detonation rocket engine (PDRE) was used as a predetonator to initiate detonation in its ejector. The detonation products discharged from the PDRE was not only ignition source for the ejector but also primary flow which entrained air from environment into the ejector. Stoichiometric liquid kerosene and gaseous oxygen were used as reactants for the PDRE. While in the ejector injected liquid kerosene was used as fuel and entrained air was used as oxidizer. Reactants in the ejector were ignited by the detonation wave and products discharged from the PDRE. Detonation was successfully initiation in present experiments. It was found that flame propagation upstream at the entrance of the ejector was inevitable, which affected the detonation initiation process in the ejector. Disks with orifices were placed at the entrance of the ejector to weaken the flame propagation upstream effect, which would affect the air flow entraining process, but the results show it worked.

  19. Detonator comprising a nonlinear transmission line

    SciTech Connect

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  20. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.

    2007-12-01

    Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.

  1. Printable sensors for explosive detonation

    SciTech Connect

    Griffith, Matthew J. Cooling, Nathan A.; Elkington, Daniel C.; Belcher, Warwick J.; Dastoor, Paul C.; Muller, Elmar

    2014-10-06

    Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.

  2. Premature detonation problem. [Artillery shells

    SciTech Connect

    Pimbley, G.H.; Marshall, E.F.

    1980-05-01

    Determining how cavities or voids in the explosive loads of artillery shells cause in-bore premature detonations is important to military authorities. Though answers continue to be elusive, in detailing recent studies of the problem at LASL, some traditional approaches were examined and a new direction of investigation is suggested. The aquarium experiment and the pipe test were devised at LASL to model the events taking place in a base gap, or in an internal cavity, in the load of an accelerating artillery shell. Numerical simulation was used to assess the data from these experiments. Both the experimental and the numerical simulation phases of the project are described. The commonly accepted gas compression, thermal ignition mechanism is not consistent with the results of this study. The dominant mechanism or mechanisms have not been identified.

  3. Heterodyne velocimetry and detonics experiments

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Contencin, G.; Veaux, J.; Lauriot-Basseuil, S.; Debruyne, M.

    2008-11-01

    Heterodyne Velocimetry (or Photonic Doppler Velocimetry) has been used in detonics experiments for a few years now, mainly thanks to the recent evolution of telecom components. In its principle it is nothing else but a displacement interferometer, delivering beats versus time. A sliding Fourier transform processing on the raw signal thus allows to derive velocity versus time. The device is made up of a 1.55 μm Erbium laser delivering 2 W (split into 4 channels), single-mode optical fibers, fast photodetectors and digitizers (8 GHz bandwidth, 20 GS/s sampling). To begin with, we present a new heterodyne velocimeter setup embedding a second low-power frequency-tunable laser (50 mW) acting as a local oscillator. Its frequency can be shifted, to make it higher than the main laser, up to the bandwidth of the digitizer (13 GHz soon). The Doppler wave coming from the first laser and reflected by the moving target interferes with this shifted reference, therefore doubling the overall bandwidth of the system. On top of enhancing the measurable velocity range, the existence of beats at static gives a convenient means to tune the power levels of the laser and match the electric signal to the dynamics of the detector. Finally, three applications are presented: the first one deals with the classical measurement of free surface velocity on metallic shock loaded plates, in the second part we present the velocity distribution of tin particles ejected under shock. The third application relates to direct measurement of the velocity of detonation wave into nitromethane, by using immersed optical fibers.

  4. Detonation wave augmentation of gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1984-01-01

    The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.

  5. Propagation of detonations in hydrazine vapor

    NASA Technical Reports Server (NTRS)

    Heinrich, H. J.

    1985-01-01

    In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.

  6. Parametric study of double cellular detonation structure

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.

    2013-05-01

    A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.

  7. Initiation and Detonation Physics on Millimeter Scales

    SciTech Connect

    Philllips, D F; Benterou, J J; May, C A

    2012-03-20

    The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.

  8. Prechamber initiation of detonation in gaseous mixtures

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu; Golovastov, S. V.; Golub, V. V.

    2015-11-01

    A process of deflagration-to-detonation transition in propane-butane-oxygen and acetylene-oxygen mixtures, in an open channel with a circular cross section with a diameter of 3 mm, was investigated experimentally. Detonation initiation was carried out by burning the mixture in the prechamber connected to the channel. The prechamber was considered as an extended source for the initiation of the detonation of a finite volume. To measure the velocity of a flame front, photodiodes, installed along the axis of the channel, were used. To determine the boundary conditions at the entrance to the channel, a piezoelectric pressure transducer was used. The influence of the dimensions of the prechamber, equivalence ratio and fuel on the pressure profile, and evolution of the flame front along the axis of the channel are presented. It was shown that, the dynamics of the flame front and shock waves in the channel can occur in different scenarios depending on the geometry of the prechamber and equivalence ratio. Two limit effects of the prechamber detonation initiation in the channel have been analyzed. The pre-detonation distances and the minimal energy of direct initiation of the detonation were determined.

  9. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  10. Effect of detonation nanodiamonds on phagocyte activity.

    PubMed

    Karpukhin, Alexey V; Avkhacheva, Nadezhda V; Yakovlev, Ruslan Yu; Kulakova, Inna I; Yashin, Valeriy A; Lisichkin, Georgiy V; Safronova, Valentina G

    2011-07-01

    Detonation ND (nanodiamond) holds much promise for biological studies and medical applications. Properties like size of particles, inclination for modification of their surface and unambiguous biocompatibility are crucial. Of prime importance is interaction between ND and immune cells, which supervise foreign intrusion into an organism and eliminate it. Neutrophils are more reactive in inflammatory response implementing cytotoxical arsenal including ROS (reactive oxygen species). The aim of the work was to estimate the ability of two ND samples (produced by Diamond Center and PlasmaChem) to keep the vitality of neutrophils from the inflammatory site. The ability of cells to generate ROS in the presence of ND particles is considered as indicating their biocompatibility. IR spectra and size of particles in the samples were characterized. Acid modification of ND was carried out to get the luminescent form. In the biological aspect, ND demonstrated up or down action, depending on the concentration, time and conditions of activation of cells. Weak action of ND in whole blood was obtained possibly owing to the ND adsorbed plasma proteins, which mask active functional groups to interact with the cell membrane. ND did not influence the viability of isolated inflammatory neutrophils in low and moderate concentrations and suppressed it in high concentrations (≥1 g/l). Addition of ND to the cell suspension initiated concentration-dependent reaction to produce ROS similar to respiratory burst. ND up-regulated response to bacterial formylpeptide, but up- and down-modified (low or high concentrations, accordingly) response to such bacterial agents as OZ (opsonized zymosan), which neutrophils swallow up by oxygen-dependent phagocytosis. Localization of the particles on the cell surface as into the cells was identified by monitoring the intrinsic fluorescence of oxidized ND. The various mechanisms that could account for penetration of ND particles into the cell are discussed

  11. One Year Term Review as a Participating Guest in the Detonator and Detonation Physics Group

    SciTech Connect

    Lefrancois, A; Roeske, F; Tran, T; Lee, R S

    2006-02-06

    The one year stay was possible after a long administrative process, because of the fact that this was the first participating guest of B division as a foreign national in HEAF (High Explosives Application Facility) with the Detonator/Detonation Physics Group.

  12. Gaseous detonation synthesis and characterization of nano-oxide

    NASA Astrophysics Data System (ADS)

    Yan, Honghao; Wu, Linsong; Li, Xiaojie; Wang, Xiaohong

    2015-07-01

    Gaseous detonation is a new method of heating the precursor of nanomaterials into gas, and integrating it with combustible gas as mixture to be detonated for the synthesis of nanomaterials. In this paper, the mixed gas of oxygen and hydrogen is used as the source for detonation, to synthesize nano TiO2, nano SiO2 and nano SnO2 through gaseous detonation method, characterization and analysis of the products, it was found that the products from gaseous detonation method were of high purity, good dispersion, smaller particle size and even distribution. It also shows that for the synthesis of nano-oxides, gaseous detonation is universal.

  13. Deflagration to detonation transition in combustible gas mixtures

    SciTech Connect

    Smirnov, N.N.; Panfilov, I.I.

    1995-04-01

    This paper presents the results of a computational investigation of the process of deflagration to detonation transition in a combustible gas mixture. The type of combustion (i.e., deflagration or detonation) supported by a two-step reaction scheme is studied as a function of the activation energies. It is shown that both a deflagration to detonation transition and a deflagration wave that lags behind a leading shock are possible. Two types of deflagration to detonation transitions are found theoretically: initiation of detonation from the flame zone and initiation of detonation along a contact discontinuity in the compressed gas near the primary shock wave.

  14. High order hybrid numerical simulations of two dimensional detonation waves

    NASA Technical Reports Server (NTRS)

    Cai, Wei

    1993-01-01

    In order to study multi-dimensional unstable detonation waves, a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves was developed. The numerical algorithm uses a multi-domain approach so different numerical techniques can be applied for different components of detonation waves. The detonation waves are assumed to undergo an irreversible, unimolecular reaction A yields B. Several cases of unstable two dimensional detonation waves are simulated and detailed transverse wave interactions are documented. The numerical results show the importance of resolving the detonation front without excessive numerical viscosity in order to obtain the correct cellular patterns.

  15. Detonability of H/sub 2/-air-diluent mixtures

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.

    1987-06-01

    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H/sub 2/-air mixtures, undiluted and diluted with CO/sub 2/ and H/sub 2/O for a range of H/sub 2/ concentration, initial temperature and pressure. The results show that the addition of either CO/sub 2/ or H/sub 2/O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure.

  16. Detonation nanodiamonds for doping Kevlar.

    PubMed

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  17. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    SciTech Connect

    Howard, W M; Fried, L E; Vitello, P A; Druce, R L; Phillips, D; Lee, R; Mudge, S; Roeske, F

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data, including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.

  18. Detonation diffraction from an annular channel

    NASA Astrophysics Data System (ADS)

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  19. Structure and properties of detonation soot particles

    SciTech Connect

    MalKOV, I.Y.; Titiov, V.M.

    1996-05-01

    The influence of TNT/RDX (50/50) detonation parameters and conservation conditions of detonation products during their expansion in hermetic detonation chamber on structure and phase composition of the detonation carbon has been considered. Systematic studies made it possible to establish the real structure of detonation carbon depending on experimental conditions. It has been shown that both during explosion in a chamber and thermal annealing in vacuum the nanoparticles of diamond have the tendency to transform not into graphite particles, as was assumed earlier, but into onionlike structures of fullerene series, composed of closed concentric carbon shells, the so-called carbon onions. The nanometer carbon particles have been obtained which comprise a diamond nucleus surrounded by a graphite-like mantle composed of quasi-spherical carbon shells which are the intermediate products of annealing of nanodiamond. The influence of initial sizes of the diamond particles and temperature on the annealing of diamond has been studied. {copyright} {ital 1996 American Institute of Physics.}

  20. An Equilibrium-Based Model of Gas Reaction and Detonation

    SciTech Connect

    Trowbridge, L.D.

    2000-04-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

  1. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Sung, Chih-Jen

    2003-01-01

    A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform Hz/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under conditions investigated.

  2. Differential piston and valving system for detonation device

    SciTech Connect

    Adams, J.S.

    1988-07-26

    A method of producing repeated detonations in a detonation chamber is described comprising: a. arranging a movable differential piston in a differential cylinder around a fixed wall of the detonation chamber so as to form a fluid flow passageway between the detonation chamber wall and the piston; and b. arranging valves to cooperate with the differential piston so that a power stroke of the differential piston draws cooling and purging air into contact with the detonation chamber wall and compresses recharging air and so that a return stroke of the differential piston forces the cooling and purging air through the passageway into the detonation chamber to purge exhaust gas from the detonation chamber and subsequently admits compressed recharging air through the passageway and into the detonation chamber.

  3. Detonator cable initiation system safety investigation: Consequences of energizing the detonator and actuator cables

    SciTech Connect

    Osher, J.; Chau, H.; Von Holle, W.

    1994-03-01

    This study was performed to explore and assess the worst-case response of a W89-type weapons system, damaged so as to expose detonator and/or detonator safing strong link (DSSL) cables to the most extreme, credible lightning-discharge, environment. The test program used extremely high-current-level, fast-rise-time (1- to 2-{mu}s) discharges to simulate lightning strikes to either the exposed detonator or DSSL cables. Discharges with peak currents above 700 kA were required to explode test sections of detonator cable and launch a flyer fast enough potentially to detonate weapon high explosive (HE). Detonator-safing-strong-link (DSSL) cables were exploded in direct contact with hot LX-17 and Ultrafine TATB (UFTATB). At maximum charging voltage, the discharge system associated with the HE firing chamber exploded the cables at more than 600-kA peak current; however, neither LX-17 nor UFTATB detonated at 250{degree}C. Tests showed that intense surface arc discharges of more than 700 kA/cm in width across the surface of hot UFTATB [generally the more sensitive of the two insensitive high explosives (IHE)] could not initiate this hot IHE. As an extension to this study, we applied the same technique to test sections of the much-narrower but thicker-cover-layer W87 detonator cable. These tests were performed at the same initial stored electrical energy as that used for the W89 study. Because of the narrower cable conductor in the W87 cables, discharges greater than 550-kA peak current were sufficient to explode the cable and launch a fast flyer. In summary, we found that lightning strikes to exposed DSSL cables cannot directly detonate LX-17 or UFTATB even at high temperatures, and they pose no HE safety threat.

  4. Quantic Industries Inc. slapper detonator performance

    SciTech Connect

    Cutting, J.L.; Lee, R.S.; Hodgin, R.L.

    1994-05-01

    Under the Lawrence Livermore National Laboratories (LLNL) Small Business Technology Transfer Program, assistance was given to Quantic Industries Inc. to use the High Explosive Applications Facility (HEAF), its apparatus, and LLNL expertise to characterize the performance of Quantic`s micro-clad copper/kapton slapper detonator assemblies and establish their threshold to detonate HNS-IV. The project involved measuring the performance of these slapper detonators, otherwise known as Exploding Foil Initiators (EFI`s), manufactured by Quantic Industries Inc. Slapper performance was measured by using a laser velocimeter, which is an expensive and specialized facility which Quantic does not own. The authors measured slapper velocity vs. time as a function of charging voltage. Quantic supplied slappers which were coated with {approximately}100 nm of Al to provide a reflective surface for the laser velocimeter measurements. LLNL provided to a capacitor discharge unit (CDU) to fire the slappers and matched the Quantic CDU waveforms as close as possible.

  5. Detonation wave profiles in HMX based explosives

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1997-11-01

    Detonation wave profiles have been measured in several HMX based plastic bonded explosives including PBX9404, PBX9501, and EDC-37, as well as two HMX powders (coarse and fine) pressed to 65% of crystal density. The powders had 120 and 10 {micro}m average grain sizes, respectively. Planar detonations were produced by impacting the explosive with projectiles launched in a 72-mm bore gas gun. Impactors, impact velocity, and explosive thickness were chosen so that the run distance to detonation was always less than half the explosive thickness. For the high density plastic bonded explosives, particle velocity wave profiles were measured at an explosive/window interface using two VISAR interferometers. PMMA windows with vapor deposited aluminum mirrors were used for all experiments. Wave profiles for the powdered explosives were measured using magnetic particle velocity gauges. Estimates of the reaction zone parameters were obtained from the profiles using Hugoniots of the explosive and window.

  6. Detonation Properties of Ammonium Dinitramide (ADN)

    NASA Astrophysics Data System (ADS)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.

    1999-06-01

    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  7. Detonation wave curvature of PBXN-111

    NASA Astrophysics Data System (ADS)

    Forbes, J. W.; Lemar, E. R.; Baker, R. N.

    1994-07-01

    Spherical curvatures of detonation waves were measured by streak photography over the center 50 percent of PBXN-111 charges. These curvatures range from 54 to 143 mm for charge diameters of 41 to 68 mm and are not spherical near the edges of the charges. The wave fronts appear linear over about the last 3 mm at the charges edges. The angle between the detonation wave front and the edge of the charge was about 62 degrees over this last 3 mm for all the charges. Detonation velocity and wave front curvature data of PBXN-111 were used to calculate CJ zone lengths of 2-4 mm using the Wood-Kirkwood theory.

  8. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard

    2007-06-01

    This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.

  9. Multistage reaction pathways in detonating high explosives

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  10. Detonation Performance Testing of LX-19

    NASA Astrophysics Data System (ADS)

    Vincent, Samuel; Aslam, Tariq; Jackson, Scott

    2015-06-01

    CL-20 was developed at the Naval Surface Weapons Center at China Lake, CA in the mid 80's. Being less sensitive than PETN, but considerably more powerful than HMX, it is the highest energy and density compound known among organic chemicals. LX-19 was developed at LLNL in the early 90's. It is a high-energy plastic bonded explosive, composed of 95.8 wt% CL-20 and 4.2 wt% Estane binder, and is similar to LX-14 (composed of HMX and Estane), but with greater sensitivity characteristics with use of the more energetic CL-20 explosive. We report detonation performance results for unconfined cylindrical rate sticks of LX-19. The experimental diameter effects are shown, along with detonation front shapes, and reaction zone profiles for different test diameters. This data is critical for calibration to Detonation Shock Dynamics (DSD). LA-UR-15-20672.

  11. Some observations on the initiation and onset of detonation.

    PubMed

    Thomas, Geraint

    2012-02-13

    The results of experimental studies during which transition to detonation events occurred are presented. These observations and their interpretation are then discussed, and the conditions for the onset of detonation are described, with particular attention paid to the nature of the phenomena of deflagration-to-detonation transition. The resulting implications for predicting detonation evolution using computational fluid dynamic methods in practical applications are also discussed. PMID:22213666

  12. Some observations on the initiation and onset of detonation.

    PubMed

    Thomas, Geraint

    2012-02-13

    The results of experimental studies during which transition to detonation events occurred are presented. These observations and their interpretation are then discussed, and the conditions for the onset of detonation are described, with particular attention paid to the nature of the phenomena of deflagration-to-detonation transition. The resulting implications for predicting detonation evolution using computational fluid dynamic methods in practical applications are also discussed.

  13. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  14. Detonation Properties and Thermal Behavior of FOX-7-Based Explosives

    NASA Astrophysics Data System (ADS)

    Trzciński, W. A.; Cudziło, S.; Chyłek, Z.; Szymańczyk, L.

    2013-01-01

    Phlegmatized FOX-7 (1,1-diamino-2,2-dinitroethylene, DADNE) and mixtures with cyclotetramethylene tetranitramine (HMX) were prepared and their detonation properties (the detonation velocity, detonation pressure, acceleration ability, and detonation energy) were investigated. The sensitivity of these compositions to mechanical stimuli (friction, impact, and shock wave) were determined, and the thermal stability and compatibility of the components were tested. This work furthers the investigation into new compositions for low vulnerability ammunition.

  15. Pulse Detonation Engine Test Bed Developed

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    2002-01-01

    A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.

  16. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Transporting explosives and detonators. 75.1311... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1311 Transporting explosives and detonators. (a) When explosives and detonators are to be transported...

  17. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Transporting explosives and detonators. 75.1311... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1311 Transporting explosives and detonators. (a) When explosives and detonators are to be transported...

  18. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transporting explosives and detonators. 75.1311... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1311 Transporting explosives and detonators. (a) When explosives and detonators are to be transported...

  19. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Transporting explosives and detonators. 75.1311... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1311 Transporting explosives and detonators. (a) When explosives and detonators are to be transported...

  20. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Transporting explosives and detonators. 75.1311... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1311 Transporting explosives and detonators. (a) When explosives and detonators are to be transported...

  1. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compatibility of electric detonators. 56.6400 Section 56.6400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in...

  2. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compatibility of electric detonators. 56.6400 Section 56.6400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in...

  3. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  4. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  5. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar...

  6. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar...

  7. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  8. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compatibility of electric detonators. 56.6400 Section 56.6400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in...

  9. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  10. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar...

  11. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  12. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  13. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  14. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  15. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 56.6402... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not...

  16. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 57.6402... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized....

  17. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics....

  18. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics....

  19. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar...

  20. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar...

  1. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor... detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor connection; or (2) Have...) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor...

  2. Computer modeling of electrical performance of detonators

    SciTech Connect

    Furnberg, C.M.; Peevy, G.R.; Brigham, W.P.; Lyons, G.R.

    1995-05-01

    An empirical model of detonator electrical performance which describes the resistance of the exploding bridgewire (EBW) or exploding foil initiator (EFI or slapper) as a function of energy, deposition will be described. This model features many parameters that can be adjusted to obtain a close fit to experimental data. This has been demonstrated using recent experimental data taken with the cable discharge system located at Sandia National Laboratories. This paper will be a continuation of the paper entitled ``Cable Discharge System for Fundamental Detonator Studies`` presented at the 2nd NASA/DOD/DOE Pyrotechnic Workshop.

  3. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, A.; Othmer, P.; Rostafinski, W.

    1992-01-01

    An experimental demonstration is presented for the generation of detonation waves that move periodically across high speed channel flow; these waves can compress the outflow from a low pressure compressor, and thereby both reduce the compressor requirements associated with conventional gas turbines and enhance thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock-wave losses are reduced by an order of magnitude; the result is a Humphrey cycle augmenting the basic Brayton-cycle gas turbine. Attention is presently given to results from an experimental detonation duct.

  4. Statistical Hot Spot Model for Explosive Detonation

    SciTech Connect

    Nichols III, A L

    2004-05-10

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a nonlocal equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  5. Statistical Hot Spot Model for Explosive Detonation

    SciTech Connect

    Nichols, III, A L

    2005-07-14

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a non-local equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  6. Modeling Initiation in Exploding Bridgewire Detonators

    SciTech Connect

    Hrousis, C A

    2005-05-18

    One- and two-dimensional models of initiation in detonators are being developed for the purpose of evaluating the performance of aged and modified detonator designs. The models focus on accurate description of the initiator, whether it be an EBW (exploding bridgewire) that directly initiates a high explosive powder or an EBF (exploding bridgefoil) that sends an inert flyer into a dense HE pellet. The explosion of the initiator is simulated using detailed MHD equations of state as opposed to specific action-based phenomenological descriptions. The HE is modeled using the best available JWL equations of state. Results to date have been promising, however, work is still in progress.

  7. Detonation wave velocity and curvature of brass encased PBXN-111

    NASA Astrophysics Data System (ADS)

    Forbes, J. W.; Lemar, E. R.

    1996-05-01

    Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees.

  8. Influence of and additives on acetylene detonation

    NASA Astrophysics Data System (ADS)

    Drakon, A.; Emelianov, A.; Eremin, A.

    2014-03-01

    The influence of and admixtures (known as detonation suppressors for combustible mixtures) on the development of acetylene detonation was experimentally investigated in a shock tube. The time-resolved images of detonation wave development and propagation were registered using a high-speed streak camera. Shock wave velocity and pressure profiles were measured by five calibrated piezoelectric gauges and the formation of condensed particles was detected by laser light extinction. The induction time of detonation development was determined as the moment of a pressure rise at the end plate of the shock tube. It was shown that additive had no influence on the induction time. For , a significant promoting effect was observed. A simplified kinetic model was suggested and characteristic rates of diacetylene formation were estimated as the limiting stage of acetylene polymerisation. An analysis of the obtained data indicated that the promoting species is atomic chlorine formed by pyrolysis, which interacts with acetylene and produces radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modelling agree well with the experimental data.

  9. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  10. EBW's and EFI's: The other electric detonators

    NASA Technical Reports Server (NTRS)

    Varosh, Ron

    1994-01-01

    Exploding Bridgewire Detonators (EBW) and Exploding Foil Initiators (EFI) which were originally developed for military applications, have found numerous uses in the non-military commercial market while still retaining their military uses. While not as common as the more familiar hot wire initiators, EBW's and EFI's have definite advantages in certain applications. These advantages, and disadvantages, are discussed for typical designs.

  11. Size effect and detonation front curvature

    SciTech Connect

    Souers, P. C., LLNL

    1997-07-01

    Heat flow in a cylinder with internal heating is used as a basis for deriving a simple theory of detonation front curvature, leading to the prediction of quadratic curve shapes. A thermal conductivity of 50 MW/mm{sup 2} is found for TATB samples.

  12. Detonation propagation in a high loss configuration

    SciTech Connect

    Jackson, Scott I; Shepherd, Joseph E

    2009-01-01

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  13. Mach reflection of a ZND detonation wave

    NASA Astrophysics Data System (ADS)

    Li, J.; Ning, J.; Lee, J. H. S.

    2015-05-01

    The Mach reflection of a ZND detonation wave on a wedge is investigated numerically. A two-step chain-branching reaction model is used giving a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. The presence of a finite reaction zone thickness renders the Mach reflection process non-self-similar. The variation of the height of the Mach stem with distance of propagation does not correspond to a straight curve from the wedge apex as governed by self-similar three-shock theory. However, the present results indicate that in the near field around the wedge apex, and in the far field where the reaction zone thickness is small compared to the distance of travel of the Mach stem, the behavior appears to be self-similar. This corresponds to the so-called frozen and equilibrium limit pointed out by Hornung and Sanderman for strong discontinuity shock waves and by Shepherd et al. for cellular detonations. The critical wedge angle for the transition from regular to Mach reflection is found to correspond to the value determined by self-similar three-shock theory, but not by reactive three-shock theory for a discontinuous detonation front.

  14. Screen Secures Detonator to Explosive Charge

    NASA Technical Reports Server (NTRS)

    Moshenrose, H. D.; Kindsfather, R. A.

    1983-01-01

    Brass screen sleeve attaches blasting cap to fuse, shaped charge, detonating cord, or other formed explosive. Screen makes it easy to control distance between cap and charge, because user can see both parts, and to cool cap by convection, making use of low-cost blasting caps possible for some hot environments.

  15. Equation of State for Detonation Product Gases

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Kubota, Shiro

    2013-06-01

    Based on the empirical linear relationship between detonation velocity and loading density, an approximate description for the Chapman-Jouguet state for detonation product gases of solid phase high explosives has been developed. Provided that the Grüneisen parameter is a function only of volume, systematic and closed system of equations for the Grüneisen parameter and CJ volume have been formulated. These equations were obtained by combining this approximation with the Jones-Stanyukovich-Manson relation together with JWL isentrope for detonation of crystal density PETN. A thermodynamic identity between the Grüneisen parameter and another non-dimensional material parameter introduced by Wu and Jing can be used to derive the enthalpy-pressure-volume equation of state for detonation gases. This Wu-Jing parameter is found to be the ratio of the Grüneisen parameter and the adiabatic index. Behavior of this parameter as a function of pressure was calculated and revealed that their change with pressure is very gradual. By using this equation of state, several isentropes down from the Chapman-Jouguet states reached by four different lower initial density PETN have been calculated and compared with available cylinder expansion tests.

  16. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-09-01

    Detonation experiments are conducted in a 52 {mm} square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3. Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ }) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  17. Characterizing Detonator Output Using Dynamic Witness Plates

    NASA Astrophysics Data System (ADS)

    Murphy, Michael; Adrian, Ronald

    2009-06-01

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire. Successful application of the PIV system to full-up explosive detonator output is also demonstrated.

