Science.gov

Sample records for agents including doxorubicin

  1. The antitumor agent doxorubicin binds to Fanconi anemia group F protein.

    PubMed

    Kusayanagi, Tomoe; Tsukuda, Senko; Shimura, Satomi; Manita, Daisuke; Iwakiri, Kanako; Kamisuki, Shinji; Takakusagi, Yoichi; Takeuchi, Toshifumi; Kuramochi, Kouji; Nakazaki, Atsuo; Sakaguchi, Kengo; Kobayashi, Susumu; Sugawara, Fumio

    2012-11-01

    Doxorubicin, a commonly used cancer chemotherapy agent, elicits several potent biological effects, including synergistic-antitumor activity in combination with cisplatin. However, the mechanism of this synergism remains obscure. Here, we employed an improved T7 phage display screening method to identify Fanconi anemia group F protein (FANCF) as a doxorubicin-binding protein. The FANCF-doxorubicin interaction was confirmed by pull-down assay and SPR analysis. FANCF is a component of the Fanconi anemia complex, which monoubiquitinates D2 protein of Fanconi anemia group as a cellular response against DNA cross-linkers such as cisplatin. We observed that the monoubiquitination was inhibited by doxorubicin treatment.

  2. Doxorubicin

    MedlinePlus

    Doxorubicin is used in combination with other medications to treat certain types of bladder, breast, lung, stomach, ... leukemia (ALL) and acute myeloid leukemia (AML, ANLL). Doxorubicin is also used alone and in combination with ...

  3. A comparison of the effect of doxorubicin and phenol on the skeletal muscle. May doxorubicin be a new alternative treatment agent for spasticity?

    PubMed

    Cullu, Emre; Ozkan, Ilhan; Culhaci, Nil; Alparslan, Bulent

    2005-03-01

    Since spasticity is still an unsolved problem for orthopaedic surgeons, different chemical agents are tried before surgery. Phenol is a chemical agent which has been used for spasticity treatment for a long time. Doxorubicin is an antitumoral agent that has recently been used for chemomyectomy. The intramuscular effects of phenol and two different dose of doxorubicin were compared in that experimental study. In the first group 0.5 mg/0.5 cm3 doxorubicin, in the second group 1 mg/0.5 doxorubicin and in the third group 5% aqueous solution of fenol/0.5 injection were applied into left quadriceps muscle of rats. Degeneration areas were wider in the high dose doxorubicin group (29.9%; 8.5-61), in comparison with the low dose doxorubicin group (6.4%; 3.1-12) and phenol group (4%; 0-14) after 6 weeks. Differences in degeneration area among three groups were statistically significant (P<0.001). The difference was significant between the high dose doxorubicin group and the phenol group (P=0.001) and also between the high dose doxorubicin group and the low dose doxorubicin group (P<0.001). The results of this study suggested that doxorubicin could provide an alternative treatment modality for neuromuscular disease causing spasticity and it has a dose-dependent effect. Further studies are needed for long-term comparison and clinical use of doxorubicin for spasticity treatment.

  4. Complex of C60 Fullerene with Doxorubicin as a Promising Agent in Antitumor Therapy

    NASA Astrophysics Data System (ADS)

    Prylutska, Svitlana V.; Skivka, Larysa M.; Didenko, Gennadiy V.; Prylutskyy, Yuriy I.; Evstigneev, Maxim P.; Potebnya, Grygoriy P.; Panchuk, Rostyslav R.; Stoika, Rostyslav S.; Ritter, Uwe; Scharff, Peter

    2015-12-01

    The main aim of this work was to evaluate the effect of doxorubicin in complex with C60 fullerene (C60 + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C60 + Dox complex action. We found that volume of tumor from mice treated with the C60 + Dox complex was 1.4 times less than that in control untreated animals. The number of metastatic foci in lungs of animals treated with C60 + Dox complex was two times less than that in control untreated animals. Western blot analysis of tumor lysates revealed a significant decrease in the level of heat-shock protein 70 in animals treated with C60 + Dox complex. Moreover, the treatment of tumor-bearing mice was accompanied by the increase of cytotoxic activity of immune cells. Thus, the potential mechanisms of antitumor effect of C60 + Dox complex include both its direct action on tumor cells by inducing cell death and increasing of stress sensitivity and an immunomodulating effect. The obtained results provide a scientific basis for further application of C60 + Dox nanocomplexes as treatment agents in cancer chemotherapy.

  5. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats.

    PubMed

    Fan, Hua-Ying; Yang, Ming-Yan; Qi, Dong; Zhang, Zuo-Kai; Zhu, Lin; Shang-Guan, Xiu-Xin; Liu, Ke; Xu, Hui; Che, Xin

    2015-07-21

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS.

  6. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats

    PubMed Central

    Fan, Hua-Ying; Yang, Ming-Yan; Qi, Dong; Zhang, Zuo-Kai; Zhu, Lin; Shang-Guan, Xiu-Xin; Liu, Ke; Xu, Hui; Che, Xin

    2015-01-01

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS. PMID:26194431

  7. Crataegus monogyna fruit aqueous extract as a protective agent against doxorubicin-induced reproductive toxicity in male rats

    PubMed Central

    Shalizar Jalali, Ali; Hasanzadeh, Shapour

    2013-01-01

    Objective: Doxorubicin (DOX) is a broad spectrum chemotherapeutic agent used in the treatment of several malignancies. The use of DOX in clinical chemotherapy has been restricted due to its diverse toxicities, including reproductive toxicity. Crataegus monogyna (C. monogyna) is one of the oldest medicinal plants that have been shown to be cytoprotective because of scavenging free radicals. The present study was undertaken to determine whether C. monogyna fruits aqueous extract could serve as a protective agent against reproductive toxicity during DOX treatment in a rat model through antioxidant-mediated mechanisms. Materials and Methods: Male Wistar rats were allocated to four groups. Two groups of rats were treated with DOX at a dose of 4 mg/kg intraperitoneally on days 1, 7, 14, 21, and 28 (accumulated dose of 20 mg/kg). One of the groups received C. monogyna fruits aqueous extract at a dose of 20 mg/kg per day orally for 28 days along with DOX. A vehicle-treated control group and a C. monogyna control group were also included. Results: The DOX-treated group showed significant decreases in the body and organ weights and spermatogenic activities as well as many histological alterations. DOX treatment also caused a significant decrease in sperm count and motility with an increase in dead and abnormal sperms. Moreover, significant decrease in serum levels of testosterone and increased serum concentrations of FSH, LH, LDH, CPK, and SGOT were observed in DOX-treated rats. Notably, Crataegus co-administration caused a partial recovery in above-mentioned parameters. Conclusion: These findings indicated that doxorubicin can adversely damage the testicular tissue, while Crataegus co-administration could effectively prevent these adverse effects by effective inhibiting oxidative processes and restoration of antioxidant defense system. PMID:25050270

  8. Preserved learning and memory in mice following chemotherapy: 5-Fluorouracil and doxorubicin single agent treatment, doxorubicin-cyclophosphamide combination treatment.

    PubMed

    Fremouw, Thane; Fessler, Christy L; Ferguson, Robert J; Burguete, Yamil

    2012-01-01

    Clinical studies suggest that chemotherapy is associated with long-term cognitive impairment in some patients. A number of underlying mechanisms have been proposed, however, the etiology of chemotherapy-related cognitive dysfunction remains relatively unknown. As part of a multifaceted approach, animal models of chemotherapy induced cognitive impairment are being developed. Thus far, the majority of animal studies have utilized rats, however, mice may prove particularly beneficial in studying genetic risk factors for developing chemotherapy induced cognitive impairment. Thus, C57BL/6J mice were treated once a week for three weeks with saline, doxorubicin and cyclophosphamide (D&C), doxorubicin (Dox), or 5-fluorouracil (5-FU). Recent and remote contextual fear conditioning and novel object recognition (NOR) was assessed. Despite significant toxic effects as assessed by weight loss, the chemotherapy treated mice performed as well as control mice on all task. As are some humans, C57BL/6J mice may be resistant to at least some aspects of chemotherapy induced cognitive decline.

  9. [An advanced metastatic breast cancer patient successfully treated with combination therapy including docetaxel, doxorubicin and cyclophosphamide (TAC) as salvage therapy].

    PubMed

    Sato, Yasushi; Takayama, Tetsuji; Sagawa, Tamotsu; Sato, Tsutomu; Okamoto, Kumiko; Takahashi, Shou; Abe, Seiichiro; Iyama, Satoshi; Murase, Kazuyuki; Kato, Junji; Niitsu, Yoshiro

    2008-03-01

    We reported here a case of advanced breast cancer successfully treated with combination therapy including docetaxel, doxorubicin and cyclophosphamide (TAC) as salvage therapy. A 56-year-old male was referred to our hospital for treatment of recurrent metastatic breast cancer. When he was admitted, his general condition was poor due to massive intraperitoneal metastasis. We administered TAC chemotherapy (docetaxel 75 mg/m(2), doxorubicin 50 mg/m(2), and cyclophosphamide 500 mg/m(2), every 3 weeks). During chemotherapy, he showed no major adverse effects except grade 3 neutropenia, which could be easily managed with G-CSF administration. Metastatic lesions almost disappeared after 4 cycles of TAC. TAC therapy was considered to be acceptable as salvage therapy for a metastatic male breast cancer patient.

  10. A Biologically-Based Rationale for Combination Chemotherapy of Novel Agents with Doxorubicin in Human Breast Cancer Cell Lines

    DTIC Science & Technology

    2002-08-01

    has fallen on a group of agents called histone deacetylase inhibtors ( HDACI ). As suggested by their name, these compounds prevent deacetylation of hi...NIH3T3 cells treated with the HDACI , trichostatin A (TSA) 3. Topoisomerase poisons such as doxorubicin (DOX) are commonly used chemotherapeutics. The...encoding death receptor 5 (DR5) appears to increase in response to the HDACI phenylbutyrate (PB, Kroll unpublished). When bound by its ligand, TNFoc

  11. Doxorubicin Conjugated to Glutathione Stabilized Gold Nanoparticles (Au-GSH-Dox) as an Effective Therapeutic Agent for Feline Injection-Site Sarcomas-Chick Embryo Chorioallantoic Membrane Study.

    PubMed

    Zabielska-Koczywąs, Katarzyna; Dolka, Izabella; Król, Magdalena; Żbikowski, Artur; Lewandowski, Wiktor; Mieczkowski, Józef; Wójcik, Michał; Lechowski, Roman

    2017-02-08

    Feline injection-site sarcomas are malignant skin tumours with a high local recurrence rate, ranging from 14% to 28%. The treatment of feline injection-site sarcomas includes radical surgery, radiotherapy and/or chemotherapy. In our previous study it has been demonstrated that doxorubicin conjugated to glutathione-stabilized gold nanoparticles (Au-GSH-Dox) has higher cytotoxic effects than free doxorubicin for feline fibrosarcoma cell lines with high glycoprotein P activity (FFS1, FFS3). The aim of the present study was to assess the effectiveness of intratumoural injection of Au-GSH-Dox on the growth of tumours from the FFS1 and FFS3 cell lines on chick embryo chorioallantoic membrane. This model has been utilized both in human and veterinary medicine for preclinical oncological studies. The influence of intratumoural injections of Au-GSH-Dox, glutathione-stabilized gold nanoparticles and doxorubicin alone on the Ki-67 proliferation marker was also checked. We demonstrated that the volume ratio of tumours from the FFS1 and FFS3 cell lines was significantly (p < 0.01) decreased after a single intratumoural injection of Au-GSH-Dox, which confirms the positive results of in vitro studies and indicates that Au-GSH-Dox may be a potent new therapeutic agent for feline injection-site sarcomas.

  12. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics.

  13. Iron(III)-binding of the anticancer agents doxorubicin and vosaroxin.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Jamieson, Gene; Fox, Judith A; Orvig, Chris

    2015-02-07

    The Fe(iii)-binding constant of vosaroxin, an anticancer quinolone derivative, has been determined spectrophotometrically and compared with the analogous Fe(iii) complex formed with doxorubicin. The in vivo metabolic stability and iron coordination properties of the quinolones compared to the anthracylines may provide significant benefit to cardiovascular safety. The mechanism of action of both molecules target the topoisomerase II enzyme. Both doxorubicin (Hdox, log βFeL3 = 33.41, pM = 17.0) and vosaroxin (Hvox, log βFeL3 = 33.80(3), pM = 15.9) bind iron(iii) with comparable strength; at physiological pH however, [Fe(vox)3] is the predominant species in contrast to a mixture of species observed for the Fe:dox system. Iron(iii) nitrate and gallium(iii) nitrate at a 1 : 3 ratio with vosaroxin formed stable tris(vosaroxacino)-iron(iii) and tris(vosaroxino)gallium(iii) complexes that were isolated and characterized. Their redox behavior was studied by CV, and their stereochemistry was further explored in temperature dependent (1)H NMR studies. The molecular pharmacology of their interaction with iron(iii) may be one possible differentiation in the safety profile of quinolones compared to anthracyclines in relation to cardiotoxicity.

  14. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking

    PubMed Central

    Mohan, Praveena; Rapoport, Natalya

    2010-01-01

    Doxorubicin (DOX) is one of the most commonly used chemotherapeutic drugs and a popular research tool due to the inherent fluorescence of the DOX molecule. After DOX injection, fluorescence imaging of organs or cells can provide information on drug biodistribution. Therapeutic and imaging capabilities combined in a DOX molecule make it an excellent theranostic agent. However, DOX fluorescence depends on a number of factors that should be taken into consideration when interpreting results of DOX fluorescence measurements. Discussing these problems is the main thrust of the current paper. The sensitivity of DOX fluorescence intensity to DOX concentration, local microenvironment, and interaction with model cellular components is illustrated by fluorescence spectra of paired DOX/phosphilipid, DOX/histone, DOX/DNA, and triple DOX/histone/DNA and DOX/phospholipid/DNA systems. DOX fluorescence is dramatically quenched upon intercalation into the DNA; DOX fluorescence is also self-quenched at high concentrations of molecularly dissolved DOX; in contrast, DOX fluorescence is increased after binding to the histone or partitioning into the phospholipid phase of PEG-phospholipid micelles or hydrophobic cores of polymeric micelles. While flow cytometry is commonly used for characterization of DOX intracellular uptake, the above aspects of DOX fluorescence may significantly complicate interpretation of flow cytometry results. High cell fluorescence measured by flow cytometry may provide deceptive information on the actual intracellular DOX concentration and may not correlate with the therapeutic efficacy if DOX does not penetrate into the site of action in cell nuclei. These problems are illustrated in the experiments on the intracellular trafficking of DOX encapsulated in poly(ethylene oxide)-co-polycaprolactone (PEG-PCL) micelles or PEG-PCL stabilized perfluorocarbon nanodroplets, with and without the application of ultrasound used as an external trigger. For efficient

  15. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes

    PubMed Central

    Zhao, Liqun; Zhang, Baolin

    2017-01-01

    Doxorubicin is a highly effective anticancer agent but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity remain incompletely understood. Here we investigated doxorubicin-induced cytotoxicity in human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs). We found that doxorubicin and related anthracycline agents (e.g., daunorubicin, idarubicin, and epirubicin) significantly upregulated the expression of death receptors (DRs) (TNFR1, Fas, DR4 and DR5) in iPS-derived cardiomyocytes at both protein and mRNA levels. The resulting iPS-CMs cells underwent spontaneous apoptosis which was further enhanced by physiologically relevant death ligands including TNF-related apoptosis inducing ligand (TRAIL). Furthermore, TRAIL potentiated doxorubicin-induced decrease in beating rate and amplitude of iPS-derived cardiomyocytes. These data demonstrate that the induction of death receptors in cardiomyocytes is likely a critical mechanism by which doxorubicin causes cardiotoxicity. PMID:28300219

  16. Molecular biology of doxorubicin-induced cardiomyopathy

    PubMed Central

    Umlauf, J; Horký, M

    2002-01-01

    The anthracycline doxorubicin is an antineoplastic agent, eliciting chronic cardiac toxicity. It occurs in patients after prolonged administration of doxorubicin, leading to congestive heart failure. The pathogenesis of the doxorubicin-induced car-diomyopathy is not well understood. The present article summarizes the unique effect of doxorubicin on cardiac-specific gene expression. In addition to binding to DNA, doxorubicin directly affects the function of a variety of proteins. Free radical generation, damage to mitochondria and active cell death are also critical in the development of doxorubicin-induced cardiac toxicity. Agents providing effective cardioprotection are also reviewed. PMID:19644577

  17. Combination treatment with fulvestrant and various cytotoxic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5-fluorouracil) has a synergistic effect in estrogen receptor-positive breast cancer.

    PubMed

    Ikeda, Hirokuni; Taira, Naruto; Nogami, Tomohiro; Shien, Kazuhiko; Okada, Masanori; Shien, Tadahiko; Doihara, Hiroyoshi; Miyoshi, Shinichiro

    2011-11-01

    Patients with estrogen receptor (ER)-positive breast cancers have a better prognosis than those with ER-negative breast cancers, but often have low sensitivity to chemotherapy and a limited survival benefit. We have previously shown a combination effect of taxanes and fulvestrant and suggested that this treatment may be useful for ER-positive breast cancer. In this study, we evaluated the effects of combinations of hormone drugs and chemotherapeutic agents. In vitro, the effects of combinations of five chemotherapeutic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5-fluorouracil) and three hormone drugs (fulvestrant, tamoxifen, and 4-hydroxytamoxifen) were examined in ER-positive breast cancer cell lines using CalcuSyn software. Changes in chemoresistant factors such as Bcl2, multidrug resistance-associated protein 1, and microtubule-associated protein tau were also examined after exposure of the cells to hormone drugs. In vivo, tumor sizes in mice were evaluated after treatment with docetaxel or doxorubicin alone, fulvestrant alone, and combinations of these agents. Combination treatment with fulvestrant and all five chemotherapeutic agents in vitro showed synergistic effects. In contrast, tamoxifen showed an antagonistic effect with all the chemotherapeutic agents. 4-Hydroxytamoxifen showed an antagonistic effect with doxorubicin and 5-fluorouracil, but a synergistic effect with taxanes and vinorelbine. Regarding chemoresistant factors, Bcl2 and microtubule-associated protein tau were downregulated by fulvestrant. In vivo, a combination of fulvestrant and docetaxel had a synergistic effect on tumor growth, but fulvestrant and doxorubicin did not show this effect. In conclusion, fulvestrant showed good compatibility with all the evaluated chemotherapeutic agents, and especially with docetaxel, in vitro and in vivo.

  18. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells

    PubMed Central

    Wang, Liang; Chan, Judy Y.; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P.; Shan, Luchen; Lee, Simon M.

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity. PMID:27559313

  19. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells.

    PubMed

    Wang, Liang; Chan, Judy Y; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P; Shan, Luchen; Lee, Simon M

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity.

  20. Doxorubicin Cardiomyopathy

    PubMed Central

    Chatterjee, Kanu; Zhang, Jianqing; Honbo, Norman; Karliner, Joel S.

    2010-01-01

    Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained. Unfortunately, no effective treatment for established doxorubicin cardiomyopathy is presently available. Extensive research has been done and is being done to discover preventive treatments. However an effective and clinically applicable preventive treatment is yet to be discovered. PMID:20016174

  1. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  2. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  3. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  4. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  5. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  6. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  7. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  8. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  9. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  10. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  11. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  12. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  13. Doxorubicin induced heart failure: Phenotype and molecular mechanisms

    PubMed Central

    Mitry, Maria A.; Edwards, John G.

    2016-01-01

    Long term survival of childhood cancers is now more than 70%. Anthracyclines, including doxorubicin, are some of the most efficacious anticancer drugs available. However, its use as a chemotherapeutic agent is severely hindered by its dose-limiting toxicities. Most notably observed is cardiotoxicity, but other organ systems are also degraded by doxorubicin use. Despite the years of its use and the amount of information written about this drug, an understanding of its cellular mechanisms is not fully appreciated. The mechanisms by which doxorubicin induces cytotoxicity in target cancer cells have given insight about how the drug damages cardiomyocytes. The major mechanisms of doxorubicin actions are thought to be as an oxidant generator and as an inhibitor of topoisomerase 2. However, other signaling pathways are also invoked with significant consequences for the cardiomyocyte. Further the interaction between oxidant generation and topoisomerase function has only recently been appreciated and the consequences of this interaction are still not fully understood. The unfortunate consequences of doxorubicin within cardiomyocytes have promoted the search for new drugs and methods that can prevent or reverse the damage caused to the heart after treatment in cancer patients. Alternative protocols have lessened the impact on newly diagnosed cancer patients. However the years of doxorubicin use have generated a need for monitoring the onset of cardiotoxicity as well as understanding its potential long-term consequences. Although a fairly clear understanding of the short-term pathologic mechanisms of doxorubicin actions has been achieved, the long-term mechanisms of doxorubicin induced heart failure remain to be carefully delineated. PMID:27213178

  14. Serious stomatitis and esophagitis: a peculiar mucous reaction induced by pegylated liposomal doxorubicin.

    PubMed

    Ma, Han; Chen, Meilan; Liu, Junru; Li, Ying; Li, Juan

    2015-01-01

    Pegylated liposomal doxorubicin is an important antineoplastic agent with activity in a variety of solid tumors. It has a totally different profile of pharmacokinetics and toxicity compared with doxorubicin. It rarely causes side-effects like cardiotoxicity or hair loss, but frequently results in many kinds of mucocutaneous reactions, including palmar-plantar erythrodysesthesia, diffuse follicular rash, intertrigo-like eruption, new formation of melanotic macules, stomatitis and radiation recall dermatitis. We present a rare case of multiple myeloma who immediately developed serious stomatitis and esophatitis associated with minor palmar-plantar erythrodysesthesia after a single course of pegylated liposomal doxorubicin.

  15. Transcription of the protein kinase C-δ gene is activated by JNK through c-Jun and ATF2 in response to the anticancer agent doxorubicin

    PubMed Central

    Min, Byong Wook; Kim, Chang Gun; Ko, Jesang; Lim, Yoongho

    2008-01-01

    Expression of protein kinase C-δ (PKCδ) is up-regulated by apoptosis-inducing stimuli. However, very little is known about the signaling pathways that control PKCδ gene transcription. In the present study, we demonstrate that JNK stimulates PKCδ gene expression via c-Jun and ATF2 in response to the anticancer agent doxorubicin (DXR) in mouse lymphocytic leukemia L1210 cells. Luciferase reporter assays showed that DXR-induced activation of the PKCδ promoter was enhanced by ectopic expression of JNK1, c-Jun, or ATF2, whereas it was strongly reduced by expression of dominant negative JNK1 or by treatment with the JNK inhibitor SP600125. Furthermore, point mutations in the core sequence of the c-Jun/ATF2 binding site suppressed DXR-induced activation of the PKCδ promoter. Our results suggest an additional role for a JNK signaling cascade in DXR-induced PKCδ gene expression. PMID:19116455

  16. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

    PubMed Central

    Cruz, Maysa Mariana; Cunha, Roberta D. C.; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M. Oller; Pimentel, Gustavo Duarte; dos Santos, Ronaldo V. T.; Lira, Fabio Santos

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  17. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.

  18. Single-agent pegylated liposomal doxorubicin (PLD) in the treatment of metastatic breast cancer: results of an Austrian observational trial

    PubMed Central

    2011-01-01

    Background In advanced breast cancer, multiple sequential lines of treatments are frequently applied. Pegylated liposomal doxorubicin (PLD) has a favourable toxicity profile and can be used in first or higher lines of therapy. PLD has demonstrated response activity even after prior anthracycline exposure. Methods 129 consecutive patients with advanced breast cancer, of whom the majority had been massively pretreated, received PLD as monotherapy within licensed approval, for which efficacy and toxicities were documented. Results In a routine therapy setting, PLD was administered in a slightly reduced dose (median, 40 mg/m2 per cycle). Response rate (complete and partial remission) was 26%, and stable disease was observed in 19% of patients. Progression-free (PFS) and overall survival (OS) were 5.8 months and 14.2 months, respectively. There was no difference in terms of response and PFS, no matter if patients had already received anthracycline treatment. Interestingly, PFS proved similar regardless whether PLD was administered as palliative therapy in first, second or third line. Furthermore, PFS and OS were similar in patients with response or stable disease, underscoring the view that disease stabilization is associated with a profound clinical benefit. The most common side effects reported were palmar-plantar erythrodysesthesia (17%), exanthema (14%) and mucositis (12%). Conclusions Efficacy and toxicity data in these "real life" patients permit the conclusion that PLD is a valuable option in the treatment of advanced breast cancer even in heavily pretreated patients. PMID:21864402

  19. Calcium modulation of doxorubicin cytotoxicity in yeast and human cells.

    PubMed

    Nguyen, Thi Thuy Trang; Lim, Ying Jun; Fan, Melanie Hui Min; Jackson, Rebecca A; Lim, Kim Kiat; Ang, Wee Han; Ban, Kenneth Hon Kim; Chen, Ee Sin

    2016-03-01

    Doxorubicin is a widely used chemotherapeutic agent, but its utility is limited by cellular resistance and off-target effects. To understand the molecular mechanisms regulating chemotherapeutic responses to doxorubicin, we previously carried out a genomewide search of doxorubicin-resistance genes in Schizosaccharomyces pombe fission yeast and showed that these genes are organized into networks that counteract doxorubicin cytotoxicity. Here, we describe the identification of a subgroup of doxorubicin-resistance genes that, when disrupted, leads to reduced tolerance to exogenous calcium. Unexpectedly, we observed a suppressive effect of calcium on doxorubicin cytotoxicity, where concurrent calcium and doxorubicin treatment resulted in significantly higher cell survival compared with cells treated with doxorubicin alone. Conversely, inhibitors of voltage-gated calcium channels enhanced doxorubicin cytotoxicity in the mutants. Consistent with these observations in fission yeast, calcium also suppressed doxorubicin cytotoxicity in human breast cancer cells. Further epistasis analyses in yeast showed that this suppression of doxorubicin toxicity by calcium was synergistically dependent on Rav1 and Vph2, two regulators of vacuolar-ATPase assembly; this suggests potential modulation of the calcium-doxorubicin interaction by fluctuating proton concentrations within the cellular environment. Thus, the modulatory effects of drugs or diet on calcium concentrations should be considered in doxorubicin treatment regimes.

  20. Doxorubicin (Adriamycin) Cardiomyopathy—A Critical Review

    PubMed Central

    Saltiel, Emmanuel; McGuire, William

    1983-01-01

    Despite its vast utility in clinical oncology, the use of doxorubicin hydrochloride (Adriamycin) is limited by a potentially fatal cardiomyopathy. The following critical review, which examines the natural course, histopathologic effects, risk factors and monitoring indicators of this toxicity, also analyzes recent research of proposed mechanisms, including free radical formation with depletion of detoxifying enzymes, inhibition of vital enzyme systems and alterations in relative calcium concentrations. Prevention of the adverse reaction has been attempted by using such agents as α-tocopherol, selenium sulfide, coenzyme Q10, sulfhydryl donors, nucleosides and razoxane, and via liposomal carriage and alternative methods of administration. PMID:6356608

  1. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  2. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  3. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  4. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  5. Protective effects of berberine against doxorubicin-induced cardiotoxicity in rats by inhibiting metabolism of doxorubicin.

    PubMed

    Hao, Gang; Yu, Yunli; Gu, Bingren; Xing, Yiwen; Xue, Man

    2015-01-01

    1. The clinical use of doxorubicin, an effective anticancer drug, is severely hampered by its cardiotoxicity. Berberine, a botanical alkaloid, has been reported to possess cardioprotective and antitumor effects. In this study, we investigated the cardioprotective effect of berberine on doxorubicin-induced cardiotoxicity and the effect of berberine on the metabolism of doxorubicin. 2. Adult male Sprague-Dawley rats were administered doxorubicin in the presence or absence of berberine for 2 weeks. Administration of berberine effectively prevented doxorubicin-induced body weight reduction and mortality in rats. 3. Berberine reduced the activity of myocardial enzymes, including aspartate aminotransferase (AST), creatine kinase (CK), CK isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Echocardiographic examination further demonstrated that berberine effectively ameliorated cardiac dysfunction induced by doxorubicin. 4. Berberine inhibited the metabolism of doxorubicin in the cytoplasm of rat heart and reduced the accumulation of doxorubicinol (a secondary alcohol metabolite of doxorubicin) in heart. 5. These data showed that berberine alleviated the doxorubicin-induced cardiotoxicity in rats via inhibition of the metabolism of doxorubicin and reduced accumulation of doxorubicinol selectively in hearts.

  6. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma ( ...

  7. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    PubMed

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated

  8. Long-term follow-up of cardiac function in patients with Hodgkin's disease treated with mediastinal irradiation and combination chemotherapy including doxorubicin

    SciTech Connect

    LaMonte, C.S.; Yeh, S.D.; Straus, D.J.

    1986-04-01

    Among 41 evaluable patients whose first treatment for advanced Hodgkin's disease had consisted of alternating cycles of mechlorethamine, vincristine, prednisone, and procarbazine (MOPP), and doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD), in addition to low-dose mediastinal irradiation, 19 underwent retrospective cardiac evaluation by routine posteroanterior and lateral chest x-ray, 12-lead ECG, M-mode echocardiogram, and ECG-gated left ventricular blood pool scan at rest and during exercise. Fifteen patients had unequivocally normal left ventricular function by all these parameters. Two patients had minimally reduced left ventricular ejection fraction (LVEF) at rest with a normal increment with exercise. In two other patients with high normal resting LVEF and subnormal increment with exercise, the elevated resting values implied initial measurement in a nonbasal state. A twentieth patient (the oldest; one of two with active Hodgkin's disease at the time of evaluation and the stimulus for this study) had markedly reduced LVEF as determined by radionuclide cardiac angiography and had developed clinical congestive heart failure shortly before evaluation. Despite this patient, the study indicates that treatment with MOPP/ABVD and low-dose mediastinal irradiation entails low risk for cardiac complications.

  9. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  10. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  11. The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents. Part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone.

    PubMed

    Piosik, Jacek; Zdunek, Malgorzata; Kapuscinski, Jan

    2002-02-15

    Recently accumulated statistical data indicate the protective effect of caffeine consumption against several types of cancer diseases. There are also reports about protective effect of caffeine and other xanthines against tumors induced by polycyclic aromatic hydrocarbons. One of the explanations of this phenomenon is based on biological activation of such carcinogens by cytochromes that are also known for metabolism of caffeine. In the accompanying paper [Kapuscinski et al., this issue] we provide evidence (flow cytometry and the cell cycle analysis) that the cytostatic effects of caffeine (CAF) on two DNA alkylating agents, which do not require the biological activation, depend on their ability to form stacking (pi-pi) complexes. In this study, we use physicochemical techniques (computer aided light absorption and microcalorimetry), and molecular modeling to examine previously published qualitative data. This is published both by our and other group's data, indicates that CAF is able to modify the cytotoxic and/or cytostatic action of the two well known antitumor drugs doxorubicin (DOX) and mitoxantrone (MIT). To obtain the quantitative results from the experimental data we used the statistical-thermodynamical model of mixed aggregation, to find the association constants K(AC) of the CAF-drug interaction (128+/-10 and 356+/-21M(-1) for DOX-CAF and MIT-CAF complex formation, respectively). In addition, the favorable enthalpy change of CAF-MIT (DeltaH=-11.3kcal/mol) was measured by microcalorimetry titration. The molecular modeling (semi-empirical and force field method) allowed us to obtain the geometry of these complexes, which indicated the favorable energy (DeltaE) of complex formation of the protonated drug's molecules in aqueous environment (-7.4 and -8.7kcal/mol for DOX-CAF.5H(2)O and MIT-CAF.8H(2)O complex, respectively). The molecular modeling calculation indicates the existence of CAF-drug complexes in which the MIT molecules are intercalated between two

  12. Doxorubicin cardiomyopathy in children with left-sided Wilms tumor

    SciTech Connect

    Pinkel, D.; Camitta, B.; Kun, L.; Howarth, C.; Tang, T.

    1982-01-01

    Two children with Wilms tumor of the left kidney experienced severe anthracycline cardiomyopathy after irradiation to the tumor bed and conventional dosage of doxorubicin. The cardiomyopathy is attributed 1) to the fact that radiation fields for left Wilms tumor include the lower portion of the heart and 2) to the interaction of doxorubicin and irradiation on cardiac muscle. It is recommended that doxorubicin dosage be sharply restricted in children with Wilms tumor of the left kidney who receive postoperative irradiation.

  13. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Kanwal, Shamsa

    2014-03-15

    Polymers either serve as shielding or capping agents to restrict the nanoparticle size. This study demonstrates the polymer depositions and their effects in synthesis and sharp stabilization of gold nanoparticles (AuNPs) and to develop gold/silver nanoalloys (Au/Ag nanoalloys). Effects of different polymers are tested to justify their role in synthesis and stability of phloroglucinol (PG) coated AuNPs and Au/Ag nanoalloys. Cationic and anionic i.e. [Polydiallyldimethylammonium](+) (PDDA), [Polyethyleneimine](+) (PEI), [Polystyrene sulfonate](2-) (PSS) and neutral polymer Polychlorotriflouroethylene (PCTFE) produce praiseworthy stable AuNPs and Au/Ag nanoalloy. To prove polymer effects characterization protocols including UV-vis, Fluorescence (PL), IR and AFM imaging are performed to fully investigate the mechanism and size characteristics of these nanoparticles/nanoalloys. In this study sharp size controlling/sheilding effects were observed particularly with cationic polymers simply through the favorable electrostatic interactions with the terminal ends of PG Potent/significant detection of doxorubicin (DOX, an antileukemic agent) via fluorescence resonance energy transfer (FRET) between PEI shielded AuNPs (AuNPEI) and DOX was achieved upto 10 pM level, while PDDA protected AuNPs facilitated the detection of ascorbic acid based on fluorescence enhancement effects in wide range (10-200 nM) and with detection limit of 200 pM. Similarly sensing performance of PEI stabilized Au/Ag nanoalloys on addition of halides (Cl(-), Br(-), I(-)) is evaluated through red shifted SPR along with continuous increase in absorbance and also through AFM. Moreover the addition of halide ions also helped the regeneration of AuNPs by taking away silver from the Au/Ag nanoalloys enabling their detections upto subnanomolar levels.

  14. The effects of thymoquinone and Doxorubicin on leukemia and cardiomyocyte cell lines.

    PubMed

    Brown, R Keith; Wilson, Gerri; Tucci, Michelle A; Benghuzzi, Hamed A

    2014-01-01

    Acute Lymphoblastic Leukemia remains the most common cancer for children, and if left untreated is rapidly fatal. The gold standard for treatment of ALL in children is with a class of drugs known as the antracyclines. Long term outcomes following treatment of leukemia with antracylines can result in cardiac abnormalities including arrhythmias, congestive heart failure, myocardial infarction, hypertension and left ventricular failure. Thymoquinone is a natural product that has demonstrated anti-proliferative, anti-inflammatory, anti-cancer, and chemo-protective effects in control trials as well as a reduction in cardiotoxicity in antracyline treated rats. The aims of the study were to determine if thymoqunione could be used to reduce leukemia cell viability without injuring primary cardiomyocyte, and to determine its effects if used in conjunction with a known chemotherapeutic agent. Cellular viability and morphological changes were observed in the, RAW leukemia cells and cardiac myocytes following treatment with thymoquinone, antracyline (doxorubicin), alone and in combination for 24, 48 and 72 hours. The results suggest that thymoquinone treatment in RAW leukemia cells reduced the cell number without altering the morphology, while doxorubicin reduced cell number and induced spindle cell formation and increased cellular damage. Findings also suggest RAW cell apoptosis increased in combination therapy with thymoquinone and doxorubicin. Thymoquinone administered to cardiomyocytes showed similar morphological changes as control over time in culture; whereas doxorubicin treated cells showed evidence of loss of connectivity and disruption of cell membranes. Combination treatment with doxorubicin and thymoquinone demonstrated significant cardiac myocyte survival at concentrations when used alone were able to reduce the leukemia cells. Overall, the data is promising and may provide a treatment regime to protect the heart tissue. Additional work is warrant to understand

  15. New treatment strategy including biological agents in patients with systemic lupus erythematosus.

    PubMed

    Leszczyński, Piotr; Pawlak-Buś, Katarzyna

    2013-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous disease, in which B lymphocyte activation and chronic inflammation play the key role. Both the disease itself and its treatment cause damage to multiple organs and systems. So far, despite intensive treatment, disease remission has been achieved in few patients, and the ratio of organ complications has increased significantly. This is caused by a long‑term glucocorticoid therapy with a relatively rare use of immunosuppressive drugs. With a new treatment strategy and modern immunotherapy, it is possible to reduce the mortality rate, limit multiple‑organ damage, thereby significantly improving the quality of life and prognosis of patients with SLE. The "treat‑to‑target" strategy enables targeted treatment resulting in a long‑term symptom remission. It is based on an intensive immunosuppressive treatment with simultaneous reduction of glucocorticoid doses, and limiting their use solely to exacerbations in disease activity. The current idea for treatment is also the conscious use of the beneficial potential of background SLE treatment including antimalarial agents and standard immunosuppressive therapy. With the first biological agent approved for SLE treatment, the new age of therapy has dawned. Biologics offer new prospects and possibilities to induce clinical and immunological remission of SLE.

  16. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin.

    PubMed

    Ray, Balmiki; Lahiri, Debomoy K

    2009-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the elderly. Deposition of amyloid beta plaque and associated neuroinflammation are the major hallmarks of AD. Whereas reactive oxygen species (ROS) and activated microglial cells contribute to neuronal loss, nuclear factor kappaB and apolipoprotein E participate in inflammatory process of AD. Current FDA approved drugs provide only symptomatic relief in AD. For broad spectrum of activity, some natural products are also being tested. Turmeric is used as an anti-inflammatory medicine in various regions of Asia. Curcumin, which is a yellow colored polyphenol compound present in turmeric, showed anti-inflammatory properties. Herein, we discuss the neurobiological and neuroinflammatory pathways of AD, evaluate different molecular targets and potential therapeutic agents, including curcumin, for the treatment of AD.

  17. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  18. Advancing the agent methodology to include the higher order of neutron anisotropy with accelerated solutions

    NASA Astrophysics Data System (ADS)

    Satvat, Nader

    With the development of new core designs for generation IV reactors with their complexity and newer fuel designs, the need for consideration of neutron anisotropic scattering is becoming important for enchasing the economy and reliability of these designs. The theory and accurate modeling of neutron anisotropy is one of the most important problems of the transport solution to neutron Boltzmann equation. A number of methods based on careful theoretical developments, were established to numerically determine the effect of anisotropy; some of these methods are: the spherical harmonics method, the so-called function method (FN), the discrete ordinate method, and the Monte Carlo method. The AGENT methodology, based on the method of characteristics, currently the most accurate neutron transport method, represents the state-of-the-art advanced neutronics simulation tool available for 2D, 3D, and full core modeling. The higher order of anisotropic scattering (with no limitation of the number of expansion) is introduced into the AGENT code. An extensive analysis is performed to verify and validate this new model. It is shown that anisotropic scattering is important to be considered for complex geometries due to high angular dependence of neutron flux. The first principle in physics were used to explain the effects of anisotropic scattering (at the level on particle interactions), importance in including the higher moments in flux development for the core designs of high heterogonous structure promoting biased scattering (at the level of heterogeneous reactor assemblies in 2D and 3D). This inclusion of higher order of anisotropic scattering as expected increased the complexity of the mathematical model which in turn increased the computational time. An analysis of the computational time dependence on anisotropic scattering and the method of characteristics resolution parameters are analyzed with accurate predictions of scaling to larger geometries. Finally, an accelerated

  19. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth

    PubMed Central

    Zhao, Yong; Tu, Mei-Juan; Yu, Yi-Feng; Wang, Wei-Peng; Chen, Qiu-Xia; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2016-01-01

    Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent. PMID:26518752

  20. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth.

    PubMed

    Zhao, Yong; Tu, Mei-Juan; Yu, Yi-Feng; Wang, Wei-Peng; Chen, Qiu-Xia; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2015-12-15

    Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent.

  1. Maximizing the Benefit-Cost Ratio of Anthracyclines in Metastatic Breast Cancer: Case Report of a Patient with a Complete Response to High-Dose Doxorubicin

    PubMed Central

    Shee, Kevin; Kono, Alan T.; D'Anna, Susan P.; Seltzer, Mark A.; Lu, Xiaoying; Miller, Todd W.; Chamberlin, Mary D.

    2016-01-01

    Despite the clinical efficacy of anthracycline agents such as doxorubicin, dose-limiting cardiac toxicities significantly limit their long-term use. Here, we present the case of a 33-year-old female patient with extensive metastatic ER+/PR+/HER2– mucinous adenocarcinoma of the breast, who was started on doxorubicin/cyclophosphamide therapy after progressing on paclitaxel and ovarian suppressor goserelin with aromatase inhibitor exemestane. The patient was comanaged by cardiology, who carefully monitored measures of cardiac function, including EKGs, serial echocardiograms, and profiling of lipids, troponin, and pro-BNP every 2 months. The patient was treated with the cardioprotective agent dexrazoxane, and changes in cardiac markers [e.g. decreases in ejection fraction (EF)] were immediately addressed by therapeutic intervention with the ACE inhibitor lisinopril and beta-blocker metoprolol. The patient had a complete response to doxorubicin therapy, with a cumulative dose of 1,350 mg/m2, which is significantly above the recommended limits, and to our knowledge, the highest dose reported in literature. Two and a half years after the last doxorubicin cycle, the patient is asymptomatic with no cardiotoxicity and an excellent quality of life. This case highlights the importance of careful monitoring and management of doxorubicin-mediated cardiotoxicity, and that higher cumulative doses of anthracyclines can be considered in patients with ongoing clinical benefit. PMID:28101033

  2. Mechanisms of doxorubicin resistance in hepatocellular carcinoma

    PubMed Central

    Cox, Josiah; Weinman, Steven

    2015-01-01

    Hepatocellular carcinoma, one of the most common solid tumors worldwide, is poorly responsive to available chemotherapeutic approaches. While systemic chemotherapy is of limited benefit, intra-arterial delivery of doxorubicin to the tumor frequently produces tumor shrinkage. Its utility is limited, in part, by the frequent emergence of doxorubicin resistance. The mechanisms of this resistance include increased expression of multidrug resistance efflux pumps, alterations of the drug target, topoisomerase, and modulation of programmed cell death pathways. Many of these effects result from changes in miRNA expression and are particularly prominent in tumor cells with a stem cell phenotype. This review will summarize the current knowledge on the mechanisms of doxorubicin resistance of hepatocellular carcinoma and the potential for approaches toward therapeutic chemosensitization. PMID:26998221

  3. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes.

    PubMed

    Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan

    2006-01-01

    Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis.

  4. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  5. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  6. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  7. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  8. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity.

    PubMed

    Fouad, Amr A; Albuali, Waleed H; Al-Mulhim, Abdulruhman S; Jresat, Iyad

    2013-09-01

    The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury.

  9. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    SciTech Connect

    Lai, H.C.; Yeh, Y.C.; Wang, L.C.; Ting, C.T.; Lee, W.L.; Lee, H.W.; Wang, K.Y.; Wu, A.; Su, C.S.; Liu, T.J.

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  10. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... topical application and is accumulated in the body, giving rise to numerous adverse effects. Mercury is a... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13...

  11. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase

    PubMed Central

    Liu, Yan; Asnani, Aarti; Zou, Lin; Bentley, Victoria L.; Yu, Min; Wang, You; Dellaire, Graham; Sarkar, Kumar S.; Dai, Matthew; Chen, Howard H.; Sosnovik, David E.; Shin, Jordan T.; Haber, Daniel A.; Berman, Jason N.; Chao, Wei; Peterson, Randall T.

    2015-01-01

    Doxorubicin is a highly effective anti-cancer chemotherapy agent, but its usage is limited by its cardiotoxicity. To develop a drug that prevents the cardiac toxicity of doxorubicin while preserving its anti-tumor potency, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulated the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and discovered that visnagin (VIS) and diphenylurea (DPU) rescue cardiac performance and circulatory defects caused by doxorubicin treatment in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. Furthermore, VIS treatment improved cardiac contractility in doxorubicin-treated mice. Importantly, VIS and DPU caused no reduction in the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we discovered that VIS binds to mitochondrial malate dehydrogenase (MDH2), one of the key enzymes in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS’s cardioprotective effects. Taken together, this study identified VIS and DPU as potent cardioprotective compounds and implicates MDH2 as a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy. PMID:25504881

  12. TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin

    PubMed Central

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Townley, Debra M.; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S.; Sood, Anil K.; Tsvetkov, Andrey S.

    2016-01-01

    Doxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62. Neurons treated with doxorubicin contained autophagosomes, damaged mitochondria, and lipid droplets. The brains from mice treated with pegylated liposomal doxorubicin exhibited autophagosomes, often with mitochondria, lipofuscin, and lipid droplets. Interestingly, lysosomes were less acidic in doxorubicin-treated neurons. Overexpression of the transcription factor EB (TFEB), which controls the autophagy-lysosome axis, increased survival of doxorubicin-treated neurons. 2-Hydroxypropyl-β-cyclodextrin (HPβCD), an activator of TFEB, also promoted neuronal survival, decreased the levels of p62, and lowered the pH in lysosomes. Taken together, substantial changes induced by doxorubicin contribute to neurotoxicity, cognitive disturbances in cancer patients and survivors, and accelerated brain aging. The TFEB pathway might be a new approach for mitigating damage of neuronal autophagy caused by doxorubicin. PMID:27992857

  13. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity

    PubMed Central

    Gu, Jun; Hu, Wei; Zhang, Da-dong

    2015-01-01

    Doxorubicin is the mainstay of treatment for various haematological malignancies and solid tumours. However, its clinical application may be hampered by dose-dependent cardiotoxicity. The mechanism of doxorubicin-induced cardiotoxicity may involve various signalling pathways including free radical generation, peroxynitrite formation, calcium overloading, mitochondrial dysfunction and alteration in apoptosis and autophagy. Interestingly, the use of resveratrol in combination with doxorubicin has been reported to prevent cardiac toxicity as well as to exert a synergistic effect against tumour cells both in vivo and in vitro. Thus, the aim of this review is to summarize current knowledge and to elucidate the protective effect of resveratrol in doxorubicin-induced cardiotoxicity. PMID:26177159

  14. Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin.

    PubMed

    Kim, Kwang-Youn; Kim, Sang-Hun; Yu, Sun-Nyoung; Park, Suel-Ki; Choi, Hyeun-Deok; Yu, Hak-Sun; Ji, Jae-Hoon; Seo, Young-Kyo; Ahn, Soon-Cheol

    2015-08-01

    Salinomycin is a monocarboxylic polyether antibiotic, which is widely used as an anticoccidial agent. The anticancer property of salinomycin has been recognized and is based on its ability to induce apoptosis in human multidrug resistance (MDR). The present study investigated whether salinomycin reverses MDR towards chemotherapeutic agents in doxorubicin-resistant MCF-7/MDR human breast cancer cells. The results demonstrated that doxorubicin-mediated cytotoxicity was significantly enhanced by salinomycin in the MCF-7/MDR cells, and this occurred in a dose-dependent manner. This finding was consistent with subsequent observations made under a confocal microscope, in which the doxorubicin fluorescence signals of the salinomycin-treated cells were higher compared with the cells treated with doxorubicin alone. In addition, flow cytometric analysis revealed that salinomycin significantly increased the net cellular uptake and decreased the efflux of doxorubicin. The expression levels of MDR-1 and MRP-1 were not altered at either the mRNA or protein levels in the cells treated with salinomycin. These results indicated that salinomycin was mediated by its ability to increase the uptake and decrease the efflux of doxorubicin in MCF-7/MDR cells. Salinomycin reversed the resistance of doxorubicin, suggesting that chemotherapy in combination with salinomycin may benefit MDR cancer therapy.

  15. Cyclophosphamide and Doxorubicin Induced Melanonychia: A Case Report

    PubMed Central

    Prajapati, Vivek Bhanubhai; Acharya, Raviraj; Gopalaswamy, Vinaya; Doddamani, Akhila

    2017-01-01

    Chemotherapeutic agents may rarely cause discoloration and hyperpigmentation of the nails. We present a patient who developed blackish discoloration of nails also referred as melanonychia during six cycles of R-CHOP chemotherapy regimen (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) for the treatment of Non Hodgkin Lymphoma (NHL) follicular type. The patient developed blackish brown discoloration in all the nails. As suggested by previous literature evidence the melanonychia could be associated with cyclophosphamide and doxorubicin. According to the Naranjo causality assessment scale, we established that there was a ‘probable’ association of nail discoloration with the drug. PMID:28273993

  16. Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells.

    PubMed

    Zhang, Rong; Saito, Ryuta; Shibahara, Ichiyo; Sugiyama, Shinichiro; Kanamori, Masayuki; Sonoda, Yukihiko; Tominaga, Teiji

    2016-01-01

    Temozolomide is a standard chemotherapy agent for malignant gliomas, but the efficacy is still not satisfactory. Therefore, combination chemotherapy using temozolomide with other anti-tumor compounds is now under investigation. Here we studied the mechanism of the synergistic anti-tumor effect achieved by temozolomide and doxorubicin, and elucidated the inhibitory effect of temozolomide on P-glycoprotein (P-gp). Temozolomide significantly enhanced sensitivity to P-gp substrate in glioma cells, particularly in P-gp-overexpressed cells. Synergetic effects, as determined by isobologram analysis, were observed by combining temozolomide and doxorubicin. Subsequently, flow cytometry was utilized to assess the intracellular retention of doxorubicin in cells treated with doxorubicin with or without temozolomide. Temozolomide significantly increased the accumulation of doxorubicin in these cells. The P-gp adenosine triphosphatase (ATPase) assay showed that temozolomide inhibited the ATPase activity of P-gp. In addition, temozolomide combined with doxorubicin significantly prolonged the survival of 9L intracranial allografted glioma-bearing rats compared to single agent treatment. Collectively, our findings suggest that temozolomide can reverse doxorubicin resistance by directly affecting P-gp transport activity. Combination chemotherapy using temozolomide with other agents may be effective against gliomas in clinical applications.

  17. Beta-galactoside prodrugs of doxorubicin for application in antibody directed enzyme prodrug therapy/prodrug monotherapy.

    PubMed

    Devalapally, HariKrishna; Navath, Raghavendra Swamy; Yenamandra, Venkateshwarlu; Akkinepally, RaghuRam Rao; Devarakonda, Rama Krishna

    2007-06-01

    Anthracycline antibiotics, particularly doxorubicin and daunorubicin, have been used exten sively in the treatment of human malignancies. However cardiotoxicity and multidrug resistance are significant problems that limit the clinical efficacy of such agents. Rational design to avoid these side effects includes strategies such as drug targeting and prodrug synthesis. Described here are the synthesis and preliminary biological evaluation of the enzymatically activated two new prodrugs (6 & 11) of doxorubicin. These prodrugs were designed as potential candidates for selective chemotherapy in ADEPT or PMT strategies. They are constituted of a galactose moiety, a spacer and the cytotoxic drug and they differ by the type of spacer. The prodrugs were stable in a buffer, and the in vitro studies showed good detoxification and hydrolysis kinetics. As prodrug 11 was readily hydrolyzed, this could be a valuable candidate for further development.

  18. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    PubMed Central

    2009-01-01

    Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Methods Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOSR2, U-2OS, and U-2OSR2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Results Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Conclusion Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma. PMID:19917123

  19. Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment

    PubMed Central

    Li, Haoyu; Chen, Zhenghu; Hu, Ting; Wang, Long; Yu, Yang; Zhao, Yanling; Sun, Wenijing; Guan, Shan; Pang, Jonathan C.; Woodfield, Sarah E.; Liu, Qing; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial malignant solid tumor seen in children and continues to lead to the death of many pediatric cancer patients. The poor outcome in high risk NB is largely attributed to the development of chemoresistant tumor cells. Doxorubicin (dox) has been widely employed as a potent anti-cancer agent in chemotherapeutic regimens; however, it also leads to chemoresistance in many cancer types including NB. Thus, developing novel small molecules that can overcome dox-induced chemoresistance is a promising strategy in cancer therapy. Here we show that the second generation proteasome inhibitor ixazomib (MLN9708) not only inhibits NB cell proliferation and induces apoptosis in vitro but also enhances dox-induced cytotoxicity in NB cells. Ixazomib inhibits dox-induced NF-κB activity and sensitizes NB cells to dox-induced apoptosis. More importantly, ixazomib demonstrated potent anti-tumor efficacy in vivo by enhancing dox-induced apoptosis in an orthotopic xenograft NB mouse model. Collectively, our study illustrates the anti-tumor efficacy of ixazomib in NB both alone and in combination with dox, suggesting that combination therapy including ixazomib with traditional therapeutic agents such as dox is a viable strategy that may achieve better outcomes for NB patients. PMID:27687684

  20. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin.

    PubMed

    Farhane, Z; Bonnier, F; Casey, A; Byrne, H J

    2015-06-21

    Vibrational spectroscopy, including Raman micro spectroscopy, has been widely used over the last few years to explore potential biomedical applications. Indeed, Raman micro spectroscopy has been demonstrated to be a powerful non-invasive tool in cancer diagnosis and monitoring. In confocal microscopic mode, the technique is also a molecularly specific analytical tool with optical resolution which has potential applications in subcellular analysis of biochemical processes, and therefore as an in vitro screening tool of the efficacy and mode of action of, for example, chemotherapeutic agents. In order to demonstrate and explore the potential in this field, established, model chemotherapeutic agents can be valuable. In this study paper, Raman micro spectroscopy coupled with confocal microscopy were used for the localization and tracking of the commercially available drug, doxorubicin (DOX), in the intracellular environment of the lung cancer cell line, A549. Cytotoxicity assays were employed to establish clinically relevant drug doses for 24 h exposure, and Confocal Laser Scanning Fluorescence Microscopy was conducted in parallel with Raman micro spectroscopy profiling to confirm the drug internalisation and localisation. Multivariate statistical analysis, consisting of PCA (principal components analysis) was used to highlight doxorubicin interaction with cancer cells and spectral variations due to its effects before and after DOX spectral features subtraction from nuclear and nucleolar spectra, were compared to non-exposed control spectra. Results show that Raman micro spectroscopy is not only able to detect doxorubicin inside cells and profile its specific subcellular localisation, but, it is also capable of elucidating the local biomolecular changes elicited by the drug, differentiating the responses in different sub cellular regions. Further analysis clearly demonstrates the early apoptotic effect in the nuclear regions and the initial responses of cells to this

  1. Decursin in Angelica gigas Nakai (AGN) Enhances Doxorubicin Chemosensitivity in NCI/ADR-RES Ovarian Cancer Cells via Inhibition of P-glycoprotein Expression.

    PubMed

    Choi, Hyeong Sim; Cho, Sung-Gook; Kim, Min Kyoung; Kim, Min Soo; Moon, Seung Hee; Kim, Il Hwan; Ko, Seong-Gyu

    2016-12-01

    Angelica gigas Nakai (AGN, Korean Dang-gui) is traditionally used for the treatment of various diseases including cancer. Here, we investigated multidrug-resistant phenotype-reversal activities of AGN and its compounds (decursin, ferulic acid, and nodakenin) in doxorubicin-resistant NCI/ADR-RES ovarian cancer cells. Our results showed that a combination of doxorubicin with either AGN or decursin inhibited a proliferation of NCI/ADR-RES cells. These combinations increased the number of cells at sub-G1 phase when cells were stained with Annexin V-fluorescein isothiocyanate. We also found that these combinations activated caspase-9, caspase-8, and caspase-3 and increased cleaved PARP level. Moreover, an inhibition of P-glycoprotein expression by either AGN or decursin resulted in a reduction of its activity in NCI/ADR-RES cells. Therefore, our data demonstrate that decursin in AGN inhibits doxorubicin-resistant ovarian cancer cell proliferation and induces apoptosis in the presence of doxorubicin via blocking P-glycoprotein expression. Therefore, AGN would be a potentially novel treatment option for multidrug-resistant tumors by sensitizing to anticancer agents. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Biopolymer based nanosystem for doxorubicin targeted delivery

    PubMed Central

    Csikós, Zsuzsanna; Kerekes, Krisztina; Fazekas, Erika; Kun, Sándor; Borbély, János

    2017-01-01

    This study describes formation of an actively and passively targeted, water-soluble drug delivery system (DDS) which contains doxorubicin (DOX). The system comprises two biocompatible and biodegradable polymers: poly-γ-glutamic acid (PGA) and chitosan (CH). Self-assembly of these biopolymers in aqueous medium results stable nanoparticles (NPs) with a hydrodynamic size of 80-150 nm and slightly negative surface charge. Folic acid (FA) was used as targeting agent bonded to the polyanion (PA) and also to the surface of the NPs. The NP’s physical stability, active targeting effect, cellular toxicity, release profile and in vivo anti-tumor efficacy were investigated. It was found that the targeted, self-assembled nanoparticles are stable at 4°C for several months, cause better in vitro toxicity effect on folate receptor (FR) positive cell lines than the doxorubicin or the non-targeted nanosystem and based on its release profile it is expected, that the nanosystem will remain stable during the circulation in the body. Pharmacodynamic studies demonstrated that the DOX-loaded nanoparticles can deliver greater tumor growth inhibition than the free drug molecules and the liposomal compound, with less general toxicity. It was observed that the overall survival is the main benefit of the biopolymer based drug delivery system.

  3. Hypersensitivity to antineoplastic agents.

    PubMed

    Castells, M C

    2008-01-01

    The need to offer first line therapy for primary and recurrent cancers has spurred the clinical development of rapid desensitizations for chemotherapy and monoclonal antibodies. Rapid desensitizations allow patients to be treated with medications to which they have presented with hypersensitivity reactions (HSRs), including anaphylaxis. Rapid desensitization achieves temporary tolerization to full therapeutic doses by slow administration of incremental doses of the drug inducing the HSR. Protocols are available for most chemotherapy agents, including taxanes, platins, doxorubicin, monoclonal antibodies, and others. Candidate patients include those who present with type I HSRs, mast cell/IgE dependent, including anaphylaxis, and non-IgE mediated HSRs, during the chemotherapy infusion or shortly after. Idiosyncratic reactions, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis are not amenable to rapid desensitization. The recommendation for rapid desensitization can only be made by allergy and immunology specialists and can only be performed in settings with one-to-one nurse-patient care and where resuscitation personnel and resources are readily available. Repeated desensitizations can be safely performed in outpatient settings with similar conditions, which allow cancer patients to remain in clinical studies. We have generated a universal 12-step protocol that was applied to 413 cases of intravenous and intraperitoneal rapid desensitizations using taxanes, platins, liposomal doxorubicin, doxorubicin, rituximab, and other chemotherapy drugs. Under this protocol all patients were able to complete their target dose, and 94% of the patients had limited or no reactions. No deaths or codes were reported, indicating that the procedure was safe and effective in delivering first line chemotherapy drugs.

  4. Combination regimens using doxorubicin and pegylated liposomal doxorubicin prior to autologous transplantation in multiple myeloma.

    PubMed

    Moreau, Philippe

    2009-07-01

    Doxorubicin and pegylated liposomal doxorubicin are key compounds of several induction regimens used prior to autologous stem cell transplantation in patients with de novo multiple myeloma, such as vincristine, doxorubicin, dexamethasone (VAD), vincristine, pegylated liposomal doxorubicin/Doxil, dexamethasone (DVd) or PS-341/bortezomib, doxorubicin, dexamethasone (PAD). The aim of this article is to summarize the more recent data available on the efficacy of these combinations and to discuss their role as part of initial therapy.

  5. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer.

    PubMed

    Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mohandesi, Jamshid Aghazadeh; Yazdian, Fatemeh; Mokhtari-Dizaji, Manijhe

    2016-12-01

    Perfluorocarbon nanoemulsions are a new class of multifunctional stimuli-responsive nanocarriers which combine the properties of passive-targeted drug carriers, ultrasound imaging contrast agents, and ultrasound-responsive drug delivery systems. Doxorubicin-loaded alginate stabilized perflourohexane (PFH) nanodroplets were synthesized via nanoemulsion preparation method and their ultrasound responsivity, imaging, and therapeutic properties were studied. Doxorubicin was loaded into the nanodroplets (39.2nm) with encapsulation efficiency of 92.2%. In vitro release profile of doxorubicin from nanodroplets was an apparently biphasic release process and 12.6% of drug released from nanodroplets after 24h incubation in PBS, pH=7.4. Sonication with 28kHz therapeutic ultrasound for 10min triggered droplet-to-bubble transition in PFH nanodroplets which resulted in the release of 85.95% of doxorubicin from nanodroplets. Microbubbles formed by acoustic vaporization of the nanodroplets underwent inertial cavitation. In the breast cancer mice models, ultrasound-mediated therapy with doxorubicin-loaded PFH nanodroplets showed excellent anti-cancer effects characterized by tumor regression. Complete tumor regression was observed for the group in which doxorubicin-loaded nanodroplets were combined with ultrasound, whereas the tumor growth inhibition of doxorubicin -loaded nanodroplets was 89.6%. These multifunctional nanodroplets, with excellent therapeutic and ultrasound properties, could be promising drug delivery systems for chemotherapeutic application.

