Science.gov

Sample records for agents including bacteria

  1. Whole-Genome Sequence of Pseudomonas fluorescens EK007-RG4, a Promising Biocontrol Agent against a Broad Range of Bacteria, Including the Fire Blight Bacterium Erwinia amylovora

    PubMed Central

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke

    2017-01-01

    ABSTRACT Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. PMID:28360179

  2. Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions

    PubMed Central

    Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel

    2011-01-01

    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274

  3. Susceptibility of Select Agents to Predation by Predatory Bacteria

    PubMed Central

    Russo, Riccardo; Chae, Richard; Mukherjee, Somdatta; Singleton, Eric J.; Occi, James L.; Kadouri, Daniel E.; Connell, Nancy D.

    2015-01-01

    Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus) strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus) ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey. PMID:27682124

  4. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand.

    PubMed

    Stott, Matthew B; Crowe, Michelle A; Mountain, Bruce W; Smirnova, Angela V; Hou, Shaobin; Alam, Maqsudul; Dunfield, Peter F

    2008-08-01

    We examined bacterial diversity of three geothermal soils in the Taupo Volcanic Zone of New Zealand. Phylogenetic analysis of 16S rRNA genes recovered directly from soils indicated that the bacterial communities differed in composition and richness, and were dominated by previously uncultured species of the phyla Actinobacteria, Acidobacteria, Chloroflexi, Proteobacteria and candidate division OP10. Aerobic, thermophilic, organotrophic bacteria were isolated using cultivation protocols that involved extended incubation times, low-pH media and gellan as a replacement gelling agent to agar. Isolates represented previously uncultured species, genera, classes, and even a new phylum of bacteria. They included members of the commonly cultivated phyla Proteobacteria, Firmicutes, Thermus/Deinococcus, Actinobacteria and Bacteroidetes, as well as more-difficult-to-cultivate groups. Isolates possessing < 85% 16S rRNA gene sequence identity to any cultivated species were obtained from the phyla Acidobacteria, Chloroflexi and the previously uncultured candidate division OP10. Several isolates were prevalent in 16S rRNA gene clone libraries constructed directly from the soils. A key factor facilitating isolation was the use of gellan-solidified plates, where the gellan itself served as an energy source for certain bacteria. The results indicate that geothermal soils are a rich potential source of novel bacteria, and that relatively simple cultivation techniques are practical for isolating bacteria from these habitats.

  5. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  6. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  7. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  8. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  9. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  10. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  11. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents.

    PubMed

    Park, Sung Jean; Son, Woo Sung; Lee, Bong-Jin

    2013-06-01

    The bacterial toxin-antitoxin (TA) system is a module that may play a role in cell survival under stress conditions. Generally, toxin molecules act as negative regulators in cell survival and antitoxin molecules as positive regulators. Thus, the expression levels and interactions between toxins and antitoxins should be systematically harmonized so that bacteria can escape such harmful conditions. Since TA systems are able to control the fate of bacteria, they are considered potent targets for the development of new antimicrobial agents. TA systems are widely prevalent with a variety of systems existing in bacteria: there are three types of bacterial TA systems depending on the property of the antitoxin which binds either the protein toxin or mRNA coding the toxin protein. Moreover, the multiplicity of TA genes has been observed even in species of bacteria. Therefore, knowledge on TA systems such as the individual characteristics of TA systems, integrative working mechanisms of various TA systems in bacteria, interactions between toxin molecules and cellular targets, and so on is currently limited due to their complexity. In this regard, it would be helpful to know the structural characteristics of TA modules for understanding TA systems in bacteria. Until now, 85 out of the total structures deposited in PDB have been bacterial TA system proteins including TA complexes or isolated toxins/antitoxins. Here, we summarized the structural information of TA systems and analyzed the structural characteristics of known TA modules from several bacteria, especially focusing on the TA modules of several infectious bacteria.

  12. [The sensitivity of anaerobic bacteria to chemotherapeutic agents (Zurich, 1991)].

    PubMed

    Wüst, J; Hardegger, U

    1991-12-27

    There have been numerous reports on resistance of anaerobic bacteria against antimicrobial agents. Therefore, to assess the situation in Zurich, 187 anaerobic strains of various bacterial genera, isolated from clinical specimens during winter 1990/91, were tested for their susceptibility to antimicrobial agents active against anaerobic bacteria. Besides the Bacteroides fragilis group, which is naturally resistant against penicillin, 30% of isolates of other Bacteroides species were also resistant against penicillin. In general, anaerobes have remained susceptible to cefoxitin, chloramphenicol, clindamycin, imipenem, the 5-nitroimidazoles (metronidazole, ornidazole) as well as combinations of beta-lactam antibiotics with beta-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam). Because rare strains resistant against cefoxitin, clindamycin and beta-lactams plus beta-lactamase inhibitors can be found, at least isolates from specific clinical situations should be tested for antimicrobial susceptibility. These are strains isolated from patients with brain abscess, endocarditis, osteomyelitis, arthritis, infected implants and prosthesis as well as those from persisting or recurrent bacteremia. Because the agar diffusion test yields unreliable results, minimal inhibitory concentration should be determined. Maybe the new 'E test' or the spiral gradient procedure can be used after evaluation.

  13. Fractal Self-Organization of Bacteria-Inspired Agents

    NASA Astrophysics Data System (ADS)

    Huang, Yufeng; Krumanocker, Ian; Coppens, Marc-Olivier

    2012-06-01

    We develop an agent-based model as a preliminary theoretical basis to guide the synthesis of a new class of materials with dynamic properties similar to bacterial colonies. Each agent in the model is representative of an individual bacterium capable of: the uptake of chemicals (nutrients), which are metabolized; active movement (part viscous, part diffusive), consuming metabolic energy; and cellular division, when agents have doubled in size. The agents grow in number and self-organize into fractal structures, depending on the rules that define the actions of the agents and the parameter values. The environment of the agents includes chemicals responsible for their growth and is described by a diffusion-reaction equation with Michaelis-Menten kinetics. These rules are modeled mathematically by a set of equations with five dimensionless groups that are functions of physical parameters. Simulations are performed for different parameter values. The resulting structures are characterized by their fractal scaling regime, box-counting and mass-radius dimensions, and lacunarity. Each parameter influences the overall structure in a unique way, generating a wide spectrum of structures. For certain combinations of parameter values, the model converges to a steady state, with a finite population of agents that no longer divide.

  14. Including Sediment-Associated Bacteria Resuspension and Settling in SWAT Predictions of Microbial Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambed sediments have been shown to serve as environmental reservoirs for bacteria, including pathogenic strains. The Soil and Water Assessment Tool (SWAT) has been augmented with bacteria subroutine in 2005. Bacteria die-off is the only in-stream process considered in the current SWAT. The purpo...

  15. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  16. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  17. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  18. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  19. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  20. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  1. Insights into Newer Antimicrobial Agents Against Gram-negative Bacteria

    PubMed Central

    Taneja, Neelam; Kaur, Harsimran

    2016-01-01

    Currently, drug resistance, especially against cephalosporins and carbapenems, among gram-negative bacteria is an important challenge, which is further enhanced by the limited availability of drugs against these bugs. There are certain antibiotics (colistin, fosfomycin, temocillin, and rifampicin) that have been revived from the past to tackle the menace of superbugs, including members of Enterobacteriaceae, Acinetobacter species, and Pseudomonas species. Very few newer antibiotics have been added to the pool of existing drugs. There are still many antibiotics that are passing through various phases of clinical trials. The initiative of Infectious Disease Society of America to develop 10 novel antibiotics against gram-negative bacilli by 2020 is a step to fill the gap of limited availability of drugs. This review aims to provide insights into the current and newer drugs in pipeline for the treatment of gram-negative bacteria and also discusses the major challenging issues for their management. PMID:27013887

  2. Bacteria as growth-promoting agents for citrus rootstocks.

    PubMed

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp

  3. The effects of a new therapeutic triclosan/copolymer/sodium-fluoride dentifrice on oral bacteria, including odorigenic species.

    PubMed

    Furgang, David; Sreenivasan, Prem K; Zhang, Yun Po; Fine, Daniel H; Cummins, Diane

    2003-09-01

    This investigation examined the in vitro and ex vivo antimicrobial effects of a new dentifrice, Colgate Total Advanced Fresh, formulated with triclosan/copolymer/sodium fluoride, on oral bacteria, including those odorigenic bacteria implicated in bad breath. The effects of Colgate Total Advanced Fresh were compared to commercially available fluoride dentifrices that served as controls. Three experimental approaches were undertaken for these studies. In the first approach, the dentifrice formulations were tested in vitro against 13 species of oral bacteria implicated in bad breath. The second approach examined the antimicrobial activity derived from dentifrice that was adsorbed to and released from hydroxyapatite disks. In this approach, dentifrice-treated hydroxyapatite disks were immersed in a suspension of bacteria, and reduction in bacterial viability from the release of bioactive agents from hydroxyapatite was determined. The third approach examined the effect of treating bacteria immediately after their removal from the oral cavity of 11 adult human volunteers. This ex vivo study examined the viability of cultivable oral bacteria after dentifrice treatment for 2 minutes. Antimicrobial effects were determined by plating Colgate Total Advanced Fresh and control-dentifrice-treated samples on enriched media (for all cultivable oral bacteria) and indicator media (for hydrogen-sulfide-producing organisms), respectively. Results indicated that the antimicrobial effects of Colgate Total Advanced Fresh were significantly greater than either of the other dentifrices for all 13 oral odorigenic bacterial strains tested in vitro (P < or = 0.05). In the second approach, Colgate Total Advanced Fresh-treated hydroxyapatite disks were significantly more active in reducing bacterial growth than the other dentifrices tested (P < or = 0.05). Finally, ex vivo treatment of oral bacteria with Colgate Total Advanced Fresh demonstrated a 90.9% reduction of all oral cultivable bacteria

  4. Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria.

    PubMed

    Abouelhassan, Yasmeen; Yang, Qingping; Yousaf, Hussain; Nguyen, Minh Thu; Rolfe, Melanie; Schultz, Gregory S; Huigens, Robert W

    2017-02-01

    Bacterial biofilms are surface-attached communities of slow-growing or non-replicating bacteria tolerant to conventional antibiotic therapies. Although biofilms are known to occur in ca. 80% of all bacterial infections, no therapeutic agent has been developed to eradicate bacteria housed within biofilms. We have discovered that nitroxoline, an antibacterial agent used to treat urinary tract infections, displays broad-spectrum biofilm-eradicating activities against major human pathogens, including drug-resistant Staphylococcus aureus and Acinetobacter baumannii strains. In this study, the effectiveness of nitroxoline to eradicate biofilms was determined using an in vitro [minimum biofilm eradication concentration (MBEC) = 46.9 µM against A. baumannii] and ex vivo porcine skin model (2-3 log reduction in viable biofilm cells). Nitroxoline was also found to eradicate methicillin-resistant S. aureus (MRSA) persister cells in non-biofilm (stationary) cultures, whereas vancomycin and daptomycin were found to be inactive. These findings could lead to effective, nitroxoline-based therapies for biofilm-associated infections.

  5. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  6. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  7. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  8. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  9. Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark.

    PubMed

    Aarestrup, F M; Bager, F; Jensen, N E; Madsen, M; Meyling, A; Wegener, H C

    1998-06-01

    This study was conducted to describe the occurrence of acquired resistance to antimicrobials used for growth promotion among bacteria isolated from swine, cattle and poultry in Denmark. Resistance to structurally related therapeutic agents was also examined. Three categories of bacteria were tested: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis, Enterococcus faecium), 2) zoonotic bacteria (Campylobacter, Salmonella, Yersinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). All antimicrobials used as growth promoters in Denmark and some structurally related therapeutic agents (in brackets) were included: Avilamycin, avoparcin (vancomycin), bacitracin, carbadox, flavomycin, monensin, olaquindox, salinomycin, spiramycin (erythromycin, lincomycin), tylosin (erythromycin, lincomycin), and virginiamycin (pristinamycin). Bacterial species intrinsically resistant to an antimicrobial were not tested towards that antimicrobial. Breakpoints for growth promoters were established by population distribution of the bacteria tested. A total of 2,372 bacterial isolates collected during October 1995 to September 1996 were included in the study. Acquired resistance to all currently used growth promoting antimicrobials was found. A frequent occurrence of resistance were observed to avilamycin, avoparcin, bacitracin, flavomycin, spiramycin, tylosin and virginiamycin, whereas resistance to carbadox, monensin, olaquindox and salinomycin was less frequent. The occurrence of resistance varied by animal origin and bacterial species. The highest levels of resistance was observed among enterococci, whereas less resistance was observed among zoonotic bacteria and bacteria pathogenic to animals. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed. The results show the present level of resistance to

  10. Distribution of drug-resistant bacteria and rational use of clinical antimicrobial agents.

    PubMed

    Zhou, Chenliang; Chen, Xiaobing; Wu, Liwen; Qu, Jing

    2016-06-01

    Open wound may lead to infection in patients. Due to overuse of medication, certain bacteria have become resistant to drugs currently available. The aim of the present study was to provide a guide to ameliorate the appropriate and rational use of clinical antimicrobial agents by analyzing the distribution of drug-resistant pathogenic bacteria in patients. Between October 2013 and January 2015, 126 patients were selected at the Department of Orthopedics. Wound secretion samples were collected, and the pathogen bacteria isolated and identified. Identification was performed using an automated identification instrument and the Kirby-Bauer antibiotic method was used to evaluate the bacterial resistance. Of the 126 patients, 118 patients were infected (infection rate, 93.65%). Additionally, 47 strains of gram-positive pathogenic bacteria (39.83%) and 71 strains of pathogenic-gram negative bacteria (60.17%) were identified. The bacteria were most likely to be resistant to penicillin while sensitive to vancomycin and imipenem. Some bacteria were resistant to several antibacterial agents. The results showed that existing risk factors at the Department of Orthopedics were complex and any non-standard procedures were able to cause bacterial infection. There were obvious dissimilarities among infectious bacteria with regard to their sensitivity to various antibacterial agents. Manipulation techniques during the treatment process were performed in a sterile manner and the use of antibacterial agents was required to be strictly in accordance with the results of drug sensitivity tests to provide effective etiologic information and a treatment plan for clinical trials and to reduce the risk of infection by multi-resistant bacteria.

  11. Balamuthia mandrillaris, free-living ameba and opportunistic agent of encephalitis, is a potential host for Legionella pneumophila bacteria.

    PubMed

    Shadrach, Winlet Sheba; Rydzewski, Kerstin; Laube, Ulrike; Holland, Gudrun; Ozel, Muhsin; Kiderlen, Albrecht F; Flieger, Antje

    2005-05-01

    Balamuthia mandrillaris is a free-living ameba and an opportunistic agent of granulomatous encephalitis in humans and other mammalian species. Other free-living amebas, such as Acanthamoeba and Hartmannella, can provide a niche for intracellular survival of bacteria, including the causative agent of Legionnaires' disease, Legionella pneumophila. Infection of amebas by L. pneumophila enhances the bacterial infectivity for mammalian cells and lung tissues. Likewise, the pathogenicity of amebas may be enhanced when they host bacteria. So far, the colonization of B. mandrillaris by bacteria has not been convincingly shown. In this study, we investigated whether this ameba could host L. pneumophila bacteria. Our experiments showed that L. pneumophila could initiate uptake by B. mandrillaris and could replicate within the ameba about 4 to 5 log cycles from 24 to 72 h after infection. On the other hand, a dotA mutant, known to be unable to propagate in Acanthamoeba castellanii, also did not replicate within B. mandrillaris. Approaching completion of the intracellular cycle, L. pneumophila wild-type bacteria were able to destroy their ameboid hosts. Observations by light microscopy paralleled our quantitative data and revealed the rounding, collapse, clumping, and complete destruction of the infected amebas. Electron microscopic studies unveiled the replication of the bacteria in a compartment surrounded by a structure resembling rough endoplasmic reticulum. The course of intracellular infection, the degree of bacterial multiplication, and the ultrastructural features of a L. pneumophila-infected B. mandrillaris ameba resembled those described for other amebas hosting Legionella bacteria. We hence speculate that B. mandrillaris might serve as a host for bacteria in its natural environment.

  12. Time-resolved and steady-state fluorescence spectroscopy from bacteria subjected to bactericidal agents

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Alimova, Alexandra; Siddique, Masood; Savage, Howard E.; Shah, Mahendra; Rosen, Richard; Alfano, Robert

    2004-03-01

    The time-resolved and steady-state changes in fluorescence were investigated from one spore-forming (Bacillus subtilis) and four non-spore forming (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa) bacteria subjected to different bactericidal agents. The bactericidal agents were sodium hypochlorite (bleach) hydrogen peroxide, formaldehyde, and UV light exposure. Application of sodium hypochlorite resulted in an almost total lose of fluorescence signal and large decrease in the optical density of the bacterial suspension. Addition of hydrogen peroxide resulted in a 35% decrease in emission intensity fom the Sa and an 85-95% decrease for the other bacteria. Ultraviolet light exposure resulted in a 5-35% decrease in the emission intensity of the tryptophan band. The addition of formaldehyde to the bacteria did not result in significant changes in the steady-state emission intensity, but did shift the tryptophan emission peak position to shorter wavelengths by 3 to 5 nm. Time-resolved fluorescence measurements showed that the fluorescence lifetime of tryptophan in the bacteria could not be described by a single exponential decay, and was similar to that of tryptophan in neutral aqueous solution. Upon addition of formaldehyde to the Gram positive bacteria (Bs and Sa) the strength of the short lifetime component increased dramatically, while for the Gram negative bacteria, a smaller increase was observed. These fluorescence changes reflect the different mechanisms of the bactericidal agents and may provide a useful tool to monitor the effectiveness of disinfectants.

  13. Application of protein arraytubes to bacteria, toxin, and biological warfare agent detection.

    PubMed

    Ehricht, Ralf; Adelhelm, Karin; Monecke, Stefan; Huelseweh, Birgit

    2009-01-01

    Microarray technology enables the fast and parallel analysis of a multitude of biologically relevant parameters. Not only nucleic acid-based tests, but also peptide, antigen, and antibody assays using different formats of microarrays evolved within the last decade. They offer the possibility to measure interactions in a miniaturised, economic, automated, and qualitative or quantitative way providing insights into the cellular machinery of diverse organisms. Examples of applications in research and diagnostics are, e.g., O-typing of pathogenic Escherichia coli, detection of bacterial toxins and other biological warfare agents (BW agents) from a variety of different samples, screening of complex antibody libraries, and epitope mapping. Conventional O- and H-serotyping methods can now be substituted by procedures applying DNA oligonucleotide and antibody-based microarrays. For simultaneous and sensitive detection of BW agents microarray-based tests are available, which include not only relevant viruses and bacteria, but also toxins. This application is not only restricted to the security and military sector but it can also be used in the fields of medical diagnostics or public health to detect, e.g., staphylococcal enterotoxins in food or clinical samples. Furthermore, the same technology could be used to detect antibodies against enterotoxins in human sera using a competitive assay. Protein and peptide microarrays can also be used for characterisation of antibodies. On one hand, peptide microarrays allow detailed epitope mapping. On the other hand, a set of different antibodies recognising the same antigen can be spotted as a microarray and labelled as detection antibodies. This approach makes it possible to test every combination, allowing to find the optimal pair of detection/capture antibody.

  14. Enhancing the USDA-ARS Soil and Water Assessment Tool (SWAT) with the in-stream bacteria fate and transport module including sediment bacteria resuspension and settling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streambed sediments have been shown to serve as environmental reservoirs for bacteria, including pathogenic strains. Although the Soil and Water Assessment Tool (SWAT), a watershed-scale, physically-based and continuous-time model, has been augmented with bacteria transport subroutine in 2005, the b...

  15. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents - Special references to bacteria isolated between April 2011 and March 2012].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Mizuguchi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Kouji; Iwasaki, Mitsuhiro

    2014-12-01

    Bacteria isolated from surgical infections during the period from April 2011 to March 2012 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 785 strains including 31 strains of Candida spp. were isolated from 204 (78.8%) of 259 patients with surgical infections. Five hundred and twenty three strains were isolated from primary infections, and 231 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp. and Staphylococcus spp., in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterobacter cloacae, in this order, and from surgical site infection, E. coli was most predominantly isolated, followed by P. aeruginosa, K. pneumoniae, and E. cloacae. Among anaerobic Gram-positive bacteria, the isolation rate of Eggerthella lenta was the highest from primary infections, followed by Parvimonas micra, Collinsella aerofaciens, Lactobacillus acidophilus and Finegoldia magna, and from surgical site infection, E. lenta was most predominantly isolated, followed by P micra and L. acidophilus, in this order. Among anaerobic Gram-negative bacteria, the isolation rate of Bacteroidesfragilis was the highest from primary infections, followed by Bilophila wadsworthia, Bacteroides thetaiotaomicron, Bacteroides uniformis and Bacteroides vulgatus, and from surgical site infection, B. fragilis was most

  16. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  17. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  18. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    PubMed

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers.

  19. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages are the viruses of bacteria. In the guise of phage therapy they have been used for decades to successfully treat what are probable biofilm-containing chronic bacterial infections. More recently, phage treatment or biocontrol of biofilm bacteria has been brought back to the laboratory for more rigorous assessment as well as towards the use of phages to combat environmental biofilms, ones other than those directly associated with bacterial infections. Considered in a companion article is the inherent ecological utility of bacteriophages versus antibiotics as anti-biofilm agents. Discussed here is a model for phage ecological interaction with bacteria as they may occur across biofilm-containing ecosystems. Specifically, to the extent that individual bacterial types are not highly abundant within biofilm-containing environments, then phage exploitation of those bacteria may represent a “Feast-or-famine” existence in which infection of highly localized concentrations of phage-sensitive bacteria alternate with treacherous searches by the resulting phage progeny virions for new concentrations of phage-sensitive bacteria to infect. An updated synopsis of the literature concerning laboratory testing of phage use to combat bacterial biofilms is then provided along with tips on how “Ecologically” such phage-mediated biofilm control can be modified to more reliably achieve anti-biofilm efficacy. PMID:26371011

  20. Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents.

    PubMed

    Nogales, B; Guerrero, R; Esteve, I

    1994-10-15

    Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim+sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.

  1. Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria.

    PubMed

    Hanemian, Mathieu; Zhou, Binbin; Deslandes, Laurent; Marco, Yves; Trémousaygue, Dominique

    2013-10-01

    Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection.

  2. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent.

    PubMed

    Jiang, Sheng-Nan; Park, Seung-Hwan; Lee, Hee Jung; Zheng, Jin Hai; Kim, Hyung-Seok; Bom, Hee-Seung; Hong, Yeongjin; Szardenings, Michael; Shin, Myung Geun; Kim, Sun-Chang; Ntziachristos, Vasilis; Choy, Hyon E; Min, Jung-Joon

    2013-11-01

    A number of recent reports have demonstrated that attenuated Salmonella typhimurium are capable of targeting both primary and metastatic tumors. The use of bacteria as a vehicle for the delivery of anticancer drugs requires a mechanism that precisely regulates and visualizes gene expression to ensure the appropriate timing and location of drug production. To integrate these functions into bacteria, we used a repressor-regulated tetracycline efflux system, in which the expression of a therapeutic gene and an imaging reporter gene were controlled by divergent promoters (tetAP and tetRP) in response to extracellular tetracycline. Attenuated S. typhimurium was transformed with the expression plasmids encoding cytolysin A, a therapeutic gene, and renilla luciferase variant 8, an imaging reporter gene, and administered intravenously to tumor-bearing mice. The engineered Salmonella successfully localized to tumor tissue and gene expression was dependent on the concentration of inducer, indicating the feasibility of peripheral control of bacterial gene expression. The bioluminescence signal permitted the localization of gene expression from the bacteria. The engineered bacteria significantly suppressed both primary and metastatic tumors and prolonged survival in mice. Therefore, engineered bacteria that carry a therapeutic and an imaging reporter gene for targeted anticancer therapy can be designed as a theranostic agent.

  3. Susceptibilities of anaerobic bacteria isolated from animals with ovine foot rot to 28 antimicrobial agents.

    PubMed Central

    Piriz, S; Cuenca, R; Valle, J; Vadillo, S

    1992-01-01

    The agar dilution method was used to determine the inhibitory activities of 28 antimicrobial agents against 35 strains of the genus Peptostreptococcus, 4 strains of the species Peptococcus niger, 20 strains of the species Megasphaera elsdenii, 7 strains from the species Acidaminococcus fermentans, 8 strains of the genus Clostridium, 11 strains of the genus Eubacterium, and 1 strain of the species Propionibacterium acidipropionici, all of which were isolated from 125 clinical cases of ovine foot rot between January 1987 and December 1988. The three unreidopenicillins studied proved to be the most active antimicrobial agents, with a high percentage of strains being susceptible at a concentration of 64 micrograms/ml. Penicillin G, ampicillin, and the three cephalosporins studied also had good activity. Fosfomycin showed a high degree of activity among the 116 anaerobic bacteria tested. PMID:1590689

  4. New treatment strategy including biological agents in patients with systemic lupus erythematosus.

    PubMed

    Leszczyński, Piotr; Pawlak-Buś, Katarzyna

    2013-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous disease, in which B lymphocyte activation and chronic inflammation play the key role. Both the disease itself and its treatment cause damage to multiple organs and systems. So far, despite intensive treatment, disease remission has been achieved in few patients, and the ratio of organ complications has increased significantly. This is caused by a long‑term glucocorticoid therapy with a relatively rare use of immunosuppressive drugs. With a new treatment strategy and modern immunotherapy, it is possible to reduce the mortality rate, limit multiple‑organ damage, thereby significantly improving the quality of life and prognosis of patients with SLE. The "treat‑to‑target" strategy enables targeted treatment resulting in a long‑term symptom remission. It is based on an intensive immunosuppressive treatment with simultaneous reduction of glucocorticoid doses, and limiting their use solely to exacerbations in disease activity. The current idea for treatment is also the conscious use of the beneficial potential of background SLE treatment including antimalarial agents and standard immunosuppressive therapy. With the first biological agent approved for SLE treatment, the new age of therapy has dawned. Biologics offer new prospects and possibilities to induce clinical and immunological remission of SLE.

  5. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents.

    PubMed

    Enya, Junichiro; Shinohara, Hirosuke; Yoshida, Shigenobu; Tsukiboshi, Takao; Negishi, Hiromitsu; Suyama, Kazuo; Tsushima, Seiya

    2007-05-01

    Culturable leaf-associated bacteria inhabiting a plant have been considered as promising biological control agent (BCA) candidates because they can survive on the plant. We investigated the relationship between bacterial groups of culturable leaf-associated bacteria on greenhouse- and field-grown tomato leaves and their antifungal activities against tomato diseases in vitro and in vivo. In addition, the isolated bacteria were analyzed for N-acyl-homoserine lactone (AHL) and indole-3-acetic acid (IAA) production, which have been reported to associate with bacterial colonization, and resistance to a tomato alkaloid (alpha-tomatine). Leaf washings and subsequent leaf macerates were used to estimate the population size of epiphytic and more internal bacteria. Bacterial population sizes on leaves at the same position increased as the leaves aged under both greenhouse and field conditions. Field-grown tomatoes had significantly larger population sizes than greenhouse-grown tomatoes. Analysis of 16S rRNA gene (rDNA) sequencing using 887 culturable leaf-associated bacteria revealed a predominance of the Bacillus and Pseudomonas culturable leaf-associated bacterial groups on greenhouse- and field-grown tomatoes, respectively. Curtobacterium and Sphingomonas were frequently recovered from both locations. From the 2138 bacterial strains tested, we selected several strains having in vitro antifungal activity against three fungal pathogens of tomato: Botrytis cinerea, Fulvia fulva, and Alternaria solani. Among bacterial strains with strong in vitro antifungal activities, Bacillus and Pantoea tended to show strong antifungal activities, whereas Curtobacterium and Sphingomonas were not effective. The results indicated the differences in antifungal activity among predominant bacterial groups. Analysis of alpha-tomatine resistance revealed that most bacterial strains in the dominant groups exhibited moderate or high resistance to alpha-tomatine in growth medium. Furthermore, some

  6. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  7. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin.

    PubMed

    Ray, Balmiki; Lahiri, Debomoy K

    2009-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the elderly. Deposition of amyloid beta plaque and associated neuroinflammation are the major hallmarks of AD. Whereas reactive oxygen species (ROS) and activated microglial cells contribute to neuronal loss, nuclear factor kappaB and apolipoprotein E participate in inflammatory process of AD. Current FDA approved drugs provide only symptomatic relief in AD. For broad spectrum of activity, some natural products are also being tested. Turmeric is used as an anti-inflammatory medicine in various regions of Asia. Curcumin, which is a yellow colored polyphenol compound present in turmeric, showed anti-inflammatory properties. Herein, we discuss the neurobiological and neuroinflammatory pathways of AD, evaluate different molecular targets and potential therapeutic agents, including curcumin, for the treatment of AD.

  8. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus

    PubMed Central

    2013-01-01

    Background The microbiota has been shown to play an important role in the biology of insects. In recent decades, significant efforts have been made to better understand the diversity of symbiotic bacteria associated with mosquitoes and assess their influence on pathogen transmission. Here, we report the bacterial composition found in field-caught Aedes albopictus populations by using culture-dependent methods. Results A total of 104 mosquito imagos (56 males and 48 females) were caught from four contrasting biotopes of Madagascar and their bacterial contents were screened by plating whole body homogenates on three different culture media. From 281 bacterial colony types obtained, amplified ribosomal DNA restriction analysis (ARDRA) showed they had 40 distinct ribotypes. Sequencing and BLAST analysis of the 16S rDNA genes responsible for each representative profile made it possible to identify 27 genera distributed in three major phyla. In female mosquitoes, bacterial isolates were mostly Proteobacteria (51.3%) followed by Firmicutes (30.3%) and Actinobacteria (18.4%). Conversely, Actinobacteria was the most abundant phylum in male mosquitoes (48%) followed by Proteobacteria (30.6%) and Firmicutes (20.4%). The relative abundance and composition of isolates also varied between sampling sites, ranging from 3 distinct families in Ankazobe to 8 in Tsimbazaza Park, and Toamasina and Ambohidratrimo. Pantoea was the most common genus in both females and males from all sampling sites, except for Ambohidratrimo. No differences in genome size were found between Pantoea isolates from mosquitoes and reference strains in pulse field gel electrophoresis. However, according to the numbers and sizes of plasmids, mosquito isolates clustered into three different groups with other strains isolated from insects but distinct from isolates from the environment. Conclusions The recent upsurge in research into the functional role of the insect microbiota prompts the interest to better

  9. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  10. Advancing the agent methodology to include the higher order of neutron anisotropy with accelerated solutions

    NASA Astrophysics Data System (ADS)

    Satvat, Nader

    With the development of new core designs for generation IV reactors with their complexity and newer fuel designs, the need for consideration of neutron anisotropic scattering is becoming important for enchasing the economy and reliability of these designs. The theory and accurate modeling of neutron anisotropy is one of the most important problems of the transport solution to neutron Boltzmann equation. A number of methods based on careful theoretical developments, were established to numerically determine the effect of anisotropy; some of these methods are: the spherical harmonics method, the so-called function method (FN), the discrete ordinate method, and the Monte Carlo method. The AGENT methodology, based on the method of characteristics, currently the most accurate neutron transport method, represents the state-of-the-art advanced neutronics simulation tool available for 2D, 3D, and full core modeling. The higher order of anisotropic scattering (with no limitation of the number of expansion) is introduced into the AGENT code. An extensive analysis is performed to verify and validate this new model. It is shown that anisotropic scattering is important to be considered for complex geometries due to high angular dependence of neutron flux. The first principle in physics were used to explain the effects of anisotropic scattering (at the level on particle interactions), importance in including the higher moments in flux development for the core designs of high heterogonous structure promoting biased scattering (at the level of heterogeneous reactor assemblies in 2D and 3D). This inclusion of higher order of anisotropic scattering as expected increased the complexity of the mathematical model which in turn increased the computational time. An analysis of the computational time dependence on anisotropic scattering and the method of characteristics resolution parameters are analyzed with accurate predictions of scaling to larger geometries. Finally, an accelerated

  11. Irradiation of microorganism such as bacteria and viruses in the presence of chemical enhancing agent

    SciTech Connect

    Not Available

    1980-04-18

    This invention relates to a method for disinfecting waste material, such as sewage, containing harmful microorganisms by means of high energy ionizing radiation. This method includes the addition of a chemical enhancing agent such as aluminum chlorde or ferric chloride which would increase the sensitivity of the microorganisms to irradiation. Consequently lower radiation doses would be needed for disinfection.

  12. Highly effective bacterial agents against Cimbex quadrimaculatus (Hymenoptera: Cimbicidae): isolation of bacteria and their insecticidal activities.

    PubMed

    Cakici, Filiz Ozkan; Ozgen, İnanc; Bolu, Halil; Erbas, Zeynep; Demirbağ, Zihni; Demir, İsmail

    2015-01-01

    Cimbex quadrimaculatus (Hymenoptera: Cimbicidae) is one of the serious pests of almonds in Turkey and worldwide. Since there is no effective control application against this pest, it has been a serious problem up to now. Therefore, we aimed to find an effective bacterium that can be utilized as a biocontrol agent against C. quadrimaculatus in pest management. We isolated seven bacteria from dead and live C. quadrimaculatus larvae, and evaluated the larvicidal potency of all isolates on the respective pest. Based on the morphological, physiological, biochemical and molecular properties (partial sequence of 16S rRNA gene), the isolates were identified to be Bacillus safensis (CQ1), Bacillus subtilis (CQ2), Bacillus tequilensis (CQ3), Enterobacter sp. (CQ4), Kurthia gibsonii (CQ5), Staphylococcus sp. (CQ6) and Staphylococcus sciuri (CQ7). The results of the larvicidal activities of these isolates indicated that the mortality value obtained from all treatments changed from 58 to 100 %, and reached 100 % with B. safensis (CQ1) and B. subtilis (CQ2) on the 3rd instar larvae within 10 days of application of 1.89 × 10(9) cfu/mL bacterial concentration at 25 °C under laboratory conditions. Findings from this study indicate that these isolates appear to be a promising biocontrol agent for C. quadrimaculatus.

  13. Activity of Topical Antimicrobial Agents Against Multidrug-Resistant Bacteria Recovered from Burn Patients

    DTIC Science & Technology

    2010-01-01

    both the prophylaxis and treatment of burn wound infections [18]. Agents such as silver sulfadiazine , silver nitrate, mupirocin, honey, mafenide...include emerging resistance of staphylococci to mupirocin and of Pseudomonas aeruginosa to silver sulfadiazine (Table 1) [9,18–21]. Prior studies...administered routinely peri-operatively and various topical antimicrobials are used to include silver sulfadiazine , mafe- nide acetate, silver nitrate

  14. An Alternative Gelling Agent for Culture and Studies of Nematodes, Bacteria, Fungi, and Plant Tissues

    PubMed Central

    Ko, M. P.; Van Gundy, S. D.

    1988-01-01

    Pluronic F127 polyol, a block copolymer of propylene oxide and ethylene oxide, was studied as an alternative to agar in culture media for nematodes, bacteria, fungi, actinomycetes, and plant tissues or seedlings, At a polyol concentration of 20% w/v, the culture media, semi-solid at room temperature (22 C) but liquid at lower temperatures, had minimal effects on the test organisms. Most of the fungi and bacteria grew as well in 20% polyol as in 1.5% agar media; however, various species of nematodes and plant seedlings or tissues exhibited differential sensitivities to different concentrations of the polyol. In cases where the organisms were unaffected, the polyol media had certain advantages over agar, including greater transparency and less contamination under nonaseptic conditions. Polyol media have potentially greater ease for recovery of embedded organisms or tissues inside the media by merely shifting to lower temperatures. PMID:19290241

  15. [Survival of Gram-positive spore-forming bacteria including Bacillus cereus after hand washing using alcohol-based handrub].

    PubMed

    Ogawa, Midori; Takada, Shinichiro; Takahashi, Masao; Yasuda, Etsuko; Watase, Mariko; Taniguchi, Hatsumi

    2006-12-01

    Hand washing is the most fundamental method for preventing infection. Currently, hand washing with an alcohol-based handrub is the international gold standard method. However, in our study we found many samples of ineffective hand washing using an alcohol-based handrub. The rates of ineffective samples were 10.4% (5/48) in 2004 and 34.3% (12/35) in 2005. We examined the morphology by Gram staining and biochemical properties of the bacteria which remained after hand washing in 2005. Their colonies were divided into 3 groups (round colonies, irregular-shaped and diffusive colonies). The round colonies were considered Staphylococcus spp., and the irregular-shaped colonies or diffusive colonies were considered Gram-positive spore-forming bacteria. In the 12 ineffective hand washing samples (more than the same number of bacteria colonies as before hand washing, or > or = 300), there were 3 samples considered to be the result of the survival of Staphylococcus spp., and 9 samples considered to be the result of the survival of Gram-positive spore-forming bacteria including Bacillus cereus. Based on these results, we should take careful measures, such as wearing sterile gloves if necessary. We should never be overconfident regarding the effect of hand washing.

  16. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  17. Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria.

    PubMed

    Tian, Wen-Xiao; Yu, Shi; Ibrahim, Muhammad; Almonaofy, Abdul Wareth; He, Liu; Hui, Qiu; Bo, Zhu; Li, Bin; Xie, Guan-Lin

    2012-08-01

    Infections by Enterobacter species are common and are multidrug resistant. The use of bactericidal surface materials such as copper has lately gained attention as an effective antimicrobial agent due to its deadly effects on bacteria, yeast, and viruses. The aim of the current study was to assess the antibacterial activity of copper surfaces against Enterobacter species. The antibacterial activity of copper surfaces was tested by overlying 5×10(6) CFU/ml suspensions of representative Enterobacter strains and comparing bacterial survival counts on copper surfaces at room temperature. Iron, stainless steel, and polyvinylchloride (PVC) were used as controls. The mechanisms responsible for bacterial killing on copper surfaces were investigated by a mutagenicity assay of the D-cycloserin (cyclA gene), single cell gel electrophoresis, a staining technique, and inductively coupled plasma mass spectroscopy. Copper yielded a significant decrease in the viable bacterial counts at 2 h exposure and a highly significant decrease at 4 h. Loss of cell integrity and a significantly higher influx of copper into bacterial cells exposed to copper surfaces, as compared to those exposed to the controls, were documented. There was no increase in mutation rate and DNA damage indicating that copper contributes to bacterial killing by adversely affecting cellular structure without directly targeting the genomic DNA. These findings suggest that copper's antibacterial activity against Enterobacter species could be utilized in health care facilities and in food processing plants to reduce the bioburden, which would increase protection for susceptible members of the community.