  18. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1995-12-31

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  20. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.

    1996-03-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  1. Cellular structure of detonation utilized in propulsion system

    NASA Astrophysics Data System (ADS)

    Zhang, XuDong; Fan, BaoChun; Gui, MingYue; Pan, ZhenHua

    2012-10-01

    How to confine a detonation in a combustor is a key issue of detonation applications in propulsion systems. Based on achieving schemes, detonations applied in the combustor, including pulse detonation wave (PDW), oblique detonation wave (ODW) and rotating detonation wave (RDW), are different from that described by the classic CJ theory in fine structures and its self-sustaining mechanisms. In this work, the cellular structures and flow fields of ODW and RDW were obtained numerically, and the fundamental characteristics and self-sustaining mechanisms of the detonations were analyzed and discussed. ODW front consists of three parts: the ZND-like front, the single-headed triple point front and the dual-headed triple point front. Cellular structures of RDW are heterogeneous, and the cell size near the outer wall is smaller than that near the inner wall.

  2. Synchro-ballistic recording of detonation phenomena

    SciTech Connect

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.; Davis, W.C.; Ferm, E.N.; Idar, D.J.

    1997-09-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  3. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Tobacco and Firearms regulations contained in 27 CFR part 55, Commerce in Explosives. (b) Blasting caps... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... magazines containing detonators shall not be located closer than 50 feet to any magazine containing...

  4. Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rohit Ranjan

    Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification. If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection. All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source. Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas

  5. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. I. DETONATION IGNITION

    SciTech Connect

    Bravo, Eduardo; GarcIa-Senz, Domingo E-mail: domingo.garcia@upc.edu

    2009-04-20

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). Although several scenarios have been proposed and explored by means of one, two, and three-dimensional simulations, the key point still is the understanding of the conditions under which a stable detonation can form in a destabilized WD. One of the possibilities that have been invoked is that an inefficient deflagration leads to the pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock around a carbon-oxygen rich core. The accretion shock confines the core and transforms kinetic energy from the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work we explore the robustness of the detonation ignition for different PRD models characterized by the amount of mass burned during the deflagration phase, M {sub defl}. The evolution of the WD up to the formation of the accretion shock has been followed with a three-dimensional hydrodynamical code with nuclear reactions turned off. We found that detonation conditions are achieved for a wide range of M {sub defl}. However, if the nuclear energy released during the deflagration phase is close to the WD binding energy ({approx}0.46 x 10{sup 51} erg {yields} M {sub defl} {approx} 0.30 M {sub sun}) the accretion shock cannot heat and confine the core efficiently and detonation conditions are not robustly achieved.

  6. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction

  7. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a

  8. Proton radiography of PBX 9502 detonation shock dynamics confinement sandwich test

    SciTech Connect

    Aslam, Tariq D; Jackson, Scott I; Morris, John S

    2009-01-01

    Recent results utilizing proton radiography (P-Rad) during the detonation of the high explosive PBX 9502 are presented. Specifically, the effects of confinement of the detonation are examined in the LANL detonation confinement sandwich geometry. The resulting detonation velocity and detonation shock shape are measured. In addition, proton radiography allows one to image the reflected shocks through the detonation products. Comparisons are made with detonation shock dynamics (DSD) and reactive flow models for the lead detonation shock and detonation velocity. In addition, predictions of reflected shocks are made with the reactive flow models.

  9. Development of a laser ignited all secondary explosive DDT detonator

    SciTech Connect

    Woods, C.M.; Spangler, E.M.; Beckman, T.M.; Kramer, D.P.

    1992-09-01

    A hermetic, stand alone, laser-ignited deflagration-to-detonation transition (DDT) detonator has been developed. The detonator uses the secondary explosive HMX (cyclotetramethylenetetranitramine) and was originally developed for use with the US Navy`s Laser Initiated Transfer Energy subsystem (LITES). The design of the new detonator allows for its use with a variety of laser fire sets. A high density blend 6f 830 cm2/g HMX with 3% carbon black by weight was used for the ignition charge. Deflagration-to-detonation transition was achieved with a transition charge of undoped 830 cm2/g HMX. Using a 12-ms ND-YAG laser pulse coupled to the detonator via a 1-mm diameter optical fiber, the ignition threshold was determined to be approximately 30 mJ. Full detonating outputs were demonstrated by function testing in Navy detonation sensitivity fittings. Finally, the detonator was tested in several configurations with shielded mild detonating chord (SNMC) endrips to determine its capability for lighting transfer lines.

  10. Numerical simulation of spinning detonation in circular section channels

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Manuylovich, I. S.; Markov, V. V.

    2016-06-01

    Numerical simulation of three-dimensional structures of gas detonation in circular section channels that emerge due to the instability when the one-dimensional flow is initiated by energy supply at the closed end of the channel is performed. It is found that in channels with a large diameter, an irregular three-dimensional cellular detonation structure is formed. Furthermore, it is found that in channels with a small diameter circular section, the initially plane detonation wave is spontaneously transformed into a spinning detonation wave, while passing through four phases. A critical value of the channel diameter that divides the regimes with the three-dimensional cellular detonation and spinning detonation is determined. The stability of the spinning detonation wave under perturbations occurring when the wave passes into a channel with a greater (a smaller) diameter is investigated. It is found that the spin is preserved if the diameter of the next channel (into which the wave passes) is smaller (respectively, greater) than a certain critical value. The computations were performed on the Lomonosov supercomputer using from 0.1 to 10 billions of computational cells. All the computations of the cellular and spinning detonation were performed in the whole long three-dimensional channel (up to 1 m long) rather than only in its part containing the detonation wave; this made it possible to adequately simulate and investigate the features of the transformation of the detonation structure in the process of its propagation.

  11. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  12. Cable Discharge System for fundamental detonator studies

    NASA Technical Reports Server (NTRS)

    Peevy, Gregg R.; Barnhart, Steven G.; Brigham, William P.

    1994-01-01

    Sandia National Laboratories has recently completed the modification and installation of a cable discharge system (CDS) which will be used to study the physics of exploding bridgewire (EBW) detonators and exploding foil initiators (EFI or slapper). Of primary interest are the burst characteristics of these devices when subjected to the constant current pulse delivered by this system. The burst process involves the heating of the bridge material to a conductive plasma and is essential in describing the electrical properties of the bridgewire foil for use in diagnostics or computer models. The CDS described herein is capable of delivering up to an 8000 A pulse of 3 micron duration. Experiments conducted with the CDS to characterize the EBW and EFI burst behavior are also described. In addition, the CDS simultaneous VISAR capability permits updating the EFI electrical Gurney analysis parameters used in our computer simulation codes. Examples of CDS generated data for a typical EFI and EBW detonator are provided.

  13. Supra-Pressure Detonation of Aluminized Explosive

    NASA Astrophysics Data System (ADS)

    Brown, Ronald; Karosich, B.; Gamble, J.; Stork, J.; Biesterveld, A.; Moore, T.; Sinibaldi, J.; Walpole, M.; Lindfors, A.; Jackson, K.; Koontz, R.; Thompson, D.

    2007-06-01

    Results suggest that there is a continuum of reactions induced behind a supra-pressure convergent shock front in explosive cores of coaxial charges. The pressures in convergent fronts continually increase at an increasing rate from the circumference to the charge axis. Furthermore the unreacted explosive enveloped within the front is pre-pressurized at Von Neumann states much greater than from divergent detonation. For the case where the initiating sleeve detonates at constant velocity, the convergent front in the core moves at comparable velocity, suggesting a nearly common Rayleigh line behavior along the front. The sustained chemistry across the front, however, differs along the radii because of the pressure-dependent equilibria. The velocity of a sustained front in a PBXN-111 core circumferentially initiated by thin sleeves of either PBXN-110 or PBXN-112 is increased by approximately 40 percent. Measured peak pressure is approximately 600 times greater than that in a divergent front resulting from point initiation.

  14. Detonation in shocked homogeneous high explosives

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.; Souers, P.C.

    1995-11-01

    We have studied shock-induced changes in homogeneous high explosives including nitromethane, tetranitromethane, and single crystals of pentaerythritol tetranitrate (PETN) by using fast time-resolved emission and Raman spectroscopy at a two-stage light-gas gun. The results reveal three distinct steps during which the homogeneous explosives chemically evolve to final detonation products. These are (1) the initiation of shock compressed high explosives after an induction period, (2) thermal explosion of shock-compressed and/or reacting materials, and (3) a decay to a steady-state representing a transition to the detonation of uncompressed high explosives. Based on a gray-body approximation, we have obtained the CJ temperatures: 3800 K for nitromethane, 2950 K for tetranitromethane, and 4100 K for PETN. We compare the data with various thermochemical equilibrium calculations. In this paper we will also show a preliminary result of single-shot time-resolved Raman spectroscopy applied to shock-compressed nitromethane.

  15. Cookoff of non-traditional detonators

    NASA Astrophysics Data System (ADS)

    Zucker, Jonathan; Tappan, Bryce C.; Manner, Virginia W.; Novak, Alan

    2012-03-01

    Significant work has gone into understanding the cookoff behavior of a variety of explosives, primarily for safety and surety reasons. However, current times require similar knowledge on a new suite of explosives that are readily attainable or made, and are easily initiated without expensive firesets or controlled materials. Homemade explosives (HMEs) are simple to synthesize from readily available precursor materials. Two of these HMEs, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) are not only simple to prepare, but have sufficient output and sensitivity to act as primary explosives in an initiation train. Previous work has shown that detonators may be an integral vulnerability in a cookoff scenario. This poster contains the results of cookoff experiments performed on detonators made with TATP and HMTD. We found that the less chemically stable TATP decomposed during heating, while the more chemically stable HMTD acted like a traditional primary explosive, namely reaction violence and time-to-ignition were independent of confinement.

  16. Cookoff of Non-Traditional Detonators

    NASA Astrophysics Data System (ADS)

    Zucker, Jonathan; Tappan, Bryce; Manner, Virginia; Novak, Alan

    2011-06-01

    Significant work has gone into understanding the cookoff behavior of a variety of explosives, primarily for safety and surety reasons. However, current times require similar knowledge on a new suite of explosives that are readily attainable or made, and are easily initiated without expensive firesets or controlled materials. Homemade explosives (HMEs) are simple to synthesize from readily available precursor materials. Two of these HMEs, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) are not only simple to prepare, but have sufficient output and sensitivity to act as primary explosives in an initiation train. Previous work has shown that detonators may be an integral vulnerability in a cookoff scenario. This poster contains the results of cookoff experiments performed on detonators made with TATP and HMTD. We found that the less chemically stable TATP decomposed during heating, while the more chemically stable HMTD acted like a traditional primary explosive, namely reaction violence and time-to-ignition were independent of confinement.

  17. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig

    2005-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich -- von Neumann -- Doring (NEZND) theory and reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes is discussed for nitromethane, HMX, TATB and PETN. Progress in measuring and modeling the complex three-dimensional structural of these detonation waves is also discussed. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  18. Joining of tubes by gas detonation forming

    NASA Astrophysics Data System (ADS)

    Jenkouk, Vahid; Patil, Sandeep; Markert, Bernd

    2016-08-01

    For many applications, such as in structural components, it is required to join two tubes - sometimes with dissimilar material properties. Only few research studies have investigated the joining of tubular metallic components by means of high-velocity forming processes. In this paper, we present the novel process of joining of two tubes by a gas detonation pressure wave. In particular, the joining of a copper and a steel tube is discussed by means of a finite element study and a conducted experiment.

  19. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  20. Characterizing detonator output using dynamic witness plates

    SciTech Connect

    Murphy, Michael John; Adrian, Ronald J

    2009-01-01

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

  1. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels. PMID:26827358

  2. Detonation of Meta-stable Clusters

    SciTech Connect

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  3. Kinetic information from detonation front curvature

    SciTech Connect

    Souers, P. C., LLNL

    1998-06-15

    The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction

  4. Smooth blasting with the electronic delay detonator

    SciTech Connect

    Yamamoto, Masaaki; Ichijo, Toshiyuki; Tanaka, Yoshiharu

    1995-12-31

    The authors utilized electronic detonators (EDs) to investigate the effect of high detonator delay accuracy on overbreak, remaining rock damage, and surface smoothness, in comparison with that of long-period delay detonators (0.25 sec interval) PDs. The experiments were conducted in a deep mine, in a test site region composed of very hard granodiorite with a seismic wave velocity of about 6.0 km/sec and a uniaxial compressive strength, uniaxial tensile strength, and Young`s modulus of 300 MPa, 12 MPa, and 73 GPa, respectively. The blasting design was for a test tunnel excavation of 8 m{sup 2} in cross section, with an advance per round of 2.5 m. Five rounds were performed, each with a large-hole cut and perimeter holes in a 0.4-m spacing charged with 20-mm-diameter water gel explosive to obtain low charge concentration. EDs were used in the holes on the perimeter of the right half, and PDs were used in all other holes. Following each shot, the cross section was measured by laser to determine amount of overbreak and surface smoothness. In situ seismic prospecting was used to estimate the depth of damage in the remaining rock, and the damage was further investigated by boring into both side walls.

  5. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  6. A gasdynamic gun driven by gaseous detonation

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  7. Characterizing Detonator Output Using Dynamic Witness Plates

    NASA Astrophysics Data System (ADS)

    Murphy, Michael J.; Adrian, Ronald J.

    2009-12-01

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

  8. Reaction zone measurements in detonating aluminized explosives

    NASA Astrophysics Data System (ADS)

    Lubyatinsky, S. N.; Loboiko, B. G.

    1996-05-01

    Detonation reaction zone measurements have been made on five RDX-based explosives (60 μm average particle size RDX), containing 6% polymer binder and from 0 to 19% aluminum of different particle size (from 2 μm to 20 μm). A photoelectric technique was employed to record the radiation intensity history of the shock front propagating through chloroform in contact with the charge face. The record was then translated into the explosive/chloroform interface velocity history. In all cases, the Zeldovich-von Neumann-Doering detonation wave structure was observed. Aluminum particle size was found to have no appreciable effect on the reaction zone length, which increases from 0.34 mm to 0.58 mm as aluminum content increases from 0 to 19%. Nevertheless, the reaction zone lengths of the studied explosives are less than that of RDX/TNT 50/50 (0.59 mm), which implies relatively high rate of the reaction between aluminum and RDX detonation products.

  9. Insensitive detonator apparatus for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  10. Numerical simulation of spinning detonation in square tube

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nobuyuki; Asahara, Makoto; Eto, Keitaro; Hayashi, A. Koichi

    2008-09-01

    A single spinning detonation wave propagating in a square tube is simulated three-dimensionally with the detailed chemical reaction mechanism for hydrogen/air mixture proposed by Petersen and Hanson. The spinning detonation is composed of a transverse detonation rotating around the wall normal to the tube axis, triple lines propagating partially out of phase, and a short pressure trail. The formation of an unburned gas pocket behind the detonation front was not observed in the present simulations because the rotating transverse detonation completely consumed the unburned gas. The calculated profiles of instantaneous OH mass fraction have a keystone shape behind the detonation front. The numerical results for the pitch and track angle on the tube wall agree well with the experimental results.

  11. Methods for proving the equivalency of detonator performance

    SciTech Connect

    Munger, Alan C; Akinci, Adrian A; Thomas, Keith A; Clarke, Steve A; Martin, Eric S; Murphy, Michael J

    2009-01-01

    One of the challenges facing engineers is developing newer, safer detonators that are equivalent to devices currently in use. There is no clear consensus on an exact method for drawing equivalence of detonators. This paper summarizes our current efforts to develop diagnostics addressing various aspects of detonator design to better quantify and prove equivalency. We consider various optical techniques to quantify the output pressure and output wave shape. The development of a unique interpretation of streak camera breakouts, known as the apparent center of initiation, will be discussed as a metric for detonation wave shape. Specific examples apply these techniques to the comparison of a new laser-driven detonator with an existing exploding bridgewire (EBW) detonator. Successes and short-comings of the techniques will be discussed.

  12. DSD front models: nonideal explosive detonation in ANFO

    SciTech Connect

    Bdzil, J. B.; Aslam, T. D.; Catanach, R. A.; Hill, L. G.; Short, M.

    2002-01-01

    The DSD method for modeling propagating detonation is based on three elements: (1) a subscale theory of multi-dimensional detonation that treats the detonation as a front whose dynamics depends only on metrics of the front (such as curvature, etc.), (2) high-resolution, direct numerical simulation of detonation using Euler equation models, and (3) physical experiments to characterize multi-dimensional detonation propagation in real explosives and to provide data to calibrate DSD front models. In this paper, we describe our work on elements (1) and (3), develop a DSD calibration for the nonideal explosive ANFO and then demonstrate the utility of the ANFO calibration, with an example 3D detonation propagation calculation.

  13. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  14. Development of Optical Diagnostics to Probe Post-Detonation Processes

    NASA Astrophysics Data System (ADS)

    Pangilinan, G. I.

    2005-07-01

    Recent developments have spurred a need to recognize processes that occur after the detonation of energetic materials. Understanding enhanced explosive effects whereby substantial energy releasing steps happen nanoseconds to milliseconds after a detonation is a critical need. Optical diagnostic methods are promising because they can meet stringent requirements inherent in detonation events. Optical sensors can monitor fast events and can be remotely placed to be immune from the heat and pressure inherent in a detonation. They thus complement electrical gauges currently in use. We have applied time-resolved emission spectroscopy in monitoring the transient chemical processes in several detonating formulations. Gauges using refractive index to measure pressure have also been developed. Optical fibers have also been tremendously useful in determining shock velocities. These measurements of transient chemistry, pressure and particle flow are essential in unraveling these complex post detonation processes. Other optical techniques in development will be discussed. The scope of applications for these gauges and their limitations will be presented.

  15. Heat of detonation, the cylinder test, and performance munitions

    SciTech Connect

    Akst, I.B.

    1989-01-01

    Heats of detonation of CHNO explosives correlate well with copper cylinder test expansion data. The detonation products/calorimetry data can be used to estimate performance in the cylinder test, in munitions, and for new molecules or mixtures of explosives before these are made. Confidence in the accuracy of the performance estimates is presently limited by large deviations of a few materials from the regression predictions; but these same deviations, as in the insensitive explosive DINGU and the low carbon systems, appear to be sources of information useful for detonation and explosives research. The performance correlations are functions more of the detonation products and thermochemical energy than they are of the familiar parameters of detonation pressure and velocity, and the predictions are closer to a regression line on average than are those provided by CJ calculations. The prediction computations are simple but the measurements (detonation calorimetry/products and cylinder experiments) are not. 17 refs., 5 tabs.

  16. BNCP prototype detonator studies using a semiconductor bridge initiator

    SciTech Connect

    Fyfe, D.W.; Fronabarger, J.W.; Bickes, R.W. Jr.

    1994-06-01

    We report on experiments with prototype BNCP detonators incorporating a semiconductor bridge, SCB. We tested two device designs; one for DoD and one for DOE applications. We report tests with the DoD detonator using different firing conditions and two different grain sizes of BNCP. The DOE detonator utilized a 50 {mu}F CDU firing set with a 24 V all-fire condition.

  17. Future Modeling Needs in Pulse Detonation Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    Meade, Brian; Talley, Doug; Mueller, Donn; Tew, Dave; Guidos, Mike; Seymour, Dave

    2001-01-01

    This paper presents a performance model rocket engine design that takes advantage of pulse detonation to generate thrust. The contents include: 1) Introduction to the Pulse Detonation Rocket Engine (PDRE); 2) PDRE modeling issues and options; 3) Discussion of the PDRE Performance Workshop held at Marshall Space Flight Center; and 4) Identify needs involving an open performance model for Pulse Detonation Rocket Engines. This paper is in viewgraph form.

  18. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    SciTech Connect

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Reid, L. B.

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  19. The Detonation Mechanism of the Pulsationally Assisted Gravitationally Confined Detonation Model of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jordan, G. C., IV; Graziani, C.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Weide, K.; Reid, L. B.; Norris, J.; Hudson, R.; Lamb, D. Q.

    2012-11-01

    We describe the detonation mechanism composing the "pulsationally assisted" gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and 56Ni yields conform better to observational values than is the case for the "classical" GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  20. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    SciTech Connect

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.

    2010-01-21

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  1. Safety and performance enhancement circuit for primary explosive detonators

    DOEpatents

    Davis, Ronald W.

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  2. Detonation wave curvature of cast Comp B and PBXN-111

    NASA Astrophysics Data System (ADS)

    Lemar, E. R.; Forbes, J. W.

    1994-07-01

    Detonation wave profiles for cast Comp B and PBXN-111 have been fitted accurately over the entire wave fronts using a series expansion of the natural logarithm of a Bessel function. The fit equation has been used to obtain the angle of the detonation front as a function of position and the radii of curvature used in Wood-Kirkwood zone length calculations. The results obtained from the fit equation agree with results obtained previously for PBXN-111. Since the fit equation gives a functional form for the detonation wave across the whole charge diameter, it can be used to test the results obtained from detonation theories and code calculations.

  3. Molecular-dynamics investigation of the desensitization of detonable material

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  4. Detonation shock dynamics calibration for non-ideal HE: ANFO

    SciTech Connect

    Short, Mark; Salyer, Terry R; Aslam, Tariq D; Kiyanda, Charles B; Morris, John S; Zimmerley, Tony

    2009-01-01

    Linear D{sub n}-{kappa} detonation shock dynamics (DSD) filling forms are obtained for four ammonium nitrate-fuel oil (ANFO) mixtures involving variations in the ammonium nitrate prill properties and ANFO stoichiometries. The detonation of ammonium nitrate-fuel oil (ANFO) mixtures is considered to be highly nonideal involving long reaction zones ({approx} several cms), low detonation energies and large failure diameters ({approx} 10s-100s cms). A number of experimental programs have been undertaken to understand ANFO detonation properties as a function of the AN properties [1]-[7]. Given the highly heterogeneous nature of ANFO mixtures (typical high explosive (HE) grade AN prills are porous with a range of diameters) a predictive reactive flow simulation of ANFO detonation will present significant challenges. At Los Alamos, a simulation capability has been developed for predicting the propagation of detonation in non-ideal HE and the work conducted on surrounding materials via a combination of a detonation shock dynamics (DSD) approach and a modified programmed burn method known as the pseudo-reaction-zone (or PRZ) method that accounts for the long detonation reaction zone. In the following, linear D{sub n}-{kappa} DSD fitting forms are obtained for four ammonium nitrate-fuel oil mixtures involving variation in the ammonium nitrate prill properties and ANFO stoichiometries. A detonation shock dynamics calibration for ANFO consisting of regular porous HE grade AN in a 94/6 wt.% AN to FO mix has been obtained in [7].

  5. Detonation Shock Dynamics Calibration for Non-Ideal HE: ANFO

    NASA Astrophysics Data System (ADS)

    Short, Mark; Salyer, Terry

    2009-06-01

    The detonation of ammonium nitrate (AN) and fuel-oil (FO) mixtures (ANFO) is significantly influenced by the properties of the AN (porosity, particle size, coating) and fuel-oil stoichiometry. We report on a new series of rate-stick experiments in cardboard confinement that highlight detonation front speed and curvature dependence on AN/FO stoichiometry and AN particle properties. Standard detonation velocity-curvature calibrations to the experimental data will be presented, as well as higher-order time-dependent detonation shock dynamics calibrations.

  6. A library of prompt detonation reaction zone data

    SciTech Connect

    Souers, P. C., LLNL

    1998-06-01

    Tables are given listing literature data that allows calculation of sonic reaction zones at or near steady-state for promptly detonating explosive cylinders. The data covers homogeneous, heterogeneous, composite, inorganic and binary explosives and allows comparison across the entire explosive field. Table 1 lists detonation front curvatures. Table 2 lists Size Effect data, i.e. the change of detonation velocity with cylinder radius. Table 3 lists failure radii and detonation velocities. Table 4 lists explosive compositions. A total of 51 references dating back into the 1950`s are given. Calculated reaction zones, radii of curvature and growth rate coefficients are listed.

  7. Experimental study of the detonation of technical grade ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Presles, Henri-Noël; Vidal, Pierre; Khasainov, Boris

    2009-11-01

    The detonation of technical grade ammonium nitrate at the density ρ=0.666 g/cm confined in PVC and steel tubes was experimentally studied. The results show that the detonation is self-sustained and steady in steel tubes with diameter as small as 12 mm. Critical detonation diameter lies between 8 and 12 mm in 2 mm thick steel tubes and between 55 and 81 mm in PVC tubes. These values testify a strong detonation sensitivity of this product. To cite this article: H.-N. Presles et al., C. R. Mecanique 337 (2009).

  8. The influence of detonation cell size and regularity on the propagation of gaseous detonations in granular materials

    NASA Astrophysics Data System (ADS)

    Slungaard, T.; Engebretsen, T.; Sønju, O. K.

    This paper presents results from an experimental study of transmission of gaseous detonation waves through various granular filters. Spherical glass beads of 4 and 8 mm diameter and crushed rock of 7.5 mm volume averaged diameter were used as filter material. Varying the initial pressure of the detonating gas mixture controlled the detonation cell size. Dilution with argon was used to vary the detonation cell regularity. The complete range from almost no detonation velocity deficit to complete extinction of the combustion wave was observed. The existing correlation for gaseous detonation velocity deficit V/VCJ = [1-0.35 (d_ c/dps)] +/- 0.1 where dc is the critical diameter for the gaseous detonation and dps is the pore size, is found to be applicable for both smooth spherical particles and irregular crushed rock when considering irregular detonation structures. Soot films and pressure measurements show that as the detonation cell size is increased, reinitiation of a reanular filter until it finally no longer occurs at V/VCJ ~ 0.4--0.45. Complete extinction of the combustion wave occurs at V/VCJ ~ 0.25--0.3. These two limits appear to be about the same for irregular and regular detonation cell structures. For irregular structures without argon dilution, dc/dps ~ 50 can be found for detonation wave failure, and dc/dps ~ 100 can be found for complete extinction of the combustion wave. For argon dilution these limits are changed to dc/dps ~ 10 and dc/dps ~ 40, respectively. The data are a bit scarce as a basis for proposing a new correlation for regular structures, but as a first approximation V/VCJ =[0.8--0.35log(dc/dps)] +/- 0.1 is suggested for regular structures. The detonation or combustion wave is found to approach a constant velocity in the granular filter if not extinguished.

  9. Discrete approximations of detonation flows with structured detonation reaction zones by discontinuous front models: A program burn algorithm based on detonation shock dynamics

    SciTech Connect

    Bdzil, J.B.; Jackson, T.L.; Stewart, D.S.