  6. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes

    PubMed Central

    Maillet, Agnes; Tan, Kim; Chai, Xiaoran; Sadananda, Singh N.; Mehta, Ashish; Ooi, Jolene; Hayden, Michael R.; Pouladi, Mahmoud A.; Ghosh, Sujoy; Shim, Winston; Brunham, Liam R.

    2016-01-01

    Doxorubicin is a highly efficacious anti-cancer drug but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity (DIC) remain incompletely understood. We investigated the characteristics and molecular mechanisms of DIC in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). We found that doxorubicin causes dose-dependent increases in apoptotic and necrotic cell death, reactive oxygen species production, mitochondrial dysfunction and increased intracellular calcium concentration. We characterized genome-wide changes in gene expression caused by doxorubicin using RNA-seq, as well as electrophysiological abnormalities caused by doxorubicin with multi-electrode array technology. Finally, we show that CRISPR-Cas9-mediated disruption of TOP2B, a gene implicated in DIC in mouse studies, significantly reduces the sensitivity of hPSC-CMs to doxorubicin-induced double stranded DNA breaks and cell death. These data establish a human cellular model of DIC that recapitulates many of the cardinal features of this adverse drug reaction and could enable screening for protective agents against DIC as well as assessment of genetic variants involved in doxorubicin response. PMID:27142468

  7. Use of 99mTc-doxorubicin scintigraphy in females with breast cancer: a pilot study

    PubMed Central

    Araujo, F I; Proença, F P P; Ferreira, C G; Ventilari, S C; Rosado de Castro, P H; Moreira, R D; Fonseca, L M B; Gutfilen, B

    2015-01-01

    Objective: Doxorubicin (Eurofarma, São Paulo, Brazil) is an antitumour agent widely used in the treatment of breast cancer and can be used for tumour tracking when labelled with a radionuclide. Here, we present the results obtained with technetium-99m (99mTc)-doxorubicin, using the direct method, to evaluate its uptake in breast cancer. Methods: Four females with confirmed breast carcinoma diagnosis and breast image reporting and data system Category 5 on mammography underwent whole-body and thorax single-photon emission CT/CT imaging 1 and 3 h after 99mTc-doxorubicin administration. Results: We observed increased uptake in breast carcinoma lesions and elimination via renal and hepatic pathways. Conclusion: These preliminary results suggest that 99mTc-doxorubicin may be a promising radiopharmaceutical for the evaluation of patients with breast cancer. Further studies are ongoing. Advances in knowledge: To our knowledge, this is the first study to evaluate the use of a directly labelled doxorubicin tracer in humans. 99mTc-doxorubicin could provide information on the response of tumours to doxorubicin. PMID:26111270

  8. Construction of block copolymers for the coordinated delivery of doxorubicin and magnetite nanocubes.

    PubMed

    Wang, Yong; Ibrahim, Nor Lizawati; Jiang, Jiang; Gao, Shujun; Erathodiyil, Nandanan; Ying, Jackie Y

    2013-08-10

    Multifunctional nanoparticles combine drug and imaging agent together to assign both therapeutic and diagnostic functions. However, particle aggregation/dissociation and/or major differences in the bio-distribution and targeting capability of drugs and imaging probes are main obstacles for the efficient, coordinated delivery of multiple agents, unless the different agents can be tightly bound and well-protected during their circulation in vivo. In this paper, we report the coordinated in vivo delivery of anti-cancer drugs and imaging agents by chemically loading doxorubicin and magnetite nanocubes (MNs) in the core of polymeric nanoparticles. Living polymerization, nitroxide-mediated radical polymerization (NMP), was applied to construct the optimal polymers to co-deliver doxorubicin and MNs. The resulting diblock polymers consisted of one block with triethylene glycol brushes and another block with carboxylic acid groups to bind doxorubicin and Fe3O4 MNs. The optimal polymer has narrow polydispersity (PDI=1.2) and high doxorubicin/MN loading (30wt.%/28wt.%). Core-shell particles were obtained with good stability and a suitable particle size of ~100nm. The doxorubicin and MNs loaded in this polymeric system showed highly coordinated bio-distribution in the balb/C mice model. This system may have important impact on the design of effective and stable dual-agent co-delivery systems.

  9. Doxorubicin: nanotechnological overviews from bench to bedside.

    PubMed

    Cagel, Maximiliano; Grotz, Estefanía; Bernabeu, Ezequiel; Moretton, Marcela A; Chiappetta, Diego A

    2017-02-01

    Doxorubicin (DOX) is considered one of the most effective chemotherapeutic agents, used as a first-line drug in numerous types of cancer. Nevertheless, it exhibits serious adverse effects, such as lethal cardiotoxicity and dose-limiting myelosuppression. In this review, we focus on the description and the clinical benefits of different DOX-loaded nanotechnological platforms, not only those commercially available but also the ones that are currently in clinical phases, such as liposomes, polymeric nanoparticles, polymer-drug conjugates, polymeric micelles and ligand-based DOX-loaded nanoformulations. Although some DOX-based nanoproducts are currently being used in the clinical field, it is clear that further research is necessary to achieve improvements in cancer therapeutics.

  10. Rural-urban migration including formal and informal workers in the urban sector: an agent-based numerical simulation study

    NASA Astrophysics Data System (ADS)

    Branco, Nilton; Oliveira, Tharnier; Silveira, Jaylson

    2012-02-01

    The goal of this work is to study rural-urban migration in the early stages of industrialization. We use an agent-based model and take into account the existence of informal and formal workers on the urban sector and possible migration movements, dependent on the agents' social and private utilities. Our agents are place on vertices of a square lattice, such that each vertex has only one agent. Rural, urban informal and urban formal workers are represented by different states of a three-state Ising model. At every step, a fraction a of the agents may change sectors or migrate. The total utility of a given agent is then calculated and compared to a random utility, in order to check if this agent turns into an actual migrant or changes sector. The dynamics is carried out until an equilibrium state is reached and equilibrium variables are then calculated and compared to available data. We find that a generalized Harris-Todaro condition is satisfied [1] on these equilibrium regimes, i.e, the ratio between expected wages between any pair of sectors reach a constant value. [4pt] [1] J. J. Silveira, A. L. Esp'indola and T. J. Penna, Physica A, 364, 445 (2006).

  11. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats.

    PubMed

    Khames, Ali; Khalaf, Marwa M; Gad, Amany M; Abd El-Raouf, Ola M

    2017-02-28

    Sildenafil and febuxostat protect against doxorubicin-induced nephrotoxicity; however the exact mechanism remains to be elucidated. The effect of sildenafil and febuxostat on doxorubicin-induced nephrotoxicity in rats was studied. Male rats were subdivided into nine groups. The 1st group served as normal control, the 2nd group received dimethylsulfoxide 50% (DMSO), the 3rd group received doxorubicin (3.5mg/kg, i.p.), twice weekly for 3 weeks. The next 3 groups received sildenafil (5mg/kg; p.o.), febuxostat (10mg/kg; p.o.) and their combination, respectively daily for 21 days. The last 3 groups received doxorubicin in combination with sildenafil, febuxostat or their combination. Nephrotoxicity was evaluated histopathologically by light microscopy and biochemically through measuring the following parameters, Kidney function biomarkers [serum levels of urea, creatinine and uric acid], oxidative stress biomarkers [kidney contents of glutathione reduced (GSH) and malondialdehyde (MDA)], The apoptotic marker namely; caspase-3 in kidney tissue and the inflammatory mediator tumor necrosis factor alpha (TNF-α). doxorubicin-induced a significant elevation in nephrotoxicity markers, expression of caspase-3 and caused induction of inflammation and oxidative stress. Histological changes in the kidney was tubular necrosis. Sildenafil and/or febuxostat administration with doxorubicin caused a significant decrease in nephrotoxicity markers and inflammatory mediators, restoration of normal values of oxidative stress biomarkers and hampering the expression of renal caspase-3. They also ameliorate histological changes induced by doxorubicin. sildenafil and febuxostat are promising protective agents against doxorubicin-nephrotoxicity through improving biochemical, inflammatory, histopathological and immunohistochemical alterations induced by doxorubicin.

  12. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin.

    PubMed

    Moyal, Lilach; Feldbaum, Nataly; Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.

  13. A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues.

    PubMed

    Lucas, Andrew T; O'Neal, Sara K; Santos, Charlene M; White, Taylor F; Zamboni, William C

    2016-02-05

    Doxorubicin, a widely used anticancer agent, exhibits antitumor activity against a wide variety of malignancies. The drug exerts its cytotoxic effects by binding to and intercalating within the DNA of tumor and tissue cells. However, current assays are unable to accurately determine the concentration of the intracellular active form of doxorubicin. Thus, the development of a sample processing method and a high-performance liquid chromatography (HPLC) methodology was performed in order to quantify doxorubicin that is associated with DNA in tumors and tissues, which provided an intracellular cytotoxic measure of doxorubicin exposure after administration of small molecule and nanoparticle formulations of doxorubicin. The assay uses daunorubicin as an internal standard; liquid-liquid phase extraction to isolate drug associated with DNA; a Shimadzu HPLC with fluorescence detection equipped with a Phenomenex Luna C18 (2μm, 2.0×100mm) analytical column and a gradient mobile phase of 0.1% formic acid in water or acetonitrile for separation and quantification. The assay has a lower limit of detection (LLOQ) of 10ng/mL and is shown to be linear up to 3000ng/mL. The intra- and inter-day precision of the assay expressed as a coefficient of variation (CV%) ranged from 4.01 to 8.81%. Furthermore, the suitability of this assay for measuring doxorubicin associated with DNA in vivo was demonstrated by using it to quantify the doxorubicin concentration within tumor samples from SKOV3 and HEC1A mice obtained 72h after administration of PEGylated liposomal doxorubicin (Doxil(®); PLD) at 6mg/kg IV x 1. This HPLC assay allows for sensitive intracellular quantification of doxorubicin and will be an important tool for future studies evaluating intracellular pharmacokinetics of doxorubicin and various nanoparticle formulations of doxorubicin.

  14. Effects of St. John’s Wort and Vitamin E on Breast Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2002-05-01

    Johns wort may decrease peak levels of doxorubicin. Further studies will help to determine whether important interactions occur between these nutrients and cancer chemotherapeutic agents....doxorubicin. Our studies suggest that even relatively high doses of vitamin E do not adversely affect the toxicity of doxorubicin. On the other hand, St

  15. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma.

    PubMed

    Sewing, A Charlotte P; Lagerweij, Tonny; van Vuurden, Dannis G; Meel, Michaël H; Veringa, Susanna J E; Carcaboso, Angel M; Gaillard, Pieter J; Peter Vandertop, W; Wesseling, Pieter; Noske, David; Kaspers, Gertjan J L; Hulleman, Esther

    2017-02-17

    OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic

  16. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity

    SciTech Connect

    Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.; Lee, Helen; Leonard, Shannon C.; Klinz, Stephan G.; Noble, Charles O.; Lücker, Petra B.; Zandstra, Peter W.; Drummond, Daryl C.; Olivier, Kenneth J.; Nielsen, Ulrik B.; Niyikiza, Clet; Agresta, Samuel V.; Wickham, Thomas J.

    2012-07-01

    Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there has been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers. -- Highlights: ► Novel approach using stem cell-derived cardiomyocytes to assess preclinical safety. ► HER2-targeted liposomal doxorubicin has improved safety profile vs free doxorubicin

  17. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  18. Doxorubicin as an Antioxidant: Maintenance of Myocardial Levels of Lycopene under Doxorubicin Treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanism of doxorubicin-induced cardiotoxicity remains controversial. Wistar-rats (n=96) were randomly assigned to either a control (C), Lycopene (L), Doxorubicin (D) or Doxorubicin + Lycopene (DL) group. The L and DL groups received lycopene (5 mg/Kg-body-wt/d by gavage) for 7 wks. The D and D...

  19. Pegylated liposomal doxorubicin and immunomodulatory drug combinations in multiple myeloma: rationale and clinical experience.

    PubMed

    Chanan-Khan, Asher Alban; Lee, Kelvin

    2007-04-01

    The availability of new agents for multiple myeloma (MM) provides an opportunity to further improve response rates through the development of new combination regimens. Such new agents include pegylated liposomal doxorubicin (PLD) and the immunomodulatory drugs thalidomide and lenalidomide, all of which have demonstrated efficacy and safety in the treatment of newly diagnosed and relapsed/refractory MM. Based on their complementary mechanisms of action and nonoverlapping toxicity profiles, PLD and the immunomodulatory drugs might provide incremental benefits when used in combined treatment regimens. Thus, they have been evaluated in clinical studies that combine PLD/vincristine/dexamethasone and thalidomide (DVd-T) or PLD/vincristine/dexamethasone and lenalidomide (DVd-R) as well as in a study combining bortezomib with PLD and thalidomide. Results of all these studies have included high overall response rates, with improved rates of complete/near complete response compared with similar regimens that do not include chemotherapy (ie, immunomodulatory drugs plus dexamethasone). This article provides the clinical rationale for the use of PLD in combination with immunomodulatory drugs to treat patients with MM and summarizes the clinical experience with these combinations to date. Notably, the early phase I/II study results have been sufficiently encouraging to warrant further investigation in additional large-scale, phase II/III studies. Future clinical trials should focus on determining the optimal dose and schedule for each of these agents when used in combination and whether the addition of other new agents provides an additional response benefit.

  20. p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis

    SciTech Connect

    Grethe, Simone; Coltella, Nadia; Di Renzo, Maria Flavia; Poern-Ares, M. Isabella . E-mail: isabella.ares@helsinki.fi

    2006-09-01

    Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.

  1. Postoperative adjuvant combination therapy with doxorubicin and noncytotoxic suramin in dogs with appendicular osteosarcoma.

    PubMed

    Alvarez, Francisco J; Kisseberth, William; Hosoya, Kenji; Lara-Garcia, Ana; Kosarek, Carrie; Murahari, Sridhar; Au, Jessie L-S; Wientjes, M Guillaume; Couto, Jason; Couto, Guillermo

    2014-01-01

    Although conventional treatment of dogs with osteosarcoma (OSA) by amputation and chemotherapy results in reported survival times (STs) of 262-413 days, no major improvements in STs have occurred in the past 2 decades. Suramin is a polysulfonated napthylurea, which at noncytotoxic concentrations in vitro, increases tumor sensitivity to chemotherapy, including doxorubicin. The study authors evaluated the combination of noncytotoxic suramin and doxorubicin after amputation in dogs with OSA. The hypothesis was that treatment of dogs with appendicular OSA with amputation, adjuvant doxorubicin, and noncytotoxic suramin would be well tolerated and result in STs at least comparable to those of doxorubicin alone. Forty-seven dogs received 6.75 mg/kg of suramin IV followed by 30 mg/m(2) of doxorubicin IV 4 hr later. Treatment was repeated q 2 wk for five doses. The median disease free time (DFI) was 203 days (range, 42-1,580+ days) and the median ST for all dogs was 369 days (range, 92-1,616+ days). There was no statistical difference in ST and DFI between greyhounds and nonngreyhounds. Adjuvant doxorubicin and noncytotoxic suramin was well tolerated in dogs with OSA following amputation. Additional studies are needed to determine if this combination treatment protocol provides additional clinical benefit compared with doxorubicin alone.

  2. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors.

    PubMed

    Yu, Man; Lee, Carol; Wang, Marina; Tannock, Ian F

    2015-10-01

    Cellular causes of resistance and limited drug distribution within solid tumors limit therapeutic efficacy of anticancer drugs. Acidic endosomes in cancer cells mediate autophagy, which facilitates survival of stressed cells, and may contribute to drug resistance. Basic drugs (e.g. doxorubicin) are sequestered in acidic endosomes, thereby diverting drugs from their target DNA and decreasing penetration to distal cells. Proton pump inhibitors (PPIs) may raise endosomal pH, with potential to improve drug efficacy and distribution in solid tumors. We determined the effects of the PPI lansoprazole to modify the activity of doxorubicin. To gain insight into its mechanisms, we studied the effects of lansoprazole on endosomal pH, and on the spatial distribution of doxorubicin, and of biomarkers reflecting its activity, using in vitro and murine models. Lansoprazole showed concentration-dependent effects to raise endosomal pH and to inhibit endosomal sequestration of doxorubicin in cultured tumor cells. Lansoprazole was not toxic to cancer cells but potentiated the cytotoxicity of doxorubicin and enhanced its penetration through multilayered cell cultures. In solid tumors, lansoprazole improved the distribution of doxorubicin but also increased expression of biomarkers of drug activity throughout the tumor. Combined treatment with lansoprazole and doxorubicin was more effective in delaying tumor growth as compared to either agent alone. Together, lansoprazole enhances the therapeutic effects of doxorubicin both by improving its distribution and increasing its activity in solid tumors. Use of PPIs to improve drug distribution and to inhibit autophagy represents a promising strategy to enhance the effectiveness of anticancer drugs in solid tumors.

  3. Doxorubicin toxicity can be ameliorated during antioxidant L-carnitine supplementation.

    PubMed

    Alshabanah, Othman A; Hafez, Mohamed M; Al-Harbi, Mohamed M; Hassan, Zeinab K; Al Rejaie, Salim S; Asiri, Yosef A; Sayed-Ahmed, Mohamed M

    2010-01-01

    Doxorubicin is an antibiotic broadly used in treatment of different types of solid tumors. The present study investigates whether L-carnitine, antioxidant agent, can reduce the hepatic damage induced by doxorubicin. Male Wistar albino rats were divided into six groups: group 1 were intraperitoneal injected with normal saline for 10 consecutive days; group 2, 3 and 4 were injected every other day with doxorubicin (3 mg/kg, i.p.), to obtain treatments with cumulative doses of 6, 12, and 18 mg/kg. The fifth group was injected with L-carnitine (200 mg/kg, i.p.) for 10 consecutive days and the sixth group was received doxorubicin (18 mg/kg) and L-carnitine (200 mg/kg). High cumulative dose of doxorubicin (18 mg/kg) significantly increase the biochemical levels of alanine transaminase , alkaline phosphatase, total bilirubin, total carnitine, thiobarbituric acid reactive substances (TBARs), total nitrate/nitrite (NOx) p < 0.05 and decrease in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione-s-transferase (GST),glutathione reductase (GR) and catalase (CAT) activity p < 0.05. The effect of doxorubicin on the activity of antioxidant genes was confirmed by real time PCR in which the expression levels of these genes in liver tissue were significantly decrease compared to control p < 0.05. Interestingly, L-carnitine supplementation completely reverse the biochemical and gene expression levels induced by doxorubicin to the control values. In conclusion, data from this study suggest that the reduction of antioxidant defense during doxorubicin administration resulted in hepatic injury could be prevented by L-carnitine supplementation by decreasing the oxidative stress and preserving both the activity and gene expression level of antioxidant enzymes.

  4. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    SciTech Connect

    Gharanei, M.; Hussain, A.; Janneh, O.; Maddock, H.L.

    2013-04-15

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolated rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening in laser

  5. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro.

    PubMed

    Spallarossa, Paolo; Garibaldi, Silvano; Altieri, Paola; Fabbi, Patrizia; Manca, Valeria; Nasti, Sabina; Rossettin, Pierfranco; Ghigliotti, Giorgio; Ballestrero, Alberto; Patrone, Franco; Barsotti, Antonio; Brunelli, Claudio

    2004-10-01

    The clinical use of doxorubicin, a highly active anticancer drug, is limited by its severe cardiotoxic side effects. Increased oxidative stress and apoptosis have been implicated in the cardiotoxicity of doxorubicin. Carvedilol is an adrenergic blocking agent with potent anti-oxidant activity. In this study we investigated whether carvedilol has protective effects against doxorubicin-induced free radical production and apoptosis in cultured cardiac muscle cells, and we compared the effects of carvedilol to atenolol, a beta-blocker with no anti-oxidant activity. Reactive oxygen species (ROS) generation in cultured cardiac muscle cells (H9c2 cells) was evaluated by flow cytometry using dichlorofluorescein (DCF) and hydroethidine (HE). Apoptosis was assessed by measuring annexin V-FITC/propidium iodide double staining, DNA laddering, levels of expression of the pro-apoptotic protein Bax-alpha and the anti-apoptotic protein Bcl-2, and caspase-3 activity. Pre-treatment with carvedilol significantly attenuated the doxorubicin-induced increases in DCF (P < 0.001 compared to cells not pre-treated with carvedilol) and HE (P < 0.01) fluorescence. Doxorubicin increased the fraction of annexin V-FITC-positive fluorescent cells, while pre-treatment with carvedilol reduced the number of positive fluorescent cells (P < 0.01). Doxorubicin-induced DNA fragmentation to a clear ladder pattern, while carvedilol prevented DNA fragmentation. Doxorubicin-induced a fall in mRNA expression of the anti-apoptotic Bcl-2 and an increase in the expression of the pro-apoptotic Bax-alpha. Carvedilol pre-treatment blunted both the decrease of Bcl-2 (P < 0.01) and the increase of Bax-alpha mRNA expression (P < 0.01). Caspase-3 activity significantly increased after the addition of doxorubicin. Concurrently, carvedilol partially inhibited the doxorubicin-induced activation of caspase-3 (P < 0.01). Atenolol did not produce any effect in preventing doxorubicin-induced ROS generation and cardiac

  6. Decreased Soluble Guanylate Cyclase Contributes to Cardiac Dysfunction Induced by Chronic Doxorubicin Treatment in Mice

    PubMed Central

    Vandenwijngaert, Sara; Swinnen, Melissa; Walravens, Ann-Sophie; Beerens, Manu; Gillijns, Hilde; Caluwé, Ellen; Tainsh, Robert E.; Nathan, Daniel I.; Allen, Kaitlin; Brouckaert, Peter; Bartunek, Jozef; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Bloch, Donald B.; Janssens, Stefan P.

    2017-01-01

    Abstract Aims: The use of doxorubicin, a potent chemotherapeutic agent, is limited by cardiotoxicity. We tested the hypothesis that decreased soluble guanylate cyclase (sGC) enzyme activity contributes to the development of doxorubicin-induced cardiotoxicity. Results: Doxorubicin administration (20 mg/kg, intraperitoneally [IP]) reduced cardiac sGC activity in wild-type (WT) mice. To investigate whether decreased sGC activity contributes to doxorubicin-induced cardiotoxicity, we studied mice with cardiomyocyte-specific deficiency of the sGC α1-subunit (mice with cardiomyocyte-specific deletion of exon 6 of the sGCα1 allele [sGCα1−/−CM]). After 12 weeks of doxorubicin administration (2 mg/kg/week IP), left ventricular (LV) systolic dysfunction was greater in sGCα1−/−CM than WT mice. To further assess whether reduced sGC activity plays a pathogenic role in doxorubicin-induced cardiotoxicity, we studied a mouse model in which decreased cardiac sGC activity was induced by cardiomyocyte-specific expression of a dominant negative sGCα1 mutant (DNsGCα1) upon doxycycline removal (Tet-off). After 8 weeks of doxorubicin administration, DNsGCα1tg/+, but not WT, mice displayed LV systolic dysfunction and dilatation. The difference in cardiac function and remodeling between DNsGCα1tg/+ and WT mice was even more pronounced after 12 weeks of treatment. Further impairment of cardiac function was attenuated when DNsGCα1 gene expression was inhibited (beginning at 8 weeks of doxorubicin treatment) by administering doxycycline. Furthermore, doxorubicin-associated reactive oxygen species generation was higher in sGCα1-deficient than WT hearts. Innovation and Conclusion: These data demonstrate that a reduction in cardiac sGC activity worsens doxorubicin-induced cardiotoxicity in mice and identify sGC as a potential therapeutic target. Various pharmacological sGC agonists are in clinical development or use and may represent a promising approach to limit doxorubicin

  7. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin.

    PubMed

    Petersen, Grant H; Alzghari, Saeed K; Chee, Wayne; Sankari, Sana S; La-Beck, Ninh M

    2016-06-28

    While liposome-mediated delivery of cytotoxic chemotherapy has been shown to significantly enhance drug tolerability in patients as compared to the conventional formulation, the fundamental question remains whether they also improve anticancer efficacy. Thus, we performed a systematic literature search for randomized clinical trials directly comparing efficacy of liposomal cytotoxic chemotherapy versus their equivalent conventional formulation. The search yielded 14 clinical trials (8 anthracycline, 4 cisplatin, 1 paclitaxel, 1 irinotecan) that meet inclusion criteria, with a total of 2589 patients. We found that efficacy in patients was not different between liposomal and conventional chemotherapy as assessed by objective response (odds ratio 1.03; 95% confidence interval [CI] 0.82-1.30), overall survival (hazard ratio [HR] 1.05; 95% CI 0.95-1.17), and progression free survival rates (HR 1.01; 95% CI, 0.92-1.11). Subgroup analyses of only the anthracycline trials also did not show any efficacy advantage for the liposomal formulation. Since pegylated liposomal doxorubicin (PLD) was the most prevalent formulation in these clinical trials, we also performed a meta-analysis of 11 preclinical studies comparing efficacy of PLD and conventional doxorubicin in tumor-bearing mice. In contrast with clinical results, animal studies showed significantly increased survival in mice treated with PLD compared to conventional doxorubicin (HR 0.39; 95% CI 0.27-0.56). We discuss the possible reasons why the pharmacological advantages of carrier-mediated chemotherapy did not translate into enhanced clinical efficacy including the role of the enhanced permeability and retention (EPR) effect and the tumor microenvironment, the optimal dosing regimen for carrier-mediated agents, and the lack of standardization in the conduct and reporting of preclinical studies evaluating anticancer efficacy of these agents. Our study shows that the full clinical potential of carrier-mediated drugs

  8. Phase I trial of cremophor EL with bolus doxorubicin.

    PubMed

    Millward, M J; Webster, L K; Rischin, D; Stokes, K H; Toner, G C; Bishop, J F; Olver, I N; Linahan, B M; Linsenmeyer, M E; Woodcock, D M

    1998-10-01

    Cremophor EL (cremophor), a component of the paclitaxel formulation, can potentially reverse P-glycoprotein-associated multidrug resistance. A Phase I trial of cremophor as a 6-h infusion every 3 weeks was performed with bolus doxorubicin (50 mg/m2). The cremophor dose was escalated from 1 to 60 ml/m2. A standard paclitaxel premedication was given before cremophor. Using a bioassay, potentially active cremophor levels (> or = 1 microl/ml) were measured in plasma from patients receiving cremophor doses of 30, 45, and 60 ml/m2. A cross-over design was used to assess the influence of cremophor 30 ml/m2 on the pharmacokinetics of doxorubicin and doxorubicinol. The plasma area under the concentration versus time curve (AUC) of doxorubicin increased from 1448 +/- 350 to 1786 +/- 264 ng/ml x h (P = 0.02) in the presence of cremophor, whereas the AUC of doxorubicinol increased from 252 +/- 104 to 486 +/- 107 ng/ml x h (P = 0.02). This pharmacokinetic interaction was associated with significantly increased neutropenia. With reduction of the doxorubicin dose to 35 mg/m2, the cremophor dose was increased to 60 ml/m2. Dose-limiting toxicities occurred in two of six patients after 45 ml/m2 and two of four patients after 60 ml/m2, which included febrile neutropenia and grade III cremophor-related toxicities of rash, pruritus, headache, and hypotension. All patients who received 45 ml/m2 cremophor reached plasma levels > or = 1.5 microl/ml, but at 60 ml/m2, only two of four reached this level, and the calculated plasma clearance of cremophor was significantly faster at this dose. One patient with hepatoma resistant to epirubicin achieved a near-complete response. Cremophor 45 ml/m2 over 6 h with 35 mg/m2 doxorubicin is recommended for further studies. The pharmacokinetic interaction between cremophor and doxorubicin is quantitatively similar to that described in trials of paclitaxel with doxorubicin and suggests that the cremophor in the paclitaxel formulation is responsible.

  9. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-08-14

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.

  10. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  11. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Morita, Takahiro; Satoh, Ryosuke; Umeda, Nanae; Kita, Ayako; Sugiura, Reiko

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Stress granules (SGs) as a mechanism of doxorubicin tolerance. Black-Right-Pointing-Pointer We characterize the role of stress granules in doxorubicin tolerance. Black-Right-Pointing-Pointer Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. Black-Right-Pointing-Pointer Doxorubicin promotes SG formation when combined with heat shock. Black-Right-Pointing-Pointer Doxorubicin regulates stress granule assembly independent of eIF2{alpha} phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1{sup +}, which encodes a multi-KH type RNA-binding protein, and pab1{sup +}, which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1{sup +} and pab1{sup +} genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2{alpha}, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2{alpha} phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  12. Ovatodiolide sensitizes aggressive breast cancer cells to doxorubicin, eliminates their cancer stem cell-like phenotype, and reduces doxorubicin-associated toxicity.

    PubMed

    Bamodu, Oluwaseun Adebayo; Huang, Wen-Chien; Tzeng, David T W; Wu, Alexander; Wang, Liang Shun; Yeh, Chi-Tai; Chao, Tsu-Yi

    2015-08-10

    Triple-negative breast cancer (TNBC) is chemotherapy-refractory and associated with poor clinical prognosis. Doxorubicin (Doxo), a class I anthracycline and first-line anticancer agent, effective against a wide spectrum of neoplasms including breast carcinoma, is associated with several cumulative dose-dependent adverse effects, including cardiomyopathy, typhilitis, and acute myelotoxicity. This study evaluated the usability of Ovatodiolide (Ova) in sensitizing TNBC cells to Doxo cytotoxicity, so as to reduce Doxo effective dose and consequently its adverse effects. TNBC cell lines MDA-MB-231 and HS578T were used. Pre-treatment of the TNBC cells with 10 µM Ova 24 h before Doxo administration increased the Doxo anticancer effect (IC50 1.4 µM) compared to simultaneous treatment with Doxo ( IC50 1.8 µM), or Doxo alone (IC50 9.2 µM). Intracellular accumulation of Doxo was lowest in Ova pre-treated cells at all Doxo concentrations, when compared with Doxo or simultaneously treated cells. In comparison to the Doxo-only group, cell cycle analysis of MDA-MB-231 cells treated concurrently with 2.5 µM Ova and 1.25 µM Doxo showed increased percentage of cells arrested at G0/G1; however, pre-treatment with the same concentration of Ova 24 h before Doxo showed greater tumor growth inhibition, with a 2.4-fold increased percentage of cells in G0/G1 arrest, greater Doxo-induced apoptosis, and significantly reduced intracellular Doxo accumulation. Additionally, Ova-sensitized TNBC cells also lost their cancer stem cell-like phenotype evidenced by significant dissolution, necrosis of formed mammospheres. Taken together, these findings indicate that Ova sensitizes TNBC cells to Doxo and potentiates doxorubicin-induced elimination of the TNBC cancer stem cell-like phenotype.

  13. Liposomal Co-Encapsulation of Two Novel Europium Complexes and Doxorubicin: Fluorescence Study.

    PubMed

    Trusova, Valeriya M; Deligeorgiev, Todor; Gorbenko, Galyna

    2017-03-10

    The present study was undertaken to design the novel liposomal drug formulation containing doxorubicin and europium coordination complexes. It was shown that co-encapsulation of the drugs facilitates the partitioning and permeation of lanthanides into the lipid bilayer. The obtained results suggest that new drug platform may have potential application in the design of novel antitumor agents.

  14. Doxorubicin inhibits E. coli division by interacting at a novel site in FtsZ.

    PubMed

    Panda, Pragnya; Taviti, Ashoka Chary; Satpati, Suresh; Kar, Mitali Madhusmita; Dixit, Anshuman; Beuria, Tushar Kant

    2015-11-01

    The increase in antibiotic resistance has become a major health concern in recent times. It is therefore essential to identify novel antibacterial targets as well as discover and develop new antibacterial agents. FtsZ, a highly conserved bacterial protein, is responsible for the initiation of cell division in bacteria. The functions of FtsZ inside cells are tightly regulated and any perturbation in its functions leads to inhibition of bacterial division. Recent reports indicate that small molecules targeting the functions of FtsZ may be used as leads to develop new antibacterial agents. To identify small molecules targeting FtsZ and inhibiting bacterial division, we screened a U.S. FDA (Food and Drug Administration)-approved drug library of 800 molecules using an independent computational, biochemical and microbial approach. From this screen, we identified doxorubicin, an anthracycline molecule that inhibits Escherichia coli division and forms filamentous cells. A fluorescence-binding assay shows that doxorubicin interacts strongly with FtsZ. A detailed biochemical analysis demonstrated that doxorubicin inhibits FtsZ assembly and its GTPase activity through binding to a site other than the GTP-binding site. Furthermore, using molecular docking, we identified a probable doxorubicin-binding site in FtsZ. A number of single amino acid mutations at the identified binding site in FtsZ resulted in a severalfold decrease in the affinity of FtsZ for doxorubicin, indicating the importance of this site for doxorubicin interaction. The present study suggests the presence of a novel binding site in FtsZ that interacts with the small molecules and can be targeted for the screening and development of new antibacterial agents.

  15. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines

    PubMed Central

    Falanga, Annarita; Zappavigna, Silvia; Stiuso, Paola; Tirino, Virginia; Desiderio, Vincenzo; Papaccio, Gianpaolo; Galdiero, Massimiliano; Giordano, Antonio; Galdiero, Stefania; Caraglia, Michele

    2016-01-01

    New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines. PMID:26554306

  16. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines.

    PubMed

    Perillo, Emiliana; Porto, Stefania; Falanga, Annarita; Zappavigna, Silvia; Stiuso, Paola; Tirino, Virginia; Desiderio, Vincenzo; Papaccio, Gianpaolo; Galdiero, Massimiliano; Giordano, Antonio; Galdiero, Stefania; Caraglia, Michele

    2016-01-26

    New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.

  17. Enhancing Anti-Tumor Efficacy of Doxorubicin by Non-Covalent Conjugation to Gold Nanoparticles – In Vitro Studies on Feline Fibrosarcoma Cell Lines

    PubMed Central

    Wójcik, Michał; Lewandowski, Wiktor; Król, Magdalena; Pawłowski, Karol; Mieczkowski, Józef; Lechowski, Roman; Zabielska, Katarzyna

    2015-01-01

    Background Feline injection-site sarcomas are malignant skin tumors of mesenchymal origin, the treatment of which is a challenge for veterinary practitioners. Methods of treatment include radical surgery, radiotherapy and chemotherapy. The most commonly used cytostatic drugs are cyclophosphamide, doxorubicin and vincristine. However, the use of cytostatics as adjunctive treatment is limited due to their adverse side-effects, low biodistribution after intravenous administration and multidrug resistance. Colloid gold nanoparticles are promising drug delivery systems to overcome multidrug resistance, which is a main cause of ineffective chemotherapy treatment. The use of colloid gold nanoparticles as building blocks for drug delivery systems is preferred due to ease of surface functionalization with various molecules, chemical stability and their low toxicity. Methods Stability and structure of the glutathione-stabilized gold nanoparticles non-covalently modified with doxorubicin (Au-GSH-Dox) was confirmed using XPS, TEM, FT-IR, SAXRD and SAXS analyses. MTT assay, Annexin V and Propidium Iodide Apoptosis assay and Rhodamine 123 and Verapamil assay were performed on 4 feline fibrosarcoma cell lines (FFS1WAW, FFS1, FFS3, FFS5). Statistical analyses were performed using Graph Pad Prism 5.0 (USA). Results A novel approach, glutathione-stabilized gold nanoparticles (4.3 +/- 1.1 nm in diameter) non-covalently modified with doxorubicin (Au-GSH-Dox) was designed and synthesized. A higher cytotoxic effect (p<0.01) of Au-GSH-Dox than that of free doxorubicin has been observed in 3 (FFS1, FFS3, FFS1WAW) out of 4 feline fibrosarcoma cell lines. The effect has been correlated to the activity of glycoprotein P (main efflux pump responsible for multidrug resistance). Conclusions The results indicate that Au-GSH-Dox may be a potent new therapeutic agent to increase the efficacy of the drug by overcoming the resistance to doxorubicin in feline fibrosarcoma cell lines. Moreover, as

  18. Effect of bixin on DNA damage and cell death induced by doxorubicin in HL60 cell line.

    PubMed

    Santos, G C; Almeida, M R; Antunes, Lmg; Bianchi, Mlp

    2016-12-01

    Bixin is a natural red pigment extracted from annatto. Although it is widely used as a coloring agent in food, there are few studies about the effect of this carotenoid on DNA. This study aimed to investigate the effects of bixin on cytotoxicity and genotoxicity induced by doxorubicin in HL60 cells. At concentrations above 0.3 μg/mL, bixin demonstrated cytotoxic effects in HL60 cells. Furthermore, this carotenoid was neither mutagenic nor genotoxic to HL60 cells and reduced the DNA damage induced by doxorubicin. Bixin and doxorubicin showed no apoptotic effect in HL60 cells, but the simultaneous combined treatments showed an increase in the percentage of apoptotic cells. In conclusion, our results showed that bixin modulates the cytotoxicity of doxorubicin via induction of apoptosis. The results of this study provide more knowledge about the toxic effects of anticancer treatments and how the natural compounds can be useful on these therapeutic approaches.

  19. Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin.

    PubMed Central

    Capranico, G; Kohn, K W; Pommier, Y

    1990-01-01

    Doxorubicin, a DNA-intercalator, is one of several anti-cancer drugs that have been found to stabilizes topoisomerase II cleavage complexes at drug-specific DNA sites. The distribution and DNA sequence environments of doxorubicin-stabilized sites were determined in the SV40 genome. The sites were found to be most concentrated in the major nuclear matrix-associated region and nearly absent in the vicinity of the replication origin including the enhancer sequences in the 21-bp and 72-bp tandem repeats. Among 97 doxorubicin-stabilized sites that were localized at the DNA sequence level, none coincided with any of the 90 topoisomerase II cleavage sites detected in the same regions in the absence of drug. Cleavage at the 90 enzyme-only sites was inhibited by doxorubicin and never stimulated even at low drug concentrations. All of the doxorubicin-stabilized sites had an A at the 3' terminus of at least one member of each pair of strand breaks that would constitute a topoisomerase II double-strand scission. Conversely, none of the enzyme-only sites had an A simultaneously at the corresponding positions on opposite strands. The 3'-A requirement for doxorubicin-stabilized cleavage is therefore incompatible with enzyme-only cleavage and explains the mutual exclusivity of the two classes of sites. Images PMID:2174543

  20. Nanocarriers Enhance Doxorubicin Uptake in Drug-Resistant Ovarian Cancer Cells

    PubMed Central

    Arora, Hans C; Jensen, Mark P; Yuan, Ye; Wu, Aiguo; Vogt, Stefan; Paunesku, Tatjana; Woloschak, Gayle E

    2012-01-01

    Resistance to anthracyclines and other chemotherapeutics due to P-glycoprotein (PGP)-mediated export is a frequent problem in cancer treatment. Here we report that iron oxide-titanium dioxide core-shell nanocomposites can serve as efficient carriers for doxorubicin to overcome this common mechanism of drug resistance in cancer cells. Doxorubicin nanocarriers (DNCs) increased effective drug uptake in drug-resistant ovarian cells. Mechanistically, doxorubicin bound to the TiO2 surface by a labile bond that was severed upon acidification within cell endosomes. Upon its release doxorubicin traversed the intracellular milieu and entered the cell nucleus by a route that evaded PGP-mediated drug export. Confocal and x-ray fluorescence microscopy with flow cytometry were used to demonstrate the ability of DNC to modulate transferrin uptake and distribution in cells. Increased transferrin uptake occurred through clathrin-mediated endocytosis, indicating that nanocomposites and DNCs may both interfere with removal of transferrin from cells. Together, our findings show that DNCs not only provide an alternative route of delivery of doxorubicin to PGP-over-expressing cancer cells, but may also boost the uptake of transferrin-tagged therapeutic agents. PMID:22158944

  1. Carnitine partially protects the rat testis against the late damage produced by doxorubicin administered during pre-puberty.

    PubMed

    Cabral, R E L; Okada, F K; Stumpp, T; Vendramini, V; Miraglia, S M

    2014-11-01

    Doxorubicin, an anticancer drug, is widely included in chemotherapy protocols to combat childhood cancer. Carnitine, an important quaternary amine, is present in testis and epididymis and is involved in sperm maturation; it has been used in infertility treatment. In a previous study, our group observed that L-carnitine given before etoposide, another chemotherapeutic drug, reduces the spermatogenic damage and protects germ cells against apoptosis. This study aimed to evaluate the antiapoptotic and cytoprotective actions of L-carnitine in long- and mid-term basis, on the seminiferous epithelium of doxorubicin-treated pre-pubertal rats. Forty-eight 30-day-old male Wistar rats were distributed into four groups: sham-control; doxorubicin; carnitine; carnitine/doxorubicin (L-carnitine injected 1 h before doxorubicin). The rats were submitted to euthanasia at 64 and 100 days of age and their testes were collected for biometric, morphometric, and histopathological analyses. The numerical density of apoptotic germ cells was obtained (TUNEL method). In adult phase (100 days), the following spermatic parameters were analyzed: mature spermatid (19 step) count and sperm daily production per testis; sperm number and transit time through the epididymal caput/corpus and cauda; frequency of morphologically abnormal spermatozoa (from epididymal fluid), as well as sperm DNA integrity (Comet assay). The testicular and spermatic parameters at both ages were improved in rats treated with carnitine before doxorubicin. At 64 days, the TUNEL-positive germ cell frequency was lower in the carnitine/doxorubicin-treated rats comparatively to the doxorubicin-treated rats. At 100 days of age, the sperm DNA fragmentation was also lower in the previously carnitine-treated rats, as evidenced by the analysis of three parameters. Carnitine reduced the late testicular and spermatic damages caused by doxorubicin, probably providing a partial cytoprotection against the deleterious action of doxorubicin

  2. Elevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation.

    PubMed

    Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid

    2015-01-01

    Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.

  3. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  4. Synergistic Effect of SH003 and Doxorubicin in Triple-negative Breast Cancer.

    PubMed

    Woo, Sang-Mi; Kim, Ah Jeong; Choi, Youn Kyung; Shin, Young Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-11-01

    Triple-negative breast cancer (TNBC) is highly aggressive, resulting in poor prognosis. Chemotherapy of TNBC relies on anti-cancer agents with strong cytotoxicity, but it causes several side effects with recurrence. While combinational approaches of chemotherapeutics have been highlighted as a new treatment strategy for TNBC to reduce side effects, combinations of anti-cancer agents with herbal medicines have not been reported. We recently reported that newly modified traditional Chinese medicine named SH003 inhibited TNBC growth. Considering a combinational strategy for TNBC treatment, we further studied synergistic effects of SH003 with various anti-cancer drugs in TNBC treatment. Here, we demonstrate that SH003 shows a synergistic effect with doxorubicin on TNBC treatment. Our in vitro cell viability assays revealed that SH003 and doxorubicin showed a synergistic effect in the well-defined TNBC cell line, MDA-MB-231. Moreover, we found that the combinational treatment caused Caspase-dependent apoptotic cell death. Our in vivo mouse xenograft tumor growth assays confirmed that combinational treatment of SH003 with doxorubicin repressed MDA-MB-231 tumor growth with no weight loss. Therefore, we conclude that the combinational treatment of SH003 with doxorubicin shows the synergism in TNBC treatment, and suggest that SH003 can be used together with conventional anti-cancer drugs in chemotherapeutic approaches. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Antidotal Effects of Curcumin Against Agents-Induced Cardiovascular Toxicity.

    PubMed

    Farkhondeh, Tahereh; Samarghandian, Saeed

    Curcumin, the major phenolic compound in turmeric, shows preventive effects in various diseases. Curcumin is commonly found in rhizome of the Curcuma species and traditionally used in herbal medicine. Numeros studies has indicated that curcumin posses protective effects against toxic agents in various systems including cardiovascular. This study found that curcumin may be effective in cardiovascular diseases induced by toxic agents including Streptozotocin, Doxorubicin, Cyclosporin A, Methotrexate, Isoproterenol, Cadmium, Diesel exhaust particle, Nicotine, Hydrogen peroxide, and tert- Butyl hydroperoxide. However, due to the lake of information on human, further studies are needed to determine the efficacy of curcumin as an antidote agent. The present study aimed to critically review the recent literature data from that regarding the protective effects of curcumin against agents-induced cardiovascular toxicity.

  6. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer.

    PubMed

    Granados-Principal, Sergio; El-Azem, Nuri; Pamplona, Reinald; Ramirez-Tortosa, Cesar; Pulido-Moran, Mario; Vera-Ramirez, Laura; Quiles, Jose L; Sanchez-Rovira, Pedro; Naudí, Alba; Portero-Otin, Manuel; Perez-Lopez, Patricia; Ramirez-Tortosa, Mcarmen

    2014-07-01

    Oxidative stress is involved in several processes including cancer, aging and cardiovascular disease, and has been shown to potentiate the therapeutic effect of drugs such as doxorubicin. Doxorubicin causes significant cardiotoxicity characterized by marked increases in oxidative stress and mitochondrial dysfunction. Herein, we investigate whether doxorubicin-associated chronic cardiac toxicity can be ameliorated with the antioxidant hydroxytyrosol in rats with breast cancer. Thirty-six rats bearing breast tumors induced chemically were divided into 4 groups: control, hydroxytyrosol (0.5mg/kg, 5days/week), doxorubicin (1mg/kg/week), and doxorubicin plus hydroxytyrosol. Cardiac disturbances at the cellular and mitochondrial level, mitochondrial electron transport chain complexes I-IV and apoptosis-inducing factor, and oxidative stress markers have been analyzed. Hydroxytyrosol improved the cardiac disturbances enhanced by doxorubicin by significantly reducing the percentage of altered mitochondria and oxidative damage. These results suggest that hydroxytyrosol improve the mitochondrial electron transport chain. This study demonstrates that hydroxytyrosol protect rat heart damage provoked by doxorubicin decreasing oxidative damage and mitochondrial alterations.

  7. MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity.

    PubMed

    Holmgren, Gustav; Synnergren, Jane; Andersson, Christian X; Lindahl, Anders; Sartipy, Peter

    2016-08-01

    Anthracyclines, such as doxorubicin, are well-established, highly efficient anti-neoplastic drugs used for treatment of a variety of cancers, including solid tumors, leukemia, lymphomas, and breast cancer. The successful use of doxorubicin has, however, been hampered by severe cardiotoxic side-effects. In order to prevent or reverse negative side-effects of doxorubicin, it is important to find early biomarkers of heart injury and drug-induced cardiotoxicity. The high stability under extreme conditions, presence in various body fluids, and tissue-specificity, makes microRNAs very suitable as clinical biomarkers. The present study aimed towards evaluating the early and late effects of doxorubicin on the microRNA expression in cardiomyocytes derived from human pluripotent stem cells. We report on several microRNAs, including miR-34a, miR-34b, miR-187, miR-199a, miR-199b, miR-146a, miR-15b, miR-130a, miR-214, and miR-424, that are differentially expressed upon, and after, treatment with doxorubicin. Investigation of the biological relevance of the identified microRNAs revealed connections to cardiomyocyte function and cardiotoxicity, thus supporting the findings of these microRNAs as potential biomarkers for drug-induced cardiotoxicity.

  8. Reversal of multidrug resistance by 5,5’-dimethoxylariciresinol-4-O-β-D-glucoside in doxorubicin-resistant human leukemia K562/DOX

    PubMed Central

    Wang, Tian-Xiao; Shi, Xiao-Yan; Cong, Yue; Wang, Shi-Guang; Wang, Ying-Ying; Zhang, Zhong-Qin

    2013-01-01

    Objective: The objective of this study was to investigate the reversal effects of 5,5’-dimethoxylariciresinol-4’-O-β-D-glucoside (DMAG) extracted from traditional Chinese medicines Mahonia on multidrug resistance (MDR) of human leukemia cells to chemotherapeutic agents. Materials and Methods: MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to determine the effect of DMAG on doxorubicin sensitivity to K562/DOX cells. Propidium iodide /Hoechst 33342 double staining assay was used to investigate the effect of DMAG on doxorubicin-induced cellular apoptosis. Intracellular accumulation of doxorubicin and rhodamine 123 assay were performed to evaluate the effect of DMAG on drugs efflux activity of P-glycoprotein. Results: DMAG significantly enhanced the doxorubicin cytotoxicity to K562/DOX cells. In the presence of 1.0 μM of DMAG, the IC50 of doxorubicin decreased from 34.93 ± 1.37 μM to 12.51 ± 1.28 μM. DMAG of 1.0 μM significantly enhanced doxorubicin-induced cell apoptosis in K562/DOX cells and the enhancement was time-dependent. A significant increase in accumulation of doxorubicin in the presence of DMAG was observed. After treatment of the K562/DOX cells for 1 h with 15.0 μM doxorubicin alone, the fluorescence intensity was 33093.12. With the addition of 1.0 μM of DMAG, the fluorescence intensity of doxorubicin was 2.3-fold higher. A significant increase of accumulation of rhodamine 123 in the presence of DMAG was also observed. With the addition of 1.0 μM of DMAG, the fluorescence intensity was increased by 49.11% compared with rhodamine 123 alone. Conclusion: DMAG was shown to effectively enhance chemosensitivity of resistant cells, which makes it might be a suitable candidate for potential MDR-reversing agents. PMID:24347768

  9. Cardiomyocyte death in doxorubicin-induced cardiotoxicity

    PubMed Central

    Zhang, Yi-Wei; Shi, Jianjian; Li, Yuan-Jian; Wei, Lei

    2009-01-01

    SUMMARY Doxorubicin (DOX) is one of the most widely used and successful antitumor drugs, but its cumulative and dose-dependent cardiac toxicity has been the major concern of oncologists in cancer therapeutic practice for decades. With the increasing population of cancer survivals, there is a growing need to develop preventive strategies and effective therapies against DOX-induced cardiotoxicity, in particular, the late onset cardiomyopathy. Although intensive investigations on the DOX-induced cardiotoxicity have been continued for decades, the underlying mechanisms responsible for DOX-induced cardiotoxicity have not been completely elucidated. A rapidly expanding body of evidence supports that cardiomyocyte death by apoptosis and necrosis is a primary mechanism of DOX-induced cardiomyopathy and other types of cell death, such as autophagy and senescence/aging, may participate in this process. In this review, we will focus on the current understanding of molecular mechanisms underlying DOX-induced cardiomyocyte death, including the major primary mechanism of excess production of reactive oxygen species (ROS) and other recently discovered ROS-independent mechanisms. Different sensitivity to DOX-induced cell death signals between adult and young cardiomyocytes will also be discussed. PMID:19866340

  10. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats.

    PubMed

    Jacevic, Vesna; Djordjevic, Aleksandar; Srdjenovic, Branislava; Milic-Tores, Vukosava; Segrt, Zoran; Dragojevic-Simic, Viktorija; Kuca, Kamil

    2017-03-16

    Doxorubicin (DOX), commonly used antineoplastic agent, affects bone marrow, intestinal tract and heart, but it also has some hepatotoxic effects. Main mechanism of its toxicity is the production of free reactive oxygen species. Polyhidroxilated C60 fullerene derivatives, fullerenol nanoparticles (FNP), act as free radical scavengers in in vitro systems. The aim of the study was to investigate potential FNP protective role against DOX-induced hepatotoxicity in rats. Experiments were performed on adult male Wistar rats. Animals were divided into five groups: (1) 0.9% NaCl (control), (2) 100mg/kg ip FNP, (3) 10mg/kg DOX iv, (4) 50mg/kg ip FNP 30min before 10mg/kg iv DOX, (5) 100mg/kg ip FNP 30min before 10mg/kg iv DOX. A general health condition, body and liver weight, TBARS level and antioxidative enzyme activity, as well as pathohistological examination of the liver tissue were conducted on days 2 and 14 of the study. FNP, applied alone, did not alter any examinated parameters. However, when used as a pretreatment it significantly increased survival rate, body and liver weight, and decreased TBARS level, antioxidative enzyme activity and hepatic damage score in DOX-treated rats. FNP administered at a dose of 100mg/kg significantly attenuated effects of doxorubicin administered in a single high dose in rats, concerning general condition, body and liver weight, lipid peroxidation level and antioxidative enzyme activity as well as structural alterations of the hepatic tissue.

  11. Effect of recombinant human erythropoietin and doxorubicin in combination on the proliferation of MCF-7 and MDA-MB231 breast cancer cells.

    PubMed

    Radwan, Esam M; Abdullah, Rasedee; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed E; Naadja, Seïf-Eddine; Alitheen, Noorjahan B; Omar, Abdul-Rahman

    2016-05-01

    Patients with cancer often exhibit signs of anemia as the result of the disease. Thus, cancer chemotherapies often include erythropoietin (EPO) in the regime to improve the survival rate of these patients. The aim of the present study was to determine the effect of EPO on doxorubicin-treated breast cancer cells. The cytotoxicity of doxorubicin alone or in combination with EPO against the MCF-7 and MDA-MB‑231 human breast cancer cells were determined using an MTT cell viability assay, neutral red (NR) uptake assay and lactate dehydrogenase (LDH) assay. The estimated half maximal inhibitory concentration values for doxorubicin and the combination of doxorubicin with EPO were between 0.140 and 0.260 µg/ml for all cells treated for 72 h. Treatment with doxorubicin in combination with EPO led to no notable difference in cytotoxicity, compared with treatment with doxorubicin alone. The antiproliferative effect of doxorubicin at a concentration of 1 µg/ml on the MDA‑MB‑231 cells was demonstrated by the decrease in viable cells from 3.6x10(5) at 24 h to 2.1x10(5) at 72 h of treatment. In order to confirm apoptosis in the doxorubicin-treated cells, the activities of caspases-3/7 and ‑9 were determined using a TBE assay. The results indicated that the activities of caspases-3/7 and ‑9 were significantly elevated in the doxorubicin-treated MDA-MB-231 cells by 571 and 645%, respectively, and in the MCF 7 cells by 471 and 345%, respectively, compared with the control cells. EPO did not modify the effect of doxorubicin on these cell lines. The results of the present study suggested that EPO was safe for use in combination with doxorubicin in the treatment of patients with breast cancer and concurrent anemia.

  12. A Flow Cytometric Clonogenic Assay Reveals the Single-Cell Potency of Doxorubicin.

    PubMed

    Maass, Katie F; Kulkarni, Chethana; Quadir, Mohiuddin A; Hammond, Paula T; Betts, Alison M; Wittrup, Karl Dane

    2015-12-01

    Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell's ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 10(5) -10(10) doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions. We find that a cell's ability to proliferate is a surprisingly conserved function of the number of intracellular doxorubicin molecules, resulting in single-cell IC50 values of 4-12 million intracellular doxorubicin molecules. The developed assay is a straightforward method for understanding a drug's single-cell potency and can be used for any fluorescent or fluorescently labeled drug, including nanoparticles or antibody-drug conjugates.

  13. The Ethanolic Extract of Taiwanofungus camphoratus (Antrodia camphorata) Induces Cell Cycle Arrest and Enhances Cytotoxicity of Cisplatin and Doxorubicin on Human Hepatocellular Carcinoma Cells.

    PubMed

    Lin, Liang-Tzung; Tai, Chen-Jei; Su, Ching-Hua; Chang, Fang-Mo; Choong, Chen-Yen; Wang, Chien-Kai; Tai, Cheng-Jeng

    2015-01-01

    Taiwanofungus camphoratus (synonym Antrodia camphorata) is a widely used medicinal fungus in the folk medicine of Taiwan with several pharmacological features such as anti-inflammatory, liver protection, antihypertensive, and antioxidative activities. The ethanolic extract of T. camphoratus (TCEE) which contains abundant bioactive compounds including triterpenoids and polysaccharides also has antitumor effects in various human cancer cell lines. The aims of this study are to clarify the antitumor effects of TCEE on human hepatocellular carcinoma cells and also evaluate the combination drug effects with conventional chemotherapy agents, cisplatin and doxorubicin. In the present study, the TCEE treatment induced cell cycle arrest and suppressed cell growth on both Hep3B and HepJ5 cells. Expression of cell cycle inhibitors, P21 and P27, and activation of apoptosis executer enzyme, caspase-3, were also induced by TCEE. In combination with the chemotherapy agents, TCEE treatment further enhanced the tumor suppression efficiency of cisplatin and doxorubicin. These results together suggested that TCEE is a potential ingredient for developing an integrated chemotherapy for human liver cancer.

  14. The Ethanolic Extract of Taiwanofungus camphoratus (Antrodia camphorata) Induces Cell Cycle Arrest and Enhances Cytotoxicity of Cisplatin and Doxorubicin on Human Hepatocellular Carcinoma Cells

    PubMed Central

    Lin, Liang-Tzung; Tai, Chen-Jei; Su, Ching-Hua; Chang, Fang-Mo; Choong, Chen-Yen; Wang, Chien-Kai; Tai, Cheng-Jeng

    2015-01-01

    Taiwanofungus camphoratus (synonym Antrodia camphorata) is a widely used medicinal fungus in the folk medicine of Taiwan with several pharmacological features such as anti-inflammatory, liver protection, antihypertensive, and antioxidative activities. The ethanolic extract of T. camphoratus (TCEE) which contains abundant bioactive compounds including triterpenoids and polysaccharides also has antitumor effects in various human cancer cell lines. The aims of this study are to clarify the antitumor effects of TCEE on human hepatocellular carcinoma cells and also evaluate the combination drug effects with conventional chemotherapy agents, cisplatin and doxorubicin. In the present study, the TCEE treatment induced cell cycle arrest and suppressed cell growth on both Hep3B and HepJ5 cells. Expression of cell cycle inhibitors, P21 and P27, and activation of apoptosis executer enzyme, caspase-3, were also induced by TCEE. In combination with the chemotherapy agents, TCEE treatment further enhanced the tumor suppression efficiency of cisplatin and doxorubicin. These results together suggested that TCEE is a potential ingredient for developing an integrated chemotherapy for human liver cancer. PMID:26557666

  15. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines.

    PubMed

    Banu, Hussaina; Sethi, Dipinder Kaur; Edgar, Andre; Sheriff, Adhnaan; Rayees, Nuthan; Renuka, N; Faheem, S M; Premkumar, Kumpati; Vasanthakumar, Geetha

    2015-08-01

    The current research focuses on the application of folate conjugated and doxorubicin loaded polymeric gold nanoparticles (GNPs) for the targeted treatment of folate receptor overexpressing breast cancers, augmented by adjunctive laser photothermal therapy. Herein, GNPs surface modified with folate, drug doxorubicin and polyethylene glycol were engineered and were used as vehicles for folate receptor targeted delivery of doxorubicin into cancer cells. Subsequently, the GNPs were photo-excited using laser light for mediating hyperthermia in the cancer cells. In vitro studies were performed to validate the efficacy of the combined modality of folate conjugated and doxorubicin loaded polymeric GNP mediated chemotherapy followed by photothermal therapy in comparison to treatment with free drug; and the combination modality showed better therapeutic efficacy than that of plain doxorubicin treatment in MDA-MB-231 breast cancer cells that express increased levels of surface folate receptors when compared to MCF-7 breast cancer cells that express low levels of folate receptor. The mechanism of cell death was investigated using fluorescent microscopy. Immunoassays showed the up-regulation of the pro-apoptotic protein p53 and down-regulation of the anti-apoptotic protein Bcl-2. Collectively, these results suggest that the folate tagged doxorubicin loaded GNPs are an attractive platform for targeted delivery of doxorubicin and are agents suitable for photothermal cancer therapy.

  16. In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan-doxorubicin conjugates.

    PubMed

    Cho, Young Il; Park, Shinyoung; Jeong, Seo Young; Yoo, Hyuk Sang

    2009-09-01

    Doxorubicin was chemically conjugated to acrylated chitosan in order to obtain sustained-release profiles of doxorubicin from thermo-responsive and photo-crosslinkable hydrogels. Chitooligosaccharide was acrylated with glycidyl methacrylate and subsequently conjugated to doxorubicin via an amide linkage. A mixture of doxorubicin-chitosan conjugates, acrylated Pluronic, and doxorubicin formed physical gels at 37 degrees C. Photo-irradiation was subsequently performed to chemically crosslink the physical hydrogel at 37 degrees C. Chitooligosaccharide-doxorubicin conjugates in the doxorubicin hydrogels significantly reduced burst release of free doxorubicin from doxorubicin hydrogels compared hydrogels without the conjugates. Upon incubating doxorubicin hydrogels at 37 degrees C, chitosan-doxorubicin conjugates were confirmed to be degraded into more hydrophilic oligomers by reversed-phase chromatography. In vitro cytotoxicity assay using released media from doxorubicin hydrogels showed that degraded chitosan-doxorubicin had cytotoxicity comparable to free doxorubicin. Athymic nude mice bearing human lung adenocarcinoma were subjected to intra-tumoral injections of physical hydrogels. After photo-crosslinking injected hydrogels using surgical catheters, tumor sizes, body weights, and survivals were measured for 1 month. Released media from doxorubicin hydrogels exerted similar cytotoxicities to free doxorubicin, and the tumor volume was significantly reduced for 1 month compared to other samples. Thus, doxorubicin hydrogels containing doxorubicin conjugates can be employed as a novel injectable anti-cancer drug aiming to achieve sustained release of doxorubicin for several weeks against solid tumors.