  18. N-nitrosation of medicinal drugs catalysed by bacteria from human saliva and gastro-intestinal tract, including Helicobacter pylori.

    PubMed

    Ziebarth, D; Spiegelhalder, B; Bartsch, H

    1997-02-01

    Micro-organisms commonly present in human saliva and three DSM strains (Helicobacter pylori, Campylobacter jejuni and Neisseria cinerea), which can be isolated from the human gastro-intestinal tract, were assayed in vitro for their capacity to catalyse N-nitrosation of a series of medicinal drugs and other compounds. Following incubation at pH 7.2 in the presence of nitrate (or nitrite) for up to 24 (48) h, the yield of N-nitroso compounds (NOC) was quantified by HPLC equipped with a post-column derivatization device, allowing the sensitive detection of acid-labile and acid-stable NOC. Eleven out of the 23 test compounds underwent bacteria-catalysed nitrosation by salivary bacteria, the yield of the respective nitrosation products varying 800-fold. 4-(Methylamino)antipyrine exhibited the highest rate of nitrosation, followed by dichlofenac > metamizole > piperazine > five other drugs, whilst L-proline and L-thioproline had the lowest nitrosation rate. Ten drugs including aminophenazone, cimetidine and nicotine, did not inhibit bacterial growth, allowing transitory nitrite to be formed, but no N-nitroso derivatives were detected. Three drugs inhibited the proliferation of bacteria and neither nitrite nor any NOC were formed. Using metamizole as an easily nitrosatable precursor, two strains, Campylobacter jejuni and Helicobacter pylori, were shown to catalyse nitrosation in the presence of nitrite at pH 7.2. As compared to Neisseria cinerea used as a nitrosation-proficient control strain, H. pylori was 30-100 times less effective, whilst C. jejuni had intermediary activity. The results of our sensitive nitrosation assay further confirm that bacteria isolated from human sources, possessing nitrate reductase and/or nitrosating enzymes such as cytochrome cd1-nitrite reductase (Calmels et al., Carcinogenesis, 17, 533-536, 1996), can contribute to intragastric nitrosamine formation in the anacidic stomach when nitrosatable precursors from exogenous and endogenous sources

  19. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between April 2010 and March 2011].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Fukuhara, Kenichiro; Mizugucwi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijliro; Hiyama, Elso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Koujn; Iwasaki, Mitsuhiro

    2014-10-01

    Bacteria isolated from surgical infections during the period from April 2010 to March 2011 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 631 strains including 25 strains of Candida spp. were isolated from 170 (81.7%) of 208 patients with surgical infections. Four hundred and twenty two strains were isolated from primary infections, and 184 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. such as Enterococcus faecalis, Enterococcus faecium, and Enterococcus avium was highest, followed by Streptococcus spp. such as Streptococcus anginosus and Staphylococcus spp. such as Staphylococcus aureus, in this order, from primary infections, while Enterococcus spp. such as E. faecalis and E. faecium was highest, followed by Staphylococcus spp. such as S. aureus from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Pseudomonas aeruginosa in this order, and from surgical site infection, E. coli and R aeruginosa were most predominantly isolated, followed by E. cloacae and K. pneumoniae. Among anaerobic Gram-positive bacteria, the isolation rates of Parvimonas micra, Eggerthella lenta, Streptococcus constellatus, Gemella morbillorum, and Collinsella aerofaciens were the highest from primary infections, and the isolation rate from surgical site infection was generally low. Among anaerobic Gram-negative bacteria, the isolation rate of Bilophila wadsworthia was the highest from primary infections, followed by, Bacteroides

  20. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  1. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  2. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  3. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  4. Activity of human beta-defensin 3 alone or combined with other antimicrobial agents against oral bacteria.

    PubMed

    Maisetta, Giuseppantonio; Batoni, Giovanna; Esin, Semih; Luperini, Filippo; Pardini, Manuela; Bottai, Daria; Florio, Walter; Giuca, Maria Rita; Gabriele, Mario; Campa, Mario

    2003-10-01

    The in vitro activities of human beta-defensin 3 (hBD-3) alone or combined with lysozyme, metronidazole, amoxicillin, and chlorhexidine were investigated with the oral bacteria Streptococcus mutans, Streptococcus sanguinis, Streptococcus sobrinus, Lactobacillus acidophilus, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis. hBD-3 showed bactericidal activity against all of the bacterial species tested. The bactericidal effect was enhanced when the peptide was used in combination with the antimicrobial agents mentioned above.

  5. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... topical application and is accumulated in the body, giving rise to numerous adverse effects. Mercury is a... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13...

  6. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents.

    PubMed

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J

    2015-05-14

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  7. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  8. The elicitation step of nickel allergy is promoted in mice by microbe-related substances, including some from oral bacteria.

    PubMed

    Huang, Ling; Kinbara, Masayuki; Funayama, Hiromi; Takada, Haruhiko; Sugawara, Shunji; Endo, Yasuo

    2011-11-01

    Microbial components activate the host's innate immunity via interactions with molecules including TLRs and NODs. We previously reported that in mice (i) Escherichia coli lipopolysaccharide (LPS; TLR4 agonist) promotes Ni-allergy even in T-cell-deficient mice, (ii) E. coli LPS reduces the minimum allergy-inducing concentrations of Ni at both the sensitization and elicitation steps, and (iii) various microbe-related substances promote sensitization to Ni. Here, we examined the effects of microbe-related substances at the elicitation step. Mice (except for TLR4-mutated C3H/HeJ mice) were sensitized to Ni by intraperitoneal injection of NiCl(2) + E. coli LPS. Ten days later their ear-pinnas were challenged with 1 μM NiCl(2) with or without a test substance. Although NiCl(2) alone at this concentration does not induce Ni-allergy, its combination with the following substances induced Ni-allergy in BALB/c mice: LPS preparations from oral gram-negative bacteria (Prevotella intermedia and Porphyromonas gingivalis), a mannan preparation from a fungus (Saccharomyces cerevisiae), and synthetic NOD2 and TLR2 agonists. The effect of the mannan preparation was small in C3H/HeJ mice (sensitized with NiCl(2) + the P. intermedia preparation). The P. intermedia preparation promoted Ni-allergy in C3H/HeJ and nude mice, but not in mice deficient in either TLR2 or histidine decarboxylase. Intragingival injection of the P. intermedia preparation and later challenge with NiCl(2) alone to ear-pinnas also promoted Ni-allergy. These results indicate that (i) in Ni-allergy, a microbial milieu or innate immunity is important at the elicitation step, too, and (ii) some oral bacteria may promote Ni-allergy via TLR2-stimulant(s) production.

  9. Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae.

    PubMed

    Evstigneeva, Anna; Raoult, Didier; Karpachevskiy, Lev; La Scola, Bernard

    2009-02-01

    Amoeba-resistant bacteria (ARB), such as Legionella spp., are currently regarded as potential human pathogens that live in the natural environment, and thus their habitat is regarded as a reservoir of human pathogens. To detect ARB in human and environmental samples, co-culture with amoebae has been demonstrated to be an efficient tool. However, to date, only water samples from cooling towers and hospital water supplies have been investigated as possible reservoirs of ARB using this procedure. In the present study, we studied the ARB population of 11 diverse soil and sand sources in proximity to human environments; these sources included the university, the station, hospitals, the square, parks and public beaches in the city of Marseilles, France. As a result, a total of 33 different species of ARB were identified. The ability to grow within and/or lyse amoebae was demonstrated, for what is believed to be the first time, for several species; moreover, 20 of the isolates (61%), including Streptococcus pneumoniae, have been described as human pathogens. However, Legionella spp. were not isolated. Four isolates are likely to be the members of new or uncharacterized genera or species, and their capability to be human pathogens needs to be determined. This preliminary work demonstrates that soils and sands in the vicinity of humans are reservoirs of human pathogenic ARB.

  10. Use of medium without reducing agent for in vitro fermentation studies by bacteria isolated from pig intestine.

    PubMed

    Poelaert, C; Boudry, C; Portetelle, D; Théwis, A; Bindelle, J

    2012-12-01

    Over the past decade, several in vitro methods have been developed to study intestinal fermentation in pigs and its influence on health. In these methods, samples are fermented by a bacterial inoculum diluted in a mineral buffer solution. Generally, a reducing agent such as Na(2)S or cysteine HCl generates the required anaerobic environment by release of H(2)S inducing an imbalance among bacterial species by the production of toxic metabolites. Therefore, an experiment was conducted to study the impact of reducing agent on fermentation patterns. Protein (soybean protein and/or casein) and carbohydrate (potato starch and/or cellulose) ingredients were fermented in vitro by pig intestinal bacteria from fresh feces obtained from 3 sows fed an antibiotic-free commercial diet in 3 incubation media differing in reducing agent: (i) Na(2)S, (ii) cysteine HCl, or (iii) without reducing agent. Gas fermentation kinetics were monitored over 72 h (pressure was measured every 2 min). Short-chain fatty acid (SCFA) production after 24 and 72 h were compared among ingredient and reducing agents (n = 2). Gas production was higher (P < 0.05) when fermenting carbohydrate than protein ingredients. Except for soybean protein, total SCFA production after 24 and 72 h was similar (P > 0.05) for each ingredient regardless the incubation medium. The SCFA molar ratios did not differ (P > 0.05) between Na(2)S and without reducing agent. In conclusion, saturation of incubation media with CO(2) seems sufficient to generate an anaerobic environment. So incubation media could be simplified by omitting the reducing agent without influencing the fermentation kinetics and SCFA production.

  11. Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome

    PubMed Central

    Hoyt, Joseph R.; Cheng, Tina L.; Langwig, Kate E.; Hee, Mallory M.; Frick, Winifred F.; Kilpatrick, A. Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  12. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  13. An Antimicrobial Metabolite from Bacillus sp.: Significant Activity Against Pathogenic Bacteria Including Multidrug-Resistant Clinical Strains

    PubMed Central

    Chalasani, Ajay G.; Dhanarajan, Gunaseelan; Nema, Sushma; Sen, Ramkrishna; Roy, Utpal

    2015-01-01

    In this study, the cell free modified tryptone soya broth (pH 7.4 ± 0.2) of Bacillus subtilis URID 12.1 showed significant antimicrobial activity against multidrug-resistant strains of Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes and Enterococcus faecalis. The partially purified antimicrobial molecule was found to be resistant to extremes of pH and temperatures and also to higher concentrations of trypsin and proteinase K. The antimicrobial molecule was purified by a three-step method that included reversed-phase high performance liquid chromatography (RP-HPLC). The minimum inhibitory concentration (MIC) values were determined for 14 species of bacteria using a microbroth dilution technique. The HPLC-purified fraction showed the MICs ranging from 0.5 to 16 μg/ml for methicillin and vancomycin-resistant Staphylococcus aureus (MVRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) strains. The molecular mass of the antimicrobial compound was determined to be 842.37 Da. The same antimicrobial fraction showed negligible haemolytic activity against human red blood cells even at a concentration as high as 100 μg/ml. Because of its significant antimicrobial activity at low MIC values coupled with its non-haemolytic property, it may prove to be a novel antimicrobial lead molecule. PMID:26696963

  14. Cultivable microbiota of Lithobates catesbeianus and advances in the selection of lactic acid bacteria as biological control agents in raniculture.

    PubMed

    Mendoza, Gabriela Montel; Pasteris, Sergio E; Ale, Cesar E; Otero, María C; Bühler, Marta I; Nader-Macías, María E Fátima

    2012-12-01

    The cultivable microbiota of skin and cloaca of captive Lithobates catesbeianus includes microorganisms generally accepted as beneficial and potentially pathogenic bacteria. In order to select a group of potentially probiotic bacteria, 136 isolates were evaluated for their surface properties and production of antagonistic metabolites. Then, 11 lactic acid bacteria (LAB) strains were selected and identified as Lactobacillus plantarum, Lb. brevis, Pediococcus pentosaceus, Lactococcus lactis, L. garvieae and Enterococcus gallinarum. Studies of compatibility indicate that all the strains could be included in a multi-strain probiotic, with the exception of Ent. gallinarum CRL 1826 which inhibited LAB species through a bacteriocin-like metabolite. These results contribute to the design of a probiotic product to improve the sanitary status of bullfrogs in intensive culture systems, to avoid the use of antibiotics and thus to reduce production costs. It could also be an alternative to prevent infectious diseases during the ex situ breeding of amphibian species under threat of extinction.

  15. Cefotetan: a second-generation cephalosporin active against anaerobic bacteria. Committee on Antimicrobial Agents, Canadian Infectious Disease Society.

    PubMed Central

    Gribble, M J

    1994-01-01

    OBJECTIVE: To offer guidelines for the use of cefotetan, a cephamycin antibiotic, in order to minimize its overprescription. OPTIONS: Clinical practice options considered were treatment of infections with the use of second- and third-generation cephalosporins, carbapenems such as imipenem as well as combination regimens of agents active against anaerobic bacteria, such as metronidazole or clindamycin with an aminoglycoside. OUTCOMES: In order of importance: efficacy, side effects and cost. EVIDENCE: A MEDLINE search of articles published between January 1982 and December 1993. In-vitro and pharmacokinetic studies published in recognized peer-reviewed journals that used recognized standard methods with appropriate controls were reviewed. For results of clinical trials, the reviewers emphasized randomized double-blind trials with appropriate controls. VALUES: The Antimicrobial Agents Committee of the Canadian Infectious Disease Society (CIDS) and a recognized expert (M.J.G.) recommended use of cefotetan to prevent and treat infections against which it has proved effective in randomized controlled trials. BENEFITS, HARMS AND COSTS: These guidelines should lead to less inappropriate prescribing of cefotetan, with its attendant costs and risk of development of resistant bacteria. RECOMMENDATIONS: Cefotetan could be considered an alternative single agent for prophylaxis of infection in patients undergoing elective bowel surgery. It may be used to treat patients with acute pelvic inflammatory disease and endometritis. VALIDATION: This article was prepared, reviewed and revised by the Committee on Antimicrobial Agents of the CIDS. It was then reviewed by the Council of the CIDS, and any further necessary revisions were made by the chairman of the committee. PMID:8069799

  16. Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria.

    PubMed

    Fu, Hai-Gen; Hu, Xin-Xin; Li, Cong-Ran; Li, Ying-Hong; Wang, Yan-Xiang; Jiang, Jian-Dong; Bi, Chong-Wen; Tang, Sheng; You, Xue-Fu; Song, Dan-Qing

    2016-03-03

    A series of monobactam derivatives were prepared and evaluated for their antibacterial activities against susceptible and resistant Gram-negative strains, taking Aztreonam and BAL30072 as the leads. Six conjugates (12a-f) bearing PIH-like siderophore moieties were created to enhance the bactericidal activities against Gram-negative bacteria based on Trojan Horse strategy, and all of them displayed potencies against susceptible Gram-negative strains with MIC ≤ 8 μg/mL. SAR revealed that the polar substituents on the oxime side chain were beneficial for activities against resistant Gram-negative bacteria. Compounds 19c and 33a-b exhibited the promising potencies against ESBLs-producing E. coli and Klebsiella pneumoniae with MICs ranging from 2 μg/mL to 8 μg/mL. These results offered powerful information for further strategic optimization in search of the antibacterial candidates against MDR Gram-negative bacteria.

  17. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    PubMed

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  18. Inhibitory activity of chelating agent against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...

  19. Resistance index of penicillin-resistant bacteria to various physicochemical agents.

    PubMed

    Kazemi, M; Kasra Kermanshahi, R; Heshmat Dehkordi, E; Payami, F; Behjati, M

    2012-01-01

    Widespread use of various antimicrobial agents resulted in the emergence of bacterial resistance. Mechanisms like direct efflux, formation, and sequestration of metals and drugs in complexes and antiporter pumps are some examples. This investigation aims to investigate the resistance pattern of penicillin-resistant bacterial strains to some physicochemical agents. Sensitivity/resistance pattern of common bacterial strains to antimicrobial agents were evaluated by disk diffusion assay. Broth and agar dilution method were used for determination of minimum inhibitory concentration and minimal bactericidal concentration. The impact of UV ray on the bacterial growth under laminar flow hood was measured using photonmeter. Our data demonstrates that the most prevalent metal resistance was against arsenate (95.92%), followed by cadmium (52.04%) and mercury (36.73%). There was significant difference between cetrimide resistances among studied microbial strains especially for P. aeruginosa (P < 0.05). High rate of pathogen resistance to various antibacterial agents in our study supports previously published data. This great rate of bacterial resistance is attributed to the emergence of defense mechanisms developed in pathogens. The higher general bacterial resistance rate among Staphylococcus strains rather than E. coli and P. aeruginosa strains draws attention towards focusing on designing newer therapeutic compounds for Staphylococcus strains.

  20. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram‐Negative Bacteria

    PubMed Central

    Borselli, Diane; Blanchet, Marine; Bolla, Jean‐Michel; Muth, Aaron; Skruber, Kristen

    2017-01-01

    Abstract Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram‐negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU‐N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer‐membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de‐energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. PMID:28098416

  1. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  2. Changes in Microbial Communities, Including both Uncultured and Culturable Bacteria, with Mid-Ocean Ballast-Water Exchange during a Voyage from Japan to Australia

    PubMed Central

    Tomaru, Akiko; Kawachi, Masanobu; Demura, Mikihide; Fukuyo, Yasuwo

    2014-01-01

    We assessed changes in the microbial communities in ballast water during a trans-Pacific voyage from Japan to Australia that included a mid-ocean ballast-water exchange. Uncultured (i.e., total) and culturable bacteria were counted and were characterized by using denaturing gradient gel electrophoresis (DGGE). There was a clear decrease over time in numbers of uncultured microorganisms, except for heterotrophic nanoflagellates, whereas the abundance of culturable bacteria initially decreased after the ballast-water exchange but then increased. The increase, however, was only up to 5.34% of the total number of uncultured bacteria. Cluster analysis showed that the DGGE profiles of uncultured bacteria clearly changed after the exchange. In contrast, there was no clear change in the DGGE profiles of culturable bacteria after the exchange. Multidimensional scaling analysis showed changes in microbial communities over the course of the voyage. Although indicator microbes as defined by the International Convention for the Control and Management of Ships' Ballast Water and Sediments were occasionally detected, no coliform bacteria were detected after the exchange. PMID:24817212

  3. Detection of single bacteria - causative agents of meningitis using raman microscopy

    NASA Astrophysics Data System (ADS)

    Baikova, T. V.; Minaeva, S. A.; Sundukov, A. V.; Svistunova, T. S.; Bagratashvili, V. N.; Alushin, M. V.; Gonchukov, S. A.

    2015-03-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium.

  4. DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria

    PubMed Central

    Takeshima, Tomomi; Tada, Yuya; Sakaguchi, Norihito; Watari, Fumio; Fugetsu, Bunshi

    2015-01-01

    Silver (Ag) nanoparticles were produced using DNA extracted from salmon milt as templates. Particles spherical in shape with an average diameter smaller than 10 nm were obtained. The nanoparticles consisted of Ag as the core with an outermost thin layer of DNA. The DNA/Ag hybrid nanoparticles were immobilized over the surface of cotton based fabrics and their antibacterial efficiency was evaluated using E. coli as the typical Gram-negative bacteria. The antibacterial experiments were performed according to the Antibacterial Standard of Japanese Association for the Functional Evaluation of Textiles. The fabrics modified with DNA/Ag nanoparticles showed a high enough inhibitory and killing efficiency against E. coli at a concentration of Ag ≥ 10 ppm. PMID:28347012

  5. Starter bacteria are the prime agents of lipolysis in cheddar cheese.

    PubMed

    Hickey, Dara K; Kilcawley, Kieran N; Beresford, Tom P; Wilkinson, Martin G

    2006-10-18

    To assess the contribution of starter lactic acid bacteria (LAB) to lipolysis in Cheddar cheese, the evolution of free fatty acids (FFAs) was monitored in Cheddar cheeses manufactured from pasteurized milks with or without starter. Starter-free cheeses were acidified by a combination of lactic acid and glucono-delta-lactone. Starter cultures were found to actively produce FFAs in the cheese vat, and mean levels of FFAs were significantly higher in starter cheeses over ripening. The contribution of nonstarter LAB toward lipolysis appears minimal, especially in starter-acidified cheeses. It is postulated that the moderate increases in FFAs in Cheddar cheese are primarily due to lack of access of esterase of LAB to suitable lipid substrate. The results of this study indicate that starter esterases are the primary contributors to lipolysis in Cheddar cheese made from good quality pasteurized milk.

  6. Biomarkers of sulfate reducing bacteria from a variety of different aged samples including a modern microbial mat

    NASA Astrophysics Data System (ADS)

    Pages, A.; Grice, K.; Lockhart, R.; Holman, A.; Melendez, I.; Van Kranendonk, M.; Jaraula, C.

    2011-12-01

    Most biomarkers present in sediments occur in only trace concentrations, trapped in kerogen or may be highly functionalised especially in recent sedimentary deposits making them difficult to chromatographically resolve, thus presenting considerable analytical challenges, especially for isotope studies. Innovative hydro (Hy) pyrolysis (Py) techniques are able to target or convert many of these compounds into free hydrocarbons more amenable to gas chromatography mass-spectrometry (GC-MS) and compound-specific isotope analysis (CSIA). HyPy has been applied to a modern layered smooth mat from Shark Bay, Western Australia. Saturate and aromatic fractions from different layers of the mat have been analysed by GC-MS and CSIA. After HyPy, an even-odd distribution of n-alkanes has been revealed as well as very long-chain n-alkanes up to n-C38. Stable carbon isotopic values of the n-alkanes indicated the presence of at least two bacterial communities. The short-chain n-alkanes were likely to be representative of a cyanobacteria community (δ13C, C15-C23, - 18 to -25 %VPDB) while the carbon isotopic values of the long-chain n-alkanes supported the presence of sulfate reducing bacteria (δ13C, C25-C33, - 30 to - 34 %VPDB). Long-chain fatty acids have been previously reported in sulfate reducing bacteria. It is hypothesised that this distribution and isotopic character representing sulfate reducing bacteria consortia may be preserved in the rock record. This hypothesis has been tested in Australian rocks: a Devonian carbonaceous concretion containing an exceptionally well preserved fossil invertebrate from the Canning Basin, Western Australia, a Paleoproterozoic sample (1.6 billion years old) from a lead-zinc ore deposit from the McArthur Basin, Northern Territories and a Paleoproterozoic chert (2.3 billion years old) from the Pilbara, Western Australia. Biomarkers of these samples showed a strong predominance of long-chain n-alkanes, up to n-C38 with an even-odd distribution

  7. Bacteriophage: Time to Re-Evaluate the Potential of Phage Therapy as a Promising Agent to Control Multidrug-Resistant Bacteria

    PubMed Central

    Sabouri Ghannad, Masoud; Mohammadi, Avid

    2012-01-01

    Nowadays the most difficult problem in treatment of bacterial infections is the appearance of resistant bacteria to the antimicrobial agents so that the attention is being drawn to other potential targets. In view of the positive findings of phage therapy, many advantages have been mentioned which utilizes phage therapy over chemotherapy and it seems to be a promising agent to replace the antibiotics. This review focuses on an understanding of phages for the treatment of bacterial infectious diseases as a new alternative treatment of infections caused by multiple antibiotic resistant bacteria. Therefore, utilizing bacteriophage may be accounted as an alternative therapy. It is appropriate time to re-evaluate the potential of phage therapy as an effective bactericidal and a promising agent to control multidrug-resistant bacteria. PMID:23494063

  8. Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review.

    PubMed

    Axel, Claudia; Zannini, Emanuele; Coffey, Aidan; Guo, Jiahui; Waters, Deborah M; Arendt, Elke K

    2012-10-01

    In times of increasing societal pressure to reduce the application of pesticides on crops, demands for environmentally friendly replacements have intensified. In the case of late blight, a devastating potato plant disease, the historically most widely known plant destroyer has been the oomycete Phytophthora infestans. To date, the most important strategy for control of this pathogen has been the frequent application of fungicides. Due to the aforementioned necessity to move away from traditional chemical treatments, many studies have focused on finding alternative ecofriendly biocontrol systems. In general, due to the different modes of actions (i.e. antagonistic effects or induction of plant defence mechanisms), the use of microorganisms as biological control agents has a definite potential. Amongst them, several species of lactic acid bacteria have been recognised as producers of bioactive metabolites which are functional against a broad spectrum of undesirable microorganisms, such as fungi, oomycetes and other bacteria. Thus, they may represent an interesting tool for the development of novel concepts in pest management. This review describes the present situation of late blight disease and summarises current literature regarding the biocontrol of the phytopathogen P. infestans using antagonistic microorganisms.

  9. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  10. Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent

    NASA Astrophysics Data System (ADS)

    Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon

    2012-08-01

    In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106-107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105-106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.

  11. Autotrophic, Hydrogen-Oxidizing, Denitrifying Bacteria in Groundwater, Potential Agents for Bioremediation of Nitrate Contamination

    PubMed Central

    Smith, Richard L.; Ceazan, Marnie L.; Brooks, Myron H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent Km of 0.45 to 0.60 μM and a Vmax of 18.7 nmol cm-3 h-1 at 30°C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the Kms ranged from 0.30 to 3.32 μM, with Vmaxs of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater. PMID:16349284

  12. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes

    PubMed Central

    Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B.; Woo, Y. Joseph; Chakraborty, Papia; Lee, Kayla R.; Foote, Chandler S.; Piecewicz, Stephanie; Barrozo, Joyce C.; Wakeel, Abdul; Rice, Bradley W.; Bell III, Caleb B.; Yang, Phillip C.

    2016-01-01

    Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity. PMID:27264636

  13. Antagonistic effects of several bacteria on Verticillium dahliae the causal agent of cotton wilt.

    PubMed

    Tehrani, A S; Disfani, F A; Hedjaroud, G A; Mohammadi, M

    2001-01-01

    Experiments were carried out with 89 bacterial isolates that were collected from cotton rhizosphere in Gorgan province. The antagonistic effects of bacterial isolates on Verticillium dahliae Klebahn were studied using dual culture test. Five highly effective isolates were selected from these antagonists for subsequent studies. According to the biochemical, physiological and morphological tests, isolates 2020 and 3 were identified as Pseudomonas fluorescens and isolate 204, 202 and 309 as Bacillus spp. These isolates were used to investigate their antagonistic mechanisms in vitro and their effects on cotton growth in vivo. Inhibition of V. dahliae by volatile metabolites and antibiotics was studied as described by Fiddamen (1994) and Kraus (1990). Production of hydrogen cyanide was studied qualitatively, using HCN-indicator paper of Castric and Castric (1983). Isolates 204, 202 and 309 inhibited the mycelial growth of the fungus through production of volatile metabolites. Isolates 2020 and 3 produced antibiotic as well as volatile metabolities that inhibited mycelial growth of V. dahliae. They both produced hydrogen cyanide. After four months of greenhouse study, the application of antagonistic bacteria had different effects on growth of cotton plants. Bacterial treatment in soil had better effects on plant growth than that of bacterial seed treatment. In soil treatments containing infested and non-infested soil with V. dahliae, isolates 2020 and 3 caused an increase in plant height in comparison with those in infested and non-infested controls. In non-infested soil, application of isolates 2020, 3 and 202 increased root length and dry weight of cotton plant, but in soil infested with the fungus, only isolate 202 increased root length. Isolate 2020 increased plant dry weight. In conclusion, isolates 2020 and 3 belonging to P. fluorescens and isolate 202 pertaining to genus Bacillus had the greatest effect on increasing the cotton growth.

  14. Development of Anti-Infectives Using Phage Display: Biological Agents against Bacteria, Viruses, and Parasites

    PubMed Central

    Huang, Johnny X.; Bishop-Hurley, Sharon L.

    2012-01-01

    The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens. PMID:22664969

  15. Design and synthesis of novel antimicrobials with activity against Gram-positive bacteria and mycobacterial species, including M. tuberculosis

    PubMed Central

    Tiruveedhula, V.V.N. Phani Babu; Witzigmann, Christopher M.; Verma, Ranjit; Kabir, M. Shahjahan; Rott, Marc; Schwan, William R.; Medina-Bielski, Sara; Lane, Michelle; Close, William; Polanowski, Rebecca L.; Sherman, David; Monte, Aaron; Deschamps, Jeffrey R.; Cook, James M.

    2013-01-01

    The alarming increase in bacterial resistance over the last decade along with a dramatic decrease in new treatments for infections has led to problems in the healthcare industry. Tuberculosis (TB) is caused mainly by Mycobacterium tuberculosis which is responsible for 1.4 million deaths per year. A world-wide threat with HIV co-infected with multi and extensively drug-resistant strains of TB has emerged. In this regard, herein, novel acrylic acid ethyl ester derivatives were synthesized in simple, efficient routes and evaluated as potential agents against several Mycobacterium species. These were synthesized via a stereospecific process for structure activity relationship (SAR) studies. Minimum inhibitory concentration (MIC) assays indicated that esters 12, 13, and 20 exhibited greater in vitro activity against Mycobacterium smegmatis than rifampin, one of the current, first-line anti-mycobacterial chemotherapeutic agents. Based on these studies the acrylic ester 20 has been developed as a potential lead compound which was found to have an MIC value of 0.4 μg/mL against Mycobacterium tuberculosis. The SAR and biological activity of this series is presented; a Michael – acceptor mechanism appears to be important for potent activity of this series of analogs. PMID:24200931

  16. Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease.

    PubMed

    Wu, Meihua; Sugimura, Yuya; Iwata, Kyoko; Takaya, Noriko; Takamatsu, Daisuke; Kobayashi, Masaru; Taylor, DeMar; Kimura, Kiyoshi; Yoshiyama, Mikio

    2014-01-01

    European foulbrood is a contagious bacterial disease of honey bee larvae. Studies have shown that the intestinal bacteria of insects, including honey bees, act as probiotic organisms. Microbial flora from the gut of the Japanese honey bee, Apis cerana japonica F. (Hymenoptera: Apidae), were characterized and evaluated for their potential to inhibit the growth of Melissococcus plutonius corrig. (ex White) Bailey and Collins (Lactobacillales: Enterococcaceae), the causative agent of European foulbrood. Analysis of 16S rRNA gene sequences from 17 bacterial strains isolated by using a culture-dependent method revealed that most isolates belonged to Bacillus, Staphylococcus, and Pantoea. The isolates were screened against the pathogenic bacterium M. plutonius by using an in vitro growth inhibition assay, and one isolate (Acja3) belonging to the genus Bacillus exhibited inhibitory activity against M. plutonius. In addition, in vivo feeding assays revealed that isolate Acja3 decreased the mortality of honey bee larvae infected with M plutonius, suggesting that this bacterial strain could potentially be used as a probiotic agent against European foulbrood.

  17. Inhibitory Effect of Gut Bacteria from the Japanese Honey Bee, Apis cerana japonica, Against Melissococcus plutonius, the Causal Agent of European Foulbrood Disease

    PubMed Central

    Wu, Meihua; Sugimura, Yuya; Iwata, Kyoko; Takaya, Noriko; Takamatsu, Daisuke; Kobayashi, Masaru; Taylor, DeMar; Kimura, Kiyoshi; Yoshiyama, Mikio

    2014-01-01

    European foulbrood is a contagious bacterial disease of honey bee larvae. Studies have shown that the intestinal bacteria of insects, including honey bees, act as probiotic organisms. Microbial flora from the gut of the Japanese honey bee, Apis cerana japonica F. (Hymenoptera: Apidae), were characterized and evaluated for their potential to inhibit the growth of Melissococcus plutonius corrig. (ex White) Bailey and Collins (Lactobacillales: Enterococcaceae), the causative agent of European foulbrood. Analysis of 16S rRNA gene sequences from 17 bacterial strains isolated by using a culture-dependent method revealed that most isolates belonged to Bacillus, Staphylococcus, and Pantoea. The isolates were screened against the pathogenic bacterium M. plutonius by using an in vitro growth inhibition assay, and one isolate (Acja3) belonging to the genus Bacillus exhibited inhibitory activity against M. plutonius. In addition, in vivo feeding assays revealed that isolate Acja3 decreased the mortality of honey bee larvae infected with M. plutonius, suggesting that this bacterial strain could potentially be used as a probiotic agent against European foulbrood. PMID:25368073

  18. Rural-urban migration including formal and informal workers in the urban sector: an agent-based numerical simulation study

    NASA Astrophysics Data System (ADS)

    Branco, Nilton; Oliveira, Tharnier; Silveira, Jaylson

    2012-02-01

    The goal of this work is to study rural-urban migration in the early stages of industrialization. We use an agent-based model and take into account the existence of informal and formal workers on the urban sector and possible migration movements, dependent on the agents' social and private utilities. Our agents are place on vertices of a square lattice, such that each vertex has only one agent. Rural, urban informal and urban formal workers are represented by different states of a three-state Ising model. At every step, a fraction a of the agents may change sectors or migrate. The total utility of a given agent is then calculated and compared to a random utility, in order to check if this agent turns into an actual migrant or changes sector. The dynamics is carried out until an equilibrium state is reached and equilibrium variables are then calculated and compared to available data. We find that a generalized Harris-Todaro condition is satisfied [1] on these equilibrium regimes, i.e, the ratio between expected wages between any pair of sectors reach a constant value. [4pt] [1] J. J. Silveira, A. L. Esp'indola and T. J. Penna, Physica A, 364, 445 (2006).

  19. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  20. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery.

    PubMed

    Wang, Qinhong; Fang, Xiangdong; Bai, Baojun; Liang, Xiaolin; Shuler, Patrick J; Goddard, William A; Tang, Yongchun

    2007-11-01

    Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including enhanced oil recovery (EOR), biodegradation, and bioremediation. Rhamnolipid is composed of rhamnose sugar molecule and beta-hydroxyalkanoic acid. The rhamnosyltransferase 1 complex (RhlAB) is the key enzyme responsible for transferring the rhamnose moiety to the beta-hydroxyalkanoic acid moiety to biosynthesize rhamnolipid. Through transposome-mediated chromosome integration, the RhlAB gene was inserted into the chromosome of the Pseudomonas aeruginosa PAO1-rhlA(-) and Escherichia coli BL21 (DE3), neither of which could produce rhamnolipid. After chromosome integration of the RhlAB gene, the constitute strains P. aeruginosa PEER02 and E. coli TnERAB did produce rhamnolipid. The HPLC/MS spectrum showed that the structure of purified rhamnolipid from P. aeruginosa PEER02 was similar to that from other P. aeruginosa strains, but with different percentage for each of the several congeners. The main congener (near 60%) of purified rhamnolipid from E. coli TnERAB was 3-(3-hydroxydecanoyloxy) decanoate (C(10)-C(10)) with mono-rhamnose. The surfactant performance of rhamnolipid was evaluated by measurement of interfacial tension (IFT) and oil recovery via sand-pack flooding tests. As expected, pH and salt concentration of the rhamnolipid solution significantly affected the IFT properties. With just 250 mg/L rhamnolipid (from P. aeruginosa PEER02 with soybean oil as substrate) in citrate-Na(2)HPO(4), pH 5, 2% NaCl, 42% of oil otherwise trapped was recovered from a sand pack. This result suggests rhamnolipid might be considered for EOR applications.

  1. Hospital Isolates of Serratia marcescens Transferring Ampicillin, Carbenicillin, and Gentamicin Resistance to Other Gram-Negative Bacteria Including Pseudomonas aeruginosa

    PubMed Central

    Olexy, Vera M.; Bird, Thomas J.; Grieble, Hans G.; Farrand, Stephen K.

    1979-01-01

    Thirteen independent isolates of Serratia marcescens associated with nosocomial urinary tract infections were obtained from the clinical microbiology laboratory at Hines Veterans Administration Hospital. The isolates were resistant to at least ampicillin, carbenicillin, gentamicin, and tobramycin. They could be divided into two groups on the basis of their antibiotypes. Group I (9 strains) showed resistance to 13 antibiotics, including 3 beta-lactams, 6 aminoglycosides, tetracycline, sulfonamide, trimethoprim, and polymyxin B. Group II (4 strains) was resistant to 11 antibiotics, including 3 beta-lactams, 5 aminoglycosides, sulfonamide, trimethoprim, and polymyxin B. Donors from both groups transferred resistance traits to Escherichia coli. Transconjugants from matings with group II donors all acquired resistance to nine antibiotics, including the three beta-lactams, five aminoglycosides, and sulfonamide. Transconjugants from matings with group I donors were of varied antibiotypes, inheriting resistance to up to 11 of the 13 antibiotics. Resistances to trimethoprim and polymyxin B were never observed to transfer. E. coli transconjugants of each group were capable of transferring multiple-antibiotic resistance to several other members of the family Enterobacteriaceae. All group II S. marcescens and E. coli donors and all group I S. marcescens donors transferred carbenicillin, streptomycin, kanamycin, gentamicin, tobramycin, and sisomicin resistance to Pseudomonas aeruginosa. The results suggest that these S. marcescens strains harbor R factors of a broader host range than previously reported. PMID:106772

  2. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  3. Biosecurity of Select Agents and Toxins

    DTIC Science & Technology

    2005-03-01

    ribosome inactivating proteins "* Tetrodotoxin Bacteria "* Rickettsia prowazekii "* Rickettsia rickettsii "* Yersinia pestis Fungi "* Coccidioides...CFR) 73, defines a select agent as: ... any microorganism (including, but not limited to, bacteria , viruses, fungi, rickettsiae , or protozoa), or...a substantially greater danger to the public health people of the United States and the world. Those substances (viruses, bacteria and toxins) were

  4. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-07-06

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region.

  5. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Bio-control Agent Against Wound Infections

    DTIC Science & Technology

    2015-10-01

    inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One 6, e17091, doi...Against Wound Infections PRINCIPAL INVESTIGATOR: Daniel E Kadouri, Ph.D CONTRACTING ORGANIZATION: Rutgers, The State University of New Jersey...SUBTITLE The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Bio-control Agent Against Wound Infections 5c. PROGRAM

  6. Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents.