    1999-02-02

    In the design of explosive systems the generic problem that one must consider is the propagation of a well-developed detonation wave sweeping through an explosive charge with a complex shape. At a given instant of time the lead detonation shock is a surface that occupies a region of the explosive and has a dimension that is characteristic of the explosive device, typically on the scale of meters. The detonation shock is powered by a detonation reaction zone, sitting immediately behind the shock, which is on the scale of 1 millimeter or less. Thus, the ratio of the reaction zone thickness to the device dimension is of the order of 1/1,000 or less. This scale disparity can lead to great difficulties in computing three-dimensional detonation dynamics. An attack on the dilemma for the computation of detonation systems has lead to the invention of sub-scale models for a propagating detonation front that they refer to herein as program burn models. The program burn model seeks not to resolve the fine scale of the reaction zone in the sense of a DNS simulation. The goal of a program burn simulation is to resolve the hydrodynamics in the inert product gases on a grid much coarser than that required to resolve a physical reaction zone. The authors first show that traditional program burn algorithms for detonation hydrocodes used for explosive design are inconsistent and yield incorrect shock dynamic behavior. To overcome these inconsistencies, they are developing a new class of program burn models based on detonation shock dynamic (DSD) theory. It is hoped that this new class will yield a consistent and robust algorithm which reflects the correct shock dynamic behavior.

  10. The delayed-detonation model of Type Ia supernovae. 2: The detonation phase

    NASA Technical Reports Server (NTRS)

    Arnett, David; Livne, Eli

    1994-01-01

    The investigation, by use of two-dimensional numerical hydrodynamics simulations, of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is continued. Previously we found that the deflagration is insufficient to unbind the star. Expansion shuts off the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. The burning was allowed to develop into a detonation in these nonspherical models. The detonation grows toward spherical symmetry at late times. At these densities (rho approx. 10(exp 7) to 10(exp 8) g cm(exp -3)), either Ni-56 or nuclei of the Si-Ca group are the dominant products of the burning. The bulk yields are sensitive to the density of the star when the transition to detonation occurs. The relevance of the abundances, velocities, mixing, and total energy release to the theory and interpretation of Type Ia supernovae is discussed.

  11. A flash vaporization system for detonation of hydrocarbon fuels in a pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Tucker, Kelly Colin

    Current research by both the US Air Force and Navy is concentrating on obtaining detonations in a pulse detonation engine (PDE) with low vapor pressure, kerosene based jet fuels. These fuels, however, have a low vapor pressure and the performance of a liquid hydrocarbon fueled PDE is significantly hindered by the presence of fuel droplets. A high pressure, fuel flash vaporization system (FVS) has been designed and built to reduce and eliminate the time required to evaporate the fuel droplets. Four fuels are tested: n-heptane, isooctane, aviation gasoline, and JP-8. The fuels vary in volatility and octane number and present a clear picture on the benefits of flash vaporization. Results show the FVS quickly provided a detonable mixture for all of the fuels tested without coking or clogging the fuel lines. Combustion results validated the model used to predict the fuel and air temperatures required to achieve gaseous mixtures with each fuel. The most significant achievement of the research was the detonation of flash vaporized JP-8 and air. The results show that the flash vaporized JP-8 used 20 percent less fuel to ignite the fuel air mixture twice as fast (8 ms from 16 ms) when compared to the unheated JP-8 combustion data. Likewise, the FVS has been validated as a reliable method to create the droplet free mixtures required for liquid hydrocarbon fueled PDEs.

  12. Optical properties of detonation nanodiamond hydrosols

    NASA Astrophysics Data System (ADS)

    Aleksenskii, A. E.; Vul', A. Ya.; Konyakhin, S. V.; Reich, K. V.; Sharonova, L. V.; Eidel'man, E. D.

    2012-03-01

    Studies of the optical properties of hydrosols of 4-nm detonation nanodiamond particles performed in the 0.2-1.1 μm range have revealed a novel effect, a strong increase of absorption at the edges of the spectral range, and provided its explanation in terms of absorption of radiation by the dimer chains (the so-called Pandey chains) fixed on the surface of a nanodiamond particle. The effect of particle size distribution in a hydrosol on the relative intensity of Rayleigh scattering and light absorption by nanodiamond particles in this range has been analyzed.

  13. SN 2012hn: a tidal detonation event?

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas

    2013-09-01

    We propose for a 30 kilosecond observation of SN 2102hn, a Ca-rich gap transient. These enigmatic objects, with properties intermediate between those of classical novae and Type Ia supernovae, can be well-explained by tidal detonations of low mass white dwarfs by intermediate mass black holes. In such a case, fall-back accretion of the tidal debris would power an X-ray source for which we propose to search. Because supermassive black holes will swallow white dwarfs whole, a successful outcome to this proposal would both explain the Ca-rich gap transients *and* establish the existence of intermediate mass black holes.

  14. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  15. Impact waves and detonation. Part I

    NASA Technical Reports Server (NTRS)

    Becker, R

    1929-01-01

    Among the numerous thermodynamic and kinetic problems that have arisen in the application of the gaseous explosive reaction as a source of power in the internal combustion engine, the problem of the mode or way by which the transformation proceeds and the rate at which the heat energy is delivered to the working fluid became very early in the engine's development a problem of prime importance. The work of Becker here given is a notable extension of earlier investigations, because it covers the entire range of the explosive reaction in gases - normal detonation and burning.

  16. Detonation Reaction Zones in Condensed Explosives

    SciTech Connect

    Tarver, C M

    2005-07-14

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich--von Neumann--Doring (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes is discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  17. Shock-to-Detonation Transition simulations

    SciTech Connect

    Menikoff, Ralph

    2015-07-14

    Shock-to-detonation transition (SDT) experiments with embedded velocity gauges provide data that can be used for both calibration and validation of high explosive (HE) burn models. Typically, a series of experiments is performed for each HE in which the initial shock pressure is varied. Here we describe a methodology for automating a series of SDT simulations and comparing numerical tracer particle velocities with the experimental gauge data. Illustrative examples are shown for PBX 9502 using the HE models implemented in the xRage ASC code at LANL.

  18. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fire, explosion, and detonation... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single... oxygen analyzer that samples the vapor concentration continuously at a point not more than 6 meters...

  19. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fire, explosion, and detonation... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single... oxygen analyzer that samples the vapor concentration continuously at a point not more than 6 meters...

  20. Gas-phase detonation propagation in mixture composition gradients.

    PubMed

    Kessler, D A; Gamezo, V N; Oran, E S

    2012-02-13

    The propagation of detonations through several fuel-air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon-air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient. PMID:22213660

  1. Modelling of detonation cellular structure in aluminium suspensions

    NASA Astrophysics Data System (ADS)

    Briand, A.; Veyssiere, B.; Khasainov, B. A.

    2010-12-01

    Heterogeneous detonations involving aluminium suspensions have been studied for many years for industrial safety policies, and for military and propulsion applications. Owing to their weak detonability and to the lack of available experimental results on the detonation cellular structure, numerical simulations provide a convenient way to improve the knowledge of such detonations. One major difficulty arising in numerical study of heterogeneous detonations involving suspensions of aluminium particles in oxidizing atmospheres is the modelling of aluminium combustion. Our previous two-step model provided results on the effect on the detonation cellular structure of particle diameter and characteristic chemical lengths. In this study, a hybrid model is incorporated in the numerical code EFAE, combining both kinetic and diffusion regimes in parallel. This more realistic model provides good agreement with the previous two-step model and confirms the correlations found between the detonation cell width, and particle diameter and characteristic lengths. Moreover, the linear dependence found between the detonation cell width and the induction length remains valid with the hybrid model.

  2. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2002-01-01

    A pulse detonation engine (PDE) uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Lack of mixture uniformity is commonly ignored when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using the SPARK two-dimensional Navier-Stokes CFD code with 7-step H2/air reaction mechanism. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios (phi), stoichiometric (phi = 1.00), fuel lean (phi = 0.90), and fuel rich (phi = 1.10), were studied. All mixtures were detonable throughout the detonation tube. It was found that various mixtures representing the same test section equivalence ratio had specific impulses within 1 percent of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance.

  3. Computation of a diverging Comp-B detonation

    SciTech Connect

    Bukiet, B.G.

    1989-01-01

    The expansion which occurs in diverging detonations weakens the wave and yields pressures and densities below those occurring in planar geometry. We study the problem of a spherically expanding detonation of Comp-B. The effect of varying the order of reaction as well as the rate law parameters (using an Arrhenius burn model) is studied. 14 refs., 3 figs.

  4. Three dimensional hemispherical test development to evaluate detonation wave breakout

    NASA Astrophysics Data System (ADS)

    Francois, E. G.; Morris, J. S.; Lieber, M.

    2014-05-01

    The Onionskin test has been the standard test to evaluate detonation wave breakout over a hemispherical surface for decades. It has been an effective test used in a variety of applications to qualify main charge materials, evaluate different boosters, and compare different detonators. It is not without its shortfalls however. It only images a small portion of the explosive and requires very precise alignment and camera requirements to make sense of the results. Asymmetry in explosive behavior cannot be pinpointed or evaluated effectively. We have developed a new diagnostic using fiber optics covering the surface of the explosive to yield a 3D representation of the detonation wave behavior. Precise timing mapping of the detonation over the hemispherical surface is generated which can be converted to detonation wave breakout behavior using Huygens' wave reconstruction. This report will include the results of a recent suite of tests on PBX 9501, and discussion of how the test was developed for this explosive and contrasting previous work on PBX 9502. The results of these tests will describe the effects on detonation wave breakout symmetry when Sylgard 184 is placed between the detonator and booster. The effects on symmetry and timing when the Sylgard gap thickness is increased and the detonator is canted will be shown.

  5. Detonation wave velocity and curvature of brass encased PBXN-111

    SciTech Connect

    Forbes, J.W.; Lemar, E.R.

    1996-05-01

    Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees. {copyright} {ital 1996 American Institute of Physics.}

  6. Detonation engine fed by acetylene-oxygen mixture

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Phylippov, Yu. G.; Koo, Jaye

    2014-11-01

    The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman-Jouguet detonation parameters.

  7. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  8. On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Thomas, Keith A.; Clarke, S.; Mallett, H.; Martin, E.; Martinez, M.; Munger, A.; Saenz, Juan

    2006-07-01

    Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the deflagration-to-detonation (DDT) process in both of these devices. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and the modeling issues required to describe the test data will be discussed.

  9. Measuring In-Situ Mdf Velocity Of Detonation

    DOEpatents

    Horine, Frank M.; James, Jr., Forrest B.

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  10. Light detonation wave in a cylindrical Z-pinch

    NASA Astrophysics Data System (ADS)

    Yusupaliev, U.; Sysoev, N. N.; Shuteev, S. A.; Elenskii, V. G.

    2015-09-01

    A secondary compression wave previously observed by other researchers in a cylindrical Z-pinch has been identified in this work as a light detonation wave. It appears on the inner surface of a discharge chamber under the action of the intense ultraviolet radiation from a plasma pinch at the stage of its maximum compression. The condition of the light detonation wave has been determined experimentally. The dependence of its Mach number on a generalized dimensionless variable has been determined taking into account the conservation laws for the light detonation wave including the pressure of the gas, expenses on the formation of the surface plasma, and the energy of ionization of the gas involved in the wave. An analogy with the laser-supported detonation wave created by intense laser radiation has been revealed. The indicated dependence is within the error of measurement in agreement with the experimental data for light detonation waves created by both methods.

  11. Effect of prill structure on detonation performance of ANFO

    SciTech Connect

    Salyer, Terry R; Short, Mark; Kiyanda, Charles B; Morris, John S; Zimmerly, Tony

    2010-01-01

    While the effects of charge diameter, fuel mix ratio, and temperature on ANFO detonation performance are substantial, the effects of prill type are considerable as well as tailorable. Engineered AN prills provide a means to improve overall performance, primarily by changing the material microstructure through the addition of features designed to enhance hot spot action. To examine the effects of prill type (along with fuel mix ratio and charge diameter) on detonation performance, a series of precision, large-scale, ANFO front-curvature rate-stick tests was performed. Each shot used standard No. 2 diesel for the fuel oil and was essentially unconfined with cardboard confinement. Detonation velocities and front curvatures were measured while actively maintaining consistent shot temperatures. Based on the experimental results, DSD calibrations were performed to model the detonation performance over a range of conditions, and the overall effects of prill microstructure were examined and correlated with detonation performance.

  12. Equations of state for explosive detonation products: The PANDA model

    SciTech Connect

    Kerley, G.I.

    1994-05-01

    This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition of the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.

  13. Detonation characteristics of dimethyl ether and ethanol-air mixtures

    NASA Astrophysics Data System (ADS)

    Diakow, P.; Cross, M.; Ciccarelli, G.

    2015-05-01

    The detonation cell structure in dimethyl ether vapor and ethanol vapor-air mixtures was measured at atmospheric pressure and initial temperatures in the range of 293-373 K. Tests were carried out in a 6.2-m-long, 10-cm inner diameter tube. For more reactive mixtures, a series of orifice plates were used to promote deflagration-to-detonation transition in the first half of the tube. For less reactive mixtures prompt detonation initiation was achieved with an acetylene-oxygen driver. The soot foil technique was used to capture the detonation cell structure. The measured cell size was compared to the calculated one-dimensional detonation reaction zone length. For fuel-rich dimethyl ether mixtures the calculated reaction zone is highlighted by a temperature gradient profile with two maxima, i.e., double heat release. The detonation cell structure was interpreted as having two characteristic sizes over the full range of mixture compositions. For mixtures at the detonation propagation limits the large cellular structure approached a single-head spin, and the smaller cells approached the size of the tube diameter. There is little evidence to support the idea that the two cell sizes observed on the foils are related to the double heat release predicted for the rich mixtures. There was very little influence of initial temperature on the cell size over the temperature range investigated. A double heat release zone was not predicted for ethanol-air detonations. The detonation cell size for stoichiometric ethanol-air was found to be similar to the size of the small cells for dimethyl ether. The measured cell size for ethanol-air did not vary much with composition in the range of 30-40 mm. For mixtures near stoichiometric it was difficult to discern multiple cell sizes. However, near the detonation limits there was strong evidence of a larger cell structure similar to that observed in dimethyl ether air mixtures.

  14. On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves

    NASA Astrophysics Data System (ADS)

    Wang, C. J.; Guo, C. M.

    2014-09-01

    The two-dimensional, time-dependent and reactive Navier-Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from to . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.

  15. Unique passive diagnostic for slapper detonators

    NASA Technical Reports Server (NTRS)

    Brigham, William P.; Schwartz, John J.

    1994-01-01

    The objective of this study was to find a material and configuration that could reliably detect the proper functioning of a slapper (non-explosive) detonator. Because of the small size of the slapper geometry (on the order of a 15 mils), most diagnostic techniques are not suitable. This program has the additional requirements that the device would be used on centrifuge so that it could not use any electrical power or output signals. This required that the diagnostic be completely passive. The paper describes the three facets of the development effort: complete characterization of the slapper using VISAR measurements, selection of the diagnostic material and configuration, and testing of the prototype designs. The VISAR testing required that use of a special optical probe to allow the laser light to reach both bridges of the dual-slapper detonator. Results are given in the form of flyer velocity as a function of the initiating charge voltage level. The selected diagnostic design functions in a manner similar to a dent block except that the impact of the Kapton disk from a properly-functioning slapper causes a fracture pattern. A quick visual inspection is all that is needed to determine if the flyer velocity exceeded the threshold value. Sub-threshold velocities produce a substantially different appearance.

  16. Legal considerations in a nuclear detonation.

    PubMed

    Sherman, Susan E

    2011-03-01

    This article summarizes public health legal issues that need to be considered in preparing for and responding to nuclear detonation. Laws at the federal, state, territorial, local, tribal, and community levels can have a significant impact on the response to an emergency involving a nuclear detonation and the allocation of scarce resources for affected populations. An understanding of the breadth of these laws, the application of federal, state, and local law, and how each may change in an emergency, is critical to an effective response. Laws can vary from 1 geographic area to the next and may vary in an emergency, affording waivers or other extraordinary actions under federal, state, or local emergency powers. Public health legal requirements that are commonly of concern and should be examined for flexibility, reciprocity, and emergency exceptions include liability protections for providers; licensing and credentialing of providers; consent and privacy protections for patients; occupational safety and employment protections for providers; procedures for obtaining and distributing medical countermeasures and supplies; property use, condemnation, and protection; restrictions on movement of individuals in an emergency area; law enforcement; and reimbursement for care. PMID:21402813

  17. Numerical solution of under-resolved detonations

    NASA Astrophysics Data System (ADS)

    Tosatto, Luca; Vigevano, Luigi

    2008-02-01

    A new fractional-step method is proposed for the numerical solution of high speed reacting flows, where the chemical time scales are often much smaller than the fluid dynamical time scales. When the problem is stiff, because of insufficient spatial/temporal resolution, a well-known spurious numerical phenomenon occurs in standard finite volume schemes: the incorrect calculation of the speed of propagation of discontinuities. The new method is first illustrated considering a one-dimensional scalar hyperbolic advection/reaction equation with stiff source term, which may be considered as a model problem to under-resolved detonations. During the reaction step, the proposed scheme replaces the cell average representation with a two-value reconstruction, which allows us to locate the discontinuity position inside the cell during the computation of the source term. This results in the correct propagation of discontinuities even in the stiff case. The method is proved to be second-order accurate for smooth solutions of scalar equations and is applied successfully to the solution of the one-dimensional reactive Euler equations for Chapman-Jouguet detonations.

  18. Unique passive diagnostic for slapper detonators

    SciTech Connect

    Brigham, W.P.; Schwartz, J.J.

    1994-02-01

    The objective of this study was to find a material and configuration that could reliably detect the proper functioning of a current slapper detonator. Because of the small size of the slapper geometry (on the order of a 15 mils), most diagnostic techniques are not suitable. This program has the additional requirement that the device could not use any electrical power or output signals. This required that the diagnostic be completely passive. The paper describes the three facets of the development effort: complete characterization of the slapper using VISAR measurements, selection of the diagnostic material and configuration, and testing of the prototype designs. The VISAR testing required the use of a special optical probe to allow the laser light to reach both bridges of the slapper detonator. Results are given in the form of flyer velocity as a function of the initiating voltage level. The selected diagnostic design functions in a manner similar to a dent block except that the impact of the Kapton disk causes a fracture pattern. A quick visual inspection is all that is needed to determine if the flyer velocity exceeded the threshold value. Sub-threshold velocities produce a substantially different appearance.

  19. The dynamics of unsteady detonation in ozone

    SciTech Connect

    Aslam, Tariq D; Powers, Joseph M

    2008-01-01

    An ultra-fine, sub-micron discrete grid is used to capture the unsteady dynamics of a one-dimensional detonation in an inviscid O - O{sub 2} - O{sub 3} mixture. The ultra-fine grid is necessary to capture the length scales revealed by a complementary analysis of the steady detonation wave structure. For the unsteady calculations, shock-fitting coupled with a high order spatio-temporal discretization scheme combine to render numerical corruption negligible. As a result, mathematically verified solutions for a mixture initially of all O{sub 3} at one atmosphere and 298.15 K have been obtained; the solutions are converging at a rate much faster than the sub-first order convergence rate of all shock-capturing schemes. Additionally, the model has been validated against limited experimental data. Transient calculations show that strongly overdriven waves are stable and moderately overdriven waves unstable. New limit cycle behavior is revealed, and the first high resolution bifurcation diagram for etonation with detailed kinetics is found.

  20. Numerical Model of Detonation for Insensitive HE

    NASA Astrophysics Data System (ADS)

    Klimenko, Vladimir

    2011-06-01

    Most of modern munitions are filled by insensitive HE. However, mechanism of initiation of these HE is still unknown. IHE have not any pores and, therefore, hot spot mechanism does not work here. What is a mechanism working in this case? We have used 3D hydrocode to study process of shock wave loading of mixture of HMX grains with different binders (HMX/binder=88/12) and have determined formation of surface layers with increased plastic deformation. According to the dislocation mechanism of detonation (V. Klimenko, I. Kozyreva, J. Energetic Materials, 2010, v. 28, pp. 249-262) plastic deformation generates definite concentration of radicals. Surface layers have also increased temperature due to viscous work. So, these activated layers have increased temperature and number of radicals in comparison with values inside grains. Kinetic calculation has shown fast decomposition of these layers. As a result, the activated layer is ignited and this gives beginning of grain burning process. The developed two-stages mechanism has been incorporated into 2D hydrocode. The developed numerical model demonstrates high accuracy in simulation of detonation processes in IHE (in particular, PBXN-110 and B2241).

  1. Legal considerations in a nuclear detonation.

    PubMed

    Sherman, Susan E

    2011-03-01

    This article summarizes public health legal issues that need to be considered in preparing for and responding to nuclear detonation. Laws at the federal, state, territorial, local, tribal, and community levels can have a significant impact on the response to an emergency involving a nuclear detonation and the allocation of scarce resources for affected populations. An understanding of the breadth of these laws, the application of federal, state, and local law, and how each may change in an emergency, is critical to an effective response. Laws can vary from 1 geographic area to the next and may vary in an emergency, affording waivers or other extraordinary actions under federal, state, or local emergency powers. Public health legal requirements that are commonly of concern and should be examined for flexibility, reciprocity, and emergency exceptions include liability protections for providers; licensing and credentialing of providers; consent and privacy protections for patients; occupational safety and employment protections for providers; procedures for obtaining and distributing medical countermeasures and supplies; property use, condemnation, and protection; restrictions on movement of individuals in an emergency area; law enforcement; and reimbursement for care.

  2. Magnetohydrodynamic Augmentation of Pulse Detonation Engines

    NASA Astrophysics Data System (ADS)

    Zeineh, Christopher; Cole, Lord; Karagozian, Ann

    2010-11-01

    Pulse detonation engines (PDEs) are the focus of increasing attention due to their potentially superior performance over constant pressure engines. Yet due to its unsteady chamber pressure, the PDE system will either be over- or under-expanded for the majority of the cycle, with energy being used without maximum gain. Magnetohydrodynamic (MHD) augmentation offers the opportunity to extract energy and apply it to a separate stream where the net thrust will be increased. With MHD augmentation, such as in the Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) concept, energy could be extracted from the high speed portion of the system, e.g., through a generator in the nozzle, and then applied directly to another flow or portion of the flow as a body force. The present high resolution numerical simulations explore the flow evolution and potential performance of such propulsion systems. An additional magnetic piston applying energy in the PDE chamber can also act in concert with the PDRIME for separate thrust augmentation. Results show that MHD can indeed influence the flow and pressure fields in a beneficial way in these configurations, with potential performance gains under a variety of flight and operating conditions. There are some challenges associated with achieving these gains, however, suggesting further optimization is required.

  3. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1990-01-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  4. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  5. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  6. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  7. Graphene nanosheets produced via controlled detonation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Nepal, Arjun

    We demonstrated that gram quantities of pristine graphene nanosheets (GNs) can be produced via detonation of a hydrocarbon. This one-step and catalyst-free method is eco-friendly and economical for the production of GNs. The hydrocarbons detonated were C2H2, C 2H4, C3H8 and CH4 in the presence of O2. The carbon products obtained from the detonation were analyzed by XRD, TEM, XPS and Raman spectroscopy. Depending upon the ratio of O2 to C2H2, the GNs of size up to ˜ 250 nm, SSA up to ˜ 200 m2/g and yield up to 70% with 2-3 layers' stack have been obtained so far. N2O was determined as a good alternative to O2 as an oxidizer to produce GNs by detonating C2H2 with it. A two-color pyrometer was designed and calibrated to measure the temperature of the detonation of hydrocarbons. The measured detonation temperatures were in between 2700 K and 4300 K. Along with the high detonation temperature, the composition of precursor hydrocarbon was observed to be crucial as well to determine its suitability to detonate with oxidizer to produce GNs. The hydrocarbons C2H2 and C2H4 were determined as the suitable precursors to produce GNs whereas detonation of C3H8 yields mere amorphous carbon soot and CH4 gives no solid carbon while detonated with O2. It has been proposed that the hydrocarbons with C/H≥0.5 are suitable for GNs production by detonation method. Highly oxidized graphene nanosheets (OGNs) were produced by solution-based oxidation of GNs prepared via a controlled detonation of acetylene at O 2/C2H2=0.8. The produced OGNs were about 250 nm in size and hydrophilic in nature. The C/O ratio was dramatically reduced from 49:1 in the pristine GNs to about 1:1 in OGNs, as determined by X-ray photoelectron spectroscopy. This C/O in OGNs is the least ever found in all oxidized graphitic materials that have been reported. Thus, the OGNs produced from the detonated GNs with such high degree of oxidation herein yields a novel and promising material for future applications.

  8. 30 CFR 75.1328 - Damaged or deteriorated explosives and detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detonators. 75.1328 Section 75.1328 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1328 Damaged or deteriorated explosives and detonators. (a) Damaged explosives or detonators...) Damaged detonators shall be shunted, if practicable, either before being removed from the mine or...

  9. 30 CFR 75.1328 - Damaged or deteriorated explosives and detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detonators. 75.1328 Section 75.1328 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1328 Damaged or deteriorated explosives and detonators. (a) Damaged explosives or detonators...) Damaged detonators shall be shunted, if practicable, either before being removed from the mine or...

  10. 30 CFR 75.1328 - Damaged or deteriorated explosives and detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonators. 75.1328 Section 75.1328 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1328 Damaged or deteriorated explosives and detonators. (a) Damaged explosives or detonators...) Damaged detonators shall be shunted, if practicable, either before being removed from the mine or...

  11. 30 CFR 75.1328 - Damaged or deteriorated explosives and detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detonators. 75.1328 Section 75.1328 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1328 Damaged or deteriorated explosives and detonators. (a) Damaged explosives or detonators...) Damaged detonators shall be shunted, if practicable, either before being removed from the mine or...

  12. 30 CFR 75.1328 - Damaged or deteriorated explosives and detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detonators. 75.1328 Section 75.1328 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1328 Damaged or deteriorated explosives and detonators. (a) Damaged explosives or detonators...) Damaged detonators shall be shunted, if practicable, either before being removed from the mine or...

  13. Simplified modeling of transition to detonation in porous energetic materials

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Asay, Blaine W.; Prasad, Kuldeep

    1994-07-01

    A simplified model that can predict the transitions from compaction to detonation and shock to detonation is given with the aim of describing experiments in beds of porous HMX. In the case of compaction to detonation, the energy of early impact generates a slowly moving, convective-reactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined deflagration to detonation transition. A single-phase state variable theory is adopted in contrast to a two-phase axiomatic mixture theory. The ability of the porous material to compact is treated as an endothermic process. Reaction is treated as an exothermic process. The algebraic (Rankine-Hugoniot) steady wave analysis is given for inert compaction waves and steady detonation waves in a piston supported configuration, typical of the experiments carried out in porous HMX. A structure analysis of the steady compaction wave is given. Numerical simulations of deflagration to detonation are carried out for parameters that describe an HMX-like material and compared with the experiments. The simple model predicts the high density plug that is observed in the experiments and suggests that the leading front of the plug is a secondary compaction wave. A shock to detonation transition is also numerically simulated.