  17. Targeted Magnetic Liposomes Loaded with Doxorubicin.

    PubMed

    Pradhan, Pallab; Banerjee, Rinti; Bahadur, Dhirendra; Koch, Christian; Mykhaylyk, Olga; Plank, Christian

    2017-01-01

    Targeted delivery systems for anticancer drugs are urgently needed to achieve maximum therapeutic efficacy by site-specific accumulation and thereby minimizing adverse effects resulting from systemic distribution of many potent anticancer drugs. We have prepared folate receptor-targeted magnetic liposomes loaded with doxorubicin, which are designed for tumor targeting through a combination of magnetic and biological targeting. Furthermore, these liposomes are designed for hyperthermia-induced drug release to be mediated by an alternating magnetic field and to be traceable by magnetic resonance imaging (MRI). Here, detailed preparation and relevant characterization techniques of targeted magnetic liposomes encapsulating doxorubicin are described.

  18. Resistin confers resistance to doxorubicin-induced apoptosis in human breast cancer cells through autophagy induction

    PubMed Central

    Liu, Zhenyu; Shi, Aiping; Song, Dong; Han, Bing; Zhang, Zhiru; Ma, Le; Liu, Dongxu; Fan, Zhimin

    2017-01-01

    Clear evidence has linked obesity to a high risk of incidence as well as poor clinical outcome of breast cancer. It has been proven that changes in the levels of adipokines caused by obesity are associated with the initiation and progression of breast cancer. Resistin is a novel adipokine that is upregulated in breast cancer patients and promotes breast cancer cell growth, invasion, and migration. The aim of the study was to investigate whether resistin affected the efficacy of doxorubicin (Dox), one of the most effective anthracycline chemotherapeutic agents in the treatment of breast cancer. Treatment with resistin significantly attenuated Dox-induced apoptosis in a dose- and time-dependent manner, resulting in an increase in breast cancer cells survival. Moreover, resistin significantly induced autophagy flux and inhibition of autophagy abrogated the pro-survival effect of resistin in doxorubicin-treated cells. Furthermore, the AMPK/mTOR/ULK1 and JNK signaling pathways were activated by resistin treatment. Inhibition of these two pathways markedly reduced the ratio of LC3B-II/LC3B-I and increased cell apoptosis induced by Dox. For the first time, our findings indicate that resistin confers resistance to doxorubicin-induced apoptosis through autophagy induction and that this process involves the activation of AMPK/mTOR/ULK1 and JNK signaling pathways. Our findings suggest that resistin antagonism may be a novel strategy to overcome resistance to doxorubicin-based chemotherapy in breast cancer patients.

  19. Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells.

    PubMed

    Gagliano, Teresa; Gentilin, Erica; Benfini, Katiuscia; Di Pasquale, Carmelina; Tassinari, Martina; Falletta, Simona; Feo, Carlo; Tagliati, Federico; Uberti, Ettore Degli; Zatelli, Maria Chiara

    2014-12-01

    Mitotane is currently employed as adjuvant therapy as well as in the medical treatment of adrenocortical carcinoma (ACC), alone or in combination with chemotherapeutic agents. It was previously demonstrated that mitotane potentiates chemotherapeutic drugs cytotoxicity in cancer cells displaying chemoresistance due to P-glycoprotein (P-gp), an efflux pump involved in cancer multidrug resistance. The majority of ACC expresses high levels of P-gp and is highly chemoresistent. The aim of our study was to explore in vitro whether mitotane, at concentrations lower than those currently reached in vivo, may sensitize ACC cells to the cytotoxic effects of doxorubicin and whether this effect is due to a direct action on P-gp. NCI-H295 and SW13 cell lines as well as 4 adrenocortical neoplasia primary cultures were treated with mitotane and doxorubicin, and cell viability was measured by MTT assay. P-gp activity was measured by calcein and P-gp-Glo assays. P-gp expression was evaluated by Western blot. We found that very low mitotane concentrations sensitize ACC cells to the cytotoxic effects of doxorubicin, depending on P-gp expression. In addition, mitotane directly inhibits P-gp detoxifying function, allowing doxorubicin cytotoxic activity. These data provide the basis for the greater efficacy of combination therapy (mitotane plus chemotherapeutic drugs) on ACC patients. Shedding light on mitotane mechanisms of action could result in an improved design of drug therapy for patients with ACC.

  20. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy.

    PubMed

    Sun, Chun-Yang; Dou, Shuang; Du, Jin-Zhi; Yang, Xian-Zhu; Li, Ya-Ping; Wang, Jun

    2014-02-01

    Polyphosphoesters with repeating phosphoester linkages in the backbone can be easily functionalized, are biodegradable and potentially biocompatible, and may be potential candidates as polymer carriers of drug conjugates. Here, the efficacy of a polyphosphoester drug conjugate as an anticancer agent in vivo is assessed for the first time. With controlled synthesis, doxorubicin conjugated to poly(ethylene glycol)-block-polyphosphoester (PPEH-DOX) via labile hydrazone bonds form spherical nanoparticles in aqueous solution with an average diameter of ≈60 nm. These nanoparticles are effectively internalized by MDA-MB-231 breast cancer cells and release the conjugated doxorubicin in response to the intracellular pH of endosomes and lysosomes, resulting in significant antiproliferative activity in cancer cells. Compared with free doxorubicin injection, PPEH-DOX injection exhibits much longer circulation behavior in the plasma of mice and leads to enhanced drug accumulation in tumor cells. In an MDA-MB-231 xenograft murine model, inhibition of tumor growth with systemic delivery of PPEH-DOX nanoparticles is more pronounced compared with free doxorubicin injection, suggesting the potential of polyphosphoesters as carriers of drug conjugates in cancer therapy.

  1. Prospective evaluation of Doppler echocardiography, tissue Doppler imaging and biomarkers measurement for the detection of doxorubicin-induced cardiotoxicity in dogs: A pilot study.

    PubMed

    Gallay-Lepoutre, J; Bélanger, M C; Nadeau, M E

    2016-04-01

    The purpose of this pilot study was to evaluate the usefulness of selected echocardiographic parameters, NT-proBNP and cardiac troponin I (cTnI) in the detection of cardiotoxicity in dogs treated with doxorubicin for various malignancies. Echocardiographic studies and biomarker measurements were performed before each administration of doxorubicin, then 1 and 3 months after completion of therapy. Thirteen dogs were included, with a total cumulative dose of doxorubicin ranging from 30 to 150 mg/m(2). E/A ratio significantly decreased during doxorubicin administration (p=0.047). cTnI level was also significantly affected by treatment (p=0.046), increasing above normal at least at one time point in 11 of 13 dogs. The results of this pilot study suggest that monitoring of left ventricular diastolic function and cTnI level measurement might be useful in the early detection of cardiotoxic signs of doxorubicin therapy in dogs.

  2. Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model.

    PubMed Central

    Dodd, D A; Atkinson, J B; Olson, R D; Buck, S; Cusack, B J; Fleischer, S; Boucek, R J

    1993-01-01

    Doxorubicin is a highly effective cancer chemotherapeutic agent that produces a dose-dependent cardiomyopathy that limits its clinical usefulness. Clinical and animal studies of morphological changes during the early stages of doxorubicin-induced cardiomyopathy have suggested that the sarcoplasmic reticulum, the intracellular membrane system responsible for myoplasmic calcium regulation in adult mammalian heart, may be the early target of doxorubicin. To detect changes in the calcium pump protein or the calcium release channel (ryanodine receptor) of the sarcoplasmic reticulum during chronic doxorubicin treatment, rabbits were treated with intravenous doxorubicin (1 mg/kg) twice weekly for 12 to 18 doses. Pair-fed controls received intravenous normal saline. The severity of cardiomyopathy was scored by light and electron microscopy of left ventricular papillary muscles. Developed tension was measured in isolated atrial strips. In subcellular fractions from heart, [3H]ryanodine binding was decreased in doxorubicin-treated rabbits (0.33 +/- 0.03 pmol/mg) compared with control rabbits (0.66 +/- 0.02 pmol/mg; P < 0.0001). The magnitude of the decrease in [3H]ryanodine binding correlated with both the severity of the cardiomyopathy graded by pathology score (light and electron microscopy) and the decrease in developed tension in isolated atrial strips. Bmax for [3H]ryanodine binding and the amount of immunoreactive ryanodine receptor by Western blot analysis using sequence-specific antibody were both decreased, consistent with a decrease in the amount of calcium release channel of sarcoplasmic reticulum in doxorubicin-treated rabbits. In contrast, there was no decrease in the amount or the activity of the calcium pump protein of the sarcoplasmic reticulum in doxorubicin-treated rabbits. Doxorubicin treatment did not decrease [3H]ryanodine binding or the amount of immunoreactive calcium release channel of sarcoplasmic reticulum in skeletal muscle. Since the sarcoplasmic

  3. Synthesis and investigation of the specific activity of the DNA-doxorubicin conjugates

    NASA Astrophysics Data System (ADS)

    Kokorev, A. V.; Zaborovskiy, A. V.; Kotlyarov, A. A.; Balykova, L. A.; Malkina, M. A.; Kargina, I. V.; Gromova, E. V.; Medvezhonkov, V. Yu; Gurevich, K. G.; Shchukin, S. A.; Pyataev, N. A.

    2017-01-01

    In the present work, the method of obtaining the conjugate of the anticancer chemotherapeutic agent doxorubicin to the exogenous double-stranded DNA of the sturgeons is proposed (the source: commercial drug “Derinat”). The optimal conditions for synthesis of conjugate (pH, temperature and the mass ratio of the components), ensuring the highest degree of binding the chemotherapeutic agent to a carrier, were picked out. Clearing the conjugate from the non-encapsulated chemotherapeutic agent was being made by ultrafiltration method. The investigation of the toxicity and specific antineoplastic activity of the synthesized complex was conducted. The performance of the drug toxicity were established on the intact mice in compliance with the accepted standards. The antineoplastic activity was evaluated upon the Tumor Growth Inhibition Index and Metastasis Inhibition Index on mice with the transplanted Lewis lung carcinoma (LLC). It was demonstrated that the conjugate toxicity is approximately lower that the one of the unconjugated doxorubicin (LD 50 was equal 14.6 mg/kg and 9.9 mg/kg for the conjugate and doxorubicin, respectively). The specific antineoplastic activity was investigated in equitoxic doses of the drug. It was established that the conjugate being administered in equitoxic doses possesses a stronger antineoplastic activity, than the water-soluble drug (maximum 35% more as to the tumor volume and 51% more as to the Tumor Growth Inhibition index).

  4. Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger

    2016-02-18

    Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis.

  5. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53.

    PubMed

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.

  6. Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro.

    PubMed

    Yang, Yongyao; Zhang, Hongming; Li, Xiaoyan; Yang, Tianhe; Jiang, Qingan

    2015-01-01

    Dilated cardiomyopathy is the most frequent form of myocardial disease. Many factors contribute to dilated cardiomyopathy, for instance, long-term use of doxorubicin, one of the anthracyclines clinically used for cancer chemotherapy, result in dilated cardiomyopathy and congestive heart failure. However, the mechanism underlining doxorubicin-induced cardiomyocyte is still not fully understood. In this study, we evaluate the effects and their mechanisms of PPARα and PGC-1α pathways in doxorubicin induced mice cardiomyocytes. In vitro, cardiomyocytes isolated from hearts of adult FVB/NJ mice were treated with doxorubicin, GW 6471 (PPARα inhibitors) and WY14643 (PPARα agonists). The expression of PPARα and PGC-1α were detected via western blotting and Quantitative Real-Time PCR methods. Changes in energy and substrate metabolism were analyzed. MTT and flow cytometry were used for cell proliferation and apoptosis analysis. We detected expression of PPARα and PGC-1α was significantly higher in control group than doxorubicin group. Mitochondrial dysfunction was found in doxorubicin group including lower content of high-energy phosphates, significantly decreased mitochondrial ANT transport activity and markedly reduced mitochondrial membrane potential compared with control group. Metabolic remodeling existed in doxorubicin group because of higher concentration of free fatty acid and glucose consumption than of control group. More accumulations of reactive oxygen species were detected in doxorubicin group. The decreased cell viability and increased cell apoptosis observed in doxorubicin group. Severe apoptosis in doxorubicin group was verified by a set of markers including Bax, Bcl-2, cytosolic cytochrome c and caspase-3 up-regulation expression. These findings indicate that the PPARα and PGC-1α are closely involved in energy metabolism remodeling and apoptosis in cardiomyocytes.

  7. Assessment of cardiac troponin I (cTnI) and tissue velocity imaging (TVI) in 14 dogs with malignant lymphoma undergoing chemotherapy treatment with doxorubicin.

    PubMed

    Tater, G; Eberle, N; Hungerbuehler, S; Joetzke, A; Nolte, I; Wess, G; Betz, D

    2017-03-01

    Doxorubicin has been shown to be cardiotoxic at high doses but is an efficacious chemotherapeutic agent in the treatment of canine lymphoma. Echocardiographic measurements and serum ultrasensitive cardiac troponin I (cTnI) levels were obtained before and after doxorubicin administration in 14 dogs diagnosed with lymphoma. The aim of this prospective study was to evaluate changes in cTnI concentrations and tissue velocity imaging (TVI) values in dogs with lymphoma undergoing chemotherapy with doxorubicin. A total of 182 cTnI and 1017 TVI measurements were performed. Standard echocardiographic parameters, tissue Doppler indices and cTnI concentrations did not differ at any time point within a 12-week cyclic combination protocol. In conclusion, the use of doxorubicin at standard doses in the treatment of canine lymphoma may not be associated with significant myocardial damage.

  8. Current state of evidence on 'off-label' therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland--a consensus report.

    PubMed

    Aringer, M; Burkhardt, H; Burmester, G R; Fischer-Betz, R; Fleck, M; Graninger, W; Hiepe, F; Jacobi, A M; Kötter, I; Lakomek, H J; Lorenz, H M; Manger, B; Schett, G; Schmidt, R E; Schneider, M; Schulze-Koops, H; Smolen, J S; Specker, C; Stoll, T; Strangfeld, A; Tony, H P; Villiger, P M; Voll, R; Witte, T; Dörner, T

    2012-04-01

    Systemic lupus erythematosus (SLE) can be a severe and potentially life-threatening disease that often represents a therapeutic challenge because of its heterogeneous organ manifestations. Only glucocorticoids, chloroquine and hydroxychloroquine, azathioprine, cyclophosphamide and very recently belimumab have been approved for SLE therapy in Germany, Austria and Switzerland. Dependence on glucocorticoids and resistance to the approved therapeutic agents, as well as substantial toxicity, are frequent. Therefore, treatment considerations will include 'off-label' use of medication approved for other indications. In this consensus approach, an effort has been undertaken to delineate the limits of the current evidence on therapeutic options for SLE organ disease, and to agree on common practice. This has been based on the best available evidence obtained by a rigorous literature review and the authors' own experience with available drugs derived under very similar health care conditions. Preparation of this consensus document included an initial meeting to agree upon the core agenda, a systematic literature review with subsequent formulation of a consensus and determination of the evidence level followed by collecting the level of agreement from the panel members. In addition to overarching principles, the panel have focused on the treatment of major SLE organ manifestations (lupus nephritis, arthritis, lung disease, neuropsychiatric and haematological manifestations, antiphospholipid syndrome and serositis). This consensus report is intended to support clinicians involved in the care of patients with difficult courses of SLE not responding to standard therapies by providing up-to-date information on the best available evidence.

  9. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier.

    PubMed

    Li, Haoyu; Li, Man; Chen, Chao; Fan, Aiping; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-11-10

    The combinational delivery of doxorubicin and curcumin in a physically loaded nanocarrier offers the benefits of enhanced therapeutic efficacy and reduced adverse effects, but this strategy often suffers from the slow drug release followed by delayed onset of pharmacological action. This work reported the hydrazone-linked polymer-curcumin conjugate micelles containing physically loaded doxorubicin to address this problem; the ester-linked conjugate micelles were produced as the control. The pH-labile spherical micelles were less than 100 nm with a loading at 9.3 ± 0.5% (w/w, Curcumin) and 2.5 ± 0.1(w/w, Doxorubicin). Both agents were released at a faster rate in the pH-labile micelles compared to the control. The confocal laser scanning microscopy revealed a time-dependent co-localization of both agents in HepG2 cells. The IC50 of pH-labile conjugate micelles without doxorubicin in HepG2 cells was 27.7 ± 5.3 (μM), whereas the co-loaded micelles was lowered to 10.8 ± 3.4 (μM) (Cur-equivalent dose). The combination index calculation demonstrated a synergistic action of both agents in the co-loading nanocarrier. The current work provided an efficient nanocarrier system to achieve rapid on-demand drug release without onset delay of therapeutic action, which might add value to the clinical translation of the combinational delivery systems.

  10. Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes.

    PubMed

    Song, Xingli; Ren, Yi; Zhang, Jing; Wang, Gang; Han, Xuedong; Zheng, Wei; Zhen, Linlin

    2015-10-01

    Doxorubicin is used to treat numerous types of tumors including breast cancer, yet dose-associated toxicities limit its clinical application. Here, we demonstrated a novel strategy by which to deliver doxorubicin to breast cancer cells by conjugating cancer cell-specific single-strand DNA aptamers with doxorubicin-encapsulated DOTAP:DOPE nanoparticles (NPs). We utilizing a whole-cell-SELEX strategy, and 4T1 cells with high invasive and metastatic potential were used as target cells, while non-invasive and non-metastatic 67NR cells were used as subtractive cells. Ten potential aptamers were generated after multi-pool selection. Studies on the selected aptamers revealed that SRZ1 had the highest and specific binding affinity to 4T1 cells. Then we developed SRZ1 aptamer-carried DOTAP:DOPE-DOX NPs. In vitro uptake results which were conducted by FACS indicated that the aptamer significantly promoted the uptake efficiency of DOTAP:DOPE-DOX NPs by 4T1 cells. ATPlite assay was performed to test 4T1, 67NR and NMuMG cell viability after treatment with free doxorubicin, DOTAP:DOPE-DOX particles and aptamer‑loaded DOTAP:DOPE-DOX particles. As expected, the aptamers effectively enhanced accumulation of doxorubicin in the 4T1 tumor tissues as determined by in vivo mouse body images and biodistribution analysis. Consistent with the in vitro findings, aptamer-conjugated doxorubicin-loaded DOTAP:DOPE particles markedly suppressed tumor growth and significantly increased the survival rate of 4T1 tumor-bearing mice. These studies demonstrated that aptamer SRZ1 could be a promising molecule for chemotherapeutic drug targeting deliver.

  11. Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin.

    PubMed

    Zhou, Jing; Ong, Choon-Nam; Hur, Gang-Min; Shen, Han-Ming

    2010-05-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer properties. In this study, we sought to examine the effect of Andro on signal transducer and activator of transcription 3 (STAT3) pathway and evaluate whether suppression of STAT3 activity by Andro could sensitize cancer cells to a chemotherapeutic drug doxorubicin. First, we demonstrated that Andro is able to significantly suppress both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Such inhibition is found to be achieved through suppression of Janus-activated kinase (JAK)1/2 and interaction between STAT3 and gp130. For understanding the biological significance of the inhibitory effect of Andro on STAT3, we next investigated the effect of Andro on doxorubicin-induced apoptosis in human cancer cells. In our study the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to doxorubicin-induced apoptosis. Both the short-term MTT assay and the long-term colony formation assay showed that Andro dramatically promoted doxorubicin-induced cell death in cancer cells, indicating that Andro enhances the sensitivity of cancer cells to doxorubicin mainly via STAT3 suppression. These observations thus reveal a novel anticancer function of Andro and suggest a potential therapeutic strategy of using Andro in combination with chemotherapeutic agents for treatment of cancer.

  12. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-11-15

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.

  13. Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro

    PubMed Central

    Su, Zhonghao; Ye, Jin; Qin, Zhenxia; Ding, Xianting

    2015-01-01

    Madecassoside (MA), a triterpenoid saponin isolated from C. asitica, exerts various pharmacological activity including antioxidative and antinflammatory. Doxorubicin (DOX), a common chemotherapeutic drug, has been reported to induce numerous toxic side effects including renal-toxicity. We hypothesized that MA administration may decrease renal-toxicity caused by DOX. In this study, we investigated this hypothesis by introducing MA and DOX into the culture of Human Proximal Tubule Cells HK-2 and mice model. Our in vivo study demonstrated that MA (12 mg/kg), treatment for two weeks attenuated DOX-induced renal injury via protecting renal function, recovering antioxidant enzyme activity, inhibiting Bax, p-ERK1/2, NF-κB p65, iNOS expression and increasing Bcl-2 expression. Similar findings were obtained in our in vitro studies with treatment of DOX and/or MA. Further studies with application of iNOS inhibitor and ERK1/2 kinase inhibitor indicated that the inhibitory effects of MA on DOX-induced apoptosis and inflammation might be mediated by the suppression of the activation of cleaved caspase-3, ERK1/2 pathways, NF-κB p65 and NO production. These results suggest that MA is a promising protective agent for DOX-induced renal toxicity and can be a potential candidate to protect against renal toxicity in DOX-treated cancer patients. PMID:26658818

  14. Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improves outcomes in a rat glioma model

    PubMed Central

    Aryal, Muna; Vykhodtseva, Natalia; Zhang, Yong-Zhi; Park, Juyoung; McDannold, Nathan

    2013-01-01

    The blood-brain-barrier (BBB) prevents the transport of most anticancer agents to the central nervous system and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels, along with several other factors, creates additional barriers for drug treatment for brain tumors. Focused ultrasound (FUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and the “blood-tumor barrier”. Here, we tested the impact of three weekly sessions of FUS and liposomal doxorubicin (DOX) in 9L rat glioma tumors. Animals that received FUS + DOX (N = 8) had a median survival time that was increased significantly (P < 0.001) compared to animals who received DOX only (N = 6), FUS only (N = 8), or no treatment (N = 7). Median survival for animals that received FUS + DOX was increased by 100% relative to untreated controls, whereas animals who received DOX alone had only a 16% improvement. Animals who received only FUS showed no improvement. No tumor cells were found in histology in 4/8 animals in the FUS + DOX group, and in two animals, only a few tumor cells were detected. Adverse events in the treatment group included skin toxicity, impaired activity, damage to surrounding brain tissue, and tissue loss at the tumor site. In one animal, intratumoral hemorrhage was observed. These events are largely consistent with known side effects of doxorubicin and with an extensive tumor burden. Overall this work demonstrates that multiple sessions using this FUS technique to enhance the delivery of liposomal doxorubicin has a pronounced therapeutic effect in this rat glioma model. PMID:23603615

  15. Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells.

    PubMed

    Ghosh, Moumita; Das, Prasanta Kumar

    2016-06-01

    The present work reports the synthesis of a 17β-estradiol based amphiphiles comprising of polyethylene glycol (PEG) moiety linked through succinic acid that non-covalently dispersed (76%) the single walled carbon nanotubes (SWNTs) in water. The superior exfoliation of carbon nanotubes was characterized by microscopic and spectroscopic studies. Significant stability of these SWNT dispersions was observed in the presence of protein in cell culture media and the nanohybrids were highly biocompatible toward mammalian cells. Anticancer drug doxorubicin loaded on these nanohybrids was selectively delivered within estrogen receptor rich cancer cells, MCF7 (breast cancer cell) and A549 (lung cancer cell). Microscopic studies showed the localization of doxorubicin within the cancer cell nucleus whereas no such localization was observed in ER negative cells. Both these ER positive cancer cells were killed by ∼3 fold higher efficiency than that of ER negative MDA-MB-231 (advanced breast cancer cell) and HeLa cells that are deprived of estrogen receptors. Thus, judiciously designed estradiol based nanohybrids proved to be excellent tool for SWNT dispersion and also for selectively killing of ER positive cancer cells. To the best of our knowledge, for the first time non-covalently modified SWNTs by estradiol based amphiphilic dispersing agent have been used for selective killing of ER positive cancer cells by doxorubicin loaded on dispersed SWNTs. It holds immense promise to be exploited as a cancer therapeutic agent.

  16. Doxorubicin-Nanocarriers Enhance Doxorubicin Uptake and Clathrin-Mediated Endocytosis in Drug-Resistant Ovarian Cancer Cells

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohammed

    We tested Fe3O4 TiO2 metal oxide core-shell nanocomposites as carriers for doxorubicin and investigated the distribution of "doxorubicin-nanocarriers" and free doxorubicin in doxorubicin-sensitive and -resistant ovarian cancer cell lines. We hypothesized that doxorubicin-nanocarriers (DOX-NCs) would increase doxorubicin uptake in a drug-resistant cell line. Our expectation was that doxorubicin would bind to the TiO2 surface either by a labile monodentate link or through adsorption and subsequent disassociation from the nanocomposite carriers upon acidification in cell endosomes. Released doxorubicin could then traverse the intracellular milieu to enter the cell nucleus, overcoming the p-glycoprotein mediated doxorubicin resistance. Using a combination of confocal fluorescent microscopy, flow cytometry, and X-ray fluorescence microscopy we were able to evaluate the uptake and distribution of doxorubicin-nanocarriers in cells. Moreover, we found that nanocomposite treatment modulates the simultaneous uptake and distribution of fluorescent transferrin in ovarian cancer cell lines. This increased transferrin uptake still occurred by clathrin-mediated endocytosis; it appears that the nanocomposites and DOX-NCs alike may interfere with trans-Golgi apparatus function.

  17. Hyaluronic Acid Modified Tantalum Oxide Nanoparticles Conjugating Doxorubicin for Targeted Cancer Theranostics.

    PubMed

    Jin, Yushen; Ma, Xibo; Feng, Shanshan; Liang, Xiao; Dai, Zhifei; Tian, Jie; Yue, Xiuli

    2015-12-16

    Theranostic tantalum oxide nanoparticles (TaOxNPs) of about 40 nm were successfully developed by conjugating functional molecules including polyethylene glycol (PEG), near-infrared (NIR) fluorescent dye, doxorubicin (DOX), and hyaluronic acid (HA) onto the surface of the nanoparticles (TaOx@Cy7-DOX-PEG-HA NPs) for actively targeting delivery, pH-responsive drug release, and NIR fluorescence/X-ray CT bimodal imaging. The obtained nanoagent exhibits good biocompatibility, high cumulative release rate in the acidic microenvironments, long blood circulation time, and superior tumor-targeting ability. Both in vitro and in vivo experiments show that it can serve as an excellent contrast agent to simultaneously enhance fluorescence imaging and CT imaging greatly. Most importantly, such a nanoagent could enhance the therapeutic efficacy of the tumor greatly and the tumor growth inhibition was evaluated to be 87.5%. In a word, multifunctional TaOx@Cy7-DOX-PEG-HA NPs can serve as a theranostic nanomedicine for fluorescence/X-ray CT bimodal imaging, remote-controlled therapeutics, enabling personalized detection, and treatment of cancer with high efficacy.

  18. A Novel Doxorubicin Prodrug with Controllable Photolysis Activation for Cancer Chemotherapy

    PubMed Central

    Zahavy, Eran; Wrasdilo, Wolf; Berns, Michael; Chan, Michael; Esener, Sadik

    2010-01-01

    ABSTRACT Purpose Doxorubicin (DOX) is a very effective anticancer agent. However, in its pure form, its application is limited by significant cardiotoxic side effects. The purpose of this study was to develop a controllably activatable chemotherapy prodrug of DOX created by blocking its free amine group with a biotinylated photocleavable blocking group (PCB). Methods An n-hydroxy succunamide protecting group on the PCB allowed selective binding at the DOX active amine group. The PCB included an ortho-nitrophenyl group for photo cleavability and a water-soluble glycol spacer arm ending in a biotin group for enhanced membrane interaction. Results This novel DOX-PCB prodrug had a 200-fold decrease in cytotoxicity compared to free DOX and could release active DOX upon exposure to UV light at 350 nm. Unlike DOX, DOX-PCB stayed in the cell cytoplasm, did not enter the nucleus, and did not stain the exposed DNA during mitosis. Human liver microsome incubation with DOX-PCB indicated stability against liver metabolic breakdown. Conclusions The development of the DOX-PCB prodrug demonstrates the possibility of using light as a method of prodrug activation in deep internal tissues without relying on inherent physical or biochemical differences between the tumor and healthy tissue for use as the trigger. PMID:20596761

  19. The effects of 5-fluorouracil and doxorubicin on expression of human immunodeficiency virus type 1 long terminal repeat

    SciTech Connect

    Panozzo, J.; Akan, E.; Griffiths, T.D.; Woloschak, G.E.

    1996-03-01

    Previous work by many groups has documented induction of the HIV-LTR following exposure of cells to ultraviolet light and other DNA damaging agents. Our experiments set out to determine the relative activation or repression of the HIV-LTR in response to two classes of chemotherapeutic agents: Doxorubicin is a DNA-damage inducing agent, and 5-fluorouracil has an antimetabolic mode of action. Using HeLa cells stably transfected with a construct in which HIV-LTR drives expression of the chloramphenicol acetyl transferase reporter gene, we demonstrated an up to 10-fold induction following doxorubicin treatment in 24 h post-treatment. This induction was repressed by treatment with salicylic acid, suggesting a role for prostaglandin/cyclo-oxygenase pathways and/or NFKB in the inductive response. Induction by 5-fluorouracil, in contrast, was more modest (two-fold at most) though it was consistently elevated over controls.

  20. The effect of flavonoid derivatives on doxorubicin transport and metabolism.

    PubMed

    Václavíková, Radka; Kondrová, Eliska; Ehrlichová, Marie; Boumendjel, Ahcene; Kovár, Jan; Stopka, Pavel; Soucek, Pavel; Gut, Ivan

    2008-02-15

    This study investigated the effect of naturally occurring flavonoids and synthetic aurone derivatives on the formation of cardiotoxic doxorubicinol and transport of doxorubicin in breast cancer cells. Quercetin significantly inhibited the formation of doxorubicinol. Quercetin and aurones did not significantly affect transport of [14C]doxorubicin in human resistant breast cancer cells. In conclusion, quercetin should be further tested for its potency to decrease doxorubicin-mediated toxicity.

  1. Cardiac actomyosin ATPase activity after chronic doxorubicin treatment.

    PubMed

    Bergson, A; Inchiosa, M A

    1985-04-01

    Doxorubicin (Adriamycin), a potent antineoplastic drug, produces progressive cardiotoxicity which may lead to ultimate cardiac failure. The effects of chronic doxorubicin treatment on cardiac actomyosin ATPase were the principal focus of the present studies. This approach was based on the established correlation between cardiac contractility and contractile protein ATPase activity. Rabbits were injected intravenously with doxorubicin (4 mg/kg) at weekly intervals for 1-7 weeks. Body weight increase was attenuated in the treated animals; heart weight/body weight ratio was unchanged. Actomyosin and water contents of ventricular muscle were not different in doxorubicin-treated as compared with vehicle control animals. Cellular damage was detected histologically after one dose of doxorubicin (equivalent to a single clinical dose), and was extensive after 4-5 weeks of treatment. Animals which received 1-2 injections of doxorubicin demonstrated a 29% average increase in actomyosin ATPase activity as compared to vehicle controls; this difference was highly significant (p less than 0.001). Further treatment with doxorubicin tended to progressively decrease ATPase activity. It is suggested that the increased actomyosin ATPase activity seen with low total doses of doxorubicin may represent a compensatory mechanism for maintenance of contractility; this interpretation is supported by the clinical observation that the morphologic evidence of progressive doxorubicin toxicity is not associated with a parallel decrease in contractility, until severe cumulative toxicity has been induced.

  2. P53 is required for Doxorubicin-induced apoptosis via the TGF-beta signaling pathway in osteosarcoma-derived cells

    PubMed Central

    Sun, Yifu; Xia, Peng; Zhang, Haipeng; Liu, Biao; Shi, Ying

    2016-01-01

    Osteosarcoma is the most common type of aggressive bone cancer. Current treatment strategies include surgical resection, radiation, and chemotherapy. Doxorubicin has been widely used as a chemotherapeutic drug to treat osteosarcoma. However, drug resistance has become a challenge to its use. In this study, p53-wild type U2OS and p53-null MG-63 osteosarcoma-derived cells were used to investigate the mechanism of doxorubicin-induced cytotoxicity. In cell viability assays, doxorubicin effectively induced apoptosis in U2OS cells via the p53 signaling pathway, evidenced by elevated PUMA and p21 protein levels and activated caspase 3 cleavage. In contrast, p53-null MG-63 cells were resistant to doxorubicin-induced apoptosis, while exogenous expression of p53 increased drug sensitivity in those cells. The role of TGF-β/Smad3 signaling was investigated by using TGF-β reporter luciferase assays. Doxorubicin was able to induce TGF-β signal transduction without increasing TGF-β production in the presence of p53. Knockdown of Smad3 expression by small hairpin RNA (shRNA) showed that Smad3 was required for p53-mediated TGF-β signaling in response to doxorubicin treatment in U2OS and MG-63 cells. Taken together, these data demonstrate that p53 and TGF-β/Smad3 signaling pathways are both essential for doxorubicin-induced cytotoxicity in osteosarcoma cells. PMID:27073729

  3. MnO2-Based Nanoplatform Serves as Drug Vehicle and MRI Contrast Agent for Cancer Theranostics.

    PubMed

    Zhang, Mei; Xing, Lei; Ke, Hengte; He, Yu-Jing; Cui, Peng-Fei; Zhu, Yong; Jiang, Ge; Qiao, Jian-Bin; Lu, Na; Chen, Huabing; Jiang, Hu-Lin

    2017-04-05

    Multidrug resistance (MDR) greatly impedes the therapeutic efficacy of chemotherapeutic agents. Overexpression of ATP-binding cassette (ABC) transporters, such as P-gp, on the surface of tumor cells is a major mechanism in MDR. In this study, we fabricated manganese dioxide (MnO2)/doxorubicin (DOX)-loaded albumin nanoparticles (BMDN) for magnetic resonance imaging and reversing MDR in resistant tumor. BMDN facilitated the delivery of DOX into MDR tumor cells through their MDR reversal effects including enhanced cellular uptake, reduced drug efflux, and decreased hypoxic tumor microenvironment. BMDN also acted as an effective MRI contrast agent, thereby causing good in vitro and in vivo T1-weighted imaging.

  4. Ferric Carboxymaltose-Mediated Attenuation of Doxorubicin-Induced Cardiotoxicity in an Iron Deficiency Rat Model

    PubMed Central

    Toblli, Jorge Eduardo; Rivas, Carlos; Cao, Gabriel; Giani, Jorge Fernando; Dominici, Fernando Pablo

    2014-01-01

    Since anthracycline-induced cardiotoxicity (AIC), a complication of anthracycline-based chemotherapies, is thought to involve iron, concerns exist about using iron for anaemia treatment in anthracycline-receiving cancer patients. This study evaluated how intravenous ferric carboxymaltose (FCM) modulates the influence of iron deficiency anaemia (IDA) and doxorubicin (3–5 mg per kg body weight [BW]) on oxidative/nitrosative stress, inflammation, and cardiorenal function in spontaneously hypertensive stroke-prone (SHR-SP) rats. FCM was given as repeated small or single total dose (15 mg iron per kg BW), either concurrent with or three days after doxorubicin. IDA (after dietary iron restriction) induced cardiac and renal oxidative stress (markers included malondialdehyde, catalase, Cu,Zn-superoxide dismutase, and glutathione peroxidase), nitrosative stress (inducible nitric oxide synthase and nitrotyrosine), inflammation (tumour necrosis factor-alpha and interleukin-6), and functional/morphological abnormalities (left ventricle end-diastolic and end-systolic diameter, fractional shortening, density of cardiomyocytes and capillaries, caveolin-1 expression, creatinine clearance, and urine neutrophil gelatinase-associated lipocalin) that were aggravated by doxorubicin. Notably, iron treatment with FCM did not exacerbate but attenuated the cardiorenal effects of IDA and doxorubicin independent of the iron dosing regimen. The results of this model suggest that intravenous FCM can be used concomitantly with an anthracycline-based chemotherapy without increasing signs of AIC. PMID:24876963

  5. Doxorubicin enhances the capacity of B cells to activate T cells in urothelial urinary bladder cancer.

    PubMed

    Zirakzadeh, A Ali; Kinn, Johan; Krantz, David; Rosenblatt, Robert; Winerdal, Malin E; Hu, Jin; Hartana, Ciputra Adijaya; Lundgren, Christian; Bergman, Emma Ahlén; Johansson, Markus; Holmström, Benny; Hansson, Johan; Sidikii, Alexander; Vasko, Janos; Marits, Per; Sherif, Amir; Winqvist, Ola

    2016-12-24

    Cancer is currently treated by a combination of therapies, including chemotherapy which is believed to suppress the immune system. Combination of immunotherapy and chemotherapy correlates with improved survival but needs careful planning in order to achieve a synergistic effect. In this study, we have demonstrated that doxorubicin treatment of B cells resulted in increased expression of CD86 and concordantly increased CD4(+) T cell activation in the presence of superantigen, an effect that was inhibited by the addition of a CD86 blocking antibody. Furthermore, doxorubicin resulted in decreased expression of the anti-inflammatory cytokines IL-10 and TNF-α. Finally, B cells from urinary bladder cancer patients, treated with a neoadjuvant regiment containing doxorubicin, displayed increased CD86-expression. We conclude that doxorubicin induces CD86 expression on B cells and hence enhances their antigen-presenting ability in vitro, a finding verified in patients. Development of tailored time and dose schedules may increase the effectiveness of combining chemotherapy and immunotherapy.

  6. Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin

    PubMed Central

    Boutabet, K.; Kebsa, W.; Alyane, M.; Lahouel, M.

    2011-01-01

    We evaluated the effects of propolis extract on renal oxidative stress induced by doxorubicin throughout an analytical and pharmacological study of the eastern Algerian propolis using thin layer chromatography, ultra-violet-high-performance liquid chromatography) and gas chromatography-mass spectrometry. The pharmacological study was carried out in vivo on Wistar rat pre-treated with propolis extract 100 mg/kg/day for seven days. Doxorubicin at 10 mg/kg of body weight was administered intravenously on Day 7. Serum creatinine concentration, scavenging effect of flavonoids, lipid peroxidation and glutathione concentration were measured. Chemical analysis allowed identification and quantification of the phenolic compounds including pinostrombin chalcone (38.91%), galangin (18.95%), naringenin (14.27%), tectochrysin (25.09%), methoxychrysin (1.14%) and a prenylated coumarin compound suberosin (1.65%). The total flavonoid concentration in the propolis extract was 370 mg (quercetin equivalents QE) /g dry weight (QE/g DWPE). Propolis extract restored the renal functions and reduced the toxic effect of doxorubicin. These data show a protective effect of Algerian propolis extract against doxorubicin-induced oxidative stress. PMID:21769172

  7. Pilot study of interaction of radiation therapy with doxorubicin by continuous infusion

    SciTech Connect

    Rosenthal, C.J.; Rotman, M.

    1988-01-01

    Doxorubicin was initially administered alone by continuous infusion for 5 days every 3 weeks in escalating doses to 13 patients with advanced metastatic and/or recurrent malignancies. The maximum tolerable dosage was 13 mg/m2 per day for 5 days. Kinetic data showed a steady level of 60 ng/ml for 4 days and a biphasic disappearance curve. Radiation therapy (150-200 cGy per session) was then administered in 5-day cycles, every 3 weeks, concomitantly with continuous infusion of doxorubicin (12 mg/m2 per day) to 21 patients with various advanced unresectable recurrent or metastatic malignancies. Four of 9 patients with soft tissue sarcomas achieved complete response after a radiation dose of 2,206 +/- 590 (SD) cGy and 3 had partial response; the median durations of the response were 142 +/- 65 (SD) weeks for complete response and 28 +/- 10 weeks for partial response. Of 4 patients with primary hepatoma, 2 achieved partial response after 1,290 +/- 210 cGy. No response was seen in any of the 7 patients with adenocarcinoma of the gastrointestinal tract or breast. Complications of this regimen included moderate leukopenia and thrombocytopenia, mucositis, skin erythema, and decrease of the ventricular ejection fraction at a cumulative doxorubicin dose of 840 mg/m2. We conclude that doxorubicin given by protracted infusion can be safely administered with concomitant radiation and appears to enhance the effects of radiation on most soft tissue sarcomas and on some hepatocellular carcinomas.

  8. Nuclear proteomics with XRCC3 knockdown to reveal the development of doxorubicin-resistant uterine cancer.

    PubMed

    Chang, Jo-Fan; Lin, Szu-Ting; Hung, Eric; Lu, Yi-Ling; Soon May, Eugenie Wong; Lo, Yi-Wen; Chou, Hsiu-Chuan; Chan, Hong-Lin

    2014-06-01

    The nucleus is a key organelle in mammary cells, which is responsible for several cellular functions including cell proliferation, gene expression, and cell survival. In addition, the nucleus is the primary targets of doxorubicin treatment. In the current study, low-abundance nuclear proteins were enriched for proteomic analysis by using a state-of-the-art two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) strategy to compare and identify the nuclear protein profiling changes responsible for the development of doxorubicin resistance in human uterine cancer cells. The results of the nuclear proteomic analysis indicated that more than 2100 protein features were resolved from an equal pooled amount of three purified nuclear proteins and 117 differentially expressed spots were identified. Of these 117 identified proteins, 48 belonged to nuclear proteins and a positive correlation was observed between the expression levels of 32 of these nuclear proteins and an increase in drug resistance. According to our review of relevant research, nuclear proteins such as DNA repair protein XRCC3 (XRCC3) have not been reported to play roles in the formation of doxorubicin resistance. Previous studies have used RNA interference and cell viability analysis to evidence the essential roles of XRCC3 on its potency in the formation of doxorubicin resistance. To sum up, our nuclear proteomic approaches enabled us to identify numerous proteins, including XRCC3, involved in various drug-resistance-forming mechanisms. Our results provide potential diagnostic markers and therapeutic candidates for treating doxorubicin-resistant uterine cancer.

  9. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer

    PubMed Central

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-01-01

    Background The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. Material/Methods A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. Results Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. Conclusions The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells. PMID:27385226

  10. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.

    PubMed

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-07-07

    BACKGROUND The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. MATERIAL AND METHODS A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. RESULTS Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. CONCLUSIONS The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells.

  11. Whole-Genome Sequence of Pseudomonas fluorescens EK007-RG4, a Promising Biocontrol Agent against a Broad Range of Bacteria, Including the Fire Blight Bacterium Erwinia amylovora

    PubMed Central

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke

    2017-01-01

    ABSTRACT Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. PMID:28360179

  12. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression

    PubMed Central

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-01-01

    Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966

  13. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity

    SciTech Connect

    Carrio, I.; Estorch, M.; Berna, L.

    1995-11-01

    Detection of myocyte cell damage with {sup 111}In-antimyosin and impairment of adrenergic neuron function with MIBG during doxorubicin administration may provide early identification of patients at risk of significant functional impairment. We studied 36 cancer patients who underwent chemotherapy, including doxorubicin, to assess MIBG and {sup 111}In-antimyosin uptake in the course of doxorubicin administration. MIBG scans, antimyosin scans and ejection fraction measurements were performed before chemotherapy, at intermediate cumulative doses and at maximal cumulative doses of doxorubicin. MIBG uptake was quantified by a heart-to-mediastinum ratio and antimyosin uptake was quantified by a heart-to-lung ratio. All patients had absent antimyosin uptake (mean ratio 1.40 {+-} 0.06) with normal MIBG uptake (ratio 1.85 {+-} 0.29) before chemotherapy; ejection fraction was 61% {+-} 8%. With a 240-300 mg/m{sup 2} dose of doxorubicin, an increase in antimyosin uptake was observed with a ratio of 1.85 {+-} 0.2 (p < 0.01), whereas a similar degree of MIBG uptake was observed (mean ratio of 1.80 {+-} 0.2, p = ns); ejection fraction was 59% {+-} 5% (p = ns). At 420-600 mg/m{sup 2}, increased antimyosin uptake was observed with a ratio of 2.02 {+-} 0.3 (p < 0.01), and a decrease in MIBG uptake was also observed (mean ratio of 1.76 {+-} 0.2, p < 0.05); ejection fraction was 52% {+-} 8% (p < 0.05). Patients with more intense antimyosin uptake at intermediate doses tended to be those with more severe functional impairment at maximal cumulative doses. At cumulative doses of 420-600 mg/m{sup 2}, antimyosin and MIBG studies detect cell damage and impaired adrenergic neuron activity in patients with maintained or slightly decreased ejection fraction. 33 refs., 3 figs., 2 tabs.

  14. Doxorubicin and carboplatin trials in Tasmanian devils (Sarcophilus harrisii) with Tasmanian devil facial tumor disease.

    PubMed

    Phalen, David N; Frimberger, Angela E; Peck, Sarah; Pyecroft, Stephen; Harmsen, Colette; Lola, Suzanneth; Moore, Antony S

    2015-12-01

    The devil facial tumor disease (DFTD) is having a devastating impact on Tasmanian devils (Sarcophilus harrisii) (devils) in the wild. Only a single study has been published regarding treatment of DFTD, where vincristine was not found to be an effective chemotherapeutic agent. In the current study, devils were treated with escalating dosages of carboplatin (8-26 mg/kg) (n = 13) and doxorubicin (0.75-1.0 mg/kg) (n = 5). Dosages for carboplatin (20 mg/kg) and doxorubicin (1.0 mg/kg) were identified as maximally tolerated dosages. Limiting toxicities for carboplatin were anorexia and weight loss (gastrointestinal signs) and azotemia. Limiting toxicities for doxorubicin were neutropenia, anorexia and weight loss. None of the treated devils responded to either drug, suggesting that, based on the clonality of this tumour, it is unlikely that either drug individually or in combination would be effective treatments for DFTD. These results, however, provide valuable information for practitioners who may choose to treat other neoplastic diseases in the devil or other marsupials. In addition, these results show that even drugs that are metabolized and excreted in the same manner can be tolerated to different degrees by the same species.

  15. Clinical trials with pegylated liposomal Doxorubicin in the treatment of ovarian cancer.

    PubMed

    Pisano, Carmela; Cecere, Sabrina Chiara; Di Napoli, Marilena; Cavaliere, Carla; Tambaro, Rosa; Facchini, Gaetano; Scaffa, Cono; Losito, Simona; Pizzolorusso, Antonio; Pignata, Sandro

    2013-01-01

    Among the pharmaceutical options available for treatment of ovarian cancer, increasing attention has been progressively focused on pegylated liposomal doxorubicin (PLD), whose unique formulation prolongs the persistence of the drug in the circulation and potentiates intratumor accumulation. Pegylated liposomal doxorubicin (PLD) has become a major component in the routine management of epithelial ovarian cancer. In 1999 it was first approved for platinum-refractory ovarian cancer and then received full approval for platinum-sensitive recurrent disease in 2005. PLD remains an important therapeutic tool in the management of recurrent ovarian cancer in 2012. Recent interest in PLD/carboplatin combination therapy has been the object of phase III trials in platinum-sensitive and chemonaïve ovarian cancer patients reporting response rates, progressive-free survival, and overall survival similar to other platinum-based combinations, but with a more favorable toxicity profile and convenient dosing schedule. This paper summarizes data clarifying the role of pegylated liposomal doxorubicin (PLD) in ovarian cancer, as well as researches focusing on adding novel targeted drugs to this cytotoxic agent.

  16. Comparison of doxorubicin-cyclophosphamide with doxorubicin-dacarbazine for the adjuvant treatment of canine hemangiosarcoma.

    PubMed

    Finotello, R; Stefanello, D; Zini, E; Marconato, L

    2017-03-01

    Canine hemangiosarcoma (HSA) is a neoplasm of vascular endothelial origin that has an aggressive biological behaviour, with less than 10% of dogs alive at 12-months postdiagnosis. Treatment of choice consists of surgery followed by adjuvant doxorubicin-based chemotherapy. We prospectively compared adjuvant doxorubicin and dacarbazine (ADTIC) to a traditional doxorubicin and cyclophosphamide (AC) treatment, aiming at determining safety and assessing whether this regimen prolongs survival and time to metastasis (TTM). Twenty-seven dogs were enrolled; following staging work-up, 18 were treated with AC and 9 with ADTIC. Median TTM and survival time were longer for dogs treated with ADTIC compared with those receiving AC (>550 versus 112 days, P = 0.021 and >550 versus 142 days, P = 0.011, respectively). Both protocols were well tolerated, without need for dose reduction or increased interval between treatments. A protocol consisting of combined doxorubicin and dacarbazine is safe in dogs with HSA and prolongs TTM and survival time.

  17. Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson’s disease and depression

    PubMed Central

    Lawal, Hakeem O.; Terrell, Ashley; Lam, Hoa A.; Djapri, Christine; Jang, Jennifer; Hadi, Richard; Roberts, Logan; Shahi, Varun; Chou, Man-Ting; Biedermann, Traci; Huang, Brian; Lawless, George M.; Maidment, Nigel T.; Krantz, David E.

    2012-01-01

    Small molecules that increase the presynaptic function of aminergic cells may provide neuroprotection in Parkinson’s disease as well as treatments for attention deficit hyperactivity disorder (ADHD) and depression. Model genetic organisms such as Drosophila melanogaster may enhance the detection of new drugs via modifier or “enhancer/suppressor” screens, but this technique has not been applied to processes relevant to psychiatry. To identify new aminergic drugs in vivo, we used a mutation in the Drosophila vesicular monoamine transporter (dVMAT) as a sensitized genetic background, and performed a suppressor screen. We fed dVMAT mutant larvae ~1000 known drugs and quantitated rescue (suppression) of an amine-dependent locomotor deficit in the larva. To determine which drugs might specifically potentiate neurotransmitter release, we performed an additional secondary screen for drugs that require presynaptic amine storage to rescue larval locomotion. Using additional larval locomotion and adult fertility assays, we validated that at least one compound previously used clinically as an antineoplastic agent potentiates the presynaptic function of aminergic circuits. We suggest that structurally similar agents might be used to development treatments for Parkinson’s disease, depression and ADHD and that modifier screens in Drosophila provide a new strategy to screen for neuropsychiatric drugs. More generally, our findings demonstrate the power of physiologically based screens for identifying bioactive agents for select neurotransmitter systems. PMID:23229049

  18. Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Doxorubicin (DOX) is a chemotherapeutic agent effective in the treatment of many cancers. However, cardiac dysfunction caused by DOX limits its clinical use. DOX is believed to be harmful to cardiomyocytes by interfering with the mitochondrial phospholipid cardiolipin and causing inefficient electro...

  19. Rhenium analogues of promising renal imaging agents with a [99mTc(CO)3]+ core bound to cysteine-derived dipeptides, including lanthionine.

    PubMed

    He, Haiyang; Lipowska, Malgorzata; Xu, Xiaolong; Taylor, Andrew T; Marzilli, Luigi G

    2007-04-16

    The coordination chemistry of lanthionine (LANH2) and cystathionine (CSTH2) dipeptides, which respectively consist of two cysteines and one cysteine and one homocysteine linked by a thioether bridge, is almost unstudied. Recently for fac-[99mTc(CO)3(LAN)]- isomers, the first small 99mTc(CO)3 agents evaluated in humans were found to give excellent renal images and to have a high specificity for renal excretion. Herein we report the synthesis and characterization of Re complexes useful for interpreting the nature of tracer 99mTc radiopharmaceuticals. Treatment of [Re(CO)3(H2O)3]OTf with commercially available LANH2 (a mixture of meso (d,l) and chiral (dd,ll) isomers) gave three HPLC peaks, 1A, 1B, and 1C, but treatment with CSTH2 (l,l isomer) gave one major product, Re(CO)3(CSTH) (2). Crystalline Re(CO)3(LANH) products were best obtained with synthetic LANH2, richer in meso or chiral isomers. X-ray crystallography showed that these dipeptides coordinate as tridentate N2S-bound ligands with two dangling carboxyls. The LANH ligand is meso in 1A and 1C and chiral in 1B. While 1A (kinetically favored) is stable at ambient temperature for days, it converted into 1C (thermodynamically favored) at 100 degrees C; after 6 h, equilibrium was reached at a 1A:1C ratio of 1:2 at pH 8. The structures provide a rationale for this behavior and for the fact that 1A and 1C have simple NMR spectra. This simplicity results from fluxional interchange between an enantiomer with both chelate rings having the same delta pucker and an enantiomer with both chelate rings having the same lambda pucker. Agents with the [99mTc(CO)3]+ core and N2S ligands show promise of becoming an important class of 99mTc radiopharmaceuticals. The chemistry of Re analogues with these ligands, such as the LAN2- complexes reported here, provides a useful background for designing new small agents and also tagged large agents because two uncoordinated carboxyl groups are available for conjugation with biological

  20. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells.

    PubMed

    Liu, Ming; Yin, Hua; Qian, Xiaokun; Dong, Jianjun; Qian, Zhonghua; Miao, Jinlai

    2016-12-28

    Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR) and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer.

  1. Evaluation of the potential of doxorubicin loaded microbubbles as a theranostic modality using a murine tumor model.

    PubMed

    Abdalkader, Rodi; Kawakami, Shigeru; Unga, Johan; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2015-06-01

    In this study, a novel phospholipid-based microbubble formulation containing doxorubicin and perfluoropropane gas (DLMB) was developed. The DLMBs were prepared by mechanical agitation of a phospholipid dispersion in the presence of perfluoropropane (PFP) gas. An anionic phospholipid, distearoyl phosphatidylglycerol (DSPG) was selected to load doxorubicin in the microbubbles by means of electrostatic interaction. The particle size, zeta potential, echogenicity and stability of the DLMBs were measured. Drug loading was ⩾ 92%. The potential of the DLMBs for use as a theranostic modality was evaluated in tumor bearing mice. Gas chromatography analysis of PFP showed significant enhancement of PFP retention when doxorubicin was used at concentrations of 10-82% equivalent to DSPG. The inhibitory effects on the proliferation of B16BL6 melanoma murine cells in vitro were enhanced using a combination of ultrasound (US) irradiation and DLMBs. Moreover, in vivo DLMBs in combination with (US) irradiation significantly inhibited the growth of B16BL6 melanoma tumor in mice. Additionally, US echo imaging showed high contrast enhancement of the DLMBs in the tumor vasculature. These results suggest that DLMBs could serve as US triggered carriers of doxorubicin as well as tumor imaging agents in cancer therapy.

  2. Doxorubicin-induced dilated cardiomyopathy for modified radical mastectomy: A case managed under cervical epidural anaesthesia

    PubMed Central

    Jain, Anuj; Kishore, Kamal

    2013-01-01

    Doxorubicin (Dox) is an antineoplastic agent used in a wide variety of malignancies. Its use is limited because of a cumulative, dose-dependent irreversible cardiomyopathy. We report a case of Dox induced cardiomyopathy, posted for modified radical mastectomy. The patient had poor LV function along with moderate pulmonary hypertension. Regional anaesthesia was planned as the risk associated with general anaesthesia was more. A cervical epidural was placed and a block adequate for surgery could be achived. The haemodynamic parameters as measured by esophageal doppler showed a stable trend. The surgery could be managed well under cervical epidural and also provided a good postoperative pain relief. PMID:23825820

  3. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    SciTech Connect

    Tikoo, Kulbhushan Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Our results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.

  4. Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro.

    PubMed

    Zhong, Zhang-Feng; Qiang, Wen-An; Wang, Chun-Ming; Tan, Wen; Wang, Yi-Tao

    2016-03-05

    Furanodiene is a natural product isolated from Rhizoma curcumae, and exhibits broad-spectrum anti-cancer activities in vitro and in vivo. Our previous study proved that furanodiene could increase growth inhibition of steroidal agent in ERα-positive breast cancer cells, but whether furanodiene can influence ER status is not clear. In this study, we confirmed that furanodiene down-regulated the ERα protein expression level and inhibited E2-induced estrogen response element (ERE)-driven reporter plasmid activity in ERα-positive MCF-7 cells. Actually, ERα-knockdown cells were more sensitive than ERα positive cells to furanodiene on the cytotoxicity effect. So the anti-cancer effects of furanodiene and non-steroidal agent in breast cancer cells still requires further investigation. Our results showed that furanodiene exposure could enhance growth inhibitory effects of doxorubicin in ERα-negative MDA-MB-231 cells and ERα-low expression 4T1 cells. However, furanodiene did not increase the cytotoxicity of doxorubicin in ERα-positive breast cancer cells, non-tumorigenic breast epithelial cells, macrophage cells, hepatocytes cells, pheochromocytoma cells and cardiac myoblasts cells. Furanodiene enhances the anti-cancer effects of doxorubicin in ERα-negative breast cancer cells through suppressing cell viability via inducing apoptosis in mitochondria-caspases-dependent and reactive oxygen species-independent manners. These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future.

  5. Polyketide Derivatives from Annona muricata Linn Leaves as Potencial Anticancer Material by Combination Treatment With Doxorubicin on Hela Cell Line

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Widiyaningsih, R. F.; Prihapsara, F.

    2017-02-01

    One of the compounds found effication as an anticancer agent on cervical cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on hela cell line. An approach recently develop to overcome side effect of chemoterapeutic agent is used of combined chemoterapeutic agent, i.e doxorubicin. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). The expression of p53 profile was evaluated by immunohistochemistry on hela cell line. Data analysis showed that combination of polyketide derivative from Annona muricata L. (38,5 µg/ml) and doxorubicin with all of concentration performed synergistic effect on hela cell line with CI value from 0,33 – 0,65. The analysis on immucytochemistry showed that polyketide derivative from Annona muricata L. leaves could enhance p53 pathway significantly on hela cell line.

  6. Non-pegylated liposomal doxorubicin combined with gemcitabine as first-line treatment for metastatic or locally advanced breast cancer. Final results of a phase I/II trial.

    PubMed

    Del Barco, S; Colomer, R; Calvo, L; Tusquets, I; Adrover, E; Sánchez, P; Rifà, J; De la Haba, J; Virizuela, J A

    2009-07-01

    Doxorubicin and gemcitabine are active as single agents in breast cancer, have different mechanisms of action, and mainly have non-overlapping side effects. Dose-dependent doxorubicin-related cardiac toxicity is the principal limitation in the metastatic setting. This open, multicenter, single-arm phase I/II study assessed the safety and activity of gemcitabine in combination with non-pegylated liposomal doxorubicin (Myocet), a more cardiac-friendly anthracycline, in the first-line treatment of patients with advanced breast cancer. We aimed to determine the optimal recommended dose (RD) of gemcitabine combined with Myocet in a population, with performance status >or=2 and LVEF >or=50%. A formal phase II study was performed afterwards. A total of 53 patients were recruited. Gemcitabine 900 mg/m(2) intravenously day 1 and 8 combined with Myocet 55 mg/m(2) intravenously day 1, every 21 days, was the final RD. The principal toxicity observed was hematological, and 48% of patients developed grade 3-4 neutropenia. Other toxicities were mild and infrequent, including nausea and vomiting. There were no symptomatic cardiac events despite the fact that 36% of the patients had received prior treatment with adjuvant anthracyclines. Objective responses were observed in 51.1% of 47 evaluable patients (95% CI: 36-66%), including two complete response. In addition, 14 patients (29.8%) demonstrated stable disease. The combination of Myocet and gemcitabine at the RD is safe and has encouraging clinical activity in patients with advanced breast cancer, without apparent cardiac toxicity in anthracycline-pretreated patients. These data support further development of this combination.

  7. Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells.