    PubMed

    Ruimy, Raymond; Brisabois, Anne; Bernede, Claire; Skurnik, David; Barnat, Saïda; Arlet, Guillaume; Momcilovic, Sonia; Elbaz, Sandrine; Moury, Frédérique; Vibet, Marie-Anne; Courvalin, Patrice; Guillemot, Didier; Andremont, Antoine

    2010-03-01

    Resistance to antibiotics is a major public health problem which might culminate in outbreaks caused by pathogenic bacteria untreatable by known antibiotics. Most of the genes conferring resistance are acquired horizontally from already resistant commensal or environmental bacteria. Food contamination by resistant bacteria might be a significant source of resistance genes for human bacteria but has never been precisely assessed, nor is it known whether organic products differ in this respect from conventionally produced products. We showed here, on a large year-long constructed sample set containing 399 products that, irrespective of their mode of production, raw fruits and vegetables are heavily contaminated by Gram-negative bacteria (GNB) resistant to multiple antibiotics. Most of these bacteria originate in the soil and environment. We focused on non-oxidative GNB resistant to third-generation cephalosporins, because of their potential impact on human health. Among them, species potentially pathogenic for immunocompetent hosts were rare. Of the products tested, 13% carried bacteria producing extended-spectrum beta-lactamases, all identified as Rahnella sp. which grouped into two phylotypes and all carrying the bla(RAHN) gene. Thus, both organic and conventional fruits and vegetables may constitute significant sources of resistant bacteria and of resistance genes.

  7. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-08-14

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.

  8. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  9. Potential Military Chemical/Biological Agents and Compounds

    DTIC Science & Technology

    2005-01-01

    toxins, bioregulators, or prions. (1) Pathogens. Pathogens are disease-producing microorganisms,6 such as bacteria , rickettsiae , or viruses...disability. Potential biological antipersonnel agents include toxins, bacteria , rickettsiae , viruses, and toxins. (2) Antianimal. Biological...microorganisms such as pathogens (which include disease-causing bacteria , rickettsiae , and viruses) and toxins. NOTES: 1. See Table IV-1 (page IV-2) for the

  10. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  11. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections

    DTIC Science & Technology

    2013-10-01

    resistance. Using enrichment culturing techniques we have verified that no genetically stable predation resistant phenotype developed in K. pneumoniae and...bacteria used in this experiment was K. pneumoniae ATCC 33495. Initial predation was determined. Thereafter, host cells were sequentially cultured 20...change. All experiments were conducted in triplicates. Data represent the average log change. Initial predation Initial reduction of K. pneumoniae

  12. Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells.

    PubMed

    Nakao, Satoshi; Komagoe, Keiko; Inoue, Tsuyoshi; Katsu, Takashi

    2011-01-01

    The membrane-permeabilizing activities of mastoparans and related histamine-releasing agents were compared through measurements of K(+) efflux from bacteria, erythrocytes, and mast cells. Changes in bacterial cell viability, hemolysis, and histamine release, as well as in the shape of erythrocytes were also investigated. The compounds tested were mastoparans (HR1, a mastoparan from Polistes jadwagae, and a mastoparan from Vespula lewisii), granuliberin R, mast cell-degranulating peptide, and compound 48/80, as well as antimicrobial peptides, such as magainin I, magainin II, gramicidin S, and melittin. We used a K(+)-selective electrode to determine changes in the permeability to K(+) of the cytoplasmic membranes of cells. Consistent with the surface of mast cells becoming negatively charged during histamine release, due to the translocation of phosphatidylserine to the outer leaflet of the cytoplasmic membrane, histamine-releasing agents induced K(+) efflux from mast cells, dependent on their ability to increase the permeability of bacterial cytoplasmic membranes rich in negatively charged phospholipids. The present results demonstrated that amphiphilic peptides, possessing both histamine-releasing and antimicrobial capabilities, induced the permeabilization of the cytoplasmic membranes of not only bacteria but mast cells. Mastoparans increased the permeability of membranes in human erythrocytes at higher concentrations, and changed the normal discoid shape to a crenated form. The structural requirement for making the crenated form was determined using compound 48/80 and its constituents (monomer, dimer, and trimer), changing systematically the number of cationic charges of the molecules.

  13. The Potential Application and Risks Associated With the Use of Predatory Bacteria as a Biocontrol Agent Against Wound Infections

    DTIC Science & Technology

    2014-09-01

    predators, B. bacteriovorus 109J and B. bacteriovorus HD100. The host bacteria used in this experiment was K. pneumoniae ATCC 33495. Initial predation was...log change. 5 Initial predation Initial reduction of K. pneumoniae (log10) after co-culturing with B. bacteriovorus HD100, B...predation Final average population reduction (log10) of K. pneumoniae that was sequentially cultured 20 times on B. bacteriovorus HD100. Control B

  14. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli.

    PubMed

    Hamoud, Razan; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2014-03-15

    Combinations of two or more drugs, which affect different targets, have frequently been used as a new approach against resistant bacteria. In our work we studied the antimicrobial activity (MIC, MBC) of individual drugs (the phenolic monoterpene thymol, EDTA and vancomycin), of two-drug interactions between thymol and EDTA in comparison with three-drug interactions with vancomycin against sensitive and resistant bacteria. Thymol demonstrated moderate bactericidal activity (MBC between 60 and 4000μg/ml) while EDTA only exhibited bacteriostatic activity over a range of 60-4000μg/ml. MICs of vancomycin were between 0.125 and 16μg/ml against Gram-positive and between 32 and 128μg/ml against Gram-negative bacteria. Checkerboard dilution and time-kill curve assays were performed to evaluate the mode of interaction of several combinations against Methicillin-resistant Staphylococcus aureus (MRSA NCTC 10442) and Escherichia coli (ATCC 25922). Checkerboard data indicate indifferent interaction against Gram-positive (FICI=1-1.3) and synergy against Gram-negative bacteria (FICI≈0.4), while time kill analyses suggest synergistic effect in different combinations against both types of bacteria. It is remarkable that the combinations could enhance the sensitivity of E. coli to vancomycin 16-fold to which it is normally insensitive. We have provided proof for the concept, that combinations of known antibiotics with modern phytotherapeutics can expand the spectrum of useful therapeutics.

  15. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults

    PubMed Central

    Fernandez y Mostajo, Mercedes; van der Reijden, Wil A.; Buijs, Mark J.; Beertsen, Wouter; van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija

    2014-01-01

    Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. Material and methods: In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. Results: AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). Conclusion: AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research

  16. [Daptomycin: revitalizing a former drug due to the need of new active agents against grampositive multiresistant bacterias].

    PubMed

    Hernández Martí, V; Romá Sánchez, E; Salavert Lletí, M; Bosó Ribelles, V; Poveda Andrés, J L

    2007-09-01

    The development of mechanisms of resistance of many Gram-positive bacterial strains that cause complicated skin and soft tissue infections, as well as sepsis and bacteremia, has necessitated the search for new drugs that will improve treatment strategies. Daptomycin is a cyclic lipopeptide antibacterial that was launched for the treatment of complicated skin and soft tissue infections caused by Gram-positive organisms. The drug's mechanism of action is different from that of any other antibiotic. It binds to bacterial membranes and causes a rapid depolarization of membrane potential. This loss of membrane potential causes inhibition of protein, DNA and RNA synthesis, which results in bacterial cell death. The in vitro spectrum of activity of daptomycin encompasses most clinically relevant aerobic Gram-positive pathogenic bacteria. Compared to other antibiotics with a similar antibacterial spectrum, daptomycin does not cause nephrotoxicity. Taking these and other characteristics into consideration, daptomycin appears to be a good alternative to other drugs used in the treatment of complicated skin and soft tissue infections and in Gram-positive bacteremial infections.

  17. RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles

    PubMed Central

    Fernández, Cristina; Núñez-Ramírez, Rafael; Jiménez, Mercedes; Rivas, Germán; Giraldo, Rafael

    2016-01-01

    RepA-WH1 is a disease-unrelated protein that recapitulates in bacteria key aspects of human amyloid proteinopathies: i) It undergoes ligand-promoted amyloidogenesis in vitro; ii) its aggregates are able to seed/template amyloidosis on soluble protein molecules; iii) its conformation is modulated by Hsp70 chaperones in vivo, generating transmissible amyloid strains; and iv) causes proliferative senescence. Membrane disruption by amyloidogenic oligomers has been found for most proteins causing human neurodegenerative diseases. Here we report that, as for PrP prion and α-synuclein, acidic phospholipids also promote RepA-WH1 amyloidogenesis in vitro. RepA-WH1 molecules bind to liposomes, where the protein assembles oligomeric membrane pores. Fluorescent tracer molecules entrapped in the lumen of the vesicles leak through these pores and RepA-WH1 can then form large aggregates on the surface of the vesicles without inducing their lysis. These findings prove that it is feasible to generate in vitro a synthetic proteinopathy with a minimal set of cytomimetic components and support the view that cell membranes are primary targets in protein amyloidoses. PMID:26984374

  18. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources.

    PubMed

    Alippi, Adriana M; Reynaldi, Francisco J

    2006-03-01

    The bacterium Paenibacillus larvae, the causative agent of American foulbrood disease of honeybee larvae, occurs throughout the world and is found in many beekeeping areas of Argentina. The potential as biocontrol agents of antagonic aerobic spore-forming bacteria isolated from honey samples and other apiarian sources were evaluated. Each isolate was screened against one strain of Paenibacillus larvae (ATCC 9545) by using a perpendicular streak technique. Ten randomly selected bacterial strains from the group that showed the best antagonistic effect to P. larvae ATCC 9545 were selected for further study. These were identified as Bacillus subtilis (m351), B. pumilus (m350), B. licheniformis (m347), B. cereus (mv33), B. cereus (m387), B. cereus (m6c), B. megaterium (m404), Brevibacillus laterosporus (BLAT169), B. laterosporus (BLAT170), and B. laterosporus (BLAT171). The antagonistic strains were tested against 17 P. larvae strains from different geographical origins by means of a spot test in wells. The analysis of variance and posterior comparison of means by Tukey method (P < 0.01) showed that the best antagonists were B. megaterium (m404), B. licheniformis (m347), B. cereus (m6c), B. cereus (mv33), and B. cereus (m387).

  19. [Susceptibility of clinically-isolated bacteria strains to respiratory quinolones and evaluation of antimicrobial agent efficacy by Monte Carlo simulation].

    PubMed

    Kosaka, Tadashi; Yamada, Yukiji; Kimura, Takeshi; Kodama, Mai; Fujitomo, Yumiko; Masaki, Nakanishi; Toshiaki, Komori; Keisuke, Shikata; Fujita, Naohisa

    2016-02-01

    Respiratory quinolones (RQs) are broad-spectrum antimicrobial agents used for the treatment of a wide variety of community-acquired and nosocomial infections. However, bacterial resistance to quinolones has been on the increase. In this study, we investigated the predicted efficacy of RQs for various strains of 9 bacterial species clinically isolated at our university hospital using the Monte Carlo simulation (MCS) method based on pharmacokinetics/pharmacodynamics modeling. In addition, the influence of the patients' renal function on the efficacy of RQs was evaluated. We surveyed antimicrobial susceptibility testing of 9 bacterial species (n = number of strains) [Streptococcus pneumoniae (n = 15), Streptococcus pyogenes (n = 14), Streptococcus agalactiae (n = 19), methicillin-susceptible Staphylococcus aureus (MSSA) (n = 24), Escherichia coli (n = 35), Haemophilus influenzae (n = 17), Klebsiella pneumoniae (n = 14), Pseudomonas aeruginosa (n = 31), and Moraxella catarrhalis (n = 11)] to 4 RQs [garenoxacin (GRNX), levofloxacin (LVFX), sitafloxacin (STFX), and moxifloxacin (MFLX)]. We found that compared with the other RQs, Gram-positive cocci was most resistant to LVFX, and that the minimum inhibitory concentration (MIC₉₀) values for S. pneumoniae, S. pyogenes, S. agalactiae, and MSSA were high (2, 16, > 16, and 8 µg/mL, respectively). In regard to Gram-negative rods, the susceptibility of E. coli to RQs was found to be decreased, with the MIC₉₀ values of GRNX, LVFX, STFX, and MFLX being > 16, 16, 1, and 16 µg/mL, respectively. MCS revealed that the target attainment rate of the area under the unbound concentration-time curve divided by the MIC₉₀ (ƒ · AUC/MIC ratio), against S. pneumoniae was 86.9-100%, but against E. coli was low (52.1-66.2%). The ƒ · AUC/MIC target attainment rate of LVFX against S. pneumoniae, S. pyogenes, and S. agalactiae tended to decrease due to increased creatinine clearance, and that of LVFX and STFX against MSSA also

  20. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis.

    PubMed

    Tsepilov, R N; Beloded, A V

    2015-09-01

    Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.

  1. Coral-Associated Bacteria as a Promising Antibiofilm Agent against Methicillin-Resistant and -Susceptible Staphylococcus aureus Biofilms

    PubMed Central

    Gowrishankar, Shanmugaraj; Duncun Mosioma, Nyagwencha; Karutha Pandian, Shunmugiah

    2012-01-01

    The current study deals with the evaluation of two coral-associated bacterial (CAB) extracts to inhibit the biofilm synthesis in vitro as well as the virulence production like hemolysin and exopolysaccharide (EPS), and also to assess their ability to modify the adhesion properties, that is cell surface hydrophobicity (CSH) of methicillin-resistant (MRSA) and -susceptible Staphylococcus aureus (MSSA). Out of nine CAB screened, the ethyl acetate extract of CAB-E2 (Bacillus firmus) and CAB-E4 (Vibrio parahemolyticus) have shown excellent antibiofilm activity against S. aureus. CAB-E2 reduced the production of EPS (57–79%) and hemolysin (43–70%), which ultimately resulted in the significant inhibition of biofilms (80–87%) formed by both MRSA and MSSA. Similarly, CAB-E4 was also found to decrease the production of EPS (43–57%), hemolysin (43–57%) and biofilms (80–85%) of test pathogens. CLSM analysis also proved the antibiofilm efficacy of CAB extracts. Furthermore, the CAB extracts strongly decreased the CSH of S. aureus. Additionally, FT-IR analysis of S. aureus treated with CAB extracts evidenced the reduction in cellular components compared to their respective controls. Thus, the present study reports for the first time, B. firmus—a coral-associated bacterium, as a promising source of antibiofilm agent against the recalcitrant biofilms formed by multidrug resistant S. aureus. PMID:22988476

  2. Fate and distribution of brevetoxin (PbTx) following lysis of Karenia brevis by algicidal bacteria, including analysis of open A-ring derivatives.

    PubMed

    Roth, Patricia B; Twiner, Michael J; Wang, Zhihong; Bottein Dechraoui, Marie-Yasmine; Doucette, Gregory J

    2007-12-15

    Flavobacteriaceae (strain S03) and Cytophaga sp. (strain 41-DBG2) are algicidal bacteria active against the brevetoxin (PbTx)-producing, red tide dinoflagellate, Karenia brevis. Little is known about the fate of PbTx associated with K. brevis cells following attack by such bacteria. The fate and distribution of PbTx in K. brevis cultures exposed to these algicidal strains were thus examined by receptor binding assay and liquid chromatography/mass spectrometry (LC/MS) in three size fractions (>5, 0.22-5, <0.22microm) over a 2-week time course. In control cultures, brevetoxin concentrations in the >5microm particulate size fraction correlated with changes in cell density, whereas significant increases in dissolved (i.e., <0.22microm) toxin were observed in the later stages of culture growth. Exposure of K. brevis to either of the two algicidal bacteria tested caused cell lysis, coinciding with a rapid decline in the >5microm PbTX size fraction and a simultaneous release of dissolved toxin into the growth medium. Upon cell lysis, dissolved brevetoxin accounted for ca. 60% of total toxin and consisted of 51-82% open A-ring derivatives. Open A-ring PbTx-2 and PbTx-3 derivatives bound with lower affinity (approximately 22- and 57-fold, respectively) to voltage-gated sodium channels and were considerably less cytotoxic (86- and 142-fold, respectively) to N2A cells than their individual parent toxins (i.e., PbTx-2 and PbTx-3). These novel findings of changes in PbTx size-fractioned distribution and overall reduction in K. brevis toxicity following attack by algicidal bacteria improve our understanding of potential trophic transfer routes and the fate of PbTx during red tide events. Moreover, this information will be important to consider when evaluating the potential role of algicidal bacteria in harmful algal bloom (HAB) management strategies involving control of bloom populations.

  3. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils

    PubMed Central

    Khan, Muhammad U.; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M.; Afzal, Muhammad

    2015-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l−1. These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l−1) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils. PMID:25610444

  4. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils.

    PubMed

    Khan, Muhammad U; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M; Afzal, Muhammad

    2014-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l(-1). These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l(-1)) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  5. Degradation of paraoxon (VX chemical agent simulant) and bacteria by magnesium oxide depends on the crystalline structure of magnesium oxide.

    PubMed

    Sellik, A; Pollet, T; Ouvry, L; Briançon, S; Fessi, H; Hartmann, D J; Renaud, F N R

    2016-11-22

    In this work, our goal was to study the capability of a single metallic oxide to neutralize a chemical agent and to exhibit an antibacterial effect. We tested two types of magnesium oxides, MgO. The first MgO sample tested, which commercial data size characteristic was -325 mesh (MgO-1) destroyed in 3 h, 89.7% of paraoxon and 93.2% of 4-nitrophenol, the first degradation product. The second MgO sample, which commercial data size was <50 nm (MgO-2) neutralized in the same time, 19.5% of paraoxon and 10.9% of 4-nitrophenol. For MgO-1 no degradation products could be detected by GC-MS. MgO-1 had a bactericidal activity on Escherichia coli (6 log in 1 h), and showed a decrease of almost 3 log on a Staphylococcus aureus population in 3 h. MgO-2 caused a decrease of 2 log of a E.coli culture but had no activity against S. aureus. Neither of these two products had an activity on Bacillus subtilis spores. Analytical investigations showed that the real sizes of MgO nanoparticles were 11 nm for MgO-1 and 25 nm for MgO-2. Moreover, their crystalline structures were different. These results highlighted the importance of the size of the nanoparticles and their microscopic arrangements to detoxify chemical products and to inhibit or kill microbial strains.

  6. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Kanwal, Shamsa

    2014-03-15

    Polymers either serve as shielding or capping agents to restrict the nanoparticle size. This study demonstrates the polymer depositions and their effects in synthesis and sharp stabilization of gold nanoparticles (AuNPs) and to develop gold/silver nanoalloys (Au/Ag nanoalloys). Effects of different polymers are tested to justify their role in synthesis and stability of phloroglucinol (PG) coated AuNPs and Au/Ag nanoalloys. Cationic and anionic i.e. [Polydiallyldimethylammonium](+) (PDDA), [Polyethyleneimine](+) (PEI), [Polystyrene sulfonate](2-) (PSS) and neutral polymer Polychlorotriflouroethylene (PCTFE) produce praiseworthy stable AuNPs and Au/Ag nanoalloy. To prove polymer effects characterization protocols including UV-vis, Fluorescence (PL), IR and AFM imaging are performed to fully investigate the mechanism and size characteristics of these nanoparticles/nanoalloys. In this study sharp size controlling/sheilding effects were observed particularly with cationic polymers simply through the favorable electrostatic interactions with the terminal ends of PG Potent/significant detection of doxorubicin (DOX, an antileukemic agent) via fluorescence resonance energy transfer (FRET) between PEI shielded AuNPs (AuNPEI) and DOX was achieved upto 10 pM level, while PDDA protected AuNPs facilitated the detection of ascorbic acid based on fluorescence enhancement effects in wide range (10-200 nM) and with detection limit of 200 pM. Similarly sensing performance of PEI stabilized Au/Ag nanoalloys on addition of halides (Cl(-), Br(-), I(-)) is evaluated through red shifted SPR along with continuous increase in absorbance and also through AFM. Moreover the addition of halide ions also helped the regeneration of AuNPs by taking away silver from the Au/Ag nanoalloys enabling their detections upto subnanomolar levels.

  7. Current state of evidence on 'off-label' therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland--a consensus report.

    PubMed

    Aringer, M; Burkhardt, H; Burmester, G R; Fischer-Betz, R; Fleck, M; Graninger, W; Hiepe, F; Jacobi, A M; Kötter, I; Lakomek, H J; Lorenz, H M; Manger, B; Schett, G; Schmidt, R E; Schneider, M; Schulze-Koops, H; Smolen, J S; Specker, C; Stoll, T; Strangfeld, A; Tony, H P; Villiger, P M; Voll, R; Witte, T; Dörner, T

    2012-04-01

    Systemic lupus erythematosus (SLE) can be a severe and potentially life-threatening disease that often represents a therapeutic challenge because of its heterogeneous organ manifestations. Only glucocorticoids, chloroquine and hydroxychloroquine, azathioprine, cyclophosphamide and very recently belimumab have been approved for SLE therapy in Germany, Austria and Switzerland. Dependence on glucocorticoids and resistance to the approved therapeutic agents, as well as substantial toxicity, are frequent. Therefore, treatment considerations will include 'off-label' use of medication approved for other indications. In this consensus approach, an effort has been undertaken to delineate the limits of the current evidence on therapeutic options for SLE organ disease, and to agree on common practice. This has been based on the best available evidence obtained by a rigorous literature review and the authors' own experience with available drugs derived under very similar health care conditions. Preparation of this consensus document included an initial meeting to agree upon the core agenda, a systematic literature review with subsequent formulation of a consensus and determination of the evidence level followed by collecting the level of agreement from the panel members. In addition to overarching principles, the panel have focused on the treatment of major SLE organ manifestations (lupus nephritis, arthritis, lung disease, neuropsychiatric and haematological manifestations, antiphospholipid syndrome and serositis). This consensus report is intended to support clinicians involved in the care of patients with difficult courses of SLE not responding to standard therapies by providing up-to-date information on the best available evidence.

  8. Synthesis of 2-furyl-4-arylidene-5(4H)-oxazolones as new potent antibacterial agents against phyto-pathogenic and nitrifying bacteria.

    PubMed

    Thombare, Nandkishore S; Aggarwal, Nisha; Kumar, Rajesh; Gopal, Madhuban

    2012-01-01

    Crop losses due to bacterial pathogens are a major global concern. Most of the available pesticides for these pathogens suffer from various drawbacks such as complicated synthesis, high cost, high toxicity, pesticide resistance and environmental hazards. To overcome these drawbacks, the present study was undertaken to find a potent bactericide. Therefore, a series of compounds comprising bioactive furyl and oxazolone rings was synthesized under microwave irradiation and screened for in vitro antibacterial activity. The reactions were completed in fewer than 2 minutes with minimal use of solvents and resulted in high yields. These compounds were screened for antibacterial activity against plant pathogens, Xanthomonas oryzae, Ralstonia solanacearum and nitrifying bacteria, Nitrosomonas species under laboratory conditions. Five compounds were active as antibacterial agents against Xanthomonas oryzae and Ralstonia solanacearum. However, all compounds were effective against the Nitrosomonas species and the best one was 2-furyl-4-(3-methoxy-4-hydroxybenzylidene)-5(4H)-oxazolone. The study revealed the fast and environmentally friendly synthesis of bioactive title compounds, which also hold promise to be used as prototypes for the discovery of potent analogues.

  9. Reducing Oyster-Associated Bacteria Levels Using Supercritical Fluid CO2 as an Agent of Warm Pasteurization

    PubMed Central

    Meujo, Damaris A.F.; Kevin, Dion; Peng, Jiangnan; Bowling, John J.; Liu, Jianping; Hamann, Mark T.

    2010-01-01

    An innovative approach to Post-Harvest Processing (PHP) of oysters is introduced focusing on the effects of supercritical carbon dioxide (scCO2) on bacterial contaminants trapped in the digestive system of oysters. Oysters were exposed to scCO2 under two conditions: (1) 100 bar and 37 °C for 30 minutes and (2) 172 bar and 60 °C for 60 minutes. Using FDA standard guidelines for food analysis, variations in the Aerobic Plate Count (APC) was assessed. It was established that exposing oysters to CO2 at 100 bar and 37 °C for 30 minutes and at 172 bar and 60°C for 60 minutes induced 2-log and 3-log reductions in the APC respectively. The decrease in the microbial load as a result of treatment with scCO2 was found to be significant (P=0.002). A release of adductor muscles from the shell was noted in oysters treated at 172 bar and 60 °C for 60 minutes; this was not the case for oysters treated at 100 bar and 37 °C for 30 minutes. A blind study allowing sensory analysis of treated vs. untreated oysters was also completed and no significant change in the physical appearance, smell, or texture was recorded. In this paper, we also report the effect of scCO2 on several bacterial isolates, including a referenced ATCC strain of a non pathogenic Vibrio (V. fisherii) as well as several other bacterial isolates cultured from oyster’ tissues and found to share biochemical features common to pathogenic Vibrio strains. A complete inactivation (minimum 7-log reduction) was achieved with these latter bacterial isolates. A 6-log reduction was observed with V. fisherii. PMID:20022650

  10. Proteome profiles of HDL particles of patients with chronic heart failure are associated with immune response and also include bacteria proteins.

    PubMed

    Oberbach, Andreas; Adams, Volker; Schlichting, Nadine; Heinrich, Marco; Kullnick, Yvonne; Lehmann, Stefanie; Lehmann, Sven; Feder, Stefan; Correia, Joao Carlos; Mohr, Friedrich-Wilhelm; Völker, Uwe; Jehmlich, Nico

    2016-01-30

    Besides modulation of reverse cholesterol transport, high density lipoprotein (HDL) is able to modulate vascular function by stimulating endothelial nitric oxide synthase. Recently, it could be documented that this function of HDL was significantly impaired in patients with chronic heart failure (CHF). We investigated alterations in the HDL proteome in CHF patients. Therefore, HDL was isolated from 5 controls (HDLhealthy) and 5 CHF patients of NYHA-class IIIb (HDLCHF). Proteome analysis of HDL particles was performed by two-dimensional liquid chromatography-mass spectrometry (SCX/RP LC-MS/MS). In total, we identified 494 distinct proteins, of which 107 proteins were commonly found in both groups (HDLCHF and HDLhealthy) indicating a high inter-subject variability across HDL particles. Several important proteins (e.g. ITGA2, APBA1 or A2M) varied in level. Functional analysis revealed regulated pathways. A minor proportion of bacteria-derived proteins were also identified in the HDL-particles. The extension of the list of HDL-associated proteins allows besides their mere description new insights into alterations in HDL function in diseases. In addition, the detection of bacterial proteins bound to HDL will broaden our view of HDL not only as a cholesterol carrier but also as a carrier of proteins.

  11. Isolation of estrogen-degrading bacteria from an activated sludge bioreactor treating swine waste, including a strain that converts estrone to β-estradiol.

    PubMed

    Isabelle, Martine; Villemur, Richard; Juteau, Pierre; Lépine, François

    2011-07-01

    An estrogen-degrading bacterial consortium from a swine wastewater biotreatment was enriched in the presence of low concentrations (1 mg/L) of estrone (E1), 17β-estradiol (βE2), and equol (EQO) as sole carbon sources. The consortium removed 99% ± 1% of these three estrogens in 48 h. Estrogen removal occurred even in the presence of an ammonia monooxygenase inhibitor, suggesting that nitrifiers are not involved. Five strains showing estrogen-metabolizing activity were isolated from the consortium on mineral agar medium with estrogens as sole carbon source. They are related to four genera ( Methylobacterium (strain MI6.1R), Ochrobactrum (strains MI6.1B and MI9.3), Pseudomonas (strain MI14.1), and Mycobacterium (strain MI21.2)) distributed among three classes (Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria). Depending on the culture medium, strains MI6.1B, MI9.3, MI14.1, and MI21.2 partially transform βE2 into E1, whereas Methylobacterium sp. strain MI6.1R reduces E1 into βE2 under aerobic conditions, in contrast with the usually observed conversion of βE2 into E1. Since βE2 is a more potent endocrine disruptor than E1, it means that the presence of Methylobacterium sp. strain MI6.1R (or other bacteria with the same E1-reducing activity) in a treatment could transiently increase the estrogenicity of the effluent. MI6.1R can also reduce the ketone group of 16-ketoestradiol, a hydroxylated analog of E1. All βE2 and E1 transformation activities were constitutive, and many of them are favoured in a rich medium than a medium containing no other carbon source. None of the isolated strains could degrade EQO.

  12. Ethanolic Echinacea purpurea Extracts Contain a Mixture of Cytokine-Suppressive and Cytokine-Inducing Compounds, Including Some That Originate from Endophytic Bacteria

    PubMed Central

    Britton, Emily R.; Oberhofer, Martina; Leyte-Lugo, Martha; Moody, Ashley N.; Shymanovich, Tatsiana; Grubbs, Laura F.; Juzumaite, Monika; Graf, Tyler N.; Oberlies, Nicholas H.; Faeth, Stanley H.; Laster, Scott M.; Cech, Nadja B.

    2015-01-01

    bacteria. Together, our findings indicate that ethanolic E. purpurea extracts contain multiple constituents that differentially regulate cytokine production by macrophages. PMID:25933416

  13. Bacteria and fungi of marine mammals: a review.

    PubMed Central

    Higgins, R

    2000-01-01

    A list of the different bacterial and fungal agents isolated from marine mammals in different parts of the world is presented. Importance is given to some of the most recently identified bacterial agents, including Actinobacillus delphinicola, A. scotiae, and Brucella spp. A list, in alphabetical order, of bacteria recovered from different tissues or organs from marine mammals is presented for the integumentary, respiratory, digestive, genitourinary, and reticuloendothelial systems. Infectious bacterial agents associated with abscesses and with cases of septicemia are also listed. Information about the different fungal agents recovered from marine mammals is summarized. A section covering some of the zoonotic infectious agents recovered from marine mammals is included. PMID:10723596

  14. Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections

    NASA Astrophysics Data System (ADS)

    Jin, Jianfeng; Liu, Wenying; Zhang, Wenyun; Chen, Qinghua; Yuan, Yanbo; Yang, Lidou; Wang, Qintao

    2014-10-01

    The antibacterial activity of zinc oxide (ZnO) and the strengthening of hydroxylapatite whiskers (HAPws) have been widely studied and applied. However, the antibacterial properties of ZnO-HAPws have scarcely been researched. The aim of this study was to further investigate several types of nano-ZnO morphologies of ZnO-HAPws that were prepared using the sol-gel method at different pondus hydrogenii (pH) values and temperatures. The four morphologies of ZnO-HAPws that were investigated here were granule, triangle, short rod and disc type, and these morphologies were investigated at 70 °C at pH 6.4, 37 °C at pH 6.6, 70 °C at pH 6.6 and 70 °C at pH 6.6, respectively. Next, the antibacterial activity of ZnO-HAPw was compared to that of nano-ZnO, commercially available ZnO and tetrapod-like ZnO whiskers (T-ZnOw) with six bacteria that are associated with oral infections: Streptococcus mutans, Lactobacillus casei, Candida albicans, Actinomyces viscosus, Staphylococcus aureus and Escherichia coli. The results of examinations of the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) showed that the antibacterial activity of ZnO-HAPw exceeded that of the commercially available ZnO and T-ZnOw. Additionally, analysis of variance (ANOVA) analysis of the MBCs revealed that the four tested antibacterial agents had significantly different effects on S. mutans ( F = 8.940; P = 0.006), S. aureus ( F = 6.924; P = 0.013) and E. coli ( F = 4.468; P = 0.04). ANOVA analyses of the MICs revealed that the four tested antibacterial agents had significantly different effects on S. mutans ( F = 6.183; P = 0.018), A. viscosus ( F = 4.531; P = 0.039) and S. aureus ( F = 18.976; P = 0.001).

  15. Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory (Cichorium intybus L) or ribwort (Plantago lanceolata L) forage.

    PubMed

    Ivarsson, E; Frankow-Lindberg, B E; Andersson, H K; Lindberg, J E

    2011-02-01

    Twenty-five weaned 35-day-old piglets were used in a 35-day growth experiment to evaluate the effect of inclusion of chicory and ribwort forage in a cereal-based diet on growth performance, feed intake, digestibility and shedding of faecal coliform bacteria. A total of seven experimental diets were formulated, a cereal-based basal diet (B), and six diets with inclusion of 40, 80 and 160 g/kg chicory (C40, C80 and C160) or ribwort (R40, R80 and R160). Piglets had ad libitum access to feed and water throughout the experiment. Three and five weeks post-weaning faeces samples for determination of digestibility were collected once a day for five subsequent days. Additional faeces samples for determination of coliform counts were collected at days 1, 16 and 35 post-weaning. Piglets fed diet R160 had the lowest average daily feed intake (DFI) and daily weight gain (DWG), and differed (P < 0.05) from piglets fed diets B, R40 and R80. There were no differences in DFI and DWG between the chicory diets and diet B. Inclusion of chicory or ribwort had a minor negative impact on the coefficient of total tract apparent digestibility (CTTAD) of dry matter, organic matter and crude protein, whereas inclusion of both chicory and ribwort resulted in higher CTTAD of non-starch polysaccharides and neutral detergent fibre (NDF). The CTTAD of arabinose were higher for diets C160 and R160 than for diet B (P < 0.05), and the CTTAD of uronic acid was higher for diets C40, C80, C160, R80 and R160 than for diet B (P < 0.05). Age affected the CTTAD for all parameters (P < 0.05) except for NDF, with higher values at 5 than at 3 weeks post-weaning. The coliform counts decreased with increasing age (P < 0.05), but was not affected by treatment. The results indicate that inclusion of up to 160 g/kg of chicory do not negatively affect performance, whereas high inclusion of ribwort have a negative impact on feed consumption and consequently on growth rate. Both herbs have a higher digestibility of

  16. Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson’s disease and depression

    PubMed Central

    Lawal, Hakeem O.; Terrell, Ashley; Lam, Hoa A.; Djapri, Christine; Jang, Jennifer; Hadi, Richard; Roberts, Logan; Shahi, Varun; Chou, Man-Ting; Biedermann, Traci; Huang, Brian; Lawless, George M.; Maidment, Nigel T.; Krantz, David E.

    2012-01-01

    Small molecules that increase the presynaptic function of aminergic cells may provide neuroprotection in Parkinson’s disease as well as treatments for attention deficit hyperactivity disorder (ADHD) and depression. Model genetic organisms such as Drosophila melanogaster may enhance the detection of new drugs via modifier or “enhancer/suppressor” screens, but this technique has not been applied to processes relevant to psychiatry. To identify new aminergic drugs in vivo, we used a mutation in the Drosophila vesicular monoamine transporter (dVMAT) as a sensitized genetic background, and performed a suppressor screen. We fed dVMAT mutant larvae ~1000 known drugs and quantitated rescue (suppression) of an amine-dependent locomotor deficit in the larva. To determine which drugs might specifically potentiate neurotransmitter release, we performed an additional secondary screen for drugs that require presynaptic amine storage to rescue larval locomotion. Using additional larval locomotion and adult fertility assays, we validated that at least one compound previously used clinically as an antineoplastic agent potentiates the presynaptic function of aminergic circuits. We suggest that structurally similar agents might be used to development treatments for Parkinson’s disease, depression and ADHD and that modifier screens in Drosophila provide a new strategy to screen for neuropsychiatric drugs. More generally, our findings demonstrate the power of physiologically based screens for identifying bioactive agents for select neurotransmitter systems. PMID:23229049

  17. Rhenium analogues of promising renal imaging agents with a [99mTc(CO)3]+ core bound to cysteine-derived dipeptides, including lanthionine.

    PubMed

    He, Haiyang; Lipowska, Malgorzata; Xu, Xiaolong; Taylor, Andrew T; Marzilli, Luigi G

    2007-04-16

    The coordination chemistry of lanthionine (LANH2) and cystathionine (CSTH2) dipeptides, which respectively consist of two cysteines and one cysteine and one homocysteine linked by a thioether bridge, is almost unstudied. Recently for fac-[99mTc(CO)3(LAN)]- isomers, the first small 99mTc(CO)3 agents evaluated in humans were found to give excellent renal images and to have a high specificity for renal excretion. Herein we report the synthesis and characterization of Re complexes useful for interpreting the nature of tracer 99mTc radiopharmaceuticals. Treatment of [Re(CO)3(H2O)3]OTf with commercially available LANH2 (a mixture of meso (d,l) and chiral (dd,ll) isomers) gave three HPLC peaks, 1A, 1B, and 1C, but treatment with CSTH2 (l,l isomer) gave one major product, Re(CO)3(CSTH) (2). Crystalline Re(CO)3(LANH) products were best obtained with synthetic LANH2, richer in meso or chiral isomers. X-ray crystallography showed that these dipeptides coordinate as tridentate N2S-bound ligands with two dangling carboxyls. The LANH ligand is meso in 1A and 1C and chiral in 1B. While 1A (kinetically favored) is stable at ambient temperature for days, it converted into 1C (thermodynamically favored) at 100 degrees C; after 6 h, equilibrium was reached at a 1A:1C ratio of 1:2 at pH 8. The structures provide a rationale for this behavior and for the fact that 1A and 1C have simple NMR spectra. This simplicity results from fluxional interchange between an enantiomer with both chelate rings having the same delta pucker and an enantiomer with both chelate rings having the same lambda pucker. Agents with the [99mTc(CO)3]+ core and N2S ligands show promise of becoming an important class of 99mTc radiopharmaceuticals. The chemistry of Re analogues with these ligands, such as the LAN2- complexes reported here, provides a useful background for designing new small agents and also tagged large agents because two uncoordinated carboxyl groups are available for conjugation with biological

  18. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    DTIC Science & Technology

    2004-05-20

    Warfare Agents, op. cit.; and the Health Canada Material Safety Data Sheet - Infectious Substances for Rickettsia rickettsii , found online at [http...cns.miis.edu/research/cbw/possess.htm]. Biological Agent Comparison Potential biological agents include the many bacteria and viruses that induce...barriers to their acquisition, regardless of the legality of such a transfer. In contrast, salmonella bacteria would be easy to obtain from natural

  19. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

    PubMed Central

    Yazdankhah, Siamak; Rudi, Knut; Bernhoft, Aksel

    2014-01-01

    Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin). Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers). Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria. PMID:25317117

  20. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria.