  14. Simplified modeling of transition to detonation in porous energetic materials

    SciTech Connect

    Stewart, D.S. ); Asay, B.W. ); Prasad, K. )

    1994-07-01

    A simplified model that can predict the transitions from compaction to detonation and shock to detonation is given with the aim of describing experiments in beds of porous HMX. In the case of compaction to detonation, the energy of early impact generates a slowly moving, convective-reactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined deflagration to detonation transition. A single-phase state variable theory is adopted in contrast to a two-phase axiomatic mixture theory. The ability of the porous material to compact is treated as an endothermic process. Reaction is treated as an exothermic process. The algebraic (Rankine--Hugoniot) steady wave analysis is given for inert compaction waves and steady detonation waves in a piston supported configuration, typical of the experiments carried out in porous HMX. A structure analysis of the steady compaction wave is given. Numerical simulations of deflagration to detonation are carried out for parameters that describe an HMX-like material and compared with the experiments. The simple model predicts the high density plug that is observed in the experiments and suggests that the leading front of the plug is a secondary compaction wave. A shock to detonation transition is also numerically simulated.

  15. Detonation propagation in narrow gaps with various configurations

    NASA Astrophysics Data System (ADS)

    Monwar, M.; Yamamoto, Y.; Ishii, K.; Tsuboi, T.

    2007-08-01

    In general all detonation waves have cellular structure formed by the trajectory of the triple points. This paper aims to investigate experimentally the propagation of detonation in narrow gaps for hydrogen-oxygen-argon mixtures in terms of various gap heights and gap widths. The gap of total length 1500 mm was constructed by three pair of stainless plates, each of them was 500 mm in length, which were inserted in a detonation tube. The gap heights were varied from 1.2 mm to 3.0 mm while the gap widths were varied from 10 mm to 40 mm. Various argon dilution rates were tested in the present experiments to change the size of cellular structure. Attempts have been made by means of reaction front velocity, shock front velocity, and smoked foil to record variations of cellular structure inside the gaps. A combination probe composed of a pressure and an ion probe detected the arrival of the shock and the reaction front individually at one measurement point. Experimental results show that the number of the triple points contained in detonation front decreases with decrease in the gap heights and gap widths, which lead to larger cellular structures. For mixtures with low detonability, cell size is affected by a certain gap width although conversely cell size is almost independent of gap width. From the present result it was found that detonation propagation inside the gaps is strongly governed by the gap height and effects of gap width is dependent on detonability of mixtures.

  16. Optimum Performance of Explosives in a Quasistatic Detonation Cycle

    NASA Astrophysics Data System (ADS)

    Baker, Ernest; Stiel, Leonard

    2015-06-01

    Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmosperic pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT RDX, and aluminized compositions, maximum work effects. were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. As expected, detonation to the C-J point is found to result in the maximum net work in all cases.

  17. Stability Affects of Artificial Viscosity in Detonation Modeling

    SciTech Connect

    Vitello, P; Souers, P C

    2002-06-03

    Accurate multi-dimensional modeling of detonation waves in solid HE materials is a difficult task. To treat applied problems which contain detonation waves one must consider reacting flow with a wide range of length-scales, non-linear equations of state (EOS), and material interfaces at which the detonation wave interacts with other materials. To be useful numerical models of detonation waves must be accurate, stable, and insensitive to details of the modeling such as the mesh spacing, and mesh aspect ratio for multi-dimensional simulations. Studies we have performed show that numerical simulations of detonation waves can be very sensitive to the form of the artificial viscosity term used. The artificial viscosity term is included in our ALE hydrocode to treat shock discontinuities. We show that a monotonic, second order artificial viscosity model derived from an approximate Riemann solver scheme can strongly damp unphysical oscillations in the detonation wave reaction zone, improving the detonation wave boundary wall interaction. These issues are demonstrated in 2D model simulations presented of the 'Bigplate' test. Results using LX-I 7 explosives are compared with numerical simulation results to demonstrate the affects of the artificial viscosity model.

  18. On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Thomas, K.; Saenz, J.

    2005-07-01

    Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the Deflagration-to-Detonation (DDT) process in both of these devices,[1]. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart, [2]. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and predictions against the test data will be discussed. REFS. [1] A. Munger, J. Kennedy, A. Akinci, and K. Thomas, "Dev. of a Laser Detonator" 30th Int. Pyrotechnics Seminar, Fort Collins, CO, (2004). [2] Xu, S. and Stewart, D. S. Deflagration to detonation transition in porous energetic materials: A model study. J. Eng. Math., 31, 143-172 (1997)

  19. Mechanisms for Detonation Initiation in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Gamezo, Vadim N.; Oran, E. S.

    2008-03-01

    We consider possible mechanisms for detonation initiation in an exploding carbon-oxygen white dwarf. According to current models of Type Ia supernovae, the explosion starts as a thermonuclear deflagration, but ends as a detonation. The process of deflagration-to-detonation transition (DDT) is still not well understood, though there are several scenarios that may lead to the detonation initiation. These include mixing between burned and unburned materials, shock-flame interactions, and large-scale pulsations. Theory and simulations of DDT phenomena in terrestrial chemical systems show that DDT often involves formation of reactivity gradients that help to generate strong shocks. The same gradient mechanism may be responsible for the detonation initiation in Type Ia Supernovae, in particular, in the mixing scenario. Detonations can also be ignited when shocks interacting with thermonuclear flames accelerate, or strong shocks allow a direct detonation initiation. We analyze length scales associated with different mechanisms. This work was supported in part by the NASA ATP program (NRA NNH05ZDA001N-AT) and by the Naval Research Laboratory (NRL) through the Office of Naval Research.

  20. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  1. Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Bulla, M.; Sim, S. A.; Kromer, M.; Seitenzahl, I. R.; Fink, M.; Ciaraldi-Schoolmann, F.; Röpke, F. K.; Hillebrandt, W.; Pakmor, R.; Ruiter, A. J.; Taubenberger, S.

    2016-10-01

    Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ˜0.1-0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.

  2. The development of a sonic boom simulator with detonable gases

    NASA Technical Reports Server (NTRS)

    Strugielski, R. T.; Fugelso, L. E.; Holmes, L. B.; Byrne, W. J.

    1971-01-01

    A sonic boom pressure profile was simulated in the far-field by detonation of a methane-oxygen mixture contained in a slender, shaped Mylar envelope. Ideal N-waves were synthesized with peak overpressures from two to five psf and durations of 30 to 75 milliseconds. The detonation of the gas mixture was initiated by a single Primacord strand running the length of balloon. The N-wave producing balloon was synthesized as a composite structure, utilizing experimental pressure profiles obtained from the detonations of slender, axisymmetric balloons with elementary, non-cylindrical shapes.

  3. Effect of Smoked Foil Thickness and Location on Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Chung, K. M.; Wen, C. S.

    Smoked foil has been employed to visualize triple point pattern (or cell width), indicating detonation phenomena. However, the aluminum sheet also corresponds to sudden contraction in a smooth tube. It might induce early trigger on detonation initiation and result in a reduction in deflagration-to-detonation transition (DDT) run-up distance. Test results showed the thickness of aluminum sheet of less than 1.3 mm is required to eliminate the effect of smoked foil. A reduction in Xdtt is observed when the thickness of aluminum sheet increases.

  4. Multiple-cycle Simulation of a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Perkins, H. D.

    2002-01-01

    This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.

  5. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, C. I.

    2003-01-01

    Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.

  6. Geometry-specific scaling of detonation parameters from front curvature

    SciTech Connect

    Jackson, Scott I; Short, Mark

    2011-01-20

    It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

  7. Cellular detonation diffraction in gas-particle mixtures

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Khmel, T. A.; Kratova, Y. V.

    2010-12-01

    Diffraction of cellular heterogeneous detonation out of a channel into open half-space in a mixture of aluminum particles and oxygen is investigated numerically. The flow is found to be very similar to gas detonation diffraction. The detonation weakening behind the step results in combustion front deceleration and decoupling from the leading shock wave. Subsequent re-initiation takes place in a transverse wave. New transverse waves are generated along the expanding front. The computations that were performed show that the critical number of cells is several times less than that for gases. This is confirmed by theoretical estimates based upon the Mitrofanov-Soloukhin approach.

  8. The Physical Effects of Detonation in a Closed Cylindrical Chamber

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1935-01-01

    Detonation in the internal-combustion engine is studied as a physical process. It is shown that detonation is accompanied by pressure waves within the cylinder charge. Sound theory is applied to the calculation of resonant pressure-wave frequencies. Apparatus is described for direct measurement of pressure-wave frequencies. Frequencies determined from two engines of different cylinder sizes are shown to agree with the values calculated from sound theory. An outline of the theoretically possible modes of vibration in a right circular cylinder with flat ends is included. An appendix by John P. Elting gives a method of calculating pressure in the sound wave following detonation.

  9. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  10. Detonation Propagation through Nitromethane Embedded Metal Foam

    NASA Astrophysics Data System (ADS)

    Lieberthal, Brandon; Maines, Warren R.; Stewart, D. Scott

    2015-11-01

    There is considerable interest in developing a better understanding of dynamic behaviors of multicomponent systems. We report results of Eulerian hydrodynamic simulations of shock waves propagating through metal foam at approximately 20% relative density and various porosities using a reactive flow model in the ALE3D software package. We investigate the applied pressure and energy of the shock wave and its effects on the fluid and the inert material interface. By varying pore sizes, as well as metal impedance, we predict the overall effects of heterogeneous material systems at the mesoscale. In addition, we observe a radially expanding blast front in these heterogeneous models and apply the theory of Detonation Shock Dynamics to the convergence behavior of the lead shock.

  11. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  12. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    PubMed

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process. PMID:18536396

  13. Frequency content of current pulses in slapper detonator bridges

    SciTech Connect

    Carpenter, K H

    2006-12-18

    DFT amplitudes are obtained for digital current pulse files. The frequency content of slapper detonator bridge current pulses is obtained. The frequencies are confined well within the passband of the CVR used to sample them.

  14. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    PubMed

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process.

  15. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  16. Numerical simulation of H2/air detonation using unstructured mesh

    NASA Astrophysics Data System (ADS)

    Togashi, Fumiya; Löhner, Rainald; Tsuboi, Nobuyuki

    2009-06-01

    To explore the capability of unstructured mesh to simulate detonation wave propagation phenomena, numerical simulation of H2/air detonation using unstructured mesh was conducted. The unstructured mesh has several adv- antages such as easy mesh adaptation and flexibility to the complicated configurations. To examine the resolution dependency of the unstructured mesh, several simulations varying the mesh size were conducted and compared with a computed result using a structured mesh. The results show that the unstructured mesh solution captures the detailed structure of detonation wave, as well as the structured mesh solution. To capture the detailed detonation cell structure, the unstructured mesh simulations required at least twice, ideally 5times the resolution of structured mesh solution.

  17. Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    This viewgraph presentation provides information on the engine cycle of a pulse detonation rocket engine (PDRE), models for optimizing the performance of a PDRE, and the performance of PDREs in comparison to Solid State Rocket Engines (SSREs).

  18. Jaguar Analyses of Experimental Detonation Values for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard I.; Baker, Ernest L.; Capellos, Christos

    2004-07-01

    Comparisons of JAGUAR C-J velocities with experimental detonation values for a number of explosives indicate that only slight, if any, aluminum reaction occurs at the detonation front even if small or sub-micron particles are utilized. For sub-micron particles, it is important to account for the presence of aluminum oxide in the explosive formulation. The agreement with the calculated JAGUAR values for zero aluminum reaction is within 2% for most experimental detonation velocities considered. Comparisons of experimental cylinder velocities by JAGUAR analytical procedures indicate that with small aluminum particles substantial aluminum reaction occurs at low values of the radial expansion, even though little reaction is observed at the detonation front.

  19. Non-ideal detonation behaviour of PBX 9502

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikos

    2009-06-01

    Numerical experiments are performed investigating the non-ideal detonation behaviour of PBX 9502 in two setups. In the first setup we consider a three-dimensional rate stick experiment. A booster charge initiates a reaction front leading to a curved detonation wave. The numerical results are compared to theory and experimental evidence. The effects of weak and strong confinement are discussed. The second setup considers the so called ``hockey puck experiment.'' Experimental results show the appearance of a dead zone due to the effect of the geometry. This is captured by the numerical results, which also reveal that the initially spherical detonation is diffracted leading to local detonation failure. The numerical simulations are performed by solving a mathematical model for a three-phase medium based on the Euler equations. The numerical results are obtained using high-resolution shock-capturing methods combined with adaptive mesh refinement.

  20. Detonation Shock Dynamics Calibration for Non-Ideal He: Anfo

    NASA Astrophysics Data System (ADS)

    Short, Mark; Salyer, Terry R.; Aslam, Tariq D.; Kiyanda, Charles B.; Morris, John S.; Zimmerly, Tony

    2009-12-01

    Linear Dn-κ detonation shock dynamics (DSD) fitting forms are obtained for four ammonium nitrate-fuel oil (ANFO) mixtures involving variations in the ammonium nitrate prill properties and ANFO stoichiometries.

  1. Maximum Entropy Theory of Non-Ideal Detonation

    NASA Astrophysics Data System (ADS)

    Watt, Simon; Braithwaite, Martin; Brown, William Byers; Falle, Sam; Sharpe, Gary

    2009-12-01

    According to the theory of Byers Brown, in a steady state detonation the entropy production between the shock and sonic locus is a maximum in a self-sustaining wave. This has shown to hold true for all one-dimensional cases. Byers Brown also suggested a novel variational approach by maximising the global entropy generation within the detonation driving zone to solve the problem of self-sustaining, two-dimensional steady curved detonation waves in a slab or cylindrical stick of explosive. Preliminary application of such a variational technique, albeit with simplifying assumptions, demonstrate its potential to provide a rapid and accurate solution method for the problem. In this paper, recent progress in the development and validation of the variational maximum entropy concept, for the case of weakly curved waves, are reported. The predictions of the theory are compared with those of Detonation Shock Dynamics theory.

  2. 33 CFR 154.2106 - Detonation arresters installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... arrester, line size expansions must be in a straight pipe run and must be no closer than 120 times the pipe's diameter from the detonation arrester unless the manufacturer has test data to show the...

  3. Behavior of detonation propagation in mixtures with concentration gradients

    NASA Astrophysics Data System (ADS)

    Hall, Brian C.; Kirwin, William D.

    2007-08-01

    Behavior of detonation waves in mixtures with concentration gradients normal to the propagation direction was studied experimentally. Mixtures with various concentration gradients were formed by sliding the separation plate which divides a detonation chamber from a diffusion chamber in which a diffusion gas was initially introduced. A stoichiometric hydrogen oxygen mixture was charged in the detonation chamber, while oxygen or nitrogen was filled in the diffusion gas chamber. Temporal concentration measurement was conducted by the infrared absorption method using ethane as alternate of oxygen. Smoked foil records show a deformation of regular diamond cells to parallelogram ones, which well corresponds to local mixture concentration. Schlieren photographs reveal the tilted wave front whose angle is consistent with the deflection angle of the detonation front obtained from trajectories of the triple point. The local deflection angle increases with increase in local concentration gradient. Calculation of wave trajectory based on the ray tracing theory predicts formation of the tilted wave front from an initial planar front.

  4. Laser-Supported Detonation Concept as a Space Thruster

    SciTech Connect

    Fujiwara, Toshi; Miyasaka, Takeshi

    2004-03-30

    Similar to the concept of pulse detonation engine (PDE), a detonation generated in the 'combustion chamber' due to incoming laser absorption can produce the thrust basically much higher than the one that a laser-supported deflagration wave can provide. Such a laser-supported detonation wave concept has been theoretically studied by the first author for about 20 years in view of its application to space propulsion. The entire work is reviewed in the present paper. The initial condition for laser absorption can be provided by increasing the electron density using electric discharge. Thereafter, once a standing/running detonation wave is formed, the laser absorption can continuously be performed by the classical absorption mechanism called Inverse Bremsstrahlung behind a strong shock wave.

  5. Model of burning and detonation in rocket motors

    SciTech Connect

    Forest, C.A.

    1980-01-01

    Rocket motor dome failure may produce a damaged porous bed of propellant adjacent to the motor case. This porous bed of propellant may burn and ultimately cause detonation of the motor. A numerical model is presented which examines detonation of the solid propellant grain from shocks induced by the burning porous bed. Calculations are made in one- and two-dimensional cylindrical geometry and employ the Forest Fire model of shock-induced decomposition.

  6. Initiation of detonation regimes in hybrid two-phase mixtures

    NASA Astrophysics Data System (ADS)

    Khasainov, B. A.; Veyssiere, B.

    1996-06-01

    The problem of detonation initiation is studied in the case of hybrid two-phase mixtures consisting of a hydrogen-air gaseous mixture with suspended fine aluminium particles. In preceding works on this subject, investigation of the steady propagation regimes has shown that three main propagation regimes could exist: the Pseudo-Gas Detonation (PGD), the Single-Front Detonation (SFD), and the Double-Front Detonation (DFD). In the present study, a one-dimensional unsteady numerical code has been improved to study the build-up of the detonation in a heterogeneous solid particle gas mixture contained in a tube. The initiation is simulated by the deposition of a given energy in a point source explosion, and the formation of the detonation is observed over distances of 15 m to 30 m. As the code has been designed to run on a micro-computer, memory limitations preclude sufficient accuracy for quantitative results, however, good qualitative agreement has been found with the results of the steady analysis. In addition, it has been demonstrated that when both PGD and SFD could exist at the same particle concentration, the PGD regime was unstable and was able to exist only over a limited distance (a few meters): after some time, the reaction of aluminium particles in the unsteady flow perturbs the leading wave and accelerates it to the SFD regime. Influence of particle diameter and of initiation energy are examined.

  7. Acceleration of solid particles by gaseous detonation products

    SciTech Connect

    Gavrilenko, T.P.; Grigoriev, V.V.; Zhdan, S.A.; Nikolaev, Y.A.; Boiko, V.M.; Papyrin, A.N.

    1986-11-01

    This investigation is concerned with a theoretical and experimental study of acceleration dynamics of spherically inert solid particles (100 ..mu..m nominal diameter) in flows of gaseous detonation products. The experiments were conducted in a detonation channel 1.5 m long with a 20 x 20 mm/sup 2/ cross section and one open end. Particle motion was observed with the method of multiexposure photographic recording and a laser stroboscopic light source. The character of velocity variation of individual particles inside and outside of the channel was investigated for different initial positions of particles. Under certain conditions the accelerated particles are destroyed. A mathematical model based on two-phase multivelocity continuum mechanics has been formulated to describe the detonation wave propagation, outflow of detonation products from the channel, and interaction between particles and a nonstationary flow of detonation products. The model includes chemical equilibrium of detonation products, particle acceleration, heat exchange between phases and channel walls, particle melting, and fragmentation of droplets if the Weber number exceeds some critical value. Particle destruction has been correlated with the initial position, diameter, and physical properties of particles. Comparison of computer and experimental results shows that the model satisfactorily describes acceleration, heating, and fragmentation of particles.

  8. Detonation performance of high-dense BTF charges

    NASA Astrophysics Data System (ADS)

    Dolgoborodov, Alexander; Brazhnikov, Michael; Makhov, Michael; Gubin, Sergey; Maklasova, Irina

    2013-06-01

    New experimental data on detonation wave parameters and explosive performance for benzotrifuroxan (BTF) are presented. Optical pyrometry was applied in order to measure the temperature and pressure of BTF detonation products. Chapman-Jouguet pressure and temperature were obtained as following: 33.8 GPa and 3990 K; 34.5 GPa and 4170 K (initial charge densities 1.82 and 1.84 g/cc respectively), the polytropic exponent was estimated as 2.8. The heat of explosion and acceleration ability were measured also. The results of calorimetric measurements performed in bomb calorimeter indicate that BTF slightly surpasses HMX in the heat of explosion. However BTF is inferior to HMX in the acceleration ability, measured by the method of copper casing expansion. It is also considered the hypothesis of formation of nanocarbon particles in detonation products directly behind the detonation front and influence of this processes on the temperature-time history in detonation products. The results of calculations with in view of formation of liquid nanocarbon in products of a detonation also are presented.

  9. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  10. Numerical simulation of Mach reflection of cellular detonations

    NASA Astrophysics Data System (ADS)

    Li, J.; Lee, J. H. S.

    2016-07-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  11. Minimum tube diameters for steady propagation of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2014-07-01

    Recent experimental results on detonation limits are reported in this paper. A parametric study was carried out to determine the minimum tube diameters for steady detonation propagation in five different hydrocarbon fuel-oxygen combustible mixtures and in five polycarbonate test tube diameters ranging from 50.8 mm down to a small scale of 1.5 mm. The wave propagation in the tube was monitored by optical fibers. By decreasing the initial pressure, hence the sensitivity of the mixture, the onset of limits is indicated by an abrupt drop in the steady detonation velocity after a short distance of travel. From the measured wave velocities inside the test tube, the critical pressure corresponding to the limit and the minimum tube diameters for the propagation of the detonation can be obtained. The present experimental results are in good agreement with previous studies and show that the measured minimum tube diameters can be reasonably estimated on the basis of the /3 rule over a wide range of conditions, where is the detonation cell size. These new data shall be useful for safety assessment in process industries and in developing and validating models for detonation limits.

  12. Numerical investigations on reignition behavior of detonation diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Han, Wen-Hu; Bi, Yong; Ding, Jian-Xu

    2016-02-01

    In this paper, by adopting a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method for two-dimensional reactive Euler equations, a parallel code is developed, and reignition behavior after a self-sustaining detonation from the tube into free space filled with H2/O2 mixtures is investigated. The numerical results show that the initial pressure has a great influence on the detonation cellular width, and that as the initial pressure increases, the cellular width gradually decreases and the cellular shape changes from irregular structure to regular structure, demonstrating the detonation instability to stability transition. When the initial pressure is larger than 1.2 atm, the detonation wave expands over the edge of the splitter plate, reignition can come into being because enough transverse waves collide with each other at the leading edge of the expanding front. When the initial pressure is 1.2 atm, hot spots appear on the front, and ignite the combustible gas near the hot spots after detonation diffraction. When the initial pressure is 1.0 atm, reignition fails. These findings hint that a critical initial pressure exists between 1.0-1.2 atm for direct reignition after detonation diffraction.

  13. Numerical simulation of Mach reflection of cellular detonations

    NASA Astrophysics Data System (ADS)

    Li, J.; Lee, J. H. S.

    2016-09-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  14. A small-scale experiment using microwave interferometry to investigate detonation and shock-to-detonation transition in pressed TATB

    NASA Astrophysics Data System (ADS)

    Renslow, Peter John

    A small-scale characterization test utilizing microwave interferometry was developed to dynamically measure detonation and run to detonation distance in explosives. The technique was demonstrated by conducting two experimental series on the well-characterized explosive triaminotrinitrobenzene (TATB). In the first experiment series, the detonation velocity was observed at varying porosity. The velocity during TATB detonation matched well with predictions made using CHEETAH and an empirical relation from the Los Alamos National Laboratory (LANL). The microwave interferometer also captured unsteady propagation of the reaction when a low density charge was near the failure diameter. In the second experiment series, Pop-plots were produced using data obtained from shock initiation of the TATB through a polymethyl methacrylate (PMMA) attenuator. The results compared well to wedge test data from LANL despite the microwave interferometer test being of substantially smaller scale. The results showed the test method is attractive for rapid characterization of new and improvised explosive materials.

  15. Predicting propagation limits of laser-supported detonation by Hugoniot analysis

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2015-01-01

    Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.

  16. Propagation of Axially Symmetric Detonation Waves

    SciTech Connect

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  17. Deflagration to detonation experiments in granular HMX

    SciTech Connect

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  18. Efficiency of Pulsed Detonation Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Cannon, Jacob E.; Alkam, Mohammad; Butler, P. Barry

    2008-12-01

    Pulsed detonation thermal spray coating is used to enhance the material properties at the surface of an object. The present research implements computational fluid dynamic modeling to identify the efficiency of energy and mass delivered to potential target locations. Six cases of a hydrogen-air mixture are used to investigate the gas flow from the instant of ignition to the instant of flow reversal at the tube exit. Flow monitors are included in the model to represent potential target locations. These monitors are placed at different axial locations in order to record mass flow rate and the flow rate of enthalpy over time. The results indicate that there exists a quasi-steady jet that is efficient and predictable in delivery of energy and mass from the tube exit to potential target locations positioned on the centerline. The duration of the quasi-steady jet is dependent on the fraction of combustible gas (i.e., % fill). Much of the initial energy and mass delivered from the jet avoids the flow monitors. This is found to be related to the evolution of the jet behind the blast wave where energy is lost in expansion and vorticity production. It is also found that nearly 11-18% of the available energy and 20-23% of the available mass remains in the tube after flow reversal.

  19. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  20. Reducing the Consequences of a Nuclear Detonation.

    SciTech Connect

    Buddemeier, B R

    2007-11-09

    The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

  1. Shock initiation of detonation in nitromethane

    NASA Astrophysics Data System (ADS)

    Leal, B.; Presles, H. N.; Baudin, G.

    1998-07-01

    The processes involved in the initiation of nitromethane (NM) have been the subject of many experiments and theoretical studies. These studies generally support the classical homogeneous model though some details of the buildup process are still controversial. In order to clarify these points, we have performed plate impact experiments to study the initiation of NM under conditions of steady one dimensional strain, for shock pressures ranging from 8.5 to 12 GPa. A six wavelength optical pyrometer, with 3 ns rise-time and a temperature range of 1500-6000 K, was used to determine the temperature during shock-to-detonation transition. A Fabry-Perot interferometer with a capacitor transducer and piezoelectric pins were also used to analyse the temperature profiles and to determine the sequence of events during the initiation process. According to our experimental results, it seems that, unlike Campbell et al. assumptions, the superdetonation does not start at the plate/NM interface, but at a run distance inside the NM depending on the shock level.

  2. Shock initiation of detonation in nitromethane.

    NASA Astrophysics Data System (ADS)

    Leal, Blandine; Presles, Henri-Noel; Baudin, Gerard

    1997-07-01

    The processes involved in the initiation of nitromethane (NM) have been the subject of many experiments and theoretical studies. These studies generally support the classical homogeneous model though some details of the buildup process are still controversial. In order to clarify these points, we have performed plate impact experiments to study the initiation of NM under conditions of steady one dimensionnal strain, for shock pressures ranging from 9 to 12GPa. A six wavelength optical pyrometer, with 3ns rise-time and a temperature range of 1500-6000K, was used to determine the temperature during shock-to-detonation transition. A Fabry-Perot interferometer with a capacitor transducer and piezoelectric pins were also used to analyse the temperature profiles and to determine the sequence of events during the initiation process. The experimental results showed that, unlike Campbell assumptions, the superdetonation does not start at the NM front surface, but at a run distance inside the NM depending on the shock level.