    PubMed

    El-Awady, Raafat A; Semreen, Mohammad H; Saber-Ayad, Maha M; Cyprian, Farhan; Menon, Varsha; Al-Tel, Taleb H

    2016-01-01

    DNA damage response machinery (DDR) is an attractive target of cancer therapy. Modulation of DDR network may alter the response of cancer cells to DNA damaging anticancer drugs such as doxorubicin. The aim of the present study is to investigate the effects of a newly developed imidazopyridine (IAZP) derivative on the DDR after induction of DNA damage in cancer cells by doxorubicin. Cytotoxicity sulphrhodamine-B assay showed a weak anti-proliferative effect of IAZP alone on six cancer cell lines (MCF7, A549, A549DOX11, HepG2, HeLa and M8) and a normal fibroblast strain. Combination of IAZP with doxorubicin resulted in synergism in lung (A549) and breast (MCF7) cancer cells but neither in the other cancer cell lines nor in normal fibroblasts. Molecular studies revealed that synergism is mediated by modulation of DNA damage response and induction of apoptosis. Using constant-field gel electrophoresis and immunofluorescence detection of γ-H2AX foci, IAZP was shown to inhibit the repair of doxorubicin-induced DNA damage in A549 and MCF7 cells. Immunoblot analysis showed that IAZP suppresses the phosphorylation of the ataxia lelangiectasia and Rad3 related (ATR) protein, which is an important player in the response of cancer cells to chemotherapy-induced DNA damage. Moreover, IAZP augmented the doxorubicin-induced degradation of p21, activation of p53, CDK2, caspase 3/7 and phosphorylation of Rb protein. These effects enhanced doxorubicin-induced apoptosis in both cell lines. Our results indicate that IAZP is a promising agent that may enhance the cytotoxic effects of doxorubicin on some cancer cells through targeting the DDR. It is a preliminary step toward the clinical application of IAZP in combination with anticancer drugs and opens the avenue for the development of compounds targeting the DDR pathway that might improve the therapeutic index of anticancer drugs and enhance their cure rate.

  8. A mouse model for juvenile doxorubicin-induced cardiac dysfunction.

    PubMed

    Zhu, Wuqiang; Shou, Weinian; Payne, R Mark; Caldwell, Randall; Field, Loren J

    2008-11-01

    Doxorubicin (DOX) is a potent antitumor agent. DOX can also induce cardiotoxicity, and high cumulative doses are associated with recalcitrant heart failure. Children are particularly sensitive to DOX-induced heart failure. The ability to genetically modify mice makes them an ideal experimental system to study the molecular basis of DOX-induced cardiotoxicity. However, most mouse DOX studies rely on acute drug administration in adult animals, which typically are analyzed within 1 wk. Here, we describe a juvenile mouse model of chronic DOX-induced cardiac dysfunction. DOX treatment was initiated at 2 wk of age and continued for a period of 5 wk (25 mg/kg cumulative dose). This resulted in a decline in cardiac systolic function, which was accompanied by marked atrophy of the heart, low levels of cardiomyocyte apoptosis, and decreased growth velocity. Other animals were allowed to recover for 13 wk after the final DOX injection. Cardiac systolic function improved during this recovery period but remained depressed compared with the saline injected controls, despite the reversal of cardiac atrophy. Interestingly, increased levels of cardiomyocyte apoptosis and concomitant myocardial fibrosis were observed after DOX withdrawal. These data suggest that different mechanisms contribute to cardiac dysfunction during the treatment and recovery phases.

  9. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Mishra, Akhilesh Kumar; Pandey, Himanshu; Agarwal, Vishnu; Ramteke, Pramod W.; Pandey, Avinash C.

    2014-08-01

    The motive of the at hand exploration was to contrive a proficient innovative pH-responsive nanocarrier designed for an anti-neoplastic agent that not only owns competent loading capacity but also talented to liberate the drug at the specific site. pH sensitive hollow mesoporous silica nanoparticles ( MSN) have been synthesized by sequence of chemical reconstruction with an average particle size of 120 nm. MSN reveal noteworthy biocompatibility and efficient drug loading magnitude. Active molecules such as Doxorubicin (DOX) can be stocked and set free from the pore vacuities of MSN by tuning the pH of the medium. The loading extent of MSN was found up to 81.4 wt% at pH 7.8. At mild acidic pH, DOX is steadily released from the pores of MSN. Both, the nitrogen adsorption-desorption isotherms and X-ray diffraction patterns reflects that this system holds remarkable stable mesostructure. Additionally, the outcomes of cytotoxicity assessment further establish the potential of MSN as a relevant drug transporter which can be thought over an appealing choice to a polymeric delivery system.

  10. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  11. Erdosteine prevents doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Yagmurca, Murat; Fadillioglu, Ersin; Erdogan, Hasan; Ucar, Muharrem; Sogut, Sadik; Irmak, M Kemal

    2003-10-01

    The clinical use of doxorubicin (Dxr) is limited by its cardiotoxic effects which are mediated by oxygen radicals. The purpose of this study was to investigate in vivo protective effects of erdosteine, an antioxidant agent because of its secondary active metabolites in vivo, against the cardiotoxicity induced by Dxr in rats. Three groups of male Sprague-Dawley rats (60 days old) were used. Group 1 was untreated group used as control; the other groups were treated with Dxr (single i.p. dosage of 20 mg kg(-1) b.wt.) or Dxr plus erdosteine (10 mg kg(-1) day(-1), orally), respectively. Erdosteine or oral saline treatment was done starting 2 days before Dxr for 12 days. The analyses were done at the 10th day of Dxr treatment. The protein carbonyl content, the activities of myeloperoxidase, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase (CK) as well as heart rate and blood pressures were significantly increased in Dxr group in comparison with the other groups. However, pulse pressure was decreased in Dxr group. The body and heart weights were decreased in both Dxr administered groups in comparison with control group. Disorganization of myocardial histology, picnotic nuclei, edema, and increase in collagen content around vessels were seen in the slides of Dxr group, whereas normal myocardial microscopy was preserved in Dxr plus erdosteine group. Collectively, these in vivo hemodynamic, enzymatic and morphologic studies provide an evidence for a possible prevention of cardiac toxicity in Dxr-treated patients.

  12. Hyperbaric Oxygen Preconditioning Provides Preliminary Protection Against Doxorubicin Cardiotoxicity

    PubMed Central

    Tezcan, Orhan; Karahan, Oguz; Alan, Mustafa; Ekinci, Cenap; Yavuz, Celal; Demirtas, Sinan; Ekinci, Aysun; Caliskan, Ahmet

    2017-01-01

    Background Doxorubicin (DOX) is generally recognized to have important cardiotoxic side effects. Studies are contradictory about the interaction between hyperbaric oxygen (HBO2) therapy and doxorubicin-induced cardiomyotoxicity. Recent data suggests that HBO2 therapy can lead to preconditioning of myocardium while generating oxidative stress. Herein we have investigated the effect of HBO2 therapy in a DOX-induced cardiomyocyte injury animal model. Methods Twenty-one rats were divided into three equal groups as follows: 1) Group 1 is a control group (without any intervention), used for evaluating the basal cardiac structures and determining the normal value of cardiacs and serum oxidative markers; 2) Group 2 is the doxorubicin group (single dose i.p. 20 mg/kg doxorubicin) for detecting the cardiotoxic and systemic effects of doxorubicin; 3) Group 3 is the doxorubicin and HBO2 group (100% oxygen at 2.5 atmospheric for 90 minutes, daily), for evaluating the effect of HBO2 in doxorubicin induced cardiotoxicity. At the end of the protocols, the hearts were harvested and blood samples (2 ml) were obtained. Results The doxorubicin treated animals (Group 2) had increased oxidative stress markers (both cardiac and serum) and severe cardiac injury as compared to the basal findings in the control group. Nevertheless, the highest cardiac oxidative stress index was detected in Group 3 (control vs. Group 3, p = 0.01). However, histological examination revealed that cardiac structures were well preserved in Group 3 when compared with Group 2. Conclusions Our results suggest that HBO2 preconditioning appears to be protective in the doxorubicin-induced cardiotoxicity model. Future studies are required to better elucidate the basis of this preconditioning effect of HBO2. PMID:28344418

  13. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Krishnamurthy, Bhaskar; Rani, Neha; Bharti, Saurabh; Golechha, Mahaveer; Bhatia, Jagriti; Nag, Tapas Chandra; Ray, Ruma; Arava, Sudheer; Arya, Dharamvir Singh

    2015-07-25

    The clinical use of doxorubicin is associated with dose limiting cardiotoxicity. This is a manifestation of free radical production triggered by doxorubicin. Therefore, we evaluated the efficacy of febuxostat, a xanthine oxidase inhibitor and antioxidant, in blocking cardiotoxicity associated with doxorubicin in rats. Male albino Wistar rats were divided into four groups: control (normal saline 2.5mL/kg/dayi.p. on alternate days, a total of 6 doses); Doxorubicin (2.5mg/kg/dayi.p. on alternate days, a total of 6 doses), Doxorubicin+Febuxostat (10mg/kg/day oral) and Doxorubicin+Carvedilol (30mg/kg/day oral) for 14days. Febuxostat significantly ameliorated the doxorubicin-induced deranged cardiac functions as there was significant improvement in arterial pressures, left ventricular end diastolic pressure and inotropic and lusitropic states of the myocardium. These changes were well substantiated with biochemical findings, wherein febuxostat prevented the depletion of non-protein sulfhydryls level, with increased manganese superoxide dismutase level and reduced cardiac injury markers (creatine kinase-MB and B-type natriuretic peptide levels) and thiobarbituric acid reactive substances level. Febuxostat also exhibited significant anti-inflammatory (decreased expression of NF-κBp65, IKK-β and TNF-α) and anti-apoptotic effect (increased Bcl-2 expression and decreased Bax and caspase-3 expression and TUNEL positivity). Hematoxylin and Eosin, Masson Trichome, Picro Sirius Red and ultrastructural studies further corroborated with hemodynamic and biochemical findings showing that febuxostat mitigated doxorubicin-induced increases in inflammatory cells, edema, collagen deposition, interstitial fibrosis, perivascular fibrosis and mitochondrial damage and better preservation of myocardial architecture. In addition, all these changes were comparable to those produced by carvedilol. Thus, our results suggest that the antioxidant and anti-apoptotic effect of febuxostat

  14. Getting Acquainted: An Induction Training Guide for First-Year Extension Agents. Suggestions for Completing Certain Learning Experiences Included in the Induction Training Guide; a Supplement to "Getting Acquainted."

    ERIC Educational Resources Information Center

    Collings, Mary Louise; Gassie, Edward W.

    An induction guide to help the extension agent get acquainted with his role and suggestions for completing learning experiences that are included in the guide comprise this two-part publication. The training guide learning experiences, a total of 25, are made up of: Objectives of the New Worker; When Completed; Learning Experiences; Person(s)…

  15. Role of the aclacinomycin A--doxorubicin association in reversal of doxorubicin resistance in K562 tumour cells.

    PubMed Central

    Millot, J. M.; Rasoanaivo, T. D.; Morjani, H.; Manfait, M.

    1989-01-01

    Acquired resistance to anthracyclines is characterised by a lower sensitivity to these agents, associated with impaired accumulation of drug. We have examined the ability of aclacinomycin A (ACM) associated with doxorubicin (DOX), to increase intranuclear DOX concentrations and, consequently, to enhance cytotoxic effects against drug resistant cells in vitro. A recently developed microspectrofluorometric technique is used to measure intranuclear DOX concentrations in sensitive and DOX-resistant K562 cells treated with DOX and ACM. Fluorescence emission spectra are collected from a microvolume of single living cell nuclei. From both DOX and ACM model fluorescence spectra (free, DNA-bound and metabolites), the intranuclear spectral profile is analysed according to the amount of each component. This quantitative analysis determines intranuclear DOX concentrations with an error of 10%. Non-cytotoxic doses of ACM, in combination with DOX, increase cytotoxic activity of DOX against K562 resistant cells. When DOX-resistant cells are exposed simultaneously to ACM and DOX, significant increases in intranuclear DOX concentrations are found compared with the case of exposure to DOX alone. The measure of the intranuclear retention of DOX shows that ACM partly blocks the DOX efflux in resistant cell nuclei, resulting in enhanced accumulation of DOX. These data lead us to conclude that ACM-DOX association partly reverses the DOX resistance at clinically achievable concentrations. PMID:2803945

  16. Adjuvant liposomal doxorubicin markedly affects radiofrequency (RF) ablation-induced effects on periablational microvasculature

    PubMed Central

    Moussa, Marwan; Goldberg, S. Nahum; Tasawwar, Beenish; Sawant, Rupa R.; Levchenko, Tatyana; Kumar, Gaurav; Torchilin, Vladimir P.; Ahmed, Muneeb

    2013-01-01

    Purpose To evaluate the effects of radiofrequency (RF) ablation without and with adjuvant IV liposomal doxorubicin (Doxil®) on microvessel morphology and patency and intratumoral drug delivery and retention. Materials and Methods A total of 133 tumors/animals were used. First, single subcutaneous tumors (R3230 in Fischer rats, and 786-0 in nude mice) were randomized to receive RF alone or no treatment, and sacrificed 0-72hr post-treatment. Next, combined RF/liposomal doxorubicin (1mg given 15min post-RF) was studied in R3230 tumors at 0-72hr post-treatment. Histopathologic assessment including immunohistochemical staining for ced caspase-3), heat shock protein 70 and CD34 were performed to assess morphologic vessel appearance, vessel diameter, and microvascular density. Subsequently, animals were randomized to receive RF alone, RF/liposomal doxorubicin, or control tumors, followed by intravenous fluorescent-labeled liposomes (a surrogate marker) given 0-24hr post-RF to permit qualitative assessment. Results RF ablation alone results in enlarged and dysmorphic vessels from 0-4hr, peaking at 12-24hr post-RF, occurring preferentially closer to the electrode. The addition of doxorubicin resulted in earlier vessel contraction (mean vessel area 47539±9544μm² vs. 1854±458μm² for RF alone at 15min, p<0.05). Combined RF/liposomal doxorubicin produced similar fluorescence 1hr post-treatment (40.88±33.53 AU/μm² vs. 22.1±13.19 AU/μm², p=0.14), but significantly less fluorescence at 4hr (24.3±3.65 AU/μm² vs. 2.8 ±3.14 AU/μm², p<0.002) compared to RF alone denoting earlier reduction in microvascular patency. Conclusion RF ablation induces morphologic changes to vessels within the ablation zone lasting up to 12-24hr post-treatment. The addition liposomal doxorubicin causes early vessel contraction and a reduction in periablational microvascular patency. Such changes will likely need to be considered when determining optimal drug administration and imaging

  17. Combinatorial effects of doxorubicin and retargeted tissue factor by intratumoral entrapment of doxorubicin and proapoptotic increase of tumor vascular infarction

    PubMed Central

    Brand, Caroline; Höltke, Carsten; Schliemann, Christoph; Kessler, Torsten; Schmidt, Lars Henning; Harrach, Saliha; Mantke, Verena; Hintelmann, Heike; Hartmann, Wolfgang; Wardelmann, Eva; Lenz, Georg; Wünsch, Bernhard; Müller-Tidow, Carsten; Mesters, Rolf M.; Schwöppe, Christian; Berdel, Wolfgang E.

    2016-01-01

    Truncated tissue factor (tTF), retargeted to tumor vasculature by GNGRAHA peptide (tTF-NGR), and doxorubicin have therapeutic activity against a variety of tumors. We report on combination experiments of both drugs using different schedules. We have tested fluorescence- and HPLC-based intratumoral pharmacokinetics of doxorubicin, flow cytometry for cellular phosphatidylserine (PS) expression, and tumor xenograft studies for showing in vivo apoptosis, proliferation decrease, and tumor shrinkage upon combination therapy with doxorubicin and induced tumor vascular infarction. tTF-NGR given before doxorubicin inhibits the uptake of the drug into human fibrosarcoma xenografts in vivo. Reverse sequence does not influence the uptake of doxorubicin into tumor, but significantly inhibits the late wash-out phase, thus entrapping doxorubicin in tumor tissue by vascular occlusion. Incubation of endothelial and tumor cells with doxorubicin in vitro increases PS concentrations in the outer layer of the cell membrane as a sign of early apoptosis. Cells expressing increased PS concentrations show comparatively higher procoagulatory efficacy on the basis of equimolar tTF-NGR present in the Factor X assay. Experiments using human M21 melanoma and HT1080 fibrosarcoma xenografts in athymic nude mice indeed show a combinatorial tumor growth inhibition applying doxorubicin and tTF-NGR in sequence over single drug treatment. Combination of cytotoxic drugs such as doxorubicin with tTF-NGR-induced tumor vessel infarction can improve pharmacodynamics of the drugs by new mechanisms, entrapping a cytotoxic molecule inside tumor tissue and reciprocally improving procoagulatory activity of tTF-NGR in the tumor vasculature via apoptosis induction in tumor endothelial and tumor cells. PMID:27738341

  18. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons

    PubMed Central

    Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Tsvetkov, Andrey S.

    2016-01-01

    Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors. PMID:27168474

  19. Protective effects of Terminalia arjuna against Doxorubicin-induced cardiotoxicity.

    PubMed

    Singh, Gurvinder; Singh, Anu T; Abraham, Aji; Bhat, Beena; Mukherjee, Ashok; Verma, Ritu; Agarwal, Shiv K; Jha, Shivesh; Mukherjee, Rama; Burman, Anand C

    2008-04-17

    Terminalia arjuna has been marked as a potential cardioprotective agent since vedic period. The present study was aimed to investigate the effects of butanolic fraction of Terminalia arjuna bark (TA-05) on Doxorubicin (Dox)-induced cardiotoxicity. Male wistar rats were used as in vivo model for the study. TA-05 was administered orally to Wistar rats at different doses (0.42 mg/kg, 0.85 mg/kg, 1.7 mg/kg, 3.4 mg/kg and 6.8 mg/kg) for 6 days/week for 4 weeks. Thereafter, all the animals except saline and TA-05-treated controls were administered 20 mg/kg Dox intraperitonially. There was a significant decrease in myocardial superoxide dismutase (38.94%) and reduced glutathione (23.84%) in animals treated with Dox. Concurrently marked increase in serum creatine kinase-MB (CKMB) activity (48.11%) as well as increase in extent of lipid peroxidation (2.55-fold) was reported. Co-treatment of TA-05 and Dox resulted in an increase in the cardiac antioxidant enzymes, decrease in serum CKMB levels and reduction in lipid peroxidation as compared to Dox-treated animals. Electron microscopic studies in Dox-treated animals revealed mitochondrial swelling, Z-band disarray, focal dilatation of smooth endoplasmic reticulum (SER) and lipid inclusions, whereas the concurrent administration of TA-05 led to a lesser degree of Dox-induced histological alterations. These findings suggest that butanolic fraction of Terminalia arjuna bark has protective effects against Dox-induced cardiotoxicity and may have potential as a cardioprotective agent.

  20. Pegylated liposomal doxorubicin, melphalan and prednisone therapy for elderly patients with multiple myeloma.

    PubMed

    García-Sanz, R; Hernández, J M; Sureda, A; García-Laraña, J; Prósper, F; Alegre, A; Bárez, A; Mateos, M V; San Miguel, J F

    2006-12-01

    Melphalan & Prednisone (MP) is considered as the standard therapy for Multiple Myeloma (MM) patients not eligible for high-dose therapy. Here, we report the results of a phase I-II study to evaluate the feasibility and efficacy of the association of PLD to the conventional MP regimen during the first six cycles of the front-line therapy for untreated MM patients older than 70. Thirty patients were included in the study with a median age of 77 years (71-84) and a M/F ratio of 17/13. The phase I of the study demonstrated that the maximum tolerable dose of PLD in this setting was 30 mg/m(2), so it was the final dose evaluated in the study. Twenty-nine patients were valuable for response, which was: complete in 4 (14%) partial in 15 (52%) minor/no changes in 7 (24%) and progressive in 3 (10%). The median progression free survival (PFS) was 24 months. The median overall survival (OS) has not been reached yet, with a 3-year probability for OS and PFS of 52 and 37%, respectively. Haematological toxicity was frequent but usually weak/moderate (grades 1 & 2 of the WHO scale) and it was resolved only with dose delays. Infection was a relatively frequent event (30% of patients), but only in 4 cases it was of grade 3. No cases of palmar-plantar erythrodysesthesia were observed. In conclusion, pegylated liposomal doxorubicin can be safely added to the other chemotherapeutic drugs in the treatment of elderly MM patients, which can be very useful for patients in whom novel agents are not tolerated or inefficient.

  1. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    PubMed

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  2. RPAP3 enhances cytotoxicity of doxorubicin by impairing NF-kappa B pathway

    SciTech Connect

    Shimada, Kana; Saeki, Makio; Egusa, Hiroshi; Fukuyasu, Sho; Yura, Yoshiaki; Iwai, Kazuhiro; Kamisaki, Yoshinori

    2011-01-28

    Research highlights: {yields} RNA polymerase II-associated protein 3 (RPAP3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO. {yields} RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-{kappa}B pathway. {yields} RPAP3 is a novel modulator of NF-{kappa}B pathway in apoptosis induced by anti-cancer chemotherapeutic agents. -- Abstract: Activation of anti-apoptotic gene transcription by NF-{kappa}B (nuclear factor-kappa B) has been reported to be linked with a resistance of cancer cells against chemotherapy. NEMO (NF-{kappa}B essential modulator) interacts with a number of proteins and modulates the activity of NF-{kappa}B pathway. In this study, we revealed that RPAP3 (RNA polymerase II-associated protein 3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO and that RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-{kappa}B pathway. These results indicate that RPAP3 may be a novel modulator of NF-{kappa}B pathway in apoptosis induced by anti-cancer chemotherapeutic agents.

  3. Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Upadhyay, Ramesh; Mehta, Rasbindu; Chudasama, Bhupendra

    2013-01-01

    Targeting tumors by means of their vascular endothelium is a promising strategy, which utilizes targets that are easily accessible, stable, and do not develop resistance against therapeutic agents. Folate receptor is a highly specific tumor marker, frequently over expressed in cancer tumors. In the present study, an active drug delivery system, which can effectively target cancer cells by means of folate receptor-mediated endocytosis, have ability to escape from opsonization and capability of magnetic targeting to withstand the drag force of the body fluid have been designed and synthesized. The core of the drug delivery system is of mono-domain magnetic particles of magnetite. Magnetite nanoparticles are shielded with PEG, which prevents their phagocytosis by reticuloendothelial system. These PEG shielded magnetite nanoparticles are further decorated with an antitumor receptor—folic acid and loaded with an antineoplastic agent doxorubicin. An in vitro drug loading and release kinetics study reveals that the drug delivery system can take 52 % of drug load and can release doxorubicin over a sustained period of 7 days. The control and sustained release over a period of several days may find its practical utilities in chemotherapy where frequent dosing is not possible.

  4. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    SciTech Connect

    Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; Yadava, N.; Chandra, D.

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  5. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; ...

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS

  6. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    PubMed Central

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-01-01

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  7. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations.

    PubMed

    Luo, Ruijuan; Li, Yan; He, Miao; Zhang, Huixia; Yuan, Hebao; Johnson, Mark; Palmisano, Maria; Zhou, Simon; Sun, Duxin

    2017-03-15

    The liposomal formulations of doxorubicin produced distinct efficacy and toxicity profiles compared to doxorubicin solution in cancer patients. This study aims to investigate the drug tissue distribution and the driving force for tissue distribution from doxorubicin solution and two liposomal delivery systems, Doxil and Myocet. These three formulations were intravenously administered to mice at a single dose of 5mg/kg. Eleven organs, plasma and blood were collected at different time points. Total doxorubicin concentrations in each specimen were measured with LC-MS/MS. Compared to doxorubicin solution, both Doxil and Myocet produced distinct doxorubicin tissue exposure in all 11 tissues. Interestingly, the tissue exposure by Myocet was drastically different from that of Doxil and showed a formulation-dependent pattern. Cmax of doxorubicin in heart tissue by Doxil and Myocet was approximately 60% and 50% respectively of that by doxorubicin solution. The predominant driving force for doxorubicin tissue distribution is liposomal-doxorubicin deposition for Doxil and free drug concentration for doxorubicin solution. For Myocet, the driving force for tissue distribution is predominately liposomal-doxorubicin deposition into tissues within the first 4h; as the non-PEGylated doxorubicin liposomal decomposes, the driving force for tissue distribution is gradually switched to the released free doxorubicin. Unique tissue distributions are correlated with their toxicity profiles.

  8. A Biophysical Systems Approach to Identifying the Pathways of Acute and Chronic Doxorubicin Mitochondrial Cardiotoxicity

    PubMed Central

    de Oliveira, Bernardo L.; Niederer, Steven

    2016-01-01

    The clinical use of the anthracycline doxorubicin is limited by its cardiotoxicity which is associated with mitochondrial dysfunction. Redox cycling, mitochondrial DNA damage and electron transport chain inhibition have been identified as potential mechanisms of toxicity. However, the relative roles of each of these proposed mechanisms are still not fully understood. The purpose of this study is to identify which of these pathways independently or in combination are responsible for doxorubicin toxicity. A state of the art mathematical model of the mitochondria including the citric acid cycle, electron transport chain and ROS production and scavenging systems was extended by incorporating a novel representation for mitochondrial DNA damage and repair. In silico experiments were performed to quantify the contributions of each of the toxicity mechanisms to mitochondrial dysfunction during the acute and chronic stages of toxicity. Simulations predict that redox cycling has a minor role in doxorubicin cardiotoxicity. Electron transport chain inhibition is the main pathway for acute toxicity for supratherapeutic doses, being lethal at mitochondrial concentrations higher than 200μM. Direct mitochondrial DNA damage is the principal pathway of chronic cardiotoxicity for therapeutic doses, leading to a progressive and irreversible long term mitochondrial dysfunction. PMID:27870850

  9. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

    PubMed

    Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

    2015-12-01

    Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy.

  10. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    PubMed Central

    Ebata, Takahiro; Mitsui, Yasumasa; Sugimoto, Wataru; Maeda, Miho; Machiyama, Hiroaki; Harada, Ichiro; Sawada, Yasuhiro; Fujita, Hideaki; Hirata, Hiroaki

    2017-01-01

    The physical properties of the extracellular matrix (ECM), such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK) 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation. PMID:28191463

  11. The calcium pump plasma membrane Ca2+-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin

    PubMed Central

    Peters, Amelia A.; Milevskiy, Michael J. G.; Lee, Wei C.; Curry, Merril C.; Smart, Chanel E.; Saunus, Jodi M.; Reid, Lynne; da Silva, Leonard; Marcial, Daneth L.; Dray, Eloise; Brown, Melissa A.; Lakhani, Sunil R.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2016-01-01

    Regulation of Ca2+ transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca2+ pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca2+ ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer. PMID:27148852

  12. A novel combination of TRAIL and doxorubicin enhances antitumor effect based on passive tumor-targeting of liposomes

    NASA Astrophysics Data System (ADS)

    Guo, Liangran; Fan, Li; Ren, Jinfeng; Pang, Zhiqing; Ren, Yulong; Li, Jingwei; Wen, Ziyi; Jiang, Xinguo

    2011-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel anticancer agent for non-small cell lung cancer (NSCLC). However, approximately half of NSCLC cell lines are highly resistant to TRAIL. Doxorubicin (DOX) can sensitize NSCLC cells to TRAIL-induced apoptosis, indicating the possibility of combination therapy. Unfortunately, the therapeutic effect of a DOX and TRAIL combination is limited by multiple factors including the short serum half-life of TRAIL, poor compliance and application difficulty in the clinic, chronic DOX-induced cardiac toxicity, and the multidrug resistance (MDR) property of NSCLC cells. To solve such problems, we developed the combination of TRAIL liposomes (TRAIL-LP) and DOX liposomes (DOX-LP). An in vitro cytotoxicity study indicated that DOX-LP sensitized the NSCLC cell line A-549 to TRAIL-LP-induced apoptosis. Furthermore, this combination therapy of TRAIL-LP and DOX-LP displayed a stronger antitumor effect on NSCLC in xenografted mice when compared with free drugs or liposomal drugs alone. Therefore, the TRAIL-LP and DOX-LP combination therapy has excellent potential to become a new therapeutic approach for patients with advanced NSCLC.

  13. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    SciTech Connect

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  14. Preclinical in vivo activity of a combination gemcitabine/liposomal doxorubicin against cisplatin-resistant human ovarian cancer (A2780/CDDP).

    PubMed

    Gallo, D; Fruscella, E; Ferlini, C; Apollonio, P; Mancuso, S; Scambia, G

    2006-01-01

    Both gemcitabine and liposomal doxorubicin are antineoplastic drugs with clinical activity in platinum-refractory ovarian cancer. The purpose of this study was to evaluate the antitumor activity of a combination gemcitabine/liposomal doxorubicin administered to athymic mice bearing cisplatin-resistant human ovarian cancer (A2780/CDDP) xenografts. Emphasis was on the use of very low doses of each drug and of different dosing schedules. Data obtained showed that combined treatment with 80 mg/kg gemcitabine and 15 mg/kg liposomal doxorubicin produced a significant enhancement of antitumor activity compared with monotherapy at the same doses of these agents. Noteworthy is the fact that the majority of xenograft-bearing animals receiving the combination therapy demonstrated a complete tumor regression at the end of the study. A similar trend was observed when doses of both drugs were reduced to 20 mg/kg gemcitabine and to 6 mg/kg liposomal doxorubicin. Again, three out of ten mice receiving the combination were tumor free at the end of the study. No significant differences were observed in antitumor activity when comparing the simultaneous vs the consecutive dosing schedule. Remarkably, no additive toxicity was observed in any experimental trials. These data encourage clinical trials to prove the advantages of this combination treatment with respect to the single-agent chemotherapy in platinum-refractory ovarian cancer patients.

  15. Mn-porphyrin Conjugated Au Nanoshells Encapsulating Doxorubicin for Potential Magnetic Resonance Imaging and Light Triggered Synergistic Therapy of Cancer

    PubMed Central

    Jing, Lijia; Liang, Xiaolong; Li, Xiaoda; Lin, Li; Yang, Yongbo; Yue, Xueli; Dai, Zhifei

    2014-01-01

    A theranostic agent was successfully fabricated by the formation of Au nanoshell around poly(lactic acid) nanoparticles entrapping doxorubicin, followed by linking a Mn-porphyrin derivative on the Au shell surface through polyethylene glycol. The resulted agent exhibited excellent colloidal stability and long blood circulation time due to introducing polyethylene glycol. The grafting Mn-porphyrin onto the nanoparticle surface endowed a greatly improved relaxivity (r1 value of 22.18 mM-1s-1 of Mn3+), favorable for accurate cancer diagnosing and locating the tumor site to guide the external near infrared (NIR) laser irradiation for photothermal ablation of tumors. The in vitro experiments confirmed that the agent exhibited an efficient photohyperthermia and a light triggered and stepwise release behavior of doxorubicin due to the high NIR light absorption coefficient of Au nanoshell. The in vivo experiments showed that the combination of chemotherapy and photothermal therapy through such theranostic agent offered a synergistically improved therapeutic outcome compared with either therapy alone, making it a promising approach for cancer therapy. Therefore, such theranostic agent can be developed as a smart and promising nanosystemplatform that integrates multiple capabilities for both effective contrast enhanced magnetic resonance imaging and synergistic therapy. PMID:25057312

  16. Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer.

    PubMed

    Jing, Lijia; Liang, Xiaolong; Li, Xiaoda; Lin, Li; Yang, Yongbo; Yue, Xueli; Dai, Zhifei

    2014-01-01

    A theranostic agent was successfully fabricated by the formation of Au nanoshell around poly(lactic acid) nanoparticles entrapping doxorubicin, followed by linking a Mn-porphyrin derivative on the Au shell surface through polyethylene glycol. The resulted agent exhibited excellent colloidal stability and long blood circulation time due to introducing polyethylene glycol. The grafting Mn-porphyrin onto the nanoparticle surface endowed a greatly improved relaxivity (r1 value of 22.18 mM(-1)s(-1) of Mn(3+)), favorable for accurate cancer diagnosing and locating the tumor site to guide the external near infrared (NIR) laser irradiation for photothermal ablation of tumors. The in vitro experiments confirmed that the agent exhibited an efficient photohyperthermia and a light triggered and stepwise release behavior of doxorubicin due to the high NIR light absorption coefficient of Au nanoshell. The in vivo experiments showed that the combination of chemotherapy and photothermal therapy through such theranostic agent offered a synergistically improved therapeutic outcome compared with either therapy alone, making it a promising approach for cancer therapy. Therefore, such theranostic agent can be developed as a smart and promising nanosystemplatform that integrates multiple capabilities for both effective contrast enhanced magnetic resonance imaging and synergistic therapy.

  17. Toxicity of Doxorubicin on Pig Liver After Chemoembolization with Doxorubicin-loaded Microspheres: A Pilot DNA-microarrays and Histology Study

    SciTech Connect

    Verret, Valentin Namur, Julien; Ghegediban, Saieda Homayra; Wassef, Michel; Moine, Laurence; Bonneau, Michel; Laurent, Alexandre

    2013-02-15

    The potential mechanisms accounting for the hepatotoxicity of doxorubicin-loaded microspheres in chemoembolization were examined by combining histology and DNA-microarray techniques.The left hepatic arteries of two pigs were embolized with 1 mL of doxorubicin-loaded (25 mg; (DoxMS)) or non-loaded (BlandMS) microspheres. The histopathological effects of the embolization were analyzed at 1 week. RNAs extracted from both the embolized and control liver areas were hybridized onto Agilent porcine microarrays. Genes showing significantly different expression (p < 0.01; fold-change > 2) between two groups were classified by biological process. At 1 week after embolization, DoxMS caused arterial and parenchymal necrosis in 51 and 38 % of embolized vessels, respectively. By contrast, BlandMS did not cause any tissue damage. Up-regulated genes following embolization with DoxMS (vs. BlandMS, n = 353) were mainly involved in cell death, apoptosis, and metabolism of doxorubicin. Down-regulated genes (n = 120) were mainly related to hepatic functions, including enzymes of lipid and carbohydrate metabolisms. Up-regulated genes included genes related to cell proliferation (growth factors and transcription factors), tissue remodeling (MMPs and several collagen types), inflammatory reaction (interleukins and chemokines), and angiogenesis (angiogenic factors and HIF1a pathway), all of which play an important role in liver healing and regeneration. DoxMS caused lesions to the liver, provoked cell death, and disturbed liver metabolism. An inflammatory repair process with cell proliferation, tissue remodeling, and angiogenesis was rapidly initiated during the first week after chemoembolization. This pilot study provides a comprehensive method to compare different types of DoxMS in healthy animals or tumor models.

  18. Transcatheter Treatment of Hepatocellular Carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): Technical Recommendations

    SciTech Connect

    Lencioni, Riccardo; Baere, Thierry de; Burrel, Marta; Caridi, James G.; Lammer, Johannes; Malagari, Katerina; Martin, Robert C. G.; O'Grady, Elizabeth; Real, Maria Isabel; Vogl, Thomas J.; Watkinson, Anthony; Geschwind, Jean-Francois H.

    2012-10-15

    Tranarterial chemoembolization (TACE) has been established by a meta-analysis of randomized controlled trials as the standard of care for nonsurgical patients with large or multinodular noninvasive hepatocellular carcinoma (HCC) isolated to the liver and with preserved liver function. Although conventional TACE with administration of an anticancer-in-oil emulsion followed by embolic agents has been the most popular technique, the introduction of embolic drug-eluting beads has provided an alternative to lipiodol-based regimens. Experimental studies have shown that TACE with drug-eluting beads has a safe pharmacokinetic profile and results in effective tumor killing in animal models. Early clinical experiences have confirmed that drug-eluting beads provide a combined ischemic and cytotoxic effect locally with low systemic toxic exposure. Recently, the clinical value of a TACE protocol performed by using the embolic microsphere DC Bead loaded with doxorubicin (DEBDOX; drug-eluting bead doxorubicin) has been shown by randomized controlled trials. An important limitation of conventional TACE has been the inconsistency in the technique and the treatment schedules. This limitation has hampered the acceptance of TACE as a standard oncology treatment. Doxorubicin-loaded DC Bead provides levels of consistency and repeatability not available with conventional TACE and offers the opportunity to implement a standardized approach to HCC treatment. With this in mind, a panel of physicians took part in a consensus meeting held during the European Conference on Interventional Oncology in Florence, Italy, to develop a set of technical recommendations for the use of DEBDOX in HCC treatment. The conclusions of the expert panel are summarized.

  19. Sulforaphane protects the heart from doxorubicin-induced toxicity

    PubMed Central

    Singh, Preeti; Sharma, Rajendra; McElhanon, Kevin; Allen, Charles D.; Megyesi, Judit K.; Beneš, Helen; Singh, Sharda P.

    2015-01-01

    Cardiotoxicity is one of the major side effects encountered during cancer chemotherapy with doxorubicin (DOX) and other anthracyclines. Previous studies have shown that oxidative stress caused by DOX is one of the primary mechanisms for its toxic effects on the heart. Since the redox-sensitive transcription factor, Nrf2, plays a major role in protecting cells from the toxic metabolites generated during oxidative stress, we examined the effects of the phytochemical sulforaphane (SFN), a potent Nrf2-activating agent, on DOX-induced cardiotoxicity. These studies were carried out both in vitro and in vivo using rat H9c2 cardiomyoblast cells and wild type 129/sv mice, and involved SFN pretreatment followed by SFN administration during DOX exposure. SFN treatment protected H9c2 cells from DOX cytotoxicity and also resulted in restored cardiac function and a significant reduction in DOX-induced cardiomyopathy and mortality in mice. Specificity of SFN induction of Nrf2 and protection of H9c2 cells was demonstrated in Nrf2 knockdown experiments. Cardiac accumulation of 4-hydroxynonenal (4-HNE) protein adducts, due to lipid peroxidation following DOX-induced oxidative stress, was significantly attenuated by SFN treatment. The respiratory function of cardiac mitochondria isolated from mice exposed to DOX alone was repressed, while SFN treatment with DOX significantly elevated mitochondrial respiratory complex activities. Co-administration of SFN reversed the DOX-associated reduction in nuclear Nrf2 binding activity and restored cardiac expression of Nrf2-regulated genes, at both the RNA and protein levels. Together, our results demonstrate for the first time that the Nrf2 inducer, SFN, has the potential to provide protection against DOX-mediated cardiotoxicity. PMID:26025579

  20. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery.

    PubMed

    Xu, Minghui; Qian, Junmin; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid "burst" release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)-doxorubicin (PEG-DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG-DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG-DOX prodrug were confirmed by (1)H NMR analysis. The PEG-DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG-DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy.

  1. Effect of Irradiation on Tissue Penetration Depth of Doxorubicin after Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) in a Novel Ex-Vivo Model

    PubMed Central

    Khosrawipour, Veria; Giger-Pabst, Urs; Khosrawipour, Tanja; Pour, Yousef Hedayat; Diaz-Carballo, David; Förster, Eckart; Böse-Ribeiro, Hugo; Adamietz, Irenäus Anton; Zieren, Jürgen; Fakhrian, Khashayar

    2016-01-01

    Background: This study was performed to assess the impact of irradiation on the tissue penetration depth of doxorubicin delivered during Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC). Methods: Fresh post mortem swine peritoneum was cut into 10 proportional sections. Except for 2 control samples, all received irradiation with 1, 2, 7 and 14 Gy, respectively. Four samples received PIPAC 15 minutes after irradiation and 4 other after 24 hours. Doxorubicin was aerosolized in an ex-vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. Results: Doxorubicin penetration after PIPAC (15 minutes after irradiation) was 476 ± 74 µm for the control sample, 450 ± 45µm after 1 Gy (p > 0.05), 438 ± 29 µm after 2 Gy (p > 0.05), 396 ± 32 µm after 7 Gy (p = 0.005) and 284 ± 57 after 14 Gy irradiation (p < 0.001). The doxorubicin penetration after PIPAC (24 hours after irradiation) was 428 ± 77 µm for the control sample, 393 ± 41 µm after 1 Gy (p > 0.05), 379 ± 56 µm after 2 Gy (p > 0.05), 352 ± 53 µm after 7 Gy (p = 0.008) and 345 ± 53 after 14 Gy irradiation (p = 0.001). Conclusions: Higher (fractional) radiation dose might reduce the tissue penetration depth of doxorubicin in our ex-vivo model. However, irradiation with lower (fractional) radiation dose does not affect the tissue penetration negatively. Further studies are warranted to investigate if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC. PMID:27313780

  2. Multidrug resistance: a transport system of antitumor agents and xenobiotics.

    PubMed

    Tsuruo, T

    1990-01-01

    Resistance of tumors to a variety of chemotherapeutic agents presents a major problem in cancer treatment. Resistance to such agents as doxorubicin, Vinca alkaloids, and actinomycin D can be acquired by tumor cells after treatment with a single drug. The gene responsible for multidrug resistance, termed mdr1, encodes a membrane glycoprotein (P-glycoprotein) that acts as a pump to transport various cytotoxic agents including various xenobiotics out of the cell. The amount of P-glycoprotein expression has been measured in tumor samples and was found to be elevated in intrinsically drug-resistant cancers of the colon, kidney, and adrenal as well as in some tumors that acquired drug resistance after chemotherapy. The protein was also found to be elevated in cells treated with xenobiotics. P-glycoprotein has been shown to bind anticancer drugs and several resistance-reversing agents including calcium channel blockers, and to be an ATPase. We recently reconstituted the purified P-glycoprotein into artificial liposomes. Reconstituted P-glycoprotein showed ATPase activity, ATP-dependent drug-transport activity, and calcium channel blocker-binding activity. This model provides many advantages for studies of the biochemical functions of P-glycoprotein. In addition to these basic interests, the protein is of considerable interest as a target for cancer chemotherapy because it appears to be involved in both acquired multidrug resistance and intrinsic drug resistance in human cancer. The selective killing of tumor cells expressing P-glycoprotein could be very important in future cancer therapy.

  3. A Phase III Study of Balugrastim Versus Pegfilgrastim in Breast Cancer Patients Receiving Chemotherapy With Doxorubicin and Docetaxel

    PubMed Central

    Gladkov, Oleg; Moiseyenko, Vladimir; Bondarenko, Igor N.; Shparyk, Yaroslav; Barash, Steve; Adar, Liat

    2016-01-01

    Objectives. This study aimed to evaluate the efficacy and safety of once-per-cycle balugrastim versus pegfilgrastim for neutrophil support in breast cancer patients receiving myelosuppressive chemotherapy. Methods. Breast cancer patients (n = 256) were randomized to 40 or 50 mg of subcutaneous balugrastim or 6 mg of pegfilgrastim ≈24 hours after chemotherapy (60 mg/m2 doxorubicin and 75 mg/m2 docetaxel, every 21 days for up to 4 cycles). The primary efficacy parameter was the duration of severe neutropenia (DSN) in cycle 1. Secondary parameters included DSN (cycles 2–4), absolute neutrophil count (ANC) nadir, febrile neutropenia rates, and time to ANC recovery (cycles 1–4). Safety, pharmacokinetics, and immunogenicity were assessed. Results. Mean cycle 1 DSN was 1.0 day with 40 mg of balugrastim, 1.3 with 50 mg of balugrastim, and 1.2 with pegfilgrastim (upper limit of 95% confidence intervals for between-group DSN differences was <1.0 day for both balugrastim doses versus pegfilgrastim). Between-group efficacy parameters were comparable except for time to ANC recovery in cycle 1 (40 mg of balugrastim, 2.0 days; 50 mg of balugrastim, 2.1; pegfilgrastim, 2.6). Median terminal elimination half-life was ≈37 hours for 40 mg of balugrastim, ≈36 for 50 mg of balugrastim, and ≈45 for pegfilgrastim. Antibody response to balugrastim was low and transient, with no neutralizing effect. Conclusion. Once-per-cycle balugrastim is not inferior to pegfilgrastim in reducing cycle 1 DSN in breast cancer patients receiving chemotherapy; both drugs have comparable safety profiles. Implications for Practice: This paper provides efficacy and safety data for a new, once-per-cycle granulocyte colony-stimulating factor, balugrastim, for the prevention of chemotherapy-induced neutropenia in patients with breast cancer receiving myelosuppressive chemotherapy. In this phase III trial, balugrastim was shown to be not inferior to pegfilgrastim in the duration of severe neutropenia

  4. UVRAG Deficiency Exacerbates Doxorubicin-Induced Cardiotoxicity.

    PubMed

    An, Lin; Hu, Xiao-Wen; Zhang, Shasha; Hu, Xiaowen; Song, Zongpei; Naz, Amber; Zi, Zhenguo; Wu, Jian; Li, Can; Zou, Yunzeng; He, Lin; Zhu, Hongxin

    2017-02-22

    Doxorubicin (DOX) is an effective chemotherapeutic drug in the treatment of various types of cancers. However, its clinical application has been largely limited by potential development of cardiotoxicity. Previously we have shown that ultra-violet radiation resistance-associated gene (UVRAG), an autophagy-related protein, is essential for the maintenance of autophagic flux in the heart under physiological conditions. Here, we sought to determine the role of UVRAG-mediated autophagy in DOX-induced cardiotoxicity. Mouse models of acute or chronic DOX-induced cardiotoxicity were established. UVRAG deficiency exacerbated DOX-induced mortality and cardiotoxicity manifested by increased cytoplasmic vacuolization, enhanced collagen accumulation, elevated serum activities of lactate dehydrogenase and myocardial muscle creatine kinase, higher ROS levels, aggravated apoptosis and more depressed cardiac function. Autophagic flux was impaired in DOX-induced cardiotoxicity. UVRAG deficiency aggravated impaired autophagic flux in DOX-induced cardiotoxicity. Intermittent fasting restored autophagy and ameliorated pathological alterations of DOX-induced cardiotoxicity. Collectively, our data suggest that UVRAG deficiency exacerbates DOX-induced cardiotoxicity, at least in part, through aggravation of DOX-induced impaired autophagic flux. Intermittent fasting, which restores blunted autophagic flux and ameliorates pathology in the mouse models of DOX-induced cardiotoxicity, may be used as a potential preventive or therapeutic approach for DOX cardiotoxicity.

  5. UVRAG Deficiency Exacerbates Doxorubicin-Induced Cardiotoxicity

    PubMed Central

    An, Lin; Hu, Xiao-wen; Zhang, Shasha; Hu, Xiaowen; Song, Zongpei; Naz, Amber; Zi, Zhenguo; Wu, Jian; Li, Can; Zou, Yunzeng; He, Lin; Zhu, Hongxin

    2017-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic drug in the treatment of various types of cancers. However, its clinical application has been largely limited by potential development of cardiotoxicity. Previously we have shown that ultra-violet radiation resistance-associated gene (UVRAG), an autophagy-related protein, is essential for the maintenance of autophagic flux in the heart under physiological conditions. Here, we sought to determine the role of UVRAG-mediated autophagy in DOX-induced cardiotoxicity. Mouse models of acute or chronic DOX-induced cardiotoxicity were established. UVRAG deficiency exacerbated DOX-induced mortality and cardiotoxicity manifested by increased cytoplasmic vacuolization, enhanced collagen accumulation, elevated serum activities of lactate dehydrogenase and myocardial muscle creatine kinase, higher ROS levels, aggravated apoptosis and more depressed cardiac function. Autophagic flux was impaired in DOX-induced cardiotoxicity. UVRAG deficiency aggravated impaired autophagic flux in DOX-induced cardiotoxicity. Intermittent fasting restored autophagy and ameliorated pathological alterations of DOX-induced cardiotoxicity. Collectively, our data suggest that UVRAG deficiency exacerbates DOX-induced cardiotoxicity, at least in part, through aggravation of DOX-induced impaired autophagic flux. Intermittent fasting, which restores blunted autophagic flux and ameliorates pathology in the mouse models of DOX-induced cardiotoxicity, may be used as a potential preventive or therapeutic approach for DOX cardiotoxicity. PMID:28225086

  6. Berberine attenuates doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Zhao, X; Zhang, J; Tong, N; Liao, X; Wang, E; Li, Z; Luo, Y; Zuo, H

    2011-01-01

    This study investigated the effects of berberine, a natural alkaloid, on doxorubicin-induced cardiotoxicity in mice. Mice were injected intraperitoneally with saline 10 ml/kg (n = 10), doxorubicin 2.5 mg/kg (n = 10), 60 mg/kg berberine 1 h before doxorubicin 2.5 mg/kg (n = 10), or 60 mg/kg berberine alone (n = 10) every other day for 14 days. Body weight, general condition and mortality were recorded over the 14-day study period. Electro cardiography was performed before the start of treatment and after 14 days and plasma lactate dehydrogenase (LDH) activity was measured after 14 days. At the end of the study period the heart was excised and examined histologically. An increase in mortality, an initial decrease in body weight, increased LDH activity, prolongation of QRS duration and increased myocardial injury were seen in the doxorubicin-treated group compared with the saline control group. These changes were significantly attenuated by pretreatment with berberine. The study suggests that berberine may have a potential protective role against doxorubicin-induced cardiotoxicity in mice.

  7. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes

    PubMed Central

    Karagiannis, Tom C; Lin, Ann JE; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-01-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer. PMID:20930262

  8. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats

    PubMed Central

    Ramalingayya, Grandhi Venkata; Cheruku, Sri Pragnya; Nayak, Pawan G; Kishore, Anoop; Shenoy, Rekha; Rao, Chamallamudi Mallikarjuna; Krishnadas, Nandakumar

    2017-01-01

    Doxorubicin (DOX) is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors’ quality of life. The study objective was to evaluate rutin (RUT) for its neuroprotective effect against DOX in human neuroblastoma (IMR32) cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide) staining, intracellular reactive oxygen species (ROS) assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT). Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM) neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intra-peritoneal, once in 5 days), as we observed significant impairment of episodic memory in ORT. Coadministration with RUT (50 mg/kg, per os) significantly prevented memory deficits in vivo without any confounding influence on locomotor activity. RUT also offered protection against DOX-induced myelosuppression, cardiotoxicity, and

  9. Phase I Pharmacokinetic and Pharmacodynamic Evaluation of Combined Valproic Acid/Doxorubicin Treatment in Dogs with Spontaneous Cancer

    PubMed Central

    Wittenburg, Luke A.; Gustafson, Daniel L.; Thamm, Douglas H.

    2010-01-01

    Purpose Histone deacetylase inhibitors (HDACi) are targeted anti-cancer agents with a well-documented ability to act synergistically with cytotoxic agents. We recently demonstrated that the HDACi valproic acid (VPA) sensitizes osteosarcoma cells to doxorubicin (DOX) in vitro and in vivo. As there are no published reports on the clinical utility of HDACi in dogs with spontaneous cancers, we sought to determine a safe and biologically effective dose of VPA administered prior to a standard dose of DOX. Methods 21 dogs were enrolled into eight cohorts in an accelerated dose-escalation trial consisting of pre-treatment with oral VPA followed by DOX on a three-week cycle. Blood and tumor tissue were collected for determination of serum VPA concentration and evaluation of pharmcodynamic effects by immunofluorescence cytochemistry and immunohistochemistry. Serum and complete blood counts were obtained for determination of changes in DOX pharmacokinetics or hematologic effects. Results All doses of VPA were well tolerated. Serum VPA concentrations increased linearly with dose. DOX pharmacokinetics were comparable to those in dogs receiving DOX alone. A positive correlation was detected between VPA dose and histone hyperacetylation in PBMC. No potentiation of DOX-induced myelosuppression was observed. Histone hyperacetylation was documented in tumor and PBMC. Responses included 2/21 complete, 3/21 partial, 5/21 stable disease, and 11/21 progressive disease. Conclusions VPA can be administered to dogs at doses up to 240 mg/kg/day prior to a standard dose of DOX. In addition, we have developed the PK/PD tools necessary for future studies of novel HDACi in the clinical setting of canine cancer. PMID:20705615

  10. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats.

    PubMed

    Ramalingayya, Grandhi Venkata; Cheruku, Sri Pragnya; Nayak, Pawan G; Kishore, Anoop; Shenoy, Rekha; Rao, Chamallamudi Mallikarjuna; Krishnadas, Nandakumar

    2017-01-01

    Doxorubicin (DOX) is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors' quality of life. The study objective was to evaluate rutin (RUT) for its neuroprotective effect against DOX in human neuroblastoma (IMR32) cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide) staining, intracellular reactive oxygen species (ROS) assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT). Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM) neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intra-peritoneal, once in 5 days), as we observed significant impairment of episodic memory in ORT. Coadministration with RUT (50 mg/kg, per os) significantly prevented memory deficits in vivo without any confounding influence on locomotor activity. RUT also offered protection against DOX-induced myelosuppression, cardiotoxicity, and

  11. Synergistic combination of fluoro chalcone and doxorubicin on HeLa cervical cancer cells by inducing apoptosis

    NASA Astrophysics Data System (ADS)

    Arianingrum, Retno; Arty, Indyah Sulistyo; Atun, Sri

    2017-03-01

    Doxorubicin (Dox), a primary chemotherapeutic agent used for cancer treatment is known to have various side effect included multidrug resistance (MDR) phenomenon. Combination chemotherapy is one of some approaches to reduce Dox side effect. Chalcones have been reported to reduce the proliferation of many cancer cells. The research were conducted to investigate the cytotoxic activity and apoptosis induction of a chalcone derivate which is containing fluoro substituent [1 - (4" - fluorophenyl) -3 - (4' - hydroxy - 3' - methoxyphenyl) - 2 - propene - 1 -on] (FHM) and its combination with Dox on HeLa cells line. The observation of the cytotoxic activity was conducted using MTT [3 - (4, 5 - dimethyl thiazol - 2 - y1) - 2.5 - diphenyltetrazolium bromide] assay. Apoptosis induction was determined by flow cytometric. The changes of cell morphology were observed using phase contrast microscopy. The combination index (CI) was used to determine the effect of the combination. The study showed that FHM inhibited the HeLa cell growth with IC50 of 34 μM, while the IC50 of Dox was 1 μM. The combination had a higher inhibitory effect on cell growth compare to the single treatment of FHM and Dox. All of the combination doses under IC50 of FHM and Dox gave synergistic (CI: - 0.7) up to strong synergistic effect (CI: 0.l - 0.3). The synergistic effects of the combination were due to their ability to induce apoptosis in the HeLa cells. According to the result, FHM was potential to be developed as a co-chemotherapeutic agent with Dox for cervical cancer.

  12. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1

    PubMed Central

    Zheng, Dawei; Dai, Yan; Wang, Song; Xing, Xiaoyu

    2015-01-01

    MicroRNAs (miRNAs) are a class of endogenous, small non-coding RNAs which play important roles in various biological and cellular processes, including chemoresistance. The expression level of miR-299-3p was dysregulated in doxorubicin-resistance lung cancer cell lines. However, the exact role of miR-299-3p in doxorubicin-resistance is still unknown. In the present study, miR-299-3p was down-expressed in doxorubicin-resistant or -sensitive lung cancer samples and it was identified to directly targeted adenosine triphosphate binding cassette E1 (ABCE1) 3’-untranslated region (UTR) in lung cancer H69 cells by luciferase assay. After transfection of miR-299-3p mimics or ABCE1-siRNA, MTT assay confirmed that the H69/ADR cell proliferation was inhibited, as well as the enhanced cell inhibitory rate in the presence of doxorubicin. H69/ADR cell apoptosis rate was promoted after miR-299-3p or ABCE1-siRNA transfection. The results indicated that miR-299-3p promotes the sensibility of lung cancer to doxorubicin through suppression of ABCE1, at least partly. Therefore, the disordered decreased of miR-299-3p and resulting ABCE1 up-expression may contribute to chemoresistance of lung cancer, and miR-299-3p-ABCE1 may represent a new potential therapeutic target for the treatment of chemoresistance of lung cancer. PMID:26617714

  13. On-off switch-controlled doxorubicin release from thermo- and pH-responsive coated bimagnetic nanocarriers

    NASA Astrophysics Data System (ADS)

    Hammad, Mohaned; Nica, Valentin; Hempelmann, Rolf

    2016-08-01

    A switch-controlled drug release system is designed by coating of core/shell bimagnetic nanoparticles with a pH- and thermo-responsive polymer shell, which can be used as hyperthermic agent, drug carrier, and for controlled release. Doxorubicin is loaded onto the surface of the last coating layer, and a high loading efficiency of 90.5 % is obtained. The nanocarriers are characterized by FTIR, dynamic light scattering, Zeta potential, TEM, In vitro hyperthermia, and vibrating sample magnetometry. The core/shell magnetic nanoparticles (Zn0.4Co0.6Fe2O4@Zn0.4Mn0.6Fe2O4) exhibit a superparamagnetic behavior with a saturation magnetization around 45.6 emu/g and a high specific absorption rate of up to 360 W/g. The in vitro drug release experiments confirm that only a small amount of doxorubicin is released at body temperature and physiological pH, whereas a high drug release is obtained at acidic tumor pH under hyperthermia conditions (43 °C). The functionalized core/shell bimagnetic nanocarriers facilitate controllable release of doxorubicin as an effect of induced thermo- and pH-responsiveness of the polymer when are subjected to a high-frequency alternating magnetic field at acidic pH; thereby the drug release rate is controlled using on-off cycles of the applied field.

  14. High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin

    PubMed Central

    Fu, Afu; Ma, Shijun; Wei, Na; Xuan Tan, Blanche Xiao; Tan, Ern Yu; Luo, Kathy Qian

    2016-01-01

    Understanding the survival mechanism of metastatic cancer cells in circulation will provide new perspectives on metastasis prevention and also shed new light on metastasis-derived drug resistance. In this study, we made it feasible to detect apoptosis of circulating tumor cells (CTCs) in real-time by integrating a fluorescence resonance energy transfer (FRET)-based caspase sensor into one in vitro microfluidic circulatory system, and two in vivo models: zebrafish circulation and mouse lung metastatic model. Our study demonstrated that fluid shear stresses triggered apoptosis of breast cancer cells in circulation by elevating the mitochondrial production of the primary free radical, superoxide anion. Cancer cells with high levels of manganese superoxide dismutase (MnSOD) exhibited stronger resistance to shear force-induced apoptosis and formed more lung metastases in mice. These metastasized cells further displayed higher resistance to chemotherapeutic agent doxorubicin, which also generates superoxide in mitochondria. Specific siRNA-mediated MnSOD knockdown reversed all three phenotypes. Our findings therefore suggest that MnSOD plays an important integrative role in supporting cancer cell survival in circulation, metastasis, and doxorubicin resistance. MnSOD can serve as a new biomarker for identifying metastatic CTCs and a novel therapeutic target for inhibiting metastasis and destroying doxorubicin-resistant breast cancer cells. PMID:27384484

  15. Effects of fluoro-doxorubicin (ME2303) on microtubules: influence of different classes of microtubule-associated proteins.

    PubMed

    Fromes, Y; Gounon, P; Tapiero, H; Fellous, A

    1996-08-01

    Anthracyclines are among the most useful agents for the treatment of neoplastic disease, but their clinical use is limited by progressive cardiomyopathy. A few studies have suggested the role of microtubules for the understanding of this toxicity. By using kinetic and structural studies, we demonstrate the disorganizing action of fluoro-doxorubicin, a novel anthracycline, on the microtubule system. Microtubules have a rich and complex composition in relation to their numerous functions in cells. In the present study, we investigate the role of two major microtubule-associated protein (MAP) families, Tau and MAP2. Both MAP families are responsible for the properties of different classes of microtubules. We show the differential effect of fluoro-doxorubicin on these two classes of microtubules. Furthermore, we show that fluoro-doxorubicin is able to affect the capacity of purified tubulin to form normal microtubules. This study confirms that anthracyclines may interfer with the microtubule organization. We suggest that some classes of microtubules, with regard to their MAP composition, may be affected more specifically in cardiac myocytes.

  16. Redox nanoparticle therapeutics to cancer--increase in therapeutic effect of doxorubicin, suppressing its adverse effect.

    PubMed

    Yoshitomi, Toru; Ozaki, Yuki; Thangavel, Sindhu; Nagasaki, Yukio

    2013-11-28

    The ultimate goal of cancer chemotherapy is to achieve a cure without causing any adverse effects. We have developed a pH-sensitive redox nanoparticle (RNP(N)), which disintegrates under acidic conditions and exposes nitroxide radicals, leading to strongly scavenging reactive oxygen species (ROS). After intravenous administration of RNP(N) to tumor bearing mice, it effectively accumulated in tumors due to the leaky neovascular and immature lymphatic system and scavenged ROS, resulting in suppression of inflammation and activation of NF-кB, after disintegration of RNP(N) in the tumors. Pre-administration of RNP(N) prior to treatments with anticancer agents, doxorubicin, to tumor-bearing mice significantly suppressed the progression of tumor size, compared to low-molecular weight 4-hydroxy-TEMPO. Interestingly, the administration of RNP(N) suppressed adverse effects of doxorubicin to normal organs due to the scavenging ROS and suppression of inflammation, which was confirmed by reduction in lactate dehydrogenase and creatine phosphokinase activities in plasma. RNP(N) is thus anticipated as a novel and ideal adjuvant for cancer chemotherapy.