    PubMed

    Jin, Jinshan; Hsieh, Ying-Hsin; Cui, Jianmei; Damera, Krishna; Dai, Chaofeng; Chaudhary, Arpana S; Zhang, Hao; Yang, Hsiuchin; Cao, Nannan; Jiang, Chun; Vaara, Martti; Wang, Binghe; Tai, Phang C

    2016-11-21

    With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.

  1. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  2. Getting Acquainted: An Induction Training Guide for First-Year Extension Agents. Suggestions for Completing Certain Learning Experiences Included in the Induction Training Guide; a Supplement to "Getting Acquainted."

    ERIC Educational Resources Information Center

    Collings, Mary Louise; Gassie, Edward W.

    An induction guide to help the extension agent get acquainted with his role and suggestions for completing learning experiences that are included in the guide comprise this two-part publication. The training guide learning experiences, a total of 25, are made up of: Objectives of the New Worker; When Completed; Learning Experiences; Person(s)…

  3. Molecular identification of marine symbiont bacteria of gastropods from the waters of the Krakal coast Yogyakarta and its potential as a Multi-Drug Resistant (MDR) antibacterial agent

    NASA Astrophysics Data System (ADS)

    Bahry, Muhammad Syaifudien; Pringgenies, Delianis; Trianto, Agus

    2017-01-01

    The resistance of pathogenic bacteria may occur to many types of antibiotics, especially in cases of non-compliance use of antibiotics, which likely to allow the evolution of Multi-Drug Resistant (MDR) bacteria. Gastropods seas are marine invertebrates informed capable of production of secondary metabolites as antibacterial MDR. The purpose of the study was the isolation and identification of gastropod symbiont bacteria found in the waters of Krakal, Gunung Kidul, Yogyakarta, which has the ability to produce antibacterial compounds against MDR(Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, MRSA (methicillin-Resistant Staphylococcus aureus), Staphylococcus aureus, and Staphylococcus homunis) molecular. Stages of this research began with the isolation of bacteria, bacteria screening for anti-MDR compound, mass culture, and extraction, antibacterial activity test, DNA extraction, amplification by PCR 16S rDNA and sequencing. The results of the study showed that 19 isolates of bacteria were isolated from three species of gastropods namely Littorina scabra, Cypraea moneta and Conus ebraeus. Among them, 4 isolates showed activity against MDR test bacteria (E. coli, E. cloacae, K. pneumoniae, S. aureus and S. homunis). The highest activity was displayed by code LS.G1.8 isolate with the largest inhibition zone 15.47±0.45mm on S. humonis at 250 µg/disk concentration. Isolate CM.G2.1 showed largest inhibition zone, with 21.5±0.07mm on MRSA at 1000 µg/disk concentration and isolate the largest inhibition zone CM.G2.5 14.37±0.81mm on MRSA 14.37±0.81mm at concentrations 1000 µg/disk. The molecular identification of isolates LS.G1.8 has 99% homology with Bacillus subtilis and isolates CM.G2.1 has 99% homology with Bacillus pumillus.

  4. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  5. Synthesis and antimicrobial activity of small cationic amphipathic aminobenzamide marine natural product mimics and evaluation of relevance against clinical isolates including ESBL-CARBA producing multi-resistant bacteria.

    PubMed

    Igumnova, Elizaveta M; Mishchenko, Ekaterina; Haug, Tor; Blencke, Hans-Matti; Sollid, Johanna U Ericson; Fredheim, Elizabeth G Aarag; Lauksund, Silje; Stensvåg, Klara; Strøm, Morten B

    2016-11-15

    A library of small aminobenzamide derivatives was synthesised to explore a cationic amphipathic motif found in marine natural antimicrobials. The most potent compound E23 displayed minimal inhibitory concentrations (MICs) of 0.5-2μg/ml against several Gram-positive bacterial strains, including methicillin resistant Staphylococcus epidermidis (MRSE).E23 was also potent against 275 clinical isolates including Staphylococcus aureus, Enterococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and ESBL-CARBA producing multi-resistant Gram-negative bacteria. The study demonstrates how structural motifs found in marine natural antimicrobials can be a valuable source for making novel antimicrobial lead-compounds.

  6. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.

    PubMed

    Liu, Xiaoli; Xia, Wenshui; Jiang, Qixing; Xu, Yanshun; Yu, Peipei

    2015-09-01

    Our work here, for the first time, reported the antibacterial activity of kojic acid-grafted-chitosan oligosaccharides (COS/KA) against three gram-positive and three gram-negative bacteria. Integrity of cell membrane, outer membrane (OM) and inner membrane (IM) permeabilization assay, alkaline phosphatase (ALP) and glucose-6-phosphate dehydrogenase (G6PDH) assay, and SDS-PAGE assay techniques were used to investigate the interactions between COS/KA and bacterial membranes. The antibacterial activity of COS/KA was higher than those of unmodified COS. The electric conductivity of bacteria suspensions increased, followed by increasing of the units of average release for ALP and G6PDH. COS/KA can also rapidly increase the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in Escherichia coli. SDS-PAGE indicated the content of cellular soluble proteins decreased significantly in COS/KA-treated bacteria. Hence, COS/KA has potential in food industry and biomedical sciences.

  7. Bacteria repelling poly(methylmethacrylate-co-dimethylacrylamide) coatings for biomedical devices† †Electronic supplementary information (ESI) available: Polymer microarray screening, including analysis of bacterial adhesion by fluorescence microscopy and SEM, and chemical composition of bacteria repelling polymers identified in the screen; polymer synthesis and characterisation; preparation of catheter pieces and solvent studies, and details for confocal imaging/analysis. See DOI: 10.1039/c4tb01129e Click here for additional data file.

    PubMed Central

    Venkateswaran, Seshasailam; Wu, Mei; Gwynne, Peter J.; Hardman, Ailsa; Lilienkampf, Annamaria; Pernagallo, Salvatore; Blakely, Garry; Swann, David G.

    2014-01-01

    Nosocomial infections due to bacteria have serious implications on the health and recovery of patients in a variety of medical scenarios. Since bacterial contamination on medical devices contributes to the majority of nosocomical infections, there is a need for redesigning the surfaces of medical devices, such as catheters and tracheal tubes, to resist the binding of bacteria. In this work, polyurethanes and polyacrylates/acrylamides, which resist binding by the major bacterial pathogens underpinning implant-associated infections, were identified using high-throughput polymer microarrays. Subsequently, two ‘hit’ polymers, PA13 (poly(methylmethacrylate-co-dimethylacrylamide)) and PA515 (poly(methoxyethylmethacrylate-co-diethylaminoethylacrylate-co-methylmethacrylate)), were used to coat catheters and substantially shown to decrease binding of a variety of bacteria (including isolates from infected endotracheal tubes and heart valves from intensive care unit patients). Catheters coated with polymer PA13 showed up to 96% reduction in bacteria binding in comparison to uncoated catheters. PMID:25580245

  8. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    DTIC Science & Technology

    2004-06-23

    Rickettsia rickettsii , found online at [http://www.hc-sc.gc.ca/pphb-dgspsp/msds-ftss/msds129e.html]. w Information on Escherichia coli O157:H7 is...research/cbw/possess.htm]. Biological Agent Comparison Potential biological agents include the many bacteria and viruses that induce disease in human...their acquisition, regardless of the legality of such a transfer. In contrast, salmonella bacteria would be easy to obtain from natural sources and

  9. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules.

    PubMed

    Sintim, Herman O; Smith, Jacqueline A I; Wang, Jingxin; Nakayama, Shizuka; Yan, Lei

    2010-06-01

    Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.

  10. Aqueous two-phase system cold-set gelation using natural and recombinant probiotic lactic acid bacteria as a gelling agent.

    PubMed

    Léonard, Lucie; Husson, Florence; Langella, Philippe; Châtel, Jean-Marc; Saurel, Rémi

    2016-05-01

    The present study aimed to entrap probiotic lactic acid bacteria (LAB) in a sodium alginate and sodium caseinate aqueous two-phase gel system. The natural acidifying properties of two therapeutic probiotic LAB were exploited to liberate calcium ions progressively from calcium carbonate (CaCO3), which caused the gelation of the co-existing phases. Bi-biopolymeric matrix gelation of GDL/CaCO3 or LAB/CaCO3 was monitored by dynamic rheological measurements, and the final gels were characterized by frequency dependence measurements and confocal laser scanning microscopy. Weak to strong gels were formed with an elastic modulus G' from 10 to 1.000Pa, respectively. After cold-set gelation of our system, confocal laser scanning microscopy showed spherical protein microdomains trapped within a calcium alginate network. LAB cells were stained to study their partition in the self-gelling matrices. Our LAB strains showed two different behaviors, which may relate to the exopolysaccharide production: (i) Lactobacillus plantarum CNRZ1997 cells were found mainly in continuous alginate networks, whereas (ii) Lactococcus lactis cells were localized in protein microdomains. This alginate-caseinate phase-separated system that was self-gelled by LAB cells may be an innovative approach for immobilizing and protecting LAB cells.

  11. Design and synthesis of marine natural product-based 1H-indole-2,3-dione scaffold as a new antifouling/antibacterial agent against fouling bacteria.

    PubMed

    Majik, Mahesh S; Rodrigues, Cheryl; Mascarenhas, Stacey; D'Souza, Lisette

    2014-06-01

    Marine organisms such as seaweeds, sponges and corals protect their own surfaces from fouling by their high anesthetic, repellant, and settlement inhibition properties. Within the marine ecosystem, evolution has allowed for the development of certain antifouling properties. Isatin is a biologically active chemical produced by an Alteromonas sp. strain inhibiting the surface of embryos of the cardiean shrimp Palaemon macrodectylus, which protect them from the pathogenic fungus Lagenidium callinectes. In present study, an antibacterial activity of isatin and its synthetic analogues were evaluated against different fouling bacteria in order to explore the structure activity relationships for the first time. The synthesized compounds along with parent isatin were tested against different ecologically relevant marine microorganisms by using the Kirby-Bauer disc diffusion method. Few synthetically modified isatin exhibited potent inhibitory activity at concentration of 2 μg/disc against Planococcus donghaensis, Erythrobacter litoralis, Alivibrio salmonicida, Vibrio furnisii. Overall, the modified analogues showed stronger activity than the parent marine natural product (isatin) and hence 1H-indole-2,3-dione scaffold has immense potential as future antibacterial/antifouling candidate.

  12. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  13. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  14. Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov.

    PubMed

    Francis, Isolde M; Jochimsen, Kenneth N; De Vos, Paul; van Bruggen, Ariena H C

    2014-04-01

    The genus Rhizorhapis gen. nov. (to replace the illegitimate genus name Rhizomonas) is proposed for strains of Gram-negative bacteria causing corky root of lettuce, a widespread and important lettuce disease worldwide. Only one species of the genus Rhizomonas was described, Rhizomonas suberifaciens, which was subsequently reclassified as Sphingomonas suberifaciens based on 16S rRNA gene sequences and the presence of sphingoglycolipid in the cell envelope. However, the genus Sphingomonas is so diverse that further reclassification was deemed necessary. Twenty new Rhizorhapis gen. nov.- and Sphingomonas-like isolates were obtained from lettuce or sow thistle roots, or from soil using lettuce seedlings as bait. These and previously reported isolates were characterized in a polyphasic study including 16S rRNA gene sequencing, DNA-DNA hybridization, DNA G+C content, whole-cell fatty acid composition, morphology, substrate oxidation, temperature and pH sensitivity, and pathogenicity to lettuce. The isolates causing lettuce corky root belonged to the genera Rhizorhapis gen. nov., Sphingobium, Sphingopyxis and Rhizorhabdus gen. nov. More specifically, we propose to reclassify Rhizomonas suberifaciens as Rhizorhapis suberifaciens gen. nov., comb. nov. (type strain, CA1(T) = LMG 17323(T) = ATCC 49355(T)), and also propose the novel species Sphingobium xanthum sp. nov., Sphingobium mellinum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. with the type strains NL9(T) ( = LMG 12560(T) = ATCC 51296(T)), WI4(T) ( = LMG 11032(T) = ATCC 51292(T)) and SP1(T) ( = LMG 12581(T) = ATCC 51289(T)), respectively. Several strains isolated from lettuce roots belonged to the genus Sphingomonas, but none of them were pathogenic.

  15. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria.

    PubMed

    Szczuka, Ewa; Jabłońska, Lucyna; Kaznowski, Adam

    2016-12-01

    Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of Staphylococcus capitis, Staphylococcus auricularis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus cohnii and Staphylococcus caprae. All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam (mecA) (15 %), aminoglycoside [aac(6')/aph(2″)(11 %), aph (3')-IIIa (15 %), ant(4')-Ia (19 %)] and macrolide, lincosamide and streptogramin B (MLSB) [erm(A) (4 %), erm(B) (13 %), erm(C) (41 %), msr(A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a three-dimensional structure composed mainly of living cells. All biofilm-positive strains carried the ica operon. In vitro studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062-0.5 µg ml-1 for tigecycline/rifampicin and 0.250-2 µg ml-1 for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of S. capitis, S. auricularis, S. lugdunensis, S. cohnii and S. caprae is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.

  16. Antibacterial susceptibility of plaque bacteria.

    PubMed

    Newman, M G; Hulem, C; Colgate, J; Anselmo, C

    1979-07-01

    Selected anaerobic, capnophilic and facultative bacteria isolated from patients with various forms of periodontal health and disease were tested for their susceptibility to antibiotics and antimicrobial agents. Specific bactericidal and minimum inhibitory concentrations were compared to disc zone diameters, thereby generating new standards for the potential selection of antimicrobial agents.

  17. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic

    PubMed Central

    Drewniak, Lukasz; Stasiuk, Robert; Uhrynowski, Witold; Sklodowska, Aleksandra

    2015-01-01

    The purpose of this study was a detailed characterization of Shewanella sp. O23S, a strain involved in arsenic transformation in ancient gold mine waters contaminated with arsenic and other heavy metals. Physiological analysis of Shewanella sp. O23S showed that it is a facultative anaerobe, capable of growth using arsenate, thiosulfate, nitrate, iron or manganite as a terminal electron acceptor, and lactate or citrate as an electron donor. The strain can grow under anaerobic conditions and utilize arsenate in the respiratory process in a broad range of temperatures (10–37 °C), pH (4–8), salinity (0%–2%), and the presence of heavy metals (Cd, Co, Cr, Cu, Mn, Mo, Se, V and Zn). Under reductive conditions this strain can simultaneously use arsenate and thiosulfate as electron acceptors and produce yellow arsenic (III) sulfide (As2S3) precipitate. Simulation of As-removal from water containing arsenate (2.5 mM) and thiosulfate (5 mM) showed 82.5% efficiency after 21 days of incubation at room temperature. Based on the obtained results, we have proposed a model of a microbially mediated system for self-cleaning of mine waters contaminated with arsenic, in which Shewanella sp. O23S is the main driving agent. PMID:26121297

  18. Endocarditis Due to Rare and Fastidious Bacteria

    PubMed Central

    Brouqui, P.; Raoult, D.

    2001-01-01

    The etiologic diagnosis of infective endocarditis is easily made in the presence of continuous bacteremia with gram-positive cocci. However, the blood culture may contain a bacterium rarely associated with endocarditis, such as Lactobacillus spp., Klebsiella spp., or nontoxigenic Corynebacterium, Salmonella, Gemella, Campylobacter, Aeromonas, Yersinia, Nocardia, Pasteurella, Listeria, or Erysipelothrix spp., that requires further investigation to establish the relationship with endocarditis, or the blood culture may be uninformative despite a supportive clinical evaluation. In the latter case, the etiologic agents are either fastidious extracellular or intracellular bacteria. Fastidious extracellular bacteria such as Abiotrophia, HACEK group bacteria, Clostridium, Brucella, Legionella, Mycobacterium, and Bartonella spp. need supplemented media, prolonged incubation time, and special culture conditions. Intracellular bacteria such as Coxiella burnetii cannot be isolated routinely. The two most prevalent etiologic agents of culture-negative endocarditis are C. burnetti and Bartonella spp. Their diagnosis is usually carried out serologically. A systemic pathologic examination of excised heart valves including periodic acid-Schiff (PAS) staining and molecular methods has allowed the identification of Whipple's bacillus endocarditis. Pathologic examination of the valve using special staining, such as Warthin-Starry, Gimenez, and PAS, and broad-spectrum PCR should be performed systematically when no etiologic diagnosis is evident through routine laboratory evaluation. PMID:11148009

  19. Antibiotic-Resistant Escherichia coli Bacteria, Including Strains with Genes Encoding the Extended-Spectrum Beta-Lactamase and QnrS, in Waterbirds on the Baltic Sea Coast of Poland▿

    PubMed Central

    Literak, Ivan; Dolejska, Monika; Janoszowska, Dagmar; Hrusakova, Jolana; Meissner, Wlodzimierz; Rzyska, Hanna; Bzoma, Szymon; Cizek, Alois

    2010-01-01

    Individual cloacal swabs of mallards (Anas platyrhynchos) and of herring gulls (Larus argentatus), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli. Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter−1) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter−1) and MCA with nalidixic acid (20 mg liter−1) to isolate fluoroquinolone-resistant E. coli. PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: blaCTX-M-1 (6 isolates), blaCTX-M-9 plus blaTEM-1b (1 isolate), blaCTX-M-15 plus blaOXA-1 (1 isolate), and blaSHV-12 (1 isolate). In the isolate with blaCTX-M-15, the gene aac(6)-Ib-cr was also detected. The bla genes were harbored by transferable plasmids of the IncN and IncI1 groups. Nine quinolone-resistant E. coli isolates with qnrS genes were found and characterized. The gene qnrS was associated with a Tn3-like transposon on the IncX1 plasmid together with blaTEM-1 in two isolates. The gene qnrS was also harbored by conjugative plasmids of the IncN and IncX2 groups. Even if populations of wild birds are not directly influenced by antibiotic practice, we have demonstrated that antibiotic-resistant E. coli strains, including strains with various ESBL and qnrS genes, are found in the feces of wild birds on the coast of the Baltic Sea in Poland. PMID:20952638

  20. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland.

    PubMed

    Literak, Ivan; Dolejska, Monika; Janoszowska, Dagmar; Hrusakova, Jolana; Meissner, Wlodzimierz; Rzyska, Hanna; Bzoma, Szymon; Cizek, Alois

    2010-12-01

    Individual cloacal swabs of mallards (Anas platyrhynchos) and of herring gulls (Larus argentatus), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli. Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter(-1)) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter(-1)) and MCA with nalidixic acid (20 mg liter(-1)) to isolate fluoroquinolone-resistant E. coli. PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: bla(CTX-M-1) (6 isolates), bla(CTX-M-9) plus bla(TEM-1b) (1 isolate), bla(CTX-M-15) plus bla(OXA-1) (1 isolate), and bla(SHV-12) (1 isolate). In the isolate with bla(CTX-M-15), the gene aac(6)-Ib-cr was also detected. The bla genes were harbored by transferable plasmids of the IncN and IncI1 groups. Nine quinolone-resistant E. coli isolates with qnrS genes were found and characterized. The gene qnrS was associated with a Tn3-like transposon on the IncX1 plasmid together with bla(TEM-1) in two isolates. The gene qnrS was also harbored by conjugative plasmids of the IncN and IncX2 groups. Even if populations of wild birds are not directly influenced by antibiotic practice, we have demonstrated that antibiotic-resistant E. coli strains, including strains with various ESBL and qnrS genes, are found in the feces of wild birds on the coast of the Baltic Sea in Poland.

  1. Biological Warfare Agents, Toxins, Vectors and Pests as Biological Terrorism Agents

    DTIC Science & Technology

    2003-07-01

    virus Omsk fever virus Human pathogens ( bacteria , rickettsiae , protozoa and fungi) as biological terrorism agents: Bacteria / Rickettsia 1...Bacillus anthracis 2. Yersinia pestis 3. Francisella tularensis 4. Rickettsia prowazekii 5. Rickettsia rickettsii 6. Bulkholderia (Pseudomonas) mallei...assessment according to criteria for selecting pathogens as biological terrorism agents. Table 1b. Human pathogens ( bacteria , rickettsiae , protozoa

  2. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  3. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  4. Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia.

    PubMed

    Chouchani, Chedly; Marrakchi, Rim; El Salabi, Allaaeddin

    2011-08-01

    Antimicrobial resistance is a major health problem worldwide, but marked variations in the resistance profiles of bacterial pathogens are found between countries and in different patient settings. In Tunisia, the strikingly high prevalence of resistance of bacteria to penicillins and cephalorosporins drugs including fourth generation in clinical isolates of Gram negative bacteria has been reported. During 30 years, the emerging problem of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates is substantial, and some unique enzymes have been found. Recently, evidence that Gram-negative bacteria are resistant to nearly all available antimicrobial agents, including carbapenems, have emerged.

  5. Viable but Nonculturable Bacteria: Food Safety and Public Health Perspective

    PubMed Central

    Fakruddin, Md.; Mannan, Khanjada Shahnewaj Bin; Andrews, Stewart

    2013-01-01

    The viable but nonculturable (VBNC) state is a unique survival strategy of many bacteria in the environment in response to adverse environmental conditions. VBNC bacteria cannot be cultured on routine microbiological media, but they remain viable and retain virulence. The VBNC bacteria can be resuscitated when provided with appropriate conditions. A good number of bacteria including many human pathogens have been reported to enter the VBNC state. Though there have been disputes on the existence of VBNC in the past, extensive molecular studies have resolved most of them, and VBNC has been accepted as a distinct survival state. VBNC pathogenic bacteria are considered a threat to public health and food safety due to their nondetectability through conventional food and water testing methods. A number of disease outbreaks have been reported where VBNC bacteria have been implicated as the causative agent. Further molecular and combinatorial research is needed to tackle the threat posed by VBNC bacteria with regard to public health and food safety. PMID:24191231

  6. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  7. [Pseudomonas genus bacteria on weeds].

    PubMed

    Gvozdiak, R I; Iakovleva, L M; Pasichnik, L A; Shcherbina, T N; Ogorodnik, L E

    2005-01-01

    It has been shown in the work that the weeds (couch-grass and ryegrass) may be affected by bacterial diseases in natural conditions, Pseudomonas genus bacteria being their agents. The isolated bacteria are highly-aggressive in respect of the host-plant and a wide range of cultivated plants: wheat, rye, oats, barley, apple-tree and pear-tree. In contrast to highly aggressive bacteria isolated from the affected weeds, bacteria-epi phytes isolated from formally healthy plants (common amaranth, orache, flat-leaved spurge, field sow thistle, matricary, common coltsfoot, narrow-leaved vetch) and identified as P. syringae pv. coronafaciens, were characterized by weak aggression. A wide range of ecological niches of bacteria evidently promote their revival and distribution everywhere in nature.

  8. Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria

    NASA Astrophysics Data System (ADS)

    Mu, Haibo; Tang, Jiangjiang; Liu, Qianjin; Sun, Chunli; Wang, Tingting; Duan, Jinyou

    2016-01-01

    The chronic infections related to biofilm and intracellular bacteria are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defenses. Herein we develop a facile approach to overcome the above conundrum through phosphatidylcholine-decorated Au nanoparticles loaded with gentamicin (GPA NPs). The nanoparticles were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet‑visible (UV‑vis) absorption spectra which demonstrated that GPA NPs with a diameter of approximately 180 nm were uniform. The loading manner and release behaviors were also investigated. The generated GPA NPs maintained their antibiotic activities against planktonic bacteria, but more effective to damage established biofilms and inhibited biofilm formation of pathogens including Gram-positive and Gram-negative bacteria. In addition, GPA NPs were observed to be nontoxic to RAW 264.7 cells and readily engulfed by the macrophages, which facilitated the killing of intracellular bacteria in infected macrophages. These results suggested GPA NPs might be a promising antibacterial agent for effective treatment of chronic infections due to microbial biofilm and intracellular bacteria.

  9. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  10. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system.

    PubMed

    Szczepanowski, Rafael; Krahn, Irene; Linke, Burkhard; Goesmann, Alexander; Pühler, Alfred; Schlüter, Andreas

    2004-11-01

    -binding-cassette (ABC)-type ATPase and permease, and an efflux membrane fusion protein (MFP) of the RND-family is encoded between the replication/partition and the mobilization module. Homologues of the macrolide resistance genes mph(A), mrx and mphR(A) were detected on eight other erythromycin resistance-plasmids isolated from activated sludge bacteria. Plasmid pRSB101-like repA amplicons were also obtained from plasmid-DNA preparations of the final effluents of the wastewater treatment plant indicating that pRSB101-like plasmids are released with the final effluents into the environment.

  11. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  12. Animal Capture Agents

    DTIC Science & Technology

    1990-01-01

    agents and delivery systems reviewed . Questionnaires were sent to 137 Air Force bases to obtain information about the chemical agents and delivery systems...used by animal control personnel. A literature review included chemical agents, delivery methods, toxicity information and emergency procedures from...34-like agent. Users should familiarize themselves with catatonia in general and particularly that its successful use as an immobilizer doesn’t necessarily

  13. Chronic sinusitis in children and adults: role of bacteria and antimicrobial management.

    PubMed

    Brook, Itzhak

    2005-11-01

    The nasopharynx serves as the reservoir for anaerobic bacteria as well as pathogenic bacteria that can cause respiratory infections including sinusitis. Some of these organisms possess the ability to interfere with the growth of potential pathogens and may play a role in preventing infections. Anaerobic bacteria emerge as pathogens as the infection becomes chronic. This may result from the selective pressure of antimicrobial agents that enable resistant anaerobic organisms to survive, and from the development of conditions appropriate for anaerobic growth, which include the reduction in oxygen tension and an increase in acidity within the sinus. Anaerobes were identified in chronic sinusitis in adults and children whenever techniques for their cultivation were employed. The predominant isolates were pigmented Prevotella, Fusobacterium, and Peptostreptococcus spp. The choice of antimicrobial agent in chronic sinusitis should provide coverage for the usual pathogens in acute sinusitis as well as beta-lactamase-producing aerobic and anaerobic organisms.

  14. Topical hemostatic agents: a review.

    PubMed

    Palm, Melanie D; Altman, Jeffrey S

    2008-04-01

    Topical hemostatic agents play an important role in both common and specialized dermatologic procedures. These agents can be classified based on their mechanism of action and include physical or mechanical agents, caustic agents, biologic physical agents, and physiologic agents. Some agents induce protein coagulation and precipitation resulting in occlusion of small cutaneous vessels, while others take advantage of latter stages in the coagulation cascade, activating biologic responses to bleeding. Traditional and newer topical hemostatic agents are discussed in this review, and the benefits and costs of each agent will be provided.

  15. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  16. Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation.

    PubMed

    Azmi, Fazren; Elliott, Alysha G; Marasini, Nirmal; Ramu, Soumya; Ziora, Zyta; Kavanagh, Angela M; Blaskovich, Mark A T; Cooper, Matthew A; Skwarczynski, Mariusz; Toth, Istvan

    2016-05-15

    The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.

  17. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  18. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity.

    PubMed

    Umemoto, Teruo; Singh, Rajendra P; Xu, Yong; Saito, Norimichi

    2010-12-29

    Versatile, safe, shelf-stable, and easy-to-handle fluorinating agents are strongly desired in both academic and industrial arenas, since fluorinated compounds have attracted considerable interest in many areas, such as drug discovery, due to the unique effects of fluorine atoms when incorporated into molecules. This article describes the synthesis, properties, and reactivity of many substituted and thermally stable phenylsulfur trifluorides, in particular, 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride (Fluolead, 1k), as a crystalline solid having surprisingly high stability on contact with water and superior utility as a deoxofluorinating agent compared to current reagents, such as DAST and its analogues. The roles of substituents on 1k in thermal and hydrolytic stability, fluorination reactivity, and the high-yield fluorination mechanism it undergoes have been clarified. In addition to fluorinations of alcohols, aldehydes, and enolizable ketones, 1k smoothly converts non-enolizable carbonyls to CF(2) groups, and carboxylic groups to CF(3) groups, in high yields. 1k also converts C(=S) and CH(3)SC(=S)O groups to CF(2) and CF(3)O groups, respectively, in high yields. In addition, 1k effects highly stereoselective deoxofluoro-arylsulfinylation of diols and amino alcohols to give fluoroalkyl arylsulfinates and arylsulfinamides, with complete inversion of configuration at fluorine and the simultaneous, selective formation of one conformational isomer at the sulfoxide sulfur atom. Considering the unique and diverse properties, relative safety, and ease of handling of 1k in addition to its convenient synthesis, it is expected to find considerable use as a novel fluorinating agent in both academic and industrial arenas.

  19. Biocide tolerance in bacteria.

    PubMed

    Ortega Morente, Elena; Fernández-Fuentes, Miguel Angel; Grande Burgos, Maria José; Abriouel, Hikmate; Pérez Pulido, Rubén; Gálvez, Antonio

    2013-03-01

    Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry.

  20. Gut bacteria mediate aggregation in the German cockroach

    PubMed Central

    Wada-Katsumata, Ayako; Zurek, Ludek; Nalyanya, Godfrey; Roelofs, Wendell L.; Zhang, Aijun; Schal, Coby

    2015-01-01

    Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect–insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites. PMID:26644557

  1. Gut bacteria mediate aggregation in the German cockroach.

    PubMed

    Wada-Katsumata, Ayako; Zurek, Ludek; Nalyanya, Godfrey; Roelofs, Wendell L; Zhang, Aijun; Schal, Coby

    2015-12-22

    Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect-insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites.

  2. A mobile biosafety microanalysis system for infectious agents.

    PubMed

    Beniac, Daniel R; Hiebert, Shannon L; Siemens, Christine G; Corbett, Cindi R; Booth, Tim F

    2015-03-30

    Biological threats posed by pathogens such as Ebola virus must be quickly diagnosed, while protecting the safety of personnel. Scanning electron microscopy and microanalysis requires minimal specimen preparation and can help to identify hazardous agents or substances. Here we report a compact biosafety system for rapid imaging and elemental analysis of specimens, including powders, viruses and bacteria, which is easily transportable to the site of an incident.

  3. A mobile biosafety microanalysis system for infectious agents

    PubMed Central

    Beniac, Daniel R.; Hiebert, Shannon L.; Siemens, Christine G.; Corbett, Cindi R.; Booth, Tim F.

    2015-01-01

    Biological threats posed by pathogens such as Ebola virus must be quickly diagnosed, while protecting the safety of personnel. Scanning electron microscopy and microanalysis requires minimal specimen preparation and can help to identify hazardous agents or substances. Here we report a compact biosafety system for rapid imaging and elemental analysis of specimens, including powders, viruses and bacteria, which is easily transportable to the site of an incident. PMID:25820944

  4. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

  5. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  6. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  7. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... Orange Parkinson’s Awareness Month Were you exposed to herbicides during service and have Parkinson’s disease? You may ...

  8. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Shi, Junling; Zhu, Jing; Shao, Dongyan; Huang, Qingsheng; Yang, Hui; Jin, Mingliang

    2017-01-01

    Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.

  9. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  10. Antibacterial activity of silver-killed bacteria: the "zombies" effect.

    PubMed

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-23

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  11. Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites.

    PubMed

    Flores-Villegas, A L; Salazar-Schettino, P M; Córdoba-Aguilar, A; Gutiérrez-Cabrera, A E; Rojas-Wastavino, G E; Bucio-Torres, M I; Cabrera-Bravo, M

    2015-10-01

    Triatomines are vectors that transmit the protozoan haemoflagellate Trypanosoma cruzi, the causative agent of Chagas disease. The aim of the current review is to provide a synthesis of the immune mechanisms of triatomines against bacteria, viruses, fungi and parasites to provide clues for areas of further research including biological control. Regarding bacteria, the triatomine immune response includes antimicrobial peptides (AMPs) such as defensins, lysozymes, attacins and cecropins, whose sites of synthesis are principally the fat body and haemocytes. These peptides are used against pathogenic bacteria (especially during ecdysis and feeding), and also attack symbiotic bacteria. In relation to viruses, Triatoma virus is the only one known to attack and kill triatomines. Although the immune response to this virus is unknown, we hypothesize that haemocytes, phenoloxidase (PO) and nitric oxide (NO) could be activated. Different fungal species have been described in a few triatomines and some immune components against these pathogens are PO and proPO. In relation to parasites, triatomines respond with AMPs, including PO, NO and lectin. In the case of T. cruzi this may be effective, but Trypanosoma rangeli seems to evade and suppress PO response. Although it is clear that three parasite-killing processes are used by triatomines - phagocytosis, nodule formation and encapsulation - the precise immune mechanisms of triatomines against invading agents, including trypanosomes, are as yet unknown. The signalling processes used in triatomine immune response are IMD, Toll and Jak-STAT. Based on the information compiled, we propose some lines of research that include strategic approaches of biological control.

  12. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    PubMed Central

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  13. Antimicrobial photodynamic therapy to kill Gram-negative bacteria.

    PubMed

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-08-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photo-stimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl₂. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT.

  14. Foodborne illness and microbial agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illnesses result from the consumption of food containing microbial agents such as bacteria, viruses, parasites or food contaminated by poisonous chemicals or bio-toxins. Pathogen proliferation is due to nutrient composition of foods, which are capable of supporting the growth of microorgan...

  15. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities

    PubMed Central

    Kaplan, N.; Murphy, B.

    2015-01-01

    This open-label noncontrolled, phase II multicenter trial was designed to evaluate the safety, tolerability, and efficacy of 200 mg of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), given by mouth twice daily in the treatment of acute bacterial skin and skin structure infections (ABSSSI) due to staphylococci. Important aspects of the current study included a comparison of early response efficacy endpoints with end-of-treatment and follow-up endpoints. Many patients in the intent-to-treat population (n = 103) had significant comorbidities. The overall early response rate at day 3 was 97.3% (wound, 100%; abscess, 96.6%; cellulitis, 94.4%) in the microbiologically evaluable (ME) population. Within the ME population, 82.9% of patients had a ≥20% decrease in the area of erythema, and 77.9% of patients had a ≥20% decrease in the area of induration, on day 3. S. aureus was detected in 97.7% of patients (n = 37 patients with methicillin-resistant S. aureus [MRSA], and n = 39 with methicillin-sensitive S. aureus [MSSA]). No isolates had increased AFN-1252 MICs posttreatment. Microbiologic eradication rates for S. aureus were 93.2% at short-term follow-up (STFU) and 91.9% at long-term follow-up (LTFU) in the ME population. Eradication rates for MRSA and MSSA were 91.9% and 92.3%, respectively, at STFU and 91.9% and 89.7%, respectively, at LTFU. The most frequently reported drug-related adverse events, which were mostly mild or moderate, were headache (26.2%) and nausea (21.4%). These studies demonstrate that AFN-1252 is generally well tolerated and effective in the treatment of ABSSSI due to S. aureus, including MRSA. (This study has been registered at ClinicalTrials.gov under registration no. NCT01519492.) PMID:26711777

  16. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities.

    PubMed

    Hafkin, B; Kaplan, N; Murphy, B

    2015-12-28

    This open-label noncontrolled, phase II multicenter trial was designed to evaluate the safety, tolerability, and efficacy of 200 mg of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), given by mouth twice daily in the treatment of acute bacterial skin and skin structure infections (ABSSSI) due to staphylococci. Important aspects of the current study included a comparison of early response efficacy endpoints with end-of-treatment and follow-up endpoints. Many patients in the intent-to-treat population (n = 103) had significant comorbidities. The overall early response rate at day 3 was 97.3% (wound, 100%; abscess, 96.6%; cellulitis, 94.4%) in the microbiologically evaluable (ME) population. Within the ME population, 82.9% of patients had a ≥ 20% decrease in the area of erythema, and 77.9% of patients had a ≥ 20% decrease in the area of induration, on day 3. S. aureus was detected in 97.7% of patients (n = 37 patients with methicillin-resistant S. aureus [MRSA], and n = 39 with methicillin-sensitive S. aureus [MSSA]). No isolates had increased AFN-1252 MICs posttreatment. Microbiologic eradication rates for S. aureus were 93.2% at short-term follow-up (STFU) and 91.9% at long-term follow-up (LTFU) in the ME population. Eradication rates for MRSA and MSSA were 91.9% and 92.3%, respectively, at STFU and 91.9% and 89.7%, respectively, at LTFU. The most frequently reported drug-related adverse events, which were mostly mild or moderate, were headache (26.2%) and nausea (21.4%). These studies demonstrate that AFN-1252 is generally well tolerated and effective in the treatment of ABSSSI due to S. aureus, including MRSA. (This study has been registered at ClinicalTrials.gov under registration no. NCT01519492.).

  17. Design and Engineering of a Multi-Target (Multiplex) DNA Simulant to Evaluate Nulceic Acid Based Assays for Detection of Biological Threat Agents

    DTIC Science & Technology

    2006-11-01

    Using the actual bio-threat agents for testing is impractical since producing a number of different threat bacteria and viruses, isolating and...Brucella species are recognized as potential agricultural, civilian, and military bioterrorism agents. Rickettsia are classified into two groups; the...spotted fever group (SFG), which includes R. conorii, R. sibirica, and R. rickettsii , and the typhus group (TG), which includes R. prowazekii and R

  18. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  19. Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP.

    PubMed

    Pinevich, Alexander V

    2015-03-01

    This taxonomic note was motivated by the recent proposal [Oren & Garrity (2014) Int J Syst Evol Microbiol 64, 309-310] to exclude the oxygenic photosynthetic bacteria (cyanobacteria) from the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), which entails unilateral coverage of these prokaryotes by the International Code of Nomenclature for algae, fungi, and plants (ICN; formerly the International Code of Botanical Nomenclature, ICBN). On the basis of key viewpoints, approaches and rules in the systematics, taxonomy and nomenclature of prokaryotes it is reciprocally proposed to apply the ICNP to names of cyanobacteria including those validly published under the ICBN/ICN. For this purpose, a change to Principle 2 of the ICNP is proposed to enable validation of cyanobacterial names published under the ICBN/ICN rules.

  20. The Mechanical World of Bacteria

    PubMed Central

    Persat, Alexandre; Nadell, Carey D.; Kim, Minyoung Kevin; Ingremeau, Francois; Siryaporn, Albert; Drescher, Knut; Wingreen, Ned S.; Bassler, Bonnie L.; Gitai, Zemer; Stone, Howard A.