  3. Modelling detonation of heterogeneous explosives with embedded inert particles using detonation shock dynamics: Normal and divergent propagation in regular and simplified microstructure

    NASA Astrophysics Data System (ADS)

    Lieberthal, Brandon A.; Bdzil, John B.; Stewart, D. Scott

    2014-03-01

    This paper discusses the mathematical formulation of Detonation Shock Dynamics (DSD) regarding a detonation shock wave passing over a series of inert spherical particles embedded in a high-explosive material. DSD provides an efficient method for studying detonation front propagation in such materials without the necessity of simulating the combustion equations for the entire system. We derive a series of partial differential equations in a cylindrical coordinate system and a moving shock-attached coordinate system which describes the propagation of detonation about a single particle, where the detonation obeys a linear shock normal velocity-curvature (Dn-κ) DSD relation. We solve these equations numerically and observe the short-term and long-term behaviour of the detonation shock wave as it passes over the particles. We discuss the shape of the perturbed shock wave and demonstrate the periodic and convergent behaviour obtained when detonation passes over a regular, periodic array of inert spherical particles.

  4. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect

    Merson, J.A.; Salas, F.J.

    1994-05-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs ( i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  5. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Harlan, J.G.

    1993-11-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs (i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  6. New detonation concepts for propulsion and power generation

    NASA Astrophysics Data System (ADS)

    Braun, Eric M.

    A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected

  7. Links between detonation wave propagation and reactive flow models.

    SciTech Connect

    Swift, D. C.; White, S. J.

    2002-01-01

    An accurate reactive flow model is necessary to be able to predict the initiation properties of explosives by complicated shock structures, but a very fine the spatial resolution is needed in reactive flow to reproduce the detailed dynamics of a detonation wave. However, it is not often necessary to use a reactive flow model to simulate the motion of a fully-developed detonation wave. In many situations the same results can be obtained with a coarse computational mesh using programmed burn techniques. In the WBL model [Lambourn89,Swift93], an eikonal detonation wave propagates through a body of explosive at a speed which depends on the curvature of the wave. The model describes the motion of the leading shock of the detonation wave. Here we use the level set method for integrating the WBL equations in time [Collyer98,Bdzil93,Osher88,Aslam98]. This method is attractive because complicated detonation wave shapes can be represented simply. It was found possible to initialize the level set field by a set of source points derived from a reactive flow simulation, by taking 'trigger states' from the reactive flow. The level set scheme was generalized further to take account of motion of the material behind the detonation wave, allowing it to be used for simulations coupled with reactive flow, where detonation may propagate through preshocked and moving material. The modified level set scheme was implemented in 1D and 2D Lagrangian hydrocodes. Trial calculations were performed of initiation and detonation in the TATB-based explosive LX-17, using the Lee - Tarver model. A CJ detonation was simulated in order to verify that the modified level set algorithm operated correctly. The detonation speed was in very good agreement with the expected value. Single-shock initiation was simulated. The position - time history of the leading shock from the coupled model was in excellent agreement with full reactive flow; the pressure profiles were similar but not identical, because of the

  8. CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect

    Holcomb, Cole; Guillochon, James; De Colle, Fabio; Ramirez-Ruiz, Enrico

    2013-07-01

    Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range between 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.

  9. Characterization of shock and reaction fronts in detonations

    NASA Astrophysics Data System (ADS)

    Tulis, Allen J.; Selman, J. Robert

    1982-10-01

    An instrumental technique has been developed which allows the concomitant measurement of the arrival times of both shock and reaction (flame) fronts in propagating detonations. A combination of fiber-optic probes and light detectors is used to monitor the arrival of the reaction front, whereas piezoelectric pressure gauges monitor the arrival of the pressure pulse from the preceding shock wave. Both signals provide the measurement of the detonation velocity; variance between shock and reaction front velocities implies nonstable detonation (growing or dying detonation) which can be attributed to variation in density, concentration, or homogeneity of the detonating media. This technique is straightforward in the case of pressed or cast formulations but presents difficulties when gas-phase or two-phase detonations are involved. The detonation of near-stoichiometric ethylene-air mixtures in a detonation-tube facility was used to refine the technique and calibrate the instrumentation. The technique was then used to characterize the detonation of two-phase aluminum powder-air mixtures of various concentrations. Compared to the 3-μs induction time between the shock and reaction fronts in the case of ethylene-air mixtures, the induction times for aluminum powder-air mixtures varied from about 1 to over 100 μs. The variation in induction time was attributed to several factors: extended heating time to ignition of the particles due to inhomogeneity of the two-phase mixtures; variation in particle size; and variable aluminum-oxide surface coating thickness. The concentration of aluminum powder in the air was monitored dynamically using instrumentation that related the concentration of aluminum to the attenuation of a laser beam through the mixture. A mean, or overall, value was also estimated by determining the mass flow rate and overall discharge time using photographic coverage. In the former case, in order to obtain meaningful signals for these high-concentration two

  10. The development and testing of pulsed detonation engine ground demonstrators

    NASA Astrophysics Data System (ADS)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  11. Modeling Detonation in Ultrafine TATB Hemispherical Boosters Using CREST

    NASA Astrophysics Data System (ADS)

    Whitworth, Nicholas

    2011-06-01

    Hemispherical ultrafine TATB boosters are often used to initiate detonation in the TATB-based explosive LX-17. For accurate hydrocode predictions of experiments using this combination of explosives, it is important to accurately model the detonation wave emerging from the booster material since this may influence the detonation behaviour in the main charge. Since ultrafine TATB exhibits non-ideal detonation behaviour, it's response should be modeled using reactive flow. In this paper, the CREST reactive burn model, which uses entropy-dependent reaction rates to simulate explosive behaviour, is applied to experimental data obtained from ultrafine TATB hemispherical boosters initiated by slapper detonators at three initial temperatures (ambient, -20 degC and -54 degC). The ambient temperature data is used to develop an initial CREST model for ultrafine TATB which is then subsequently applied to the cold data. A comparison of the experimental and modeling results is presented showing that the model gives good agreement to experiment at both ambient and cold temperatures.

  12. Modelling detonation in ultrafine tatb hemispherical boosters using crest

    NASA Astrophysics Data System (ADS)

    Whitworth, Nicholas J.

    2012-03-01

    Hemispherical ultrafine TATB boosters can initiate detonation in the TATB-based explosive LX-17. For accurate hydrocode predictions of experiments using this combination of explosives, it is important to accurately model the detonation wave emerging from the booster material since this may influence the detonation behaviour in the main charge. Since ultrafine TATB exhibits non-ideal detonation behaviour, its response should be modelled using reactive flow. In this paper, the CREST reactive burn model, which uses entropy-dependent reaction rates to simulate explosive behaviour, is applied to LLNL experimental data obtained from ultrafine TATB hemispherical boosters initiated by slapper detonators at three initial temperatures (ambient, -20°C, and -54°C). The ambient temperature data is used to develop an initial CREST model for ultrafine TATB which is then subsequently applied to the cold data. A comparison of the experimental and modelling results is presented showing that the model gives good agreement to experiment at both ambient and cold temperatures

  13. Three-dimensional numerical simulation of detonations in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nobuyuki; Daimon, Yu; Hayashi, A. Koichi

    2008-10-01

    Three-dimensional numerical simulation of detonations in both a circular tube and a coaxial tube are simulated to reveal characteristics of single spinning and two-headed detonations. The numerical results show a feature of a single spinning detonation which was discovered in 1926. Transverse detonations are observed in both tubes, however, the single spinning mode maintains the complex Mach reflection whereas the two-headed mode develops periodically from the single Mach reflection to the complex one. The calculated cell aspect ratio for the two-headed mode changes from 1.09 to 1.34 as the radius of axial insert increases from r 1/ R = 0.1 to 0.9. The calculated cell aspect ratio for r 1/ R = 0.1 is close to the experimental results without an axial insert. The formation of an unreacted gas pocket behind the detonation front was not observed in the single spinning mode; however, the two-headed mode has unreacted gas pocket behind the front near the axial insert.

  14. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    SciTech Connect

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada E-mail: domingo.garcia@upc.edu E-mail: inma@ugr.es

    2009-04-20

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M {sub defl}, give explosions spanning a range of kinetic energies, K {approx} (1.0-1.2) x 10{sup 51} erg, and {sup 56}Ni masses, M({sup 56}Ni) {approx} 0.6-0.8 M {sub sun}, which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  15. Development of an Actuator for Flow Control Utilizing Detonation

    NASA Technical Reports Server (NTRS)

    Lonneman, Patrick J.; Cutler, Andrew D.

    2004-01-01

    Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.

  16. Transient Detonation Processes in a Plastic Bonded Explosive

    NASA Astrophysics Data System (ADS)

    Thomas, Keith A.; Martin, Eric S.; Kennedy, James E.; Garcia, Ismael A.; Foster, Joseph C.

    2002-07-01

    Experiments involving the transfer of detonation from small booster charges of PBXN-5 (95% HMX and 5% Viton A) into larger charges of various plastic-bonded explosives (PBXs) have produced some surprising results and have stimulated investigation into the factors governing observed responses. To understand these results, we conducted a series of tests with different miniature detonator-booster configurations using laser velocimetry to quantify the pressure pulse that is transmitted from the PBXN-5 booster. Models were used to determine the ideal explosive behavior for comparison with the measured results. The differences are interpreted as being due to transient behavior and late-time energy release from the booster charge. We characterize these behaviors as evidence of microdetonics, where we define microdetonics as the study of less-than-CJ detonation performance due to curvature and/or transient behavior. This provides useful insights into the fundamentals of the detonation process that can feed into advanced modeling approaches such as Detonation Shock Dynamics (DSD).

  17. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  18. Detonation Failure Characterization of Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Janesheski, Robert; Son, Steven; Groven, Lori

    2011-06-01

    Non-ideal explosives are currently poorly characterized, which limits the modeling of them. Current characterization requires large-scale testing to obtain detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the failing detonation wave in a tube, and this experiment only requires small amounts of non-ideal explosives. A non-ideal explosive is initiated with a booster charge and a measurement of the failure distance and a continuous position-time trace of the detonation front location can be obtained. Initial tests have been performed that show this method is feasible using an ammonium perchlorate (AP) composite propellant as a model non-ideal explosive. Future work will apply this approach to non-ideal explosives. Successful results of this method would allow for the calibration of detonation models for many different non-ideal explosives. This project was funded by the Department of Homeland Security through the Center of Excellence for Explosive Detection, Mitigation, and Response under award number 080409/0002251.

  19. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  20. Non ideal detonation of emulsion explosives mixed with metal particles

    NASA Astrophysics Data System (ADS)

    Mendes, Ricardo; Ribeiro, José B.; Plaksin, I.; Campos, Jose

    2012-03-01

    The detonation of ammonium nitrate based compositions like emulsion explosives mixed with metal particles was experimentally investigated. Aluminum powder with a mean particle size of 6 μm was used, and the mass concentration of aluminum on the explosive charge ranged from 0 to 30% wt. The values of the detonation velocity, the pressure attenuation - P(x) - of the shock front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressuretimes histories have been evaluated using the multi-fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allows a quasicontinuous evaluation of the detonation wave run propagation and the assessment of spatial resolved measurements of the shock wave induced in the PMMA barrier. Results of that characterization process are presented and discussed for aluminized and non-aluminized emulsion explosives. The experimental results have shown that the detonation velocity decreases monotonically with the increase of aluminum content. Nevertheless the peak of detonation pressure profiles presents a non-monotonic behavior increasing its value up to an Al content of 20% wt, after which it starts to decrease.

  1. Detonation Reaction Zone Measurements of PBX 9501 and PBX 9502

    NASA Astrophysics Data System (ADS)

    Vincent, Samuel; Short, Mark; Jackson, Scott

    2013-06-01

    Explosives are often confined by inert materials. During detonation, the high pressures associated with the detonation reaction zone and expansion of products induce motion in the confiner. Classical programmed burn models for conventional high explosives (CHEs) performance do not aim to accurately capture the contribution to CHE drive from the short (100-200 micron) detonation reaction zone, as the drive is dominated by expansion of detonation products. However, the reaction zone lengths of insensitive (millimeter-scale) and non-ideal explosives (millimeter-to-centimeter-scale) are long enough that a significant contribution to the HE work on the confiner occurs within the reaction zone. Thus accurate prediction of the reaction zone flow structure and mechanical state is crucial to accurately model the motion of confiners driven by insensitive and non-ideal explosives. In this work, we have measured particle velocity profiles of detonation reaction zones in PBX 9501 and PBX 9502 slab geometries at the breakout surface using PDV imaging through LiF windows. We compare this data to model predictions in the slab geometry using the Wescott-Stewart-Davis reactive burn model and comment on the model performance.

  2. Detonation tube impulse in sub-atmospheric environments.

    SciTech Connect

    Cooper, Marcia A.; Shepherd, Joseph E.

    2005-04-01

    The thrust from a multi-cycle, pulse detonation engine operating at practical flight altitudes will vary with the surrounding environment pressure. We have carried out the first experimental study using a detonation tube hung in a ballistic pendulum arrangement within a large pressure vessel in order to determine the effect that the environment has on the single-cycle impulse. The air pressure inside the vessel surrounding the detonation tube varied between 100 and 1.4 kPa while the initial pressure of the stoichiometric ethylene-oxygen mixture inside the tube varied between 100 and 30 kPa. The original impulse model (Wintenberger et al., Journal of Propulsion and Power, Vol. 19, No. 1, 2002) was modified to predict the observed increase in impulse and blow down time as the environment pressure decreased below one atmosphere. Comparisons between the impulse from detonation tubes and ideal, steady flow rockets indicate incomplete expansion of the detonation tube exhaust, resulting in a 37% difference in impulse at a pressure ratio (ratio of pressure behind the Taylor wave to the environment pressure) of 100.

  3. Investigations on detonation shock dynamics and related topics. Final report

    SciTech Connect

    Stewart, D.S.

    1993-11-01

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  4. Cellular Structure and Oscillating Behavior of PBX Detonations

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Mendes, Ricardo

    2013-03-01

    Efforts are aimed on bridging experimental and theoretical studies of localizations/instabilities manifested in detonation reaction zone (DRZ) at micro-, meso-, and macro-scale. In molecular level, the theoretical/computational studies of detonation (RDX, HMX) show: reaction localizations onset/growth is caused by kinetic nonequilibrium stimulated by different levels of activation barriers/reaction energies at bonds dissociation processes (C-NH2, C-NO2, C =C). At micro- and meso-scale levels, leading role of kinetic nonequilibrium in reaction localizations onset was established in experiments with single beta-HMX crystals-in-binder subjected to 20 GPa-shock and PBX detonation. Reaction localizations and further ejecta formation were spatially resolved by 96-channel optical analyzer at simultaneous recording reaction light and stress field around crystal. Spatially-resolved measurements reveal fundamental role of shear-strain in triggering initiation chemistry. At macro-scale level, formation of the cell-structures and oscillating detonation regimes revealed in HMX- and RDX-based PBXs at wide variation of grain-sizes, wt. % filler/binder, residual micro-voids and binder nature. Emphasizes placed on effect of DRZ-induced radiation upon oscillating regimes of detonation front motion. This work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and Shawn Thorne Program Managers.

  5. Laser detonator development for test-firing applications

    SciTech Connect

    Munger, A. C.; Thomas, K. A.; Kennedy, J. E.; Akinci, A. A.; Mallett, H. L.

    2004-01-01

    Los Alamos National Laboratory has historically fielded two types of electro-explosive detonators. The exploding-bridgewire detonator (EBW) has an exploding wire as the initiating element, a low-density transfer charge and a high-density output pellet. The slapper detonator, or exploding-foil initiator (EFI), utilizes an exploding foil to drive a flying plate element into a high-density output pellet. The last twenty years has seen various research and development activities from many laboratories and manufacturing facilities around the world to develop laser-driven analogs of these devices, but to our knowledge none of those is in general use. Los Alamos is currently committed to design and manufacture a laser analog to the long-standing, generic, general-purpose SE-1 EBW detonator, which is intended to provide increased safety in large-scale test-firing operations. This paper will discuss the major design parameters of this laser detonator and present some preliminary testing results.

  6. CHEETAH: A fast thermochemical code for detonation

    SciTech Connect

    Fried, L.E.

    1993-11-01

    For more than 20 years, TIGER has been the benchmark thermochemical code in the energetic materials community. TIGER has been widely used because it gives good detonation parameters in a very short period of time. Despite its success, TIGER is beginning to show its age. The program`s chemical equilibrium solver frequently crashes, especially when dealing with many chemical species. It often fails to find the C-J point. Finally, there are many inconveniences for the user stemming from the programs roots in pre-modern FORTRAN. These inconveniences often lead to mistakes in preparing input files and thus erroneous results. We are producing a modern version of TIGER, which combines the best features of the old program with new capabilities, better computational algorithms, and improved packaging. The new code, which will evolve out of TIGER in the next few years, will be called ``CHEETAH.`` Many of the capabilities that will be put into CHEETAH are inspired by the thermochemical code CHEQ. The new capabilities of CHEETAH are: calculate trace levels of chemical compounds for environmental analysis; kinetics capability: CHEETAH will predict chemical compositions as a function of time given individual chemical reaction rates. Initial application: carbon condensation; CHEETAH will incorporate partial reactions; CHEETAH will be based on computer-optimized JCZ3 and BKW parameters. These parameters will be fit to over 20 years of data collected at LLNL. We will run CHEETAH thousands of times to determine the best possible parameter sets; CHEETAH will fit C-J data to JWL`s,and also predict full-wall and half-wall cylinder velocities.

  7. Effects of Non-Uniform Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Sung, Chih-Jen

    2003-01-01

    A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under the conditions investigated.

  8. Reflected Detonation Waves: Comparing Theory to Pressure and Heat Flux Measurements

    NASA Astrophysics Data System (ADS)

    Damazo, J.; Shepherd, J. E.

    Gaseous detonations are of concern to engineers designing piping systems for chemical and nuclear processing facilities. Recently, engineers have also begun to explore the possibility of harnessing the impulse created by detonations for thrust.

  9. Experimental Method to Determine the Detonation Characteristics of Very Non-Ideal High Explosives

    NASA Astrophysics Data System (ADS)

    Baudin, Gerard

    2005-07-01

    Common experimental configurations used to determine HE detonation velocity-curvature are right circular cylinders detonated in air. The steadily propagating detonation front is curved and its velocity depends upon the diameter of the cylinder. This configuration requires several experiments with different diameters and sufficiently long cylinders to assume a steadily propagating detonation front. This last hypothesis is practically not achieved for non-ideal HE using reasonably long cylinders. To elude this problem, a special explosive device called ``logosphere,'' developed by CEA, has been adapted to non ideal HE. It provides a well define spherically diverging detonation wave and allows measurements of the detonation velocity-curvature relationship by means of piezoelectric pins without any perturbation. VISAR and DLI diagnostics record the material velocities at the rear surface of HE through transparent windows. The particle velocity values are used to determine the curved detonation states using the detonation velocity-acceleration-curvature model of Louis Brun.

  10. Experimental Method to Determine the Detonation Characteristics of a Very Non-Ideal High Explosive

    NASA Astrophysics Data System (ADS)

    Baudin, G.; Le Gallic, C.; Davoine, F.; Bouinot, P.

    2006-07-01

    Common experimental configurations used to determine HE detonation velocity-curvature are right circular cylinders detonated in air. The steadily propagating detonation front is curved and its velocity depends upon the diameter of the cylinder. This configuration requires several experiments with different diameters and sufficiently long cylinders to assume a steadily propagating detonation front. This last hypothesis is practically not achieved for non-ideal HE using reasonably long cylinders. To elude this problem, a special explosive device called "logosphere", developed by CEA, has been adapted to non ideal HE. It provides a well define spherically diverging detonation wave and allows measurements of the detonation velocity-curvature relationship by means of piezoelectric pins without any perturbation. VISAR and IDL diagnostics record the material velocities at the rear surface of the explosive through transparent windows. The particle velocity values are used to determine the curved detonation states using the detonation velocity-acceleration-curvature model of Louis Brun.

  11. Shock wave dynamics of novel aluminized detonations and empirical model for temperature evolution from post-detonation combustion fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos

    Optical forensics of explosion events can play a vital role in investigating the chain of events leading up to the explosion by possibly identifying key spectral characteristics and even molecules in the post-detonation fireball that may serve as the fingerprint for a particular explosive type used. This research characterizes the blast wave and temperature evolution of an explosion fireball in order to improve the classification of aluminized conventional munitions based on a single explosive type such as RDX. High speed 4 kHz visible imagery is collected for 13 field detonations of aluminized novel munitions to study fireball and shock wave dynamics. The 238 mus temporal resolution visible imagery and the 12 ms temporal resolution FTS spectra are the data sets upon which shock wave dynamics and the time dependence of the fireball temperature are studied, respectively. The Sedov-Taylor point blast theory is fitted to data where a constant release (s = 1) of energy upon detonation suggests shock energies of 0.5--8.9 MJ corresponding to efficiencies of 2--15 percent of the RDX heats of detonation with blast dimensionalities indicative of the spherical geometry observed in visible imagery. A drag model fit to data shows initial shock wave speeds of Mach 4.7--8.2 and maximum fireball radii ranging from 4.3--5.8 m with most of the radii reached by 50 ms upon detonation. Initial shock speeds are four times lower than theoretical maximum detonation speed of RDX and likely contributes to the low efficiencies. An inverse correlation exists between blast wave energy and overall aluminum or liner content in the test articles. A two-color best fit Planckian is used to extract temperature profiles from collected Fourier-transform spectrometer spectra. The temperatures decay from initial values of 1290--1850 K to less than 1000 K within 1 s after detonation. A physics-based low-dimensionality empirical model is developed to represent the temperature evolution of post-detonation

  12. Ferrite core coupled slapper detonator apparatus and method

    SciTech Connect

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  13. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  14. Mathematical modeling of detonation initiation via flow cumulation effects

    NASA Astrophysics Data System (ADS)

    Semenov, I.; Utkin, P.; Akhmedyanov, I.

    2016-07-01

    The paper concerns two problems connected with the idea of gaseous detonation initiation via flow cumulation effects and convergence of relatively weak shock waves (SW). The first one is the three-dimensional (3D) numerical investigation of shock-to-detonation transition (SDT) in methane-air mixture in a tube with parabolic contraction followed by the tube section of narrow diameter and conical expansion. The second problem is the numerical study of the start-up of the model small-scale hydrogen electrochemical pulse detonation engine with the use of electrical discharge generating the toroidal SW. The investigation is performed by means of numerical simulation with the use of modern high-performance computing systems.

  15. Detonation Energies of Explosives by Optimized JCZ3 Procedures

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest

    1997-07-01

    Procedures for the detonation properties of explosives have been extended for the calculation of detonation energies at adiabatic expansion conditions. Advanced variable metric optimization routines developed by ARDEC are utilized to establish chemical reaction equilibrium by the minimization of the Helmholtz free energy of the system. The use of the JCZ3 equation of state with optimized Exp-6 potential parameters leads to lower errors in JWL detonation energies than the TIGER JCZ3 procedure and other methods tested for relative volumes to 7.0. For the principal isentrope with C-J parameters and freeze conditions established at elevated pressures with the JCZ3 equation of state, best results are obtained if an alternate volumetric relationship is utilized at the highest expansions. Efficient subroutines (designated JAGUAR) have been developed which incorporate the ability to automatically generate JWL and JWLB equation of state parameters. abstract.

  16. Conditions of diamond preservation in the process of detonation synthesis

    NASA Astrophysics Data System (ADS)

    Petrov, E. A.; Sakovich, G. V.; Bryliakov, P. M.

    Factors affecting the formation and preservation of the ultradisperse diamond phase during detonation synthesis are examined by analyzing results of experimental observations. In particular, it is shown that, while the thermodynamic parameters and structure of the explosive determine the nucleation of the diamond phase and its subsequent growth, the external conditions within the detonation chamber (e.g., volume, composition, and properties of the medium) are the principal factors determining the preservation of the ultradisperse diamond phase during the expansion of the detonation products. Thus, the yield of ultradisperse diamond increases with pressure in all the gases investigated (nitrogen, argon, helium, and carbon dioxide). Diamond yield also increases with the specific heat of the medium.

  17. Direct thrust force measurement of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Wahid, Mazlan Abdul; Faiz, M. Z. Ahmad; Saqr, Khalid M.

    2012-06-01

    In this paper we present the result of High-Speed Reacting Flow Laboratory (HiREF) pulse detonation engine (PDE) experimental study on direct thrust measurement. The thrust force generated by the repetitive detonation from a 50 mm inner diameter and 600 mm length tube was directly measured using load cell. Shchelkin spiral was used as an accelerator for the Deflagration to Detonation Transition (DDT) phenomenon. Propane-oxygen at stoichiometric condition was used as the combustible fuel-air mixture for the PDE. The PDE was operated at the operation frequency of 3Hz during the test. The amount of thrust force that was measured during the test reaching up to 70N. These values of thrust force were found to be fluctuating and its combustion phenomenon has been analyzed and discussed.

  18. Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Jurns, John; Breisacher, Kevin; Kearns, Kim

    2006-01-01

    A series of combustion tests were performed with metallized gelled JP 8/aluminum fuels in a Pulse Detonation Engine (PDE). Nanoparticles of aluminum were used in the 60 to 100 nanometer diameter. Gellants were also of a nanoparticulate type composed of hydrocarbon alkoxide materials. Using simulated air (a nitrogen-oxygen mixture), the ignition potential of metallized gelled fuels with nanoparticle aluminum was investigated. Ignition of the JP 8/aluminum was possible with less than or equal to a 23-wt% oxygen loading in the simulated air. JP 8 fuel alone was unable to ignite with less than 30 percent oxygen loaded simulated air. The tests were single shot tests of the metallized gelled fuel to demonstrate the capability of the fuel to improve fuel detonability. The tests were conducted at ambient temperatures and with maximal detonation pressures of 1340 psia.

  19. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect

    Sun, Guilei; Li, Xiaojie; Wang, Qiquan; Yan, Honghao

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  20. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  1. Weakly nonlinear dynamics of near-CJ detonation waves

    SciTech Connect

    Bdzil, J.B.; Klein, R.

    1993-02-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature are running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.

  2. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  3. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a... explosives is required. (b) Explosives and detonators outside a magazine that are not being transported...

  4. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a... explosives is required. (b) Explosives and detonators outside a magazine that are not being transported...

  5. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a... explosives is required. (b) Explosives and detonators outside a magazine that are not being transported...

  6. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosives and detonators in underground... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5...

  7. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a... explosives is required. (b) Explosives and detonators outside a magazine that are not being transported...

  8. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosives and detonators in underground... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5...

  9. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosives and detonators in underground... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5...

  10. The equation of state of predominant detonation products

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Fried, Laurence

    2009-06-01

    The equation of state of detonation products, when incorporated into an experimentally grounded thermochemical reaction algorithm can be used to predict the performance of explosives. Here we report laser based Impulsive Stimulated Light Scattering measurements of the speed of sound from a variety of polar and nonpolar detonation product supercritical fluids and mixtures. The speed of sound data are used to improve the exponential-six potentials employed within the Cheetah thermochemical code. We will discuss the improvements made to Cheetah in terms of predictions vs. measured performance data for common polymer blended explosives. Accurately computing the chemistry that occurs from reacted binder materials is one important step forward in our efforts.