  17. Performance of Doxorubicin-Conjugated Gold Nanoparticles: Regulation of Drug Location.

    PubMed

    Cui, Teng; Liang, Juan-Juan; Chen, Huan; Geng, Dong-Dong; Jiao, Lei; Yang, Jian-Yong; Qian, Hai; Zhang, Can; Ding, Ya

    2017-03-15

    Drug-conjugated gold nanoparticles (GNPs), which are generally constructed with many molecules of thiol-terminated polyethylene glycol (PEG)-drug decorated on their surfaces via a thiol-Au covalent bond, are promising and efficient nanoprodrugs. However, because of the exposure of the hydrophobic drug molecules on the surface of the conjugate, in vivo stability, opsonization, and subsequent inefficient therapy become the main issues of this system. To solve these problems without complicating the structures of gold conjugates, herein we propose a method to change the relative position of PEG and the drug. A novel gold conjugate (GNP-NHN═Dox-mPEG) with doxorubicin (Dox) shielded by PEGylation on the surface of GNPs is designed. It demonstrates improved solubility, stability, and dispersion and achieves a two-step stimulus-responsive drug release in response to an acidic environment in lysosomes and then esterase in the cytoplasm. This unique manner of release enables the cytoplasm to act as a reservoir for sustained drug delivery into the nucleus to improve antitumor efficacy in vivo. The intratumoral drug concentrations of the conjugate reach 14.4 ± 1.4 μg/g at 8 h, a two-fold increase in the drug concentration compared with that of the doxorubicin hydrochloride group. This molecular design and regulation approach is facile but important in modulating the in vivo performance of nanovehicles and demonstrates its vital potential in developing effective nanoparticle-based drug delivery agents.

  18. Bone-Targeted Acid-Sensitive Doxorubicin Conjugate Micelles as Potential Osteosarcoma Therapeutics

    PubMed Central

    2015-01-01

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic d-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data. PMID:25291150

  19. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics.

    PubMed

    Low, Stewart A; Yang, Jiyuan; Kopeček, Jindřich

    2014-11-19

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic D-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data.

  20. Improved Efficacy of Liposomal Doxorubicin Treatment of Superficial Tumors by Thermotherapy.

    PubMed

    Ping, Xiong; Angang, Ding; Xia, Gong; Yinzhu, Zhao; Jia, Li; Guofeng, Shen; Yazhu, Chen

    2016-04-01

    Our study aimed to investigate the effect of ultrasonic thermotherapy on the targeted delivery of liposomal doxorubicin to superficial tumors, local drug concentrations in tumor tissue, and the curative effect of chemotherapy. Twenty rabbits with VX2 tumors transplanted into the superficial muscle of the hind limb were randomly assigned to the following 4 treatment groups: (1) free doxorubicin, (2) liposomal doxorubicin hydrochloride, (3) liposomal doxorubicin hydrochloride plus 41 °C thermotherapy, and (4) liposomal doxorubicin hydrochloride plus 43 °C thermotherapy. Ultrasonic thermotherapy was delivered at 41 °C to 43 °C. Plasma, tumor, and organ/tissue homogenates were analyzed by high-pressure liquid chromatography to determine doxorubicin concentrations. The drug concentration in plasma and tumor tissue was significantly higher in the liposomal doxorubicin hydrochloride plus thermotherapy group than in the liposomal doxorubicin hydrochloride and free doxorubicin groups, but there were no significant differences among the 4 groups in the concentration in heart or kidney tissue. Combining thermotherapy with liposomal doxorubicin hydrochloride chemotherapy significantly increased the concentration of the drug in tumor tissue. The doxorubicin concentration was significantly higher in the liposomal doxorubicin hydrochloride plus 41 °C thermotherapy group.

  1. Reversible derivatization to enhance enzymatic synthesis: Chemoenzymatic synthesis of Doxorubicin-14-O-Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient three-step, chemoenzymatic synthesis of unprotected doxorubicin-14-O-esters from doxorubicin hydrochloride salt is described. The key step is a lipase-catalyzed regioselective transesterification/esterification using commercially-available acyl donors and doxorubicin reversibly derivat...

  2. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity

    PubMed Central

    Zhang, Jing; Cui, Xiaohai; Yan, Yan; Li, Min; Yang, Ya; Wang, Jiansheng; Zhang, Jia

    2016-01-01

    Anthracyclines, including doxorubicin, epirubicin, daunorubicin and aclarubicin, are widely used as chemotherapeutic agents in the treatment of hematologic and solid tumor, including acute leukemia, lymphoma, breast cancer, gastric cancer, soft tissue sarcomas and ovarian cancer. In the cancer treatment, anthracyclines also can be combined with other chemotherapies and molecular-targeted drugs. The combination of anthracyclines with other therapies is usually the first-line treatment. Anthracyclines are effective and potent agents with a broad antitumor spectrum, but may cause adverse reactions, including hair loss, myelotoxicity, as well as cardiotoxicity. We used hematopoietic stimulating factors to control the myelotoxicity, such as G-CSF, EPO and TPO. However, the cardiotoxicity is the most serious side effect of anthracyclines. Clinical research and practical observations indicated that the cardiotoxicity of anthracyclines is commonly progressive and irreversible. Especially to those patients who have the first time use of anthracyclines, the damage is common. Therefore, early detection and prevention of anthracyclines induced cardiotoxicity are particularly important and has already aroused more attention in clinic. By literature review, we reviewed the research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. PMID:27508008

  3. Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy

    PubMed Central

    Arechaga-Ocampo, Elena; Flores-Pérez, Ali; Palacios-Rodríguez, Yadira; Domínguez-Gómez, Guadalupe; Marchat, Laurence A.; Fuentes-Mera, Lizeth; Mendoza-Hernández, Guillermo; Gariglio, Patricio; López-Camarillo, César

    2013-01-01

    The use of chemopreventive natural compounds represents a promising strategy in the search for novel therapeutic agents in cancer. Resveratrol (3,4′,5-trans-trihydroxystilbilene) is a dietary polyphenol found in fruits, vegetables and medicinal plants that exhibits chemopreventive and antitumor effects. In this study, we searched for modulated proteins with preventive or therapeutic potential in MCF-7 breast cancer cells exposed to resveratrol. Using two-dimensional electrophoresis we found significant changes (FC >2.0; p≤0.05) in the expression of 16 proteins in resveratrol-treated MCF-7 cells. Six down-regulated proteins were identified by tandem mass spectrometry (ESI-MS/MS) as heat shock protein 27 (HSP27), translationally-controlled tumor protein, peroxiredoxin-6, stress-induced-phosphoprotein-1, pyridoxine-5′-phosphate oxidase-1 and hypoxanthine-guanine phosphoribosyl transferase; whereas one up-regulated protein was identified as triosephosphate isomerase. Particularly, HSP27 overexpression has been associated to apoptosis inhibition and resistance of human cancer cells to therapy. Consistently, we demonstrated that resveratrol induces apoptosis in MCF-7 cells. Apoptosis was associated with a significant increase in mitochondrial permeability transition, cytochrome c release in cytoplasm, and caspases -3 and -9 independent cell death. Then, we evaluated the chemosensitization effect of increasing concentrations of resveratrol in combination with doxorubicin anti-neoplastic agent in vitro. We found that resveratrol effectively sensitize MCF-7 cells to cytotoxic therapy. Next, we evaluated the relevance of HSP27 targeted inhibition in therapy effectiveness. Results evidenced that HSP27 inhibition using RNA interference enhances the cytotoxicity of doxorubicin. In conclusion, our data indicate that resveratrol may improve the therapeutic effects of doxorubicin in part by cell death induction. We propose that potential modulation of HSP27 levels using

  4. Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates.

    PubMed

    Han, Ah Reum; Park, Je Won; Lee, Mi Kyeong; Ban, Yeon Hee; Yoo, Young Ji; Kim, Eun Ji; Kim, Eunji; Kim, Byung-Gee; Sohng, Jae Kyung; Yoon, Yeo Joon

    2011-07-01

    Doxorubicin, one of the most widely used anticancer drugs, is composed of a tetracyclic polyketide aglycone and l-daunosamine as a deoxysugar moiety, which acts as an important determinant of its biological activity. This is exemplified by the fewer side effects of semisynthetic epirubicin (4'-epi-doxorubicin). An efficient combinatorial biosynthetic system that can convert the exogenous aglycone ε-rhodomycinone into diverse glycosylated derivatives of doxorubicin or its biosynthetic intermediates, rhodomycin D and daunorubicin, was developed through the use of Streptomyces venezuelae mutants carrying plasmids that direct the biosynthesis of different nucleotide deoxysugars and their transfer onto aglycone, as well as the postglycosylation modifications. This system improved epirubicin production from ε-rhodomycinone by selecting a substrate flexible glycosyltransferase, AknS, which was able to transfer the unnatural sugar donors and a TDP-4-ketohexose reductase, AvrE, which efficiently supported the biosynthesis of TDP-4-epi-l-daunosamine. Furthermore, a range of doxorubicin analogs containing diverse deoxysugar moieties, seven of which are novel rhodomycin D derivatives, were generated. This provides new insights into the functions of deoxysugar biosynthetic enzymes and demonstrates the potential of the S. venezuelae-based combinatorial biosynthetic system as a simple biological tool for modifying structurally complex sugar moieties attached to anthracyclines as an alternative to chemical syntheses for improving anticancer agents.

  5. Combinational effects of hexane insoluble fraction of Ficus septica Burm. F. and doxorubicin chemotherapy on T47D breast cancer cells

    PubMed Central

    Nugroho, Agung Endro; Hermawan, Adam; Putri, Dyaningtyas Dewi Pamungkas; Novika, Anindya; Meiyanto, Edy

    2013-01-01

    Objective To evaluate the effects of n-hexane insoluble fraction (HIF) of Ficus septica leaves in combination with doxorubicin on cytotoxicity, cell cycle and apoptosis induction of breast cancer T47D cell lines. Methods The in vitro drugs-stimulated cytotoxic effects were determined using MTT assay. Analysis of cell cycle distribution was performed using flowcytometer and the data was analyzed using ModFit LT 3.0 program. Apoptosis assay was carried out by double staining method using ethydium bromide-acridin orange. The expression of cleaved-poly (ADP-ribose) polymerase (PARP) on T47D cell lines was identified using immunocytochemistry. Results The combination exhibited higher inhibitory effect on cell growth than the single treatment of doxorubicin in T47D cells. In addition, combination of doxorubicin and HIF increased the incidence of cells undergoing apoptosis. HIF could improve doxorubicin cytotoxic effect by changing the accumulation of cell cycle phase from G2/M to G1 phase. The combination also exhibited upregulation of cleaved-PARP in T47D cells. Conclusions Based on this results, HIF is potential to be developed as co-chemotherapeutic agent for breast cancer by inducing apoptosis and cell cycle arrest. However, the molecular mechanism need to be explored further. PMID:23620854

  6. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood-brain barrier disruption: a safety study

    PubMed Central

    Aryal, Muna; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-01-01

    Transcranial MRI-guided focused ultrasound is a rapidly advancing method for delivering therapeutic and imaging agents to the brain. It has the ability to facilitate the passage of therapeutics from the vasculature to the brain parenchyma, which is normally protected by the blood-brain barrier (BBB). The method’s main advantages are that it is both targeted and noninvasive, and that it can be easily repeated. Studies have shown that liposomal doxorubicin (Lipo-DOX), a chemotherapy agent with promise for tumors in the central nervous system, can be delivered into the brain across BBB. However, prior studies have suggested that doxorubicin can be significantly neurotoxic, even at small concentrations. Here, we studied whether multiple sessions of Lipo-DOX administered after FUS-induced BBB disruption (FUS-BBBD) induces severe adverse events in the normal brain tissues. First, we used fluorometry to measure the doxorubicin concentrations in the brain after FUS-BBBD to ensure that a clinically relevant doxorubicin concentration was achieved in the brain. Next, we performed three weekly sessions with FUS-BBBD ± Lipo-DOX administration. Five to twelve targets were sonicated each week, following a schedule described previously in a survival study in glioma-bearing rats (Aryal et al., 2013). Five rats received three weekly sessions where i.v. injected Lipo-DOX was combined with FUS-BBBD; an additional four rats received FUS-BBBD only. Animals were euthanized 70 days from the first session and brains were examined in histology. We found that clinically-relevant concentrations of doxorubicin (4.8 ± 0.5 µg/g) were delivered to the brain with the sonication parameters (0.69 MHz; 0.55–0.81 MPa; 10 ms bursts; 1 Hz PRF; 60s duration), microbubble concentration (Definity, 10 µl/kg), and the administered Lipo-DOX dose (5.67 mg/kg) used. The resulting concentration of Lipo-DOX was reduced by 32% when it was injected 10 minutes after the last sonication compared to cases

  7. Activation of ATM by DNA Damaging Agents

    DTIC Science & Technology

    2005-09-01

    serine 139. Pretreatment of cells with NAC partially, peroxide dismutase and glutathione peroxidase - 1 (37). This but significantly, attenuated the... Gy , concentrations of wortmannin (lanes 3-5) for 30 min prior to the addi- 2 h) (Fig. 4A). tion of 1 gm doxorubicin (lanes 2-5) and further incubation...AD Award Number: DAMD17-02- 1 -0318 TITLE: Activation of ATM by DNA Damaging Agents PRINCIPAL INVESTIGATOR: Ebba U. Kurz, Ph.D. Susan P. Lees-Miller

  8. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  9. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts.

    PubMed

    Krauze, Michal T; Noble, Charles O; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W; Bankiewicz, Krystof S

    2007-10-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors.

  10. Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines.

    PubMed Central

    Zangemeister-Wittke, U.; Schenker, T.; Luedke, G. H.; Stahel, R. A.

    1998-01-01

    Expression of Bcl-2 is life-sustaining for small-cell lung cancer cells and associated with drug resistance. In the present study, the interactions between the bcl-2 antisense oligodeoxynucleotide 2009 and the chemotherapeutic agents etoposide, doxorubicin and cisplatin were investigated on small-cell lung cancer cell lines to search for synergistic combinations. The cell lines NCI-H69, SW2 and NCI-H82 express high, intermediate-high and low basal levels of Bcl-2, respectively, which are inversely correlated with the sensitivities of the cell lines to treatment with oligodeoxynucleotide 2009 and the chemotherapeutic agents alone. Moreover, differences were found in the responsiveness of the cell lines to treatment with combinations of oligodeoxynucleotide 2009 and the chemotherapeutic agents. In the cell lines NCI-H69 and SW2, all combinations resulted in synergistic cytotoxicity. In NCI-H69 cells, maximum synergy with a combination index of 0.2 was achieved with the combination of oligodeoxynucleotide 2009 and etoposide. In SW2 cells, the combination of oligodeoxynucleotide 2009 and doxorubicin was the most effective (combination index = 0.5). In the cell line NCI-H82, which expresses a low basal level of Bcl-2, most of the combinations were slightly antagonistic. Our data suggest the use of oligodeoxynucleotide 2009 in combination with chemotherapy for the treatment of small-cell lung cancer that overexpresses Bcl-2. Images Figure 1 PMID:9792147

  11. Hepatic Arterial Embolization with Doxorubicin-Loaded Superabsorbent Polymer Microspheres in a Rabbit Liver Tumor Model

    SciTech Connect

    Gupta, Sanjay Wright, Kenneth C.; Ensor, Joe; Van Pelt, Carolyn S.; Dixon, Katherine A.; Kundra, Vikas

    2011-10-15

    Objectives: The pharmacokinetic profile after hepatic arterial embolization with superabsorbent microspheres (QuadraSpheres) loaded with doxorubicin was studied. Methods: Rabbits with hepatic VX2 tumors were treated with intra-arterial administration of QuadraSpheres loaded with doxorubicin, or transarterial chemoembolization (TACE) using doxorubicin, Lipiodol and Embospheres, or hepatic arterial infusion (HAI) of doxorubicin. Tumor specimens were evaluated by fluorescence microscopy, and plasma and tumor concentrations of doxorubicin were measured. Results: The peak plasma concentration of doxorubicin was lower in the QuadraSphere group (309.9 ng/ml) than in the HAI (673.4 ng/ml) or TACE (360.5 ng/ml) groups, suggesting higher tumor retention in the QuadraSphere group. Intratumoral doxorubicin levels declined to negligible levels at 1 and 3 days after treatment, respectively, in the HAI and TACE groups. In the QuadraSphere groups, intratumoral doxorubicin level declined after day 1, but was still detectable at 14 days after treatment and was higher than that in the other groups at 1, 3, and 7 days. Intratumoral doxorubicin fluorescence was detected at all time points in the QuadraSphere group, but only at 1 day after treatment in the TACE group. Conclusions: Hepatic arterial administration of doxorubicin-loaded QuadraSpheres enables the sustained release of doxorubicin to hepatic tumors.

  12. Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization.

    PubMed

    Farvadi, Fakhrossadat; Tamaddon, AliMohammad; Sobhani, Zahra; Abolmaali, Samira Sadat

    2016-05-13

    To take advantages of single-walled carbon nanotubes (SWNTs) for cellular delivery of chemotherapeutic agents (e.g. doxorubicin) in order to decrease general toxicities of doxorubicin (DOX) and to promote the efficacy, we aimed to develop a novel approach to stabilize SWNTs through consequent steps of oxidation and PEG-g-PEI polyionic complexation (PEG-PEI-SWNT). The DOX loading capacity of modified SWNTs was about 900%. Moreover, it showed an enhanced dispersibility in physiologic-stimulated medium. DOX release was prolonged, independent of dilution, and exhibited an acidic pH-stimulated release. Therefore, PEG-PEI-SWNT could be used for cancer chemotherapy in vivo.

  13. Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: Reduction of doxorubicin DNA binding and alleviation of its biological effects.

    PubMed

    Gołuński, Grzegorz; Borowik, Agnieszka; Derewońko, Natalia; Kawiak, Anna; Rychłowski, Michał; Woziwodzka, Anna; Piosik, Jacek

    2016-04-01

    Anticancer drug doxorubicin is commonly used in cancer treatment. However, drug's severe side effects make toxicity reduction important matter. Another biologically active aromatic compound, pentoxifylline, can sequester aromatic compounds in stacking complexes reducing their bioactivity. This work deals with the problem of alleviating doxorubicin side effects by pentoxifylline. We employed a wide spectrum of prokaryotic and eukaryotic cellular assays. In addition, we used the doxorubicin-pentoxifylline mixed association constant to quantitatively assess pentoxifylline influence on the doxorubicin mutagenic activity. Obtained results indicate strong protective effects of pentoxifylline towards doxorubicin, observed on bacteria and human keratinocytes with no such effects observed on the cancer cells. It may be hypothesized that, considering much shorter half-life of pentoxifylline than doxorubicin, simultaneous administration of doxorubicin and pentoxifylline will lead to gradual release of doxorubicin from complexes with pentoxifylline to reach desired therapeutic concentration. Proposed results shed light on the possible doxorubicin chemotherapy modification and its side effects reduction without the loss of its therapeutic potential.

  14. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  15. Exercise preconditioning modulates genotoxicity induced by doxorubicin in multiple organs of rats.

    PubMed

    Martins, Renato Almeida; Minari, André Luis; Chaves, Marcelo Donizetti; dos Santos, Ronaldo Wagner Thomatieli; Barbisan, Luis Fernando; Ribeiro, Daniel Araki

    2012-06-01

    The aim of this study was to investigate the effects of exercise in multiple organs of rats treated with doxorubicin. Male adult Wistar rats were distributed into the following groups: sedentary + NaCl; exercise + NaCl; sedentary + doxorubicin; and exercise + doxorubicin. Animals were sacrificed 2 days following injections. Central fragments from heart, liver, and kidney were collected and minced in 0.9% NaCl being cellular suspensions used for the single-cell gel (comet) assay. The results showed that exercise was able to prevent genotoxicity induced by doxorubicin in heart cells. By contrast, exercise was not able to prevent genotoxicity induced by doxorubicin in liver cells. The same occurred to kidney cells, i.e. no statistically significant differences (p > 0.05) were found when compared with groups not exposed to doxorubicin. Taken together, our results support the idea that exercise could contribute to the protective effect against genotoxicity induced by doxorubicin in heart cells.

  16. Liposomal Coencapsulation of Doxorubicin with Listeriolysin O Increases Potency via Subcellular Targeting.

    PubMed

    Walls, Zachary F; Gong, Henry; Wilson, Rebecca J

    2016-03-07

    Liposomal doxorubicin is a clinically important drug formulation indicated for the treatment of several different forms of cancer. For doxorubicin to exert a therapeutic effect, it must gain access to the nucleus. However, a large proportion of the liposomal doxorubicin dose fails to work because it is sequestered within endolysosomal organelles following endocytosis of the liposomes due to the phenomenon of ion trapping. Listeriolysin O (LLO) is a pore-forming protein that can provide a mechanism for endosomal escape. The present study demonstrates that liposomal coencapsulation of doxorubicin with LLO enables a significantly larger percentage of the dose to colocalize with the nucleus compared to liposomes containing doxorubicin alone. The change in intracellular distribution resulted in a significantly more potent formulation of liposomal doxorubicin as demonstrated in both the ovarian carcinoma cell line A2780 and its doxorubicin-resistant derivative A2780ADR.

  17. Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Yeonju; Jung, Goo-Eun; Cho, Sang Joon; Geckeler, Kurt E.; Fuchs, Harald

    2013-08-01

    Halloysite nanotube (HNT)-based supramolecular complexes are synthesized and evaluated with respect to their cytotoxicity and effects on cellular structures. As HNTs are water-insoluble, DNA is applied for wrapping the surface of HNTs to enhance their water-dispersibility. To investigate the potential of DNA-wrapped HNTs (HD) as a promising drug delivery carrier, doxorubicin (DOX) is introduced as a model anticancer agent and loaded onto HD. The DOX-loaded, DNA-wrapped HNTs (HDD) show sustained DOX release over two weeks without initial burst of DOX indicating delayed DOX release inside cells. In addition, effects of DNA-wrapped HNTs (HD) or HDD on the cytoskeleton organization of A549 cells are studied by visualizing the distribution of F-actin filaments using confocal laser scanning microscopy, and cellular morphological changes are observed by scanning electron microscopy and scanning ion conductance microscopy.Halloysite nanotube (HNT)-based supramolecular complexes are synthesized and evaluated with respect to their cytotoxicity and effects on cellular structures. As HNTs are water-insoluble, DNA is applied for wrapping the surface of HNTs to enhance their water-dispersibility. To investigate the potential of DNA-wrapped HNTs (HD) as a promising drug delivery carrier, doxorubicin (DOX) is introduced as a model anticancer agent and loaded onto HD. The DOX-loaded, DNA-wrapped HNTs (HDD) show sustained DOX release over two weeks without initial burst of DOX indicating delayed DOX release inside cells. In addition, effects of DNA-wrapped HNTs (HD) or HDD on the cytoskeleton organization of A549 cells are studied by visualizing the distribution of F-actin filaments using confocal laser scanning microscopy, and cellular morphological changes are observed by scanning electron microscopy and scanning ion conductance microscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02665e

  18. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Khatun, Zehedina; Nurunnabi, Md; Nafiujjaman, Md; Reeck, Gerald R.; Khan, Haseeb A.; Cho, Kwang Jae; Lee, Yong-Kyu

    2015-06-01

    The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK).The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid

  19. HPLC-MS/MS determination of a peptide conjugate prodrug of doxorubicin, and its active metabolites, leucine-doxorubicin and doxorubicin, in dog and rat plasma.

    PubMed

    Mazuel, Claude; Grove, Jeffrey; Gerin, Geneviève; Keenan, Kevin P

    2003-12-04

    A HPLC-MS/MS Electrospray (ESI) method was developed and validated to quantify a peptide conjugate prodrug of doxorubicin (Dox-Con) and its active metabolites leucine-doxorubicin (Leu-Dox) and doxorubicin (Dox) in dog and rat plasma. The analytes were extracted from plasma by solid-phase extraction on a Bond Elut C8 cartridge and eluted with chloroform-methanol (2:1). Eluates were evaporated and reconstituted in acetonitrile-5 microM sodium trifluoroacetate in 0.1% aqueous formic acid (20:80) and injected onto a Waters Oasis HLB column. Analytes were eluted from the column with a solvent gradient into the mass analyzer. The ions were quantified in the selected reaction-monitoring mode (SRM), using positive ions, on a triple quadrupole mass spectrometer. The lower limits of quantification for Dox-Con, Leu-Dox, and Dox in plasma, were approximately 5, 1 (dog)/6 (rat), and 0.5 ng/ml, respectively. Intra- and inter-assay accuracy (% of nominal concentration) and precision (%CV) for all analytes were within 15 and 16%, respectively.

  20. Influence of mitochondrion-toxic agents on the cardiovascular system.

    PubMed

    Finsterer, Josef; Ohnsorge, Peter

    2013-12-01

    Cardiovascular disease may be induced or worsened by mitochondrion-toxic agents. Mitochondrion-toxic agents may be classified as those with or without a clinical effect, those which induce cardiac disease only in humans or animals or both, as prescribed drugs, illicit drugs, exotoxins, or nutritiants, as those which affect the heart exclusively or also other organs, as those which are effective only in patients with a mitochondrial disorder or cardiac disease or also in healthy subjects, or as solid, liquid, or volatile agents. In humans, cardiotoxic agents due to mitochondrial dysfunction include anthracyclines (particularly doxorubicin), mitoxantrone, cyclophosphamide, cisplatin, fluorouracil, imatinib, bortezomib, trastuzumab, arsenic trioxide, cyclosporine-A, zidovudine, lamotrigine, glycosides, lidocain, isoproterenol, nitroprusside, pivalic acid, alcohol, cocaine, pesticides, cadmium, mycotoxins, cyanotoxins, meat meal, or carbon monoxide. Even more agents exhibit cardiac abnormalities due to mitochondrion-toxicity only in animals or tissue cultures. The mitochondrion-toxic effect results from impairment of the respiratory chain, the oxidative phosphorylation, the Krebs cycle, or the β-oxidation, from decrease of the mitochondrion-membrane potential, from increased oxidative stress, reduced anti-oxidative capacity, or from induction of apoptosis. Cardiac abnormalities induced via these mechanisms include cardiomyopathy, myocarditis, coronary heart disease, arrhythmias, heart failure, or Takotsubo syndrome. Discontinuation of the cardiotoxic agent results in complete recovery in the majority of the cases. Antioxidants and nutritiants may be of additional help. Particularly coenzyme-Q, riboflavin, vitamin-E, vitamin-C, L-carnitine, vitamin-D, thiamin, folic acid, omega-3 fatty acids, and D-ribose may alleviate mitochondrial cardiotoxic effects.

  1. Knockdown of ROS1 gene sensitizes breast tumor growth to doxorubicin in a syngeneic mouse model.

    PubMed

    Tiash, Snigdha; Chua, Ming Jang; Chowdhury, Ezharul Hoque

    2016-06-01

    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer.

  2. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion.

    PubMed

    Whitt, Jason D; Keeton, Adam B; Gary, Bernard D; Sklar, Larry A; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A

    2016-03-01

    ATP-binding cassette (ABC) transporters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the nonsteroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemotherapeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxorubicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxorubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxorubicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intracellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress.

  3. Hypoxia and retinoic acid-inducible NDRG1 expression is responsible for doxorubicin and retinoic acid resistance in hepatocellular carcinoma cells.

    PubMed

    Jung, Eun Uk; Yoon, Jung-Hwan; Lee, Youn-Jae; Lee, Jeong-Hoon; Kim, Bo Hyun; Yu, Su Jong; Myung, Sun Jung; Kim, Yoon Jun; Lee, Hyo-Suk

    2010-12-01

    Hypoxia may activate survival signals in cancer cells. Moreover, hypoxic cells are less sensitive than normoxic cells to doxorubicin cytotoxicity, a potent activator of the p53 tumor suppressor gene. N-myc downstream-regulated gene-1 (NDRG1) is a hypoxia- and retinoic acid-inducible protein, and has been previously implicated in carcinogenesis. As this protein is also a downstream target of p53 and hepatocellular carcinoma (HCC) cells frequently evidence resistance to retinoic acid (RA) cytotoxicity, we attempted to determine whether the suppression of NDRG1 expression may sensitize HCC cells to doxorubicin and/or RA cytotoxicity. HCC cells expressed NDRG1 protein, and the expression of this protein was hypoxia- and RA-inducible. Doxorubicin treatment induced HCC cell cytotoxicity via the activation of mitochondrial apoptotic signals, including caspase-9 activation. Hypoxic HCC cells are less sensitive to doxorubicin-induced apoptosis. The suppression of NDRG1 expression either by siRNA or flavopiridol sensitized hypoxic HCC cells to doxorubicin cytotoxicity, and this was attributed to more profound augmentation of JNK and caspase-9 activation. The suppression of NDRG1 expression also sensitized RA-resistant HCC cells to RA-induced apoptosis, and this sensitization was more apparent in hypoxic HCC cells than in normoxic cells. Glutaredoxin2 expression was down-regulated in NDRG1-suppressed HCC cells. These results show that hypoxia- and RA-inducible NDRG1 expression is responsible for doxorubicin and RA resistance in HCC cells. Thus, the selective interruption of NDRG1 signaling may prove to be therapeutically useful in HCCs, particularly in the advanced infiltrative type of tumors exposed to hypoxic environments.

  4. Treatment of Advanced or Recurrent Endometrial Carcinoma with Doxorubicin in Patients Progressing after Paclitaxel/Carboplatin: Memorial Sloan-Kettering Cancer Center (MSKCC) Experience from 1995-2009

    PubMed Central

    Makker, Vicky; Hensley, Martee L.; Zhou, Qin; Iasonos, Alexia; Aghajanian, Carol. A.

    2013-01-01

    Objective Long-term survival for patients with advanced endometrial carcinoma is poor, and limited options exist for the management of recurrent disease. Our goal was to investigate the activity of doxorubicin in the second-line setting in patients who progressed after paclitaxel/carboplatin adjuvant treatment. Methods We conducted a retrospective analysis of patients with recurrent endometrial carcinoma who were treated at Memorial Sloan-Kettering Cancer Center from 1995-2009, and who received paclitaxel/carboplatin adjuvant chemotherapy followed by second-line doxorubicin therapy at time of recurrence. The median PFS and OS times following paclitaxel/carboplatin and following second-line doxorubicin therapy were estimated using the Kaplan-Meier method. Toxicity was assessed by the treating physician at each visit and graded using version 4.0 of Common Terminology Criteria for Adverse Events (CTCAE). Patient presentation, treatment, patterns of recurrence, and patient outcomes were summarized. Results Seventeen patients were included in study analyses. The median PFS from completion of paclitaxel/carboplatin was 8.0 months (95% CI: 4.5-13.6 months). At the time of recurrence, all 17 patients were treated with doxorubicin as second-line therapy. No patient achieved objective response of stable disease. The median PFS of this cohort following doxorubicin treatment was 2.1 months (95% CI: 0.95-2.7) months. Median OS was 5.8 months (95% CI: 1.0-15.0 months). There is only one patient still alive; her median follow-up time is 49.4 months. Predominant doxorubicin-related grade 2 toxicities included nausea/vomiting (18.8%), fatigue (18.8%), and neutropenia (12.5%). No grade 3 or 4 toxicities occurred. Conclusions Among patients with advanced endometrial carcinoma who had received adjuvant paclitaxel/carboplatin, treatment with doxorubicin at time of disease recurrence failed to achieve any objective responses and was associated with a very short (2 months) time to

  5. Doxorubicin In Vivo Rapidly Alters Expression and Translation of Myocardial Electron Transport Chain Genes, Leads to ATP Loss and Caspase 3 Activation

    PubMed Central

    Pointon, Amy V.; Walker, Tracy M.; Phillips, Kate M.; Luo, Jinli; Riley, Joan; Zhang, Shu-Dong; Parry, Joel D.; Lyon, Jonathan J.; Marczylo, Emma L.; Gant, Timothy W.

    2010-01-01

    Background Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity. Methodology/Principal Findings Mice were treated with an acute dose of either doxorubicin (DOX) (15 mg/kg) or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) (25 mg/kg). DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO). Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted. Conclusions/Significance These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still

  6. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors.

    PubMed

    Byeon, Hyeong Jun; Thao, Le Quang; Lee, Seunghyun; Min, Sun Young; Lee, Eun Seong; Shin, Beom Soo; Choi, Han-Gon; Youn, Yu Seok

    2016-03-10

    Albumin nanoparticles have been increasingly viewed as an effective way of delivering chemotherapeutics to solid tumors. Here, we report the one-pot development of a unique prototype of doxorubicin-loaded nanoparticles (NPs) made of naïve albumin (HSA) plus cationic- (c-HSA) or mannose-modified-albumin (m-HSA), with the goal of traversing the blood-brain barrier and targeting brain tumors. c-HSA was synthesized by conjugating ethylenediamine to naïve HSA. Then, m-HSA was derivatized using mannopyranoside via a thiol-maleimide reaction. The c/m-HSA NPs were prepared using a mixture solution of c- and m-HSAs in deionized water and doxorubicin in ethanol/chloroform in the same pot using a high-pressure homogenizer. The c/m-HSA NPs were spherical and well-dispersed, with a particle size of 90.5±3.1nm and zeta-potential of -12.0±0.3mV at c- and m-HSA feed ratios of 5% and 10%, respectively. The c/m-HSA NPs displayed good stability over 3days based on particle size and a linear gradual doxorubicin release over 2days. Specifically, the inhibitory concentration (IC50; 0.5±0.02μg/ml) of c/m-HSA NPs was >2.2-15.6 fold lower than those of doxorubicin or the other HSA NPs. Moreover, among HSA NPs, c/m-HSA NPs exhibited the most prominent performances in transport across the bEnd.3 cell monolayer and uptake in bEnd.3 cells as well as U87MG glioblastoma cells and spheroids. Furthermore, c/m-HSA NPs were localized to a greater extent in brain glioma compared to naïve HSA NPs. Orthotopic glioma-bearing mice treated with c/m-HSA NPs displayed significantly smaller tumors than the mice treated with saline, doxorubicin or HSA NPs. This improved anti-glioma efficacy seemed to be due to the dual-enhanced system of dual cationic absorptive transcytosis and glucose-transport by the combined use of c- and m-HSAs. The c/m-HSA NPs have potential as a novel anti-brain cancer agent with good targetability.

  7. Sall2 is required for proapoptotic Noxa expression and genotoxic stress-induced apoptosis by doxorubicin

    PubMed Central

    Escobar, D; Hepp, M I; Farkas, C; Campos, T; Sodir, N M; Morales, M; Álvarez, C I; Swigart, L; Evan, G I; Gutiérrez, J L; Nishinakamura, R; Castro, A F; Pincheira, R

    2015-01-01

    The Sall2 transcription factor is deregulated in several cancers; however, little is known about its cellular functions, including its target genes. Recently, we demonstrated that p53 directly regulates Sall2 expression under genotoxic stress. Here, we investigated the role of Sall2 in the context of cellular response to genotoxic stress. In addition, we further examined the Sall2-p53 relationship during genotoxic stress in primary mouse embryo fibroblasts (MEFs), which are derived from Sall2 knockout mice separately, or in combination with the p53ERTAM knock-in mice. We found that the levels of Sall2 mRNA and protein are dynamically modulated in response to doxorubicin. At early times of stress, Sall2 is downregulated, but increases under extension of the stress in a p53-independent manner. Based on caspase-3/7 activities, expression of cleaved poly (ADP-ribose) polymerase, expression of cleaved caspase-3 and induction of proapoptotic proteins, Sall2 expression was correlated with cellular apoptosis. Consequently, Sall2−/− MEFs have decreased apoptosis, which relates with increased cell viability in response to doxorubicin. Importantly, Sall2 was required for apoptosis even in the presence of fully activated p53. Searching for putative Sall2 targets that could mediate its role in apoptosis, we identified proapoptotic NOXA/PMAIP1 (phorbol-12-myristate-13-acetate-induced protein 1). We demonstrated that Sall2 positively regulates Noxa promoter activity. Conserved putative Sall2-binding sites at the NOXA promoter were validated in vitro by electrophoretic mobility shift assay and in vivo by ChIP experiments, identifying NOXA as a novel Sall2 target. In agreement, induction of Noxa protein and mRNA in response to doxorubicin was significantly decreased in Sall2−/− MEFs. In addition, studies in leukemia Jurkat T cells support the existence of the Sall2/Noxa axis, and the significance of this axis on the apoptotic response to doxorubicin in cancer cells. Our

  8. An Evaluation of Hepatotoxicity in Breast Cancer Patients Receiving Injection Doxorubicin

    PubMed Central

    Damodar, G; Smitha, T; Gopinath, S; Vijayakumar, S; Rao, YA

    2014-01-01

    Background: Hepatic dysfunction in the cancer unit has a significant impact on patient outcomes. The therapeutic application of anthracycline antibiotics are limited by side-effects mainly myelosuppression, chronic cardiotoxicity, and hepatotoxicity. Aim: To assess the risk of Hepatotoxicity in breast cancer patients receiving Inj. Doxorubicin. Subjects and Methods: The investigation was a prospective study that was conducted in cancer patients receiving Inj. Doxorubicin doses of 50 mg/m2, and 75 mg/m2 at a South Indian tertiary care hospital. Sample collection was carried out from pre-chemotherapy to 4th cycle. Serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), direct bilirubin and total bilirubin were assessed to determine hepatotoxicity. Data were analyzed using unpaired t-test, Pearson correlation using Graph-Pad Prism version 5.00 for Windows, Graph-Pad Software, San Diego, California, USA, www.graphpad.com. Results: Breast cancer patients comprised 37% (49/132) of the total female cancer patient population, of which 46 patients with a mean age of 46.6 (13.4) years were included and 30.4% (14/46) patients were developed hepatotoxicity. The mean standard deviation of SGOT, SGPT, direct bilirubin, total bilirubin in the pre-chemotherapy cycle to fourth chemotherapy cycle were found to be 21.97 (5.798) U/L and 181.3 (103.6) U/L, 23.17 (6.237) U/L and 147.6 (90.9) U/L, 0.1351 (0.1186) mg/dL and 0.5445 (0.4587) mg/dL, 0.3094 (1.346) mg/dL and 2.7163 (1.898) mg/dL simultaneously where P < 0.05 which were statistically significant. Conclusion: There exist a strong correlation between the use of Inj. Doxorubicin and risk for developing hepatotoxicity. The health-care professionals dealing with breast cancer patients need to have awareness for hepatotoxicity with the use of Inj. Doxorubicin therapy. PMID:24669335

  9. Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins.

    PubMed

    Agudelo, Daniel; Bourassa, Philippe; Bruneau, Julie; Bérubé, Gervais; Asselin, Eric; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    We located the binding sites of doxorubicin (DOX) and N-(trifluoroacetyl) doxorubicin (FDOX) with bovine serum albumin (BSA) and human serum albumins (HSA) at physiological conditions, using constant protein concentration and various drug contents. FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling were used to analyse drug binding sites, the binding constant and the effect of drug complexation on BSA and HSA stability and conformations. Structural analysis showed that doxorubicin and N-(trifluoroacetyl) doxorubicin bind strongly to BSA and HSA via hydrophilic and hydrophobic contacts with overall binding constants of K(DOX-BSA) = 7.8 (± 0.7) × 10(3) M(-1), K(FDOX-BSA) = 4.8 (± 0.5)× 10(3) M(-1) and K(DOX-HSA) = 1.1 (± 0.3)× 10(4) M(-1), K(FDOX-HSA) = 8.3 (± 0.6)× 10(3) M(-1). The number of bound drug molecules per protein is 1.5 (DOX-BSA), 1.3 (FDOX-BSA) 1.5 (DOX-HSA), 0.9 (FDOX-HSA) in these drug-protein complexes. Docking studies showed the participation of several amino acids in drug-protein complexation, which stabilized by H-bonding systems. The order of drug-protein binding is DOX-HSA > FDOX-HSA > DOX-BSA > FDOX>BSA. Drug complexation alters protein conformation by a major reduction of α-helix from 63% (free BSA) to 47-44% (drug-complex) and 57% (free HSA) to 51-40% (drug-complex) inducing a partial protein destabilization. Doxorubicin and its derivative can be transported by BSA and HSA in vitro.

  10. Human placental cell and tissue uptake of doxorubicin and its liposomal formulations.

    PubMed

    Soininen, Suvi K; Repo, Jenni K; Karttunen, Vesa; Auriola, Seppo; Vähäkangas, Kirsi H; Ruponen, Marika

    2015-12-03

    The anticancer drug doxorubicin and its liposomal formulations are in clinical use, doxorubicin also during pregnancy. However, little is known about how doxorubicin and its liposomal formulations are taken up by placental cells and whether they can cross human placenta. We therefore investigated quantitative cellular uptake and toxicity of doxorubicin and its two liposomal formulations, pH-sensitive liposomal doxorubicin (L-DOX) and commercially available pegylated liposomal doxorubicin (PL-DOX), in human placental choriocarcinoma (BeWo) cells. PL-DOX showed significantly lower cellular uptake and toxicity compared with doxorubicin and L-DOX. In preliminary studies with human placental perfusion, PL-DOX did not cross the placenta at all in 4h, whereas doxorubicin and L-DOX crossed the placenta at low levels (max 12% of the dose). Furthermore, PL-DOX did not accumulate in placental tissue while doxorubicin did (up to 70% of the dose). Surface pegylation probably explains the low placental cell and tissue uptake of PL-DOX. Formulation of doxorubicin thus seems to enable a decrease of fetal exposure.

  11. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin

    PubMed Central

    Martins-Marques, Tania; Pinho, Maria Joao; Zuzarte, Monica; Oliveira, Carla; Pereira, Paulo; Sluijter, Joost P. G.; Gomes, Celia; Girao, Henrique

    2016-01-01

    Extracellular vesicles (EVs) are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox), presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43) in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo. In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects. PMID:27702427

  12. Smac Mimetic SM-164 Potentiates APO2L/TRAIL- and Doxorubicin-Mediated Anticancer Activity in Human Hepatocellular Carcinoma Cells

    PubMed Central

    Zhang, Shuijun; Li, Gongquan; Zhao, Yongfu; Liu, Guangzhi; Wang, Yu; Ma, Xiuxian; Li, Dexu; Wu, Yang; Lu, Jianfeng

    2012-01-01

    Background The members of inhibitor of apoptosis proteins (IAPs) family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC), and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac) mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1) examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2) investigate the mechanism of anticancer action of Smac mimetics. Methods Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms. Results Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL)- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP), and also led to decreased AKT activation. Conclusions Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC. PMID:23240027

  13. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

    PubMed Central

    Ojha, Shreesh; Al Taee, Hasan; Goyal, Sameer; Mahajan, Umesh B.; Patil, Chandrgouda R.; Arya, D. S.; Rajesh, Mohanraj

    2016-01-01

    Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity. PMID:27313831

  14. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  15. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells

    PubMed Central

    Zhou, W. P.; Hua, H. Y.; Sun, P. C.; Zhao, Y. X.

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells. PMID:26664069

  16. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance

    PubMed Central

    Zhao, Yuan; Huan, Meng-lei; Liu, Miao; Cheng, Ying; Sun, Yang; Cui, Han; Liu, Dao-zhou; Mei, Qi-bing; Zhou, Si-yuan

    2016-01-01

    With the extensive application of doxorubicin (DOX), DOX resistance has become one of the main obstacles to the effective treatment of breast cancer. In this paper, DOX and resveratrol (RES) were co-encapsulated in a modified PLGA nanoparticle (NPS) to overcome the DOX resistance. CLSM results indicated that DOX and RES were simultaneously delivered into the nucleus of DOX-resistant human breast cancer cells by DOX/RES-loaded NPS. Consequently, DOX/RES-loaded NPS showed significant cytotoxicity on MDA-MB-231/ADR cells and MCF-7/ADR cells. Furthermore, DOX/RES-loaded NPS could overcome DOX resistance by inhibiting the expression of drug resistance-related protein such as P-gp, MRP-1 and BCRP, and induce apoptosis through down-regulating the expression of NF-κB and BCL-2. In tumor-bearing mice, DOX/RES-loaded NPS mainly delivered DOX and RES to tumor tissue. Compared with free DOX, DOX/RES-loaded NPS significantly inhibited the DOX-resistant tumor growth in tumor-bearing mice without causing significant systemic toxicity. In a word, DOX/RES-loaded NPS could overcome the DOX resistance and had the potential in the treatment of DOX-resistant breast cancer. PMID:27731405

  17. Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients

    PubMed Central

    Oliveira-Carvalho Vagner, Rigaud; Ferreira, Ludmila R.P; Ayub-Ferreira, Silvia M; Ávila, Mônica S; Brandão, Sara M.G; Cruz, Fátima D; Santos, Marília H.H; Cruz, Cecilia B.B.V; Alves, Marco S.L; Issa, Victor S; Guimarães, Guilherme V; Cunha-Neto, Edécio; Bocchi, Edimar A

    2017-01-01

    Cardiotoxicity is associated with the chronic use of doxorubicin leading to cardiomyopathy and heart failure. Identification of cardiotoxicity-specific miRNA biomarkers could provide clinicians with a valuable prognostic tool. The aim of the study was to evaluate circulating levels of miRNAs in breast cancer patients receiving doxorubicin treatment and to correlate with cardiac function. This is an ancillary study from “Carvedilol Effect on Chemotherapy-induced Cardiotoxicity” (CECCY trial), which included 56 female patients (49.9±3.3 years of age) from the placebo arm. Enrolled patients were treated with doxorubicin followed by taxanes. cTnI, LVEF, and miRNAs were measured periodically. Circulating levels of miR-1, -133b, -146a, and -423-5p increased during the treatment whereas miR-208a and -208b were undetectable. cTnI increased from 6.6±0.3 to 46.7±5.5 pg/mL (p<0.001), while overall LVEF tended to decrease from 65.3±0.5 to 63.8±0.9 (p=0.053) over 12 months. Ten patients (17.9%) developed cardiotoxicity showing a decrease in LVEF from 67.2±1.0 to 58.8±2.7 (p=0.005). miR-1 was associated with changes in LVEF (r=-0.531, p<0.001). In a ROC curve analysis miR-1 showed an AUC greater than cTnI to discriminate between patients who did and did not develop cardiotoxicity (AUC = 0.851 and 0.544, p= 0.0016). Our data suggest that circulating miR-1 might be a potential new biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. PMID:28052002

  18. Weekly pegylated liposomal doxorubicin and paclitaxel in patients with metastatic breast carcinoma: A phase II study

    PubMed Central

    LEONARDI, VITA; PALMISANO, VALENTINA; PEPE, ALESSIO; USSET, ANTONELLA; MANUGUERRA, GIOVANNA; SAVIO, GIUSEPPINA; DE BELLA, MANUELA TAMBURO; LAUDANI, AGATA; ALÙ, MASSIMO; CUSIMANO, MARIA PIA; SCIANNA, CATERINA; GIRESI, ARMANDO; AGOSTARA, BIAGIO

    2010-01-01

    Pegylated liposomal doxorubicin (PLD) has the advantage of delivering active anthracycline directly to the tumor site, while exposing the patient to a lesser degree of doxorubicin-associated toxicities. Recently, a regimen in which paclitaxel is infused weekly over 1 h produced substantial antitumor activity with little myelosuppression. We designed a phase II trial to study the efficacy and toxicity of 10 mg/m2 PLD on Days 1, 8 and 15, plus 70 mg/m2 paclitaxel weekly in patients with untreated metastatic breast cancer and a high risk of cardiotoxicity. The study included 35 patients, with 31 (88.5%) evaluable for efficacy and 35 (100%) for toxicity. A total of 28 patients (80%) had two or more sites of disease. Overall, 4 complete and 16 partial responses were noted with an overall response rate of 64.5%, with 6 cases of stable and 5 cases of progressive disease. Toxicity was found to be manageable in that the only grade 3–4 side effects recorded were palmar-plantar erythrodysesthesia, 8.5%; mucositis, 2.8%; leucopenia, 12.5%; anemia, 2.8% and AST/ALT, 2.8%. No cardiotoxicity was observed. In conclusion, weekly PLD plus paclitaxel appears to be a well-tolerated and effective approach for metastatic breast cancer patients with a high risk of cardiotoxicity. PMID:22966374

  19. Cellular internalization of doxorubicin loaded star-shaped micelles with hydrophilic zwitterionic sulfobetaine segments.

    PubMed

    Cao, Jun; Xie, Xiaoxiong; Lu, Aijing; He, Bin; Chen, Yuanwei; Gu, Zhongwei; Luo, Xianglin

    2014-05-01

    Four arm star-shaped poly(ε-caprolactone)-b-poly((N,N-diethylaminoethyl methacrylate)-r-(N-(3-sulfopropyl)-N-methacryloxyethy-N,N-diethylammoniumbetaine)) (4sPCLDEAS) micelles were loaded with anticancer drug doxorubicin to track their endocytosis in Hela cancer cell line. The effects of mean diameters and surface charges of the drug loaded micelles on the cellular uptake were studied in details. The results demonstrated that the internalization of micelles was both time and energy dependent process. Endocytic pathways including clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis were all involved in the internalization; caveolae-mediated endocytosis was the main pathway for the internalization of 4sPCLDEAS micelles. The assays for cell apoptosis and growth inhibition of tumor spheroids identified that these doxorubicin loaded micelles could induce cell apoptosis and inhibit tumor spheroids growth efficiently, which was even equal to free DOX·HCl. This study provided a rational design strategy for fabricating diverse micellar drug delivery systems with high anticancer efficiency.

  20. Antioxidant activities of celery and parsley juices in rats treated with doxorubicin.

    PubMed

    Kolarovic, Jovanka; Popovic, Mira; Zlinská, Janka; Trivic, Svetlana; Vojnovic, Matilda

    2010-09-03

    We have examined the influence of diluted pure celery and parsley leaf and root juices and their combinations with doxorubicin on the antioxidant status [as measured by the content of reduced glutathione (GSH) and ferric reducing antioxidant power (FRAP)] in liver homogenate and hemolysate and on the contents of cytochrome P450 in liver homogenate. It was found that doxorubicin significantly decreased the content of reduced glutathione and the total antioxidative status (FRAP) in liver homogenate and hemolysate, while celery and parsley juices alone and in combination with doxorubicin had different actions. Doxorubicin and celery juice had no effect on content of cytochrome P450. However, in combination with doxorubicin, parsley root juice significant increased, and parsley leaves juice decreased the cytochrome P450 content (compared to doxorubicin treated animals). Only parsley root juice significantly increased the content of cytochrome P450.

  1. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy.

    PubMed

    Min, Kisuk; Kwon, Oh-Sung; Smuder, Ashley J; Wiggs, Michael P; Sollanek, Kurt J; Christou, Demetra D; Yoo, Jeung-Ki; Hwang, Moon-Hyon; Szeto, Hazel H; Kavazis, Andreas N; Powers, Scott K

    2015-04-15

    Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres.

  2. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  3. Systemic co-delivery of doxorubicin and siRNA using nanoparticles conjugated with EGFR-specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice

    NASA Astrophysics Data System (ADS)

    Liu, C. W.; Lin, W. J.

    2013-10-01

    This aim of this study was to develop peptide-conjugated nanoparticles (NPs) for systemic co-delivery of siRNA and doxorubicin to enhance chemotherapy in epidermal growth factor receptor (EGFR) high-expressed ovarian tumor bearing mice. The active targeting NPs were prepared using heptapeptide-conjugated poly( d, l-lactic-co-glycolic acid)-poly(ethylene glycol). The particle sizes of peptide-free and peptide-conjugated NPs were 159.3 ± 32.5 and 184.0 ± 52.9 nm, respectively, with zeta potential -21.3 ± 3.8 and -15.3 ± 2.8 mV. The peptide-conjugated NPs uptake were more efficient in EGFR high-expressed SKOV3 cells than in EGFR low-expressed HepG2 cells due to heptapeptide specificity. The NPs were used to deliver small molecule anticancer drug (e.g., doxorubicin) and large molecule genetic agent (e.g., siRNA). The IC50 of doxorubicin-loaded peptide-conjugated NPs (0.09 ± 0.06 μM) was significantly lower than peptide-free NPs (5.72 ± 2.64 μM). The similar result was observed in siRNA-loaded NPs. The peptide-conjugated NPs not only served as a nanocarrier to efficiently deliver doxorubicin and siRNA to EGFR high-expressed ovarian cancer cells but also increased the intracellular accumulation of the therapeutic agents to induce assured anti-tumor growth effect in vivo.

  4. Apoferritin Modified Magnetic Particles as Doxorubicin Carriers for Anticancer Drug Delivery

    PubMed Central

    Blazkova, Iva; Nguyen, Hoai Viet; Dostalova, Simona; Kopel, Pavel; Stanisavljevic, Maja; Vaculovicova, Marketa; Stiborova, Marie; Eckschlager, Tomas; Kizek, Rene; Adam, Vojtech

    2013-01-01

    Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution. PMID:23807501

  5. Calcium flux and metabolism in the pigeon heart following doxorubicin treatment: an acute study

    SciTech Connect

    Revis, N.

    1981-01-01

    The present studies were performed to determine in vivo the initial and secondary acute effects of doxorubicin on the influx of calcium into myocardial cells. Studies are also described showing the effect of doxorubicin on a calcium-activated neutral protease from cardiac tissue. These latter studies were performed in an attempt to explain the loss of myofibrilular structures in myocardial cells following doxorubicin treatment.

  6. Serial exercise gated radionuclide ventriculograms (RVG) in monitoring doxorubicin cardiotoxicity

    SciTech Connect

    Goldstein, H.A.; Lahoda, J.; Fox, L.

    1985-05-01

    The resting RVG (Radionuclide Ventriculograms) are demonstrated to be an effective monitor of the cardiotoxicity of doxorubicin. The exercise RVG has not been as well studied to see if it yields additional information or detects toxicity effects earlier. Sixteen patients receiving doxorubicin for chemotherapy had 2-6 serial exercise studies with intervals between studies of 1 month to 15 months. The patients exercised varying amounts with cardiac work indicated by their double products (HR x Sys. BP). Although all patients started with a normal resting LVEF (>50%), 5 of the 16 did not have a normal response (greater than or equal to5% increase in LVEF) with initial exercise study. Of the 11 patients with an initially normal response to exercise, on at least one subsequent study, 3 had an abnormal response to exercise. On a later follow up study 1 of these 3 patients again had a normal response to exercise. Six of these 11 patients had had RVG evidence of cardiotoxicity. Four of these 6 patients had continually normal exercise responses, while 2 of these 5 patients had had an abnormal exercise response. An initial exercise RVG may be reasonable to detect unsuspected CAD in cancer victims. These patients are reported to be more sensitive to the toxic effects of doxorubicin. Follow up exercise RVGs do not contribute useful information, do not predict cardiotoxicity, and may be misleading.

  7. Protective effect of Co-enzyme Q10 On doxorubicin-induced cardiomyopathy of rat hearts.

    PubMed

    Chen, Pei-Yu; Hou, Chien-Wen; Shibu, Marthandam Asokan; Day, Cecilia Hsuan; Pai, Peiying; Liu, Zhao-Rong; Lin, Tze-Yi; Viswanadha, Vijaya Padma; Kuo, Chia-Hua; Huang, Chih-Yang

    2017-02-01

    Q10 is a powerful antioxidant often used in medical nutritional supplements for cancer treatment. This study determined whether Q10 could effectively prevent cardio-toxicity caused by doxorubicin treatment. Four week old SD rats were segregated into groups namely control, doxorubicin group (challenged with doxorubicin), Dox + Q10 group (with doxorubicin challenge and oral Q10 treatment), and Q10 group (with oral Q10 treatment). Doxorubicin groups received IP doxorubicin (2.5 mg/kg) every 3 days and Q10 groups received Q10 (10 mg/kg) every day. Three weeks of doxorubicin challenge caused significant reduction in heart weight, disarray in cardiomyocyte arrangement, elevation of collagen accumulation, enhancement of fibrosis and cell death associated proteins, and inhibition of survival proteins. However, Q10 effectively protected cardiomyocytes and ameliorated fibrosis and cell death induced by doxorubicin. Q10 is, therefore, evidently a potential drug to prevent heart damage caused by doxorubicin. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 679-689, 2017.

  8. Human colon cancer HT-29 cell death responses to doxorubicin and Morus Alba leaves flavonoid extract.

    PubMed

    Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M

    2016-03-31

    The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.

  9. Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity

    PubMed Central

    Cao, Yuan; Shen, Tao; Huang, Xiuqing; Lin, Yajun; Chen, Beidong; Pang, Jing; Li, Guoping; Wang, Que; Zohrabian, Sylvia; Duan, Chao; Ruan, Yang; Man, Yong; Wang, Shu; Li, Jian

    2017-01-01

    Doxorubicin (adriamycin), an anthracycline antibiotic, is commonly used to treat many types of solid and hematological malignancies. Unfortunately, clinical usage of doxorubicin is limited due to the associated acute and chronic cardiotoxicity. Previous studies demonstrated that Astragalus polysaccharide (APS), the extracts of Astragalus membranaceus, had strong anti-tumor activities and anti-inflammatory effects. However, whether APS could mitigate chemotherapy-induced cardiotoxicity is unclear thus far. We used a doxorubicin-induced neonatal rat cardiomyocyte injury model and a mouse heart failure model to explore the function of APS. GFP-LC3 adenovirus-mediated autophagic vesicle assays, GFP and RFP tandemly tagged LC3 (tfLC3) assays and Western blot analyses were performed to analyze the cell function and cell signaling changes following APS treatment in cardiomyocytes. First, doxorubicin treatment led to C57BL/6J mouse heart failure and increased cardiomyocyte apoptosis, with a disturbed cell autophagic flux. Second, APS restored autophagy in doxorubicin-treated primary neonatal rat ventricular myocytes and in the doxorubicin-induced heart failure mouse model. Third, APS attenuated doxorubicin-induced heart injury by regulating the AMPK/mTOR pathway. The mTOR inhibitor rapamycin significantly abrogated the protective effect of APS. These results suggest that doxorubicin could induce heart failure by disturbing cardiomyocyte autophagic flux, which may cause excessive cell apoptosis. APS could restore normal autophagic flux, ameliorating doxorubicin-induced cardiotoxicity by regulating the AMPK/mTOR pathway. PMID:27902477

  10. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    SciTech Connect

    Brechbuhl, Heather M.; Kachadourian, Remy; Min, Elysia; Chan, Daniel; Day, Brian J.

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.

  11. Photodynamic Synergistic Effect of Pheophorbide a and Doxorubicin in Combined Treatment against Tumoral Cells

    PubMed Central

    Ruiz-González, Rubén; Milán, Paula; Bresolí-Obach, Roger; Stockert, Juan Carlos; Villanueva, Angeles; Cañete, Magdalena; Nonell, Santi

    2017-01-01

    A combination of therapies to treat cancer malignancies is at the forefront of research with the aim to reduce drug doses (ultimately side effects) and diminish the possibility of resistance emergence given the multitarget strategy. With this goal in mind, in the present study, we report the combination between the chemotherapeutic drug doxorubicin (DOXO) and the photosensitizing agent pheophorbide a (PhA) to inactivate HeLa cells. Photophysical studies revealed that DOXO can quench the excited states of PhA, detracting from its photosensitizing ability. DOXO can itself photosensitize the production of singlet oxygen; however, this is largely suppressed when bound to DNA. Photodynamic treatments of cells incubated with DOXO and PhA led to different outcomes depending on the concentrations and administration protocols, ranging from antagonistic to synergic for the same concentrations. Taken together, the results indicate that an appropriate combination of DOXO with PhA and red light may produce improved cytotoxicity with a smaller dose of the chemotherapeutic drug, as a result of the different subcellular localization, targets and mode of action of the two agents. PMID:28218672

  12. Photodynamic Synergistic Effect of Pheophorbide a and Doxorubicin in Combined Treatment against Tumoral Cells.

    PubMed

    Ruiz-González, Rubén; Milán, Paula; Bresolí-Obach, Roger; Stockert, Juan Carlos; Villanueva, Angeles; Cañete, Magdalena; Nonell, Santi

    2017-02-17

    A combination of therapies to treat cancer malignancies is at the forefront of research with the aim to reduce drug doses (ultimately side effects) and diminish the possibility of resistance emergence given the multitarget strategy. With this goal in mind, in the present study, we report the combination between the chemotherapeutic drug doxorubicin (DOXO) and the photosensitizing agent pheophorbide a (PhA) to inactivate HeLa cells. Photophysical studies revealed that DOXO can quench the excited states of PhA, detracting from its photosensitizing ability. DOXO can itself photosensitize the production of singlet oxygen; however, this is largely suppressed when bound to DNA. Photodynamic treatments of cells incubated with DOXO and PhA led to different outcomes depending on the concentrations and administration protocols, ranging from antagonistic to synergic for the same concentrations. Taken together, the results indicate that an appropriate combination of DOXO with PhA and red light may produce improved cytotoxicity with a smaller dose of the chemotherapeutic drug, as a result of the different subcellular localization, targets and mode of action of the two agents.