    2015-01-01

    Summary In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics including hydrodynamic forces, adhesive forces, the rheology of their surroundings and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms. PMID:26000479

  1. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    PubMed

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering.

  2. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    PubMed Central

    Ghotaslou, Reza; Bahrami, Nashmil

    2012-01-01

    Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771

  3. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial Assistance for NMVC Companies (Leverage) Funding Leverage by Use of Sba Guaranteed Trust Certificates (âtcsâ... financial markets to determine those factors that will minimize or reduce the cost of funding...

  4. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial Assistance for NMVC Companies (Leverage) Funding Leverage by Use of Sba Guaranteed Trust Certificates (âtcsâ... financial markets to determine those factors that will minimize or reduce the cost of funding...

  5. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial Assistance for NMVC Companies (Leverage) Funding Leverage by Use of Sba Guaranteed Trust Certificates (âtcsâ... financial markets to determine those factors that will minimize or reduce the cost of funding...

  6. New agents in development for the treatment of bacterial infections.

    PubMed

    Abbanat, Darren; Morrow, Brian; Bush, Karen

    2008-10-01

    New antibacterial agents to treat infections caused by antibiotic-susceptible and antibiotic-resistant pathogens are in various stages of clinical development. In this review are compounds with demonstrated activity against methicillin-resistant staphylococci including investigational cephalosporins, carbapenems, and a new tetracycline, as well as glycopeptides effective against vancomycin-resistant enterococci (VRE), and fluoroquinolones with improved potency against respiratory pathogens and multidrug-resistant Gram-positive bacteria. Although most recent progress has occurred in the identification of agents for Gram-positive infections, broad-spectrum carbapenems are described for the treatment of multidrug-resistant Gram-negative pathogens. Also discussed are agents with mechanisms of action other than inhibition of protein synthesis, penicillin-binding proteins, and DNA topoisomerases; among these are inhibitors of bacterial fatty acid biosynthesis, peptidoglycan synthesis, and dihydrofolate reductase.

  7. Biomolecular strategy to minimize chromate toxicity to the remediating bacteria

    SciTech Connect

    D. Ackerley; C. Gonzalez; R. Blake; A. Matin

    2004-03-17

    Protein and cellular engineering are powerful approaches to enhance the efficiency of biological processes. We are focusing on improving chromate bioremediation through these approaches. Hexavalent chromate is a carcinogen which is a wide-spread environmental pollutant, including at the Department of Energy (DOE) sites. Bacteria can detoxify chromate, but improvements are needed to make them efficient agents in this respect. We have cloned several genes that encode soluble chromate reductase activity, and using pure enzyme preparations, have identified suitable candidates for improvement through enzyme evolution. The improvements we seek are: (1) Greater affinity for chromate; (2) Decreased reactive oxygen species (ROS) generation during chromate reduction, which is a major cause for chromate toxicity to the remediating bacteria; (3) Broader substrate range, so that the same enzyme can detoxify also other contaminants; (4) Bacteria capable of maximal expression of chromate reductase activity with minimal bacterial growth; and (5) Bacteria capable of functioning under the harsh conditions of polluted sites. Here we describe our studies on four bacterial enzymes, namely ChrR (from Pseudomonas putida) NfsA, and YieF (from Escherichia coli), and lipoyl dehydrogenase (LpDH, from Clostridium) aimed at attaining the above objectives, especially efficient chromate conversion with minimal toxic effects on the remediating bacterium.

  8. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  9. How honey kills bacteria.

    PubMed

    Kwakman, Paulus H S; te Velde, Anje A; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M J E; Zaat, Sebastian A J

    2010-07-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were killed by 10-20% (v/v) honey, whereas > or = 40% (v/v) of a honey-equivalent sugar solution was required for similar activity. Honey accumulated up to 5.62 +/- 0.54 mM H(2)O(2) and contained 0.25 +/- 0.01 mM methylglyoxal (MGO). After enzymatic neutralization of these two compounds, honey retained substantial activity. Using B. subtilis for activity-guided isolation of the additional antimicrobial factors, we discovered bee defensin-1 in honey. After combined neutralization of H(2)O(2), MGO, and bee defensin-1, 20% honey had only minimal activity left, and subsequent adjustment of the pH of this honey from 3.3 to 7.0 reduced the activity to that of sugar alone. Activity against all other bacteria tested depended on sugar, H(2)O(2), MGO, and bee defensin-1. Thus, we fully characterized the antibacterial activity of medical-grade honey.

  10. Transformation of gram positive bacteria by sonoporation

    DOEpatents

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  11. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  12. Antibiotic Agents

    MedlinePlus

    ... producing ). Examples of this type are the alcohols, chlorine, peroxides, and aldehydes. The second group consists mostly ... viruses have some kind of antibacterial agent. Alcohols, chlorine and peroxides have been used for many decades ...

  13. Agent Orange

    MedlinePlus

    ... Z) Hepatitis HIV Mental Health Mental Health Home Suicide Prevention Substance Abuse Military Sexual Trauma PTSD Research ( ... eligible Veterans a free Agent Orange Registry health exam for possible long-term health problems related to ...

  14. Deep characterization of the microbiomes of Calophya spp. (Hemiptera: Calophyidae) gall-inducing psyllids reveals the absence of plant pathogenic bacteria and three dominant endosymbionts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria associated with sap-feeding insect herbivores include not only symbionts that may increase their hosts’ fitness, but also harmful plant pathogens. Calophya spp., gall-inducing psyllids (Hemiptera: Calophyidae), are being investigated for their potential as biological control agents of the n...

  15. Sampling bacteria with a laser

    NASA Astrophysics Data System (ADS)

    Schwarzwälder, Kordula; Rutschmann, Peter

    2014-05-01

    Water quality is a topic of high interest and it's getting more and more important due to climate change and the implementation of European Water Framework Directive (WFD). One point of interest here is the inflow of bacteria into a river caused by combined sewer overflows which lead untreated wastewater including bacteria directly into a river. These bacteria remain in the river for a certain time, they settle down and can be remobilised again. In our study we want to investigate these processes of sedimentation and resuspension and use the results for the development of a software module coupled with the software Flow3D. Thereby we should be able to simulate and therefore predict the water quality influenced by combined sewer overflows. Hence we need to get information about the bacteria transport and fate. We need to know about the size of the bacteria or of the bacteria clumps and the size of the particles the bacteria are attached to. The agglomerates lead to different characteristics and velocities of settlement. The timespan during this bacteria can be detected in the bulk phase depends on many factors like the intensity of UV light, turbidity of the water, the temperature of the water, if there are grazers and a lot more. The size, density and composition of the agglomerates is just a part of all these influencing factors, but it is extremely difficult to differ between the other effects if we have no information about the simple sedimentation in default of these basic information. However we have a big problem getting the data. The chaining between bacteria or bacteria and particles is not too strong, so filtering the water to get a sieving curve may destroy these connections. We did some experiments similar to PIV (particle image velocimetry) measurements and evaluated the pictures with a macro written for the software ImageJ. Doing so we were able to get the concentration of bacteria in the water and collect information about the size of the bacteria. We

  16. [Bacteriophages as antibacterial agents].

    PubMed

    Shasha, Shaul M; Sharon, Nehama; Inbar, Michael

    2004-02-01

    Bacteriophages are viruses that only infect bacteria. They have played an important role in the development of molecular biology and have been used as anti-bacterial agents. Since their independent discovery by Twort and d'Herelle, they have been extensively used to prevent and treat bacterial infections, mainly in Eastern Europe and the former Soviet Union. In western countries this method has been sporadically employed on humans and domesticated animals. However, the discovery and widespread use of antibiotics, coupled with doubts about the efficacy of phage therapy, led to an eclipse in the use of phage in medicine. The emergence of antibiotic resistant bacteria, especially strains that are multiply resistant, has resulted in a renewed interest in alternatives to conventional drugs. One of the possible replacements for antibiotics is the use of bacteriophages as antimicrobial agents. This brief review aims to describe the history of bacteriophage and early clinical studies on their use in bacterial disease prophylaxis and therapy, and discuss the advantages and disadvantages of bacteriophage in this regard.

  17. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.

  18. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  19. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria.

    PubMed

    Martín-Vivaldi, Manuel; Peña, Aránzazu; Peralta-Sánchez, Juan Manuel; Sánchez, Lourdes; Ananou, Samir; Ruiz-Rodríguez, Magdalena; Soler, Juan José

    2010-01-07

    Animals frequently use metabolites produced by symbiotic bacteria as agents against pathogens and parasites. Secretions from the preen gland of birds are used for this purpose, although its chemicals apparently are produced by the birds themselves. European hoopoes Upupa epops and green woodhoopoes Phoeniculus purpureus harbour symbiotic bacteria in the uropygial gland that might be partly responsible for the chemical composition of secretions. Here we investigate the antimicrobial activity of the volatile fraction of chemicals in hoopoe preen secretions, and, by means of experimental antibiotic injections, test whether symbiotic bacteria living within the uropygial gland are responsible for their production. Hoopoes produce two different kinds of secretions that differ drastically in their chemical composition. While the malodorous dark secretions produced by nestlings included a complex mix of volatiles, these chemicals did not appear in white secretions produced by non-nesting birds. All volatiles detected showed strong antibacterial activity, and a mixture of the chemicals at the concentrations measured in nestling glands inhibited the growth of all bacterial strains assayed. We found support for the hypothesized role of bacteria in the production of such antimicrobial chemicals because experimental clearance of bacteria from glands of nestlings with antibiotics resulted in secretions without most of the volatiles detected in control individuals. Thus, the presence of symbiotic bacteria in the uropygial gland provides hoopoes with potent antimicrobials for topical use.

  20. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria

    PubMed Central

    Martín-Vivaldi, Manuel; Peña, Aránzazu; Peralta-Sánchez, Juan Manuel; Sánchez, Lourdes; Ananou, Samir; Ruiz-Rodríguez, Magdalena; Soler, Juan José

    2010-01-01

    Animals frequently use metabolites produced by symbiotic bacteria as agents against pathogens and parasites. Secretions from the preen gland of birds are used for this purpose, although its chemicals apparently are produced by the birds themselves. European hoopoes Upupa epops and green woodhoopoes Phoeniculus purpureus harbour symbiotic bacteria in the uropygial gland that might be partly responsible for the chemical composition of secretions. Here we investigate the antimicrobial activity of the volatile fraction of chemicals in hoopoe preen secretions, and, by means of experimental antibiotic injections, test whether symbiotic bacteria living within the uropygial gland are responsible for their production. Hoopoes produce two different kinds of secretions that differ drastically in their chemical composition. While the malodorous dark secretions produced by nestlings included a complex mix of volatiles, these chemicals did not appear in white secretions produced by non-nesting birds. All volatiles detected showed strong antibacterial activity, and a mixture of the chemicals at the concentrations measured in nestling glands inhibited the growth of all bacterial strains assayed. We found support for the hypothesized role of bacteria in the production of such antimicrobial chemicals because experimental clearance of bacteria from glands of nestlings with antibiotics resulted in secretions without most of the volatiles detected in control individuals. Thus, the presence of symbiotic bacteria in the uropygial gland provides hoopoes with potent antimicrobials for topical use. PMID:19812087

  1. Potential mediators linking gut bacteria to metabolic health: a critical view

    PubMed Central

    Janssen, Aafke W. F.

    2016-01-01

    Abstract Growing evidence suggests that the bacteria present in our gut may play a role in mediating the effect of genetics and lifestyle on obesity and metabolic diseases. Most of the current literature on gut bacteria consists of cross‐sectional and correlative studies, rendering it difficult to make any causal inferences as to the influence of gut bacteria on obesity and related metabolic disorders. Interventions with germ‐free animals, treatment with antibiotic agents, and microbial transfer experiments have provided some evidence that disturbances in gut bacteria may causally contribute to obesity‐related insulin resistance and adipose tissue inflammation. Several potential mediators have been hypothesized to link the activity and composition of gut bacteria to insulin resistance and adipose tissue function, including lipopolysaccharide, angiopoietin‐like protein 4, bile acids and short‐chain fatty acids. In this review we critically evaluate the current evidence related to the direct role of gut bacteria in obesity‐related metabolic perturbations, with a focus on insulin resistance and adipose tissue inflammation. It is concluded that the knowledge base in support of a role for the gut microbiota in metabolic regulation and in particular insulin resistance and adipose tissue inflammation needs to be strengthened. PMID:27418465

  2. Agents that increase the permeability of the outer membrane.

    PubMed Central

    Vaara, M

    1992-01-01

    The outer membrane of gram-negative bacteria provides the cell with an effective permeability barrier against external noxious agents, including antibiotics, but is itself a target for antibacterial agents such as polycations and chelators. Both groups of agents weaken the molecular interactions of the lipopolysaccharide constituent of the outer membrane. Various polycations are able, at least under certain conditions, to bind to the anionic sites of lipopolysaccharide. Many of these disorganize and cross the outer membrane and render it permeable to drugs which permeate the intact membrane very poorly. These polycations include polymyxins and their derivatives, protamine, polymers of basic amino acids, compound 48/80, insect cecropins, reptilian magainins, various cationic leukocyte peptides (defensins, bactenecins, bactericidal/permeability-increasing protein, and others), aminoglycosides, and many more. However, the cationic character is not the sole determinant required for the permeabilizing activity, and therefore some of the agents are much more effective permeabilizers than others. They are useful tools in studies in which the poor permeability of the outer membrane poses problems. Some of them undoubtedly have a role as natural antibiotic substances, and they or their derivatives might have some potential as pharmaceutical agents in antibacterial therapy as well. Also, chelators (such as EDTA, nitrilotriacetic acid, and sodium hexametaphosphate), which disintegrate the outer membrane by removing Mg2+ and Ca2+, are effective and valuable permeabilizers. PMID:1406489

  3. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  4. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  5. Serological studies on chloridazon-degrading bacteria.

    PubMed

    Layh, G; Böhm, R; Eberspächer, J; Lingens, F

    1983-01-01

    Agglutination tests and immunofluorescence tests with antisera against four strains of chloridazon-degrading bacteria revealed the serological uniformity of a group of 22 chloridazon-degrading bacterial strains. No serological relationship could be found between chloridazon-degrading bacteria and representatives of other Gram-negative bacteria. This was demonstrated by agglutination tests, including testing of the antiserum against Acinetobacter calcoaceticus, and by immunofluorescence tests, including testing of the sera against Pseudomonas and Acinetobacter strains. The tests were performed with 31 representatives of different Gram-negative bacteria, and with 22 strains of chloridazon-degrading bacteria as antigens. Differences in the extent of agglutination reactions and antibody titres among chloridazon-degrading bacterial strains together with cross-adsorption xperiments, suggest a rough classification of chloridazon-degrading bacteria into two subgroups. On the basis of immunofluorescence data, a linkage-map was worked out to represent serological relationships in the group of chloridazon-degrading strains.

  6. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  7. Sociomicrobiology and pathogenic bacteria

    PubMed Central

    Xavier, Joao B.

    2015-01-01

    The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action and potential drug targets, and much of medicine's success in the treatment of infectious disease comes from this approach. But many bacterial caused diseases cannot be explained by focusing on a single bacterium. Many aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction within bacteria of the same species and between different species in consortia such as the human microbiome. I discuss recent advances in the emerging discipline of sociomicrobiology and how it provides a framework to dissect microbial interactions in single and multispecies communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology where communities, their interactions with hosts and with the environment play key roles. PMID:27337482

  8. Current and future challenges in the development of antimicrobial agents.

    PubMed

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  9. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  10. Comparative susceptibilities of anaerobic bacteria to metronidazole, ornidazole, and SC-28538.

    PubMed

    Goldstein, E J; Sutter, V L; Finegold, S M

    1978-10-01

    The susceptibilities of 284 anaerobic bacteria, including 55 strains of the Bacteroides fragilis group, were determined by an agar dilution technique to metronidazole and two newer nitroimidazoles, ornidazole and SC-28538. All three agents showed marked in vitro activity against virtually all anaerobic bacteria tested. At concentrations 1 mug/ml, the activities of all three agents were comparable. Propionibacterium and Actinomyces showed significant resistance to all three agents. Anaerobic and microaerophilic members of the genus Streptococcus were also often resistant, in contrast to Peptococcus and Peptostreptococcus strains. In addition, the bactericidal activities of ornidazole and SC-28538 were determined against 27 strains of the B. fragilis group by a broth dilution technique. The minimal inhibitory and minimal bactericidal concentrations of each agent were very close. At concentrations of /=2 mug/ml, the activies of both agents were similar.

  11. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  12. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.

    PubMed

    Kis, Mariann; Sipka, Gábor; Maróti, Péter

    2017-03-04

    Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca(2+) channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H(+) ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10(5)) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM)(-1) and 1 (mM)(-1), respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.

  13. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  14. Kin Recognition in Bacteria.

    PubMed

    Wall, Daniel

    2016-09-08

    The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition.

  15. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  16. [Toxicological effects of weapons of mass destruction and noxious agents in modern warfare and terrorism].

    PubMed

    Vucemilović, Ante

    2010-06-01

    Weapons of mass destruction (WMD) best portray the twisted use of technological achievements against the human species. Despite arm control efforts, WMD threat continues to exist and even proliferate. This in turn calls for improvement in defensive measures against this threat. The modern soldier is exposed to a number of chemical, biological, and radiological agents in military and peace operations, while civilians are mainly exposed to terrorist attacks. Regardless of origin or mode of action, WMDs and other noxious agents aim for the same - to make an organism dysfunctional. Because their effects are often delayed, these agents are hard to spot on time and treat. This review presents a biomedical aspect of agents used in warfare and terrorism, including polonium-210, depleted uranium, salmonella, anthrax, genetically modified bacteria, cobweb-like polymer fibre, sarin, and mustard gas.

  17. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  18. Study Ties Inflammation, Gut Bacteria to Type 1 Diabetes

    MedlinePlus

    ... news/fullstory_163143.html Study Ties Inflammation, Gut Bacteria to Type 1 Diabetes However, it's not yet ... Italian study finds. Those changes include different gut bacteria and inflammation in the small intestine. The differences ...

  19. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    PubMed

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.

  20. Pathogen bacteria adhesion to skin mucus of fishes.

    PubMed

    Benhamed, Said; Guardiola, Francisco A; Mars, Mohammed; Esteban, María Ángeles

    2014-06-25

    Fish are always in intimate contact with their environment; therefore they are permanently exposed to very vary external hazards (e.g. aerobic and anaerobic bacteria, viruses, parasites, pollutants). To fight off pathogenic microorganisms, the epidermis and its secretion, the mucus acts as a barrier between the fish and the environment. Fish are surrounded by a continuous layer of mucus which is the first physical, chemical and biological barrier from infection and the first site of interaction between fish's skin cells and pathogens. The mucus composition is very complex and includes numerous antibacterial factors secreted by fish's skin cells, such as immunoglobulins, agglutinins, lectins, lysins and lysozymes. These factors have a very important role to discriminate between pathogenic and commensal microorganisms and to protect fish from invading pathogens. Furthermore, the skin mucus represents an important portal of entry of pathogens since it induces the development of biofilms, and represents a favorable microenvironment for bacteria, the main disease agents for fish. The purpose of this review is to summarize the current knowledge of the interaction between bacteria and fish skin mucus, the adhesion mechanisms of pathogens and the major factors influencing pathogen adhesion to mucus. The better knowledge of the interaction between fish and their environment could inspire other new perspectives to study as well as to exploit the mucus properties for different purposes.

  1. Regulation of Apoptosis by Gram-Positive Bacteria

    PubMed Central

    Ulett, Glen C.; Adderson, Elisabeth E.

    2008-01-01

    Apoptosis, or programmed cell death (PCD), is an important physiological mechanism, through which the human immune system regulates homeostasis and responds to diverse forms of cellular damage. PCD may also be involved in immune counteraction to microbial infection. Over the past decade, the amount of research on bacteria-induced PCD has grown tremendously, and the implications of this mechanism on immunity are being elucidated. Some pathogenic bacteria actively trigger the suicide response in critical lineages of leukocytes that orchestrate both the innate and adaptive immune responses; other bacteria proactively prevent PCD to benefit their own survival and persistence. Currently, the microbial virulence factors, which represent the keys to unlocking the suicide response in host cells, are a primary focus of this field. In this review, we discuss these bacterial “apoptosis regulatory molecules” and the apoptotic events they either trigger or prevent, the host target cells of this regulatory activity, and the possible ramifications for immunity to infection. Gram-positive pathogens including Staphylococcus, Streptococcus, Bacillus, Listeria, and Clostridia species are discussed as important agents of human infection that modulate PCD pathways in eukaryotic cells. PMID:19081777

  2. Topical hemostatic agents for dermatologic surgery.

    PubMed

    Larson, P O

    1988-06-01

    Topical hemostatic agents are very helpful in attaining capillary and small vessel hemostasis in dermatologic surgery. The commonly used topical hemostatic agents, including oxidized cellulose, absorbable gelatin, and thrombin are reviewed, along with newer agents such as microfibrillar collagen, fibrin sealants, and acrylates. Agents best suited for certain situations are recommended.

  3. Rapid biological agent identification by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Elliott, Susan; Sperry, Jay F.

    1999-11-01

    The Chemical Weapons Convention prohibits the development, production, stockpiling, and use of warfare agents (chemical and biological), and requires their destruction. Yet their use persists and has been included in the terrorist's arsenal. Currently, a number of analytical methods are being developed to perform rapid measurements of trace agents to ensure treaty compliance, as well as safe environments for military personal and the public at large. We have been investigating the ability of surface-enhanced Raman spectroscopy to detect bacterial nucleic acid-base pairs with sufficient sensitivity and selectivity to eliminate the need for enumeration used in polymerase chain reactions and culture growth, required by other measurement techniques. The design of a small volume, fiber optic coupled, electrolytic sample cell is presented along with analysis of DNA and RNA separated from non-toxic bacteria.

  4. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  5. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  6. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  7. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  8. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  9. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  10. Culturing marine bacteria - an essential prerequisite for biodiscovery.

    PubMed

    Joint, Ian; Mühling, Martin; Querellou, Joël

    2010-09-01

    The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long-standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell-to-cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro-droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long-term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high-throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater-based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria.

  11. Fate of pathogenic bacteria in microcosms mimicking human body sites.

    PubMed

    Castellani, Francesco; Ghidini, Valentina; Tafi, Maria Carla; Boaretti, Marzia; Lleo, Maria M

    2013-07-01

    During the infectious process, pathogens may reach anatomical sites where they are exposed to substances interfering with their growth. These substances can include molecules produced by the host, and his resident microbial population, as well as exogenous antibacterial drugs. Suboptimal concentrations of inhibitory molecules and stress conditions found in vivo (high or low temperatures, lack of oxygen, extreme pH) might induce in bacteria the activation of survival mechanisms blocking their division capability but allowing them to stay alive. These "dormant" bacteria can be reactivated in particular circumstances and would be able to express their virulence traits. In this study, it was evaluated the effect of some environmental conditions, such as optimal and suboptimal temperatures, direct light and antibiotic sub-inhibitory concentrations doses of antibiotic, on the human pathogens Escherichia coli and Enterococcus faecalis when incubated in fluids accumulated in the body of patients with different pathologies. It is shown that inoculation in a number of accumulated body fluids and the presence of gentamicin, reliable conditions encountered during pathological states, induce stress-responding strategies enabling bacteria to persist in microcosms mimicking the human body. Significant differences were detected in Gram-negative and Gram-positive species with E. faecalis surviving, as starved or viable but non-culturable forms, in any microcosm and condition tested and E. coli activating a viable but non-culturable state only in some clinical samples. The persistence of bacteria under these conditions, being non-culturable, might explain some recurrent infections without isolation of the causative agent after application of the standard microbiological methods.

  12. Culturing marine bacteria – an essential prerequisite for biodiscovery

    PubMed Central

    Joint, Ian; Mühling, Martin; Querellou, Joël

    2010-01-01

    Summary The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long‐standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell‐to‐cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro‐droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long‐term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high‐throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater‐based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria. PMID:21255353

  13. Topical hemostatic agents in otolaryngologic surgery.

    PubMed

    Acar, Baran; Babademez, Mehmet Ali; Karabulut, Hayriye

    2010-01-01

    Topical hemostatic agents are largely used to reduce blood loss during otolaryngologic surgery. These agents play an important role in both keeping the patient's hemodynamic equilibrium and allowing for a better view of the surgical field. These agents can be classified based on their mechanism of action, and include physical or mechanical agents. Most complications of topical hemostatic agents are sustained because of the antigenic reaction of those products. This paper reviews traditional and newer topical hemostatic agents with regard to their chemical properties, their mechanisms of action, and the benefits and complications of topical agents.

  14. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    PubMed

    Raber, Ellen; McGuire, Raymond

    2002-08-05

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  15. Acanthamoeba spp. as Agents of Disease in Humans

    PubMed Central

    Marciano-Cabral, Francine; Cabral, Guy

    2003-01-01

    Acanthamoeba spp. are free-living amebae that inhabit a variety of air, soil, and water environments. However, these amebae can also act as opportunistic as well as nonopportunistic pathogens. They are the causative agents of granulomatous amebic encephalitis and amebic keratitis and have been associated with cutaneous lesions and sinusitis. Immuno compromised individuals, including AIDS patients, are particularly susceptible to infections with Acanthamoeba. The immune defense mechanisms that operate against Acanthamoeba have not been well characterized, but it has been proposed that both innate and acquired immunity play a role. The ameba's life cycle includes an active feeding trophozoite stage and a dormant cyst stage. Trophozoites feed on bacteria, yeast, and algae. However, both trophozoites and cysts can retain viable bacteria and may serve as reservoirs for bacteria with human pathogenic potential. Diagnosis of infection includes direct microscopy of wet mounts of cerebrospinal fluid or stained smears of cerebrospinal fluid sediment, light or electron microscopy of tissues, in vitro cultivation of Acanthamoeba, and histological assessment of frozen or paraffin-embedded sections of brain or cutaneous lesion biopsy material. Immunocytochemistry, chemifluorescent dye staining, PCR, and analysis of DNA sequence variation also have been employed for laboratory diagnosis. Treatment of Acanthamoeba infections has met with mixed results. However, chlorhexidine gluconate, alone or in combination with propamidene isethionate, is effective in some patients. Furthermore, effective treatment is complicated since patients may present with underlying disease and Acanthamoeba infection may not be recognized. Since an increase in the number of cases of Acanthamoeba infections has occurred worldwide, these protozoa have become increasingly important as agents of human disease. PMID:12692099

  16. Acanthamoeba spp. as agents of disease in humans.

    PubMed

    Marciano-Cabral, Francine; Cabral, Guy

    2003-04-01

    Acanthamoeba spp. are free-living amebae that inhabit a variety of air, soil, and water environments. However, these amebae can also act as opportunistic as well as nonopportunistic pathogens. They are the causative agents of granulomatous amebic encephalitis and amebic keratitis and have been associated with cutaneous lesions and sinusitis. Immuno compromised individuals, including AIDS patients, are particularly susceptible to infections with Acanthamoeba. The immune defense mechanisms that operate against Acanthamoeba have not been well characterized, but it has been proposed that both innate and acquired immunity play a role. The ameba's life cycle includes an active feeding trophozoite stage and a dormant cyst stage. Trophozoites feed on bacteria, yeast, and algae. However, both trophozoites and cysts can retain viable bacteria and may serve as reservoirs for bacteria with human pathogenic potential. Diagnosis of infection includes direct microscopy of wet mounts of cerebrospinal fluid or stained smears of cerebrospinal fluid sediment, light or electron microscopy of tissues, in vitro cultivation of Acanthamoeba, and histological assessment of frozen or paraffin-embedded sections of brain or cutaneous lesion biopsy material. Immunocytochemistry, chemifluorescent dye staining, PCR, and analysis of DNA sequence variation also have been employed for laboratory diagnosis. Treatment of Acanthamoeba infections has met with mixed results. However, chlorhexidine gluconate, alone or in combination with propamidene isethionate, is effective in some patients. Furthermore, effective treatment is complicated since patients may present with underlying disease and Acanthamoeba infection may not be recognized. Since an increase in the number of cases of Acanthamoeba infections has occurred worldwide, these protozoa have become increasingly important as agents of human disease.

  17. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  18. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  19. Monitoring sulfide and sulfate-reducing bacteria

    SciTech Connect

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  20. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  1. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  2. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  3. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  4. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  5. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  6. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  7. Detecting agents.

    PubMed Central

    Johnson, Susan C

    2003-01-01

    This paper reviews a recent set of behavioural studies that examine the scope and nature of the representational system underlying theory-of-mind development. Studies with typically developing infants, adults and children with autism all converge on the claim that there is a specialized input system that uses not only morphological cues, but also behavioural cues to categorize novel objects as agents. Evidence is reviewed in which 12- to 15-month-old infants treat certain non-human objects as if they have perceptual/attentional abilities, communicative abilities and goal-directed behaviour. They will follow the attentional orientation of an amorphously shaped novel object if it interacts contingently with them or with another person. They also seem to use a novel object's environmentally directed behaviour to determine its perceptual/attentional orientation and object-oriented goals. Results from adults and children with autism are strikingly similar, despite adults' contradictory beliefs about the objects in question and the failure of children with autism to ultimately develop more advanced theory-of-mind reasoning. The implications for a general theory-of-mind development are discussed. PMID:12689380

  8. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria.

    PubMed

    Tian, Bing; Hua, Yuejin

    2010-11-01

    Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxanthins from Thermus thermophilus. Investigations of carotenogenesis will help to understand cellular stress resistance of Deinococcus-Thermus bacteria. Here, we discuss the recent progress toward identifying carotenoids, carotenoid biosynthetic enzymes and pathways in some species of Deinococcus-Thermus extremophiles. In addition, we also discuss the roles of carotenoids in these extreme bacteria.

  9. Sensitive Detection of Thirteen Bacterial Vaginosis-Associated Agents Using Multiplex Polymerase Chain Reaction

    PubMed Central

    Malaguti, Natália; Bahls, Larissa Danielle; Uchimura, Nelson Shozo; Gimenes, Fabrícia; Consolaro, Marcia Edilaine Lopes

    2015-01-01

    Bacterial vaginosis (BV) is characterized by a polymicrobial proliferation of anaerobic bacteria and depletion of lactobacilli, which are components of natural vaginal microbiota. Currently, there are limited conventional methods for BV diagnosis, and these methods are time-consuming, expensive, and rarely allow for the detection of more than one agent simultaneously. Therefore, we conceived and validated a multiplex polymerase chain reaction (M-PCR) assay for the simultaneous screening of thirteen bacterial vaginosis-associated agents (BV-AAs) related to symptomatic BV: Gardnerella vaginalis, Mobiluncus curtisii, Mobiluncus mulieris, Bacteroides fragilis, Mycoplasma hominis, Atopobium vaginae, Ureaplasma urealyticum, Megasphaera type I, Clostridia-like bacteria vaginosis-associated bacteria (BVABs) 1, 2, and 3, Sneathia sanguinegens, and Mycoplasma genitalium. The overall validation parameters of M-PCR compared to single PCR (sPCR) were extremely high, including agreement of 99.1% and sensitivity, specificity, and positive predictive values of 100.0%, negative predictive value of 97.0%, accuracy of 99.3%, and agreement with Nugent results of 100.0%. The prevalence of BV-AAs was very high (72.6%), and simultaneous agents were detected in 53.0%, which demonstrates the effectiveness of the M-PCR assay. Therefore, the M-PCR assay has great potential to impact BV diagnostic methods in vaginal samples and diminish associated complications in the near future. PMID:26078959

  10. Sensitive Detection of Thirteen Bacterial Vaginosis-Associated Agents Using Multiplex Polymerase Chain Reaction.

    PubMed

    Malaguti, Natália; Bahls, Larissa Danielle; Uchimura, Nelson Shozo; Gimenes, Fabrícia; Consolaro, Marcia Edilaine Lopes

    2015-01-01

    Bacterial vaginosis (BV) is characterized by a polymicrobial proliferation of anaerobic bacteria and depletion of lactobacilli, which are components of natural vaginal microbiota. Currently, there are limited conventional methods for BV diagnosis, and these methods are time-consuming, expensive, and rarely allow for the detection of more than one agent simultaneously. Therefore, we conceived and validated a multiplex polymerase chain reaction (M-PCR) assay for the simultaneous screening of thirteen bacterial vaginosis-associated agents (BV-AAs) related to symptomatic BV: Gardnerella vaginalis, Mobiluncus curtisii, Mobiluncus mulieris, Bacteroides fragilis, Mycoplasma hominis, Atopobium vaginae, Ureaplasma urealyticum, Megasphaera type I, Clostridia-like bacteria vaginosis-associated bacteria (BVABs) 1, 2, and 3, Sneathia sanguinegens, and Mycoplasma genitalium. The overall validation parameters of M-PCR compared to single PCR (sPCR) were extremely high, including agreement of 99.1% and sensitivity, specificity, and positive predictive values of 100.0%, negative predictive value of 97.0%, accuracy of 99.3%, and agreement with Nugent results of 100.0%. The prevalence of BV-AAs was very high (72.6%), and simultaneous agents were detected in 53.0%, which demonstrates the effectiveness of the M-PCR assay. Therefore, the M-PCR assay has great potential to impact BV diagnostic methods in vaginal samples and diminish associated complications in the near future.

  11. Lubricating bacteria model for branching growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Yonathan; Cohen, Inon; Golding, Ido; Ben-Jacob, Eshel

    1999-06-01

    Various bacterial strains (e.g., strains belonging to the genera Bacillus, Paenibacillus, Serratia, and Salmonella) exhibit colonial branching patterns during growth on poor semisolid substrates. These patterns reflect the bacterial cooperative self-organization. A central part of the cooperation is the collective formation of a lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by a nonlinear diffusion coefficient, branching patterns evolve. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.

  12. Microbial agents associated with waterborne diseases.

    PubMed

    Leclerc, H; Schwartzbrod, L; Dei-Cas, E

    2002-01-01

    Many classes of pathogens excreted in feces are able to initiate waterborne infections. There are bacterial pathogens, including enteric and aquatic bacteria, enteric viruses, and enteric protozoa, which are strongly resistant in the water environment and to most disinfectants. The infection dose of viral and protozoan agents is lower than bacteria, in the range of one to ten infectious units or oocysts. Waterborne outbreaks of bacterial origin (particularly typhoid fever) in the developing countries have declined dramatically from 1900s. Therefore, some early bacterial agents such as Shigella sonnei remains prevalent and new pathogens of fecal origin such as zoonotic C. jejuni and E. coli O157:H7 may contaminate pristine waters through wildlife or domestic animal feces. The common feature of these bacteria is the low inoculum (a few hundred cells) that may trigger disease. The emergence in early 1992 of serotype O139 of V. cholerae with epidemic potential in Southeast Asia suggests that other serotypes than V. cholerae O1 could also getting on epidemic. Some new pathogens include environmental bacteria that are capable of surviving and proliferating in water distribution systems. Other than specific hosts at risk, the general population is refractory to infection with ingested P. aeruginosa. The significance of Aeromonas spp. in drinking water to the occurrence of acute gastroenteritis remains a debatable point and has to be evaluated in further epidemiological studies. Legionella and Mycobacterium avium complex (MAC) are environmental pathogens that have found an ecologic niche in drinking and hot water supplies. Numerous studies have reported Legionnaires' disease caused by L. pneumophila occurring in residential and hospital water supplies. M. avium complex frequently causes disseminated infections in AIDS patients and drinking water has been suggested as a source of infection; in some cases the relationship has been proven. More and more numerous reports show

  13. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  14. Vaporizing Fire Extinguishing Agents

    DTIC Science & Technology

    1950-08-18

    the pro- ject under contract included: Dr. Earl T. McBee, Head, Chemistry Department; Dr. Zara D. Welch, Researbh Supervisor; and Dr’s T. R. Santelli...Aeronautics Authority kxperimental Station, Indianapolis, Indiana, which has supplied test data for inclusion in this report. The Medical Division of the...Development of sources of supply for agent anAL con- tainers. f. Service testing. This report oovers technical phases a, b, and a to 1 April 1950, and

  15. Agents Technology Research

    DTIC Science & Technology

    2010-02-01

    62702F 6. AUTHOR(S) Robert Wright, Jeffrey Hudack, Nathaniel Gemelli, Steven Loscalzo, and Tsu Kong Lue 5d. PROJECT NUMBER 558S 5e. TASK...NAME OF RESPONSIBLE PERSON Robert Wright a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) N/A...avoided by the other agents removing the incentive to lie or free-load. This phenomenon is termed as the shadow of the future and was shown in Robert

  16. Chemical agents for the control of plaque and plaque microflora: an overview.

    PubMed

    Gaffar, A; Afflitto, J; Nabi, N

    1997-10-01

    This presentation provides an overview of the technologies available for the chemical control of plaque. It is generally accepted that the formation of dental plaque at the interfaces of tooth/gingiva is one of the major causes of gingival inflammation and dental caries. Several therapeutic approaches have been used to control dental plaque and supragingival infections. These include fluoride preparations such as stannous fluoride, oxygenating agents, anti-attachment agents, and cationic and non-cationic antibacterial agents. Among the fluoride preparations, stable stannous fluoride pastes and gels have been shown to reduce supragingival plaque, gingivitis, hypersensitivity and caries. The effect of the oxygenating agents on the supragingival plaque has been equivocal, but recent data indicate that a stable agent which provides sustained active oxygen release is effective in controlling plaque. A polymer, PVPA, which reduced attachment of bacteria to teeth was shown to significantly reduce plaque formation in humans. A new generation of antibacterials includes non-ionics such as triclosan, which in combination with a special polymer delivery system, has been shown to reduce plaque, gingivitis, supragingival calculus and dental caries in long-term studies conducted around the world. Unlike the first generation of agents, the triclosan/copolymer/sodium fluoride system is effective in long-term clinicals and does not cause staining of teeth, increase in calculus, or disturbance in the oral microbial ecology.

  17. [Infections of finger and toe nails due to fungi and bacteria].