  11. Continuous detonation wave engine studies for space application

    NASA Astrophysics Data System (ADS)

    Davidenko, D. M.; Jouot, F.; Kudryavtsev, A. N.; Dupré, G.; Gökalp, I.; Daniau, E.; Falempin, F.

    2009-09-01

    Continuous Detonation Wave Rocket Engine (CDWRE) for space application is considered in the framework of French R&D and scientific research. A CDWRE demonstrator and a dedicated test bench are designed by MBDA France. At ICARE-CNRS, theoretical and experimental studies on the CDWRE internal processes are under progress. Twodimensional (2D) Euler simulations of a CDWRE combustion chamber have been performed to investigate the effect of geometrical and injection parameters on the internal process and combustion chamber performance. An experimental study is prepared to investigate liquid oxygen breakup and vaporization in a helium flow as well as detonation initiation and propagation in a spray of liquid oxygen/gaseous hydrogen.

  12. Characteristics of pulse detonation engine versus ramjet characteristics

    NASA Astrophysics Data System (ADS)

    Egoryan, A. J.; Kraiko, A. N.; P'yankov, K. S.; Tishin, A. P.

    2016-03-01

    We discuss the method of comparing pulse detonation engines (PDE) and engines with combustion in subsonic flow (ramjet) by means of their specific impulse used by the "Center of Pulse-Detonation Combustion" (CPDC). We demonstrate that the method used by CPDC to calculate the performance of PDE overstates the value of specific impulse relative to its actual value by a factor of at least two. In contrast, the values of specific impulse for ramjet are understated. As a result, the specific impulse of PDE significantly exceeds that of ramjet or is close to it. We investigate these misleading conclusions, and demonstrate their complete failure.

  13. Quantification of uncertainties for application in detonation simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Miao; Ma, Zhibo

    2016-06-01

    Numerical simulation has become an important means in designing detonation systems, and the quantification of its uncertainty is also necessary to reliability certification. As to quantifying the uncertainty, it is the most important to analyze how the uncertainties occur and develop, and how the simulations develop from benchmark models to new models. Based on the practical needs of engineering and the technology of verification & validation, a framework of QU(quantification of uncertainty) is brought forward in the case that simulation is used on detonation system for scientific prediction. An example is offered to describe the general idea of quantification of simulation uncertainties.

  14. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    NASA Astrophysics Data System (ADS)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with

  15. Characterization of detonation products of RSI-007 explosive

    NASA Astrophysics Data System (ADS)

    Ager, Timothy; Neel, Christopher; Breaux, Bradley; Vineski, Christopher; Welle, Eric; Lambert, David; Chhabildas, Lalit

    2012-03-01

    PDV and VISAR have been employed to characterize the detonation products of a high-purity CL-20 based explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The back surface of the Kovar serves as the witness plate for interferometry measurements. Detailed reverberations corresponding to shock arrival and release are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further refine the release states.

  16. Strategies for understanding the deflagration-to-detonation transition

    SciTech Connect

    Asay, B.W.

    1992-01-01

    The deflagration-to-detonation (DDT) phenomenon has been studied for many years. However, no comprehensive model of the DDT process is available. It is important to understand the mechanism by which an explosive will detonate when the source of ignition is a weak shock or flame, and to able to predict this response. We have identified several key areas of the DDT problem which need to be understood before any such prediction can be made, and have established a modest program to obtain a more fundamental understanding of the behavior of explosive under the conditions that can lead to DDT.

  17. Strategies for understanding the deflagration-to-detonation transition

    SciTech Connect

    Asay, B.W.

    1992-05-01

    The deflagration-to-detonation (DDT) phenomenon has been studied for many years. However, no comprehensive model of the DDT process is available. It is important to understand the mechanism by which an explosive will detonate when the source of ignition is a weak shock or flame, and to able to predict this response. We have identified several key areas of the DDT problem which need to be understood before any such prediction can be made, and have established a modest program to obtain a more fundamental understanding of the behavior of explosive under the conditions that can lead to DDT.

  18. Estimation of the detonation cell size in gases

    NASA Astrophysics Data System (ADS)

    Kuchinskii, V. V.; Onosov, I. I.

    2011-06-01

    A simple method to calculate the parameters of a shock wave in a space between the shock wave front and the Chapman-Jouguet plane is considered. Solving a velocity equation, one can calculate the pressure, density, and temperature of the gas, as well as determine the size of a detonation region in a one-dimensional approximation. The dependences of the detonation region size on input parameters are derived. From these dependences, one can estimate the run of the same curves in the real situation.

  19. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated

  20. Curved detonation fronts in solid explosives: Collisions and boundary interactions

    SciTech Connect

    Bdzil, J.B.; Aslam, T.D.; Stewart, D.S.

    1995-09-01

    Detonation Shock Dynamics (DSD) can be used to model the effects that shock curvature, {kappa}, has oil detonation speed, D{sub n}({kappa}). At the edges of the explosive, D{sub n}({kappa}) is supplemented with boundary conditions. By direct numerical simulation (DNS). The authors study how the reaction zone interacts with the edge. DSD theory has been integrated with the level-set method of Osher and Sethian and the Los Alamos DNS code Mesa to create a powerful tool for simulating complex explosive containing systems.

  1. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures

    NASA Astrophysics Data System (ADS)

    Miyake, Atsumi; Echigoya, Hiroshi; Kobayashi, Hidefumi; Ogawa, Terushige; Katoh, Katsumi; Kubota, Shiro; Wada, Yuji; Ogata, Yuji

    To obtain a better understanding of detonation properties of ammonium nitrate (AN) and activated carbon (AC) mixtures, steel tube tests with several diameters were carried out for various compositions of powdered AN and AC mixtures and the influence of the charge diameter on the detonation velocity was investigated. The results showed that the detonation velocity increased with the increase of the charge diameter. The experimentally observed values were far below the theoretically predicted values made by the thermodynamic CHEETAH code and they showed so-called non-ideal detonation. The extrapolated detonation velocity of stoichiometric composition to the infinite diameter showed a good agreement with the theoretical value.

  2. The role of cellular structure on increasing the detonability limits of three-step chain-branching detonations

    SciTech Connect

    Short, Mark; Kiyanda, Charles B; Quirk, James J; Sharpe, Gary J

    2011-01-27

    In [1], the dynamics of a pulsating three-step chain-branching detonation were studied. The reaction model consists of, sequentially, chain-initiation, chain-branching and chain-termination steps. The chain-initiation and chain-branching steps are taken to be thermally neutral, with chemical energy release occuring in the chain-termination stage. The purpose of the present study is to examine whether cellular detonation structure can increase the value of the chain-branching cross-over temperature T{sub b} at which fully coupled detonation solutions are observed over those in 1 D. The basic concept is straightforward and has been discussed in [1] and [3]; if T{sub s} drops below T{sub b} at the lead shock, the passage of a transverse shock can increase both the lead shock temperature and the temperature behind the transverse wave back above T{sub b}, thus sustaining an unstable cellular detonation for values of T{sub b} for which a one-dimensional pulsating detonation will fail. Experiments potentially supporting this hypothesis with irregular detonations have been shown in [3] in a shock tube with acoustically absorbing walls. Removal of the transverse waves results in detonation failure, giving way to a decoupled shock-flame complex. A number of questions remain to be addressed regarding the possibility of such a mechanism, and, if so, about the precise mechanisms driving the cellular structure for large T{sub b}. For instance, one might ask what sets the cell size in a chain-branching detonation, particularly could the characteristic cell size be set by the chain-branching cross-over temperature T{sub b}: after a transverse wave shock collision, the strength of the transverse wave weakens as it propagates along the front. If the spacing between shock collisions is too large (cell size), then the transverse shocks may weaken to the extent that the lead shock temperature or that behind the transverse waves is not raised above T{sub b}, losing chemical energy to

  3. Detonation equation of state at LLNL, 1995. Revision 3

    SciTech Connect

    Souers, P.C.; Wu, B.; Haselman, L.C. Jr.

    1996-02-01

    JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuous oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.

  4. Deflagration-to-detonation transition in granular HMX

    NASA Technical Reports Server (NTRS)

    Campbell, A. W.

    1980-01-01

    Granular HMX of three degrees of fineness was packed into heavy-walled steel tubes closed at both ends. Ignition was obtained at one end using an intimate mixture of finely divided titanium and boron as an igniter that produced heat with little gas. The distance to detonation was determined by examination of the resulting tube fragments. By inserting tightly-fitted neoprene diaphragms periodically into the HMX column, it was shown that the role of convective combustion was limited to the initial stage of the deflagration to detonation (DDT) process. Experiments in which various combinations of two of the three types of HMX were loaded into the same tube showed that heating by adiabatic shear of explosive grains was an essential factor in the final buildup to detonation. A description of the DDT process is developed in which conductive burning is followed in turn by convective burning, bed collapse with plug formation, onset of accelerated burning at the front of the plug through heating by intercrystalline friction and adiabatic shear, and intense shock formation resulting in high-order detonation.

  5. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fire, explosion, and detonation protection. 154.820 Section 154.820 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.820 Fire, explosion,...

  6. 6. BUILDING NO. 232, ORDNANCE FACILITY (DETONATOR LOADING), LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDING NO. 232, ORDNANCE FACILITY (DETONATOR LOADING), LOOKING SOUTHEAST AT STRUCTURE AND BLAST BARRICADES. BUILDING NO. 232-C VISIBLE BEHIND BARRICADE AT LEFT. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  7. Using embedded fibers to measure explosive detonation velocities

    SciTech Connect

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  8. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  9. Experimental Study of a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  10. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    SciTech Connect

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  11. Modeling the interacting detonation fronts observed by low energy radiography

    SciTech Connect

    Aufderheide, M; Egan, P O; Morgan, D L; Vantine, H C

    1998-09-18

    We have completed a series of experiments in which we made radiographs of interacting detonation fronts in a high explosive. Although the fronts and interactions were observed, the experimental data were insufficient to distinguish between two computer models which we employed to simulate the experiments.

  12. Detonation Waves Parameters for Fefo/nitrobenzene Solution

    NASA Astrophysics Data System (ADS)

    Mochalova, V. M.; Utkin, A. V.; Garanin, V. A.; Torunov, S. I.

    2009-12-01

    The dependence of detonation parameters for (bis-(2-fluoro-2, 2-dinitroethyl) formal)/nitrobenzene solution (FEFO/NB) on NB concentration was defined. Velocity profiles of the boundary between HE and water window were recorded by laser interferometer VISAR. It was found that particle velocity in a pure FEFO was strongly oscillating with the oscillation amplitude ˜50 m/s. It means that detonation front is unstable and heterogeneities size is about 10 μm. The average velocity profile corresponds to ZND model. The reaction time is equal to ˜400 ns, C-J pressure and particle velocity are 24 GPa and 2.0 km/s respectively. For FEFO/NB solution it was found that at low NB concentrations (10-20%) oscillations disappeared and detonation front was stable. When the NB concentration increased up to 30% high-frequency oscillations appeared again. The measurements of reaction zone structure up to critical concentration were conducted, it was about 45%. At average particle velocity profiles Von Neumann spike was distinctly registered. It was shown that in a pure FEFO and in solutions with NB concentration exceeding 30%) detonation front was unstable.

  13. Detonation waves parameters for FEFO/nitrobenzene solution

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander; Garanin, Victor; Torunov, Sergey

    2009-06-01

    The dependence of detonation parameters for (bis-(2-fluoro-2,2-dinitroethyl) formal)/nitrobenzene solution (FEFO/NB) from NB concentration was defined. Velocity profiles of the boundary between HE and water window were recorded by laser interferometer VISAR. It was found that particle velocity in a pure FEFO was strongly oscillating with the oscillation amplitude ˜50 m/s. It means that detonation front is unstable and irregularity size is about 10 mkm. The average velocity profile corresponds to ZND model. The reaction time is equal to ˜ 400ns, C-J pressure and particle velocity are 24 GPa and 2.0 km/s respectively. For FEFO/NB solution it was found that at low NB concentrations (10-20%) oscillations disappeared and detonation front was stable. When the NB concentration was increased up to 30 % high-frequency oscillations appeared again. The measurements of reaction zone structure up to critical concentration were conducted, it was about 45%. At average particle velocity profiles Von Neumann spike was distinctly registered. It was shown that in a pure FEFO and in solutions with NB concentration exceeding 30% detonation front was unstable.

  14. Cellular Structure and Oscillating Behavior of PBX Detonations

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Ferreira, Claudia; Fernandes, Eduardo

    2015-06-01

    Efforts are aimed on experimental study of reaction localization/instabilities manifested in detonation reaction zone (DRZ) of PBXs at micro-, meso- and macro-scale. At micro- and meso-scale levels, leading role of kinetic nonequilibrium in reaction localizations onset was established in experiments with single beta-HMX crystals-in-binder subjected to 20 GPa-shock and PBX detonation. Reaction localizations and further ejecta formation were spatially resolved by 96-channel optical analyzer at simultaneous recording reaction light and stress field around crystal. Spatially resolved measurements reveal fundamental role of shear-strain in triggering initiation chemistry. At macro-scale level, formation of the cell-structures and oscillating detonation regimes revealed in HMX- and RDX-based PBXs at wide variation of grain-sizes, wt. % filler/binder, residual micro-voids and binder nature. Emphasizes placed on effect of DRZ-induced radiation upon oscillating regimes of detonation front motion. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  15. Transplutonium elements processed from rock debris of underground detonations

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. A. A.; Harvey, H. W.; Hoh, J. C.; Horwitz, E. P.

    1969-01-01

    Six-step chemical processing method extracts minute quantities of transplutonium elements found in rock debris following a nuclear detonation. The process consists of dissolution of rock, feed preparation, liquid-liquid extraction, final purification of transplutonium elements and plutonium, and separation of the transplutonium elements.

  16. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.

  17. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics And Performance

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2004-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi-1-D, finite-rate chemistry computational fluid dynamics model for PDREs is described and implemented. Four different PDRE geometries are evaluated in this work: a baseline detonation tube, a detonation tube with a straight extension, and a detonation tube with two types of converging-diverging (C-D) nozzles. The effect of extension length and C-D nozzle area ratio on the single-shot gasdynamics and performance of a PDRE is studied over a wide range of blowdown pressure ratios (1-1000). The results indicate that a C-D nozzle is generally more effective than a straight extension in improving PDRE performance, particularly at higher pressure ratios. Additionally, the results show that the blowdown process of the C-D nozzle systems could be beneficially cut off well before the pressure at the end-wall reaches the ambient value. The performance results are also compared to a steady-state rocket system using similar modeling assumptions.

  18. Vortex formation in a proposed detonation internal combustion engine

    SciTech Connect

    Loth, E.

    1995-05-01

    A possible configuration for taking advantage of detonation combustion in an internal combustion engine is described, which uses a separate detonation combustion chamber that discharges tangentially into a vortex chamber formed by the piston and cylinder at top dead center. The vortex chamber is designed to efficiently store a portion of the kinetic energy produced by the detonation wave in the form of a vortex, which would subsequently be converted into static pressure. By placing this chamber above the piston surface, the detonation and primary shock waves are directed parallel to the piston surface, thus avoiding potentially destructive loads to the piston. The rapid burning followed by mixing with air in the vortex chamber may reduce the formation of NOx and unburned hydrocarbons as compared to conventional combustion. Such a configuration may efficiently take advantage of clean-burning slow-deflagrating fuels such as natural gas to yield constant volume-type efficiencies. Shock wave propagation through the vortex chamber was simulated to qualitatively observe the vortex storage and rapid mixing characteristics. 30 refs.

  19. Behavior of detonation propagation in mixtures with concentration gradients

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Kojima, M.

    2007-08-01

    Behavior of detonation waves in mixtures with concentration gradients normal to the propagation direction was studied experimentally. Mixtures with various concentration gradients were formed by sliding the separation plate which divides a detonation chamber from a diffusion chamber in which a diffusion gas was initially introduced. A stoichiometric hydrogen-oxygen mixture was charged in the detonation chamber, while oxygen or nitrogen was filled in the diffusion gas chamber. Temporal concentration measurement was conducted by the infrared absorption method using ethane as alternate of oxygen. Smoked foil records show a deformation of regular diamond cells to parallelogram ones, which well corresponds to local mixture concentration. Schlieren photographs reveal the tilted wave front whose angle is consistent with the deflection angle of the detonation front obtained from trajectories of the triple point. The local deflection angle increases with increase in local concentration gradient. Calculation of wave trajectory based on the ray tracing theory predicts formation of the tilted wave front from an initial planar front.

  20. Multi-Level Analysis of Pulsed Detonation Engines

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present study explores some issues concerning the operational performance of pulsed detonation engines. Zero-, one- and two-dimensional, transient models are employed in a synergistic manner to elucidate the various characteristics that can be expected from each level of analysis. The zero-dimensional model provides rapid parametric trends that help to identify the global characteristics of pulsed detonation engines. The one-dimensional model adds key wave propagation issues that are omitted in the zero-dimensional model and helps to assess its limitations. Finally, the two-dimensional model allows estimates of the first-order multi-dimensional effects and provides an initial multi-dimensional end-correction for the one-dimensional model. The zero-dimensional results indicate that the pulsed detonation engine is competitive with a rocket engine when exhausting to vacuum conditions. At finite back pressures, the PDE out-performs the rocket if the combustion pressure rise from the detonation is added to the chamber pressure in the rocket. If the two peak pressures are the same, the rocket performance is higher. Two-dimensional corrections added to the one-dimensional model result in a modest improvement in predicted specific impulse over the constant pressure boundary condition.

  1. Detonation and combustion of explosives: A selected bibliography

    SciTech Connect

    Dobratz, B.

    1998-08-01

    This bibliography consists of citations pertinent to the subjects of combustion and detonation of energetic materials, especially, but not exclusively, of secondary solid high explosives. These references were selected from abstracting sources, conference proceedings, reviews, and also individual works. The entries are arranged alphabetically by first author and numbered sequentially. A keyword index is appended.

  2. A thermochemically derived global reaction mechanism for detonation application

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  3. Coherent laser excitation of Ba-137 and Ba-138

    NASA Technical Reports Server (NTRS)

    Lam, Kai-Shue

    1992-01-01

    Computations are carried out for the 1S(6s2)-1P(6s,6p) coherent laser excitation of Ba-137 and Ba-138 in a magnetic field. Results are presented for both the steady-state and time-dependent excited-state populations of the Zeeman-split magnetic sublevels. The quantum-statistical Liouville-equation approach (for the reduced density matrix) is compared to the rate-equations approach. Significant differences are found between these, due to the interference between strongly overlapping lines (especially for Ba-137). The time-evolution profiles indicate that the Ba-137 transient time is much longer than that of Ba-138.

  4. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  5. Propagation of Curved Detonation Waves Stabilized in Annular Channels with a Rectangular Cross-section

    NASA Astrophysics Data System (ADS)

    Nakayama, Hisahiro; Takahiro Moriya; Kasahara, Jiro; Matsuo, Akiko; Sasamoto, Yuya; Funaki, Ikkoh

    Visualization experiments employing rectangular cross-section curved channels were performed in order to examine the fundamental characteristics of a curved detonation wave propagating stably through an annular channel. A stoichiometric ethylene-oxygen mixture gas and five types of curved channels with different inner radii of curvature were used. The detonation waves propagating in the curved channels were curved due to the expansion waves from the inner walls of the curved channels. The ratio of the inner radius of curved channel (ri) to the normal detonation cell width (λ) was an important factor determining the stability of the curved detonation waves. The detonation propagation mode in the curved channels transitioned from unstable to stable in the range 14 ≤ ri/λ ≤ 26. The normal detonation velocity (Dn) of the curved detonation wave propagating stably in a curved channel was approximately formulated. The approximated Dn given by the formula agreed well with the experimental results. The front shock shape of the curved detonation wave could be reconstructed accurately using the formula. The value of Dn nondimensionalized by the Chapman-Jouguet detonation velocity became a function of the local curvature of the curved detonation wave (κ) nondimensionalized by λ regardless of the shape of curved channel. The front shock shapes of the detonation waves in the stable mode became similar to each other under constant ri/λ conditions.

  6. Ignition and Growth Reactive Flow Modeling of Recent HMX/TATB Detonation Experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig

    2015-06-01

    Ignition and Growth model parameters for detonating PBX 9501 (95%HMX, 2.5 %Estane, 2.5%BDNPAF) and PBX 9502 (95%TATB, 5%Kel-F800) are used to simulate two experiments in which detonating HMX-based PBX's accelerate slower detonating TATB PBX's. The measured HMX and TATB detonation velocities, the angles produced in the detonating TATB charges by the leading HMX detonation waves, the arrival times of the complex detonation wave front, and the PDV records measured at several positions along the interfaces between the two explosives and LiF windows are accurately calculated. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... millions of gallons of Agent Orange and other herbicides on trees and vegetation during the Vietnam War. ...

  8. Three-dimensional cellular structure of detonations in suspensions of aluminium particles

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Veyssière, B.

    2013-05-01

    Recently, we have used scarce available data on the detonation cell size in suspensions of aluminium particles in air and oxygen to adjust the kinetic parameters of our two-phase model of detonations in these mixtures. The calculated detonation cell width was derived by means of two-dimensional (2D) unsteady simulations using an assumption of cylindrical symmetry of the flow in the tube. However, in reality, the detonation cells are three-dimensional (3D). In this work, we have applied the same detonation model which is based on the continuous mechanics of two-phase flows, for 3D numerical simulations of cellular detonation structures in aluminium particle suspensions in oxygen. Reasonable agreement on the detonation cell width was obtained with the aforementioned 2D results. The range of tube diameters where detonations in { Al/O}_2 mixture at a given particle size and concentration would propagate in the spinning mode has been estimated (these results make a complement to our previous analysis of spinning detonations in Al/air mixtures). Coupling these results with the dependencies of detonation cell size on the mean particle diameter is of great interest for the understanding of fundamental mechanisms of detonation propagation in solid particle suspensions in gas and can help to better guide the experimental studies of detonations in aluminium suspensions. It is shown that the part of detonation wave energy used for transverse kinetic energy of both gas and particles is quite small, which explains why the propagation velocity of spinning and multi-headed detonations reasonably agrees with the ideal CJ values.

  9. Detonation-product behavior at large expansion: the underwater detonation of nitromethane. [KOEOP code

    SciTech Connect

    Helm, F.H. Jr.; Chambers, E.S.; Lee, E.; Finger, M.; McGuire, R.R.; Mahler, J.P.; Cheung, H.; Cramer, J.L.

    1980-12-01

    The expanding product gases of the explosive used in rock fracturing, cratering, and air or underwater explosions do work on the surroundings even at relatively low pressures. To characterize explosives for these applications it is necessary to obtain an almost complete expansion history. An underwater test which was used to measure the shock-wave travel and gas bubble resulting from the detonation of 2 kg of nitromethane is described. The bubble expansion was photographically measured to a volume of about 80 times the initial volume of the shell. These experimental measurements compared well with those calculated by a one-dimensional hydrodynamic program, KOELAS. KOELAS also provided data to assist in the calculation of the apparent position of the shell containing the explosive, using refractive index gradients and the bubble position as a function of time. A method for estimating optical ray paths penetrating the expanding shock front and a modification to a streaking camera that permits stable operation at low rotor speeds are described. The expansion exhibited a minimum pressure of 2 MPa (20 bars), an amount in the range of rock blasting applications, underwater explosions, and rock fracturing or cratering.

  10. A Study of Detonation Propagation and Diffraction with Compliant Confinement

    SciTech Connect

    Banks, J; Schwendeman, D; Kapila, A; Henshaw, W

    2007-08-13

    A previous computational study of diffracting detonations with the ignition-and-growth model demonstrated that contrary to experimental observations, the computed solution did not exhibit dead zones. For a rigidly confined explosive it was found that while diffraction past a sharp corner did lead to a temporary separation of the lead shock from the reaction zone, the detonation re-established itself in due course and no pockets of unreacted material were left behind. The present investigation continues to focus on the potential for detonation failure within the ignition-and-growth (IG) model, but now for a compliant confinement of the explosive. The aim of the present paper is two fold. First, in order to compute solutions of the governing equations for multi-material reactive flow, a numerical method of solution is developed and discussed. The method is a Godunov-type, fractional-step scheme which incorporates an energy correction to suppress numerical oscillations that would occur near the material interface separating the reactive material and the inert confiner for standard conservative schemes. The numerical method uses adaptive mesh refinement (AMR) on overlapping grids, and the accuracy of solutions is well tested using a two-dimensional rate-stick problem for both strong and weak inert confinements. The second aim of the paper is to extend the previous computational study of the IG model by considering two related problems. In the first problem, the corner-turning configuration is re-examined, and it is shown that in the matter of detonation failure, the absence of rigid confinement does not affect the outcome in a material way; sustained dead zones continue to elude the model. In the second problem, detonations propagating down a compliantly confined pencil-shaped configuration are computed for a variety of cone angles of the tapered section. It is found, in accord with experimental observation, that if the cone angle is small enough, the detonation fails

  11. Development of a Gas-Fed Pulse Detonation Research Engine

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Hutt, John (Technical Monitor)

    2001-01-01

    In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time

  12. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  13. A Mechanistic Study of Delayed Detonation in Impact Damaged Solid Rocket Propellant

    NASA Astrophysics Data System (ADS)

    Matheson, E. R.; Rosenberg, J. T.

    2002-07-01

    One method of hazard assessment for mass detonable solid rocket propellants consists of impacting right circular cylinders of propellant end-on into thick steel witness plates at varying impact velocities. A detonation that occurs within one shock traversal of the cylinder length is termed a prompt detonation or a shock-to-detonation transition (SDT). At lower velocities, some propellants detonate at times later than one shock transit, typically 1-5 shock transits. Because no mechanism for delayed detonation has been fully confirmed and accepted by the detonation physics community, these low-velocity detonations are referred to as unknown-to-detonation transitions (XDTs). A leading theory, however, is that prior to detonation mechanically induced damage sensitizes the material through the formation of internal porosity which provides new mechanical reaction initiation sites (hot spots) and enhanced internal burn surface. To study this phenomenology, we have developed the Coupled Damage and Reaction (CDAR) model, implemented it in the CTH shock physics code, and simulated propellant impact experiments. The CDAR model fully couples viscoelastic-viscoplastic deformation, tensile damage, porosity evolution, reaction initiation, and grain burning to model the increased reactivity of the propellant. In this paper, CDAR simulations of propellant damage in spall and Taylor impact tests are presented and compared to experiment. An XDT experiment is also simulated, and implications regarding damage mechanisms and hydrodynamic processes leading to XDT are discussed.

  14. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE PAGES

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; Bronson Messer, O. E.

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x107 g∙cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x107 g∙cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  15. The ignition of carbon detonations via converging shock waves in white dwarfs

    SciTech Connect

    Shen, Ken J.; Bildsten, Lars E-mail: bildsten@kitp.ucsb.edu

    2014-04-10

    The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengths needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.

  16. Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-Dong; Fan, Bao-Chun; Gui, Ming-Yue; Pan, Zhen-Hua; Dong, Gang

    2012-02-01

    Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonationshock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interesting properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.