  13. Protective effects of erdosteine against doxorubicin-induced cardiomyopathy in rats.

    PubMed

    Fadillioğlu, Ersin; Erdoğan, Hasan; Söğüt, Sadik; Kuku, Irfan

    2003-01-01

    The usefulness of doxorubicin (DXR) is limited by its cardiotoxicity. In order to improve future DXR therapy by using a new antioxidant agent, an experimental study was designed. This study was undertaken to determine whether DXR-induced cardiotoxicity is prevented by erdosteine, a mucolytic agent showing antioxidant properties. Three groups of male Sprague-Dawley rats (60 days old) were used: one group was untreated as a control; the other groups were treated with DXR (single i.p. dosage of 20 mg kg(-1) body wt.) or DXR plus erdosteine (10 mg kg(-1) day(-1), orally), respectively. The DXR treatment without erdosteine increased antioxidant enzyme activities and also increased lipid peroxidation in myocardial tissue. The rats treated with DXR plus erdosteine produced a significant decrease in lipid peroxidation in comparison with control and DXR groups. Furthermore, erdosteine administration led to an increase in antioxidant enzyme activities in comparison with the control group. Erdosteine treatment also increased the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in comparison with the DXR group. There was no significant difference in lipid peroxidation of myocardial tissue between control and DXR plus erdosteine-treated rats. It was concluded that erdosteine caused an increase in the activities of antioxidant enzymes, especially GSH-Px and CAT, protecting the heart tissue sufficiently from oxidative damage to membrane lipids and other cellular components induced by DXR.

  14. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells

    PubMed Central

    Jiang, Shuang; Wang, Xiaobo; Zhang, Zhiran; Sun, Lan; Pu, Yunzhu; Yao, Hongjuan; Li, Jingcao; Liu, Yan; Zhang, Yingge; Zhang, Weijing

    2016-01-01

    A monoclonal antibody targeted nanoscale drug delivery system (NDDS) for chemotherapy was evaluated in CD20-positive Raji cells in vitro. Nanoparticles were formed by the assembly of an amphiphilic polymer consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxypolyethyleneglycol-2000 (DSPE-PEG2000). Active carbon nanoparticles (ACNP) were conjugated to the chemotherapeutic agent, doxorubicin (DOX), and the nanoliposome carrier, DSPE-PEG2000 and DSPE-PEG2000-NH2 conjugated to the human anti-CD20 monoclonal antibody that targets B-lymphocytes. This monoclonal antibody targeted nanoparticle delivery system for chemotherapy formed the active NDDS complex, ACNP-DOX-DSPE-PEG2000-anti-CD20. This active NDDS was spherical in morphology and had good dispersion in the culture medium. When compared with the effects on CD20-negative YTS cells derived from natural killer/T-cell lymphoma, the active NDDS, ACNP-DOX-DSPE-PEG2000-anti-CD20, demonstrated DOX delivery to CD20-positive Raji cells derived from Burkitt’s lymphoma (B cell lymphoma), resulting in increased cell killing in vitro. The intracellular targeting efficiency of the ACNP-DOX-DSPE-PEG2000-anti-CD20 complex was assessed by confocal laser microscopy and flow cytometry. The findings of this in vitro study have shown that the DSPE-PEG2000 polymeric liposome is an effective nanocarrier of both a monoclonal antibody and a chemotherapy agent and can be used to target chemotherapy to specific cells, in this case to CD20-positive B-cells. Future developments in this form of targeted therapy will depend on the development of monoclonal antibodies that are specific for malignant cells, including antibodies that can distinguish between lymphoma cells and normal lymphocyte subsets. PMID:27843311

  15. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells.

    PubMed

    Jiang, Shuang; Wang, Xiaobo; Zhang, Zhiran; Sun, Lan; Pu, Yunzhu; Yao, Hongjuan; Li, Jingcao; Liu, Yan; Zhang, Yingge; Zhang, Weijing

    A monoclonal antibody targeted nanoscale drug delivery system (NDDS) for chemotherapy was evaluated in CD20-positive Raji cells in vitro. Nanoparticles were formed by the assembly of an amphiphilic polymer consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxypolyethyleneglycol-2000 (DSPE-PEG2000). Active carbon nanoparticles (ACNP) were conjugated to the chemotherapeutic agent, doxorubicin (DOX), and the nanoliposome carrier, DSPE-PEG2000 and DSPE-PEG2000-NH2 conjugated to the human anti-CD20 monoclonal antibody that targets B-lymphocytes. This monoclonal antibody targeted nanoparticle delivery system for chemotherapy formed the active NDDS complex, ACNP-DOX-DSPE-PEG2000-anti-CD20. This active NDDS was spherical in morphology and had good dispersion in the culture medium. When compared with the effects on CD20-negative YTS cells derived from natural killer/T-cell lymphoma, the active NDDS, ACNP-DOX-DSPE-PEG2000-anti-CD20, demonstrated DOX delivery to CD20-positive Raji cells derived from Burkitt's lymphoma (B cell lymphoma), resulting in increased cell killing in vitro. The intracellular targeting efficiency of the ACNP-DOX-DSPE-PEG2000-anti-CD20 complex was assessed by confocal laser microscopy and flow cytometry. The findings of this in vitro study have shown that the DSPE-PEG2000 polymeric liposome is an effective nanocarrier of both a monoclonal antibody and a chemotherapy agent and can be used to target chemotherapy to specific cells, in this case to CD20-positive B-cells. Future developments in this form of targeted therapy will depend on the development of monoclonal antibodies that are specific for malignant cells, including antibodies that can distinguish between lymphoma cells and normal lymphocyte subsets.

  16. Prospective Randomized Study of Doxorubicin-Eluting-Bead Embolization in the Treatment of Hepatocellular Carcinoma: Results of the PRECISION V Study

    SciTech Connect

    Lammer, Johannes; Malagari, Katarina; Vogl, Thomas; Pilleul, Frank; Denys, Alban; Watkinson, Anthony; Pitton, Michael; Sergent, Geraldine; Pfammatter, Thomas; Terraz, Sylvain; Benhamou, Yves; Avajon, Yves; Gruenberger, Thomas; Pomoni, Maria; Langenberger, Herbert; Schuchmann, Marcus; Dumortier, Jerome; Mueller, Christian; Chevallier, Patrick; Lencioni, Riccardo

    2010-02-15

    Transcatheter arterial chemoembolization (TACE) offers a survival benefit to patients with intermediate hepatocellular carcinoma (HCC). A widely accepted TACE regimen includes administration of doxorubicin-oil emulsion followed by gelatine sponge-conventional TACE. Recently, a drug-eluting bead (DC Bead) has been developed to enhance tumor drug delivery and reduce systemic availability. This randomized trial compares conventional TACE (cTACE) with TACE with DC Bead for the treatment of cirrhotic patients with HCC. Two hundred twelve patients with Child-Pugh A/B cirrhosis and large and/or multinodular, unresectable, N0, M0 HCCs were randomized to receive TACE with DC Bead loaded with doxorubicin or cTACE with doxorubicin. Randomization was stratified according to Child-Pugh status (A/B), performance status (ECOG 0/1), bilobar disease (yes/no), and prior curative treatment (yes/no). The primary endpoint was tumor response (EASL) at 6 months following independent, blinded review of MRI studies. The drug-eluting bead group showed higher rates of complete response, objective response, and disease control compared with the cTACE group (27% vs. 22%, 52% vs. 44%, and 63% vs. 52%, respectively). The hypothesis of superiority was not met (one-sided P = 0.11). However, patients with Child-Pugh B, ECOG 1, bilobar disease, and recurrent disease showed a significant increase in objective response (P = 0.038) compared to cTACE. DC Bead was associated with improved tolerability, with a significant reduction in serious liver toxicity (P < 0.001) and a significantly lower rate of doxorubicin-related side effects (P = 0.0001). TACE with DC Bead and doxorubicin is safe and effective in the treatment of HCC and offers a benefit to patients with more advanced disease.

  17. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    PubMed

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe3O4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  18. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes

    PubMed Central

    Calcagno, A M; Fostel, J M; To, K K W; Salcido, C D; Martin, S E; Chewning, K J; Wu, C-P; Varticovski, L; Bates, S E; Caplen, N J; Ambudkar, S V

    2008-01-01

    Understanding the mechanisms of multidrug resistance (MDR) could improve clinical drug efficacy. Multidrug resistance is associated with ATP binding cassette (ABC) transporters, but the factors that regulate their expression at clinically relevant drug concentrations are poorly understood. We report that a single-step selection with low doses of anti-cancer agents, similar to concentrations reported in vivo, induces MDR that is mediated exclusively by ABCG2. We selected breast, ovarian and colon cancer cells (MCF-7, IGROV-1 and S-1) after exposure to 14 or 21 nM doxorubicin for only 10 days. We found that these cells overexpress ABCG2 at the mRNA and protein levels. RNA interference analysis confirmed that ABCG2 confers drug resistance. Furthermore, ABCG2 upregulation was facilitated by histone hyperacetylation due to weaker histone deacetylase 1-promoter association, indicating that these epigenetic changes elicit changes in ABCG2 gene expression. These studies indicate that the MDR phenotype arises following low-dose, single-step exposure to doxorubicin, and further suggest that ABCG2 may mediate early stages of MDR development. This is the first report to our knowledge of single-step, low-dose selection leading to overexpression of ABCG2 by epigenetic changes in multiple cancer cell lines. PMID:18382425

  19. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis.

    PubMed

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2013-10-01

    Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.

  20. Impact of body composition on pharmacokinetics of doxorubicin in children: A Glaser Pediatric Research Network study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the relationship between doxorubicin pharmacokinetics and body composition in children with cancer. Children between 1 and 21 years of age, receiving doxorubicin as an infusion of any duration <24 h on either a 1-day or 2-day schedule, were eligible if they had no significant abnormality ...

  1. The regulatory mechanisms of myogenin expression in doxorubicin-treated rat cardiomyocytes.

    PubMed

    Liu, Shu-Ting; Huang, Shih-Ming; Ho, Ching-Liang; Yen, Li-Chen; Huang, Chi-Jung; Lin, Wei-Shiang; Chan, James Yi-Hsin

    2015-11-10

    Doxorubicin, an anthracycline antibiotic, has been used as an anti-neoplastic drug for almost 60 years. However, the mechanism(s) by which anthracyclines cause irreversible myocardial injury remains unclear. In order to delineate possible molecular signals involved in the myocardial toxicity, we assessed candidate genes using mRNA expression profiling in the doxorubicin-treated rat cardiomyocyte H9c2 cell line. In the study, it was confirmed that myogenin, an important transcriptional factor for muscle terminal differentiation, was significantly reduced by doxorubicin in a dose-dependent manner using both RT-PCR and western blot analyses. Also, it was identified that the doxorubicin-reduced myogenin gene level could not be rescued by most cardio-protectants. Furthermore, it was demonstrated how the signaling of the decreased myogenin expression by doxorubicin was altered at the transcriptional, post-transcriptional and translational levels. Based on these findings, a working model was proposed for relieving doxorubicin-associated myocardial toxicity by down-regulating miR-328 expression and increasing voltage-gated calcium channel β1 expression, which is a repressor of myogenin gene regulation. In summary, this study provides several lines of evidence indicating that myogenin is the target for doxorubicin-induced cardio-toxicity and a novel therapeutic strategy for doxorubicin clinical applications based on the regulatory mechanisms of myogenin expression.

  2. Human cytosolic sulfotransferase SULT1C4 mediates the sulfation of doxorubicin and epirubicin.

    PubMed

    Luo, Lijun; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-04-01

    Doxorubicin, an anthracycline, has been reported to be excreted in sulfate conjugated form. The current study aimed to identify the human cytosolic sulfotransferase(s) (SULT(s)) that is(are) capable of sulfating doxorubicin and its analog epirubicin, and to verify whether sulfation of doxorubicin and epirubicin may occur under metabolic conditions. A systematic analysis of thirteen known human SULTs, previously cloned, expressed, and purified, revealed SULT1C4 as the only human SULT capable of sulfating doxorubicin and epirubicin. Cultured HepG2 human hepatoma cells and Caco-2 human colon carcinoma cells were labeled with [(35)S]sulfate in the presence of different concentrations of doxorubicin or epirubicin. Analysis of spent labeling media showed the generation and release of [(35)S]sulfated doxorubicin and epirubicin by HepG2 cells and Caco-2 cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the expression of SULT1C4 in both HepG2 cells and Caco-2 cells. These results provided a molecular basis underlying the previous finding that sulfate-conjugated doxorubicin was excreted in the urine of patients treated with doxorubicin.

  3. Polyelectrolyte-Mediated Transport of Doxorubicin Through the Bilayer Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Yaroslavov, Alexander A.; Kitaeva, Marina V.; Melik-Nubarov, Nikolay S.; Menger, Frederic M.

    A model is developed for the effect of ionic polymers on the transport of doxorubicin, an antitumor drug, through a bilayer membrane. Accordingly, a protonated (cationic) form of doxorubicin binds to an anionic polymer, poly(acrylic acid), the resulting complex being several hundred nanometers in size. Nevertheless, large complex species associate with neutral egg lecithin liposomes by means of hydrophobic attraction between the doxorubicin and the liposome bilayer. Then, the doxorubicin enters the liposome interior which has been imparted with an acidic buffer to protonate the doxorubicin. The rate of transmembrane Dox permeation decreases when elevating the polyacid-to-doxorubicin ratio. A cationic polymer, polylysine, being coupled with liposomes containing the negative lipid cardiolipin, accelerates membrane transport of doxorubicin with the maximum rate at a complete neutralization of the membrane charge by an interacting polycation. The effect of a polycation on doxorubicin transport becomes more pronounced as small negative liposomes (60-80 nm in diameter) are changed to larger ones (approx. 600 nm in diameter). An opportunity thus opens up for the manipulation of the kinetics of drug uptake by cells and, ultimately, the control of the pharmaceutical action of drugs.

  4. Liposomal delivery of doxorubicin to hepatocytes in vivo by targeting heparan sulfate

    PubMed Central

    Longmuir, Kenneth J.; Haynes, Sherry M.; Baratta, Janie L.; Kasabwalla, Natasha; Robertson, Richard T.

    2009-01-01

    Previous work demonstrated that liposomes, containing an amino acid sequence that binds to hepatic heparan sulfate glycosaminoglycan, show effective targeting to liver hepatocytes. These liposomes were tested to determine whether they can deliver doxorubicin selectively to liver and hepatocytes in vivo. Fluid-phase liposomes contained a lipid-anchored 19-amino acid glycosaminoglycan targeting peptide. Liposomes were loaded with doxorubicin and were non-leaky in the presence of serum. After intravenous administration to mice, organs were harvested and the doxorubicin content extracted and measured by fluorescence intensity and by fluorescence microscopy. The liposomal doxorubicin was recovered almost entirely from liver, with only trace amounts detectable in heart, lung, and kidney. Fluorescence microscopy demonstrated doxorubicin preferentially in hepatocytes, also in non-parenchymal cells of the liver, but not in cells of heart, lung or kidney. The doxorubicin was localized within liver cell nuclei within five minutes after intravenous injection. These studies demonstrated that liposomal doxorubicin can be effectively delivered to hepatocytes by targeting the heparan sulfate glycosaminoglycan of liver tissue. With the composition described here, the doxorubicin was rapidly released from the liposomes without the need for an externally supplied stimulus. PMID:19664697

  5. Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice.

    PubMed Central

    Webster, L. K.; Cosson, E. J.; Stokes, K. H.; Millward, M. J.

    1996-01-01

    The effect of the paclitaxel vehicle Cremophor on the pharmacokinetics of doxorubicin and doxorubicinol was studied in two groups of mice given intravenously either 2.5 ml kg-1 Cremophor or saline followed 5 min later by 10 mg kg-1 doxorubicin. In each group three mice were sacrificed at ten time points and doxorubicin and doxorubicinol were measured in plasma by high-performance liquid chromatography (HPLC). With Cremophor present, doxorubicin AUC increased from 1420+/-440 to 2770+/-660 ng h ml(-1) (P<0.05) and doxorubicinol AUC increased from 130+/-76 to 320+/-88 ng h ml(-1) (p<0.05). Neither the terminal elimination half-lives nor the doxorubicinol-doxorubicin AUC ratio changed in the presence of Cremophor, suggesting a lack of a direct effect on drug metabolism. The possibility exists the Cremophor may change the pharmacokinetics of both paclitaxel and other drugs given concurrently. PMID:8595168

  6. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy

    PubMed Central

    Moritz, Tobias J.; Taylor, Douglas S.; Krol, Denise M.; Fritch, John; Chan, James W.

    2010-01-01

    Laser tweezers Raman spectroscopy (LTRS) was used to acquire the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy drug doxorubicin at different time points over 72 hours. Changes observed in the Raman spectra were dependent on drug exposure time and concentration. The sequence of spectral changes includes an intensity increase in lipid Raman peaks, followed by an intensity increase in DNA Raman peaks, and finally changes in DNA and protein (phenylalanine) Raman vibrations. These Raman signatures are consistent with vesicle formation, cell membrane blebbing, chromatin condensation, and the cytoplasm of dead cells during the different stages of drug-induced apoptosis. These results suggest the potential of LTRS as a real-time single cell tool for monitoring apoptosis, evaluating the efficacy of chemotherapeutic treatments, or pharmaceutical testing. PMID:21258536

  7. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    NASA Astrophysics Data System (ADS)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  8. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    SciTech Connect

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  9. Modulation of Induced Cytotoxicity of Doxorubicin by Using Apoferritin and Liposomal Cages

    PubMed Central

    Gumulec, Jaromir; Fojtu, Michaela; Raudenska, Martina; Sztalmachova, Marketa; Skotakova, Anna; Vlachova, Jana; Skalickova, Sylvie; Nejdl, Lukas; Kopel, Pavel; Knopfova, Lucia; Adam, Vojtech; Kizek, Rene; Stiborova, Marie; Babula, Petr; Masarik, Michal

    2014-01-01

    Doxorubicin is an effective chemotherapeutic drug, however, its toxicity is a significant limitation in therapy. Encapsulation of doxorubicin inside liposomes or ferritin cages decreases cardiotoxicity while maintaining anticancer potency. We synthesized novel apoferritin- and liposome-encapsulated forms of doxorubicin (“Apodox” and “lip-8-dox”) and compared its toxicity with doxorubicin and Myocet on prostate cell lines. Three different prostatic cell lines PNT1A, 22Rv1, and LNCaP were chosen. The toxicity of the modified doxorubicin forms was compared to conventional doxorubicin using the MTT assay, real-time cell impedance-based cell growth method (RTCA), and flow cytometry. The efficiency of doxorubicin entrapment was 56% in apoferritin cages and 42% in the liposome carrier. The accuracy of the RTCA system was verified by flow-cytometric analysis of cell viability. The doxorubicin half maximal inhibition concentrations (IC50) were determined as 170.5, 234.0, and 169.0 nM for PNT1A, 22Rv1, and LNCaP, respectively by RTCA. Lip8-dox is less toxic on the non-tumor cell line PNT1A compared to doxorubicin, while still maintaining the toxicity to tumorous cell lines similar to doxorubicin or epirubicin (IC50 = 2076.7 nM for PNT1A vs. 935.3 and 729.0 nM for 22Rv1 and LNCaP). Apodox IC50 was determined as follows: 603.1, 1344.2, and 931.2 nM for PNT1A, 22Rv1, and LNCaP. PMID:25514405

  10. LC-MS/MS method development for quantification of doxorubicin and its metabolite 13-hydroxy doxorubicin in mice biological matrices: Application to a pharmaco-delivery study.

    PubMed

    Mazzucchelli, Serena; Ravelli, Alessandro; Gigli, Fausto; Minoli, Mauro; Corsi, Fabio; Ciuffreda, Pierangela; Ottria, Roberta

    2017-04-01

    This study describes the development of simple, rapid and sensitive liquid chromatography tandem mass spectrometry method for the simultaneous analysis of doxorubicin and its major metabolite, doxorubicinol, in mouse plasma, urine and tissues. The calibration curves were linear over the range 5-250 ng/mL for doxorubicin and 1.25-25 ng/mL for doxorubicinol in plasma and tumor, over the range 25-500 ng/mL for doxorubicin and 1.25-25 ng/mL for doxorubicinol in liver and kidney, and over the range 25-1000 ng/mL for doxorubicin and doxorubicinol in urine. The study was validated, using quality control samples prepared in all different matrices, for accuracy, precision, linearity, selectivity, lower limit of quantification and recovery in accordance with the US Food & Drug Administration guidelines. The method was successfully applied in determining the pharmaco-distribution of doxorubicin and doxorubicinol after intravenously administration in tumor-bearing mice of drug, free or nano-formulated in ferritin nanoparticles or in liposomes. Obtained results demonstrate an effective different distribution and doxorubicin protection against metabolism linked to nano-formulation. This method, thanks to its validation in plasma and urine, could be a powerful tool for pharmaceutical research and therapeutic drug monitoring, which is a clinical approach currently used in the optimization of oncologic treatments.

  11. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  12. Effect of nano-zinc oxide on doxorubicin- induced oxidative stress and sperm disorders in adult male Wistar rats

    PubMed Central

    Badkoobeh, Puran; Parivar, Kazem; Kalantar, Seyed Mehdi; Hosseini, Seyed Davood; Salabat, Alireza

    2013-01-01

    Background: Doxorubicin (DOX), an anthracycline antibiotic, is a widely used anticancer agent. In spite of its high antitumor efficacy, the use of DOX in clinical chemotherapy is limited due to diverse toxicities, including gonadotoxicity. Objective: We investigated the protective effect of nano-zinc oxide (nZnO) as an established antioxidant on DOX-induced testicular disorders. Materials and Methods: In this experimental study 24 adult male Wistar rats were divided into four groups including one control and three experimentals (6 rats per group). They received saline (as control), DOX alone (6 mg/kg body weight, i.p.), nZnO alone (5 mg/kg body weight, i.p.), and nZnO followed by DOX. Animals were sacrificed 28 days after treatment and evaluations were made by sperm count and measuring sex hormone levels in plasma. Also total antioxidant power (TAP) and lipid peroxidation (LPO) in plasma were tested. Data was analyzed with SPSS-14 and one way ANOVA test. P<0.05 were considered to be statistically significant. Results: In the DOX-exposed rats significant differences were found compared with the control group (p=0.001) in plasma total antioxidant power (TAP) (425.50±32.33 vs. 493.33±18.54 mmol/mL), Lipid peroxidation (LPO) (3.70±0.44 vs. 2.78±0.68 μmol/mL), plasma testosterone (3.38±0.69 vs. 5.40±0.89 ng/dl), LH (0.26±0.05 vs. 0.49±0.18 mlU/mL), sperm count (157.98±6.29 vs. 171.71±4.42×106/mL) and DNA damage (11.51±3.45 vs. 6.04±2.83%). Co-administration of nZnO significantly improved DOX-induced changes (p=0.013) in plasma TAP (471.83±14.51 mmol/mL), LPO (2.83±0.75 μmol/mL), plasma testosterone (5.00±1.07 ng/dl), LH (0.52±0.08 mlU/mL), sperm count (169.13±5.01×106/mL) and DNA damage (7.00±1.67%). Conclusion: At the dose designed in the present investigation cytoprotective role of nano-zinc oxide through its antioxidant potential is illuminated in DOX-induced male gonadotoxicity. PMID:24639766

  13. Animal Capture Agents

    DTIC Science & Technology

    1990-01-01

    agents and delivery systems reviewed . Questionnaires were sent to 137 Air Force bases to obtain information about the chemical agents and delivery systems...used by animal control personnel. A literature review included chemical agents, delivery methods, toxicity information and emergency procedures from...34-like agent. Users should familiarize themselves with catatonia in general and particularly that its successful use as an immobilizer doesn’t necessarily

  14. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  15. Doxorubicin-resistant LoVo adenocarcinoma cells display resistance to apoptosis induction by some but not all inhibitors of ser/thr phosphatases 1 and 2A.

    PubMed

    Sieder, S; Richter, E; Becker, K; Heins, R; Steinfelder, H J

    1999-06-15

    LoVo adenocarcinoma cells are fairly sensitive to cytostatic drugs, e.g. doxorubicin, but can develop drug resistance by expression of a P-glycoprotein-mediated MDR1 phenotype. LoVo cells respond with apoptosis to nanomolar concentrations of okadaic acid and micromolar concentrations of cantharidic acid. Interestingly, LoVoDx cells which had become about 10-fold less sensitive to doxorubicin by incubation in increasing concentrations of this cytostatic drug were also less sensitive to the toxicity of okadaic acid. Resistance to both agents was lost or significantly reduced by incubation in drug-free medium for about 4 months. On the other hand, LoVoDx cells did not lose responsiveness to the structurally different phosphatase inhibitor cantharidic acid but were about twofold more sensitive to the cytotoxic effect of this agent. Thus, MDR expression protects LoVo cells from the toxicity of phosphatase inhibitors that presumably are substrates of the P-glycoprotein, e.g. okadaic acid and its derivatives but not cantharidic acid, despite the fact that both agents are potent inducers of apoptotic cell death via ser/thr phosphatase inhibition.

  16. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin.

    PubMed

    Subedi, Robhash Kusam; Kang, Keon Wook; Choi, Hoo-Kyun

    2009-06-28

    Solid lipid nanoparticles (SLN) loaded with doxorubicin were prepared by solvent emulsification-diffusion method. Glyceryl caprate (Capmul)MCM C10) was used as lipid core, and curdlan as the shell material. Dimethyl sulfoxide (DMSO) was used to dissolve both lipid and drug. Polyethylene glycol 660 hydroxystearate (Solutol)HS15) was employed as surfactant. Major formulation parameters were optimized to obtain high quality nanoparticles. The mean particle size measured by photon correlation spectroscopy (PCS) was 199nm. The entrapment efficiency (EE) and drug loading capacity (DL), determined with fluorescence spectroscopy, were 67.5+/-2.4% and 2.8+/-0.1%, respectively. The drug release behavior was studied by in vitro method. Cell viability assay showed that properties of SLN remain unchanged during the process of freeze-drying. Stability study revealed that lyophilized SLN were equally effective (p<0.05) after 1 year of storage at 4 degrees C. In conclusion, SLN with small particle size, high EE, and relatively high DL for doxorubicin can be obtained by this method.

  17. Magnesium Modulates Doxorubicin Activity through Drug Lysosomal Sequestration and Trafficking.

    PubMed

    Trapani, Valentina; Luongo, Francesca; Arduini, Daniela; Wolf, Federica I

    2016-03-21

    Magnesium is directly involved in the control of cell growth and survival, but its role in cancer biology and therapy is multifaceted; in particular, it is highly controversial whether magnesium levels can affect therapy outcomes. Here we investigated whether magnesium availability can modulate cellular responses to the widely used chemotherapeutic doxorubicin. We used an in vitro model consisting of mammary epithelial HC11 cells and found that high magnesium availability was correlated with diminished sensitivity both in cells chronically adapted to high magnesium concentrations and in acutely magnesium-supplemented cells. This decrease in sensitivity resulted from reduced intracellular doxorubicin accumulation in the face of a similar drug uptake rate. We observed that high-magnesium conditions caused a decrease in intracellular drug retention by altering drug lysosomal sequestration and trafficking. In our model, magnesium supplementation correspondingly modulated expression of the TRPM7 channel, which is known to control cytoskeletal organization and dynamics and may be involved in the proposed mechanism. Our findings suggest that magnesium supplementation in hypomagnesemic cancer patients may hinder response to therapy.

  18. Essential Oil from Myrica rubra Leaves Potentiated Antiproliferative and Prooxidative Effect of Doxorubicin and its Accumulation in Intestinal Cancer Cells.

    PubMed

    Ambrož, Martin; Hanušová, Veronika; Skarka, Adam; Boušová, Iva; Králová, Věra; Langhasová, Lenka; Skálová, Lenka

    2016-01-01

    Essential oil from the leaves of Myrica rubra, a subtropical Asian fruit tree traditionally used in folk medicines, has a significant antiproliferative effect in several intestinal cancer cell lines. Doxorubicin belongs to the most important cytostatics used in cancer therapy. The present study was designed to evaluate the effects of defined essential oil from M. rubra leaves on efficacy, prooxidative effect, and accumulation of doxorubicin in cancer cell lines and in non-cancerous cells. For this purpose, intestinal adenocarcinoma CaCo2 cells were used. Human fibroblasts (periodontal ligament) and a primary culture of rat hepatocytes served as models of non-cancerous cells. The results showed that the sole essential oil from M. rubra has a strong prooxidative effect in cancer cells while it acts as a mild antioxidant in hepatocytes. Combined with doxorubicin, the essential oil enhanced the antiproliferative and prooxidative effects of doxorubicin in cancer cells. At higher concentrations, synergism of doxorubicin and essential oil from M. rubra was proved. In non-cancerous cells, the essential oil did not affect the toxicity of doxorubicin and the doxorubicin-mediated reactive oxygen species formation. The essential oil increased the intracellular concentration of doxorubicin and enhanced selectively the doxorubicin accumulation in nuclei of cancer cells. Taken together, essential oil from M. rubra leaves could be able to improve the doxorubicin efficacy in cancer cells due to an increased reactive oxygen species production, and the doxorubicin accumulation in nuclei of cancer cells.

  19. A Metabolomic Study of Rats with Doxorubicin-Induced Cardiomyopathy and Shengmai Injection Treatment

    PubMed Central

    Chen, Yu; Tang, Yong; Zhang, Ya-Chen; Huang, Xiao-Hong; Xie, Yu-Quan; Xiang, Yin

    2015-01-01

    Doxorubicin-induced cardiomyopathy (DOX-CM) is a severe complication of doxorubicin (DOX) chemotherapy. Characterized by cumulative and irreversible myocardial damage, its pathogenesis has not been fully elucidated. Shengmai Injection (SMI), a Traditional Chinese Medicine, may alleviate myocardial injury and improve heart function in the setting of DOX-CM. As a result of its multi-component and multi-target nature and comprehensive regulation, the pharmacological mechanisms underlying SMI’s effects remain obscure. The emerging field of metabolomics provides a potential approach with which to explore the pathogenesis of DOX-CM and the benefits of SMI treatment. DOX-CM was induced in rats via intraperitoneal injections of DOX. Cardiac metabolic profiling was performed via gas chromatography/mass spectrometry and ultra-performance liquid chromatography/tandem mass spectrometry. A bioinformatics analysis was conducted via Ingenuity Pathway Analysis (IPA). Eight weeks following DOX treatment, significant cardiac remodeling, dysfunction and metabolic perturbations were observed in the rats with DOX-CM. The metabolic disturbances primarily involved lipids, amino acids, vitamins and energy metabolism, and may have been indicative of both an energy metabolism disorder and oxidative stress secondary to DOX chemotherapy. However, SMI improved cardiac structure and function, as well as the metabolism of the rats with DOX-CM. The metabolic alterations induced via SMI, including the promotion of glycogenolysis, glycolysis, amino acid utilization and antioxidation, suggested that SMI exerts cardioprotective effects by improving energy metabolism and attenuating oxidative stress. Moreover, the IPA revealed that important signaling molecules and enzymes interacted with the altered metabolites. These findings have provided us with new insights into the pathogenesis of DOX-CM and the effects of SMI, and suggest that the combination of metabolomic analysis and IPA may represent a

  20. Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis

    PubMed Central

    2016-01-01

    Doxorubicin (DOX) remains the most effective anticancer agent which is widely used in several adult and pediatric cancers, but its application is limited for its cardiotoxicity and hepatotoxicity. Hydrogen, as a selective antioxidant, is a promising potential therapeutic option for many diseases. In this study, we found that intraperitoneal injection of hydrogen-rich saline (H2 saline) ameliorated the mortality, cardiac dysfunction, and histopathological changes caused by DOX in rats. Meanwhile, serum brain natriuretic peptide (BNP), aspartate transaminase (AST), alanine transaminase (ALT), albumin (ALB), tissue reactive oxygen species (ROS), and malondialdehyde (MDA) levels were also attenuated after H2 saline treatment. What is more, we further demonstrated that H2 saline treatment could inhibit cardiac and hepatic inflammation and apoptosis relative proteins expressions by western blotting test. In conclusion, our results revealed a protective effect of H2 saline on DOX-induced cardiotoxicity and hepatotoxicity in rats by inhibiting inflammation and apoptosis. PMID:28104928

  1. Topical hemostatic agents: a review.

    PubMed

    Palm, Melanie D; Altman, Jeffrey S

    2008-04-01

    Topical hemostatic agents play an important role in both common and specialized dermatologic procedures. These agents can be classified based on their mechanism of action and include physical or mechanical agents, caustic agents, biologic physical agents, and physiologic agents. Some agents induce protein coagulation and precipitation resulting in occlusion of small cutaneous vessels, while others take advantage of latter stages in the coagulation cascade, activating biologic responses to bleeding. Traditional and newer topical hemostatic agents are discussed in this review, and the benefits and costs of each agent will be provided.

  2. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Elberry, Ahmed A; Abdel-Naim, Ashraf B; Abdel-Sattar, Essam A; Nagy, Ayman A; Mosli, Hisham A; Mohamadin, Ahmed M; Ashour, Osama M

    2010-05-01

    Doxorubicin (DOX) is a widely used cancer chemotherapeutic agent. However, it generates free oxygen radicals that result in serious dose-limiting cardiotoxicity. Supplementations with berries were proven effective in reducing oxidative stress associated with several ailments. The aim of the current study was to investigate the potential protective effect of cranberry extract (CRAN) against DOX-induced cardiotoxicity in rats. CRAN was given orally to rats (100mg/kg/day for 10 consecutive days) and DOX (15mg/kg; i.p.) was administered on the seventh day. CRAN protected against DOX-induced increased mortality and ECG changes. It significantly inhibited DOX-provoked glutathione (GSH) depletion and accumulation of oxidized glutathione (GSSG), malondialdehyde (MDA), and protein carbonyls in cardiac tissues. The reductions of cardiac activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were significantly mitigated. Elevation of cardiac myeloperoxidase (MPO) activity in response to DOX treatment was significantly hampered. Pretreatment of CRAN significantly guarded against DOX-induced rise of serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), creatine kinase-MB (CK-MB) as well as troponin I level. CRAN alleviated histopathological changes in rats' hearts treated with DOX. In conclusion, CRAN protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to CRAN's antioxidant activity.

  3. Magnetic field-enhanced cellular uptake of doxorubicin loaded magnetic nanoparticles for tumor treatment

    NASA Astrophysics Data System (ADS)

    Venugopal, Indu; Pernal, Sebastian; Duproz, Alexandra; Bentley, Jeromy; Engelhard, Herbert; Linninger, Andreas

    2016-09-01

    Cancer remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. In recent years, several varieties of nanoparticles (NPs) have been synthesized with the intent of being utilized as tumor drug delivery vehicles. We have produced superparamagnetic, gold-coated magnetite (Fe3O4@Au) NPs and loaded them with the chemotherapeutic drug doxorubicin (DOX) for magnetic drug targeting (MDT) of tumors. The synthetic strategy uses the food thickening agent gellan gum (Phytagel) as a negatively charged shell around the Fe3O4@Au NP onto which the positively charged DOX molecules are loaded via electrostatic attraction. The resulting DOX-loaded magnetic nanoparticles (DOX-MNPs) were characterized using transmission electron microscopy, energy dispersive x-ray spectroscopy, superconducting quantum interference device magnetometry, surface area electron diffraction, zeta potential measurements, fourier transform infrared spectroscopy as well as UV/Vis and fluorescence spectroscopy. Cytotoxicity of the DOX-MNPs was demonstrated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on C6 glioma cells. Cellular uptake of DOX-MNPs was enhanced with magnetic fields, which was quantitatively determined using flow cytometry. This improved uptake also led to greater tumor cell death, which was measured using MTT assay. These MDT results are promising for a new therapy for cancer.

  4. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively).

  5. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption

    PubMed Central

    Ha, Jong Seong; Byun, Juyoung; Ahn, Dae-Ro

    2016-01-01

    In this study, Cas9 system was employed to down-regulate mdr1 gene for overcoming multidrug resistance of cancer cells. Disruption of the MDR1 gene was achieved by delivery of the Cas9-sgRNA plasmid or the Cas9-sgRNA ribonucleoprotein complex using a conventional gene transfection agent and protein transduction domain (PTD). Doxorubicin showed considerable cytotoxicity to the drug-resistant breast cancer cells pre-treated with the RNA-guided endonuclease (RGEN) systems, whereas virtually non-toxic to the untreated cells. The potency of drug was enhanced in the cells treated with the protein-RNA complex as well as in those treated with plasmids, suggesting that mutation of the mdr1 gene by intracellular delivery of Cas9-sgRNA complex using proper protein delivery platforms could recover the drug susceptibility. Therefore, Cas9-mediated disruption of the drug resistance-related gene can be considered as a promising way to overcome multidrug resistance in cancer cells. PMID:26961701

  6. Astragalus polysaccharide improves cardiac function in doxorubicin-induced cardiomyopathy through ROS-p38 signaling

    PubMed Central

    Zhou, Liangliang; Chen, Lanping; Wang, Jing; Deng, Yijun

    2015-01-01

    Doxorubicin (DOX) is widely used as an antitumor agent, but it is significantly challenged by clinical workers due to the severe and acute cardiotoxitity. Astragalus polysaccharide (APS) is characterized by an anti-inflammation and anti-oxidant features. In the current study, we explored the effects and specific mechanisms of APS on DOX-induced-cardiomyopathy in mouse primary myocardial cells. To explore the effect of DOX on ROS production, DHE staining and flow cytometry analysis were used in primary cardiomyocytes treated with 1 μM DOX for 24 h. MTT assay was applied to determine the effect of DOX on cell viability. The effects of DOX on rat cardiomyocytes apoptosis by Hoechst staining and annexin V-PI staining, while caspase3 activity was determined using an assay kit. Two-dimensional echocardiography of rats was performed to determine left ventricular fraction and relative wall thickness. Activation of p38 and Akt was analyzed using western blot. ROS production was significantly enhanced by DOX stimulation in primary cardiomyocytes. DOX reduced rat cardiomyocytes viability in a time- and dose-dependent manner. DOX induced apoptosis in rat cardiomyocytes via activation of caspase-3. Cardiac function was significantly impaired by enhanced p38 activation. APS treatment reduced DOX-induced rat cardiomyocytes apoptosis by decreasing ROS production. To conclude, APS reduced DOX-induced cell apoptosis and ROS production by reduced activation of p38 signaling pathway. PMID:26885153

  7. Multifunctional Polymersomes for Cytosolic Delivery of Gemcitabine and Doxorubicin to Cancer Cells

    PubMed Central

    Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Ambre, Avinash H.; Meghnani, Varsha; Layek, Buddhadev; Katti, Kalpana S.; Gange, Kara N.; Singh, Jagdish; Sarkar, Kausik; Mallik, Sanku

    2014-01-01

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic polymersomes which are programmed to release the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic frequency ultrasound. Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in a monolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering a triggered release as well as diagnostic ultrasound imaging. PMID:24797878

  8. Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice.

    PubMed

    Hsu, Pei-Ling; Mo, Fan-E

    2016-06-14

    Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an a6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin a6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/a6β1 engagement abolishes DOX-associated cardiomyopathy in mice.

  9. Theanine prevents doxorubicin-induced acute hepatotoxicity by reducing intrinsic apoptotic response.

    PubMed

    Nagai, Katsuhito; Oda, Ayano; Konishi, Hiroki

    2015-04-01

    Doxorubicin (DOX) is widely used as an antitumor agent with topoisomerase II inhibiting activity; however, its dosage and duration of administration have been strictly limited due to dose-related organ damage. The present study investigated whether theanine, an amino acid found in green tea leaves, could reduce DOX-induced acute hepatotoxicity and the apoptotic response in mice. Activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, biomarkers of hepatic impairment, were markedly increased after the administration of 20 mg/kg DOX, whereas the degree of these elevations was significantly attenuated by 10 mg/kg theanine, which was consistent with histological hepatic images assessed by microscopic examination. The hepatic expression of Bax and Fas, representative intrinsic and extrinsic apoptotic molecules, respectively, was significantly increased by dosing with DOX. However, the elevation in the hepatic expression of Bax, but not Fas, was suppressed to control levels by theanine. The formation of cleaved caspase-3 protein in the group given DOX with theanine was significantly lower than that in the group treated with DOX alone. These results suggest that theanine can protect against acute hepatic damage induced by DOX, which is attributed to the suppression of intrinsic caspase-3-dependent apoptotic signaling.

  10. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles

    PubMed Central

    Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L

    2015-01-01

    Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840

  11. Biodistribution and in Vivo Activities of Tumor-Associated Macrophage-Targeting Nanoparticles Incorporated with Doxorubicin

    PubMed Central

    2015-01-01

    Tumor-associated macrophages (TAMs) are increasingly considered a viable target for tumor imaging and therapy. Previously, we reported that innovative surface-functionalization of nanoparticles may help target them to TAMs. In this report, using poly(lactic-co-glycolic) acid (PLGA) nanoparticles incorporated with doxorubicin (DOX) (DOX-NPs), we studied the effect of surface-modification of the nanoparticles with mannose and/or acid-sensitive sheddable polyethylene glycol (PEG) on the biodistribution of DOX and the uptake of DOX by TAMs in tumor-bearing mice. We demonstrated that surface-modification of the DOX-NPs with both mannose and acid-sensitive sheddable PEG significantly increased the accumulation of DOX in tumors, enhanced the uptake of the DOX by TAMs, but decreased the distribution of DOX in mononuclear phagocyte system (MPS), such as liver. We also confirmed that the acid-sensitive sheddable PEGylated, mannose-modified DOX-nanoparticles (DOX-AS-M-NPs) targeted TAMs because depletion of TAMs in tumor-bearing mice significantly decreased the accumulation of DOX in tumor tissues. Furthermore, in a B16-F10 tumor-bearing mouse model, we showed that the DOX-AS-M-NPs were significantly more effective than free DOX in controlling tumor growth but had only minimum effect on the macrophage population in mouse liver and spleen. The AS-M-NPs are promising in targeting cytotoxic or macrophage-modulating agents into tumors to improve tumor therapy. PMID:25314115

  12. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery.

    PubMed

    Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A

    2015-01-01

    In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginine-glycine-aspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOX-linker-Fbg microspheres could be a suitable drug carrier for safer and effective drug delivery.

  13. Antitumor activity of a folate receptor-targeted immunoglobulin G-doxorubicin conjugate

    PubMed Central

    Yang, Tan; Xu, Ling; Li, Bin; Li, Weijie; Ma, Xiang; Fan, Lingling; Lee, Robert J; Xu, Chuanrui; Xiang, Guangya

    2017-01-01

    Development of antibody-drug conjugates (ADCs) is a promising therapeutic strategy for cancer therapy. In this study, folate was conjugated via a polyethyleneglycol (PEG) linker to immunoglobulin G (IgG), which was linked to doxorubicin (DOX), to form a novel ADC folate-PEG-IgG-DOX (FA-PEG-IgG-DOX). The FA-PEG-IgG-DOX showed high targeting efficiency in HeLa and KB cells and significantly improved the uptake and retention of DOX compared with IgG-DOX about 10-fold. Subsequently, FA-PEG-IgG-DOX was shown to have at least 8 times higher antitumor activity than IgG-DOX both in HeLa and KB cells and also induced more apoptosis in those cells than IgG-DOX. Moreover, FA-PEG-IgG-DOX had a 2 times longer circulating time than FA-IgG-DOX, but did not increase the DOX distribution in mouse hearts. Importantly, FA-PEG-IgG-DOX treatment significantly inhibited tumor growth in xenograft mice. Together, our results indicate that FA-PEG-IgG is an effective ADC carrier for delivery of chemotherapeutic agents and that conjugating tumor targeting ligands to antibodies is a promising strategy for producing ADC drugs.

  14. Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    NASA Astrophysics Data System (ADS)

    Perepelytsina, Olena M.; Yakymchuk, Olena M.; Sydorenko, Mychailo V.; Bakalinska, Olga N.; Bloisi, Francesco; Vicari, Luciano Rosario Maria

    2016-06-01

    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/ w for OLC-DOX and 2.98 % w/ w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4-2.5 to 670-20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs.

  15. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress.

    PubMed

    Giampieri, Francesca; Alvarez-Suarez, Jose M; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Bompadre, Stefano; Rubini, Corrado; Zizzi, Antonio; Astolfi, Paola; Santos-Buelga, Celestino; González-Paramás, Ana M; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio

    2016-08-01

    Doxorubicin (Dox), one of the most used chemotherapeutic agents, is known to generate oxidative stress and block DNA synthesis, which result in severe dose-limiting toxicity. A strategy to protect against Dox toxic effects could be to use dietary antioxidants of which fruits and vegetable are a rich source. In this context, strawberry consumption is associated with the maintenance of good health and the prevention of several diseases, thanks to the antioxidant capacities of its bioactive compounds. The aim of the present study was to evaluate the protective effects of strawberry consumption against oxidative stress induced by Dox in rats. Animals were fed with strawberry enriched diet (15% of the total calories) for two months and Dox (10 mg/kg; i.p.) was injected at the end of the experimental period. Strawberry consumption significantly inhibited ROS production and oxidative damage biomarkers accumulation in plasma and liver tissue and alleviated histopathological changes in rat livers treated with Dox. The reduction of antioxidant enzyme activities was significantly mitigated after strawberry consumption. In addition, strawberry enriched diet ameliorated liver mitochondrial antioxidant levels and functionality. In conclusion, strawberry intake protects against Dox-induced toxicity, at plasma, liver and mitochondrial levels thanks to its high contents of bioactive compounds.

  16. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis

    PubMed Central

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-01-01

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis. PMID:27999379

  17. Effect of linalool as a component of Humulus lupulus on doxorubicin-induced antitumor activity.

    PubMed

    Miyashita, Michiko; Sadzuka, Yasuyuki

    2013-03-01

    As malignant neoplasm is a major public health problem, there is a need for the development of a novel modulator that enhances antitumor activity and reduces adverse reactions to antitumor agents. In this study, the effects of some volatile oil components in Humulus lupulus on doxorubicin (DOX) permeability in tumor cells and DOX-induced antitumor activity were examined. In vitro, DOX levels in tumor cells by combined linalool as its component significantly increased in the DOX influx system, and the increased effect by linalool on DOX cytotoxicity was shown. In vivo, the combination of DOX with linalool significantly decreased tumor weight compared with that of DOX alone treated group. The promotion of DOX influx level by combined linalool did not depend on energy, whereas it was suppressed by the absence of Na(+). This promoting effect was suppressed by the presence of S-(4-nitrobenzyl)-6-thioinosine and inhibited dependently on phlorizin concentration. It is considered that linalool promoted DOX influx in tumor cells because of its action on DOX transport through concentrative Na(+)-dependent nucleoside transporter 3, which increased DOX concentration in tumor cells and thus enhanced the antitumor activity of DOX. Therefore, linalool as a food component is anticipated to be an effective DOX modulator.

  18. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors

    PubMed Central

    Peiris, Diluka; Spector, Alexander F.; Lomax-Browne, Hannah; Azimi, Tayebeh; Ramesh, Bala; Loizidou, Marilena; Welch, Hazel; Dwek, Miriam V.

    2017-01-01

    Alterations in protein glycosylation are a key feature of oncogenesis and have been shown to affect cancer cell behaviour perturbing cell adhesion, favouring cell migration and metastasis. This study investigated the effect of N-linked glycosylation on the binding of Herceptin to HER2 protein in breast cancer and on the sensitivity of cancer cells to the chemotherapeutic agent doxorubicin (DXR) and growth factors (EGF and IGF-1). The interaction between Herceptin and recombinant HER2 protein and cancer cell surfaces (on-rate/off-rate) was assessed using a quartz crystal microbalance biosensor revealing an increase in the accessibility of HER2 to Herceptin following deglycosylation of cell membrane proteins (deglycosylated cells Bmax: 6.83 Hz; glycosylated cells Bmax: 7.35 Hz). The sensitivity of cells to DXR and to growth factors was evaluated using an MTT assay. Maintenance of SKBR-3 cells in tunicamycin (an inhibitor of N-linked glycosylation) resulted in an increase in sensitivity to DXR (0.1 μM DXR P < 0.001) and a decrease in sensitivity to IGF-1 alone and to IGF-1 supplemented with EGF (P < 0.001). This report illustrates the importance of N-linked glycosylation in modulating the response of cancer cells to chemotherapeutic and biological treatments and highlights the potential of glycosylation inhibitors as future combination treatments for breast cancer. PMID:28223691

  19. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells.

    PubMed

    Nahire, Rahul; Haldar, Manas K; Paul, Shirshendu; Ambre, Avinash H; Meghnani, Varsha; Layek, Buddhadev; Katti, Kalpana S; Gange, Kara N; Singh, Jagdish; Sarkar, Kausik; Mallik, Sanku

    2014-08-01

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic polymersomes, which are programmed to release the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound. Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in a monolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering a triggered release as well as diagnostic ultrasound imaging.

  20. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin

    PubMed Central

    Wang, Yi-Jun; Huang, Yujian; Anreddy, Nagaraju; Zhang, Guan-Nan; Zhang, Yun-Kai; Xie, Meina; Lin, Derrick; Yang, Dong-Hua; Zhang, Mingjun; Chen, Zhe-Sheng

    2016-01-01

    An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment. PMID:26716507

  1. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  2. iTRAQ-based proteomic profiling of breast cancer cell response to doxorubicin and TRAIL.

    PubMed

    Leong, Sharon; Nunez, Andrea C; Lin, Mike Z; Crossett, Ben; Christopherson, Richard I; Baxter, Robert C

    2012-07-06

    Breast cancer is a molecularly heterogeneous disease, and predicting response to chemotherapy remains a major clinical challenge. To minimize adverse side-effects or cumulative toxicity in patients unlikely to benefit from treatment, biomarkers indicating treatment efficacy are critically needed. iTRAQ labeling coupled with multidimensional LC-MS/MS of the enriched mitochondria and endoplasmic reticulum fraction, key organelles regulating apoptosis, has led to the discovery of several differentially abundant proteins in breast cancer cells treated with the chemotherapeutic agent doxorubicin followed by the death receptor ligand, TRAIL, among 571 and 801 unique proteins identified in ZR-75-1 and MDA-MB-231 breast cancer cell lines, respectively. The differentially abundant proteins represent diverse biological processes associated with cellular assembly and organization, molecular transport, oxidative stress, cell motility, cell death, and cancer. Despite many differences in molecular phenotype between the two breast cancer cell lines, a comparison of their subproteomes following drug treatment revealed three proteins displaying common regulation: PPIB, AHNAK, and SLC1A5. Changes in these proteins, detected by iTRAQ, were confirmed by immunofluorescence, visualized by confocal microscopy. These novel potential biomarkers may have clinical utility for assessing response to cancer treatment and may provide insight into new therapeutic targets for breast cancer.

  3. Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents doxorubicin-mediated toxicity.

    PubMed

    Liu, Ting Chu Ken; Ismail, Siti; Brennan, Orlaith; Hastings, Conn; Duffy, Garry P

    2013-04-01

    Anthracyclines are powerful drugs available for the treatment of neoplastic diseases. Unfortunately, these chemotherapy agents cause cardiomyopathy and congestive heart failure. Doxorubicin (DOX) is a widely used anthracycline and evidence indicates that DOX-induced cardiotoxicity can be viewed as a stem cell disease, whereby the formation of reactive oxygen species (ROS) by DOX is seen to predominantly hinder cardiac stem cell (CSC) regenerative capability. Acute, early-onset and late-onset cardiotoxicity have been described and this may be reversible by the local administration of CSCs, which regenerate myocardial tissue and rescue the failing heart. CSCs are, however, particularly sensitive to oxidative stress and die rapidly by apoptosis in such adverse conditions. Therefore, this study aims to enhance CSC survival by encapsulation in an alginate hydrogel formulation containing superoxide dismutase (SOD), a reactive oxygen species scavenger. Cell survival was qualitatively and quantitatively assessed by fluorescent microscopy and assays measuring metabolic activity, cell viability, cytotoxicity and apoptosis. CSCs were cultured in DOX-conditioned cell culture medium and displayed reduced live cell numbers as well as high levels of apoptosis. Encapsulation of CSCs in alginate alone failed to prevent apoptosis. Encapsulation in SOD-loaded alginate reduced apoptosis to near-normal levels, whilst metabolic activity was returned to baseline. In conclusion, this study demonstrates that encapsulation of CSCs in SOD-loaded alginate hydrogel enhances CSC survival in the presence of DOX, raising the possibility of its application as a novel therapy for the treatment of acute and early onset DOX-induced cardiotoxicity.

  4. Radio-frequency triggered heating and drug release using doxorubicin-loaded LSMO nanoparticles for bimodal treatment of breast cancer.

    PubMed

    Kulkarni, Vaishnavi M; Bodas, Dhananjay; Dhoble, Deepa; Ghormade, Vandana; Paknikar, Kishore

    2016-09-01

    Radio-frequency responsive nanomaterials combined with drugs for simultaneous hyperthermia and drug delivery are potential anti-cancer agents. In this study, chitosan coated La0.7Sr0.3MnO3 nanoparticles (C-LSMO NPs) were synthesized and characterized by X-ray diffraction, dynamic light scattering, Fourier transform infra red spectroscopy, vibrating sample magnetometer, scanning electron and atomic force microscopy. Under low radio-frequency (365kHz, RF), C-LSMO NPs (90nm) showed good colloidal stability (+22mV), superparamagnetic nature (15.4 emu/g) and heating capacity (57.4W/g SAR value). Chitosan facilitated doxorubicin entrapment (76%) resulted in DC-LSMO NPs that showed drug release upon a 5min RF exposure. MCF-7 and MDA-MB-231 cancer cells responded to a 5min RF exposure in the presence of bimodal DC-LSMO NPs with a significant decrease in viability to 73% and 88% (Pearson correlation, r=1, P<0.01) respectively, as compared to hyperthermia alone. Internalization of DC-LSMO NPs via the endosomal pathway led to an efficient localization of doxorubicin within the cell nucleus. The ensuing DNA damage, heat shock protein induction, and caspase production triggered apoptotic cell death. Moreover, DC-LSMO NPs successfully restricted the migration of metastatic MDA-MB-231 cancer cells. These data suggest that DC-LSMO NPs are potential bimodal therapeutic agents for cancer treatment and hold promise against disease recurrence and drug resistance.

  5. Tween 20 increases intestinal transport of doxorubicin in vitro but not in vivo.

    PubMed

    Al-Saraf, Amal; Holm, René; Nielsen, Carsten Uhd

    2016-02-10

    The chemotherapeutic drug substance doxorubicin has been reported to be a substrate of P-gp, which induces a barrier for oral administration and leads to a bioavailability of 3% in male Sprague Dawley rats. Literature studies have reported increased transport of P-pg substrates, like digoxin, when co-administered with P-gp inhibitors (non-ionic surfactants) in vitro and in vivo . The aim of the present study was thus to investigate if different non-ionic surfactants would have a similar effect on the in vitro and in vivo absorption of doxorubicin. This was investigated in vitro in Caco-2 cells and by oral co-administration of doxorubicin together with tween 20 to male Sprague Dawley rats. 200 μM (0.025%) tween 20 increased the intestinal absorptive permeability of doxorubicin in vitro by 48 ± 4% from 8.8 × 10(-6)cm/s to 13.0 × 10(-6)cm/s. Further, the efflux ratio was reduced from 2.2 ± 0.06 to 1.2 ± 0.03 (n=3-7). In vivo, co-administration of doxorubicin and 0-25% tween 20 did not yield detectable doxorubicin plasma concentrations, probably due to extensive intestinal metabolism. In conclusion, the present study demonstrated that non-ionic surfactants increased the transport of doxorubicin in vitro, most likely by inhibition of the efflux activity. However, this effect was not transferable to the in vivo situation.

  6. DNA methyltransferase I is a mediator of doxorubicin-induced genotoxicity in human cancer cells

    SciTech Connect

    Tan, Hwee Hong; Porter, Alan George

    2009-05-01

    Doxorubicin can induce the formation of extra-nuclear bodies during mitosis termed micronuclei but the underlying causes remain unknown. Here, we show that sub-lethal exposure to doxorubicin-induced micronuclei formation in human cancer cells but not in non-tumorigenic cells. Occurrence of micronuclei coincided with stability of DNMT1 upon doxorubicin assault, and DNMT1 was localized to the micronuclei structures. Furthermore, 5-aza-2'-deoxycytidine-mediated DNMT1 depletion or siDNMT1 knock-down attenuated the frequency of doxorubicin-induced micronucleated cells. Human DNMT1{sup -/-} cells displayed significantly fewer micronuclei compared to DNMT1{sup +/+} cells when challenged with doxorubicin, providing additional evidence for the involvement of DNMT1 in mediating such chromosomal aberrations. Collectively, our results demonstrate a role for DNMT1 in promoting DNA damage-induced genotoxicity in human cancer cells. DNMT1, recently identified as a candidate for doxorubicin-mediated cytotoxicity, is over-expressed in various cancer cell types. We propose that DNMT1 levels in tumor cells may determine the effectiveness of doxorubicin in chemotherapy.

  7. Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice.

    PubMed

    Zhao, Xiaoyan; Zhang, Jie; Tong, Nannan; Chen, Youran; Luo, Yonghuang

    2012-01-01

    Doxorubicin, a very potent and often used anti-cancer drug, is largely limited due to the dose-related toxic effects. The present study investigated whether berberine, a natural product alkaloid, can reduce the liver injury induced by doxorubicin. Mice of either gender were randomly divided into four groups: the control group, doxorubicin group, berberine group, and berberine+doxorubicin group. In the tests, body weight, general condition and mortality of the mice were observed, and serum alanine aminotransferase and aspartate transaminase levels were determined to evaluate liver function. Furthermore, the liver was excised for determination of the weight changes, as well as histopathological analysis in the tissues. Mortality rate and significant decline in body weight, and increased plasma alanine aminotransferase and aspartate transaminase activities were observed in doxorubicin-treated mice. These changes were significantly prevented by pretreatment with berberine. Histopathological studies showed that doxorubicin caused structural injuries, such as vascular congestion, inflammatory cell infiltration, hepatocellular degeneration and necrosis, fibrosis in the liver. These histopathological changes were largely attenuated by berberine pretreatment. These findings indicate that berberine has the hepatoprotective effect on doxorubicin-induced liver injury in mice.

  8. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy

    PubMed Central

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin. PMID:26788073

  9. The role of milk thistle extract in breast carcinoma cell line (MCF-7) apoptosis with doxorubicin.

    PubMed

    Rastegar, Hussein; Ahmadi Ashtiani, Hamidreza; Anjarani, Soghra; Bokaee, Saeed; Khaki, Arash; Javadi, Leila

    2013-01-01

    Breast cancer is the most commonly diagnosed invasive malignancy and first leading cause of cancer-related deaths in Iranian women. Based on silymarin's unique characteristics, its application in chemotherapy combined with doxorubicin can be effective to enhance the efficacy together with a reduced toxicity on normal tissues. The present study focus on evaluate the efficacy of silymarin in combination with doxorubicin, on viability and apoptosis of estrogen-dependent breast carcinoma cell line (MCF-7). After being cultured, MCF-7 cells were divided into 8 groups and treated as follows: 1st group received 75 μg silymarin, groups 2, 3, and 4 were treated with 10, 25, and 50 nM doxorubicin, respectively, and groups 5, 6, and 7 respectively received 10, 25, and 50 nM doxorubicin as well as 75 μg silymarin. Viability percentage and apoptosis of the cells were assessed with Trypan Blue staining after 16, 24, and 48 hours. Silymarin has a synergistic effect on the therapeutic potential of doxorubicin. Use of silymarin in combination with doxorubicin can be more effective on the therapeutic potential of doxorubicin and decreases its dose-limiting side effects.

  10. Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes.