    PubMed

    Nenoff, P; Paasch, U; Handrick, W

    2014-04-01

    Infections of the finger and the toe nails are most frequently caused by fungi, primarily dermatophytes. Causative agents of tinea unguium are mostly anthropophilic dermatophytes. Both in Germany, and worldwide, Trichophyton rubrum represents the main important causative agent of onychomycoses. Yeasts are isolated from fungal nail infections, both paronychia and onychomycosis far more often than generally expected. This can represent either saprophytic colonization as well as acute or chronic infection of the nail organ. The main yeasts causing nail infections are Candida parapsilosis, and Candida guilliermondii; Candida albicans is only in third place. Onychomycosis due to molds, or so called non-dermatophyte molds (NDM), are being increasingly detected. Molds as cause of an onychomycosis are considered as emerging pathogens. Fusarium species are the most common cause of NDM onychomycosis; however, rare molds like Onychocola canadensis may be found. Bacterial infections of the nails are caused by gram negative bacteria, usually Pseudomonas aeruginosa (recognizable because of green or black coloration of the nails) but also Klebsiella spp. and gram positive bacteria like Staphylococcus aureus. Treatment of onychomycosis includes application of topical antifungal agents (amorolfine, ciclopirox). If more than 50 % of the nail plate is affected or if more than three out of ten nails are affected by the fungal infection, oral treatment using terbinafine (in case of dermatophyte infection), fluconazole (for yeast infections), or alternatively itraconazole are recommended. Bacterial infections are treated topically with antiseptic agents (octenidine), and in some cases with topical antibiotics (nadifloxacin, gentamicin). Pseudomonas infections of the nail organ are treated by ciprofloxacin; other bacteria are treated according to the results of culture and sensitivity testing.

  18. Including Jews in Multiculturalism.

    ERIC Educational Resources Information Center

    Langman, Peter F.

    1995-01-01

    Discusses reasons for the lack of attention to Jews as an ethnic minority within multiculturalism both by Jews and non-Jews; why Jews and Jewish issues need to be included; and addresses some of the issues involved in the ethical treatment of Jewish clients. (Author)

  19. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  20. Pathogenic rickettsiae as bioterrorism agents.

    PubMed

    Azad, Abdu F

    2007-07-15

    Because of their unique biological characteristics, such as environmental stability, small size, aerosol transmission, persistence in infected hosts, low infectious dose, and high associated morbidity and mortality, Rickettsia prowazekii and Coxiella burnetii have been weaponized. These biological attributes would make the pathogenic rickettsiae desirable bioterrorism agents. However, production of highly purified, virulent, weapon-quality rickettsiae is a daunting task that requires expertise and elaborate, state-of-the art laboratory procedures to retain rickettsial survival and virulence. Another drawback to developing rickettsial pathogens as biological weapons is their lack of direct transmission from host to host and the availability of very effective therapeutic countermeasures against these obligate intracellular bacteria.

  1. [Department of Plant Pathogenic Bacteria: the past and the present].

    PubMed

    Hvozdiak, R I; Pasichnyk, L A; Patyka, V P

    2008-01-01

    Basic trends of the Department since the time of its foundation and till the present have been analyzed. The main attention was given the study of bacteria-agents ofplant diseases, their biological properties and ecological role, relationships with epiphytic and endophytic microflora, detection of their new ecological niches, with the use of traditional and modern molecular-genetic methods of research. Possible spheres of application of biopolymers of phytopathogenic bacteria have been considered.

  2. Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential.

    PubMed

    Schirawski, J; Unden, G

    1998-10-01

    Succinate dehydrogenases from bacteria and archaea using menaquinone (MK) as an electron acceptor (succinate/menaquinone oxidoreductases) contain, or are predicted to contain, two heme-B groups in the membrane-anchoring protein(s), located close to opposite sides of the membrane. All succinate/ubiquinone oxidoreductases, however, contain only one heme-B molecule. In Bacillus subtilis and other bacteria that use MK as the respiratory quinone, the succinate oxidase activity (succinate-->O2), and the succinate/menaquinone oxidoreductase activity were specifically inhibited by uncoupler (CCCP, carbonyl cyanide m-chlorophenylhydrazone) or by agents dissipating the membrane potential (valinomycin). Other parts of the respiratory chains were not affected by the agents. Succinate oxidase or succinate/ubiquinone oxidoreductase from bacteria using ubiquinone as an acceptor were not inhibited. We propose that the endergonic electron transport from succinate (Eo' = +30 mV) to MK (Eo' approximately/= -80 mV) in succinate/menaquinone oxidoreductase includes a reversed electron transport across the cytoplasmic membrane from the inner (negative) to the outer (positive) side via the two heme-B groups. The reversed electron transport is driven by the proton or electrical potential, which provides the driving force for MK reduction.

  3. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  4. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  5. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  6. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  7. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  8. Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria

    PubMed Central

    Qian, Chao-Dong; Teng, Yi; Zhao, Wen-Peng; Li, Ou; Fang, Sheng-Guo; Huang, Zhao-Hui; Gao, Hai-Chun

    2012-01-01

    Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria. PMID:22183171

  9. Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Overy, David P; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2015-11-09

    Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications.

  10. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  11. Web Search Agents: "One-Stop Shopping" for Researchers.

    ERIC Educational Resources Information Center

    Perez, Ernest

    2002-01-01

    Explains Web search agents as tools that apply intelligent agent software technology for the purpose of automating, improving, and speeding up online search operations. Topics include intelligent desktop agents; search agent marketplace; comparing Web search agents; subjective evaluations; and use by researchers. (LRW)

  12. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  13. Development and application of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-pathogenic bacteria are the causative agents of diseases in important agricultural crops and ornamental plants. The severe economic burden of these diseases requires seeking new approaches, particularly because phytopathogenic bacteria are often resistant to currently available treatments. The...

  14. Effect of BCD Plasma on a Bacteria Cell Membrane

    NASA Astrophysics Data System (ADS)

    Nasrin, Navabsafa; Hamid, Ghomi; Maryam, Nikkhah; Soheila, Mohades; Hossein, Dabiri; Saeed, Ghasemi

    2013-07-01

    Abstract Cell membrane rupture is considered to be one of the probable mechanisms for bacterial inactivation using barrier corona discharge (BCD) plasma. In this paper, the effect of the BCD plasma on the Escherichia coli (E. coli) bacteria cell wall was investigated through two analytical methods; Adenosine-5'-triphosphate (ATP) assay and Atomic Force Microscopy (AFM). The ATP assay results indicate an increase in the ATP content of samples which were exposed to the BCD plasma. This implies the bacteria cell rupture. Moreover, AFM images confirm a serious damage of the bacteria cell wall under the influence of the bactericidal agents of the plasma.

  15. Predatory bacteria are nontoxic to the rabbit ocular surface

    PubMed Central

    Romanowski, Eric G.; Stella, Nicholas A.; Brothers, Kimberly M.; Yates, Kathleen A.; Funderburgh, Martha L.; Funderburgh, James L.; Gupta, Shilpi; Dharani, Sonal; Kadouri, Daniel E.; Shanks, Robert M. Q.

    2016-01-01

    Given the increasing emergence of antimicrobial resistant microbes and the near absent development of new antibiotic classes, innovative new therapeutic approaches to address this global problem are necessary. The use of predatory bacteria, bacteria that prey upon other bacteria, is gaining interest as an “out of the box” therapeutic treatment for multidrug resistant pathogenic bacterial infections. Before a new antimicrobial agent is used to treat infections, it must be tested for safety. The goal of this study was to test the tolerability of bacteria on the ocular surface using in vitro and in vivo models. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were found to be non-toxic to human corneal stromal keratocytes in vitro; however, they did induce production of the proinflammatory chemokine IL-8 but not IL-1β. Predatory bacteria did not induce inflammation on the ocular surface of rabbit eyes, with and without corneal epithelial abrasions. Unlike a standard of care antibiotic vancomycin, predatory bacteria did not inhibit corneal epithelial wound healing or increase clinical inflammatory signs in vivo. Together these data support the safety of predatory bacteria on the ocular surface, but future studies are warranted regarding the use predatory bacteria in deeper tissues of the eye. PMID:27527833

  16. Modeling of stochastic motion of bacteria propelled spherical microbeads

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav; Behkam, Bahareh; Cheung, Eugene; Sitti, Metin

    2011-06-01

    This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots.

  17. Nutritional therapies (including fosteum).

    PubMed

    Nieves, Jeri W

    2009-03-01

    Nutrition is important in promoting bone health and in managing an individual with low bone mass or osteoporosis. In adult women and men, known losses of bone mass and microarchitecture occur, and nutrition can help minimize these losses. In every patient, a healthy diet with adequate protein, fruits, vegetables, calcium, and vitamin D is required to maintain bone health. Recent reports on nutritional remedies for osteoporosis have highlighted the importance of calcium in youth and continued importance in conjunction with vitamin D as the population ages. It is likely that a calcium intake of 1200 mg/d is ideal, and there are some concerns about excessive calcium intakes. However, vitamin D intake needs to be increased in most populations. The ability of soy products, particularly genistein aglycone, to provide skeletal benefit has been recently studied, including some data that support a new medical food marketed as Fosteum (Primus Pharmaceuticals, Scottsdale, AZ).

  18. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  19. Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia

    PubMed Central

    La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude

    2003-01-01

    To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-associated bacteria from10 species were isolated. Twelve of 30 serum samples seroconverted to one amoeba-associated bacterium isolated in the ICU, mainly Legionella anisa and Bosea massiliensis, the most common isolates from water (p=0.021). Amoeba-associated bacteria DNA was detected in BAL samples from two patients whose samples later seroconverted. Seroconversion was significantly associated with VAP and systemic inflammatory response syndrome, especially in patients for whom no etiologic agent was found by usual microbiologic investigations. Amoeba-associated bacteria might be a cause of VAP in ICUs, especially when microbiologic investigations are negative. PMID:12890321

  20. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria

    PubMed Central

    Tabima, Javier F.; Grunwald, Niklaus J.

    2016-01-01

    Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, is important for disease management. Developments in molecular methods have contributed to increase the resolution for accurate pathogen identification, but those based on analysis of DNA sequences can be less straightforward to use. To address this, we developed Gall-ID, a web-based platform that uses DNA sequence information from 16S rDNA, multilocus sequence analysis and whole genome sequences to group disease-associated bacteria to their taxonomic units. Gall-ID was developed with a particular focus on gall-forming bacteria belonging to Agrobacterium, Pseudomonas savastanoi, Pantoea agglomerans, and Rhodococcus. Members of these groups of bacteria cause growth deformation of plants, and some are capable of infecting many species of field, orchard, and nursery crops. Gall-ID also enables the use of high-throughput sequencing reads to search for evidence for homologs of characterized virulence genes, and provides downloadable software pipelines for automating multilocus sequence analysis, analyzing genome sequences for average nucleotide identity, and constructing core genome phylogenies. Lastly, additional databases were included in Gall-ID to help determine the identity of other plant pathogenic bacteria that may be in microbial communities associated with galls or causative agents in other diseased tissues of plants. The URL for Gall-ID is http://gall-id.cgrb.oregonstate.edu/. PMID:27547538

  1. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  2. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.

    PubMed

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2012-03-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.

  3. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  4. The antimicrobial properties of cedar leaf (Thuja plicata) oil; a safe and efficient decontamination agent for buildings.

    PubMed

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-12-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings.

  5. The Antimicrobial Properties of Cedar Leaf (Thuja plicata) Oil; A Safe and Efficient Decontamination Agent for Buildings

    PubMed Central

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-01-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings. PMID:22408584

  6. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  7. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The association between bacteria and urinary stones

    PubMed Central

    Wolfe, Alan J.

    2017-01-01

    Urinary stone disease (USD) is an increasing clinical problem in both children and adults. One in ten individuals will experience a urinary stone, yet the mechanisms responsible for urinary stones remain largely unknown. Bacteria have long been recognized to contribute to struvite urinary stones; however, the role of bacteria in the development of the more common calcium oxalate (CaOx) and calcium phosphate (CaPhos) stones has not been extensively investigated. However, several findings do indicate a possible association between urinary stones and bacteria, including the high rate of urinary tract infections (UTI) in urinary stone patients and multiple case series of culture-positive urinary stones, including stones composed of CaOx or CaPhos. New technology, such as next generation sequencing, may be used to lend additional insight regarding the association between urinary stones and bacteria. In 2015, we published the initial bacterial sequencing results from five urinary stones, from which we sequenced multiple types of bacterial DNA. Whether these bacteria are causal, disease modifying or passively present remains to be determined. However, initial exploration of underlying mechanisms for this association indicate that bacteria aggregate selectively to crystals, that their presence is associated with increased clumping of crystals, and that they stimulate incorporation of proteins into the stone matrix. PMID:28217697

  9. Quorum sensing and swarming migration in bacteria.

    PubMed

    Daniels, Ruth; Vanderleyden, Jos; Michiels, Jan

    2004-06-01

    Bacterial cells can produce and sense signal molecules, allowing the whole population to initiate a concerted action once a critical concentration (corresponding to a particular population density) of the signal has been reached, a phenomenon known as quorum sensing. One of the possible quorum sensing-regulated phenotypes is swarming, a flagella-driven movement of differentiated swarmer cells (hyperflagellated, elongated, multinucleated) by which bacteria can spread as a biofilm over a surface. The glycolipid or lipopeptide biosurfactants thereby produced function as wetting agent by reducing the surface tension. Quorum sensing systems are almost always integrated into other regulatory circuits. This effectively expands the range of environmental signals that influence target gene expression beyond population density. In this review, we first discuss the regulation of AHL-mediated surface migration and the involvement of other low-molecular-mass signal molecules (such as the furanosyl borate diester AI-2) in biosurfactant production of different bacteria. In addition, population density-dependent regulation of swarmer cell differentiation is reviewed. Also, several examples of interspecies signalling are reported. Different signal molecules either produced by bacteria (such as other AHLs and diketopiperazines) or excreted by plants (such as furanones, plant signal mimics) might influence the quorum sensing-regulated swarming behaviour in bacteria different from the producer. On the other hand, specific bacteria can reduce the local available concentration of signal molecules produced by others. In the last part, the role and regulation of a surface-associated movement in biofilm formation is discussed. Here we also describe how quorum sensing may disperse existing biofilms and control the interaction between bacteria and higher organisms (such as the Rhizobium-bean symbiosis).

  10. The Use of Predatory Bacteria to Control Select Pathogens and Treat Respiratory Infections

    DTIC Science & Technology

    2015-04-13

    clearance of Mycobacterium tuberculosis in the lungs of infected mice. PloS One 6, e17091, doi:10.1371/journal.pone.0017091 (2011). 24... infections , with many traditional antimicrobial agents becoming ineffective. An additional potential threat is the use of biological agents and...bacteria are able to serve as a novel therapeutic agent in controlling intractable bacterial infections . By co-culturing Select Agents in the presence

  11. Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals.

    PubMed

    Wallmann, Jürgen

    2006-06-01

    Facing the problem of development and spreading of bacterial resistance, preventive strategies are considered the most appropriate means to counteract. The establishment of corresponding management options relies on scientifically defensible efforts to obtain objective data on the prevalence of bacterial resistance in healthy and diseased livestock. Additionally, detailed statistics are needed on the overall amount of antimicrobial agents dispensed in Germany. The collection of valid data on the prevalence of resistance requires representative and cross-sectional studies. The German national antimicrobial resistance monitoring of the Federal Office of Consumer Protection and Food Safety (BVL) determines the current quantitative resistance level of life-stock pathogens, in order to permit the evaluation and surveillance of the distribution of resistances on a valid basis. Essential key features determining the design of these studies comprise (1) a statistically valid sampling program. This incorporates regional differences in animal population density, (2) the avoidance of "copy strains", (3) testing of no more than two bacterial strains belonging to one species per herd, (4) testing only if no antimicrobial therapy preceded sample collection, and (5) the use of standardized methods [e.g. microdilution broth method to determine the minimal inhibitory concentration (MIC)]. The analysis and interpretation of this data permits reliable identification and definition of epidemiological characteristics of resistance and its development in animal associated bacteria, such as geographically and time wise differentiated profiles on its prevalence, the emergence of unknown phenotypes of resistance and an assessment of the threat resistant bacteria from animals pose for humans. In applied antimicrobial therapy, the data can serve as a decision guidance in choosing the antimicrobial agent most adapted to the prevailing epidemiological situation. The susceptibility testing

  12. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains.

    PubMed

    Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-07-01

    Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains.

  13. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  14. Newer antifungal agents.

    PubMed

    Türel, Ozden

    2011-03-01

    The frequency and spectrum of fungal infections have been increasing steadily over the last several decades. The reason for this increase may be explained by the increase in the number of immunocompromised patients due to malignancies, AIDS, invasive surgical procedures and transplantation. In parallel with this increase, several therapeutic options have become available but problems such as intrinsic or acquired antifungal resistance have led researchers to develop new antifungal drugs with expanded effectiveness. Reduced toxicity, enhancement of bioavailability and counteraction of resistance are features desired by clinicians. The aim of this article is to summarize the studies involving isavuconazole, ravuconazole, albaconazole, aminocandin and some other investigational antifungal agents. Most data on the clinical use of ravuconazole, isavuconazole and albaconazole are mainly available as meeting abstracts or limited to animal studies or Phase I/II studies in humans. These new antifungal agents in development offer extended half-lives, possibly reduced drug interaction profiles and good tolerance. In addition to activity against Candida and Aspergillus spp., they have a broad spectrum of activity including activity against resistant and emerging pathogens. The real possibilities of these agents will only be fully understood after adequate randomized clinical trials.

  15. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains

    PubMed Central

    Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi

    2016-01-01

    Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood. PMID:27695631

  16. Rapid method for determination of antimicrobial susceptibilities pattern of urinary bacteria

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chapelle, E. W.; Barza, M. J.; Weinstein, L.; Tuttle, S. A.; Vellend, H.

    1975-01-01

    Method determines bacterial sensitivity to antimicrobial agents by measuring level of adenosine triphosphate remaining in the bacteria. Light emitted during reaction of sample with a mixture of luciferase and luciferin is measured.

  17. Predacious bacteria, Bdellovibrio with potential for biocontrol.

    PubMed

    Markelova, Natalia Y

    2010-11-01

    Bacteria of the genus of Bdellovibrio are highly motile Gram-negative predators of other Gram-negative bacteria causing lysis of their prey. Here we report results of studies on the interactions of Bdellovibrio with species of Alcaligenes, Campylobacter, Erwinia, Escherichia, Helicobacter, Pseudomonas, Legionella, and Shigella in agar lower, liquid media and cells attached to a surface. Helicobacter pylori was studied employing both actively growing and viable but nonculturable (VBNC) cells. The majority of the bacterial strains tested were found to be susceptible to Bdellovibrio. A significant observation was that Bdellovibrio attacked both actively growing and VBNC H. pylori, that phenomenon has never been reported. The results indicate that bdellovibrios have potential as biocontrol agents.

  18. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.

  19. Bacterial spores and chemical sporicidal agents.

    PubMed Central

    Russell, A D

    1990-01-01

    Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described. Images PMID:2187595

  20. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  1. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  2. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  3. Monoclonal antibodies against bacteria.

    PubMed

    Macario, A J; Conway de Macario, E

    1988-01-01

    Highlights are presented of most recent work in which monoclonal antibodies have been instrumental in the study of bacteria and their products. Topics summarized pertain to human and veterinary medicines, dentistry, phytopathology, ichthyology, and bacterial ecophysiology, differentiation, evolution and methanogenic biotechnology.

  4. Enteric bacteria mandibular osteomyelitis.

    PubMed

    Scolozzi, Paolo; Lombardi, Tommaso; Edney, Timothy; Jaques, Bertrand

    2005-06-01

    Osteomyelitis of the mandible is a relatively rare inflammatory disease that usually stems from the odontogenic polymicrobial flora of the oral cavity. We are reporting 2 unusual cases of mandibular osteomyelitis resulting from enteric bacteria infection. In one patient, abundant clinical evidence suggested a diagnosis of a chronic factitious disease, whereas in the second patient no obvious etiology was found.

  5. Burden of extensively drug-resistant and pandrug-resistant Gram-negative bacteria at a tertiary-care centre.

    PubMed

    Bhatt, Puneet; Tandel, Kundan; Shete, Vishal; Rathi, K R

    2015-11-01

    The emergence of resistance to multiple antimicrobial agents in Gram-negative bacteria is a significant threat to public health, as it restricts the armamentarium of the clinician against these infections. The aim of this study was to determine the burden of extensively drug-resistant (XDR) and pandrug-resistant (PDR) Gram-negative bacteria at a tertiary-care centre. Antimicrobial susceptibility testing of 1240 clinical isolates of Gram-negative bacteria obtained from various clinical samples during the study period was carried out by the Kirby-Bauer disc diffusion method. Minimum inhibitory concentration of all antibiotics including tigecycline and colistin was determined by Vitek-2 automated susceptibility testing system. Out of 1240 isolates of Gram-negative bacteria, 112 isolates (9%) were resistant to all the antibiotics tested by Kirby-Bauer disc diffusion method. This finding was corroborated by Vitek-2. In addition, Vitek-2 found that 67 isolates were resistant to all antibiotics except tigecycline and colistin. A total of 30 isolates were susceptible to only colistin, and four isolates were susceptible to only tigecycline. It was also found that six isolates (excluding five isolates of Proteus spp.) were resistant to both colistin and tigecycline. Thus, 101 (8.1%) out of 1240 isolates were XDR and 11 isolates (0.9%) were PDR. The findings of this study reveal increased burden of XDR and PDR Gram-negative bacteria in our centre. It also highlights the widespread dissemination of these bacteria in the community. This situation warrants the regular surveillance of antimicrobial resistance of Gram-negative bacteria and implementation of an efficient infection control program.

  6. Predatory Bacteria Attenuate Klebsiella pneumoniae Burden in Rat Lungs

    PubMed Central

    Singleton, Eric; Tang, Chi; Zuena, Michael; Shukla, Sean; Gupta, Shilpi; Dharani, Sonal; Onyile, Onoyom; Rinaggio, Joseph; Connell, Nancy D.

    2016-01-01

    ABSTRACT Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are predatory bacteria that naturally—and obligately—prey on other Gram-negative bacteria, and their use has been proposed as a potential new approach to control microbial infection. The ability of predatory bacteria to prey on Gram-negative human pathogens in vitro is well documented; however, the in vivo safety and efficacy of predatory bacteria have yet to be fully assessed. In this study, we examined whether predatory bacteria can reduce bacterial burden in the lungs in an in vivo mammalian system. Initial safety studies were performed by intranasal inoculation of rats with predatory bacteria. No adverse effects or lung pathology were observed in rats exposed to high concentrations of predatory bacteria at up to 10 days postinoculation. Enzyme-linked immunosorbent assay (ELISA) of the immune response revealed a slight increase in inflammatory cytokine levels at 1 h postinoculation that was not sustained by 48 h. Additionally, dissemination experiments showed that predators were efficiently cleared from the host by 10 days postinoculation. To measure the ability of predatory bacteria to reduce microbial burden in vivo, we introduced sublethal concentrations of Klebsiella pneumoniae into the lungs of rats via intranasal inoculation and followed with multiple doses of predatory bacteria over 24 h. Predatory bacteria were able to reduce K. pneumoniae bacterial burden, on average, by more than 3.0 log10 in the lungs of most rats as measured by CFU plating. The work presented here provides further support for the idea of developing predatory bacteria as a novel biocontrol agent. PMID:27834203

  7. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Ning, Xinghai; Lee, Seungjun; Wang, Zhirui; Kim, Dongin; Stubblefield, Bryan; Gilbert, Eric; Murthy, Niren

    2011-08-01

    The diagnosis of bacterial infections remains a major challenge in medicine. Although numerous contrast agents have been developed to image bacteria, their clinical impact has been minimal because they are unable to detect small numbers of bacteria in vivo, and cannot distinguish infections from other pathologies such as cancer and inflammation. Here, we present a family of contrast agents, termed maltodextrin-based imaging probes (MDPs), which can detect bacteria in vivo with a sensitivity two orders of magnitude higher than previously reported, and can detect bacteria using a bacteria-specific mechanism that is independent of host response and secondary pathologies. MDPs are composed of a fluorescent dye conjugated to maltohexaose, and are rapidly internalized through the bacteria-specific maltodextrin transport pathway, endowing the MDPs with a unique combination of high sensitivity and specificity for bacteria. Here, we show that MDPs selectively accumulate within bacteria at millimolar concentrations, and are a thousand-fold more specific for bacteria than mammalian cells. Furthermore, we demonstrate that MDPs can image as few as 105 colony-forming units in vivo and can discriminate between active bacteria and inflammation induced by either lipopolysaccharides or metabolically inactive bacteria.

  8. A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria.

    PubMed

    Li, Ke; Zhang, Yang-Yang; Jiang, Guo-Yu; Hou, Yuan-Jun; Zhang, Bao-Wen; Zhou, Qian-Xiong; Wang, Xue-Song

    2015-05-07

    A piperazine-modified Crystal Violet was found to be able to selectively inactivate Gram-negative bacteria upon visible light irradiation but left Gram-positive bacteria less damaged, which can serve as a blueprint for the development of novel narrow-spectrum agents to replenish the current arsenal of photodynamic antimicrobial chemotherapy (PACT).

  9. Biological warfare agents.

    PubMed

    Pohanka, Miroslav; Kuca, Kamil

    2010-01-01

    Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

  10. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  11. Physics behind the new technique sensing of phage-triggered ion cascades (SEPTIC) for the prompt identification of bacteria (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Kish, L. B.; Bezrukov, Sergey M.; Der, A.; Cheng, M.; King, M. D.; Young, R.; Seo, S.; Kim, J.

    2005-05-01

    Fatal injury of bacteria opens transmembrane ion pathways that create temporary ion clouds around the cells. This ion release transiently charges bacteria yielding spatiotemporal fluctuations of the electrical field which show up like a "fatal scream" in thermal noise. The effect has recently been demonstrated with the specific injuries caused by bacteriophage infections (King, et al, in press) and suggested for identification of bacteria with extraordinary speed and selectivity. Calculations indicate that the detection and identification of a single bacterium can be achieved with natural (wild) phages with reasonable efforts within a time window of 10 minutes. However the potential applicability of the agent-triggered ion cascade reaches much beyond that, including other kinds of injuries, such as those induced by antibiotics, ageing, poisoning, etc. Considerations and open questions about the physical aspects of the fluctuations and their detectability are discussed in this talk.

  12. Anchor Toolkit - a secure mobile agent system

    SciTech Connect

    Mudumbai, Srilekha S.; Johnston, William; Essiari, Abdelilah

    1999-05-19

    Mobile agent technology facilitates intelligent operation insoftware systems with less human interaction. Major challenge todeployment of mobile agents include secure transmission of agents andpreventing unauthorized access to resources between interacting systems,as either hosts, or agents, or both can act maliciously. The Anchortoolkit, designed by LBNL, handles the transmission and secure managementof mobile agents in a heterogeneous distributed computing environment. Itprovides users with the option of incorporating their security managers.This paper concentrates on the architecture, features, access control anddeployment of Anchor toolkit. Application of this toolkit in a securedistributed CVS environment is discussed as a case study.

  13. Achieving agent coordination via distributed preferences

    SciTech Connect

    D`Ambrosio, J.G.; Birmingham, W.P.

    1996-12-31

    Agent-based systems provide hope for solving a wide variety of distributed problems. One key aspect of agent-based system is coordinating agent actions to achieve coherent behavior. For example, in concurrent engineering (CE), it is necessary to ensure that the individual decision made by constituents in a design organization achieve overall organizational objectives (e.g., increase market share), while still allowing individuals to exploit their expertise. We believe CE is representative of many multi-agent problems, in that agent coordination must include facilities to support both solving a hierarchically decomposed problem, e.g., the contract net, and interactions among peers as well.

  14. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.

    PubMed

    Tonk, Miray; Knorr, Eileen; Cabezas-Cruz, Alejandro; Valdés, James J; Kollewe, Christian; Vilcinskas, Andreas

    2015-11-01

    The red flour beetle Tribolium castaneum is a destructive insect pest of stored food and feed products, and a model organism for development, evolutionary biology and immunity. The insect innate immune system includes antimicrobial peptides (AMPs) with a wide spectrum of targets including viruses, bacteria, fungi and parasites. Defensins are an evolutionarily-conserved class of AMPs and a potential new source of antimicrobial agents. In this context, we report the antimicrobial activity, phylogenetic and structural properties of three T. castaneum defensins (Def1, Def2 and Def3) and their relevance in the immunity of T. castaneum against bacterial pathogens. All three recombinant defensins showed bactericidal activity against Micrococcus luteus and Bacillus thuringiensis serovar tolworthi, but only Def1 and Def2 showed a bacteriostatic effect against Staphylococcus epidermidis. None of the defensins showed activity against the Gram-negative bacteria Escherichia coli and Pseudomonas entomophila or against the yeast Saccharomyces cerevisiae. All three defensins were transcriptionally upregulated following a bacterial challenge, suggesting a key role in the immunity of T. castaneum against bacterial pathogens. Phylogenetic analysis showed that defensins from T. castaneum, mealworms, Udo longhorn beetle and houseflies cluster within a well-defined clade of insect defensins. We conclude that T. castaneum defensins are primarily active against Gram-positive bacteria and that other AMPs may play a more prominent role against Gram-negative species.

  15. Bacteriocins active against plant pathogenic bacteria.

    PubMed

    Grinter, Rhys; Milner, Joel; Walker, Daniel

    2012-12-01

    Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.

  16. Daphnia swarms: from single agent dynamics to collective vortex formation

    NASA Astrophysics Data System (ADS)

    Ordemann, Anke; Balazsi, Gabor; Caspari, Elizabeth; Moss, Frank

    2003-05-01

    Swarm theories have become fashionable in theoretical physics over the last decade. They span the range of interactions from individual agents moving in a mean field to coherent collective motions of large agent populations, such as vortex-swarming. But controlled laboratory tests of these theories using real biological agents have been problematic due primarily to poorly known agent-agent interactions (in the case of e.g. bacteria and slime molds) or the large swarm size (e.g. for flocks of birds and schools of fish). Moreover, the entire range of behaviors from single agent interactions to collective vortex motions of the swarm have here-to-fore not been observed with a single animal. We present the results of well defined experiments with the zooplankton Daphnia in light fields showing this range of behaviors. We interpret our results with a theory of the motions of self-propelled agents in a field.

  17. Fate and transport of bacteria injected into aquifers

    USGS Publications Warehouse

    Harvey, Ronald W.

    1993-01-01

    Advances in our understanding of the fate and transport of bacteria introduced into aquifers, including the potential use of genetically engineered bacteria for biorestoration, are highlighted by new findings in the following areas: modeling of bacterial attachment during transport through porous media, the long-term survival of a chlorobenzoate-degrading bacterium injected into a contaminated sandy aquifer, and molecular techniques that may be used in tracking genetically engineered bacteria in groundwater environments.

  18. Effects of Wound Bacteria on Postburn Energy Metabolism

    DTIC Science & Technology

    1988-08-01

    bacterial products (enzymes, toxins , etc.) or cytokines produced by host inflammatory cells in response to bacteria /’ products. Endotoxin is a prime...Best Available Copy ~~ ~ADyj ) EFFECTS OF WOUND BACTERIA ON POSTBURN ENERGY METABOLISM ANNUAL REPORT DT!C ,’ ELECTE 7 Louis H. Aulick, Ph.D. % NOV3...62772A874 AD 134 II. TITLE (Include Secuity Classification) Effects of Wound Bacteria on Postburn Energy Metabolism 12. PERSONAL AUTHOR(S) Louis H

  19. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection.

    PubMed

    Ng-Choi, Iteng; Soler, Marta; Güell, Imma; Badosa, Esther; Cabrefiga, Jordi; Bardaji, Eduard; Montesinos, Emilio; Planas, Marta; Feliu, Lidia

    2014-04-01

    The control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.

  20. Local bacteria affect the efficacy of chemotherapeutic drugs

    PubMed Central

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T.; McCarthy, Florence O.; Reid, Gregor; Urbaniak, Camilla; Byrne, William L.; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  1. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa

    PubMed Central

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L.; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  2. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    PubMed

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  3. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa.

    PubMed

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world's economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  4. Chemical warfare agents.

    PubMed

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents.

  5. Bacillus cereus strain MCN as a debriding agent

    NASA Technical Reports Server (NTRS)

    Dalton, H. P.; Haynes, B. W.; Stone, L. L.

    1978-01-01

    Biologically active means are effective for rapidly removing scar tissue caused by burns or corrosive agents. Specially selected strain of bacteria applied to injury site releases enzymes which are active against eschar. These bacteria tend to locate between eschar and unburned tissue, thus providing optimal cell surface area arrangement for enzyme dispersal. Procedure may prove especially useful in treatment of disaster casualties under relatively primitive conditions.

  6. The emerging threat of multidrug-resistant Gram-negative bacteria in urology.

    PubMed

    Zowawi, Hosam M; Harris, Patrick N A; Roberts, Matthew J; Tambyah, Paul A; Schembri, Mark A; Pezzani, M Diletta; Williamson, Deborah A; Paterson, David L

    2015-10-01

    Antibiotic resistance in Gram-negative uropathogens is a major global concern. Worldwide, the prevalence of Enterobacteriaceae that produce extended-spectrum β-lactamase or carbapenemase enzymes continues to increase at alarming rates. Likewise, resistance to other antimicrobial agents including aminoglycosides, sulphonamides and fluoroquinolones is also escalating rapidly. Bacterial resistance has major implications for urological practice, particularly in relation to catheter-associated urinary tract infections (UTIs) and infectious complications following transrectal-ultrasonography-guided biopsy of the prostate or urological surgery. Although some new drugs with activity against Gram-negative bacteria with highly resistant phenotypes will become available in the near future, the existence of a single agent with activity against the great diversity of resistance is unlikely. Responding to the challenges of Gram-negative resistance will require a multifaceted approach including considered use of current antimicrobial agents, improved diagnostics (including the rapid detection of resistance) and surveillance, better adherence to basic measures of infection prevention, development of new antibiotics and research into non-antibiotic treatment and preventive strategies.

  7. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  8. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2002-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  9. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  10. Investigating the role of water in the Diffusion of Cholera using Agent-Based simulation

    NASA Astrophysics Data System (ADS)

    Augustijn, Ellen-Wien; Doldersum, Tom; Augustijn, Denie

    2014-05-01

    Traditionally, cholera was considered to be a waterborne disease. Currently we know that many other factors can contribute to the spread of this disease including human mobility and human behavior. However, the hydrological component in cholera diffusion is significant. The interplay between cholera and water includes bacteria (V. cholera) that survive in the aquatic environment, the possibility that run-off water from dumpsites carries the bacteria to surface water (rivers and lakes), and when the bacteria reach streams they can be carried downstream to infect new locations. Modelling is a very important tool to build theory on the interplay between different types of transmission mechanisms that together are responsible for the spread of Cholera. Agent-based simulation models are very suitable to incorporate behavior at individual level and to reproduce emergence. However, it is more difficult to incorporate the hydrological components in this type of model. In this research we present the hydrological component of an Agent-Based Cholera model developed to study a Cholera epidemic in Kumasi (Ghana) in 2005. The model was calibrated on the relative contribution of each community to the distributed pattern of cholera rather than the absolute number of incidences. Analysis of the results shows that water plays an important role in the diffusion of cholera: 75% of the cholera cases were infected via river water that was contaminated by runoff from the dumpsites. To initiate infections upstream, the probability of environment-to-human transmission seemed to be overestimated compared to what may be expected from literature. Scenario analyses show that there is a strong relation between the epidemic curve and the rainfall. Removing dumpsites that are situated close to the river resulted in a strong decrease in the number of cholera cases. Results are sensitive to the scheduling of the daily activities and the survival time of the cholera bacteria.

  11. Computation by Bacteria

    DTIC Science & Technology

    2011-01-03

    inversion symmetry and time reversal symmetry by dissipat - ing energy , and breaking both these symmetries allows ratcheting. The ability of...durations. All of these devices take advantage of the conversion of chemical energy into propulsion that occurs within bacteria. These devices break spatial...micromachines relying on energy that microorganisms would dissipate “anyway” even in the absence of ratchet structures suggests that researchers could

  12. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    PubMed Central

    Meena, Khem Raj; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  13. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  14. The talking language in some major Gram-negative bacteria.

    PubMed

    Banerjee, Goutam; Ray, Arun Kumar

    2016-08-01

    Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future.

  15. DMTB: the magnetotactic bacteria database

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Lin, W.

    2012-12-01

    Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.

  16. Money and transmission of bacteria

    PubMed Central

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people’s behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider. PMID:23985137

  17. The intrinsic resistance of bacteria.

    PubMed

    Gang, Zhang; Jie, Feng

    2016-10-20

    Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter.

  18. Repurposing celecoxib as a topical antimicrobial agent

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA) infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2%) significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections. PMID:26284040

  19. Beneficial effects of lactic acid bacteria on human beings.

    PubMed

    Masood, Muhammad Irfan; Qadir, Muhammad Imran; Shirazi, Jafir Hussain; Khan, Ikram Ullah

    2011-02-01

    Lactic acid bacteria are a diverse group of bacteria that produce lactic acid as their major fermented product. Most of them are normal flora of human being and animals and produce myriad beneficial effects for human beings include, alleviation of lactose intolerance, diarrhea, peptic ulcer, stimulation of immune system, antiallergic effects, antifungal actions, preservation of food, and prevention of colon cancer. This review highlights the potential species of Lactic acid bacteria responsible for producing these effects. It has been concluded that lactic acid bacteria are highly beneficial microorganisms for human beings and are present abundantly in dairy products so their use should be promoted for good human health.

  20. Isolation of pathogenic bacteria from hospital staff apparel in Nigeria.

    PubMed

    Orji, M U; Mbata, T I; Kalu, O U

    2005-12-01

    A survey of bacteria contamination of hospital staff apparel in use in Anambra State, Nigeria, was carried out to determine the extent of contamination by clinically important bacteria. Of a total of 125 swab samples of hospital staff apparel, 72 (58%) showed bacterial contamination including 32 (70%) of 46 samples from hand gloves, 28 of 45 (62%) samples from protective gowns, and 12 of 34 (35%) samples from face-shields. The potentially pathogenic bacteria isolated were Salmonella spp, Proteus vulgaris, Shigella dysenteriae, Pseudomonas aeruginosa and Staphylococcus aureus. The isolation of clinically important bacteria from the apparel suggests the need for improved infection control measures.