  17. Engineering models of deflagration-to-detonation transition

    SciTech Connect

    Bdzil, J.B.; Son, S.F.

    1995-07-01

    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  18. A fast, low resistance switch for small slapper detonators

    NASA Astrophysics Data System (ADS)

    Richardson, D. D.; Jones, D. A.

    1986-10-01

    A novel design for a shock compression conduction switch for use with slapper detonators is described. The switch is based on the concept of an explosively driven flyer plate impacting a plastic insulator and producing sufficient pressure within the insulator to produce a conduction transition. An analysis of the functioning of the switch is made using a simple Gurney model for the explosive, and basic shock wave theory to calculate impact pressure and switch closure times. The effect of explosive tamping is considered, and calculations are carried out for two donor explosive thicknesses and a range of flyer plate thicknesses. The new switch has been successfully tested in a series of experimental slapper detonator firings. The results of these tests show trends in overall agreement with those predicted by the calculations.

  19. A slow reaction rate in detonations due to carbon clustering

    SciTech Connect

    Shaw, M.S.; Johnson, J.D.

    1987-07-01

    Theoretical calculations have been made to estimate the rate of heat release due to the carbon clustering process in detonations where elemental carbon is a reaction product. The process is assumed to be diffusion limited. Diffusion constants are determined using modified Enskog theory and the Stokes-Einstein relation. The carbon cluster energy is treated by a surface correction to the bulk. The amount of energy yet to be released has an asymptotic time dependence of t/sup -1/3/. For some explosives, this leads to time dependent detonations where the effective CJ pressure is 10-20% above CJ for run distances of the order of centimeters. 9 refs., 3 figs.

  20. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approximately 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  1. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approx. 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  2. Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Schauer, Frederick; Hopper, David

    2012-01-01

    A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.

  3. Directly thiolated modification onto the surface of detonation nanodiamonds.

    PubMed

    Hsu, Ming-Hua; Chuang, Hong; Cheng, Fong-Yu; Huang, Ying-Pei; Han, Chien-Chung; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Wu, Dian-Syue; Chu, Hsueh-Liang; Chang, Chia-Ching

    2014-05-28

    An efficient method for modifying the surface of detonation nanodiamonds (5 and 100 nm) with thiol groups (-SH) by using an organic chemistry strategy is presented herein. Thiolated nanodiamonds were characterized by spectroscopic techniques, and the atomic percentage of sulfur was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The conjugation between thiolated nanodiamonds and gold nanoparticles was elucidated by transmission electron microscopy and UV-vis spectrometry. Moreover, the material did not show significant cytotoxicity to the human lung carcinoma cell line and may prospectively be applied in bioconjugated technology. The new method that we elucidated may significantly improve the approach to surface modification of detonation nanodiamonds and build up a new platform for the application of nanodiamonds. PMID:24766528

  4. Thrust Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pak, Sibtosh; Shehadeh, R.; Saretto, S. R.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors aimed at probing different aspects of PDE ejector processes, are presented and discussed. The PDE was operated using ethylene as the fuel and an equimolar oxygen/nitrogen mixture as the oxidizer at an equivalence ratio of one. The thrust measurements for the PDE alone are in excellent agreement with experimental and modeling results reported in the literature and serve as a Baseline for the ejector studies. These thrust measurements were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups using constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  5. Study of Detonation and Cylinder Velocities for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest

    2005-07-01

    The detonation properties of aluminized explosives have been studied using experimental data available in the literature and EXP-6 thermo-chemical potential calculations with the JAGUAR computer program. It has been found that the observed detonation velocity behavior for aluminized explosives can be accurately represented by a reaction zone model in which unreacted aluminum is initially in equilibrium with H-C-N-O compounds. The JAGUAR procedures have been modified to represent the aluminum reaction zone behavior and to enable specified temperature differences between the gas and aluminum particles in the initial portion of this reaction zone. The modified procedures enable isentropic expansion for incomplete or complete aluminum reaction in the zone, and result in close agreement with experimental cylinder test data for several explosives. In order to aid in the application of the model, constants of thermodynamic equations of state are related to the extent of aluminum reaction.

  6. Study of Detonation and Cylinder Velocities for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard I.; Baker, Ernest L.; Capellos, Christos

    2006-07-01

    The detonation properties of aluminized explosives have been studied using experimental data and EXP-6 thermo-chemical potential calculations with the JAGUAR computer program. It has been found that the observed detonation velocity behavior for aluminized explosives can be accurately represented by a reaction zone model in which unreacted aluminum is initially in equilibrium with H-C-N-O compounds. The JAGUAR procedures have been modified to represent the reaction zone behavior and to enable specified temperature differences between the gas and aluminum particles in the initial portion of this reaction zone. The modified procedures enable isentropic expansion for incomplete or complete aluminum reaction in the zone, and result in close agreement with experimental cylinder test data.

  7. Detonation Velocity Calculations of Explosives with Slowly-Burning Constituents

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.

    1997-07-01

    The thermochemical code Equilbrium CHEETAH has been modified to allow partial reaction of constituents and partial flow of heat. Solid or liquid reactants are described by Einstein oscillators, whose temperatures can be changed to allow heat transfer. Hydroxy-terminated-poly-budadiene, mixed with RDX or HMX, does not react, as shown by the effect on the calculated detonation velocity. Aluminum and ammonium perchlorate in composites also do not react. Only partial heat flow also takes place in the unreacted materials. These results show that the usual assumption of total burn in a thermochemical code is probably incorrect, at least in the sonic reaction zone that drives the detonation velocity. A kinetic code would be the logical extension of this work.

  8. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  9. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  10. On detonation wave front structure of consensed high explosives

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Menshikh, A. V.; Yagodin, N. B.

    1998-07-01

    The present report describes detonation front particle velocity profile measurements for three high explosives (HE). Two were plasticized compositions based on PETN, HMX, and the third a TNT/RDX 50/50 mixture. Measurements were carried out using laser interferometry techniques with few nanosecond time resolution. Particle velocity profiles were recorded at HE-window (lithium fluoride [LiF]) interfaces. The detonation waves were diverging since they developed from a single initiation point. Recorded maximum particle velocities at the LiF window interfaces for PETN, HMX, and TNT/RDX mixture were 2.7 mm/μs, 3.15 mm/μs and 2.6 mm/μs, respectively. Duration of chemical reaction zone for HEs based on PETN and HMX were determined. The results of linear extrapolation of recorded particle velocity to zero time are presented, leading to estimates of von Neumann spike parameters for the PETN and HMX compositions.

  11. The influence of structural response on sympathetic detonation

    NASA Technical Reports Server (NTRS)

    Watson, J. L.

    1980-01-01

    The role that a munition's structural response plays in the ignition process and the development of violent reactions and detonations is explored. The munition's structural response is identified as one of the factors that influences reaction violence. If the structural response of a round is known, this knowledge can be used to redstruce the probability that a large explosion would result from the sequential detonation of individual rounds within a large storage array. The response of an acceptor round was studied. The castings fail in the same manner regardless of whether or not there is a fill material present in the round. These failures are caused by stress waves which are transformed from compressive waves to tensile waves by reflection as the impact energy moves around the casting. Since these waves move in opposite directions around the projectile circumference and collide opposite the point of impact, very high tensile forces are developed which can crack the casing.

  12. Detonator response measurements with a standardized piezoelectric polymer (PVDF) guage

    SciTech Connect

    Moore, L.M.; Graham, R.A.; Reed, R.P.; Lee, L.M.

    1989-01-01

    Over the last few years, there has been considerable work in progress to study the features of the piezoelectric polymer film polyvinylidene fluoride (PVDF) under high pressure shock loading. Although full characterization of the material is not complete, it is clear that if the material is prepared with careful attention to the mechanical processing (stretching) and to the electrical processing (electrical poling), that highly reproducible responses can be achieved to shock pressures of over 40 GPa. The purpose of the present study is to characterize the shock-compression response of a 1 mm /times/ 1 mm active area (PVDF) gauge that is subject to standardized gauge-preparation processes. The shock response is studied in both compressed-gas gun, controlled impact loading and in detonator loading configurations. In the present paper, a brief summary of standardization processes will be described followed by a description of the controlled impact loading and the detonator-response measurements. 14 refs., 6 figs., 1 tab.

  13. Far Field Modeling Methods For Characterizing Surface Detonations

    SciTech Connect

    Garrett, A.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed particle samples collected during experiments that were designed to replicate tests of nuclear weapons components that involve detonation of high explosives (HE). SRNL collected the particle samples in the HE debris cloud using innovative rocket propelled samplers. SRNL used scanning electronic microscopy to determine the elemental constituents of the particles and their size distributions. Depleted uranium composed about 7% of the particle contents. SRNL used the particle size distributions and elemental composition to perform transport calculations that indicate in many terrains and atmospheric conditions the uranium bearing particles will be transported long distances downwind. This research established that HE tests specific to nuclear proliferation should be detectable at long downwind distances by sampling airborne particles created by the test detonations.

  14. Molecular dynamics simulations of detonation on the roadrunner supercomputer

    NASA Astrophysics Data System (ADS)

    Mniszewski, Susan; Cawkwell, Marc; Germann, Timothy C.

    2012-03-01

    The temporal and spatial scales intrinsic to a real detonating explosive are extremely difficult to capture using molecular dynamics (MD) simulations. Nevertheless, MD remains very attractive since it allows for the resolution of dynamic phenomena at the atomic scale. Large-scale reactive MD simulations in three dimensions require immense computational resources even when simple reactive force fields are employed. We focus on the REBO force field for 'AB' since it has been shown to support a detonation while being simple, analytic, and short-ranged. The transition from two-to three- dimensional simulations is being facilitated by the port of the REBO force field in the parallel MD code SPaSM to LANL's petaflop supercomputer 'Roadrunner'. We provide a detailed discussion of the challenges associated with computing interatomic forces on a hybrid Opteron/Cell BE computational architecture.

  15. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  16. A Common Initiation Criterion for CL-20 EBW Detonators

    NASA Astrophysics Data System (ADS)

    Valancius, Cole; Garasi, Christopher; O'Malley, Patrick

    2014-11-01

    In an effort to better understand the initiation mechanisms of hexanitrohexaazaisowurtzitane (CL-20) based Exploding Bridgewire (EBW) detonators, a series of studies were performed comparing electrical input parameters and detonator performance. Traditional methods of analysis, such as burst current and action, do not allow performance to be compared across multiple firesets. A new metric, electrical burst energy density (Eρ) , allows an explosive train to be characterized across all possible electrical configurations (different firesets, different sized gold bridges, different cables and cable lengths); by testing one electrical configuration, performance across all others is understood. This discovery has implications for design and surveillance, and for the first time, presents a link between modeling of electrical circuits (such as in ALEGRA) and explosive performance.

  17. Set-valued solutions for non-ideal detonation

    NASA Astrophysics Data System (ADS)

    Semenko, R.; Faria, L. M.; Kasimov, A. R.; Ermolaev, B. S.

    2016-03-01

    The existence and structure of a steady-state gaseous detonation propagating in a packed bed of solid inert particles are analyzed in the one-dimensional approximation by taking into consideration frictional and heat losses between the gas and the particles. A new formulation of the governing equations is introduced that eliminates the difficulties with numerical integration across the sonic singularity in the reactive Euler equations. With the new algorithm, we find that when the sonic point disappears from the flow, there exists a one-parameter family of solutions parameterized by either pressure or temperature at the end of the reaction zone. These solutions (termed "set-valued" here) correspond to a continuous spectrum of the eigenvalue problem that determines the detonation velocity as a function of a loss factor.

  18. Subscale Testing of Prompt Agent Defeat Formulations

    NASA Astrophysics Data System (ADS)

    Milby, Christopher; Stamatis, Demitrios; Daniels, Amber; Svingala, Forrest; Lightstone, Jim; Miller, Kendra; Bensman, Misty; Bohmke, Matthew

    2015-06-01

    There is a need to improve the current bioagent defeat systems with formulations that produce lower peak pressure, impulse, sustained high temperatures, and release of biocidal species for prompt defeat applications. In this work, explosive charge configurations similar to fuel-air explosives were detonated in a semi-enclosed chamber configuration. Binder type and fuel-to-oxidizer ratios were varied to observe the effects on combustion performance. Thermocouple measurements and high-speed video were used to monitor the combustion of the dispersed formulation. The down-selected formulations were then tested in a sub-scale vented agent defeat system developed to evaluate performance of formulations against aerosolized Bacillus thuringiensis (BT) spores. Diagnostics such as thermocouples, piezoelectric pressure gauges, and pyrometry were utilized to characterize the detonation event. Biological sampling with surface coupons, liquid impingement, and filters of the post detonation environment were utilized to determine spore survivability and rank the relative effectiveness of each formulation. Distribution Statement A: Approved for Public Release; Distribution is Unlimited

  19. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1995-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  20. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  1. Deflagration-to-detonation transition in PETN and HMX

    SciTech Connect

    Dinegar, R.H.

    1983-02-01

    The deflagration-to-detonation transition (DDT) can be made to occur in both PETN and HMX. The reaction is sensitive to the degree of subdivision and the compactness of the explosive in which the transition takes place. It apparently happens better with explosives of small specific surface loaded at low density. Experiments using thin metal shims between the donor and transition-explosive charges suggest that transition-explosive compression makes an important contribution to the DDT process.

  2. The unique signal concept for detonation safety in nuclear weapons

    SciTech Connect

    Spray, S.D.; Cooper, J.A.

    1993-06-01

    The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

  3. Numerical simulation of a 100-ton ANFO detonation

    NASA Astrophysics Data System (ADS)

    Weber, P. W.; Millage, K. K.; Crepeau, J. E.; Happ, H. J.; Gitterman, Y.; Needham, C. E.

    2015-03-01

    This work describes the results from a US government-owned hydrocode (SHAMRC, Second-Order Hydrodynamic Automatic Mesh Refinement Code) that simulated an explosive detonation experiment with 100,000 kg of Ammonium Nitrate-Fuel Oil (ANFO) and 2,080 kg of Composition B (CompB). The explosive surface charge was nearly hemispherical and detonated in desert terrain. Two-dimensional axisymmetric (2D) and three-dimensional (3D) simulations were conducted, with the 3D model providing a more accurate representation of the experimental setup geometry. Both 2D and 3D simulations yielded overpressure and impulse waveforms that agreed qualitatively with experiment, including the capture of the secondary shock observed in the experiment. The 2D simulation predicted the primary shock arrival time correctly but secondary shock arrival time was early. The 2D-predicted impulse waveforms agreed very well with the experiment, especially at later calculation times, and prediction of the early part of the impulse waveform (associated with the initial peak) was better quantitatively for 2D compared to 3D. The 3D simulation also predicted the primary shock arrival time correctly, and secondary shock arrival times in 3D were closer to the experiment than in the 2D results. The 3D-predicted impulse waveform had better quantitative agreement than 2D for the later part of the impulse waveform. The results of this numerical study show that SHAMRC may be used reliably to predict phenomena associated with the 100-ton detonation. The ultimate fidelity of the simulations was limited by both computer time and memory. The results obtained provide good accuracy and indicate that the code is well suited to predicting the outcomes of explosive detonations.

  4. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  5. Multi-frame visualization for detonation wave diffraction

    NASA Astrophysics Data System (ADS)

    Nagura, Y.; Kasahara, J.; Matsuo, A.

    2016-09-01

    When a detonation wave emerges from a tube into unconfined space filled with a gas mixture, detonation wave diffraction occurs due to abrupt changes in the cross-sectional area. In the present study, we focused on the local explosion in reinitiation and propagation of a transverse detonation wave by performing comprehensive and direct observation with high time resolution visualization in a two-dimensional rectangular channel. Using the visualization methods of shadowgraph and multi-frame, short-time, open-shutter photography, we determined where the wall reflection point is generated, and also determined where the bright point is originated by the local explosion, and investigated the effects of the deviation angle and initial pressure of the gas mixture. We found that the reinitiation of detonation had two modes that were determined by the deviation angle of the channel. If the deviation angle was less than or equal to 30°, the local explosion of reinitiation might occur in the vicinity of the channel wall, and if the deviation angle was greater than or equal to 60°, the local explosion might originate on the upper side of the tube exit. With a deviation angle greater than 60°, the position of the wall reflection point depended on the cell width, so the radial distance of the wall reflection point from the apex of the tube exit was about 12 times the cell width. Similarly, the bright point (local explosion point) was located a distance of about 11 times the cell width from the apex of the tube exit, with a circumferential angle of 48°.

  6. Multi-frame visualization for detonation wave diffraction

    NASA Astrophysics Data System (ADS)

    Nagura, Y.; Kasahara, J.; Matsuo, A.

    2016-05-01

    When a detonation wave emerges from a tube into unconfined space filled with a gas mixture, detonation wave diffraction occurs due to abrupt changes in the cross-sectional area. In the present study, we focused on the local explosion in reinitiation and propagation of a transverse detonation wave by performing comprehensive and direct observation with high time resolution visualization in a two-dimensional rectangular channel. Using the visualization methods of shadowgraph and multi-frame, short-time, open-shutter photography, we determined where the wall reflection point is generated, and also determined where the bright point is originated by the local explosion, and investigated the effects of the deviation angle and initial pressure of the gas mixture. We found that the reinitiation of detonation had two modes that were determined by the deviation angle of the channel. If the deviation angle was less than or equal to 30°, the local explosion of reinitiation might occur in the vicinity of the channel wall, and if the deviation angle was greater than or equal to 60°, the local explosion might originate on the upper side of the tube exit. With a deviation angle greater than 60°, the position of the wall reflection point depended on the cell width, so the radial distance of the wall reflection point from the apex of the tube exit was about 12 times the cell width. Similarly, the bright point (local explosion point) was located a distance of about 11 times the cell width from the apex of the tube exit, with a circumferential angle of 48°.

  7. Slag Characterization and Removal Using Pulse Detonation for Coal Gasification.

    SciTech Connect

    Hugue, Z; Mei, D.; Biney, P.O.; Zhou, J.; Ali, M.R.

    1997-09-25

    The research activities performed in this quarter (reporting period: 07/01/97- 09/30/97) are summarized as follows: The research activities concentrated on (1) Design, development, and fabrication of a 9 positions (3x3 matrix form) fixture (2) Preparation of the test parameters (3) Multi-cycle detonation wave slag removal test (4) Partial analysis of the test results and (5) Interpretation and discussion of the test results.

  8. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of an optimized, fixed PDRE nozzle configuration is reported. The results are compared to a steady-state rocket system using similar modeling assumptions.

  9. Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE & described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of an optimized, fixed PDRE nozzle configuration is reported. The results are compared to a steady-state rocket system using similar modeling assumptions.

  10. Model determines if falling, live TCP gun will detonate

    SciTech Connect

    Inayat-Hussain, A.A.; Owen, P.J. ); Nuttall, D.E. )

    1992-11-09

    BHP Research has developed a mathematical model to determine if a falling, live tubing-conveyed perforating (TCP) gun assembly will detonate upon impacting the bottom of a well. If the model finds that the falling fun exceeds the critical velocity, the gun assembly dimensions, fluid properties, or casing dimensions should be changed. BHP has successfully used the model to design downhole completions for the Challis oil field in the Timor Sea.

  11. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  12. Projected Response of Typical Detonators to Electrostatic Discharge (ESD) Environments

    SciTech Connect

    Wilson, M J

    2002-12-20

    The purpose of this discussion is to indicate the threshold values for low-order detonator response by using first principles applied to pin-to-pin configurations and associated limits in pin-to-case scenarios. In addition an attempt to define the electrical environment by first principles is shown to be inadequate and indicates the need to define the electrical insult by reasonable standards. A comparison of two accepted electrical models and a combination of the extreme reported levels from both standards are used to establish an extreme set of parameters for a safety assessment. A simplification of the critical electrical insult parameters is then shown and demonstrated to provide the initial screening protocol with easily defined electrical dimensions of action integral. Action integral and the conductive material properties are the basic parameters needed to define the solid, liquid, and gas phases of the material used for detonator bridge wires. The resulting material phases are directly related to detonator response thresholds. The discussion concludes by showing the ability of ESD insults to arc from pin-to-case, the limited knowledge of the associated arc initiation process, and the modeling need for a reasonable arc resistance in pin-to-case scenarios.

  13. The deflagration-to-detonation transition in granular HMX

    SciTech Connect

    McAfee, J.M.; Asay, B.; Campbell, A.W.; Ramsay, J.B.

    1991-01-01

    The transition from deflagration to detonation in porous beds of explosive and propellant has received considerable attention both experimentally and theoretically. In many cases, the use of a hot-gas-producing igniter complicates the interpretation and subsequent modeling of experiments because considerable effort is required to account for the effect of the igniter gases on the granular bed. Hot-wire ignition is less intrusive; however, the ignition front is not planar. Thus the early events in these experiments cannot be approximated as one-dimensional. We have studied the deflagration-to-detonation behavior of granular HMX confined in steel tubes with x-radiography, light emission, stress gauges, and various pin techniques. Simplification and consistency of results were obtained by igniting the HMX with a piston (initially at rest and in contact with the HMX) driven into the bed. A gasless igniter is used to stare the burning of the piston propellant (low-density HMX) providing the piston with a smooth initial motion. Analysis of the data gives a detailed picture of the DDT process under these conditions. The qualitative and quantitative experimental results show the transition from the burning to detonation is discontinuous. The results are discussed in terms of a descriptive model.

  14. DDT Characteristics of Laser Driven Exploding Bridgewire Detonators

    NASA Astrophysics Data System (ADS)

    Welle, Eric

    2005-07-01

    The initiation and performance characteristics of Laser Exploding Bridgewire (LEBW) detonators loaded with CL-20, CP and BNCP were examined. LEBW devices, in name, as well as in function, exhibit similarities to their electrically driven counterparts with the exception that the means for energy deposition into the driving metal media results from photon absorption instead of electrical joule heating. CP and BNCP were chosen due to their well-known propensity to rapidly undergo a deflagration-to-detonation transition (DDT) and CL-20 was chosen to explore its utility as a DDT explosive. The explosive loading within the LEBW detonators were similar in nature to traditional EBW devices with regard to %TMD loading of the initial increment as well as quantity of energetic materials. Comparisons of the energy fluences required for initiation of the explosives will be discussed. Additionally, streak camera measurements will be reviewed that were conducted at what would be considered ``hard-fire'' fluence levels as well as conditions closer to the mean firing fluence levels of initiation.

  15. Linear and nonlinear effects in detonation wave structure formation

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2016-06-01

    The role of linear and nonlinear effects in the process of formation of detonation wave structure is investigated using linear stability analysis and direct numerical simulation. A simple model with a one-step irreversible chemical reaction is considered. For linear stability computations, both the local iterative shooting procedure and the global Chebyshev pseudospectral method are employed. Numerical simulations of 1D pulsating instability are performed using a shock fitting approach based on a 5th order upwind-biased compact-difference discretization and a shock acceleration equation deduced from the Rankine-Hugoniot conditions. A shock capturing WENO scheme of the 5th order is used to simulate propagation of detonation wave in a plane channel. It is shown that the linear analysis predicts correctly the mode dominating on early stages of flow evolution and the size of detonation cells which emerge during these stages. Later, however, when a developed self-reproducing cellular structure forms, the cell size is approximately doubled due to nonlinear effects.

  16. High and low velocity detonation in a highly insensitive explosive

    NASA Astrophysics Data System (ADS)

    Sandusky, H. W.; Hayden, H. F.

    2014-05-01

    Low-velocity detonation (LVD) in a solid explosive from input shocks below the threshold for high-velocity detonation (HVD) had been previously reported for PBXN-109 in two gap tests with sample diameters of 36.5 and 73.0 mm. Similar phenomenon has now been observed for the highly insensitive PBXIH-140, whose critical diameter of ~100 mm required an even larger gap test with a sample diameter of 178 mm. When just exceeding the critical gap for HVD, LVD propagated at similar velocities as in PBXN-109 and would punch clean holes in a witness plate like HVD. For somewhat greater gaps, there was enough shock reaction to drive LVD at constant but reduced velocities as the input shock decreased to ~ ½ of critical. With a different formulation now exhibiting LVD, it may be more prevalent than previously realized. It is speculated to occur in various confinements when small percentages of easily detonable ingredients fail to initiate the remainder of less shock sensitive ingredients.

  17. Numerical study of detonation transmission in mixtures containing chemical inhibitors

    NASA Astrophysics Data System (ADS)

    Papalexandris, M. V.

    2012-05-01

    In this article, we report on numerical simulations of the evolution of gaseous detonation waves in mixtures that contain chemical inhibitors. In general, these are compounds that consume the radicals that are produced during combustion, thereby inhibiting the exothermic chain-terminating reaction. Also, some of them participate in endothermic reactions, such as dissociation. These properties make them very efficient flame suppressants. In this study, we employ a chemical kinetics model that consists of a three-step chain-branching mechanism for the fuel combustion and a one-step mechanism for the reaction between inhibitor and radicals. Results from both one- and two-dimensional simulations are presented and discussed. It is shown that radical consumption and heat absorption due to the inhibitor's reaction result in longer induction zones. This, in turn, leads to a detachment of the reaction zone from the precursor shock. For small and medium inhibitor concentrations, this detachment is temporary. Eventually, the radical concentration behind the induction zone becomes sufficient to initiate rapid fuel consumption, thus producing pressure waves which reach the precursor shock and re-ignite the detonation. This is followed by large over-pressures and highly irregular oscillations of the shock. Nonetheless, sufficiently high inhibitor concentrations can yield permanent detonation quenching.

  18. Equation of state, initiation, and detonation of pure ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, D. L.; Sheffield, S. A.; Dattelbaum, D. M.; Velisavljevic, N.; Stahl, D. B.

    2009-06-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive throughout the world. One of the more common explosives using AN is called ANFO, a mixture of AN prills and fuel oil in a 94:6 ratio by weight. The AN prills are specially made to absorb the fuel oil, forming a mixture that reacts under shock loading through a diffusion-controlled process, resulting in a non-ideal explosive with detonation velocities around 4 km/s. While there are a number of studies on ANFO, there are only a few studies relating to the equation of state (EOS) and detonation properties of pure AN - resulting mainly from studies of accidents that have occurred during transportation of large quantities of AN. We present the results of a series of gas gun-driven plate impact experiments on pressed AN ranging in density from 1.72 to 0.9 g/cm^3. Several of the high density experiments were performed in front surface impact geometry, in which pressed AN disks were built into the projectile front and impacted onto LiF windows. Additional experiments at low density have been done in ``half cell'' multiple magnetic gauge gun experiments. From this work a complete unreacted EOS has been developed, as well as some initiation and detonation information. Additional high pressure x-ray diffraction experiments in diamond anvil cells have provided a static isotherm for AN.