    PubMed

    Asensio-López, Mari C; Soler, Fernando; Pascual-Figal, Domingo; Fernández-Belda, Francisco; Lax, Antonio

    2017-01-01

    The primary cardiotoxic action of doxorubicin when used as antitumor drug is attributed to the generation of reactive oxygen species (ROS) therefore effective cardioprotection therapies are needed. In this sense, the antianginal drug nicorandil has been shown to be effective in cardioprotection from ischemic conditions but the underlying molecular mechanism to cope with doxorubicin-induced ROS is unclear. Our in vitro study using the HL-1 cardiomyocyte cell line derived from mouse atria reveals that the endogenous nitric oxide (NO) production was stimulated by nicorandil and arrested by NO synthase inhibition. Moreover, while the NO synthase activity was inhibited by doxorubicin-induced ROS, the NO synthase inhibition did not affect doxorubicin-induced ROS. The inhibition of NO synthase activity by doxorubicin was totally prevented by preincubation with nicorandil. Nicorandil also concentration-dependently (10 to 100 μM) decreased doxorubicin-induced ROS and the effect was antagonized by 5-hydroxydecanoate. The inhibition profile of doxorubicin-induced ROS by nicorandil was unaltered when an L-arginine derivative or a protein kinase G inhibitor was present. Preincubation with pinacidil mimicked the effect of nicorandil and the protection was eliminated by glibenclamide. Quantitative colocalization of fluorescence indicated that the mitochondrion was the target organelle of nicorandil and the observed response was a decrease in the mitochondrial inner membrane potential. Interference with H+ movement across the mitochondrial inner membrane, leading to depolarization, also protected from doxorubicin-induced ROS. The data indicate that activation of the mitochondrial ATP-sensitive K+ channel by nicorandil causing mitochondrial depolarization, without participation of the NO donor activity, was responsible for inhibition of the mitochondrial NADPH oxidase that is the main contributor to ROS production in cardiomyocytes. Impairment of the cytosolic Ca2+ signal induced

  11. A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma.

    PubMed

    Zhang, Chun-Lin; Zhu, Kun-Peng; Shen, Guo-Qi; Zhu, Zhong-Sheng

    2016-02-01

    Long non-coding RNAs (lncRNAs) are emerging in molecular biology as crucial regulators of cancer. Although the aberrant expression of lncRNAs has been observed in osteosarcoma (OS), the molecular mechanisms underlying lncRNAs in doxorubicin resistance of OS still unknown. In the current study, we investigated a novel lncRNA, termed ODRUL (osteosarcoma doxorubicin-resistance related up-regulated lncRNA), and evaluated its role in the occurrence of doxorubicin resistance in OS. LncRNA microarray revealed that lncRNA ODRUL was the most up-regulated expressed in the doxorubicin-resistant OS cell line. Quantitative real-time PCR (qRT-PCR) confirmed that lncRNA ODRUL was higher in different doxorubicin-resistant OS cell lines and lower in different doxorubicin-sensitive OS cell lines. Moreover, we showed that lncRNA ODRUL was increased in specimens of OS patients with a poor chemoresponse and lung metastasis. We further demonstrated that lncRNA ODRUL inhibition could inhibit OS cell proliferation, migration, and partly reversed doxorubicin resistance in vitro. In addition, we found that the expression of classical drug resistance-related ATP-binding cassette, subfamily B, member 1 (ABCB1) gene was decreased after the lncRNA ODRUL knockdown. Thus, we concluded that lncRNA ODRUL may act as a pro-doxorubicin-resistant molecule through inducing the expression of the classical multidrug resistance-related ABCB1 gene in osteosarcoma cells .These findings may provide a novel target for reversing doxorubicin resistance in OS.

  12. Doxorubicin has a synergistic cytotoxicity with cucurbitacin B in anaplastic thyroid carcinoma cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2017-02-01

    In this study, the combined effect of doxorubicin with cucurbitacin B on survival of anaplastic thyroid carcinoma cells was evaluated. For experiments, 8505C and CAL62 human anaplastic thyroid carcinoma cells were used. Cell viability, the percentage of viable cells, and cytotoxic activity were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, multiplexed cytotoxicity assay, and cytotoxicity assay, respectively. Reactive oxygen species production was measured. In experiments, doxorubicin and cucurbitacin B reduced cell viability in a dose- and time-dependent manner. Cotreatment of doxorubicin and cucurbitacin B, compared with treatment of doxorubicin alone, decreased the percentage of viable cells and increased cytotoxic activity. All of the combination index values were lower than 1.0, suggesting the synergism between doxorubicin and cucurbitacin B in induction of cytotoxicity. In cells treated with both doxorubicin and cucurbitacin B, compared with doxorubicin alone, the protein levels of cleaved poly(adenosine diphosphate-ribose) polymerase and cyclooxygenase 2 and reactive oxygen species production were enhanced. In contrast, the protein levels of B-cell chronic lymphocytic leukemia/lymphoma 2 and survivin and B-cell chronic lymphocytic leukemia/lymphoma 2/B-cell chronic lymphocytic leukemia/lymphoma 2-associated x protein ratio were diminished. The protein levels of Janus kinase 2 and signal transducer and activator of transcription 3 were reduced, while phospho-extracellular signal-regulated kinase 1/2 protein levels were elevated without change in total extracellular signal-regulated kinase 1/2 protein levels. These results suggest that doxorubicin synergizes with cucurbitacin B in induction of cytotoxicity in anaplastic thyroid carcinoma cells. Moreover, synergistic cytotoxicity of doxorubicin with cucurbitacin B is mediated by B-cell chronic lymphocytic leukemia/lymphoma 2 family proteins, survivin, and reactive oxygen

  13. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain.

    PubMed

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs.

  14. Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes

    PubMed Central

    Pascual-Figal, Domingo; Fernández-Belda, Francisco; Lax, Antonio

    2017-01-01

    The primary cardiotoxic action of doxorubicin when used as antitumor drug is attributed to the generation of reactive oxygen species (ROS) therefore effective cardioprotection therapies are needed. In this sense, the antianginal drug nicorandil has been shown to be effective in cardioprotection from ischemic conditions but the underlying molecular mechanism to cope with doxorubicin-induced ROS is unclear. Our in vitro study using the HL-1 cardiomyocyte cell line derived from mouse atria reveals that the endogenous nitric oxide (NO) production was stimulated by nicorandil and arrested by NO synthase inhibition. Moreover, while the NO synthase activity was inhibited by doxorubicin-induced ROS, the NO synthase inhibition did not affect doxorubicin-induced ROS. The inhibition of NO synthase activity by doxorubicin was totally prevented by preincubation with nicorandil. Nicorandil also concentration-dependently (10 to 100 μM) decreased doxorubicin-induced ROS and the effect was antagonized by 5-hydroxydecanoate. The inhibition profile of doxorubicin-induced ROS by nicorandil was unaltered when an L-arginine derivative or a protein kinase G inhibitor was present. Preincubation with pinacidil mimicked the effect of nicorandil and the protection was eliminated by glibenclamide. Quantitative colocalization of fluorescence indicated that the mitochondrion was the target organelle of nicorandil and the observed response was a decrease in the mitochondrial inner membrane potential. Interference with H+ movement across the mitochondrial inner membrane, leading to depolarization, also protected from doxorubicin-induced ROS. The data indicate that activation of the mitochondrial ATP-sensitive K+ channel by nicorandil causing mitochondrial depolarization, without participation of the NO donor activity, was responsible for inhibition of the mitochondrial NADPH oxidase that is the main contributor to ROS production in cardiomyocytes. Impairment of the cytosolic Ca2+ signal induced

  15. An Improved D-α-Tocopherol-Based Nanocarrier for Targeted Delivery of Doxorubicin with Reversal of Multidrug Resistance

    PubMed Central

    Lu, Jianqin; Zhao, Wenchen; Liu, Hao; Marquez, Rebecca; Huang, Yixian; Zhang, Yifei; Li, Jiang; Xie, Wen; Venkataramanan, Raman; Xu, Liang; Li, Song

    2014-01-01

    Nanocarriers have recently emerged as an attractive platform for delivery of various types of therapeutics including anticancer agents. Previously, we developed an improved TPGS delivery system (PEG5K-VE2) which demonstrated improved colloidal stability and greater in vivo antitumor activity. Nevertheless, the application of this system is still limited by a relatively low drug loading capacity (DLC). In this study we report that incorporation of a fluorenylmethyloxycarbonyl (Fmoc) motif at the interfacial region of PEG5K-VE2 led to significant improvement of the system through the introduction of an additional mechanism of drug/carrier interaction. Doxorubicin (DOX) could be effectively loaded into PEG5K-Fmoc-VE2 micelles at a DLC of 39.9%, which compares favorably to most reported DOX nanoformulations. In addition, PEG5K-Fmoc-VE2/DOX mixed micelles showed more sustained release of DOX in comparison to the counterpart without Fmoc motif. MTT assay showed that PEG5K-Fmoc-VE2/DOX exerted significantly higher levels of cytotoxicity over DOX, Doxil as well as PEG5K-VE2/DOX in PC-3 and 4T1.2 cells. Cytotoxicity assay with NCI/ADR-RES, a drug resistant cell line, suggested that PEG5K-Fmoc-VE2 may have a potential to reverse the multidrug resistance, which was supported by its inhibition on P-gp ATPase. Pharmacokinetics (PK) and biodistribution studies showed an increased half-life in blood circulation and more effective tumor accumulation for DOX formulated in PEG5K-Fmoc-VE2 micelles. More importantly, DOX-loaded PEG5K-Fmoc-VE2 micelles showed an excellent safety profile with a MTD (~30 mg DOX/kg) that is about 3 times as much as that for free DOX. Finally, superior antitumor activity was demonstrated for PEG5K-Fmoc-VE2/DOX in both drug-sensitive (4T1.2 and PC-3) and drug-resistant (KB 8-5) tumor models compared to DOX, Doxil, and PEG5K-VE2/DOX. PMID:25456831

  16. Id4 Promotes Senescence and Sensitivity to Doxorubicin-induced Apoptosis in DU145 Prostate Cancer Cells

    PubMed Central

    Carey, Jason P.; Knowell, Ashley Evans; Chinaranagari, Swathi; Chaudhary, Jaideep

    2014-01-01

    Inhibitor of differentiation proteins (Id1, 2, 3 and 4) are dominant negative regulators of basic helix loop helix transcription factors and play dominant roles in cancer cells, spanning several molecular pathways including senescence, invasion, metastasis, proliferation and apoptosis. In contrast to high Id1, Id2 and Id3 expression, the expression of Id4 is epigenetically silenced in prostate cancer. In the present study we demonstrated a novel role of Id4, that of promotion of cellular senescence in prostate cancer cells. Materials and Methods: Id4 was ectopically expressed in DU145 cells (DU145+Id4). The cells treated with Doxorubicin (0–500 nm) or vehicle control were analyzed for apoptosis, senescence (SA-beta Galactosidase), and expression of CDKN1A (p21), CDKN1B(p27), CDKN2A (p16), E2F1, vimentin and E-cadherin by immuno-histochemistry and/or Western blot. Results: In the present study we demonstrated that Id4 promotes cellular senescence in prostate cancer cell line DU145. Ectopic overexpression of Id4 in androgen receptor-negative DU145 prostate cancer cells resulted in increased expression of p16, p21, p27, E-cadherin and vimentin but down-regulated E2F1 expression. Id4 also potentiated the effect of doxorubicin induced senescence and apoptosis. Conclusion: The absence of functional p16, pRB and p53 in DU145 suggests that Id4 could alter additional molecular pathways such as those involving E2F1 to promote senescence and increased sensitivity to doxorubicin-induced apoptosis. The results of the present study support the role of Id4 as a tumor suppressor in prostate cancer. PMID:24122992

  17. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity.

    PubMed

    Umemoto, Teruo; Singh, Rajendra P; Xu, Yong; Saito, Norimichi

    2010-12-29

    Versatile, safe, shelf-stable, and easy-to-handle fluorinating agents are strongly desired in both academic and industrial arenas, since fluorinated compounds have attracted considerable interest in many areas, such as drug discovery, due to the unique effects of fluorine atoms when incorporated into molecules. This article describes the synthesis, properties, and reactivity of many substituted and thermally stable phenylsulfur trifluorides, in particular, 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride (Fluolead, 1k), as a crystalline solid having surprisingly high stability on contact with water and superior utility as a deoxofluorinating agent compared to current reagents, such as DAST and its analogues. The roles of substituents on 1k in thermal and hydrolytic stability, fluorination reactivity, and the high-yield fluorination mechanism it undergoes have been clarified. In addition to fluorinations of alcohols, aldehydes, and enolizable ketones, 1k smoothly converts non-enolizable carbonyls to CF(2) groups, and carboxylic groups to CF(3) groups, in high yields. 1k also converts C(=S) and CH(3)SC(=S)O groups to CF(2) and CF(3)O groups, respectively, in high yields. In addition, 1k effects highly stereoselective deoxofluoro-arylsulfinylation of diols and amino alcohols to give fluoroalkyl arylsulfinates and arylsulfinamides, with complete inversion of configuration at fluorine and the simultaneous, selective formation of one conformational isomer at the sulfoxide sulfur atom. Considering the unique and diverse properties, relative safety, and ease of handling of 1k in addition to its convenient synthesis, it is expected to find considerable use as a novel fluorinating agent in both academic and industrial arenas.

  18. The genotype of MLH1 identifies a subgroup of follicular lymphoma patients who do not benefit from doxorubicin: FIL-FOLL study

    PubMed Central

    Rossi, Davide; Bruscaggin, Alessio; La Cava, Piera; Galimberti, Sara; Ciabatti, Elena; Luminari, Stefano; Rigacci, Luigi; Tucci, Alessandra; Pulsoni, Alessandro; Bertoldero, Giovanni; Vallisa, Daniele; Rusconi, Chiara; Spina, Michele; Arcaini, Luca; Angrilli, Francesco; Stelitano, Caterina; Merli, Francesco; Gaidano, Gianluca; Federico, Massimo; Palumbo, Giuseppe A.

    2015-01-01

    Though most follicular lymphoma biomarkers rely on tumor features, the host genetic background may also be relevant for outcome. Here we aimed at verifying the contribution of candidate polymorphisms of FCγ receptor, DNA repair and detoxification genes to prognostic stratification of follicular lymphoma treated with immunochemotherapy. The study was based on 428 patients enrolled in the FOLL05 prospective trial that compared three standard-of-care regimens (rituximab-cyclophosphamide-vincristine-prednisone versus rituximab-cyclophosphamide-doxorubicin-vincristine-prednisone versus rituximab-fludarabine-mitoxantrone) for the first line therapy of advanced follicular lymphoma. Polymorphisms were genotyped on peripheral blood DNA samples. The primary endpoint was time to treatment failure. Polymorphisms of FCGR2A and FCGR3A, which have been suggested to influence the activity of rituximab as a single agent, did not affect time to treatment failure in the pooled analysis of the three FOLL05 treatment arms that combined rituximab with chemotherapy (P=0.742, P=0.252, respectively). These results were consistent even when the analysis was conducted by intention to treat, indicating that different chemotherapy regimens and loads did not interact differentially with the FCGR2A and FCGR3A genotypes. The genotype of MLH1, which regulates the genotoxic effect of doxorubicin, significantly affected time to treatment failure in patients in the rituximab-cyclophosphamide-doxorubicin-vincristine-prednisone arm (P=0.001; q<0.1), but not in arms in which patients did not receive doxorubicin (i.e., the rituximab-cyclophosphamide-vincristine-prednisone and rituximab-fludarabine-mitoxantrone arms). The impact of MLH1 on time to treatment failure was independent after adjusting for the Follicular Lymphoma International Prognostic Index and other potential confounding variables by multivariate analysis. These data indicate that MLH1 genotype is a predictor of failure to benefit from

  19. Caspase-dependent and -independent suppression of apoptosis by monoHER in Doxorubicin treated cells

    PubMed Central

    Bruynzeel, A M E; Abou El Hassan, M A; Torun, E; Bast, A; van der Vijgh, W J F; Kruyt, F A E

    2007-01-01

    Doxorubicin (DOX) is an antitumour agent for different types of cancer, but the dose-related cardiotoxicity limits its clinical use. To prevent this side effect we have developed the flavonoid monohydroxyethylrutoside (monoHER), a promising protective agent, which did not interfere with the antitumour activity of DOX. To obtain more insight in the mechanism underlying the selective protective effects of monoHER, we investigated whether monoHER (1 mM) affects DOX-induced apoptosis in neonatal rat cardiac myocytes (NeRCaMs), human endothelial cells (HUVECs) and the ovarian cancer cell lines A2780 and OVCAR-3. DOX-induced cell death was effectively reduced by monoHER in heart, endothelial and A2780 cells. OVCAR-3 cells were highly resistant to DOX-induced apoptosis. Experiments with the caspase-inhibitor zVAD-fmk showed that DOX-induced apoptosis was caspase-dependent in HUVECs and A2780 cells, whereas caspase-independent mechanisms seem to be important in NeRCaMs. MonoHER suppressed DOX-dependent activation of the mitochondrial apoptotic pathway in normal and A2780 cells as illustrated by p53 accumulation and activation of caspase-9 and -3 cleavage. Thus, monoHER acts by suppressing the activation of molecular mechanisms that mediate either caspase-dependent or -independent cell death. In light of the current work and our previous studies, the use of clinically achievable concentrations of monoHER has no influence on the antitumour activity of DOX whereas higher concentrations as used in the present study could influence the antitumour activity of DOX. PMID:17285121

  20. Effect of alteration of caveolin-1 expression on doxorubicin-induced apoptosis in H9c2 cardiac cells.

    PubMed

    Takaguri, Akira; Kamato, Maiko; Satoh, Yoshiaki; Ohtsuki, Kazuaki; Satoh, Kumi

    2015-09-01

    Doxorubicin is an anthracycline antibiotic widely used in cancer treatment. Although its antitumor efficacy appears to be dose dependent, its clinical use is greatly restricted by the development of cardiotoxicity associated with apoptosis. Although caveolin-1, the major structural protein in caveolae, can positively or negatively regulate apoptosis depending on the stimulus or cell types, the contribution of caveolin-1 to doxorubicin-induced apoptosis remains unknown. This study was performed to identify the regulatory role of caveolin-1 on doxorubicin-induced apoptosis in H9c2 cardiac cells using a genetic approach. Caveolin-1 knockdown with a short hairpin (sh) RNA adenovirus, but not overexpression of wild-type caveolin-1, resulted in a marked inhibition of doxorubicin-induced caspase-3 cleavage. However, caveolin-1 knockdown tended to protect against doxorubicin-induced decrease in cell viability, but it did not significantly reverse cell death induced by doxorubicin. Doxorubicin stimulated the phosphorylation of p38 and extracellular signal regulated kinase (ERK). Doxorubicin-induced caspase-3 cleavage was inhibited by U0126, a MEK inhibitor or SB203580, a p38 inhibitor. Caveolin-1 knockdown markedly inhibited doxorubicin-induced p-38 phosphorylation but not ERK-mediated p-53 phosphorylation in H9c2 cardiac cells. Our results suggest that reduced caveolin-1 expression plays an anti-apoptotic role in doxorubicin-induced apoptosis but that it is insufficient to prevent such an apoptosis in H9c2 cardiac cells.

  1. Creatine supplementation reduces doxorubicin-induced cardiomyocellular injury.

    PubMed

    Santacruz, Lucia; Darrabie, Marcus D; Mantilla, Jose Gabriel; Mishra, Rajashree; Feger, Bryan J; Jacobs, Danny O

    2015-04-01

    Heart failure is a common complication of doxorubicin (DOX) therapy. Previous studies have shown that DOX adversely impacts cardiac energy metabolism, and the ensuing energy deficiencies antedate clinical manifestations of cardiac toxicity. Brief exposure of cultured cardiomyocytes to DOX significantly decreases creatine transport, which is the cell's sole source of creatine. We present the results of a study performed to determine if physiological creatine supplementation (5 mmol/L) could protect cardiomyocytes in culture from cellular injury resulting from exposure to therapeutic levels of DOX. Creatine supplementation significantly decreased cytotoxicity, apoptosis, and reactive oxygen species production caused by DOX. The protective effect was specific to creatine and depended on its transport into the cell.

  2. Cure of Xenografted Human Carcinomas by BR96-Doxorubicin Immunoconjugates

    NASA Astrophysics Data System (ADS)

    Trail, P. A.; Willner, D.; Lasch, S. J.; Henderson, A. J.; Hofstead, S.; Casazza, A. M.; Firestone, R. A.; Hellstrom, I.; Hellstrom, K. E.

    1993-07-01

    Immunoconjugates (BR96-DOX) were prepared between chimeric monoclonal antibody BR96 and the anticancer drug doxorubicin. The monoclonal antibody binds an antigen related to Lewis Y that is abundantly expressed at the surface of cells from many human carcinomas; it has a high degree of tumor selectivity and is internalized after binding. BR96-DOX induced complete regressions and cures of xenografted human lung, breast, and colon carcinomas growing subcutaneously in athymic mice and cured 70 percent of mice bearing extensive metastases of a human lung carcinoma. Also, BR96-DOX cured 94 percent of athymic rats with subcutaneous human lung carcinoma, even though the rats, like humans and in contrast to mice, expressed the BR96 target antigen in normal tissues.

  3. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies.

    PubMed

    Jin, Xun; Zhang, Peilan; Luo, Li; Cheng, Hao; Li, Yunzu; Du, Ting; Zou, Bingwen; Gou, Maling

    Nanoparticles have promising applications in drug delivery for cancer therapy. Herein, we prepared cationic 1,2-dioleoyl-3-trimethylammonium propane/methoxypoly (ethyleneglycol) (DPP) nanoparticles to deliver doxorubicin (Dox) for intravesical therapy of bladder cancer. The DPP micelles have a mean dynamic diameter of 18.65 nm and a mean zeta potential of +19.6 mV. The DPP micelles could prolong the residence of Dox in the bladder, enhance the penetration of Dox into the bladder wall, and improve cellular uptake of Dox. The encapsulation by DPP micelles significantly improved the anticancer effect of Dox against orthotopic bladder cancer in vivo. This work described a Dox-loaded DPP nanoparticle with potential applications in intravesical therapy of bladder cancer.

  4. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin

    PubMed Central

    Motlagh, Najme Sadat Hosseini; Parvin, Parviz; Ghasemi, Fatemah; Atyabi, Fatemeh

    2016-01-01

    Several chemo-drugs act as the biocompatible fluorophores. Here, the laser induced fluorescence (LIF) properties of doxorubicin, paclitaxel and bleomycin are investigated. The absorption lines mostly lie over UV range according to the UV-VIS spectra. Therefore, a single XeCl laser provokes the desired transitions of the chemo-drugs of interest at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration giving rise to the sensible red shift. This happens when large overlapping area appears between absorption and emission spectra accordingly. The red shift is taken into account as a characteristic parameter of a certain chemo-drug. The fluorescence extinction (α) and self-quenching (k) coefficients are determined based on the best fitting of the adopted Lambert-Beer equation over experimental data. The quantum yield of each chemo-drug is also measured using the linearity of the absorption and emission rates. PMID:27375954

  5. Quantitative imaging of light-triggered doxorubicin release

    PubMed Central

    Kress, Jeremy; Rohrbach, Daniel J.; Carter, Kevin A.; Luo, Dandan; Shao, Shuai; Lele, Shashikant; Lovell, Jonathan F.; Sunar, Ulas

    2015-01-01

    The efficacy of chemotherapy is related, in large part, to the concentration of drug that reaches tumor sites. Doxorubicin (DOX) is a common anti-cancer drug that is also approved for use in liposomal form for the treatment of ovarian cancer. We recently developed a porphyrin-phospholipid (PoP)-liposome system that enables on demand release of DOX from liposomes using near infrared irradiation to improve DOX bioavailability. Owing to its intrinsic fluorescence, it is possible, and desirable, to quantify DOX concentration and distribution, preferably noninvasively. Here we quantified DOX distribution following light-triggered drug release in phantoms and an animal carcass using spatial frequency domain imaging. This study demonstrates the feasibility of non-invasive quantitative mapping of DOX distributions in target areas. PMID:26417522

  6. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies

    PubMed Central

    Jin, Xun; Zhang, Peilan; Luo, Li; Cheng, Hao; Li, Yunzu; Du, Ting; Zou, Bingwen; Gou, Maling

    2016-01-01

    Nanoparticles have promising applications in drug delivery for cancer therapy. Herein, we prepared cationic 1,2-dioleoyl-3-trimethylammonium propane/methoxypoly (ethyleneglycol) (DPP) nanoparticles to deliver doxorubicin (Dox) for intravesical therapy of bladder cancer. The DPP micelles have a mean dynamic diameter of 18.65 nm and a mean zeta potential of +19.6 mV. The DPP micelles could prolong the residence of Dox in the bladder, enhance the penetration of Dox into the bladder wall, and improve cellular uptake of Dox. The encapsulation by DPP micelles significantly improved the anticancer effect of Dox against orthotopic bladder cancer in vivo. This work described a Dox-loaded DPP nanoparticle with potential applications in intravesical therapy of bladder cancer. PMID:27660445

  7. Doxorubicin-Loaded QuadraSphere Microspheres: Plasma Pharmacokinetics and Intratumoral Drug Concentration in an Animal Model of Liver Cancer

    SciTech Connect

    Lee, Kwang-Hun; Liapi, Eleni A.; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A.; Ventura, Veronica Prieto; Geschwind, Jean-Francois H.

    2010-06-15

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  8. A Phase I/II Clinical Trial of Belinostat (PXD101) in Combination with Doxorubicin in Patients with Soft Tissue Sarcomas

    PubMed Central

    Jones, Robin L.; Rossen, Philip Blach; Lind-Hansen, Maja; Knoblauch, Poul

    2016-01-01

    Background. Belinostat is a novel histone deacetylase inhibitor. Primary Objectives. Maximum tolerated dose (MTD) and dose limiting toxicities (DLTs) of belinostat (Bel) in combination with doxorubicin (Dox) in solid tumours (phase I) and response rate (RR) in soft tissue sarcomas (phase II). Methods. Bel was administered as a 30-minute IV infusion on days 1–5 and on day 5 with Dox. The dose escalation schedule was as follows: cohort 1: Bel 600 mg/m2 and 50 mg/m2 Dox, cohort 2: Bel 600 mg/m2 and 75 mg/m2 Dox, cohort 3: Bel 800 mg/m2 and 75 mg/m2 Dox, and cohort 4: Bel 1000 mg/m2 and 75 mg/m2 Dox. Results. 41 patients were included (25 in phase I, 16 in phase II). Adverse events were fatigue (95%), nausea (76%), and alopecia (63%). There was one DLT, grade 3 rash/hand and foot syndrome. MTD was Bel 1000 mg/m2/d and Dox 75 mg/m2. Four responses were seen: 2 PR in phase I, RR of 8%; in phase II, 1 PR/1 CR, RR of 13%, and 9 patients (56%) with SD. Conclusion. The combination was well tolerated. Response rate was moderate but median time to progression was 6.0 months (95% CI, 1.6–9.7 months) which is superior to some reports of single-agent Dox. PMID:27403082

  9. Beta-cyclodextrin conjugates with glucose moieties designed as drug carriers: their syntheses, evaluations using concanavalin A and doxorubicin, and structural analyses by NMR spectroscopy.

    PubMed

    Oda, Yoshiki; Kobayashi, Natsumi; Yamanoi, Takashi; Katsuraya, Kaname; Takahashi, Keiko; Hattori, Kenjiro

    2008-05-01

    Three kinds of beta-cyclodextrin derivatives conjugated with glucose moieties, which were expected as models for a drug carrier targeting the drug delivery systems, were designed and synthesized from beta-cyclodextrin and the natural product, 4-hydroxyphenyl-beta-D-glucopyranoside called arbutin. Arbutin was used because it had a phenyl group with a hydroxyl function which could be used to link the glucose moiety to beta-cyclodextrin. The evaluations of these conjugates as the drug-carrying molecules were done by investigating the molecular interactions with the carbohydrate-binding Concanavalin A (Con A) lectin and the anticancer agent, doxorubicin (DXR), using an SPR optical biosensor. The association constants of the conjugates with immobilized Con A were 2.0 x 10(3) approximately 8.8 x 10(3) M(-1). The result showed that the Con A bound to the glucose moieties from arbutin in the conjugates with prospective association constants. The inclusion associations of the conjugates with immobilized DXR reached 2.2 x 10(5) approximately 1.4 x 10(8) M(-1). The extremely high inclusion associations for DXR suggested their potential abilities as drug-carrying molecules for carrying DXR. The NMR analyses indicated that the phenyl group of the conjugates greatly served to increase the inclusion associations for DXR. In their DXR inclusion complexes, the formation of the stacking complexes by the pi;-pi interactions between the phenyl groups and the included DXR also enhanced their inclusion abilities for DXR.

  10. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation.

    PubMed

    Wu, Yan-Qin; Dang, Rui-Li; Tang, Mi-Mi; Cai, Hua-Lin; Li, Huan-De; Liao, De-Hua; He, Xin; Cao, Ling-Juan; Xue, Ying; Jiang, Pei

    2016-04-23

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg) over three weeks starting seven days before DOX administration (2.5 mg/kg). Open-field test (OFT) and forced swimming test (FST) were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  11. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  12. Rational design of multifunctional micelles against doxorubicin-sensitive and doxorubicin-resistant MCF-7 human breast cancer cells

    PubMed Central

    Hong, Wei; Shi, Hong; Qiao, Mingxi; Gao, Xiang; Yang, Jie; Tian, Chunlian; Zhang, Dexian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Even though a tremendous number of multifunctional nanocarriers have been developed to tackle heterogeneous cancer cells, little attention has been paid to elucidate how to rationally design a multifunctional nanocarrier. In this study, three individual functions (active targeting, stimuli-triggered release and endo-lysosomal escape) were evaluated in doxorubicin (DOX)-sensitive MCF-7 cells and DOX-resistant MCF-7/ADR cells by constructing four kinds of micelles with active-targeting (AT-M), passive targeting, pH-triggered release (pHT-M) and endo-lysosomal escape (endoE-M) function, respectively. AT-M demonstrated the strongest cytotoxicity against MCF-7 cells and the highest cellular uptake of DOX due to the folate-mediated endocytosis. However, AT-M failed to exhibit the best efficacy against MCF-7/ADR cells, while endoE-M exhibited the strongest cytotoxicity against MCF-7/ADR cells and the highest cellular uptake of DOX due to the lowest elimination of DOX from the cells. This was attributed to the carrier-facilitated endo-lysosomal escape of DOX, which avoided exocytosis by lysosome secretion, resulting in an effective accumulation of DOX in the cytoplasm. The enhanced elimination of DOX from the MCF-7/ADR cells also accounted for the remarkable decrease in cytotoxicity against the cells of AT-M. Three micelles were further evaluated with MCF-7 cells and MCF-7/ADR-resistant cells xenografted mice model. In accordance with the in vitro results, AT-M and endoE-M demonstrated the strongest inhibition on the MCF-7 and MCF-7/ADR xenografted tumor, respectively. Active targeting and active targeting in combination with endo-lysosomal escape have been demonstrated to be the primary function for a nanocarrier against doxorubicin-sensitive and doxorubicin-resistant MCF-7 cells, respectively. These results indicate that the rational design of multifunctional nanocarriers for cancer therapy needs to consider the heterogeneous cancer cells and the primary function needs

  13. Technetium-99m red blood cell labeling in patients treated with doxorubicin

    SciTech Connect

    Ballinger, J.R.; Gerson, B.; Gulenchyn, K.Y.; Ruddy, T.D.; Davies, R.A.

    1988-03-01

    Radionuclide angiography is useful in monitoring cardiotoxicity of doxorubicin, but in vivo RBC labeling in these patients is believed to be poorer than that in general patients. The left ventricle-to-background activity ratio (R) was not significantly lower in patients treated with doxorubicin (3.24 +/- 1.15, N = 13) than in control patients (3.89 +/- 1.60, N = 14). With both modified in vivo and in vitro labeling, R was significantly improved in patients treated with doxorubicin (4.37 +/- 0.91, N = 8, and 4.37 +/- 1.22, N = 13, respectively). However, with the modified in vivo method, labeling efficiency remained a function of hematocrit, whereas the in vitro method removed this dependency. Both modified in vivo and in vitro labeling result in improved image quality over in vivo labeling in patients treated with doxorubicin, and the choice of method can be based on other factors.

  14. Early downregulation of acute phase proteins after doxorubicin exposition in patients with breast cancer.

    PubMed

    Panis, Carolina; Pizzatti, Luciana; Bufalo, Aedra Carla; Herrera, Ana Cristina; Victorino, Vanessa Jacob; Cecchini, Rubens; Abdelhay, Eliana

    2016-03-01

    Chemotherapy remains the first-choice option for adjuvant therapy in breast cancer. Here, we investigated the impact of the first chemotherapic cycle of doxorubicin on the plasmatic-proteomic profiling of women diagnosed with breast cancer (n = 87). Blood samples were obtained from the same patient before and after doxorubicin infusion (1 h, 60 mg/m(2)) and processed for label-free LC-MS proteomic screening. A total of 80 proteins were downregulated after chemotherapy. In silico analysis revealed that the main biological process enrolled was inflammation and canonical pathways involving acute phase proteins. TNF-α, IL-1β, IL-12, TGF-β1, clusterin, and gelsolin were chosen as relevant for further validation. All selected targets presented reduced plasmatic levels after treatment. Our results indicate that doxorubicin downregulated acute phase proteins immediately after its infusion. Since such proteins are cancer promoting, its downregulation could support the effectiveness of doxorubicin along treatment.

  15. Prolonged pegylated liposomal doxorubicin treatment for recurrent pelvic cancers: a feasibility study.

    PubMed

    Rabinovich, Alex; Ramanakumar, Agnihotram V; Lau, Susie; Gotlieb, Walter H

    2015-07-01

    We conducted a proof of concept study evaluating prolonged treatment with pegylated liposomal doxorubicin for recurrent ovarian, tubal and peritoneal carcinoma. Thirteen consecutive patients received an average of 22.6 cycles of pegylated liposomal doxorubicin, with an average cumulative dose of 1409 mg/m(2) . Progression-free survival at 18 months was 61.5%, and was longer than the previous progression-free survival in 10 of the 13 patients. Overall 5-year survival was 78.8%. Despite prolonged use and relatively large cumulative doses of pegylated liposomal doxorubicin, most of the patients had mild to moderate side-effects, none of the patients had detectable cardio-toxic side-effects, and a positive impact on the performance status was noticed. Thus, in our group of patients, continued pegylated liposomal doxorubicin treatment was associated with a longer progression-free interval and allowed improved performance status with manageable toxicity.

  16. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    SciTech Connect

    Henninger, Christian; Huelsenbeck, Johannes; Huelsenbeck, Stefanie; Grösch, Sabine; Lackner, Karl J.; Kaina, Bernd; Fritz, Gerhard

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  17. Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice.

    PubMed

    Rahmatollahi, Mahdieh; Baram, Somayeh Mahmoodi; Rahimian, Reza; Saeedi Saravi, Seyed Soheil; Dehpour, Ahmad Reza

    2016-07-01

    Doxorubicin is an effective chemotherapeutic drug against a considerable number of malignancies. However, its toxic effects on myocardium are confirmed as major limit of utilization. PPAR-α is highly expressed in the heart, and its activation leads to an increased cardiac fatty acid oxidation and cardiomyocyte necrosis. This study was performed to adjust the hypothesis that PPAR-α receptor inhibition protects against doxorubicin-induced cardiac dysfunction in mice. Male Balb/c mice were used in this study. Left atria were isolated, and their contractility was measured in response to electrical field stimulation in a standard organ bath. PPAR-α activity was measured using specific PPAR-α antibody in an ELISA-based system coated with double-strand DNA containing PPAR-α response element sequence. Moreover, cardiac MDA and TNF-α levels were measured by ELISA method. Following incubation with doxorubicin (35 µM), a significant reduction in atrial contractility was observed (P < 0.001). Pretreatment of animals with a selective PPAR-α antagonist, GW6471, significantly improved doxorubicin-induced atrial dysfunction (P < 0.001). Furthermore, pretreatment of the mice with a non-selective cannabinoid agonist, WIN55212-2, significantly decreased PPAR-α activity in cardiac tissue, subsequently leading to significant improvement in doxorubicin-induced atrial dysfunction (P < 0.001). Also, GW6471 and WIN significantly reduced cardiac MDA and TNF-α levels compared with animals receiving doxorubicin (P < 0.001). The study showed that inhibition of PPAR-α is associated with protection against doxorubicin-induced cardiotoxicity in mice, and cannabinoids can potentiate the protection by PPAR-α blockade. Moreover, PPAR-α may be considered as a target to prevent cardiotoxicity induced by doxorubicin in patients undergoing chemotherapy.

  18. Combined effects of zoledronic acid and doxorubicin on breast cancer cell invasion in vitro.

    PubMed

    Woodward, Julia K L; Neville-Webbe, Helen L; Coleman, Robert E; Holen, Ingunn

    2005-09-01

    The bisphosphonate zoledronic acid and the cytotoxic drug doxorubicin induce synergistic levels of apoptosis in breast cancer cells. As zoledronic acid and doxorubicin have been shown to reduce cell invasion and migration, we have investigated if these drugs also act synergistically on breast cancer invasion in vitro. MCF7 cells were treated with 0.05 microM doxorubicin/4 h followed by 1 or 10 microM zoledronic acid/24 h (or the reverse sequence). To study invasion, MCF7 cells were either grown on Transwell membranes coated with Matrigel or in a 24-well plate. Cells were treated sequentially using the above drug combinations, prior to starting the invasion assays for 48 h. Cell growth and death were also assessed under the same conditions. We found that invasion of MCF7 cells treated with zoledronic acid and doxorubicin was significantly reduced when compared with control, but the effect was dependent on drug sequence. At 1 microM, zoledronic acid significantly reduced invasion only if cells were pre-treated with doxorubicin, but cell growth was unaffected. For 10 microM zoledronic acid, invasion was reduced when administered before or after the doxorubicin, but this dose of zoledronic acid caused a significant reduction in MCF7 growth. Apoptosis was not induced by any of the drug doses and combinations. We conclude that pre-treatment with 0.05 microM doxorubicin followed by 1 microM zoledronic acid reduces invasion when cells were grown on Matrigel. For 10 microM zoledronic acid, pre- or post-doxorubicin also reduces invasion, but for this combination inhibition of cell growth may contribute to the reduction in invasion observed.

  19. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-09-15

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating

  20. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity

    PubMed Central

    Maksimenko, Andrei; Dosio, Franco; Mougin, Julie; Ferrero, Annalisa; Wack, Severine; Reddy, L. Harivardhan; Weyn, Andrée-Anne; Lepeltier, Elise; Bourgaux, Claudie; Stella, Barbara; Cattel, Luigi; Couvreur, Patrick

    2014-01-01

    We identified that the chemical linkage of the anticancer drug doxorubicin onto squalene, a natural lipid precursor of the cholesterol’s biosynthesis, led to the formation of squalenoyl doxorubicin (SQ-Dox) nanoassemblies of 130-nm mean diameter, with an original “loop-train” structure. This unique nanomedicine demonstrates: (i) high drug payload, (ii) decreased toxicity of the coupled anticancer compound, (iii) improved therapeutic response, (iv) use of biocompatible transporter material, and (v) ease of preparation, all criteria that are not combined in the currently available nanodrugs. Cell culture viability tests and apoptosis assays showed that SQ-Dox nanoassemblies displayed comparable antiproliferative and cytotoxic effects than the native doxorubicin because of the high activity of apoptotic mediators, such as caspase-3 and poly(ADP-ribose) polymerase. In vivo experiments have shown that the SQ-Dox nanomedicine dramatically improved the anticancer efficacy, compared with free doxorubicin. Particularly, the M109 lung tumors that did not respond to doxorubicin treatment were found inhibited by 90% when treated with SQ-Dox nanoassemblies. SQ-Dox nanoassembly-treated MiaPaCa-2 pancreatic tumor xenografts in mice decreased by 95% compared with the tumors in the saline-treated mice, which was significantly higher than the 29% reduction achieved by native doxorubicin. Concerning toxicity, SQ-Dox nanoassemblies showed a fivefold higher maximum-tolerated dose than the free drug, and moreover, the cardiotoxicity study has evidenced that SQ-Dox nanoassemblies did not cause any myocardial lesions, such as those induced by the free doxorubicin treatment. Taken together, these findings demonstrate that SQ-Dox nanoassemblies make tumor cells more sensitive to doxorubicin and reduce the cardiac toxicity, thus providing a remarkable improvement in the drug’s therapeutic index. PMID:24385587

  1. Hyperthermic potentiation of doxorubicin and 4'-EPI-doxorubicin in a transplantable neurogenic rat tumor (BT/sub 4/A) in BD IX rats

    SciTech Connect

    Dahl, O.

    1983-02-01

    The combined effect of hyperthermia and doxorubicin on the neurogenic rat cell line BT/sub 4/C was found to be synergistic in vitro. The present investigation was initiated to study if this synergistic effect also could be obtained in vivo. An enhanced effect occurred when doxorubicin and 4'-epi-doxorubicin 7 mg/kg body weight were given 30 minutes prior to local water bath hyperthermia (one hour at 44.0 degrees C). The local side effects of the combined treatment did not increase above that of hyperthermia alone. Therefore, local hyperthermia may become a useful modality for enhancement of the effect of anthracyclines on tumors with marginal drug sensitivity or bulky tumors with poor drug penetration.

  2. Inhibition of CRM1-dependent nuclear export sensitizes malignant cells to cytotoxic and targeted agents.

    PubMed

    Turner, Joel G; Dawson, Jana; Cubitt, Christopher L; Baz, Rachid; Sullivan, Daniel M

    2014-08-01

    Nuclear-cytoplasmic trafficking of proteins is a significant factor in the development of cancer and drug resistance. Subcellular localization of exported proteins linked to cancer development include those involved in cell growth and proliferation, apoptosis, cell cycle regulation, transformation, angiogenesis, cell adhesion, invasion, and metastasis. Here, we examined the basic mechanisms involved in the export of proteins from the nucleus to the cytoplasm. All proteins over 40kDa use the nuclear pore complex to gain entry or exit from the nucleus, with the primary nuclear export molecule involved in these processes being chromosome region maintenance 1 (CRM1, exportin 1 or XPO1). Proteins exported from the nucleus must possess a hydrophobic nuclear export signal (NES) peptide that binds to a hydrophobic groove containing an active-site Cys528 in the CRM1 protein. CRM1 inhibitors function largely by covalent modification of the active site Cys528 and prevent binding to the cargo protein NES. In the absence of a CRM1 inhibitor, CRM1 binds cooperatively to the NES of the cargo protein and RanGTP, forming a trimer that is actively transported out of the nucleus by facilitated diffusion. Nuclear export can be blocked by CRM1 inhibitors, NES peptide inhibitors or by preventing post-translational modification of cargo proteins. Clinical trials using the classic CRM1 inhibitor leptomycin B proved too toxic for patients; however, a new generation of less toxic small molecule inhibitors is being used in clinical trials in patients with both hematological malignancies and solid tumors. Additional trials are being initiated using small-molecule CRM1 inhibitors in combination with chemotherapeutics such as pegylated liposomal doxorubicin. In this review, we present evidence that combining the new CRM1 inhibitors with other classes of therapeutics may prove effective in the treatment of cancer. Potential combinatorial therapies discussed include the use of CRM1 inhibitors and

  3. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    PubMed Central

    Thys, Ryan G.; Lehman, Christine E.; Pierce, Levi C.T.

    2016-01-01

    Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual

  4. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells.

    PubMed

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C T; Wang, Yuh-Hwa

    2015-09-01

    Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual

  5. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats.

    PubMed

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2015-08-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p < 0.01). Hypothalamic malate dehydrogenase activity was reduced when compared with control (p < 0.05). In addition, pro-inflammatory cytokine levels were unchanged. Therefore, our results demonstrate that doxorubicin leads to an impairment of \\hypothalamic energy metabolism, but do not affect the inflammatory pathway. SIGNIFICANCE PARAGRAPH: The hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term.

  6. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum.

    PubMed

    Shahabi, Shakiba; Döscher, Svea; Bollhorst, Tobias; Treccani, Laura; Maas, Michael; Dringen, Ralf; Rezwan, Kurosch

    2015-12-09

    In this study, we demonstrate how functional groups on the surface of mesoporous silica nanoparticles (MSNPs) can influence the encapsulation and release of the anticancer drug doxorubicin, as well as cancer cell response in the absence or presence of serum proteins. To this end, we synthesized four differently functionalized MSNPs with amine, sulfonate, polyethylene glycol, or polyethylene imine functional surface groups, as well as one type of antibody-conjugated MSNP for specific cellular targeting, and we characterized these MSNPs regarding their physicochemical properties, colloidal stability in physiological media, and uptake and release of doxorubicin in vitro. Then, the MSNPs were investigated for their cytotoxic potential on cancer cells. Cationic MSNPs could not be loaded with doxorubicin and did therefore not show any cytotoxic and antiproliferative potential on osteosarcoma cells, although they were efficiently taken up into the cells in the presence or absence of serum. In contrast, substantial amounts of doxorubicin were loaded into negatively charged and unfunctionalized MSNPs. Especially, sulfonate-functionalized doxorubicin-loaded MSNPs were efficiently taken up into the cells in the presence of serum and showed an accelerated toxic and antiproliferative potential compared to unfunctionalized MSNPs, antibody-conjugated MSNPs, and even free doxorubicin. These findings stress the high importance of the surface charge as well as of the protein corona for designing and applying nanoparticles for targeted drug delivery.

  7. High-intensity focused ultrasound-mediated doxorubicin delivery with thermosensitive liposomes

    NASA Astrophysics Data System (ADS)

    Escoffre, Jean-Michel; Mannaris, Christophoros; Novell, Anthony; Rioc, Laëtitia; Meyre, Marie-Edith; Germain, Matthieu; Averkiou, Michalakis; Bouakaz, Ayache

    2012-10-01

    Local drug delivery of doxorubicin holds promise to improve the therapeutic efficacy and to reduce toxicity profiles. Here, we investigated the release of doxorubicin from thermosensitive liposomes (Dox-TSL) into human glioblastoma (U-87MG) cells. Using Dox-TSL, experiments were carried out in a water bath and showed that 15 min incubation of TSL at 43°C induced the release of 80% doxorubicin loaded TSL compared to the release at 37°C. The cytotoxicity of a range of concentrations of Dox-TSL was also evaluated on U-87MG cells. At 37°C, no cytotoxicity was observed, whereas at 43°C the results showed that the cytotoxicity is dose dependent. At maximal dose of doxorubicin (30 μg/mL), the cell viability was less than 20%. Application of 15 min of HIFU at 1 MHz, 1.5 MPa and 50% duty cycle induced the release of 100% of doxorubicin from Dox-TSL. In the same experimental condition, the cell viability decreased to 40% and 20% at 12h and 48h, respectively, in comparison to that obtained during the incubation of cells with Dox-TSL alone without HIFU. In conclusion, a significant release of doxorubicin from temperature-sensitive liposomes can be achieved leading to an efficient treatment and cell death of tumor cells using HIFU.

  8. In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3

    PubMed Central

    Botlagunta, Mahendran; Kollapalli, Bhulakshmi; Kakarla, Lavanya; Gajarla, Siva Priya; Gade, Sai Pujitha; Dadi, Chandra Lekha; Penumadu, Akhila; Javeed, Shaik

    2016-01-01

    RNA helicase, DDX3 is a multifunctional enzyme and is known to be associated with several diseases like HIV progression, brain and breast cancer. Some of the ring expanded nucleoside compounds such as REN: NZ51, fused di imidazodiazepine ring (RK33), (Z)-3-(5- (3-bromo benzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(2- hydroxy phenyl) propanamide compound (FE15) have been documented to inhibit DDX3 helicase activity. However, synthesis of these drugs is limited to few research groups. Prevalence of literature study, we found that doxorubicin form strong hydrogen bond interactions with crystallized form of DDX3 using in-silico molecular docking approach. To evaluate the biological inhibitory action of doxorubicin, we performed the ATPase activity assay and anti-cancer activity using H357 cancer cell lines. Results showed that doxorubicin continually declined the inorganic phosphate (Pi) release and inhibited the ATP hydrolysis by directly interacting with DDX3. Anticancer activity was detected by MTT assay. The half maximal inhibitory concentrations of doxorubicin (IC50) for H357 cancer cell line is 50 μM and also doxorubicin significantly down regulated the expression of DDX3. Taken together, our results demonstrate, that inhibition of DDX3 expression by using doxorubicin can be used as an ideal drug candidate to treat DDX3 associated cancer disorder by interacting with unique amino acid residues (Thr 198) and common amino acid residues (Tyr 200 and Thr 201). PMID:28246464

  9. A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence

    PubMed Central

    Ghosh, Asish K.; Rai, Rahul; Park, Kitae E.; Eren, Mesut; Miyata, Toshio; Wilsbacher, Lisa D.; Vaughan, Douglas E.

    2016-01-01

    Doxorubicin, an anthracycline antibiotic, is a commonly used anticancer drug. In spite of its widespread usage, its therapeutic effect is limited by its cardiotoxicity. On the cellular level, Doxorubicin-induced cardiotoxicity manifests as stress induced premature senescence. Previously, we demonstrated that plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of serine proteases, is an important biomarker and regulator of cellular senescence and aging. Here, we tested the hypothesis that pharmacological inhibition of cellular PAI-1 protects against stress- and aging-induced cellular senescence and delineated the molecular basis of protective action of PAI-1 inhibition. Results show that TM5441, a potent small molecule inhibitor of PAI-1, effectively prevents Doxorubicin-induced senescence in cardiomyocytes, fibroblasts and endothelial cells. TM5441 exerts its inhibitory effect on Doxorubicin-induced cellular senescence by decreasing reactive oxygen species generation, induction of antioxidants like catalase and suppression of stress-induced senescence cadre p53, p21, p16, PAI-1 and IGFBP3. Importantly, TM5441 also reduces replicative senescence of fibroblasts. Together these results for the first time demonstrate the efficacy of PAI-1 inhibitor in prevention of Doxorubicin-induced and replicative senescence in normal cells. Thus PAI-1 inhibitor may form an important adjuvant component of chemotherapy regimens, limiting not only Doxorubicin-induced cardiac senescence but also ameliorating the prothrombotic profile. PMID:27736799

  10. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Singh, Mandip

    2015-07-15

    The objectives of this study were to develop an innovative investigative model using doxorubicin as a fluorophore to evaluate the skin permeation of nanocarriers and the impact of size and surface characteristics on their permeability. Different doxorubicin-loaded liposomes with mean particle size <130 nm and different surface chemistry were prepared by ammonium acetate gradient method using DPPC, DOPE, Cholesterol, DSPE-PEG 2000 and 1,1-Di-((Z)-octadec-9-en-1-yl) pyrrolidin-1-ium chloride (CY5)/DOTAP/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) as the charge modifier. There was minimal release of doxorubicin from the liposomes up to 8h; indicating that fluorescence observed within the skin layers was due to the intact liposomes. Liposomes with particle sizes >600 nm were restricted within the stratum corneum. DOTAP (p<0.01) and CY5 (p<0.05) liposomes demonstrated significant permeation into the skin than DOPA and PEG liposomes. Tape stripping significantly (p<0.01) enhanced the skin permeation of doxorubicin liposomes but TAT-decorated doxorubicin liposomes permeated better (p<0.005). Blockage of the hair follicles resulted in significant reduction in the extent and intensity of fluorescence observed within the skin layers. Overall, doxorubicin liposomes proved to be an ideal fluorophore-based model. The hair follicles were the major route utilized by the liposomes to permeate skin. Surface charge and particle size played vital roles in the extent of permeation.

  11. Activity of 129 Single-Agent Drugs in 228 Phase I and II Clinical Trials in Multiple Myeloma

    PubMed Central

    Kortuem, K. Martin; Zidich, Kaitlyn; Schuster, Steven R.; Khan, Meaghan L.; Jimenez-Zepeda, Victor H.; Mikhael, Joseph R.; Fonseca, Rafael; Stewart, A. Keith

    2014-01-01

    Background More than 400 preclinical studies report ≥ 1 compound as cytotoxic to multiple myeloma (MM) cells; however, few of these agents became relevant in the clinic. Thus, the utility of such assays in predicting future clinical value is debatable. Patients and Methods We examined the application of early-phase trial experiences to predict future clinical adoption. We identified 129 drugs explored as single agents in 228 trials involving 7421 patients between 1961 and 2013. Results All drugs in common use in MM (melphalan, dexamethasone, prednisone, cyclophosphamide, bendamustine, thalidomide, lenalidomide, pomalidomide, bortezomib, carfilzomib, and doxorubicin) demonstrated a best reported response rate of ≥ 22%. Older agents, including teniposide, fotemustine, paclitaxel, and interferon, also appear active by this criterion; however, if mean response rates from all reported trials for an agent are considered, then only drugs with a mean response rate of 15% partial response are in clinical use. Conclusion Our analysis suggests that thresholds of 20% for best or 15% for mean response are highly predictive of future clinical success. Below these thresholds, no drug has yet reached regulatory approval or widespread use in the clinic. Thus, this benchmark provides 1 element of the framework for guiding choice of drugs for late-stage clinical testing. PMID:24565465

  12. Primary chemotherapy with gemcitabine, liposomal doxorubicin and docetaxel in patients with locally advanced breast cancer: results of a phase I trial.

    PubMed

    Schmid, Peter; Krocker, Jutta; Schulz, Carsten-Oliver; Michniewicz, Katarzyna; Dieing, Annette; Eggemann, Holm; Heilmann, Volker; Blohmer, Jens-Uwe; Sezer, Orhan; Elling, Dirk; Possinger, Kurt

    2005-01-01

    The primary objective was to determine the optimal doses for gemcitabine (prolonged infusion), liposomal doxorubicin (Myocet) and docetaxel as primary (neoadjuvant) chemotherapy for locally advanced breast cancer. Secondary objectives included evaluation of the safety and efficacy of the regimen. Patients (n=19) with histologically confirmed stage II or III breast cancer were treated with liposomal doxorubicin (50-60 mg/m2) and docetaxel (60-75 mg/m2) on day 1, and gemcitabine as 4-h infusion (350-400 mg/m2) on day 4. Treatment was repeated every 3 weeks for a maximum of 6 cycles. The maximum tolerated doses were gemcitabine 350 mg/m2, liposomal doxorubicin 60 mg/m2 and docetaxel 75 mg/m2. Dose-limiting toxicities were stomatitis, diarrhea and infection. The predominant hematologic toxicity was mild-to-moderate myelosuppression with grade 3/4 neutropenia in 20% of cycles. Non-hematologic toxicity was generally mild, with no grade 4 toxicities being observed. Predominant non-hematologic toxicity was stomatitis, which occurred in 95% of patients. Grade 3 toxicities were reported for stomatitis, nausea, diarrhea, infection and constipation. No cases of cardiac, renal, pulmonary or neurotoxicity were observed. The clinical response rate was 83% and histologically confirmed, clinically complete remissions occurred in two patients (11%). We conclude that the combination of gemcitabine (prolonged infusion), liposomal doxorubicin and docetaxel is safe and highly effective in patients with locally advanced breast cancer as defined by maximum tolerated doses. The evaluated schedule is suitable for phase II studies.

  13. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... Orange Parkinson’s Awareness Month Were you exposed to herbicides during service and have Parkinson’s disease? You may ...

  14. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery.

    PubMed

    Wu, Wenqi; Chen, Hui; Shan, Fengying; Zhou, Jing; Sun, Xun; Zhang, Ling; Gong, Tao

    2014-10-06

    The purpose of this study was to develop a safe and effective drug delivery system for local chemotherapy. A novel injectable in-situ-forming gel system was prepared using small molecule materials, including phospholipids, medium chain triglycerides (MCTs), and ethanol. Thus, this new sustained release system was named PME (first letter of phospholipids, MCT, and ethanol). PME has a well-defined molecule structure, a high degree of safety, and better biocompatible characteristics. It was in sol state with low viscosity in vitro and turned into a solid or semisolid gel in situ after injection. When loaded with doxorubicin (Dox), PME-D (doxorubicin-loaded PME) exhibited notably antitumor efficiency in S180 sarcoma tumors bearing mice after a single intratumoral injection. In vitro, PME-D had remarkable antiproliferative efficacies against MCF-7 breast cancer cells for over 5 days. Moreover, the initial burst effect can hardly be observed from PME system, which was different from many other in-situ-forming gels. The in vivo biodistribution study showed the high Dox concentration in tumors compared with other major organs after PME-D intratumoral administration. The strong signal in tumors was retained for more than 14 days after one single injection. The high concentration of Dox in tumor and long-term retention may explain the superior therapeutic efficacy and reduced side effects. The PME-D in-situ-forming gel system is a promising drug delivery system for local chemotherapy.

  15. Dacetuzumab plus rituximab, ifosfamide, carboplatin and etoposide as salvage therapy for patients with diffuse large B-cell lymphoma relapsing after rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone: a randomized, double-blind, placebo-controlled phase 2b trial.

    PubMed

    Fayad, Luis; Ansell, Stephen M; Advani, Ranjana; Coiffier, Bertrand; Stuart, Robert; Bartlett, Nancy L; Forero-Torres, Andres; Kuliczkowski, Kazimierz; Belada, David; Ng, Edmund; Drachman, Jonathan G

    2015-01-01

    Single-agent dacetuzumab has demonstrated antitumor activity in relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Preclinical data demonstrated improved dacetuzumab antitumor activity in combination with rituximab, ± chemotherapy. We designed a phase 2b, double-blind, placebo-controlled trial to compare rituximab, ifosfamide, carboplatin and etoposide (R-ICE) + dacetuzumab with R-ICE + placebo in patients with DLBCL who relapsed after rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) (ClinicalTrials.gov #NCT00529503). The primary endpoint was complete response (CR); additional endpoints included failure-free survival and overall survival (OS). Overall, 151 patients were randomized (75 dacetuzumab, 76 placebo). No notable differences between arms in demographics or subsequent treatment parameters were observed. Cytopenias, cough and infection were more frequent with dacetuzumab. Futility analysis failed to demonstrate higher CR rates with dacetuzumab (36% dacetuzumab, 42% placebo); consequently, enrollment was stopped. Unplanned post hoc analysis showed that patients who underwent subsequent autologous stem cell transplant experienced improvement in OS (hazard ratio = 0.195, p = 0.004), which may be explained by potential immunomodulatory effects of dacetuzumab on antigen-presenting cells.

  16. Development of a bone targeted thermosensitive liposomal doxorubicin formulation based on a bisphosphonate modified non-ionic surfactant.

    PubMed

    Song, Heliang; Zhang, Jiabing; Liu, Xinrong; Deng, Tongming; Yao, Peng; Zhou, Shaobing; Yan, Weili

    2016-09-01

    Bone is among the most common sites of metastasis in cancer patients, so it is an urgent need to develop drug delivery systems targeting tumor bone metastasis with the feature of controlled release. This study aimed to delivery of thermosensitive liposomal doxorubicin to bone for tumor metastasis treatment. First, Brij78 (polyoxyethylene stearyl ether) was conjugated with Pamidronate (Pa). By incorporating Pa-Brij78 to DPPC/Chol liposomes, we developed Pa surface functionalized liposomes. The Pa-Brij78/DPPC/Chol liposomes (PB-liposomes) exhibited a stronger binding affinity to hydroxyapatite (HA), a major component of bone, than Brij78/DPPC/Chol liposomes (B-liposomes). Doxorubicin (Dox) was then encapsulated in PB-liposomes and the results demonstrated complete release of Dox from PB-liposomes or the complex of HA/PB-liposomes within 10 min at 42 °C. Next, human lung cancer A549 cells were treated with the thermosensitive complex of HA/PB-liposomes/Dox to mimic tumor bone metastasis treatment through bone targeted delivery of therapeutic agents. Pre-incubation of HA/PB-liposomes/Dox with mild heat at 42 °C induced subsequent higher cytotoxicity to A549 cells than incubation of the same complex at 37 °C, suggesting more active drug release triggered by heat. In conclusion, we synthesized a novel surfactant Pa-Brij78 and it has the potential to be used for development of a bone targeted thermosensitive liposome formulation for treatment of tumor bone metastasis.

  17. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy.

    PubMed

    Fernandes, Renata S; Silva, Juliana O; Monteiro, Liziane O F; Leite, Elaine A; Cassali, Geovanni D; Rubello, Domenico; Cardoso, Valbert N; Ferreira, Lucas A M; Oliveira, Mônica C; de Barros, André L B

    2016-12-01

    Nowadays cancer is one of the most common causes of deaths worldwide. Conventional antitumor agents still present various problems related to specificity for tumor cells often leading to therapeutic failure. Nanoscale particles are considered potential alternative to direct access of drugs into tumor cells, therefore increasing the drug accumulation and performance. The aim of this study was to evaluate the antitumor activity of doxorubicin (DOX)-loaded nanostructured lipid carriers (NLC) versus liposomes against a breast cancer animal experimental model. NLC-DOX and liposomes-DOX were successfully prepared and characterized. Tumor-bearing mice were divided into five groups (blank-NLC, blank-liposome, DOX, NLC-DOX, liposome-DOX). Each animal received by the tail vein four doses of antitumoral drugs (total dose, 16mg/kg), every 3 days. Antitumor efficacy was assessed by measuring 1) tumor volume, calculating the inhibitory ratio (TV-IR, see after) and 2) acquiring scintigraphic images of the tumor using doxorubicin radiolabeled with technetium-99m as an imaging tumor probe. Liposome-DOX and free DOX did not showed differences in the tumor mean volume, whereas NLC-DOX proved to be the best treatments in controlling the tumor growth. NLC-DOX showed an inhibition ration (TV-IR) of 73.5% while free DOX and liposome-DOX decreased TV-RI of 48.8% and 68.0%, respectively. Tumor was clearly visualized in controls, DOX, and liposome-DOX groups. Yet, regarding the NLC-DOX group, tumor was barely identified by the image, indicating antitumor efficacy. Moreover, both NLC and liposomes proved to be able to delay the occurrence of lung metastasis. In conclusion, results of this study indicated that NLC-DOX might be an alternative strategy to achieve an efficient antitumor activity.