  1. Bacteriophage biosensors for antibiotic-resistant bacteria.

    PubMed

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  2. [New agents for hypercholesterolemia].

    PubMed

    Pintó, Xavier; García Gómez, María Carmen

    2016-02-19

    An elevated proportion of high cardiovascular risk patients do not achieve the therapeutic c-LDL goals. This owes to physicians' inappropriate or insufficient use of cholesterol lowering medications or to patients' bad tolerance or therapeutic compliance. Another cause is an insufficient efficacy of current cholesterol lowering drugs including statins and ezetimibe. In addition, proprotein convertase subtilisin kexin type 9 inhibitors are a new cholesterol lowering medications showing safety and high efficacy to reduce c-LDL in numerous already performed or underway clinical trials, potentially allowing an optimal control of hypercholesterolemia in most patients. Agents inhibiting apolipoprotein B synthesis and microsomal transfer protein are also providing a new potential to decrease cholesterol in patients with severe hypercholesterolemia and in particular in homozygote familial hypercholesterolemia. Last, cholesteryl ester transfer protein inhibitors have shown powerful effects on c-HDL and c-LDL, although their efficacy in cardiovascular prevention and safety has not been demonstrated yet. We provide in this article an overview of the main characteristics of therapeutic agents for hypercholesterolemia, which have been recently approved or in an advanced research stage.

  3. Delta agent (Hepatitis D)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000216.htm Delta agent (Hepatitis D) To use the sharing features on this page, please enable JavaScript. Delta agent is a type of virus called hepatitis ...

  4. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    PubMed Central

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  5. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  6. Bdellovibrio bacteriovorus : A future antimicrobial agent?

    PubMed

    Harini, K; Ajila, Vidya; Hegde, Shruthi

    2013-11-01

    Bdellovibrio and like organisms (BALOs) are small, predatory, Deltaproteobacteria that prey on other Gram-negative pathogens. Many authors have unfolded the possible use of BALOs as biological control agents in environmental as well as medical microbiological settings. They are found strongly associated with natural biofilms and recent studies have shown that effective predation occurs in these naturally occurring bacterial communities. Periodontal infections could also be an interesting target for the application of BALOs as biological Gram-negative bacteria and therefore potentially susceptible to BALOs antimicrobial agents. This proposition is based on the fact that almost all periodontal pathogens are predation. Accordingly, this review aims to present the evolution toward applying Bdellovibrio bacteriovorus as an antibacterial agent to deal with oral infections, general medical conditions, environmental and industrial issues.

  7. Monitoring of environmental pollutants by bioluminescent bacteria.

    PubMed

    Girotti, Stefano; Ferri, Elida Nora; Fumo, Maria Grazia; Maiolini, Elisabetta

    2008-02-04

    This review deals with the applications of bioluminescent bacteria to the environmental analyses, published during the years 2000-2007. The ecotoxicological assessment, by bioassays, of the environmental risks and the luminescent approaches are reported. The review includes a brief introduction to the characteristics and applications of bioassays, a description of the characteristics and applications of natural bioluminescent bacteria (BLB), and a collection of the main applications to organic and inorganic pollutants. The light-emitting genetically modified bacteria applications, as well as the bioluminescent immobilized systems and biosensors are outlined. Considerations about commercially available BLB and BLB catalogues are also reported. Most of the environmental applications, here mentioned, of luminescent organisms are on wastewater, seawater, surface and ground water, tap water, soil and sediments, air. Comparison to other bioindicators and bioassay has been also made. Various tables have been inserted, to make easier to take a rapid glance at all possible references concerning the topic of specific interest.

  8. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  9. Study examines sulfate-reducing bacteria activity

    SciTech Connect

    McElhiney, J.E.; Hardy, J.A.; Rizk, T.Y.; Stott, J.F.D.; Eden, R.D.

    1996-12-09

    Low-sulfate seawater injection can reduce the potential of an oil reservoir turning sour because of sulfate-reducing bacteria. Sulfate-reducing bacteria (SRB) convert sulfate ions in seawater used in waterflooding into sulfide with the concomitant oxidation of a carbon source. A recent study at Capcis investigated the efficiency of SRB under various conditions of sulfate limitation. This study was conducted in a flowing bioreactor at 2,000 psia with different temperature zones (mesophilic 35 C and thermophilic 60--80 C). The study mixed microfloral populations derived from real North Sea-produced fluids, and included an active population of marine methanogenic bacteria present to provide competition for the available carbon sources. In general, results showed that SRB continue to convert sulfate to sulfide in stoichiometric quantities without regard to absolute concentrations. The paper discusses the results and recommends nanofiltration of seawater for ``sweet`` reservoirs.

  10. Single bacteria identification by Raman spectroscopy.

    PubMed

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-01-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300 cm⁻¹. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24 mm². The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ~90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications.

  11. Single bacteria identification by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-11-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24. The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ˜90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications.

  12. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  13. Intelligent Agents: A Primer.

    ERIC Educational Resources Information Center

    Yu, Edmund; Feldman, Susan

    1999-01-01

    Provides an in-depth introduction to the various technologies that are bringing intelligent agents into the forefront of information technology, explaining how such agents work, the standards involved, and how agent-based applications can be developed. (Author/AEF)

  14. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  15. Development of biosensors for the detection of biological warfare agents: its issues and challenges.

    PubMed

    Kumar, Harish; Rani, Renu

    2013-01-01

    This review discusses current development in biosensors for the detection of biological warfare agents (BWAs). BWAs include bacteria, virus and toxins that are added deliberately into air water and food to spread terrorism and cause disease or death. The rapid and unambiguous detection and identification of BWAs with early warning signals for detecting possible biological attack is a major challenge for government agencies particularly military and health. The detection devices--biosensors--can be classified (according to their physicochemical transducers) into four types: electrochemical, nucleic acid, optical and piezoelectric. Advantages and limitations of biosensors are discussed in this review followed by an assessment of the current state of development of different types of biosensors. The research and development in biosensors for biological warfare agent detection is of great interest for the public as well as for governments.

  16. The importance of 2D aggregates on the antimicrobial resistance of Staphylococcus aureus sessile bacteria.

    PubMed

    Miñán, A; Schilardi, P L; Fernández Lorenzo de Mele, M

    2016-04-01

    Biofilms formed on implanted devices are difficult to eradicate. Adhesion mechanism, high bacterial density, aggregation, induction of persisters and stressed bacteria are some of the factors considered when the antimicrobial resistance of these biofilms is analyzed. The aim of this work was to provide an alternative approach to the understanding of this issue by using a specially designed experimental set up that includes the use of microstructured (MS) surfaces (potential inhibitors of bacterial aggregation) in combination with antimicrobial agents (streptomycin and levofloxacin) against Staphylococcusaureus attached cells. Biofilms formed on smooth surfaces were used as plain controls (biofilmed-PC) characterized by the formation of dense 2D bacterial aggregates. Results showed bacterial persistence when streptomycin or levofloxacin were applied to PC-biofilms. The antimicrobial activity of both antibiotics was enhanced when bacteria were attached on MS, where single cells or small aggregates were observed. Thus, dense 2D aggregates of bacteria seem to be crucial as a required previous stage to develop the antimicrobial resistance.

  17. The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging

    NASA Astrophysics Data System (ADS)

    Pompl, René; Jamitzky, Ferdinand; Shimizu, Tetsuji; Steffes, Bernd; Bunk, Wolfram; Schmidt, Hans-Ulrich; Georgi, Matthias; Ramrath, Katrin; Stolz, Wilhelm; Stark, Robert W.; Urayama, Takuya; Fujii, Shuitsu; Eugen Morfill, Gregor

    2009-11-01

    Research on low-temperature atmospheric plasma sources (LTAPS) has grown strongly over the last few years, in part driven by possible medical 'in vivo' applications. LTAPS offer new technology for medicine and biomedical engineering. Important application examples include in situ production of reactive molecules and ions, delivery at the molecular level, contact-free and self-sterilizing devices. An important issue is the efficient bactericidal effect of LTAPS, which has already been studied widely in vitro. In spite of the many investigations, details of the plasma effect on bacteria are still largely unknown. To contribute to a better understanding of the sterilization process, we investigated the morphological changes of bacteria using atomic force microscopy before and after plasma treatment at high resolution. We examined both gram-positive and gram-negative bacteria at different plasma exposure times. Additionally, the effect of UV radiation as one agent in the plasma was investigated separately. Our results suggest that several sterilizing mechanisms exist and they proceed at different timescales.

  18. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  19. Gastric spiral bacteria in small felids.

    PubMed

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  20. [Pseudomonas syringae - the agent of bacterial diseases of weeds].

    PubMed

    Pasichnik, L A; Savenko, E A; Butsenko, L N; Shcherbina, T N; Patyka, V F

    2013-01-01

    The symptoms of bacterial diseases of the associated weeds have been identified and described in the wheat crops grown in different farming systems. On the basis of its morphological, biochemical and serological properties the agent isolated from frost-blite, barnyard grass, wild radish, couch grass, bottle-brush, bindweed and sow thistle has been identified as Pseudomonas syringae. Serological affinity between the weed bacteria and the agent of bacterial diseases of cereals has been established.

  1. Bacteria in solitary confinement.

    PubMed

    Mullineaux, Conrad W

    2015-02-15

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676-687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues.

  2. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  3. Landslides as agents of diversity

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten

    2016-04-01

    Landslides, often destructive and damaging, are also agents of change that introduce diversity to landscapes. I discuss landslide diversity at three levels: site diversity, soil diversity, and habitat diversity. There are many landslide types involving different materials and rates and styles of movement. Landscape diversity varies with different types of landslides. Landslides, at the same time depositional and erosional agents, influence sites by redistributing materials and changing microtopography. Eroded portions of landslides, with exposed parent material, revert to the initial stages of soil development and ecological succession. Landslides can also alter soil properties including, surface texture, chemistry and porosity. Landslides influence habitat diversity by creating ecosystem mosaics.

  4. Using an Agent-Based Model to Examine the Role of Dynamic Bacterial Virulence Potential in the Pathogenesis of Surgical Site Infection

    PubMed Central

    Gopalakrishnan, Vissagan; Kim, Moses; An, Gary

    2013-01-01

    Objective Despite clinical advances, surgical site infections (SSIs) remain a problem. The development of SSIs involves a complex interplay between the cellular and molecular mechanisms of wound healing and contaminating bacteria, and here, we utilize an agent-based model (ABM) to investigate the role of bacterial virulence potential in the pathogenesis of SSI. Approach The Muscle Wound ABM (MWABM) incorporates muscle cells, neutrophils, macrophages, myoblasts, abstracted blood vessels, and avirulent/virulent bacteria to simulate the pathogenesis of SSIs. Simulated bacteria with virulence potential can mutate to possess resistance to reactive oxygen species and increased invasiveness. Simulated experiments (t=7 days) involved parameter sweeps of initial wound size to identify transition zones between healed and nonhealed wounds/SSIs, and to evaluate the effect of avirulent/virulent bacteria. Results The MWABM reproduced the dynamics of normal successful healing, including a transition zone in initial wound size beyond which healing was significantly impaired. Parameter sweeps with avirulent bacteria demonstrated that smaller wound sizes were associated with healing failure. This effect was even more pronounced with the addition of virulence potential to the contaminating bacteria. Innovation The MWABM integrates the myriad factors involved in the healing of a normal wound and the pathogenesis of SSIs. This type of model can serve as a useful framework into which more detailed mechanistic knowledge can be embedded. Conclusion Future work will involve more comprehensive representation of host factors, and especially the ability of those host factors to activate virulence potential in the microbes involved. PMID:24761337

  5. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, Steven Y.

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  6. Transcytosis of murine-adapted bovine spongiform encephalopathy agents in an in vitro bovine M cell model.

    PubMed

    Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Tanaka, Sachi; Hondo, Tetsuya; Watanabe, Hitoshi; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Katamine, Shigeru; Nishida, Noriyuki; Aso, Hisashi

    2010-12-01

    Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.

  7. Transcytosis of Murine-Adapted Bovine Spongiform Encephalopathy Agents in an In Vitro Bovine M Cell Model▿ † #

    PubMed Central

    Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Tanaka, Sachi; Hondo, Tetsuya; Watanabe, Hitoshi; Rose, Michael T.; Kitazawa, Haruki; Yamaguchi, Takahiro; Katamine, Shigeru; Nishida, Noriyuki; Aso, Hisashi

    2010-01-01

    Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent. PMID:20861256

  8. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms.

    PubMed

    Li, Xian-Zhi

    2005-06-01

    Bacterial resistance to quinolones/fluoroquinolones has emerged rapidly and such resistance has traditionally been attributed to the chromosomally mediated mechanisms that alter the quinolone targets (i.e. DNA gyrase and topoisomerase IV) and/or overproduce multidrug resistance efflux pumps. However, the discovery of the plasmid-borne quinolone resistance determinant, named qnr, has substantially broadened our horizon on the molecular mechanisms of quinolone resistance. Several recent reports of Qnr or its homologues encoded by transferable plasmids in Gram-negative bacteria isolated worldwide highlight the significance of the emerging plasmid-mediated mechanism(s). This also alerts us to the potential rapid dissemination of quinolone resistance determinants. Qnr belongs to the pentapeptide repeat family and protects DNA gyrase from the action of quinolone agents including the newer fluoroquinolones. This protection interplays with chromosomal mechanisms to raise significantly the resistance levels. The qnr-bearing strains generate quinolone-resistant mutants at a much higher frequency than those qnr-free strains. Furthermore, the qnr-plasmids are integron-associated and carry multiple resistance determinants providing resistance to several classes of antimicrobials including beta-lactams and aminoglycosides. The high quinolone resistance rates in Escherichia coli are used to address issues of quinolone resistance, and possible strategies for minimising quinolone resistance are discussed.

  9. Living liquid crystal: collective bacteria motion in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-03-01

    By transducing energy stored in the environment to drive systematic movements, bio-mechanical hybrids can move and reconfigure their structure and properties in response to external stimuli. Here, we create a fundamentally new class of bio-mechanical hybrid - living liquid crystals (LLCs), by combining two seemingly incompatible concepts, living swimming bacteria and inanimate but orientationally ordered lyotropic liquid crystal. The coupling between the activity-triggered flows and director reorientations results in a wealth of phenomena, including: (a) a characteristic length ξ to describe the coupling between the orientation of LLC and the bacterial motion, (b) periodic stripe instabilities of the director in surface-anchored LLCs, (c) director pattern evolution into an array of disclinations with positive and negative topological charges as the surface anchoring is weakened or when the bacterial activity is enhanced. Our study provides an insight in understanding hierarchy of spatial scales in other active matter systems, as well as providing basis for devices with new functionalities, including specific responses to chemical agents, toxins, or photons. This work is supported by US DOE under the Contract No. DE AC02-06CH11357 and NSF grants DMR 1104850 and 1121288.

  10. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan.

    PubMed

    Asai, Tetsuo; Hiki, Mototaka; Ozawa, Manao; Koike, Ryoji; Eguchi, Kaoru; Kawanishi, Michiko; Kojima, Akemi; Endoh, Yuuko S; Hamamoto, Shuichi; Sakai, Masato; Sekiya, Tatsuro

    2014-03-01

    Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.

  11. [Recognition and identification of unknown infectious agents].

    PubMed

    Berche, P

    1994-04-01

    The recognition and the identification of previously unrecognized infectious agents require a multidisciplinary approach to specify the nosologic entity of the disease and the epidemiological data, especially the modes of transmission and the risk factors, as well as to discover the microorganism in the laboratory. In the past 20 years, significant breakthroughs have been achieved in cellular cultures (growth factors), in immunology (monoclonal antibodies), and moreover in molecular biology, which have been widely used in the field of infectious diseases. Whereas the classical methods used to grow microorganisms remain of major interest in many cases, innovating strategies have been recently designed to identify previously unknown pathogens. The genomic amplification by polymerase chain reaction (PCR) of highly conserved bacterial genes (as those coding for ribosomal RNA), from tissue biopsies for example, allow to recognize unknown bacteria. The evolutionary distance between a newly recognized pathogen and known microorganisms can be calculated through sequencing of these genes, as described for Rochalimaea henselae or Tropheryma whipplelii. The constitution of cDNA banks from infected tissues is also a novel approach allowing to clone and sequence viral genes, such as those from hepatitis C or from hepatitis E. In the near future, noteworthy improvements will be achieved to rapidly detect microorganisms with highly sensitive and specific tests using monoclonal antibodies, molecular probes (including branched DNA) and with PCR (including Q beta replicase and ligase chain reaction), and to determine the genetic diversity of microbial pathogens by new methods as pulse field gel electrophoresis or arbitrarily primed PCR. This will result in a better knowledge of the pathophysiology of infectious diseases, in a better recognition of a typical, previously unrecognized clinical expression of pathogenicity, and also in a more precise assessment of the actual impact of a

  12. Chemical communication in bacteria

    NASA Astrophysics Data System (ADS)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  13. Functional amyloids in bacteria.

    PubMed

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end.

  14. Opinion evolution influenced by informed agents

    NASA Astrophysics Data System (ADS)

    Fan, Kangqi; Pedrycz, Witold

    2016-11-01

    Guiding public opinions toward a pre-set target by informed agents can be a strategy adopted in some practical applications. The informed agents are common agents who are employed or chosen to spread the pre-set opinion. In this work, we propose a social judgment based opinion (SJBO) dynamics model to explore the opinion evolution under the influence of informed agents. The SJBO model distinguishes between inner opinions and observable choices, and incorporates both the compromise between similar opinions and the repulsion between dissimilar opinions. Three choices (support, opposition, and remaining undecided) are considered in the SJBO model. Using the SJBO model, both the inner opinions and the observable choices can be tracked during the opinion evolution process. The simulation results indicate that if the exchanges of inner opinions among agents are not available, the effect of informed agents is mainly dependent on the characteristics of regular agents, including the assimilation threshold, decay threshold, and initial opinions. Increasing the assimilation threshold and decay threshold can improve the guiding effectiveness of informed agents. Moreover, if the initial opinions of regular agents are close to null, the full and unanimous consensus at the pre-set opinion can be realized, indicating that, to maximize the influence of informed agents, the guidance should be started when regular agents have little knowledge about a subject under consideration. If the regular agents have had clear opinions, the full and unanimous consensus at the pre-set opinion cannot be achieved. However, the introduction of informed agents can make the majority of agents choose the pre-set opinion.

  15. Phytonutrients as therapeutic agents.

    PubMed

    Gupta, Charu; Prakash, Dhan

    2014-09-01

    Nutrients present in various foods plays an important role in maintaining the normal functions of the human body. The major nutrients present in foods include carbohydrates, proteins, lipids, vitamins, and minerals. Besides these, there are some bioactive food components known as "phytonutrients" that play an important role in human health. They have tremendous impact on the health care system and may provide medical health benefits including the prevention and/or treatment of disease and various physiological disorders. Phytonutrients play a positive role by maintaining and modulating immune function to prevent specific diseases. Being natural products, they hold a great promise in clinical therapy as they possess no side effects that are usually associated with chemotherapy or radiotherapy. They are also comparatively cheap and thus significantly reduce health care cost. Phytonutrients are the plant nutrients with specific biological activities that support human health. Some of the important bioactive phytonutrients include polyphenols, terpenoids, resveratrol, flavonoids, isoflavonoids, carotenoids, limonoids, glucosinolates, phytoestrogens, phytosterols, anthocyanins, ω-3 fatty acids, and probiotics. They play specific pharmacological effects in human health such as anti-microbial, anti-oxidants, anti-inflammatory, antiallergic, anti-spasmodic, anti-cancer, anti-aging, hepatoprotective, hypolipidemic, neuroprotective, hypotensive, diabetes, osteoporosis, CNS stimulant, analgesic, protection from UVB-induced carcinogenesis, immuno-modulator, and carminative. This mini-review attempts to summarize the major important types of phytonutrients and their role in promoting human health and as therapeutic agents along with the current market trend and commercialization.

  16. Antimicrobial activity of Antrodia camphorata extracts against oral bacteria.

    PubMed

    Lien, Hsiu-Man; Tseng, Chin-Jui; Huang, Chao-Lu; Lin, Yu-Ting; Chen, Chia-Chang; Lai, Ya-Yun

    2014-01-01

    Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammatory activity. However, reports on the effects of A. camphorata against dental pathogens have been limited. Oral health is now recognized as important for overall general health, including conditions such as dental caries, periodontal disease and rheumatoid arthritis. Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) are the most common bacteria associated with dental plaque and periodontopathic diseases, respectively. Thus, our study examined the ability of five various crude extracts of A. camphorata to inhibit the growth of dental bacteria and anti-adherence in vitro. Among the extracts, the ethanol, ethyl acetate and chloroform extracts exhibited the lowest MICs against P. gingivalis and S. mutans (MIC = 4∼16 µg/mL). The MIC of the aqueous extract was greater than 2048 µg/mL against both P. gingivalis and S. mutans. In vitro adherence of S. mutans was significantly inhibited by the addition of either the ethyl acetate extract or chloroform extract (MIC = 16∼24 µg/mL), while the ethanol extract (MIC = 32∼64 µg/mL) exhibited moderate inhibitory activity. Based on the result of this study, the ethyl acetate and chloroform extracts of A. camphorata may be good candidates for oral hygiene agents to control dental caries and periodontopathic conditions.

  17. Antimicrobial Activity of Antrodia camphorata Extracts against Oral Bacteria

    PubMed Central

    Lien, Hsiu-Man; Tseng, Chin-Jui; Huang, Chao-Lu; Lin, Yu-Ting; Chen, Chia-Chang; Lai, Ya-Yun

    2014-01-01

    Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammatory activity. However, reports on the effects of A. camphorata against dental pathogens have been limited. Oral health is now recognized as important for overall general health, including conditions such as dental caries, periodontal disease and rheumatoid arthritis. Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) are the most common bacteria associated with dental plaque and periodontopathic diseases, respectively. Thus, our study examined the ability of five various crude extracts of A. camphorata to inhibit the growth of dental bacteria and anti-adherence in vitro. Among the extracts, the ethanol, ethyl acetate and chloroform extracts exhibited the lowest MICs against P. gingivalis and S. mutans (MIC = 4∼16 µg/mL). The MIC of the aqueous extract was greater than 2048 µg/mL against both P. gingivalis and S. mutans. In vitro adherence of S. mutans was significantly inhibited by the addition of either the ethyl acetate extract or chloroform extract (MIC = 16∼24 µg/mL), while the ethanol extract (MIC = 32∼64 µg/mL) exhibited moderate inhibitory activity. Based on the result of this study, the ethyl acetate and chloroform extracts of A. camphorata may be good candidates for oral hygiene agents to control dental caries and periodontopathic conditions. PMID:25144619

  18. Collective behavior of predictive agents

    NASA Astrophysics Data System (ADS)

    Kephart, Jeffrey O.; Hogg, Tad; Huberman, Bernardo A.

    1990-06-01

    We investigate the effect of predictions upon a model of coevolutionary systems which was originally inspired by computational ecosystems. The model incorporates many of the features of distributed resource allocation in systems comprised of many individual agents, including asynchrony, resource contention, and decision-making based upon incomplete knowledge and delayed information. Previous analyses of a similar model of non-predictive agents have demonstrated that periodic or chaotic oscillations in resource allocation can occur under certain conditions, and that these oscillations can affect the performance of the system adversely. In this work, we show that the system performance can be improved if the agents do an adequate job of predicting the current state of the system. We explore two plausible methods for prediction - technical analysis and system analysis. Technical analysts are responsive to the behavior of the system, but suffer from an inability to take their own behavior into account. System analysts perform extremely well when they have very accurate information about the other agents in the system, but can perform very poorly when their information is even slightly inaccurate. By combining the strengths of both methods, we obtain a successful hybrid of the two prediction methods which adapts its model of other agents in response to the observed behavior of the system.

  19. Next Generation Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna

    1999-01-01

    In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.

  20. Topical hemostatic agents in surgical practice.

    PubMed

    Emilia, Masci; Luca, Santoleri; Francesca, Belloni; Luca, Bottero; Paolo, Stefanini; Giuseppe, Faillace; Gianbattista, Bertani; Carmela, Montinaro; Luigi, Mancini; Mauro, Longoni

    2011-12-01

    Hemostasis is of critical importance in achieving a positive outcome in any surgical intervention. Different hemostatic methods can be employed and topical hemostatic agents are used in a wide variety of surgical settings. Procoagulation agents have different hemostatic properties and the choice of a specific one is determined by the type of surgical procedure and bleeding. Hemostatic treatments include fibrin sealants, microfibrillar collagen, gelatin hemostatic agents, oxidized regenerated cellulose and cyanoacrylates adhesives. Surgeons should be familiar with topical hemostatics to ensure an appropriate use. Our purpose is to illustrate the currently available agents, their mechanism of action and their effective applications, in order to ensure an optimal use in operating room.

  1. A Computational Model and Multi-Agent Simulation for Information Assurance

    DTIC Science & Technology

    2002-06-01

    simulation is presented that introduces several innovations in multi - agent systems including iconnectors, a biologically inspired visual language and...198 14. SUBJECT TERMS information assurance, information security, computer security, security model, modeling, agents, multi - agent system , multi...adaptive behavior in an IA environment. A multi-agent simulation is presented that introduces several innovations in multi - agent systems including

  2. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.

  3. Moral actor, selfish agent.

    PubMed

    Frimer, Jeremy A; Schaefer, Nicola K; Oakes, Harrison

    2014-05-01

    People are motivated to behave selfishly while appearing moral. This tension gives rise to 2 divergently motivated selves. The actor-the watched self-tends to be moral; the agent-the self as executor-tends to be selfish. Three studies present direct evidence of the actor's and agent's distinct motives. To recruit the self-as-actor, we asked people to rate the importance of various goals. To recruit the self-as-agent, we asked people to describe their goals verbally. In Study 1, actors claimed their goals were equally about helping the self and others (viz., moral); agents claimed their goals were primarily about helping the self (viz., selfish). This disparity was evident in both individualist and collectivist cultures, attesting to the universality of the selfish agent. Study 2 compared actors' and agents' motives to those of people role-playing highly prosocial or selfish exemplars. In content (Study 2a) and in the impressions they made on an outside observer (Study 2b), actors' motives were similar to those of the prosocial role-players, whereas agents' motives were similar to those of the selfish role-players. Study 3 accounted for the difference between the actor and agent: Participants claimed that their agent's motives were the more realistic and that their actor's motives were the more idealistic. The selfish agent/moral actor duality may account for why implicit and explicit measures of the same construct diverge, and why feeling watched brings out the better angels of human nature.

  4. Modeling Facilitated Contaminant Transport by Mobile Bacteria

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Kim, Seunghyun

    1995-01-01

    Introduction of exogenous biocolloids such as genetically engineered bacteria in a bioremediation operation can enhance the transport of contaminants in groundwater by reducing the retardation effects. Because of their colloidal size and favorable surface conditions, bacteria are efficient contaminant carriers. In cases where contaminants have a low mobility in porous media because of their high partition with solid matrix, facilitated contaminant transport by mobile bacteria can create high contaminant fluxes. When metabolically active mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and stationary solid matrix phase. In this work a mathematical model based on mass balance equations is developed to describe the facilitated transport and fate of a contaminant and bacteria in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix and contaminant partition among three phases are represented by expressions in terms of measurable quantities. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensional analysis of the transport model was utilized to estimate model parameters from the experimental data and to assess the effect of several parameters on model behavior. The model results matched favorably with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant, which serves as a bacterial nutrient, can attenuate the contaminant mobility. The work presented in this paper is the first three-phase model to include the effects of substrate metabolism on the fate of groundwater contaminants.

  5. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  6. Bacteria-based concrete: from concept to market

    NASA Astrophysics Data System (ADS)

    Wiktor, V.; Jonkers, H. M.

    2016-08-01

    The concept of self-healing concrete—a concrete which can autonomously repair itself after crack formation, with no or limited human intervention—has received a lot of attention over the past 10 years as it could help structures to last longer and at a lower maintenance cost. This paper gives an overview on the key aspects and recent advances in the development of the bacteria-based self-healing concrete developed at the University of Technology of Delft (The Netherlands). Research started with the screening and selection of concrete compatible bacteria and nutrients. Several types of encapsulated bacteria and nutrients have been developed and tested. The functionality of these healing agents was demonstrated by showing metabolic activity of activated bacterial spores by oxygen consumption measurements and by regain of material functionality in form of regain of water tightness. Besides development of bacteria-based self-healing concrete, a bacteria-based repair mortar and liquid system were developed for the treatment of aged concrete structures. Field trials have been carried out with either type of bacteria-based systems and the promising results have led to a spinoff company Basilisk Self-Healing Concrete with the aim to further develop these systems and bring them to the market.

  7. Lactic acid bacteria as probiotics.

    PubMed

    Ljungh, Asa; Wadström, Torkel

    2006-09-01

    A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th2 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies. Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract and to colonise the human large intestine. This includes survival in the stressful environment of the stomach - acidic pH and bile - with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes beta

  8. The Refinement of Multi-Agent Systems

    NASA Astrophysics Data System (ADS)

    Aştefănoaei, L.; de Boer, F. S.

    This chapter introduces an encompassing theory of refinement which supports a top-down methodology for designing multi-agent systems. We present a general modelling framework where we identify different abstraction levels of BDI agents. On the one hand, at a higher level of abstraction we introduce the language BUnity as a way to specify “what” an agent can do. On the other hand, at a more concrete layer we introduce the language BUpL as implementing not only what an agent can do but also “when” the agent can do. At this stage of individual agent design, refinement is understood as trace inclusion. Having the traces of an implementation included in the traces of a given specification means that the implementation is correct with respect to the specification.

  9. Characterization of chemical agent transport in paints.

    PubMed

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials.

  10. Acoustofluidic bacteria separation

    NASA Astrophysics Data System (ADS)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  11. Phosphonate utilization by bacteria.

    PubMed Central

    Cook, A M; Daughton, C G; Alexander, M

    1978-01-01

    Bacteria able to use at least one of 13 ionic alkylphosphonates of O-alkyl or O,O-dialkyl alkylphosphonates as phosphorus sources were isolated from sewage and soil. Four of these isolates used 2-aminoethylphosphonic acid (AEP) as a sole carbon, nitrogen, and phosphorus source. None of the other phosphonates served as a carbon source for the organisms. One isolate, identified as Pseudomonas putida, grew with AEP as its sole carbon, nitrogen, and phosphorus source and released nearly all of the organic phosphorus as orthophosphate and 72% of the AEP nitrogen as ammonium. This is the first demonstration of utilization of a phosphonoalkyl moiety as a sole carbon source. Cell-free extracts of P. putida contained an inducible enzyme system that required pyruvate and pyridoxal phosphate to release orthophosphate from AEP; acetaldehyde was tentatively identified as a second product. Phosphite inhibited the enzyme system. PMID:618850

  12. Insect pathogens as biological control agents: back to the future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past 15 years a number of successes and setbacks have taken place regarding development and use of microbial control agents. In this Forum paper we present current information on development, use and future directions of entomopathogenic virus, bacteria, fungi and nematodes as components of i...

  13. Agent Architectures for Compliance

    NASA Astrophysics Data System (ADS)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  14. Method of Detecting Coliform Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  15. [Update on antibiotic resistance in Gram-positive bacteria].

    PubMed

    Lozano, Carmen; Torres, Carmen

    2017-01-01

    Antimicrobial resistance among Gram-positive bacteria, especially in Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Streptococcus pneumoniae, is a serious threat to public health. These microorganisms have multiple resistance mechanisms to agents currently used in clinical practice. Many of these resistance mechanisms are common to all 4 of these bacterial species, but other mechanisms seem to be more specific. The prevalence and dissemination of these mechanisms varies considerably, depending on the microorganism. This review discusses the resistance mechanisms to the most clinically relevant antibiotics, with particular emphasis on the new mechanisms described for widely used antibiotics and for newer agents such as lipopeptides, lipoglycopeptides, glycylcyclines and oxazolidinones.

  16. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals; approved guideline-second edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial susceptibility testing is recommended to determine which antimicrobial agents should be considered for treating a bacterial pathogen. Many bacteria that cause disease in aquatic animals require growth conditions that vary substantially from routine terrestrial pathogens. It has thus ...

  17. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  18. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  19. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    PubMed Central

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-chewed into gum and chewed gums were molded to standard dimensions, sonicated and plated to determine numbers of colony-forming-units incorporated, yielding calibration curves of colony-forming-units retrieved versus finger-chewed in. In a second method, calibration curves were created by finger-chewing known numbers of bacteria into gum and subsequently dissolving the gum in a mixture of chloroform and tris-ethylenediaminetetraacetic-acid (TE)-buffer. The TE-buffer was analyzed using quantitative Polymerase-Chain-Reaction (qPCR), yielding calibration curves of total numbers of bacteria versus finger-chewed in. Next, five volunteers were requested to chew gum up to 10 min after which numbers of colony-forming-units and total numbers of bacteria trapped in chewed gum were determined using the above methods. The qPCR method, involving both dead and live bacteria yielded higher numbers of retrieved bacteria than plating, involving only viable bacteria. Numbers of trapped bacteria were maximal during initial chewing after which a slow decrease over time up to 10 min was observed. Around 108 bacteria were detected per gum piece depending on the method and gum considered. The number of species trapped in chewed gum increased with chewing time. Trapped bacteria were clearly visualized in chewed gum using scanning-electron-microscopy. Summarizing, using novel methods to quantify and qualify oral bacteria trapped in chewed gum, the hypothesis is confirmed that chewing of gum can trap

  20. Quantification and qualification of bacteria trapped in chewed gum.

    PubMed

    Wessel, Stefan W; van der Mei, Henny C; Morando, David; Slomp, Anje M; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-chewed into gum and chewed gums were molded to standard dimensions, sonicated and plated to determine numbers of colony-forming-units incorporated, yielding calibration curves of colony-forming-units retrieved versus finger-chewed in. In a second method, calibration curves were created by finger-chewing known numbers of bacteria into gum and subsequently dissolving the gum in a mixture of chloroform and tris-ethylenediaminetetraacetic-acid (TE)-buffer. The TE-buffer was analyzed using quantitative Polymerase-Chain-Reaction (qPCR), yielding calibration curves of total numbers of bacteria versus finger-chewed in. Next, five volunteers were requested to chew gum up to 10 min after which numbers of colony-forming-units and total numbers of bacteria trapped in chewed gum were determined using the above methods. The qPCR method, involving both dead and live bacteria yielded higher numbers of retrieved bacteria than plating, involving only viable bacteria. Numbers of trapped bacteria were maximal during initial chewing after which a slow decrease over time up to 10 min was observed. Around 10(8) bacteria were detected per gum piece depending on the method and gum considered. The number of species trapped in chewed gum increased with chewing time. Trapped bacteria were clearly visualized in chewed gum using scanning-electron-microscopy. Summarizing, using novel methods to quantify and qualify oral bacteria trapped in chewed gum, the hypothesis is confirmed that chewing of gum can trap

  1. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  2. Taxonomy of phototrophic green and purple bacteria: a review.

    PubMed

    Pfennig, N; Trüper, H G

    1983-01-01

    The presently existing classification for the green and purple bacteria comprises physiological-ecological assemblages of phototrophic bacteria with anoxygenic photosynthesis. The taxonomic units of the different levels were based entirely on common phenotypic traits, including morphological, cytological, physiological and biochemical characteristics. Since degrees of resemblance form the basis of the grouping, this classification cannot reflect the genetic or evolutionary relatedness of these bacteria, neither among themselves nor with other bacteria. The advantage of the artificial system, however, is the use of features which can be established in most laboratories and which allow the comparison and identification of newly isolated strains with those already studied and described. The four existing families correspond to the four major recognized, ecophysiological groups, the Chlorobiaceae and Chloroflexaceae among the green bacteria, and the Chromatiaceae and Rhodospirillaceae among the purple bacteria. Our knowledge of all these groups is incomplete; this is reflected by the fact that seven new species have been described during the past three years (6th Newsletter on phot. bacteria, Trüper and Hansen, 1982). The description of the new genus and species Erythrobacter longus (Shiba and Simidu, 1982) is also interesting, as it comprises aerobic chemoorganotrophic marine bacteria which form bacteriochlorophyll a and carotenoids; however, no strains were able to grow phototrophilcally. Significant success is currently being obtained in the different approaches toward elucidating the genetic relationships within and outside of the purple and green bacteria. Detailed studies of the lipopolysaccharides of several species and genera of the Rhodospirillaceae (Weckesser et al., 1979, and more recent paper) have proven to be very useful for the recognition of relationships or dissimilarities between the species of a genus or between different genera. Amino acid sequence

  3. Beer spoilage bacteria and hop resistance.

    PubMed

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  4. Hypersensitivity to antineoplastic agents.

    PubMed

    Castells, M C

    2008-01-01

    The need to offer first line therapy for primary and recurrent cancers has spurred the clinical development of rapid desensitizations for chemotherapy and monoclonal antibodies. Rapid desensitizations allow patients to be treated with medications to which they have presented with hypersensitivity reactions (HSRs), including anaphylaxis. Rapid desensitization achieves temporary tolerization to full therapeutic doses by slow administration of incremental doses of the drug inducing the HSR. Protocols are available for most chemotherapy agents, including taxanes, platins, doxorubicin, monoclonal antibodies, and others. Candidate patients include those who present with type I HSRs, mast cell/IgE dependent, including anaphylaxis, and non-IgE mediated HSRs, during the chemotherapy infusion or shortly after. Idiosyncratic reactions, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis are not amenable to rapid desensitization. The recommendation for rapid desensitization can only be made by allergy and immunology specialists and can only be performed in settings with one-to-one nurse-patient care and where resuscitation personnel and resources are readily available. Repeated desensitizations can be safely performed in outpatient settings with similar conditions, which allow cancer patients to remain in clinical studies. We have generated a universal 12-step protocol that was applied to 413 cases of intravenous and intraperitoneal rapid desensitizations using taxanes, platins, liposomal doxorubicin, doxorubicin, rituximab, and other chemotherapy drugs. Under this protocol all patients were able to complete their target dose, and 94% of the patients had limited or no reactions. No deaths or codes were reported, indicating that the procedure was safe and effective in delivering first line chemotherapy drugs.