  19. Sensitivity and Uncertainty in Detonation Shock Dynamics Parameterization

    NASA Astrophysics Data System (ADS)

    Chiquete, Carlos; Short, Mark; Jackson, Scott

    2013-06-01

    Detonation shock dynamics (DSD) is the timing component of an advanced programmed burn model of detonation propagation in high explosives (HE). In DSD theory, the detonation-driving zone is replaced with a propagating surface in which the surface normal velocity is a function of the local surface curvature, the so-called Dn - κ relation for the HE. This relation is calibrated by assuming a functional form relating Dn and κ, and then fitting the function parameters via minimization of a weighted error function of residuals based on shock-shape curves and a diameter effect curve. In general, for a given HE, the greater the available shock-shape data at different rate-stick radii, the less the uncertainty in the DSD fit. For a wide range of HEs, however, no shock shape data is available, and DSD calibrations must be based on diameter effect data alone. With this limited data, potentially large variations in the DSD parameters can occur that fit the diameter effect curve to within a given residual error. We explore uncertainty issues in DSD parameterization when limited calibration data is available and the implications of the resulting sensitivities in timing, highlighting differences between ideal, insensitive and non-ideal HEs such as Cyclotol, IMX-104 and ANFO.

  20. Density Effect on Detonation Reaction Zone Length in Solid Explosives

    NASA Astrophysics Data System (ADS)

    Lubyatinsky, S. N.; Loboiko, B. G.

    1997-07-01

    Density effect on detonation reaction zone length have been studied on RDX and PETN using a photoelectric technique to record the radiation intensity history of the shock front in chloroform placed on the charge face. Charge density was found to drastically affect the reaction zone length as well as the charge appearance. The charges pressed to 0.92 of crystal density were completely opaque and exhibited the von Neumann spike of 0.3 mm in length, typical for high explosives. The charges solvent-pressed to 0.99 of crystal density were agated (semi-transparent, resembling agates) and did not exhibited the von Neumann spike, which implies that its length did not exceed 0.03 mm. The following explanation was offered. In agated, practically non-porous, charges the detonation front is a strong plane shock inducing almost instant reaction. In charges consisting of separate crystals the detonation front becomes three-dimensional. As a result some fraction of explosive is compressed by a sequence of shocks almost isentropically and reacts relatively slowly, so that it can be measured.

  1. Shock and Detonation Physics at Los Alamos National Laboratory

    SciTech Connect

    Robbins, David L; Dattelbaum, Dana M; Sheffield, Steve A

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  2. Equations of state of detonation products: ammonia and methane

    NASA Astrophysics Data System (ADS)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  3. A Kinetic Approach to Propagation and Stability of Detonation Waves

    NASA Astrophysics Data System (ADS)

    Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.

    2008-12-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.

  4. Post-Detonation Energy Release from TNT-Aluminum Explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Anderson, John; Yoshinaka, Akio

    2007-06-01

    Detonation and post-detonation energy release from TNT and TNT-aluminum composite have been experimentally studied in an air-filled chamber, 26 m^3 in volume and 3 m in diameter. While TNT has a high oxygen deficiency, experiments with 1.1 kg to 4 kg charges yield energy releases reaching only 86% of theoretical equilibrium values, possibly due to the non-uniform mixing between the detonation products and air. In order to improve mixing and further increase afterburning energy, large mass fractions of large aluminum particles are combined with TNT. The effect of particle distribution is also investigated in two composite configurations, whereby the aluminum particles are uniformly mixed in cast TNT or arranged in a shell surrounding a TNT cylinder. It is shown that the TNT-aluminum composite outperforms pure TNT, while improved performance is achieved for the shell configuration due to enhanced spatial mixing of hot fuels with oxidizing gases. Comparisons with the equilibrium theory and a liquid-based aluminized composite explosive (with an oxygen deficiency less than that of TNT) are conducted to further explore the mixing and afterburning mechanism.

  5. Effects of high activation energies on acoustic timescale detonation initiation

    NASA Astrophysics Data System (ADS)

    Regele, J. D.; Kassoy, D. R.; Vasilyev, O. V.

    2012-08-01

    Acoustic timescale Deflagration-to-Detonation Transition (DDT) has been shown to occur through the generation of compression waves emitted by a hot spot or reaction centre where the pressure and temperature increase with little diminution of density. In order to compensate for the multi-scale nature of the physico-chemical processes, previous numerical simulations in this area have been limited to relatively small activation energies. In this work, a computational study investigates the effect of increased activation energy on the time required to form a detonation wave and the change in behaviour of each hot spot as the activation energy is increased. The simulations use a localised spatially distributed thermal power deposition of limited duration into a finite volume of reactive gas to facilitate DDT. The Adaptive Wavelet-Collocation Method is used to solve efficiently the 1-D reactive Euler equations with one-step Arrhenius kinetics. The DDT process as described in previous work is characterised by the formation of hot spots during an initial transient period, explosion of the hot spots and creation of an accelerating reaction front that reaches the lead shock and forms an overdriven detonation wave. Current results indicate that as the activation energy is raised the chemical heat release becomes more temporally distributed. Hot spots that produce an accelerating reaction front with low activation energies change behaviour with increased activation energy so that no accelerating reaction front is created. An acoustic timescale ratio is defined that characterises the change in behaviour of each hot spot.

  6. Band-overlap metallization of BaS, BaSe and BaTe

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Wilkins, J. W.

    1983-01-01

    The insulator-metal transition volumes for BaS, BaSe, and BaTe are calculated for the first time, using the self-consistent augmented spherical wave technique. The metallized transition volumes are smaller than those corresponding to the NaCl yields CsCl structural transitions, but, 10 to 15% larger than those obtained by the Herzfeld dielectric theory. The calculated equilibrium energy gaps in the NaCl structure underestimate the measured ones by 50 to 60%.

  7. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    SciTech Connect

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  8. Preparation of C60 by Detonation a Mixture of Trinitrotoluene and Graphite

    NASA Astrophysics Data System (ADS)

    Wei, Xianfeng; Han, Yong; Liu, Liu; Long, Xinping

    2013-01-01

    To explore the practicability of C60 synthesis under extreme conditions (high pressure and high temperature), trinitrotoluene (TNT), trinitramine (RDX) and graphite mixtures of different proportions were detonated in a vacuum container, and the detonation products were collected for detecting. The results of mass spectroscopy, high performance liquid chromatography showed significant signals of C60, which proved that C60 could be synthesized by detonating the mixture of TNT and graphite (in 6:4 and 7:3 mass ratio, respectively), the detonation pressure and temperature were calculated around 13 GPa and 2000 K, respectively. Both experiment results and theoretical analysis showed the importance of detonation pressure and cooling temperature in detonation synthesis of C60.

  9. Detonation Initiation by Gradient Mechanism in Propane--Oxygen and Propane--Air Mixtures

    NASA Astrophysics Data System (ADS)

    Rakitin, Aleksandr; Popov, Ilya; Starikovskiy, Andrey; neqlab Team

    2011-10-01

    An experimental study of detonation initiation by high-voltage nanosecond gas discharge has been performed in smooth detonation tubes. A gradient mechanism was used to initiate detonations in stoichiometric propane-oxygen mixtures with different nitrogen dilution and in propane-air mixtures. Initial pressures from 0.2 to 1bar have been tested. Detonation was formed within 4 transverse tube sizes at initial pressures higher than 0.2 bar for the propane-oxygen mixture and higher than 0.8 bar for the diluted mixture with 40% of nitrogen. The discharge energy inputs were 0.2-0.3 J. The gradient mechanism of detonation formation similar to the one suggested by Zeldovich has been shown to be the governing process. For the mixture with air, a detonation tube with an annular discharge chamber has been designed and tested.

  10. A study of deflagration and detonation in multiphase hydrocarbon-air mixtures

    SciTech Connect

    Smirnov, N.N.; Tyurnikov, M.V. . Dept. of Mechanics and Mathematics)

    1994-01-01

    This article represents a theoretical and experimental study of the problems of deflagration and detonation structure in heterogeneous media, which contains an oxidant in the gaseous phase and fuel in the form of either dispersed droplets in the oxidant flow or a thin film on the chamber walls. Detonation in such systems is shown to have a complex unsteady-state structure: the detonation front can exhibit mobile discontinuities and can pulsate periodically. A physical model of pulsating and spin detonation in heterogeneous media is developed. A system of governing equations with boundary conditions is composed that makes it possible to simulate mathematically the transition of deflagration to detonation. The transition process and the initiation of detonation are calculated numerically and studied experimentally. The comparison shows good agreement of theoretical and experimental results.

  11. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    NASA Astrophysics Data System (ADS)

    Ciccarelli, G.; Cross, M.

    2016-06-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  12. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    NASA Astrophysics Data System (ADS)

    Ciccarelli, G.; Cross, M.

    2016-09-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  13. Model of low-thrust pulse detonation device with valveless fuel feed

    NASA Astrophysics Data System (ADS)

    Baklanov, D. I.; Golovastov, S. V.; Golub, V. V.; Semin, N. V.; Volodin, V. V.

    2009-09-01

    A model pulse detonation engine of low thrust is designed. A valveless fuel and oxidant feed was used to fill a combustion chamber. The detonation was formed in the flow of mixed fuel and oxidant. The influence of oxidant on the engine operation mode, the influence of ring obstacles and prechambers on deflagration-to-detonation transition (DDT), and the influence of fuel on engine output parameters were investigated. Air-hydrogen and air-hydrocarbon mixtures were used.

  14. Numerical studies of shock focusing induced by reflection of detonation waves within a hemispherical implosion chamber

    NASA Astrophysics Data System (ADS)

    Hatanaka, K.; Saito, T.; Takayama, K.

    2012-11-01

    The initiation and the propagation of detonation waves in a hemispherical chamber and the imploding shock waves that are the reflected detonation waves at the chamber wall are numerically investigated. The effects of the boundary layer and the non-uniformity of the flow field induced by the detonation wave on the imploding shock stability are examined. It is found that the effect of the boundary layer separation on the chamber wall has the strongest effect on the implosion focus.

  15. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  16. Attenuation of a hydrogen-air detonation by acoustic absorbing covering

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu; Golovastov, S. V.; Golub, V. V.; Ivanov, K. V.; Korobov, A. E.

    2015-11-01

    Using of sound-absorbing surfaces to weaken and decay of a detonation wave in hydrogen-air mixtures was investigated experimentally. Experiments were carried out in a cylindrical detonation tube open at one end. Initiation of the explosive mixture was carried out by a spark discharge, which is located at the closed end of the detonation tube. Acoustical sound absorbing foam element of a specific weight of 0.035 g/cm3 with open pores of 0.5 mm was used. The degree of attenuation of the intensity of the detonation wave front was determined.

  17. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  18. Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Nordeen, C. A.; Schwer, D.; Schauer, F.; Hoke, J.; Barber, T.; Cetegen, B. M.

    2016-07-01

    Rotating detonation engines have the potential to achieve the high propulsive efficiencies of detonation cycles in a simple and effective annular geometry. A two-dimensional Euler simulation is modified to include mixing factors to simulate the imperfect mixing of injected reactant streams. Contrary to expectations, mixing is shown to have a minimal impact on performance. Oblique detonation waves are shown to increase local stream thermal efficiency, which compensates for other losses in the flow stream. The degree of reactant mixing is, however, a factor in controlling the stability and existence of rotating detonations.

  19. Numerical modelling of the gas detonation process of sheet metal forming

    NASA Astrophysics Data System (ADS)

    Patil, Sandeep P.; Popli, Madhur; Jenkouk, Vahid; Markert, Bernd

    2016-08-01

    Gas detonation forming is an unconventional technique, which has the potential to form complex geometries, including sharp angles and undercuts in a very short process time. To date, most of the numerical studies on detonation forming neglect the highly dynamic pressure profile of the detonation obtained from experiments. In the present work, it is emphasised that the consideration of the actual detonation pressure as measured in the experiment is crucial. The thickness distribution and radial strain are studied using a strain-rate dependent Johnson-Cook material model. The obtained results vary significantly with change in loading rate. Moreover, the model is capable of predicting extremely sharp edges.

  20. Detonation wave velocity and curvature of IRX-4 and PBXN-110

    NASA Astrophysics Data System (ADS)

    Lemar, E. R.; Forbes, J. W.; Sutherland, G. T.

    1996-05-01

    Detonation velocities and wave front curvatures were measured for bare cylindrical charges of IRX-4 and PBXN-110 charges. Steady detonation waves propagated in IRX-4 charges with diameters as small as 33 mm. The failure diameter of IRX-4 is between 25 and 33 mm. A fit of detonation velocity data gives 5.83 mm/μs for IRX-4's infinite diameter velocity. Detonation wave curvature experiments have been done on 48 mm diameter cylindrical IRX-4 charges with lengths from 9 to 28 cm. The data have been fitted accurately over the entire charge diameters using the natural logarithm of a Bessel function.

  1. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  2. Application of a Schlieren diagnostic to the behavior of exploding bridge wire and laser detonators

    SciTech Connect

    Murphy, Michael J; Clarke, Steven A; Munger, Alan C; Thomas, Keith A

    2009-01-01

    Even though the exploding bridge wire (EBW) detonator has been in use for over 60 years, there are still discussions about the mechanism for achieving detonation. Los Alamos has been developing a high-power laser detonator to function in a manner similar to an EBW. Schlieren imaging techniques are applied to laser-driven detonator output in polydimethylsiloxane (POMS) samples to investigate the time-dependent geometry of the shock wave and to obtain instantaneous measurements of shock-front velocity. Velocity Hugoniot data are used to convert measured shock velocities to corresponding particle velocities, allowing instantaneous shock pressures to be obtained via Rankine-Hugoniot relations across the shock.

  3. Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)

    SciTech Connect

    Francois, Elizabeth Green; Morris, John S; Novak, Alan M; Kennedy, James E

    2010-01-01

    Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to density gradients, pressing methods and geometry can be seen on the wave breakout behavior.

  4. Experimental Study on DDT Characteristics in Spiral Configuration Pulse Detonation Engines

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Qiu, Hua; Fan, Wei; Xiong, Cha

    2013-09-01

    This work investigated features of the deflagration to detonation transition in a curved tube. A number of experiments were performed to acquire the transition rule of DDT, which would provide the design data and theoretical basis for the curved detonation chamber. The content of research is as follows: (1) Flow resistance experiments of nine detonation chambers have been explored. The results show that the spiral configuration can reduce the axial length of DC, and the total pressure recovery coefficient increases with the spiral pitch. (2) Single-cycle detonation experiments have been conducted using the 9 tubes in the resistance experiments. Liquid-gasoline/air is used as the detonative mixture in all the experiments. The detonation experimental results indicate that there is no detonation wave formed in the straight tube, but in all the selected spiral tubes fully-developed detonation waves have been obtained; compared to the straight tube case, the DDT time decrease with the decreasing of the radius of curvature (RC) by 6.2%˜19.8% in the spiral detonation tubes.

  5. Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Y.; Mazaheri, K.; Parvar, S.

    2013-10-01

    The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer-Meshkov instability (RMI) and Kelvin-Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier-Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer-Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.

  6. Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Kindracki, J.; Kobiera, A.; Wolański, P.; Gut, Z.; Folusiak, M.; Swiderski, K.

    2011-10-01

    Experimental and numerical study of rotating detonation is presented. The experimental study is focused on the evaluation of the geometry of the detonation chamber and the conditions at which the rotating detonation can propagate in cylindrical channels. Lean hydrogen-air mixtures were tested in the experiments. The pressure measured at different locations was used to check the detonative nature of combustion. Also, the relationship between detonation velocity and operation conditions is analyzed in the paper. The experimental study is accompanied with numerical analysis. The paper briefly presents the results of two-dimensional (2D) numerical simulation of detonative combustion. The detonating mixture is created by mixting hydrogen with air. The air is injected axially to the chamber and hydrogen is injected through the inner wall of the chamber in radial direction. Application of proper injection conditions (pressure and nozzle area) allows establishing a stable rotating detonation like in the experiments. The detonation can be sustained for some range of conditions which are studied herein. The analysis of mean parameters of the process is provided as well. The numerical simulation results agree well with the experiments.

  7. Determining the Source of Oxygen in Post-Detonation Combustion of Aluminum

    NASA Astrophysics Data System (ADS)

    Monat, Jeremy; Carney, Joel; Lightstone, James; Shimizu, Nobumichi

    2011-06-01

    Aluminum is often added to explosive formulations in the form of micron-sized particles to increase the energy released. Aluminum particles combust by reacting with oxidizers from the detonation products (such as CO) and the surrounding atmosphere (O2) . Quantifying the oxygen contribution from these sources is important for improved modeling and formulation. This work will determine the ratio of oxygen from detonation products to oxygen from the atmosphere using isotopic labeling. We detonated a 10-20 g aluminum-containing explosive formulation in a simulated air atmosphere where the oxygen was 18O2. We collected the solid detonation products after detonation and analyzed them using secondary ion mass spectrometry (SIMS) to measure the ratio of 18O to 16O and thus the percentage of oxygen of aluminum combustion from the detonation products versus from the atmosphere. Preliminary results of detonations performed in a rigid chamber showed ~60% of the oxygen came from the atmosphere. In further experiments, we will create a free-field condition by performing detonations in flexible, thin-walled plastic spheres of known radius containing an 18O2-enriched air atmosphere. We will then isolate the post-detonation aluminum oxide and determine the oxygen isotope ratio using SIMS analysis.

  8. Transmission of Thermonuclear Detonations through Layers of Burned Material in Carbon-Oxygen White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gamezo, V. N.; Oran, E. S.

    2006-06-01

    In three-dimensional delayed-detonation models of type Ia supernovae, detonations propagate through funnels of degenerate carbon-oxygen matter that are left unburned by turbulent deflagrations in central parts of a white dwarf. Some of these funnels can be disconnected from the rest of the unburned material, thus creating unburned pockets that cannot be directly reached by a detonation wave. These pockets may or may not ignite when strong shocks generated by detonations reach them through layers of burned material. In this work, we study the detonation transmission phenomena in exploding white dwarfs using one-dimensional time-dependent numerical simulations based on reactive Euler equations. The thermonuclear burning of carbon-oxygen mixture is modeled by a 13-nuclei alpha network. We use a steady-state solution for the reaction-zone structure of a one-dimensional detonation wave as an initial condition. Time-dependent computations performed for a fully resolved carbon reaction scale show that a detonation shock passing through a layer of burned material can initiate a new detonation or decay. The critical thickness of burned material that allows the detonation reignition is a function of density. This work was supported in part by the NASA ATP program (NRA-02-OSS-01-ATP) and by the Naval Research Laboratory (NRL) through the Office of Naval Research.

  9. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  10. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  11. Exhaust Nozzle for a Multitube Detonative Combustion Engine

    NASA Technical Reports Server (NTRS)

    Bratkovich, Thomas E.; Williams, Kevin E.; Bussing, Thomas R. A.; Lidstone, Gary L.; Hinkey, John B.

    2004-01-01

    An improved type of exhaust nozzle has been invented to help optimize the performances of multitube detonative combustion engines. The invention is applicable to both air-breathing and rocket engines used to propel some aircraft and spacecraft, respectively. In a detonative combustion engine, thrust is generated through the expulsion of combustion products from a detonation process in which combustion takes place in a reaction zone coupled to a shock wave. The combustion releases energy to sustain the shock wave, while the shock wave enhances the combustion in the reaction zone. The coupled shockwave/reaction zone, commonly referred to as a detonation, propagates through the reactants at very high speed . typically of the order of several thousands of feet per second (of the order of 1 km/s). The very high speed of the detonation forces combustion to occur very rapidly, thereby contributing to high thermodynamic efficiency. A detonative combustion engine of the type to which the present invention applies includes multiple parallel cylindrical combustion tubes, each closed at the front end and open at the rear end. Each tube is filled with a fuel/oxidizer mixture, and then a detonation wave is initiated at the closed end. The wave propagates rapidly through the fuel/oxidizer mixture, producing very high pressure due to the rapid combustion. The high pressure acting on the closed end of the tube contributes to forward thrust. When the detonation wave reaches the open end of the tube, it produces a blast wave, behind which the high-pressure combustion products are expelled from the tube. The process of filling each combustion tube with a detonable fuel/oxidizer mixture and then producing a detonation repeated rapidly to obtain repeated pulses of thrust. Moreover, the multiple combustion tubes are filled and fired in a repeating sequence. Hence, the pressure at the outlet of each combustion tube varies cyclically. A nozzle of the present invention channels the

  12. Design and optimization of a deflagration to detonation transition (ddt) section

    NASA Astrophysics Data System (ADS)

    Romo, Francisco X.

    Throughout the previous century, hydrocarbon-fueled engines have used and optimized the `traditional' combustion process called deflagration (subsonic combustion). An alternative form of combustion, detonation (supersonic combustion), can increase the thermal efficiency of the process by anywhere from 20 - 50%. Even though several authors have studied detonation waves since the 1890's and a plethora of papers and books have been published, it was not until 2008 that the first detonation-powered flight took place. It lasted for 10 seconds at 100 ft. altitude. Achieving detonation presents its own challenges: some fuels are not prone to detonate, severe vibrations caused by the cyclic nature of the engine and its intense noise are some of the key areas that need further research. Also, to directly achieve detonation either a high-energy, bulky, ignition system is required, or the combustion chamber must be fairly long (5 ft. or more in some cases). In the latter method, a subsonic flame front accelerates within the combustion chamber until it reaches supersonic speeds, thus detonation is attained. This is called deflagration-todetonation transition (DDT). Previous papers and experiments have shown that obstacles, such as discs with an orifice, located inside the combustion chamber can shorten the distance required to achieve detonation. This paper describes a hands-on implementation of a DDT device. Different disc geometries inside the chamber alter the wave characteristics at the exit of the tube. Although detonation was reached only when using pure oxygen, testing identified an obstacle configuration for LPG and air mixtures that increased pressure and wave speed significantly when compared to baseline or other obstacle configurations. Mixtures of LPG and air were accelerated to Mach 0.96 in the downstream frame of reference, which would indicate a transition to detonation was close. Reasons for not achieving detonation may include poor fuel and oxidizer mixing

  13. Ba isotopic signature for early differentiation between Cs and Ba in natural fission reactors

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroshi; Gauthier-Lafaye, François

    2008-08-01

    Ba isotopic studies of the Oklo and Bangombé natural fission reactors in east Gabon provide information on the geochemical behavior of radioactive Cs ( 135Cs and 137Cs) in a geological medium. Large isotopic deviations derived from fissiogenic Ba were found in chemical leachates of the reactor uraninites. The fissiogenic Ba isotopic patterns calculated by subtracting the non-fissiogenic component are classified into three types that show different magnifications of chemical fractionation between Cs and Ba. In addition, the isotopic signatures of fissiogenic 135Ba, 137Ba and 138Ba suggest an early differentiation between Cs and Ba of less than 20 years after the production of fissiogenic Cs and Ba. On the other hand, only small excesses of 135Ba ( ɛ < +1.8) and/or 137Ba ( ɛ < +1.3) were identified in some clay samples, which might have resulted from selective adsorption of 135Cs and 137Cs that migrated from the reactors by differentiation.

  14. Plasma-assisted ignition and deflagration-to-detonation transition.

    PubMed

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  15. Preliminary Studies of a Pulsed Detonation Rocket Engine

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Adelman, H. G.; Menees, G. P.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    In the new era of space exploration, there is a strong need for more efficient, cheaper and more reliable propulsion devices. With dramatic increase in specific impulse, the overall mass of fuel to be lifted into orbit is decreased, and this leads, in turn, to much lower mass requirements at lift-off, higher payload ratios and lower launch costs. The Pulsed Detonation engine (PDE) has received much attention lately due to its unique combination of simplicity, light-weight and efficiency. Current investigations focus principally on its use as a low speed, airbreathing engine, although other applications have also been proposed. Its use as a rocket propulsion device was first proposed in 1988 by the present authors. The superior efficiency of the Pulsed Detonation Rocket Engine (PDRE) is due to the near constant volume combustion process of a detonation wave. Our preliminary estimates suggest that the PDRE is theoretically capable of achieving specific impulses as high as 720 sec, a dramatic improvement over the current 480 sec of conventional rocket engines, making it competitive with nuclear thermal rockets. In addition to this remarkable efficiency, the PDRE may eliminate the need for high pressure cryogenic turbopumps, a principal source of failures. The heat transfer rates are also much lower, eliminating the need for nozzle cooling. Overall, the engine is more reliable and has a much lower weight. This paper will describe in detail the operation of the PDRE and calculate its performance, through numerical simulations. Engineering issues will be addressed and discussed, and the impact on mission profiles will also be presented. Finally, the performance of the PDRE using in-situ resources, such as CO and O2 from the martian atmosphere, will also be computed.

  16. Plasma-assisted ignition and deflagration-to-detonation transition.

    PubMed

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation. PMID:22213667

  17. New diagnostics for the characterization of slapper detonators

    SciTech Connect

    Von Holle, W.G.; Lee, R.E.; Chau, H.

    1988-03-01

    A series of experiments has been conducted to characterize the condition of small slappers (flyers), used in detonators, at the time they impact. Flyer shape was determined by a new technique employing electronic streak-camera results in two orthogonal directions and a computer program to reconstruct a three-dimensional view of the flyer. Flyer thickness was inferred from Fabry-Perot interferometer measurements of the velocity history of a flyer/witness-block interface. Finally, recovery of flyers launched into air indicates that they remain intact throughout their flight. 5 refs., 10 figs.

  18. Deflagration-to-Detonation Transition in Unconfined Media

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei; Gardiner, Thomas; Oran, Elaine

    2011-11-01

    Deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems on Earth to astrophysical thermonuclear supernovae explosions. In recent years, substantial progress has been made in elucidating the nature of this process in confined systems with walls, obstacles, etc. It remains unclear, however, whether a subsonic turbulent flame in an unconfined environment can undergo a DDT. We present simulations of premixed flames in stoichiometric H2-air and CH4-air mixtures interacting with high-intensity turbulence. These calculations demonstrate the DDT in unconfined systems unassisted by shocks or obstacles. We discuss the mechanism of this process and its implications.

  19. Calcium rich transients: tidal detonations of white dwarfs?

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas

    2013-09-01

    We propose for a 40 kilosecond TOO observation of a new Ca-rich gap transient. These enigmatic objects, with properties intermediate between those of classical novae and Type Ia supernovae, can be well-explained by tidal detonations of low mass white dwarfs by intermediate mass black holes. In such a case, fall-back accretion of the tidal debris would power an X-ray source for which we propose to search. Because supermassive black holes will swallow white dwarfs whole, a successful outcome to this proposal would both explain the Ca-rich gap transients *and* establish the existence of intermediate mass black holes.

  20. MK-82 bomb characterization for the sympathetic detonation study

    SciTech Connect

    Lucht, R.A.; Hantel, L.W.

    1988-01-01

    Optical, radiographic, and electronic pin techniques were used to evaluate the fragmentation of tail- and side-initiated MK-82 MOD 1 general purpose bombs. They were found to contain large voids, randomly located from bomb to bomb, in the Tritonal explosive fill. Characteristics of the void-side performance of the bomb were found to be as much as 10% different from the nonvoid side and were much less reproducible than the characteristics of the nonvoid side. The data collected will be useful in evaluating sympathetic detonation mitigation systems designed for use with the bombs. 12 figs., 3 tabs.