  18. Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer.

    PubMed

    Wu, Sheng-Kai; Chiang, Chi-Feng; Hsu, Yu-Hone; Lin, Tzu-Hung; Liou, Houng-Chi; Fu, Wen-Mei; Lin, Win-Li

    2014-01-01

    The blood-brain/tumor barrier inhibits the uptake and accumulation of chemotherapeutic drugs. Hyperthermia can enhance the delivery of chemotherapeutic agent into tumors. In this study, we investigated the effects of short-time focused ultrasound (FUS) hyperthermia on the delivery and therapeutic efficacy of pegylated liposomal doxorubicin (PLD) for brain metastasis of breast cancer. Murine breast cancer 4T1-luc2 cells expressing firefly luciferase were injected into female BALB/c mice striatum tissues and used as a brain metastasis model. The mice were intravenously injected with PLD (5 mg/kg) with/without 10-minute transcranial FUS hyperthermia on day 6 after tumor implantation. The amounts of doxorubicin accumulated in the normal brain tissues and tumor tissues with/without FUS hyperthermia were measured using fluorometry. The tumor growth for the control, hyperthermia, PLD, and PLD + hyperthermia groups was measured using an IVIS spectrum system every other day from day 3 to day 11. Cell apoptosis and tumor characteristics were assessed using immunohistochemistry. Short-time FUS hyperthermia was able to significantly enhance the PLD delivery into brain tumors. The tumor growth was effectively inhibited by a single treatment of PLD + hyperthermia compared with both PLD alone and short-time FUS hyperthermia alone. Immunohistochemical examination further demonstrated the therapeutic efficacy of PLD plus short-time FUS hyperthermia for brain metastasis of breast cancer. The application of short-time FUS hyperthermia after nanodrug injection may be an effective approach to enhance nanodrug delivery and improve the treatment of metastatic cancers.

  19. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats

    PubMed Central

    Goyal, Sameer N; Mahajan, Umesh B; Chandrayan, Govind; Kumawat, Vivek S; Kamble, Sarika; Patil, Pradip; Agrawal, Yogeeta O; Patil, Chandragouda R; Ojha, Shreesh

    2016-01-01

    The prevention of doxorubicin (Dox) induced cardiotoxicity may be co-operative to recover future Dox treatment. The aim of this study was to explore the cardioprotective effects of oleanolic acid (OA), an antioxidant agent, on Dox induced cardiotoxicity. OA is a triterpenoid compound, which exist widely in plant kingdom in free acid form or as a glycosidic triterpenoids saponins. Cardiotoxicity was induced in Wistar rats with single intravenous injection of doxorubicin at dose of 67.75 mg/kg i.v for 48 hrs. At 12 hrs of interval following Dox administration the cardioprotective effect of OA (1.5 mg/kg, i.v.) and Amifostine (AMF) (90 mg/kg i.v., single dose prior 30 min) were evaluated. Induction of cardiotoxicity was confirmed by increase in systolic, diastolic, mean arterial pressures, maximal positive rate of developed left ventricular pressure (+LVdP/dtmax, an indicator of myocardial contraction), maximal negative rate of developed left ventricular pressure (-LVdP/dtmax, a meter of myocardial relaxation) and an increase in left ventricular end-diastolic pressure (LVEDP, a marker of pre-load). Cardiac markers in such as CK-MB, LDH and alterations in ECG. Dox administration showed alteration in Biochemical parameters and endogenous antioxidants. Administration of OA Showed maximal protection against Dox induced cardiac toxicity as observed by reduction in blood pressure, prevention of left ventricular function and attenuation of biochemical and antioxidant parameters. Based on the findings, its concluded that OA can be used as an adjuvant with Dox therapy in treating cancers. PMID:27069540

  20. Akt Rescue in Cardiomyocytes but not Breast Cancer Cells After Doxorubicin and Anti-erB2 Treatment

    DTIC Science & Technology

    2006-05-01

    creating a useful in- vivo model for investigation of cardiotoxicity. Both doxorubicin administration and presence of indwelling venous catheters have... catheterized group (87.5%) achieved cardiotoxicity relative to the doxorubicin treated/venotomy group (28.6%). This was reflected by an earlier and more...precipitous decline in fractional shortening demonstrated by the doxorubicin treated/ catheterized rats. Despite this, rats from catheterized groups

  1. Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells.

    PubMed

    Regev, R; Assaraf, Y G; Eytan, G D

    1999-01-01

    The anesthetics benzyl alcohol and the nonaromatic chloroform and diethyl ether, abolish P-glycoprotein (Pgp) ATPase activity in a mode that does not fit classical competitive, noncompetitive, or uncompetitive inhibition. At concentrations similar to those required for inhibition of ATPase activity, these anesthetics fluidize membranes leading to twofold acceleration of doxorubicin flip-flop across lipid membranes and prevent photoaffinity labeling of Pgp with [125I]-iodoarylazidoprazosin. Similar concentrations of ether proved nontoxic and modulated efflux from Pgp-overexpressing cells. A similar twofold acceleration of doxorubicin flip-flop rate across membranes was observed with neutral mild detergents, including Tween 20, Nonidet P-40 and Triton X-100, and certain Pgp modulators, such as verapamil and progesterone. Concentrations of these agents, similar to those required for membrane fluidization, inhibited Pgp ATPase activity in a mode similar to that observed with the anesthetics. The mode of inhibition, i.e. lack of evidence for classical enzyme inhibition and the correlation of Pgp ATPase inhibition with membrane fluidization over a wide range of concentrations and structures of drugs favors the direct inhibition of Pgp ATPase activity by membrane fluidization. The unusual sensitivity of Pgp to membrane fluidization, as opposed to acceleration of ATPase activity of ion transporters, could fit the proposed function of Pgp as a 'flippase', which is in close contact with the membrane core.

  2. Boswellic acids synergize antitumor activity and protect against the cardiotoxicity of doxorubicin in mice bearing Ehrlich's carcinoma.

    PubMed

    Ali, Shimaa A; Zaitone, Sawsan A; Moustafa, Yasser M

    2015-08-01

    This study aimed to test whether boswellic acids add to the antitumor effects of doxorubicin against solid tumors of Ehrlich's ascites carcinoma (EAC) grown in mice, and to investigate the protective effects of boswellic acids against doxorubicin-induced cardiotoxicity. Sixty-four female Swiss albino mice bearing EAC solid tumors were distributed among 8 groups as follows: group 1, EAC control group; group 2, doxorubicin treatment group [mice were injected with doxorubicin (6 mg·(kg body mass)(-1)·week(-1)) for 3 weeks]; groups 3-5, these mice were treated with boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively; groups 6-8, these mice were treated with a combination of doxorubicin and boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively, for 3 weeks. The results indicated that boswellic acids synergized the antitumor activity of doxorubicin. Doxorubicin-treated mice showed elevated serum activities of lactate dehydrogenase and creatine kinase isoenzyme MB as well as cardiac malondialdehyde. Further, decreases in cardiac levels of reduced glutathione, superoxide dismutase, and catalase activities were observed. These effects were accompanied by an increase in cardiac expression of caspase 3. Thus, treatment with boswellic acids attenuated doxorubicin-evoked disturbances in the above-mentioned parameters, highlighting antioxidant and antiapoptotic activities. Therefore, boswellic acids could be potential candidates for ameliorating the cardiotoxicity of doxorubicin.

  3. Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models

    PubMed Central

    Lamas, DJMartinel; Nicoud, MB; Sterle, HA; Carabajal, E; Tesan, F; Perazzo, JC; Cremaschi, GA; Rivera, ES; Medina, VA

    2015-01-01

    The aim of the present work was to evaluate the potential protective effect of histamine on Doxorubicin (Dox)-induced hepatic and cardiac toxicity in different rodent species and in a triple-negative breast tumor-bearing mice model. Male Sprague Dawley rats and Balb/c mice were divided into four groups: control (received saline), histamine (5 mg/kg for rats and 1 mg/kg for mice, daily subcutaneous injection starting 24 h before treatment with Dox), Dox (2 mg/kg, intraperitoneally injected three times a week for 2 weeks) and Dox+histamine (received both treatments). Tissue toxicity was evaluated by histopathological studies and oxidative stress and biochemical parameters. The combined effect of histamine and Dox was also investigated in vitro and in vivo in human MDA-MB-231 triple-negative breast cancer model. Heart and liver of Dox-treated animals displayed severe histological damage, loss of tissue weight, increased TBARS levels and DNA damage along with an augment in serum creatine kinase-myocardial band. Pretreatment with histamine prevented Dox-induced tissue events producing a significant preservation of the integrity of both rat and mouse myocardium and liver, through the reduction of Dox-induced oxidative stress and apoptosis. Histamine treatment preserved anti-tumor activity of Dox, exhibiting differential cytotoxicity and increasing the Dox-induced inhibition of breast tumor growth. Findings provide preclinical evidence indicating that histamine could be a promising candidate as a selective cytoprotective agent for the treatment of Dox-induced cardiac and hepatic toxicity, and encourage the translation to clinical practice. PMID:27551485

  4. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.

    PubMed

    Tam, Yu Tong; To, Kenneth Kin Wah; Chow, Albert Hee Lum

    2016-03-01

    Over-expression of ATP-binding cassette transporters is one of the most important mechanisms responsible for multidrug resistance. Here, we aimed to develop a stable polymeric nanoparticle system by flash nanoprecipitation (FNP) for enhanced anticancer drug delivery into drug resistant cancer cells. As an antisolvent precipitation process, FNP works best for highly lipophilic solutes (logP>6). Thus we also aimed to evaluate the applicability of FNP to drugs with relatively low lipophilicity (logP=1-2). To this end, doxorubicin (DOX), an anthracycline anticancer agent and a P-gp substrate with a logP of 1.3, was selected as a model drug for the assessment. DOX was successfully incorporated into the amphiphilic diblock copolymer, polyethylene glycol-b-polylactic acid (PEG-b-PLA), by FNP using a four-stream multi-inlet vortex mixer. Optimization of key processing parameters and co-formulation with the co-stabilizer, polyvinylpyrrolidone, yielded highly stable, roughly spherical DOX-loaded PEG-b-PLA nanoparticles (DOX.NP) with mean particle size below 100nm, drug loading up to 14%, and drug encapsulation efficiency up to 49%. DOX.NP exhibited a pH-dependent drug release profile with higher cumulative release rate at acidic pHs. Surface analysis of DOX.NP by XPS revealed an absence of DOX on the particle surface, indicative of complete drug encapsulation. While there were no significant differences in cytotoxic effect on P-gp over-expressing LCC6/MDR cell line between DOX.NP and free DOX in buffered aqueous media, DOX.NP exhibited a considerably higher cellular uptake and intracellular retention after efflux. The apparent lack of cytotoxicity enhancement with DOX.NP may be attributable to its slow DOX release inside the cells.

  5. Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice

    PubMed Central

    Hsu, Pei-Ling; Mo, Fan-E

    2016-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an β6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin β6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/β6β1 engagement abolishes DOX-associated cardiomyopathy in mice. PMID:27167338

  6. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice

    PubMed Central

    Dekaney, Christopher M.; Gulati, Ajay S.; Garrison, Aaron P.; Helmrath, Michael A.; Henning, Susan J.

    2009-01-01

    The intestinal epithelium is in a constant state of renewal. The rapid turnover of cells is fed by a hierarchy of transit amplifying and stem/progenitor cells destined to give rise to the four differentiated epithelial lineages of the small intestine. Doxorubicin (Dox) is a commonly used chemotherapeutic agent that preferentially induces apoptosis in the intestinal stem cell zone (SCZ). We hypothesized that Dox treatment would initially decrease “+4” intestinal stem cell numbers with a subsequent expansion during mucosal repair. Temporal assessment following Dox treatment demonstrated rapid induction of apoptosis in the SCZ leading to a decrease in the number of intestinal stem/progenitor cells as determined by flow cytometry for CD45(−) SP cells, and immunohistochemistry of cells positive for putative +4 stem cell markers β-catSer552 and DCAMKL1. Between 96 and 168 h postinjection, overall proliferation in the crypts increased concomitant with increases in both absolute and relative numbers of goblet, Paneth, and enteroendocrine cells. This regeneration phase was also associated with increases of CD45(−) SP cells, β-catSer552-positive cells, crypt fission, and crypt number. We used Lgr5-lacZ mice to assess behavior of Lgr5-positive stem cells following Dox and found no change in this cell population. Lgr5 mRNA level was also measured and showed no change immediately after Dox but decreased during the regeneration phase. Together these data suggest that, following Dox-induced injury, expansion of intestinal stem cells occurs during mucosal repair. On the basis of available markers this expansion appears to be predominantly the +4 stem cell population rather than those of the crypt base. PMID:19589945

  7. Mitochondrial topoisomerase I (Top1mt) is a novel limiting factor of doxorubicin cardiotoxicity

    PubMed Central

    Khiati, Salim; Dalla Rosa, Ilaria; Sourbier, Carole; Ma, Xuefei; Rao, V. Ashutosh; Neckers, Leonard M; Zhang, Hongliang; Pommier, Yves

    2014-01-01

    Purpose Doxorubicin (DOX) is one of the most effective chemotherapeutic agents. However, up to 30% of the patients treated with DOX suffer from congestive heart failure. The mechanism of DOX cardiotoxicity is likely multifactorial and most importantly, the genetic factors predisposing to DOX cardiotoxicity are unknown. Based on the fact that mtDNA lesions and mitochondrial dysfunctions have been found in human hearts exposed to DOX and that mitochondrial topoisomerase 1 (Top1mt) specifically controls mtDNA homeostasis, we hypothesized that Top1mt knockout (KO) mice might exhibit hypersensitivity to DOX. Experimental Design Wild type (WT) and knockout Top1mt mice were treated once a week with 4 mg/kg DOX for 8 weeks. Heart tissues were analyzed one week after the last treatment. Results Genetic inactivation of Top1mt in mice accentuates mtDNA copy number loss and mtDNA damage in heart tissue following DOX treatment. Top1mt knockout mice also fail to maintain respiratory chain protein production and mitochondrial cristae ultrastructure organization. These mitochondrial defects result in decreased O2 consumption, increased ROS production and enhanced heart muscle damage in animals treated with DOX. Accordingly, Top1mt knockout mice die within 45 days after the last DOX injection under conditions whereas the wild type mice survive. Conclusions Our results provide evidence that mitochondrial topoisomerase I, Top1mt, which is conserved across vertebrates, is critical for cardiac tolerance to DOX and adaptive response to DOX cardiotoxicity. They also suggest the potential of Top1mt single nucleotide polymorphisms (SNP) testing to investigate patient susceptibility to DOX induced cardiotoxicity. PMID:24714774

  8. G Protein Inactivator RGS6 Mediates Myocardial Cell Apoptosis and Cardiomyopathy Caused by Doxorubicin

    PubMed Central

    Yang, Jianqi; Maity, Biswanath; Huang, Jie; Gao, Zhan; Stewart, Adele; Weiss, Robert M.; Anderson, Mark E.; Fisher, Rory A.

    2013-01-01

    Clinical use of the widely used chemotherapeutic agent doxorubicin is limited by life-threatening cardiotoxicity. The mechanisms underlying Dox-induced cardiomyopathy and heart failure remain unclear, but are thought to involve p53-mediated myocardial cell apoptosis. The tripartite G protein inactivating protein RGS6 has been implicated in reactive oxygen species (ROS) generation, ATM/p53 activation and apoptosis in Dox-treated cells. Thus, we hypothesized that RGS6, the expression of which is enriched in cardiac tissue, might also be responsible for the pathological effects of Dox treatment in heart. In this study, we show that RGS6 expression is induced strongly by Dox in the ventricles of mice and isolated ventricular myocytes (VCM) via a post-transcriptional mechanism. While Dox-treated wild type (WT) mice manifested severe left ventricular dysfunction, loss of heart and body mass, along with decreased survival five days after Dox administration, mice lacking RGS6 were completely protected against these pathogenic responses. Activation of ATM/p53-apoptosis signaling by Dox in ventricles of WT mice was also absent in their RGS6−/− counterparts. Dox-induced ROS generation was dramatically impaired in both the ventricles and VCM isolated from RGS6−/− mice, and the apoptotic response to Dox in VCM required RGS6-dependent ROS production. These results identify RGS6 as an essential mediator of the pathogenic responses to Dox in heart, and they argue that RGS6 inhibition offers a rational means to circumvent Dox cardiotoxicity in human cancer patients. PMID:23338613

  9. Embryonic stem cells improve cardiac function in Doxorubicin-induced cardiomyopathy mediated through multiple mechanisms.

    PubMed

    Singla, Dinender K; Ahmed, Aisha; Singla, Reetu; Yan, Binbin

    2012-01-01

    Doxorubicin (DOX) is an effective antineoplastic agent used for the treatment of a variety of cancers. Unfortunately, its use is limited as this drug induces cardiotoxicity and heart failure as a side effect. There is no report that describes whether transplanted embryonic stem (ES) cells or their conditioned medium (CM) in DOX-induced cardiomyopathy (DIC) can repair and regenerate myocardium. Therefore, we transplanted ES cells or CM in DIC to examine apoptosis, fibrosis, cytoplasmic vacuolization, and myofibrillar loss and their associated Akt and ERK pathway. Moreover, we also determined activation of endogenous c-kit(+ve) cardiac stem cells (CSCs), levels of HGF and IGF-1, growth factors required for c-kit cell activation, and their differentiation into cardiac myocytes, which also contributes in cardiac regeneration and improved heart function. We generated DIC in C57Bl/6 mice (cumulative dose of DOX 12 mg/kg body weight, IP), and animals were treated with ES cells, CM, or cell culture medium in controls. Two weeks post-DIC, ES cells or CM transplanted hearts showed a significant (p < 0.05) decrease in cardiac apoptotic nuclei and their regulation with Akt and ERK pathway. Cardiac fibrosis observed in the ES cell or CM groups was significantly less compared with DOX and cell culture medium groups (p < 0.05). Next, cytoplasmic vacuolization and myofibrillar loss was reduced (p < 0.05) following treatment with ES cells or CM. Moreover, our data also demonstrated increased levels of c-kit(+ve) CSCs in ES cells or CM hearts and differentiated cardiac myocytes from these CSCs, suggesting endogenous cardiac regeneration. Importantly, the levels of HFG and IGF-1 were significantly increased in ES cells or CM transplanted hearts. In conclusion, we reported that transplanted ES cells or CM in DIC hearts significantly decreases various adverse pathological mechanisms as well as enhances cardiac regeneration that effectively contributes to improved heart function.

  10. An Engineered Bivalent Neuregulin Protects Against Doxorubicin-Induced Cardiotoxicity with Reduced Pro-Neoplastic Potential

    PubMed Central

    Jay, Steven M.; Murthy, Ashwin C.; Hawkins, Jessica F.; Wortzel, Joshua R.; Steinhauser, Matthew L.; Alvarez, Luis M.; Gannon, Joseph; Macrae, Calum A.; Griffith, Linda G.; Lee, Richard T.

    2013-01-01

    Background Doxorubicin (DOXO) is an effective anthracycline chemotherapeutic, but its use is limited by cumulative dose-dependent cardiotoxicity. Neuregulin-1β (NRG1B) is an ErbB receptor family ligand that is effective against DOXO-induced cardiomyopathy in experimental models but is also pro-neoplastic. We previously showed that an engineered bivalent neuregulin-1β (NN) has reduced pro-neoplastic potential compared to the epidermal growth factor (EGF)-like domain of NRG1B (NRG), an effect mediated by receptor biasing towards ErbB3 homotypic interactions uncommonly formed by native NRG1B. Here, we hypothesized that a newly formulated, covalent NN would be cardioprotective with reduced pro-neoplastic effects compared to NRG. Methods and Results NN was expressed as a maltose-binding protein fusion in E. coli. As established previously, NN stimulated anti-neoplastic or cytostatic signaling and phenotype in cancer cells, whereas NRG stimulated pro-neoplastic signaling and phenotype. In neonatal rat cardiomyocytes (NRCM), NN and NRG induced similar downstream signaling. NN, like NRG, attenuated the double-stranded DNA breaks associated with DOXO exposure in NRCM and human cardiomyocytes derived from induced pluripotent stem cells. NN treatment significantly attenuated DOXO-induced decrease in fractional shortening as measured by blinded echocardiography in mice in a chronic cardiomyopathy model (57.7% ± 0.6% vs. 50.9% ± 2.6%, P=0.004), whereas native NRG had no significant effect (49.4% ± 3.7% vs. 50.9% ± 2.6%, P=0.813). Conclusions NN is a cardioprotective agent that promotes cardiomyocyte survival and improves cardiac function in DOXO-induced cardiotoxicity. Given the reduced pro-neoplastic potential of NN versus NRG, NN has translational potential for cardioprotection in cancer patients receiving anthracyclines. PMID:23757312

  11. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  12. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    SciTech Connect

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-05-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H/sub 2/O/sub 2/ deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity.

  13. Optimization of Doxorubicin Loading for Superabsorbent Polymer Microspheres: in vitro Analysis

    SciTech Connect

    Liu, David M.; Kos, Sebastian; Buczkowski, Andrzej; Kee, Stephen; Wasan, Ellen

    2012-04-15

    Purpose: This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP's ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Methods: Phase I: 50-100 {mu}m SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc and 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Results: Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. Conclusions: SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.

  14. Inhibition of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-11-21

    Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.

  15. Activity of pegylated liposomal doxorubicin in combination with gemcitabine in triple negative breast cancer with skin involvement: two case reports.

    PubMed

    Franchina, Tindara; Adamo, Barbara; Ricciardi, Giuseppina R R; Caristi, Nicola; Agostino, Rita Maria; Proto, Claudia; Adamo, Vincenzo

    2012-05-01

    Breast carcinoma (BC) is a heterogeneous disease in terms of histology, therapeutic response, dissemination patterns to distant sites and patient outcomes. Triple-negative breast cancer (TNBC), defined by the lack of protein expression of estrogen and progesterone receptors and the absence of HER2 protein overexpression (ER-/PR-/HER2-) has significant clinical implications due to their poor prognosis and the lack of targeted agents. Skin involvement is one of the most distressing presentations of locally recurrent breast cancer and few studies have identified effective agents in this setting. In fact, the increasing use of anthracycline/taxane-based chemotherapy in the neoadjuvant and/or adjuvant settings has led to investigate new cytotoxic therapies such as the combination of pegylated liposomal doxorubicin (PLD) with gemcitabine. Here, we report two cases of disseminated TNBC with extensive cutaneous metastases and a remarkable response to PLD in combination with gemcitabine. Further investigations are needed to confirm the efficacy of this regimen in skin involvement and TNBC.

  16. Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy.

    PubMed

    Han, Rui; Sun, Yuan; Kang, Chen; Sun, Huijing; Wei, Wenguang

    2017-02-01

    Combination cancer therapy has attracted considerable attention due to its enhanced antitumor efficacy and reduced toxicity granted by synergistic effects over monotherapy. The application of nanotechnology is expected to achieve coencapsulation of multiple anticancer agents with enhanced therapeutic efficacy. Herein, a unique nanomicelle based on amphiphilic dendrimer (AmD) consisting of a hydrophilic polyamidoamine dendritic shell and a hydrophobic polylactide core is developed for effectively loading and shuttling 5-fluorouracil (5-Fu) and doxorubicin (Dox). The yielded drug-encapsulated dendritic nanomicelle (5-Fu/Dox-DNM) has a modest average size of 68.6 ± 3.3 nm and shows pH-sensitive drug release manner. The parallel activity of 5-Fu and Dox show synergistic anticancer efficacy. The IC50 value of 5-Fu/Dox-DNM toward human breast cancer (MDA-MB-231) cells was 0.25 μg/mL, presenting an 11.2-fold and 6.1-fold increase in cytotoxicity compared to Dox-DNM and 5-Fu-DNM, respectively. Furthermore, 5-Fu/Dox-DNM significantly inhibits the progression of tumor growth in the MDA-MB-231 xenograft tumor mice model. In conclusion, we have demonstrated that our AmD-based combination therapeutic system has promising potential to open an avenue for coencapsulation of multiple chemotherapeutic agents to promote superior anticancer effect.

  17. Pegylated liposomal-encapsulated doxorubicin in cutaneous composite lymphoma

    PubMed Central

    Wollina, Uwe; Langner, Dana; Hansel, Gesina; Haroske, Gunter

    2016-01-01

    Abstract Background: Cutaneous composite lymphomas are very rare. Their treatment depends upon the different contributing lymphoma entities. Peripheral T-cell lymphoma, not otherwise specified, (PTCL-NOS) represents an aggressive lymphoma subtype. Follicular cutaneous B-cell lymphoma (FCBCL) runs an indolent course. Treatment with pegylated liposomal encapsulated doxorubicin (PLE-DOXO) has yet not been reported in this entity. Case presentation: A 73-year-old male patient presented with 3 rapidly growing, painful nodules on his left leg. He was diagnosed as composite cutaneous lymphoma consisting of PTCL-NOS and FCBCL. All lesions had been surgically removed. Staging was unremarkable. After 4 months a relapse occurred with involvement of inguinal lymph nodes and systemic treatment with PEL-DOXO 20 mg/ m2 every 3 weeks was initiated. After 6 cycles PLE-DOXO, which were well tolerated without grade 3 or 4 toxicities, a mixed response was obtained with complete remission of cutaneous lesions. Lymph nodes were treated by radiotherapy. A second relapse occurred after 8 months and various polychemotherapy regimens were applied without remission. The overall survival was 28 months. Conclusion: PEL-DOXO is a possible initial systemic treatment in case of PCTL-NOS. Whether polychemotherapy offers an advantage for survival remains questionable but further investigations are needed. PMID:27787356

  18. DNA-doxorubicin interaction: New insights and peculiarities.

    PubMed

    Silva, E F; Bazoni, R F; Ramos, E B; Rocha, M S

    2017-03-01

    We have investigated the interaction of the DNA molecule with the anticancer drug doxorubicin (doxo) by using three different experimental techniques: single molecule stretching, single molecule imaging, and dynamic light scattering. Such techniques allowed us to get new insights on the mechanical behavior of the DNA-doxo complexes as well as on the physical chemistry of the interaction. First, the contour length data obtained from single molecule stretching were used to extract the physicochemical parameters of the DNA-doxo interaction under different buffer conditions. This analysis has proven that the physical chemistry of such interaction can be modulated by changing the ionic strength of the surrounding buffer. In particular we have found that at low ionc strengths doxo interacts with DNA by simple intercalation (no aggregation) and/or by forming bound dimers. For high ionic strengths, otherwise, doxo-doxo self-association is enhanced, giving rise to the formation of bound doxo aggregates composed by 3 to 4 molecules along the double-helix. On the other hand, the results obtained for the persistence length of the DNA-doxo complexes is strongly force-dependent, presenting different behaviors when measured with stretching or non-stretching techniques.

  19. Roles of oxidative stress and Akt signaling in doxorubicin cardiotoxicity

    SciTech Connect

    Ichihara, Sahoko . E-mail: saho@gene.mie-u.ac.jp; Yamada, Yoshiji; Kawai, Yoshichika; Osawa, Toshihiko; Furuhashi, Koichi; Duan Zhiwen; Ichihara, Gaku

    2007-07-20

    Cardiotoxicity is a treatment-limiting side effect of the anticancer drug doxorubicin (DOX). We have now investigated the roles of oxidative stress and signaling by the protein kinase Akt in DOX-induced cardiotoxicity as well as the effects on such toxicity both of fenofibrate, an agonist of peroxisome proliferator-activated receptor-{alpha}, and of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), an antioxidant. Mice injected intraperitoneally with DOX were treated for 4 days with fenofibrate or PEG-SOD. Fenofibrate and PEG-SOD each prevented the induction of cardiac dysfunction by DOX. Both drugs also inhibited the activation of the transcription factor NF-{kappa}B and increase in lipid peroxidation in the left ventricle induced by DOX, whereas only PEG-SOD inhibited the DOX-induced activation of Akt and Akt-regulated gene expression. These results suggest that fenofibrate and PEG-SOD prevented cardiac dysfunction induced by DOX through normalization of oxidative stress and redox-regulated NF-{kappa}B signaling.

  20. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes.

    PubMed

    Wang, Yunxia; Yang, Sheng-Tao; Wang, Yanli; Liu, Yuanfang; Wang, Haifang

    2012-09-01

    Carbon nanotubes (CNTs) show promise as nano-drug carriers. To develop the CNT-based drug delivery systems, drug loading and release are two major issues. In this study, we systematically evaluated the adsorption and desorption of doxorubicin (DOX) on oxidized multi-walled CNTs (O-MWCNTs). Our results indicated that O-MWCNTs possessed a huge adsorption capacity for DOX (9.45×10(3) mg/g). Although the adsorption process was quite slow, the adsorption capacity kept high enough for the therapy while shortening the incubation time to 2h (1.03×10(3) mg/g). The desorption of DOX from O-MWCNTs scarcely occurred while incubated in buffer solution at both pH 7.4 and pH 5.5, however, the lower pH did benefit the desorption. The presence of serum proteins facilitated the desorption of DOX significantly, because these proteins bound strongly to O-MWCNTs resulting in the partial surface of O-MWNCTs being occupied. Moreover, the adsorption time also affected the release of DOX from O-MWCNTs. Shortening the incubation time benefited the release of DOX. The implications to the drug loading and therapeutics of the CNT-based drug delivery systems are discussed.

  1. Development and characterization of liposomal doxorubicin hydrochloride with palm oil.

    PubMed

    Sabeti, Bahareh; Noordin, Mohamed Ibrahim; Mohd, Shaharuddin; Hashim, Rosnani; Dahlan, Afendi; Javar, Hamid Akbari

    2014-01-01

    The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox). The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV) were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about -31 and -32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4) at 37°C. Comparing cytotoxicity and cellular uptake of LUV with Caelyx(R) on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

  2. Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil

    PubMed Central

    Sabeti, Bahareh; Noordin, Mohamed Ibrahim; Mohd, Shaharuddin; Hashim, Rosnani; Akbari Javar, Hamid

    2014-01-01

    The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox). The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV) were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4) at 37°C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes. PMID:24795894

  3. Biocompatible microemulsion modifies the tissue distribution of doxorubicin.

    PubMed

    Candido, Caroline Damico; Campos, Michel Leandro; Correa Vidigal Assumpção, Juliana Uruguay; Pestana, Kelly Chrystina; Padilha, Elias Carvalho; Carlos, Iracilda Zeppone; Peccinini, Rosângela Gonçalves

    2014-10-01

    The incorporation of doxorubicin (DOX) in a microemulsion (DOX-ME) has shown beneficial consequences by reducing the cardiotoxic effects of DOX. The aim of this study was to determine the distribution of DOX-ME in Ehrlich solid tumor (EST) and the heart, and compare it with that of free DOX. The distribution study was conducted with female Swiss mice with EST (n = 7 per group; 20-25 g). Animals received a single dose (10 mg/kg, i.p.) of DOX or DOX-ME 7 days after tumor inoculation. Fifteen minutes after administration, the animals were sacrificed, and the tumor and heart tissues were taken for immediate analysis by ultra-performance liquid chromatography. No difference was observed in DOX concentration in tumor tissue between DOX and DOX-ME administration. However, the most remarkable result in this study was the statistically significant reduction in DOX concentration in heart tissue of animals given DOX-ME. Mean DOX concentration in heart tissue was 0.92 ± 0.54 ng mg(-1) for DOX-ME and 1.85 ± 0.34 ng mg(-1) for free DOX. In conclusion, DOX-ME provides a better tissue distribution profile, with a lower drug concentration in heart tissue but still comparable tumor drug concentration, which indicates that antitumor activity would not be compromised.

  4. Doxorubicin-induced alopecia is associated with sebaceous gland degeneration.

    PubMed

    Selleri, Silvia; Seltmann, Holger; Gariboldi, Silvia; Shirai, Yuri F; Balsari, Andrea; Zouboulis, Christos C; Rumio, Cristiano

    2006-04-01

    Alopecia, accompanied by skin dryness, is one of the distressing side effects often occurring in chemotherapy-treated cancer patients. Little is known of the effects of chemotherapy on sebaceous glands, despite their importance in hair follicle homeostasis. This study investigates sebaceous gland morphology and the response of SZ95 sebaceous gland cell line to doxorubicin (DXR) treatment. The morphology of sebaceous glands during intraperitoneal DXR treatment was investigated by optical and electron microscopy in a 7-day-old rat model and further confirmed in an adult mouse model. Moreover, in vitro studies using the SZ95 sebaceous gland cell line were performed to assess the response of sebocytes to DXR in terms of cell proliferation, apoptosis, and necrosis. DXR treatment induced sebaceous gland regression and occasionally caused their complete disappearance. This observed damage and disappearance preceded DXR-induced hair loss. In vitro experiments using the SZ95 sebaceous gland cell line indicated that DXR treatment induced a differentiation process leading to premature sebocytes apoptosis. Owing to the importance of the sebaceous gland in hair follicle homeostasis, DXR-induced involution of this gland might be related to subsequent hair loss.

  5. Interactions of human serum albumin with doxorubicin in different media

    NASA Astrophysics Data System (ADS)

    Gun'ko, Vladimir M.; Turov, Vladimir V.; Krupska, Tetyana V.; Tsapko, Magdalina D.

    2017-02-01

    Interactions of human serum albumin (10 wt% H2O and 0.3 wt% sodium caprylate) with doxorubicin hydrochloride (1 wt%) were studied alone or with addition of HCl (3.6 wt% HCl) using 1H NMR spectroscopy. A model of hydrated HSA/12DOX was calculated using PM7 method with COSMO showing large variations in the binding constant depending on structural features of DOX/HSA complexes. DOX molecules/ions displace bound water from narrow intramolecular voids in HSA that leads to diminution of freezing-melting point depression of strongly bound water (SBW). Structure of weakly bound water (WBW) depends much weaker on the presence of DOX than SBW because a major fraction of DOX is bound to adsorption sites of HSA. Addition of HCl results in strong changes in structure of macromolecules and organization of water in hydration shells of HSA (i.e., mainly SBW) and in the solution (i.e., WBW + non-bound bulk water).

  6. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities

    PubMed Central

    Kaplan, N.; Murphy, B.

    2015-01-01

    This open-label noncontrolled, phase II multicenter trial was designed to evaluate the safety, tolerability, and efficacy of 200 mg of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), given by mouth twice daily in the treatment of acute bacterial skin and skin structure infections (ABSSSI) due to staphylococci. Important aspects of the current study included a comparison of early response efficacy endpoints with end-of-treatment and follow-up endpoints. Many patients in the intent-to-treat population (n = 103) had significant comorbidities. The overall early response rate at day 3 was 97.3% (wound, 100%; abscess, 96.6%; cellulitis, 94.4%) in the microbiologically evaluable (ME) population. Within the ME population, 82.9% of patients had a ≥20% decrease in the area of erythema, and 77.9% of patients had a ≥20% decrease in the area of induration, on day 3. S. aureus was detected in 97.7% of patients (n = 37 patients with methicillin-resistant S. aureus [MRSA], and n = 39 with methicillin-sensitive S. aureus [MSSA]). No isolates had increased AFN-1252 MICs posttreatment. Microbiologic eradication rates for S. aureus were 93.2% at short-term follow-up (STFU) and 91.9% at long-term follow-up (LTFU) in the ME population. Eradication rates for MRSA and MSSA were 91.9% and 92.3%, respectively, at STFU and 91.9% and 89.7%, respectively, at LTFU. The most frequently reported drug-related adverse events, which were mostly mild or moderate, were headache (26.2%) and nausea (21.4%). These studies demonstrate that AFN-1252 is generally well tolerated and effective in the treatment of ABSSSI due to S. aureus, including MRSA. (This study has been registered at ClinicalTrials.gov under registration no. NCT01519492.) PMID:26711777

  7. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities.

    PubMed

    Hafkin, B; Kaplan, N; Murphy, B

    2015-12-28

    This open-label noncontrolled, phase II multicenter trial was designed to evaluate the safety, tolerability, and efficacy of 200 mg of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), given by mouth twice daily in the treatment of acute bacterial skin and skin structure infections (ABSSSI) due to staphylococci. Important aspects of the current study included a comparison of early response efficacy endpoints with end-of-treatment and follow-up endpoints. Many patients in the intent-to-treat population (n = 103) had significant comorbidities. The overall early response rate at day 3 was 97.3% (wound, 100%; abscess, 96.6%; cellulitis, 94.4%) in the microbiologically evaluable (ME) population. Within the ME population, 82.9% of patients had a ≥ 20% decrease in the area of erythema, and 77.9% of patients had a ≥ 20% decrease in the area of induration, on day 3. S. aureus was detected in 97.7% of patients (n = 37 patients with methicillin-resistant S. aureus [MRSA], and n = 39 with methicillin-sensitive S. aureus [MSSA]). No isolates had increased AFN-1252 MICs posttreatment. Microbiologic eradication rates for S. aureus were 93.2% at short-term follow-up (STFU) and 91.9% at long-term follow-up (LTFU) in the ME population. Eradication rates for MRSA and MSSA were 91.9% and 92.3%, respectively, at STFU and 91.9% and 89.7%, respectively, at LTFU. The most frequently reported drug-related adverse events, which were mostly mild or moderate, were headache (26.2%) and nausea (21.4%). These studies demonstrate that AFN-1252 is generally well tolerated and effective in the treatment of ABSSSI due to S. aureus, including MRSA. (This study has been registered at ClinicalTrials.gov under registration no. NCT01519492.).

  8. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  9. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT.

    PubMed

    Izadyar, Akram; Farhadian, Nafiseh; Chenarani, Naser

    2016-08-01

    In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.

  10. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles.

    PubMed

    Oliveira, Mariana S; Mussi, Samuel V; Gomes, Dawidson A; Yoshida, Maria Irene; Frezard, Frederic; Carregal, Virgínia M; Ferreira, Lucas A M

    2016-04-01

    This work aimed to develop solid lipid nanoparticles (SLN) co-loaded with doxorubicin and α-tocopheryl succinate (TS), a succinic acid ester of α-tocopherol that exhibits anticancer actions, evaluating the influence of TS on drug encapsulation efficiency. The SLN were characterized for size, zeta potential, entrapment efficiency (EE), and drug release. Studies of in vitro anticancer activity were also conducted. The EE was significantly improved from 30 ± 1% to 96 ± 2% for SLN without and with TS at 0.4%, respectively. In contrast, a reduction in particle size from 298 ± 1 to 79 ± 1 nm was observed for SLN without and with TS respectively. The doxorubicin release data show that SLN provide a controlled drug release. The in vitro studies showed higher cytotoxicity for doxorubicin-TS-loaded SLN than for free doxorubicin in breast cancer cells. These findings suggest that TS-doxorubicin-loaded SLN is a promising alternative for the treatment of cancer.

  11. Tumor Cells Upregulate Normoxic HIF-1α in Response to Doxorubicin

    PubMed Central

    Cao, Yiting; Eble, Joseph M.; Moon, Ejung; Yuan, Hong; Weitzel, Douglas H.; Landon, Chelsea D.; Nien, Charleen Yu-Chih; Hanna, Gabi; Rich, Jeremy N.; Provenzale, James M.; Dewhirst, Mark W.

    2013-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. While its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here we show that under normoxic conditions HIF-1α is upregulated in tumor cells in response to doxorubicin, a chemotherapy used to treat many cancers. Doxorubicin also enhanced VEGF secretion by normoxic tumor cells and stimulated tumor angiogenesis. Doxorubicin-induced accumulation of HIF-1α in normoxic cells was caused by increased expression and activation of STAT1, the activation of which stimulated expression of iNOS and its synthesis of NO in tumor cells. Mechanistic investigations established that blocking NO synthesis or STAT1 activation was sufficient to attenuate the HIF-1α accumulation induced by doxorubicin in normoxic cancer cells. To our knowledge, this is the first report that a chemotherapeutic drug can induce HIF-1α accumulation in normoxic cells, an efficacy-limiting activity. Our results argue that HIF-1α targeting strategies may enhance doxorubicin efficacy. More generally, they suggest a broader perspective on the design of combination chemotherapy approaches with immediate clinical impact. PMID:23959856

  12. Inhibition of Autophagy by Deguelin Sensitizes Pancreatic Cancer Cells to Doxorubicin

    PubMed Central

    Xu, Xiao Dong; Zhao, Yan; Zhang, Min; He, Rui Zhi; Shi, Xiu Hui; Guo, Xing Jun; Shi, Cheng Jian; Peng, Feng; Wang, Min; Shen, Min; Wang, Xin; Li, Xu; Qin, Ren Yi

    2017-01-01

    Pancreatic cancer is the fourth most common cause of cancer mortality worldwide. Furthermore, patients with pancreatic cancer experience limited benefit from current chemotherapeutic approaches because of drug resistance. Therefore, an effective therapeutic strategy for patients with pancreatic cancer is urgently required. Deguelin is a natural chemopreventive drug that exerts potent antiproliferative activity in solid tumors by inducing cell death. However, the molecular mechanisms underlying this activity have not been fully elucidated. Here we show that deguelin blocks autophagy and induces apoptosis in pancreatic cancer cells in vitro. Autophagy induced by doxorubicin plays a protective role in pancreatic cancer cells, and suppressing autophagy by chloroquine or silencing autophagy protein 5 enhanced doxorubicin-induced cell death. Similarly, inhibition of autophagy by deguelin also chemosensitized pancreatic cancer cell lines to doxorubicin. These findings suggest that deguelin has potent anticancer effects against pancreatic cancer and potentiates the anti-cancer effects of doxorubicin. These findings provide evidence that combined treatment with deguelin and doxorubicin represents an effective strategy for treating pancreatic cancer. PMID:28208617

  13. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin.

    PubMed

    Govender, Jenelle; Loos, Ben; Marais, Erna; Engelbrecht, Anna-Mart

    2014-11-01

    Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity.

  14. Fulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines independent of estrogen receptor expression.

    PubMed

    Huang, Yuan; Jiang, Donghai; Sui, Meihua; Wang, Xiaojia; Fan, Weimin

    2017-02-01

    Drug resistance, a major obstacle to successful cancer chemotherapy, frequently occurs in recurrent or metastatic breast cancer and results in poor clinical response. Fulvestrant is a new type of selective estrogen receptor (ER) downregulator and a promising endocrine therapy for breast cancer. In this study, we evaluated the combination treatment of fulvestrant and doxorubicin in ER-negative multidrug-resistant (MDR) breast cancer cell lines Bads‑200 and Bats‑72. Fulvestrant potentiated doxorubicin-induced cytotoxicity, apoptosis and G2/M arrest with upregulation of cyclin B1. It functioned as a substrate for P-glycoprotein (P-gp) without affecting its expression. Furthermore, fulvestrant not only restored the intracellular accumulation of doxorubicin but also relocalized it to the nuclei in Bats‑72 and Bads‑200 cells, which may be another potential mechanism of reversal of P-gp mediated doxorubicin resistance. These results indicated that the combination of fulvestrant and doxorubicin-based chemotherapy may be feasible and effective for patients with advanced breast cancer.

  15. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology.

    PubMed

    Heger, Zbynek; Kominkova, Marketa; Cernei, Natalia; Krejcova, Ludmila; Kopel, Pavel; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2014-12-01

    DNA nanotechnology is a rapidly growing research area, where DNA may be used for wide range of applications such as construction of nanodevices serving for large scale of diverse purposes. Likewise a panel of various purified fluorescent proteins is investigated for their ability to emit their typical fluorescence spectra under influence of particular excitation. Hence these proteins may form ideal donor molecules for assembly of fluorescence resonance emission transfer (FRET) constructions. To extend the application possibilities of fluorescent proteins, while using DNA nanotechnology, we developed nanoconstruction comprising green fluorescent protein (GFP) bound onto surface of surface active nanomaghemite and functionalized with gold nanoparticles. We took advantage of natural affinity between gold and thiol moieties, which were modified to bind DNA fragment. Finally we enclosed doxorubicin into fullerene cages. Doxorubicin intercalated in DNA fragment bound on the particles and thus we were able to connect these parts together. Because GFP behaved as a donor and doxorubicin as an acceptor using excitation wavelength for GFP (395 nm) in emission wavelength of doxorubicin (590 nm) FRET was observed. This nanoconstruction may serve as a double-labeled transporter of doxorubicin guided by force of external magnetic force owing to the presence of nanomaghemite. Further nanomaghemite offers the possibility of using this technology for thermotherapy.

  16. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Nhung Hoang, Thi My; Thu Trang Mai, Thi; Quynh Trang Nguyen, Thi; Doan Do, Hai; Hien Pham, Thi; Lap Nguyen, Thi; Thu Ha, Phuong

    2015-01-01

    Doxorubicin (DOX) is one of the most effective anticancer drugs for treating many types of cancer. However, the clinical applications of DOX were hindered because of serious side-effects resulting from the unselective delivery to cancer cell including congestive heart failure, chronic cardiomyopathy and drug resistance. Recently, it has been demonstrated that loading anti-cancer drugs onto drug delivery nanosystems helps to maximize therapeutic efficiency and minimize unwanted side-effects via passive and active targeting mechanisms. In this study we prepared folate decorated DOX loaded PLA-TPGS nanoparticles with the aim of improving the potential as well as reducing the side-effects of DOX. Characteristics of nanoparticles were investigated by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) method and Fourier transform infrared spectroscopy (FTIR). Anticancer activity of the nanoparticles was evaluated through cytotoxicity and cellular uptake assays on HeLa and HT29 cancer cell lines. The results showed that prepared drug delivery system had size around 100 nm and exhibited higher cytotoxicity and cellular uptake on both tested HeLa and HT29 cells.

  17. Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment.

    PubMed

    Ma, Hecheng; He, Chaoliang; Cheng, Yilong; Yang, Zhiming; Zang, Junting; Liu, Jianguo; Chen, Xuesi

    2015-12-16

    Localized cancer treatments with combination drugs have recently emerged as crucial approaches for effective inhibition of tumor growth and reoccurrence. In this study, we present a new strategy for the osteosarcoma treatment by localized co-delivery of multiple drugs, including doxorubicin (DOX), cisplatin (CDDP) and methotraxate (MTX), using thermosensitive PLGA-PEG-PLGA hydrogels. The release profiles of the drugs from the hydrogels were investigated in vitro. It was found that the multidrug coloaded hydrogels exhibited synergistic effects on cytotoxicity against osteosarcoma Saos-2 and MG-63 cells in vitro. After a single peritumoral injection of the drug-loaded hydrogels into nude mice bearing human osteosarcoma Saos-2 xenografts, the hydrogels coloaded with DOX, CDDP, and MTX displayed the highest tumor suppression efficacy in vivo for up to 16 days, as well as led to enhanced tumor apoptosis and increased regulation of the expressions of apoptosis-related genes. Moreover, the monitoring on the mice body change and the ex vivo histological analysis of the key organs indicated that the localized treatments caused less systemic toxicity and no obvious damage to the normal organs. Therefore, the approach of localized co-delivery of DOX, CDDP, and MTX by the thermosensitive hydrogels may be a promising approach for enhanced osteosarcoma treatment.

  18. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma

    PubMed Central

    Xu, Peipei; Zuo, Huaqin; Chen, Bing; Wang, Ruju; Ahmed, Arsalan; Hu, Yong; Ouyang, Jian

    2017-01-01

    Chemotherapy is majorly used for the treatment of many cancers, including lymphoma. However, cytotoxic drugs, utilized in chemotherapy, can induce various side effects on normal tissues because of their non-specific distribution in the body. Natural platelets are used as drug carriers because of their biocompatibility and specific targeting to vascular disorders, such as cancer, inflammation, and thrombosis. In this work, doxorubicin (DOX) was loaded in natural platelets for treatment of lymphoma. Results showed that DOX was loaded into platelets with high drug loading and encapsulation efficiency. DOX did not significantly induce morphological and functional changes in platelets. DOX-platelet facilitated intracellular drug accumulation through “tumor cell-induced platelet aggregation” and released DOX into the medium in a pH-controlled manner. This phenomenon reduced the adverse effects and enhanced the therapeutic efficacy. The growth inhibition of lymphoma Raji cells was enhanced, and the cardiotoxicity of DOX was reduced when DOX was loaded in platelets. DOX-platelet improved the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Thus, platelets can serve as potential drug carriers to deliver DOX for clinical treatment of lymphoma. PMID:28198453

  19. Schisandra fructus extract ameliorates doxorubicin-induce cytotoxicity in cardiomyocytes: altered gene expression for detoxification enzymes.

    PubMed

    Choi, Eun Hye; Lee, Nari; Kim, Hyun Jung; Kim, Mi Kyung; Chi, Sung-Gil; Kwon, Dae Young; Chun, Hyang Sook

    2008-02-01

    The effect of Schisandra fructus extract (SFE) on doxorubicin (Dox)-induced cardiotoxicity was investigated in H9c2 cardiomyocytes. Dox, which is an antineoplastic drug known to induce cardiomyopathy possibly through production of reactive oxygen species, induced significant cytotoxicity, intracellular reactive oxygen species (ROS), and lipid peroxidation. SFE treatment significantly increased cell survival up to 25%, inhibited intracellular ROS production in a time- and dose-dependent manner, and inhibited lipid peroxidation induced by Dox. In addition, SFE treatment induced expression of cellular glutathione S-transferases (GSTs), which function in the detoxification of xenobiotics, and endogenous toxicants including lipid peoxides. Analyses of 31,100 genes using Affymetrix cDNA microarrays showed that SFE treatment up-regulated expression of genes involved in glutathione metabolism and detoxification [GST theta 1, mu 1, and alpha type 2, heme oxygenase 1 (HO-1), and microsomal epoxide hydrolase (mEH)] and energy metabolism [carnitine palmitoyltransferase-1 (CPT-1), transaldolase, and transketolase]. These data indicated that SFE might increase the resistance to cardiac cell injury by Dox, at least partly, together with altering gene expression, especially induction of phase II detoxification enzymes.

  20. P-Sulfocalix[6]arene as Nanocarrier for Controlled Delivery of Doxorubicin.

    PubMed

    Ostos, Francisco J; Lebrón, José A; Moyá, Maria L; López-López, Manuel; Sánchez, Antonio; Clavero, Amparo; García-Calderón, Clara B; Rosado, Iván V; López-Cornejo, Pilar

    2017-03-16

    Given the high toxicity of the anthracycline antibiotic doxorubicin (DOX), it is relevant to search for nanocarriers that decrease the side effects of the drug and are able to transport it towards a therapeutic target Here, the encapsulation of DOX by p-sulfocalix[6]arene (calix) has been studied. The interaction of DOX with the macrocycle, as well as with DNA, has been investigated and the equilibrium constant for each binding process estimated. The results showed that the binding constant of DOX to DNA, KDNA , is three orders of magnitude higher than that to calix, Kcalix . The ability of calixarenes to encapsulate DOX molecules, as well as the capability of the DOX molecules included into the inner cavity of the macrocycle to bind with DNA have been examined. Cytotoxicity measurements were done in different cancer and normal cell lines to probe the decrease in the toxicity of the encapsulated DOX. The low toxicity of calixarenes has also been demonstrated for different cell lines.

  1. Isorhamnetin Protects against Doxorubicin-Induced Cardiotoxicity In Vivo and In Vitro

    PubMed Central

    Sun, Jing; Sun, Guibo; Meng, Xiangbao; Wang, Hongwei; Luo, Yun; Qin, Meng; Ma, Bo; Wang, Min; Cai, Dayong; Guo, Peng; Sun, Xiaobo

    2013-01-01

    Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox. PMID:23724057

  2. Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin.

    PubMed

    Cheng, Jing-Jy; Chang, Chia-Chuan; Chao, Chi-Hsein; Lu, Mei-Kuang

    2012-09-01

    Sulfated polysaccharides (SPSs) from two edible fungal species, including two strains of Antrodia cinnamomea and Poria cocos, were isolated. Fucose, glucosamine, galactose, glucose, and mannose were the major sugars in the SPSs, and these SPSs had a high sulfate content. The area percentage of low-molecular-weight SPSs (1-100 kDa) covered almost half of the SPS mixture of the A. cinnamomea strains. In contrast, high-molecular-weight SPSs (>1000 kDa) of P. cocos covered a large proportion of the area at 30.06%. SPSs from A. cinnamomea B86 showed stronger inhibition of endothelial cell (EC) tube formation in an in vitro assay of angiogenesis, than did A. cinnamomea 35396 or P. cocos. The degree of sulfation paralleled their antiangiogenic activity. When tumor cells were concurrently exposed to doxorubicin (DOX) and fungal SPSs, SPSs synergistically increased the cytotoxicity of DOX to different degree up to 50-fold. Fungal SPSs may offer new applications for combinational-therapy drugs.

  3. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    PubMed

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment.

  4. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance

    PubMed Central

    Yan, Fengjiao; Sun, Mingna; Du, Lingran; Peng, Wei; Li, Qiuli; Feng, Yinghong; Zhou, Yi

    2015-01-01

    Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/ Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers. PMID:25605018

  5. Neuregulin-1 attenuates doxorubicin-induced autophagy in neonatal rat cardiomyocytes.

    PubMed

    An, Tao; Huang, Yan; Zhou, Qiong; Wei, Bing Qi; Zhang, Rong Cheng; Yin, Shi Jie; Zou, Chang Hong; Zhang, Yu Hui; Zhang, Jian

    2013-08-01

    Recombinant human neuregulin-1 (rhNRG-1) improves cardiac function in animal models of doxorubicin (DOX)-induced cardiomyopathy, but the underlying mechanism remains largely unknown. Here, we confirm a role for rhNRG-1 in attenuating DOX-induced autophagy and define the signaling pathways through which it mediates some of its effects. Neonatal rat ventricular myocytes were subjected to different treatments both to induce autophagy and to determine the effects of rhNRG-1 on the process. The rhNRG-1 inhibited DOX-induced autophagy, reduced reactive oxygen species production and increased protein expression of Bcl-2, effects that were recapitulated when the cells were treated with the antioxidant N-acetylcysteine. These effects were blocked by the phosphatidylinositol 3-kinase inhibitor LY294002, pointing to the involvement of the Akt pathway in mediating the process. Inhibition of Bcl-2 expression with small interfering RNA silencing also inhibited rhNRG-1's ability to attenuate DOX-induced autophagy. The rhNRG-1 is a potent inhibitor of DOX-induced autophagy and multiple signaling pathways, including Akt and activation of reactive oxygen species, play important roles in the anti-autophagy effect. The rhNRG-1 is a novel drug that may be effectively therapeutically in protecting further damage in DOX-induced damaged myocardium.

  6. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro.

    PubMed

    Sun, Jing; Sun, Guibo; Meng, Xiangbao; Wang, Hongwei; Luo, Yun; Qin, Meng; Ma, Bo; Wang, Min; Cai, Dayong; Guo, Peng; Sun, Xiaobo

    2013-01-01

    Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox.

  7. WE-EF-BRA-09: Microbeam Radiation Therapy Enhances Tumor Drug Uptake of PEGylated Liposomal Doxorubicin (PLD) in a Triple Negative Breast Cancer GEM Model

    SciTech Connect

    Chang, SX; Madden, AJ; Rivera, JN; Santos, CM; Hunter, LM; Darr, DB; Zamboni, WC

    2015-06-15

    Purpose: Overcoming low anti-cancer drug uptake in tumors is a key challenge limiting its clinical use. We propose to enhance the drug delivery using upfront Microbeam Radiation Therapy (MRT). MRT is a preclinical cancer therapy that utilizes microplanar beams to deliver spatially oscillating planes of high and low doses. Animal studies have demonstrated that ultrahigh dose (100s Gy) MRT eradicates tumors without damaging the function of normal tissue exposed to the same radiation. Our previous study indicated that MRT induces intense angiogenesis in tumor rim and surrounding normal tissue 1–2 days post radiation. We hypothesize that the tumor microenvironment modulation induced by MRT may enhance carrier-mediated agent drug delivery to tumors with inherent poor drug uptake. We thus investigated MRT-induced pharmacokinetics (PK) of PEGylated liposomal doxorubicin (PLD), a nano-scale doxorubicin, in T11 genetically engineered mouse model of triple negative breast cancer. Methods: A research irradiator (160kVp, RadSource Technologies) with a customized collimator was used to produce the MRT microbeam of in average 390µm width and 1190µm peak-to-peak distance. The peak dose rate of 1–2Gy/min. Dosimetry is by EBT3 film cross-calibrated with ion chamber at large fields. All mice were administered PLD at 6mg/kg IV x1 at 16h post MRT and sacrificed at 5min, 6h, 24h, and 96h post PLD administration (n=3 or 4 per group). Results: The MRT(28Gy)+PLD group mice had a total doxorubicin tumor concentration (area-under-the concentration-curve, AUC) of 206,040ng/mL•h, 3.71 times the concentration of the PLD-alone group. The MRT(34Gy)+PLD group had a higher mean total doxorubicin concentration in tumor (20,779ng/ml) than the MRT(28Gy)+PLD group (10,665ng/ml). Conclusion: Our preliminary results indicate that microbeam radiation therapy (MRT) can enhance nano-scale anti-cancer drug delivery to tumors approximately 4-fold. The exact working mechanism, the comparison with

  8. Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells.

    PubMed

    Pero, S C; Shukla, G S; Cookson, M M; Flemer, S; Krag, D N

    2007-05-21

    Grb7 has potential importance in the progression of cancer. We have previously identified a novel peptide that binds to the SH2 domain of Grb7 and inhibits its association with several different receptor tyrosine kinases. We have synthesised the Grb7 peptide, G7-18NATE, with two different cell penetrating peptides, Penetratin and Tat. In this study, we have shown that both Penetratin- and Tat-conjugated G7-18NATE peptides are able to inhibit the proliferation of SK-BR-3, ZR-75-30, MDA-MB-361 and MDA-MB-231 breast cancer cells. There was no significant effects on breast cancer MCF-7cells, non-malignant MCF 10A or 3T3 cells. In addition, there was no significant inhibition of proliferation by Penetratin or Tat alone or by their conjugates with arbitrary peptide sequence in any of the cell lines tested. We determined the EC50 of G7-18NATE-P peptide for SK-BR-3 cell proliferation to be 7.663 x 10(-6) M. Co-treatment of G7-18NATE-P peptide plus Doxorubicin in SK-BR-3 breast cancer cells resulted in an additional inhibition of proliferation, resulting in 56 and 84% decreases in the Doxorubicin EC50 value in the presence of 5 x 10(-6) and 1.0 x 10(-5) M G7-18NATE-P peptide, respectively. Importantly, the co-treatment with Doxorubicin and the delivery peptide did not change the Doxorubicin EC50. Since Grb7 associates with ErbB2, we assessed whether the peptide inhibitor would have a combined effect with a molecule that targets ErbB2, Herceptin. Co-treatment of Herceptin plus 1.0 x 10(-5) M G7-18NATE-P peptide in SK-BR-3 cells resulted in a 46% decrease in the Herceptin EC50 value and no decrease following the co-treatment with Herceptin and penetratin alone. This Grb7 peptide has potential to be developed as a therapeutic agent alone, in combination with traditional chemotherapy, or in combination with other targeting molecules.

  9. A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin

    PubMed Central

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Mirandola, Prisco; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2009-01-01

    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often have abnormal growth factor and cytokine profiles. Thus, serum levels of interleukin-8 (IL-8) are elevated in patients with malignant melanoma. In addition to IL-8, aggressive melanoma cells secrete, through its transcriptional regulator hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), which promotes angiogenesis and metastasis of human cancerous cells. Whether these responses are related to adenosine, a ubiquitous mediator expressed at high concentrations in cancer and implicated in numerous inflammatory processes, is not known and is the focus of this study. We have examined whether the DNA-damaging agents etoposide (VP-16) and doxorubicin can affect IL-8, VEGF, and HIF-1 expressions in human melanoma cancer cells. In particular, we have investigated whether these responses are related to the modulation of the adenosine receptor subtypes, namely, A1, A2A, A2B, and A3. We have demonstrated that A2B receptor blockade can impair IL-8 production, whereas blocking A3 receptors, it is possible to further decrease VEGF secretion in melanoma cells treated with VP-16 and doxorubicin. This understanding may present the possibility of using adenosine antagonists to reduce chemotherapy-induced inflammatory cytokine production and to improve the ability of chemotherapeutic drugs to block angiogenesis. Consequently, we conclude that adenosine receptor modulation may be useful for refining the use of chemotherapeutic drugs to treat human cancer more effectively. PMID:19794965

  10. Tirapazamine has no Effect on Hepatotoxicity of Cisplatin and 5-fluorouracil but Interacts with Doxorubicin Leading to Side Changes in Redox Equilibrium.

    PubMed