  5. Novel cajaninstilbene acid derivatives as antibacterial agents.

    PubMed

    Geng, Zhi-Zhong; Zhang, Jian-Jun; Lin, Jing; Huang, Mei-Yan; An, Lin-Kun; Zhang, Hong-Bin; Sun, Ping-Hua; Ye, Wen-Cai; Chen, Wei-Min

    2015-07-15

    Discovery of novel antibacterial agents with new structural scaffolds that combat drug-resistant pathogens is an urgent task. Cajaninstilbene acid, which is isolated from pigeonpea leaves, has shown antibacterial activity. In this study, a series of cajaninstilbene acid derivatives were designed and synthesized. The antibacterial activities of these compounds against gram-negative and gram-positive bacteria, as well as nine strains of methicillin-resistant staphylococcus aureus (MRSA) bacteria are evaluated,and the related structure-activity relationships are discussed. Assays suggest that some of the synthetic cajaninstilbene acid derivatives exhibit potent antibacterial activity against gram-positive bacterial strains and MRSA. Among these compounds, 5b, 5c, 5j and 5k show better antibacterial activity than the positive control compounds. The results of MTT assays illustrate the low cytotoxicity of the active compounds.

  6. Pili-taxis: Clustering of Neisseria gonorrhoeae bacteria

    NASA Astrophysics Data System (ADS)

    Taktikos, Johannes; Zaburdaev, Vasily; Biais, Nicolas; Stark, Holger; Weitz, David A.

    2012-02-01

    The first step of colonization of Neisseria gonorrhoeae bacteria, the etiological agent of gonorrhea, is the attachment to human epithelial cells. The attachment of N. gonorrhoeae bacteria to surfaces or other cells is primarily mediated by filamentous appendages, called type IV pili (Tfp). Cycles of elongation and retraction of Tfp are responsible for a common bacterial motility called twitching motility which allows the bacteria to crawl over surfaces. Experimentally, N. gonorrhoeae cells initially dispersed over a surface agglomerate into round microcolonies within hours. It is so far not known whether this clustering is driven entirely by the Tfp dynamics or if chemotactic interactions are needed. Thus, we investigate whether the agglomeration may stem solely from the pili-mediated attraction between cells. By developing a statistical model for pili-taxis, we try to explain the experimental measurements of the time evolution of the mean cluster size, number of clusters, and area fraction covered by the cells.

  7. Conclusions and future use of fecal indicator bacteria for monitoring water quality and protecting human health

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    A summary of the focus and the recurring theme of the book is presented in this chapter. It includes the use of faecal bacteria as an indicator of faecal pollution and water quality, ubiquity of faecal bacteria, and sources and movement of faecal bacteria in the environment.

  8. Application of terminal restriction fragment length polymorphism (T-RFLP) analysis to monitor effect of biocontrol agents on rhizosphere microbial community of hot pepper (Capsicum annuum L.).

    PubMed

    Kim, Young Tae; Cho, Myoungho; Jeong, Je Yong; Lee, Hyang Burm; Kim, Seung Bum

    2010-10-01

    Microbial communities in hot pepper (Capsicum annuum L.) cultivation fields under different cultivation methods were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis. Rhizosphere soil and leaf samples were collected from control, conventional and nature-friendly cultivation fields between May and July, 2009. Two Bacillus subtilis strains were applied to nature-friendly cultivation fields as biocontrol agents during the sampling period. Relative abundances of bacteria and plant pathogenic fungi related T-RFs were also measured to monitor the effect of biocontrol agents on potential plant pathogenic fungi. In the principal component analysis (PCA) based on T-RFLP profiles, the microbial communities from rhizosphere soil samples in July, including bacteria and fungi, showed distinct difference between nature-friendly cultivation fields and other cultivation fields. However, there was no correlation between cultivation methods and leaf microbial communities at any sampling period. Changes in the abundance of bacteria related T-RF in the rhizosphere of nature-friendly cultivation fields were observed clearly two months after application of biocontrol agent, while the abundance of plant pathogenic fungi related T-RFs significantly decreased.

  9. Network models of phage-bacteria coevolution

    NASA Astrophysics Data System (ADS)

    Rosvall, Martin; Dodd, Ian B.; Krishna, Sandeep; Sneppen, Kim

    2006-12-01

    Bacteria and their bacteriophages are the most abundant, widespread, and diverse groups of biological entities on the planet. In an attempt to understand how the interactions between bacteria, virulent phages, and temperate phages might affect the diversity of these groups, we developed a stochastic network model for examining the coevolution of these ecologies. In our approach, nodes represent whole species or strains of bacteria or phages, rather than individuals, with “speciation” and extinction modeled by duplication and removal of nodes. Phage-bacteria links represent host-parasite relationships and temperate-virulent phage links denote prophage-encoded resistance. The effect of horizontal transfer of genetic information between strains was also included in the dynamical rules. The observed networks evolved in a highly dynamic fashion but the ecosystems were prone to collapse (one or more entire groups going extinct). Diversity could be stably maintained in the model only if the probability of speciation was independent of the diversity. Such an effect could be achieved in real ecosystems if the speciation rate is primarily set by the availability of ecological niches.

  10. Self-engineering capabilities of bacteria

    PubMed Central

    Ben-Jacob, Eshel; Levine, Herbert

    2005-01-01

    Under natural growth conditions, bacteria can utilize intricate communication capabilities (e.g. quorum-sensing, chemotactic signalling and plasmid exchange) to cooperatively form (self-organize) complex colonies with elevated adaptability—the colonial pattern is collectively engineered according to the encountered environmental conditions. Bacteria do not genetically store all the information required for creating all possible patterns. Instead, additional information is cooperatively generated as required for the colonial self-organization to proceed. We describe how complex colonial forms (patterns) emerge through the communication-based singular interplay between individual bacteria and the colony. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessment of information). These afford the cell plasticity to select its response to biochemical messages it receives, including self-alteration and the broadcasting of messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intracellular level to the whole colony. The cells thus assume newly co-generated traits and abilities that are not explicitly stored in the genetic information of the individuals. PMID:16849231

  11. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  12. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  13. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment.

    PubMed

    Ibfelt, Tobias; Engelund, Eva Hoy; Permin, Anders; Madsen, Jonas Stenløkke; Schultz, Anna Charlotte; Andersen, Leif Percival

    2015-10-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys.

  14. Gram-negative bacteria can also form pellicles.

    PubMed

    Armitano, Joshua; Méjean, Vincent; Jourlin-Castelli, Cécile

    2014-12-01

    There is a growing interest in the bacterial pellicle, a biofilm floating at the air-liquid interface. Pellicles have been well studied in the Gram-positive bacterium Bacillus subtilis, but far less in Gram-negative bacteria, where pellicle studies have mostly focused on matrix components rather than on the regulatory cascades involved. Several Gram-negative bacteria, including pathogenic bacteria, have been shown to be able to form a pellicle under static conditions. Here, we summarize the growing body of knowledge about pellicle formation in Gram-negative bacteria, especially about the components of the pellicle matrix. We also propose that the pellicle is a specific biofilm, and that its formation involves particular processes. Since this lifestyle concerns a growing number of bacteria, its properties undoubtedly deserve further investigation.

  15. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  16. Effect of medium, pH, and inoculum size on activity of ceftizoxime and Sch-34343 against anaerobic bacteria.

    PubMed Central

    Borobio, M V; Pascual, A; Dominguez, M C; Perea, E J

    1986-01-01

    The effect of two media, three pH values, and three inoculum densities on the activity of ceftizoxime and Sch-34343 against anaerobic bacteria was evaluated. The activities of both antimicrobial agents were affected by medium composition, especially against Bacteroides fragilis. Changes in pH and inoculum size affected only the activity of ceftizoxime against anaerobic bacteria. PMID:3466569

  17. Streptomyces Bacteria as Potential Probiotics in Aquaculture.

    PubMed

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  18. Streptomyces Bacteria as Potential Probiotics in Aquaculture

    PubMed Central

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations. PMID:26903962

  19. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  20. Biological Potential of Chitinolytic Marine Bacteria

    PubMed Central

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone; Machado, Henrique

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using in silico and phenotypic assays. Of 10 chitinolytic strains, three strains, Photobacterium galatheae S2753, Pseudoalteromonas piscicida S2040 and S2724, produced large clearing zones on chitin plates. All strains were antifungal, but against different fungal targets. One strain, Pseudoalteromonas piscicida S2040, had a pronounced antifungal activity against all seven fungal strains. There was no correlation between the number of chitin modifying enzymes as found by genome mining and the chitin degrading activity as measured by size of clearing zones on chitin agar. Based on in silico and in vitro analyses, we cloned and expressed two ChiA-like chitinases from the two most potent candidates to exemplify the industrial potential. PMID:27999269

  1. Change Agent Survival Guide

    ERIC Educational Resources Information Center

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  2. Detecting biological warfare agents.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2005-10-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array.

  3. Travel Agent Course Outline.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  4. Detecting Biological Warfare Agents

    PubMed Central

    Song, Linan; Ahn, Soohyoun

    2005-01-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712

  5. Surface modification agents for lithium batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil; Belharouak, Ilias

    2015-06-23

    A method includes modifying a surface of an electrode active material including providing a solution or a suspension of a surface modification agent; providing the electrode active material; preparing a slurry of the solution or suspension of the surface modification agent, the electrode active material, a polymeric binder, and a conductive filler; casting the slurry in a metallic current collector; and drying the cast slurry.

  6. Method of detecting and counting bacteria

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W. (Inventor)

    1976-01-01

    An improved method is provided for determining bacterial levels, especially in samples of aqueous physiological fluids. The method depends on the quantitative determination of bacterial adenosine triphosphate (ATP) in the presence of nonbacterial ATP. The bacterial ATP is released by cell rupture and is measured by an enzymatic bioluminescent assay. A concentration technique is included to make the method more sensitive. It is particularly useful where the fluid to be measured contains an unknown or low bacteria count.

  7. The acquisition of dangerous biological materials: Technical facts sheets to assist risk assessments of 46 potential BW agents

    SciTech Connect

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  8. Antisense Treatments for Biothreat Agents

    DTIC Science & Technology

    2006-08-01

    oligomers (ASOs) represent a promising technology to treat viral and bacterial infections, and have already been shown to be successful against a...viral and bacterial agents have a history of state- sponsored ’weaponization’, including Marburg, Ebola, Junin, Machupo, yellow fever viruses and...14. ABSTRACT Antisense oligomers (ASOs) represent a promising technology to treat viral and bacterial infections, and have already been shown to be

  9. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae).

    PubMed

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  10. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    PubMed Central

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  11. How do agents represent?

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  12. Tetrachloroethene-dehalogenating bacteria.

    PubMed

    Damborský, J

    1999-01-01

    Tetrachloroethene is a frequent groundwater contaminant often persisting in the subsurface environments. It is recalcitrant under aerobic conditions because it is in a highly oxidized state and is not readily susceptible to oxidation. Nevertheless, at least 15 organisms from different metabolic groups, viz. halorespirators (9), acetogens (2), methanogens (3) and facultative anaerobes (2), that are able to metabolize tetrachloroethene have been isolated as axenic cultures to-date. Some of these organisms couple dehalo-genation to energy conservation and utilize tetrachloroethene as the only source of energy while others dehalogenate tetrachloroethene fortuitously. Halorespiring organisms (halorespirators) utilize halogenated organic compounds as electron acceptors in an anaerobic respiratory process. Different organisms exhibit differences in the final products of tetrachloroethene dehalogenation, some strains convert tetrachloroethene to trichloroethene only, while others also carry out consecutive dehalogenation to dichloroethenes and vinyl chloride. Thus far, only a single organism, 'Dehalococcoides ethenogenes' strain 195, has been isolated which dechlorinates tetrachloroethene all the way down to ethylene. The majority of tetrachloroethene-dehalogenating organisms have been isolated only in the past few years and several of them, i.e., Dehalobacter restrictus, Desulfitobacterium dehalogenans, 'Dehalococcoides ethenogenes', 'Dehalospirillum multivorans', Desulfuromonas chloroethenica, and Desulfomonile tiedjei, are representatives of new taxonomic groups. This contribution summarizes the available information regarding the axenic cultures of the tetrachloroethene-dehalogenating bacteria. The present knowledge about the isolation of these organisms, their physiological characteristics, morphology, taxonomy and their ability to dechlorinate tetrachloroethene is presented to facilitate a comprehensive comparison.

  13. Assurance in Agent-Based Systems

    SciTech Connect

    Gilliom, Laura R.; Goldsmith, Steven Y.

    1999-05-10

    Our vision of the future of information systems is one that includes engineered collectives of software agents which are situated in an environment over years and which increasingly improve the performance of the overall system of which they are a part. At a minimum, the movement of agent and multi-agent technology into National Security applications, including their use in information assurance, is apparent today. The use of deliberative, autonomous agents in high-consequence/high-security applications will require a commensurate level of protection and confidence in the predictability of system-level behavior. At Sandia National Laboratories, we have defined and are addressing a research agenda that integrates the surety (safety, security, and reliability) into agent-based systems at a deep level. Surety is addressed at multiple levels: The integrity of individual agents must be protected by addressing potential failure modes and vulnerabilities to malevolent threats. Providing for the surety of the collective requires attention to communications surety issues and mechanisms for identifying and working with trusted collaborators. At the highest level, using agent-based collectives within a large-scale distributed system requires the development of principled design methods to deliver the desired emergent performance or surety characteristics. This position paper will outline the research directions underway at Sandia, will discuss relevant work being performed elsewhere, and will report progress to date toward assurance in agent-based systems.

  14. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  15. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011).

    PubMed

    Averbuch, Diana; Cordonnier, Catherine; Livermore, David M; Mikulska, Malgorzata; Orasch, Christina; Viscoli, Claudio; Gyssens, Inge C; Kern, Winfried V; Klyasova, Galina; Marchetti, Oscar; Engelhard, Dan; Akova, Murat

    2013-12-01

    The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists.

  16. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011)

    PubMed Central

    Averbuch, Diana; Cordonnier, Catherine; Livermore, David M.; Mikulska, Małgorzata; Orasch, Christina; Viscoli, Claudio; Gyssens, Inge C.; Kern, Winfried V.; Klyasova, Galina; Marchetti, Oscar; Engelhard, Dan; Akova, Murat

    2013-01-01

    The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4th European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists. PMID:24323984

  17. Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents.

    PubMed

    Molhoek, E Margo; van Dijk, Albert; Veldhuizen, Edwin J A; Dijk-Knijnenburg, Helma; Mars-Groenendijk, Roos H; Boele, Linda C L; Kaman-van Zanten, Wendy E; Haagsman, Henk P; Bikker, Floris J

    2010-09-01

    Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards eukaryotic cells. In the present study, we report that C1-15 is active against bacteria such as Bacillus anthracis and Yersinia pestis that may potentially be used by bioterrorists. Substitution of single and multiple phenylalanine (Phe) residues to tryptophan (Trp) in C1-15 resulted in variants with improved antibacterial activity against B. anthracis and Y. pestis as well as decreased salt sensitivity. In addition, these peptides exhibited enhanced neutralisation of lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs). The antibacterial and LPS-neutralising activities of these C1-15-derived peptides are exerted at concentrations far below the concentrations that are toxic to human PBMCs. Taken together, we show that Phe-->Trp substitutions in C1-15 variants enhances the antibacterial and LPS-neutralising activities against pathogenic bacteria, including those that may potentially be used as biological warfare agents.

  18. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents.

    PubMed

    Smith, Roxanne P; Paxman, Jason J; Scanlon, Martin J; Heras, Begoña

    2016-07-16

    Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  19. Contrast agents for MRI.

    PubMed

    Shokrollahi, H

    2013-12-01

    Contrast agents are divided into two categories. The first one is paramagnetic compounds, including lanthanides like gadolinium, which mainly reduce the longitudinal (T1) relaxation property and result in a brighter signal. The second class consists of super-paramagnetic magnetic nanoparticles (SPMNPs) such as iron oxides, which have a strong effect on the transversal (T2) relaxation properties. SPMNPs have the potential to be utilized as excellent probes for magnetic resonance imaging (MRI). For instance, clinically benign iron oxide and engineered ferrite nanoparticles provide a good MRI probing capability for clinical applications. Furthermore, the limited magnetic property and inability to escape from the reticuloendothelial system (RES) of the used nanoparticles impede their further advancement. Therefore, it is necessary to develop the engineered magnetic nanoparticle probes for the next-generation molecular MRI. Considering the importance of MRI in diagnosing diseases, this paper presents an overview of recent scientific achievements in the development of new synthetic SPMNP probes whereby the sensitive and target-specific observation of biological events at the molecular and cellular levels is feasible.

  20. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria.

    PubMed

    Patra, F; Tomar, S K; Arora, S

    2009-01-01

    Lactic acid bacteria (LAB) have been extensively used for centuries as starter cultures to carry out food fermentations and are looked upon as burgeoning "cell factories" for production of host of functional biomolecules and food ingredients. Low-calorie sugars have been a recent addition and have attracted a great deal of interest of researchers, manufacturers, and consumers for varied reasons. These sweeteners also getting popularized as low-carb sugars have been granted generally recommended as safe (GRAS) status by the U.S. Federal Drug Administration (USFDA) and include both sugars and sugar alcohols (polyols) which in addition to their technological attributes (sugar replacer, bulking agent, texturiser, humectant, cryoprotectant) have been observed to exert a number of health benefits (low calories, low glycemic index, anticariogenic, osmotic diuretics, obesity control, prebiotic). Some of these sweeteners successfully produced by lactic acid bacteria include mannitol, sorbitol, tagatose, and trehalose and there is a potential to further enhance their production with the help of metabolic engineering. These safe sweeteners can be exploited as vital food ingredients for development of low-calorie foods with added functional values especially for children, diabetic patients, and weight watchers.

  1. Tick-borne zoonotic bacteria in ticks collected from central Spain.

    PubMed

    Toledo, Alvaro; Olmeda, A Sonia; Escudero, Raquel; Jado, Isabel; Valcárcel, Félix; Casado-Nistal, Miguel A; Rodríguez-Vargas, Manuela; Gil, Horacio; Anda, Pedro

    2009-07-01

    The prevalence of tick-borne and related bacteria infecting adult ticks in central Spain was assessed by molecular methods. Six areas were sampled monthly during a 2-year longitudinal study. A total of 1,038 questing and 442 feeding ticks, belonging to eight different species, were tested. The most abundant species were Hyalomma lusitanicum (54% of captures), followed by Dermacentor marginatus (23%) and Rhipicephalus sanguineus (10%). Four human pathogens, including seven Rickettsia species, Anaplasma phagocytophilum, Borrelia burgdorferi, and Francisella tularensis, were detected at percentages of 19.0, 2.2, 1.7, and 0.5, respectively, whereas Bartonella spp. was never detected. In terms of infection and tick abundance, H. lusitanicum seems to be the most significant tick species in the area, carrying three of the five agents tested, and the anthropophilic tick, D. marginatum, infected with Rickettsia spp. and F. tularensis, is the most relevant in terms of public health. The significance of these data is discussed.

  2. 78 FR 56234 - Multi-Agency Informational Meeting Concerning Compliance with the Select Agent Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Compliance with the Select Agent Regulations; Public Webcast AGENCY: Centers for Disease Control and... guidance related to the select agent regulations established under the Public Health Security and... 11(Security) of the select agent regulations including information security, physical security,...

  3. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  4. Bacteria detection by flow cytometry.

    PubMed

    Karo, Oliver; Wahl, Alexandra; Nicol, Sven-Boris; Brachert, Julia; Lambrecht, Bernd; Spengler, Hans-Peter; Nauwelaers, Frans; Schmidt, Michael; Schneider, Christian K; Müller, Thomas H; Montag, Thomas

    2008-01-01

    Since bacterial infection of the recipient has become the most frequent infection risk in transfusion medicine, suitable methods for bacteria detection in blood components are of great interest. Platelet concentrates are currently the focus of attention, as they are stored under temperature conditions, which enable the multiplication of most bacteria species contaminating blood donations. Rapid methods for bacteria detection allow testing immediately before transfusion in a bed-side like manner. This approach would overcome the sampling error observed in early sampling combined with culturing of bacteria and would, at least, prevent the transfusion of highly contaminated blood components leading to acute septic shock or even death of the patient. Flow cytometry has been demonstrated to be a rapid and feasible approach for detection of bacteria in platelet concentrates. The general aim of the current study was to develop protocols for the application of this technique under routine conditions. The effect of improved test reagents on practicability and sensitivity of the method is evaluated. Furthermore, the implementation of fluorescent absolute count beads as an internal standard is demonstrated. A simplified pre-incubation procedure has been undertaken to diminish the detection limit in a pragmatic manner. Additionally, the application of bacteria detection by flow cytometry as a culture method is shown, i.e., transfer of samples from platelet concentrates into a satellite bag, incubation of the latter at 37 degrees C, and measuring the contaminating bacteria in a flow cytometer.

  5. Interactions between diatoms and bacteria.

    PubMed

    Amin, Shady A; Parker, Micaela S; Armbrust, E Virginia

    2012-09-01

    Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

  6. Motility of Electric Cable Bacteria

    PubMed Central

    Damgaard, Lars Riis; Holm, Simon Agner; Schramm, Andreas; Nielsen, Lars Peter

    2016-01-01

    ABSTRACT Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s−1 (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment. IMPORTANCE This study reports on the motility of cable bacteria, capable of transmitting electrons over centimeter distances. It gives us a new insight into their behavior in sediments and explains previously puzzling findings. Cable bacteria greatly influence their environment, and this article adds significantly to the body of knowledge about this organism. PMID:27084019

  7. Biological warfare agents.

    PubMed

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-07-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  8. Interactions between arbuscular mycorrhizal fungi and soil bacteria.

    PubMed

    Miransari, Mohammad

    2011-02-01

    The soil environment is interesting and complicated. There are so many interactions taking place in the soil, which determine the properties of soil as a medium for the growth and activities of plants and soil microorganisms. The soil fungi, arbuscular mycorrhiza (AM), are in mutual and beneficial symbiosis with most of the terrestrial plants. AM fungi are continuously interactive with a wide range of soil microorganisms including nonbacterial soil microorganisms, plant growth promoting rhizobacteria, mycorrhiza helper bacteria and deleterious bacteria. Their interactions can have important implications in agriculture. There are some interesting interactions between the AM fungi and soil bacteria including the binding of soil bacteria to the fungal spore, the injection of molecules by bacteria into the fungal spore, the production of volatiles by bacteria and the degradation of fungal cellular wall. Such mechanisms can affect the expression of genes in AM fungi and hence their performance and ecosystem productivity. Hence, consideration of such interactive behavior is of significance. In this review, some of the most important findings regarding the interactions between AM fungi and soil bacteria with some new insights for future research are presented.

  9. Cytokinesis in Bacteria

    PubMed Central

    Errington, Jeffery; Daniel, Richard A.; Scheffers, Dirk-Jan

    2003-01-01

    Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum. PMID:12626683

  10. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    NASA Astrophysics Data System (ADS)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  11. Tractable mammalian cell infections with protozoan-primed bacteria.

    PubMed

    Drennan, Samuel L; Lama, Amrita; Doron, Ben; Cambronne, Eric D

    2013-04-02

    Many intracellular bacterial pathogens use freshwater protozoans as a natural reservoir for proliferation in the environment. Legionella pneumophila, the causative agent of Legionnaires' pneumonia, gains a pathogenic advantage over in vitro cultured bacteria when first harvested from protozoan cells prior to infection of mammalian macrophages. This suggests that important virulence factors may not be properly expressed in vitro. We have developed a tractable system for priming L. pneumophila through its natural protozoan host Acanthamoeba castellanii prior to mammalian cell infection. The contribution of any virulence factor can be examined by comparing intracellular growth of a mutant strain to wild-type bacteria after protozoan priming. GFP-expressing wild-type and mutant L. pneumophila strains are used to infect protozoan monolayers in a priming step and allowed to reach late stages of intracellular growth. Fluorescent bacteria are then harvested from these infected cells and normalized by spectrophotometry to generate comparable numbers of bacteria for a subsequent infection into mammalian macrophages. For quantification, live bacteria are monitored after infection using fluorescence microscopy, flow cytometry, and by colony plating. This technique highlights and relies on the contribution of host cell-dependent gene expression by mimicking the environment that would be encountered in a natural acquisition route. This approach can be modified to accommodate any bacterium that uses an intermediary host as a means for gaining a pathogenic advantage.

  12. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    SciTech Connect

    Malkin, A J

    2010-03-24

    ,2), and we anticipate one more publication (3). The publications describe development of methods and results of studies of structural dynamics of metal-resistant bacteria that contribute to more comprehensive understanding of the architecture, function, and environmental dynamics of bacterial and cellular systems. The results of this LDRD were presented in invited talks and contributed presentations at five national and international conferences and five seminar presentations at the external institutions. These included invited talks at the conferences of Gordon Research, Materials Research and American Chemical Societies. Our scientific results and methodologies developed in this project enabled us to receive new funding for the multiyear project 'Chromium transformation pathways in metal-reducing bacteria' funded by the University of California Lab Fees Program ($500,000, 5/1/09 - 4/30/2012), with our proposal being ranked 1st from a total of 138 in the Earth, Energy, Environmental & Space Sciences panel.

  13. Tape Cassette Bacteria Detection System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  14. Use of topical hemostatic agents in gynecologic surgery.

    PubMed

    Wysham, Weiya Z; Roque, Dario R; Soper, John T

    2014-09-01

    Sutures, hemoclips, and electrocautery are the primary mechanisms used to achieve hemostasis during gynecologic surgery, but in situations in which these are inadequate or not feasible, an array of hemostatic agents are available to help achieve hemostasis. These agents include physical agents such as cellulose, collagen, or gelatin products as well as biologic agents such as thrombin and fibrin products. Limited data are available on many of these agents, although their use is increasing, sometimes at high costs. In gynecologic surgery, hemostatic agents are likely most effective when used in areas of oozing or slow bleeding and as an adjunct to conventional surgical methods of hemostasis.

  15. Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion.

    PubMed

    Park, Sung Jun; Bae, Hyeoni; Kim, Joonhwuy; Lim, Byungjik; Park, Jongoh; Park, Sukho

    2010-07-07

    Microrobots developed by the technological advances are useful for application in various fields. Nevertheless, they have limitations with respect to their actuator and motility. Our experiments aim to determine whether a bioactuator using the flagellated bacteria Serratia marcescens would enhance the motility of microrobots. In this study, we investigate that the flagellated bacteria Serratia marcescens could be utilized as actuators for SU-8 microstructures by bovine serum albumin-selective patterning. Firstly, we analyze the adherence of the bacteria to the SU-8 micro cube by selective patterning using 5% BSA. The results show that number of attached-bacteria in the uncoated side of the selectively- coated micro cube with BSA increased by 200% compared with that in all sides of the non treated micro cube. Secondly, the selectively BSA coated micro cube had 210% higher motility than the uncoated micro cube. The results revealed that the bacteria patterned to a specific site using 5% BSA significantly increase the motility of the bacteria actuated microstructure.

  16. Modelling the fate and transport of faecal bacteria in estuarine and coastal waters.

    PubMed

    Gao, Guanghai; Falconer, Roger A; Lin, Binliang

    2015-11-15

    This paper details a numerical model developed to predict the fate and transport of faecal bacteria in receiving surface waters. The model was first validated by comparing model predicted faecal bacteria concentrations with available field measurements. The model simulations agreed well with the observation data. After calibration, the model was applied to investigate the effects of different parameters, including: tidal processes, river discharges from the upstream boundaries and bacteria inputs from the upstream boundaries, wastewater treatment works (WwTWs), rivers and combined sewer overflows (CSO), on the concentrations of faecal bacteria in the Ribble Estuary. The results revealed that the tide and upstream boundary bacteria inputs were the primary factors controlling the distribution of faecal bacteria. The bacteria inputs from the WwTWs in the model domain were generally found not to have a significant impact on distribution of faecal bacteria in the estuary.

  17. Antiviral potential of lactic acid bacteria and their bacteriocins.

    PubMed

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  18. Designing Distributed Learning Environments with Intelligent Software Agents

    ERIC Educational Resources Information Center

    Lin, Fuhua, Ed.

    2005-01-01

    "Designing Distributed Learning Environments with Intelligent Software Agents" reports on the most recent advances in agent technologies for distributed learning. Chapters are devoted to the various aspects of intelligent software agents in distributed learning, including the methodological and technical issues on where and how intelligent agents…

  19. A Multi-Agent System for Intelligent Online Education.

    ERIC Educational Resources Information Center

    O'Riordan, Colm; Griffith, Josephine

    1999-01-01

    Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…

  20. Novel Agents for the Treatment of Multiple Myeloma: Proteasome Inhibitors and Immunomodulatory Agents

    PubMed Central

    Kurtin, Sandra E.; Bilotti, Elizabeth

    2013-01-01

    The integration of novel agents into the treatment of multiple myeloma (MM) has shifted the focus from an incurable disease to one that is chronic, with a realistic hope of someday achieving a cure. Proteasome inhibitors and immunomodulatory agents are the backbone of novel therapies for MM. These agents are particularly important for patients with relapsed or refractory disease, a fate faced by the majority of myeloma patients over the course of their disease. Review of recent clinical trial data for the proteasome inhibitors and immunomodulatory agents, including clinical efficacy and safety information, will assist the advanced practitioner in oncology with integrating these data into the current treatment guidelines for MM. PMID:25032010

  1. VIABILITY OF COLIFORM BACTERIA IN ANTARCTIC SOIL.

    PubMed

    BOYD, W L; BOYD, J W

    1963-05-01

    Boyd, William L. (Ohio State University, Columbus) and Josephine W. Boyd. Viability of coliform bacteria in antarctic soil. J. Bacteriol. 85:1121-1123. 1963.-The distribution of coliform bacteria in soils of Ross Island and the nearby mainland was studied. None was found in almost all of the samples collected, including some from the Adelie penguin rookeries at Cape Royds and Cape Crozier and in soil at the McMurdo Base which had been recently contaminated by human sewage. Samples of pony manure left from previous expeditions were also negative, with one exception where Escherichia coli were present. Studies carried out with two freshly isolated human strains of E. coli and the isolate from pony manure showed that the death rate was extremely rapid, although the animal strain was much more resistant to the various factors of the environment causing death.

  2. Biotechnological potential of Clostridium butyricum bacteria

    PubMed Central

    Szymanowska-Powałowska, Daria; Orczyk, Dorota; Leja, Katarzyna

    2014-01-01

    In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L). A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties. PMID:25477923

  3. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  4. Innovative agents in cancer prevention.

    PubMed

    Manson, Margaret M; Farmer, Peter B; Gescher, Andreas; Steward, William P

    2005-01-01

    There are many facets to cancer prevention: a good diet, weight control and physical activity, a healthy environment, avoidance of carcinogens such as those in tobacco smoke, and screening of populations at risk to allow early detection. But there is also the possibility of using drugs or naturally occurring compounds to prevent initiation of, or to suppress, tumour growth. Only a few such agents have been used to date in the clinic with any success, and these include non-steroidal anti-inflammatory drugs for colon, finasteride for prostate and tamoxifen or raloxifene for breast tumours. An ideal chemopreventive agent would restore normal growth control to a preneoplastic or cancerous cell population by modifying aberrant signalling pathways or inducing apoptosis (or both) in cells beyond repair. Characteristics for such an agent include selectivity for damaged or transformed cells, good bioavailability and more than one mechanism of action to foil redundancy or crosstalk in signalling pathways. As more research effort is being targeted towards this area, the distinction between chemotherapeutic and chemopreventive agents is blurring. Chemotherapeutic drugs are now being designed to target over- or under-active signalling molecules within cancer cells, a philosophy which is just as relevant in chemoprevention. Development of dietary agents is particularly attractive because of our long-standing exposure to them, their relative lack of toxicity, and encouraging indications from epidemiology. The carcinogenic process relies on the cell's ability to proliferate abnormally, evade apoptosis, induce angiogenesis and metastasise to distant sites. In vitro studies with a number of different diet-derived compounds suggest that there are molecules capable of modulating each of these aspects of tumour growth. However, on the negative side many of them have rather poor bioavailability. The challenge is to uncover their multiple mechanisms of action in order to predict their

  5. Agility: Agent - Ility Architecture

    DTIC Science & Technology

    2002-10-01

    Figure 2: Overview of eGents 9 Specific scientific and engineering subgoals were: • develop a lightweight agent system that uses email- based ...applets makes them hard to operate over corporate firewalls. eGents e - mail based ACL bus imposes fewer requirements on agents that use it, and firewalls...do not pose a problem for an e - mail based ACL bus. While applets limit 35 JATLites range of applications, they also make JATlite easy to deploy

  6. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  7. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.

  8. Environmental sources of fecal bacteria

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Ishii, Satoshi; Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    This chapter provides a review of the research on environmental occurrences of faecal indicator bacteria in a variety of terrestrial and aquatic habitats under different geographic and climatic conditions, and discusses how these external sources may affect surface water quality.

  9. Classification of Bacteriocins from Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Rea, Mary C.; Ross, R. Paul; Cotter, Paul D.; Hill, Colin

    Bacteriocins are ribosomally synthesised antimicrobial peptides produced by bacteria, including many Gram-positive species. The classification of bacteriocins from Gram-positive bacteria is complicated by their heterogeneity and thus, as the number of Gram-positive bacteriocins identified has continued to increase, classification schemes have had to continuously evolve. Here, we review the various classification approaches, both historical and current, their underlying scientific basis and their relative merit, and suggest a rational scheme given the state of the art.

  10. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  11. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  12. Proceedings of the Agent 2002 Conference on Social Agents : Ecology, Exchange, and Evolution

    SciTech Connect

    Macal, C., ed.; Sallach, D., ed.

    2003-04-10

    Welcome to the ''Proceedings'' of the third in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. The theme of this year's conference, ''Social Agents: Ecology, Exchange and Evolution'', was selected to foster the exchange of ideas on some of the most important social processes addressed by agent simulation models, namely: (1) The translation of ecology and ecological constraints into social dynamics; (2) The role of exchange processes, including the peer dependencies they create; and (3) The dynamics by which, and the attractor states toward which, social processes evolve. As stated in the ''Call for Papers'', throughout the social sciences, the simulation of social agents has emerged as an innovative and powerful research methodology. The promise of this approach, however, is accompanied by many challenges. First, modeling complexity in agents, environments, and interactions is non-trivial, and these representations must be explored and assessed systematically. Second, strategies used to represent complexities are differentially applicable to any particular problem space. Finally, to achieve sufficient generality, the design and experimentation inherent in agent simulation must be coupled with social and behavioral theory. Agent 2002 provides a forum for reviewing the current state of agent simulation scholarship, including research designed to address such outstanding issues. This year's conference introduces an extensive range of domains, models, and issues--from pre-literacy to future projections, from ecology to oligopolistic markets, and from design to validation. Four invited speakers highlighted major themes emerging from social agent simulation.

  13. Bacteriocins of gram-positive bacteria.

    PubMed Central

    Jack, R W; Tagg, J R; Ray, B

    1995-01-01

    In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following

  14. [Nosocomial bacteria: profiles of resistance].

    PubMed

    Sow, A I

    2005-01-01

    Nosocomial infections may be parasitic, mycosal or viral, but bacterial infections are more frequent. They are transmitted by hands or by oral route. This paper describes the main bacteria responsive of nosocomial infections, dominated by Staphylococcus, enterobacteria and Pseudomonas aeruginosa. The author relates natural and savage profiles of these bacterias, characterized by multiresistance due to large use of antibiotics. Knowledge of natural resistance and verification of aquired resistance permit to well lead probabilist antibiotherapy.

  15. Magnetotactic Bacteria from Extreme Environments

    NASA Astrophysics Data System (ADS)

    Bazylinski, Dennis A.; Lefère, Christopher T.

    2013-03-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  16. Bioreporter bacteria for landmine detection

    SciTech Connect

    Burlage, R.S.; Youngblood, T.; Lamothe, D.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  17. Filtrating forms of soil bacteria

    NASA Astrophysics Data System (ADS)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  18. A Large Scale, High Resolution Agent-Based Insurgency Model

    DTIC Science & Technology

    2013-09-30

    for understanding and analyzing human behavior in a civil violence paradigm. This model employed two types of agents: an agent that can become...cognitions and behaviors. Unlike previous agent-based models of civil violence , this work includes the use of a hidden Markov process for simulating...these models can portray real insurgent environments. Keywords simulation · agent based model · insurgency · civil violence · graphics processing

  19. Oral contraceptive agents.

    PubMed

    Shearman, R P

    1986-02-17

    The history of the development of oral contraceptives (OCs) has been a progressive reduction in dosage to what is now probably the lowest does that is compatible with the desired therapeutic effect -- to inhibit ovluation. Yet, controversy and argument continue. A table lists the OCs that are available in Australia. Many of these preparations, although having different trade names, have an identical composition. Since the withdrawal of sequential OCs from the Australian market, there are only 2 generic types. These are the progestogen only (mini) OCs, which consist of either 30 mcg of levonorgestrel or 350 mcg of norethisterone given at the same time every day; and the combined OCs, which contain an estrogen and a progestogen. In the last 12 months, some of the older high-dose OCs have been withdrawn, and it seems likely that further withdrawals will follow. Only 2 estrogens are used in the formulation of the OC, but there is a greater variety of progestogens. Ethinyl estradiol is used in most preparations. A small minority of OCs contain mestranol, the 3-methyl ether of ethinyl estradiol. Currently, there are only 4 OC agents that are available in Australia that contain mestranol and 2 of these contain the high doses of 100 mcg. Fundamentally, there are 2 types of progestogens -- those that contain, or are metabolized to, norethisterone and those that contain norgestrel or its close relative, desogestrel. With the exception of the norgestrel group and desogestrel, all other progestins, including norethisterone itself, are effective in vivo after they have been metablized to norethisterone. Mestranol is effective in humans after demethylation to ethinyl estradiol. In the norgesterel group, since d-norgestrel is inert endocrinologically, 250 mcg of levonorgestrel and 500 mcg of dl-norgestrel are equivalent. Levonorgestrel and desogestrel are of approximately equal potency. With the combined OC agents, the overwhelming mechanism of action is by the inhibition of the

  20. Quorum Quenching Agents: Resources for Antivirulence Therapy

    PubMed Central

    Tang, Kaihao; Zhang, Xiao-Hua

    2014-01-01

    The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy. PMID:24886865