Science.gov

Sample records for agents including ionizing

  1. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 107.1620 Section 107.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance...

  2. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 108.1620 Section 108.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA...

  3. Global model including multistep ionizations in helium plasmas

    NASA Astrophysics Data System (ADS)

    Oh, Seungju; Lee, Hyo-Chang; Chung, Chin-Wook

    2015-09-01

    Particle and power balance equations including stepwise ionizations are derived and solved in helium plasma. In the balance equations, two metastable states (23S1 in singlet and 21S1 triplet) are considered and followings are obtained. The plasma density linearly increases and electron temperature is relatively in constant value against the absorbed power. It is also found that the contribution to multi-step ionization respect to the single-step ionization is in the range of 8% - 23%, as the gas pressure increases from 10 mTorr to 100 mTorr. There has little variation in the collisional energy loss per electron-ion pair created (Ec). These results indicate that the stepwise ionizations are the minor effect in case of the helium plasma compared to argon plasma. This is because that helium gas has very small collisional cross sections and higher inelastic collision threshold energy resulting in the little variations for the collisional energy loss per electron-ion pair created.

  4. Partially ionized plasmas, including the Third Symposium on Uranium Plasmas

    NASA Technical Reports Server (NTRS)

    Krishnan, M.

    1976-01-01

    Fundamentals of both electrically and fission generated plasmas are discussed. Research in gaseous fuel reactors using uranium hexafluoride is described and other partially ionized plasma applications are discussed.

  5. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Flambaum, V. V.; Gribakin, G. F.

    2016-01-01

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9 σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.

  6. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.

    PubMed

    Roberts, B M; Flambaum, V V; Gribakin, G F

    2016-01-15

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times. PMID:26824537

  7. Agents in Safety Related Systems Including Ubiquitous Networks

    NASA Astrophysics Data System (ADS)

    Strandén, Lars

    The ADM (Autonomous Decision Maker) concept concerns the possibility of including intelligent interfaces, agent like, for supporting the use of ubiquitous networks, such as the Internet, in safety related applications. The need for such interfaces is inevitable if remote surveillance and control shall be supported. The single most important aspect of ADM is its capability of handling limited resources when making intelligent decisions. Intelligence in ADM is manifested in reasoning and learning. This paper outlines the role of ADM and especially in relation to the standard IEC 61508 and presents the overall properties that result. These are exemplified by a presentation of ADM demonstrator.

  8. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.

    PubMed

    Wolf, J-C; Schaer, M; P Siegenthaler, P; Zenobi, R

    2015-01-01

    Ultrasensitive direct gas-phase detection of chemical warfare agents (CWAs) is demonstrated utilizing active capillary plasma ionization and triple quadrupole mass spectrometry (MS) instrumentation. Four G- agents, two V-agents and various blistering agents [including sulfur mustard (HD)] were detected directly in the gas phase with limits of detection in the low parts per trillion (ng m(-3)) range. The direct detection of HD was shown for dry carrier gas conditions, but signals vanished when humidity was present, indicating a possible direct detection of HD after sufficient gas phase pretreatment. The method provided sufficient sensitivity to monitor directly the investigated volatile CWAs way below their corresponding minimal effect dose, and in most cases even below the eight hours worker exposure concentration. In general, the ionization is very soft, with little to no in-source fragmentation. Especially for the G-agents, some dimer formation occurred at higher concentrations. This adds complexity, but also further selectivity, to the corresponding mass spectra. Our results show that the active capillary plasma ionization is a robust, sensitive, "plug and play" ambient ionization source suited (but not exclusively) to the very sensitive detection of CWAs. It has the potential to be used with portable MS instrumentation. PMID:26307710

  9. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    NASA Technical Reports Server (NTRS)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  10. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition

    PubMed Central

    Aime, Silvio; Caravan, Peter

    2010-01-01

    The biodistribution of approved gadolinium (Gd) based contrast agents (GBCA) is reviewed. After intravenous injection GBCA distribute in the blood and the extracellular space and transiently through the excretory organs. Preclinical animal studies and the available clinical literature indicate that all these compounds are excreted intact. Elimination tends to be rapid and for the most part, complete. In renally insufficient patients the plasma elimination half-life increases substantially from hours to days depending on renal function. In patients with impaired renal function and nephrogenic systemic fibrosis (NSF), the agents gadodiamide, gadoversetamide, and gadopentetate dimeglumine have been shown to result in Gd deposition in the skin and internal organs. In these cases, it is likely that the Gd is no longer present as the GBCA, but this has still not been definitively shown. In preclinical models very small amounts of Gd are retained in the bone and liver, and the amount retained correlates with the kinetic and thermodynamic stability of the GBCA with respect to Gd release in vitro. The pattern of residual Gd deposition in NSF subjects may be different than that observed in preclinical rodent models. GBCA are designed to be used via intravenous administration. Altering the route of administration and/or the formulation of the GBCA can dramatically alter the biodistribution of the GBCA and can increase the likelihood of Gd deposition. PMID:19938038

  11. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.

    PubMed

    Wolf, Jan-Christoph; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2015-01-01

    A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of 13 chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity. The investigated compounds include an intact chemical warfare agent and structurally related molecules, hydrolysis products and/or precursors of highly toxic nerve agents (G-series, V-series, and "new" nerve agents), and blistering and incapacitating warfare agents. Well-defined analyte gas phase concentrations were generated by a pressure-assisted nanospray with consecutive thermal evaporation and dilution. Identification was achieved by selected reaction monitoring (SRM). The most abundant fragment ion intensity of each compound was used for quantification. For DBDI and SESI, absolute gas phase detection limits in the low ppt range (in MS/MS mode) were achieved for all compounds investigated. Although the sensitivity of both methods was comparable, the active capillary DBDI sensitivity was found to be dependent on the applied AC voltage, thus enabling direct tuning of the sensitivity and the in-source fragmentation, which may become a key feature in terms of field applicability. Our findings underline the applicability of DBDI and SESI for the direct, sensitive detection and quantification of several CWA types and their degradation products. Furthermore, they suggest the use of DBDI in combination with hand-held instruments for CWAs on-site monitoring. PMID:25427190

  12. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including chemical agents. 552.25 Section 552.25 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  13. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including chemical agents. 552.25 Section 552.25 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  14. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including chemical agents. 552.25 Section 552.25 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  15. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including chemical agents. 552.25 Section 552.25 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  16. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    PubMed

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range. PMID:19682922

  17. An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization

    NASA Technical Reports Server (NTRS)

    Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.

    1997-01-01

    Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.

  18. A generalized version of the Rankine-Hugoniot relations including ionization, dissociation and related phenomena

    NASA Technical Reports Server (NTRS)

    Nieuwenhuijzen, H.; De Jager, C.; Cuntz, M.; Lobel, A.; Achmad, L.

    1993-01-01

    For purposes of computing shocks in stellars atmospheres and winds we have developed a generalized version of the Rankine-Hugoniot relations including ionization, dissociation, radiation and related phenomena such as excitation, rotation and vibration of molecules. The new equations are given in analytical form. They are valid as long as the internal energy E, the total pressure P, and the first adiabatic coefficient gamma(sub 1) can be evaluated. However, we have not treated shock structures. In the case of non-LTE we have to employ an approximation for gamma(sub 1) because in that case no definition exists. Our new version of the Rankine-Hugoniot relations can easily be used for many purposes including ab-initio modeling. In our derivation we introduce a parameter gamma(sub H), which is definded as the ratio of the enthalpy H (sometimes called heat function w) to the internal energy E (sometimes called U). Using this parameter we solve the equations for changing mu and (d(natural log P)/d(natural log rho))(sub ad) identically equal to gamma(sub 1) on both sides of the shock. Both gamma(sub H) and gamma(sub 1), and also mu are functions of pressure P and temperature T. We present: (1) the derivation, (2) examples of gamma(sub 1) (P,T) and gamma(sub H) (P,T) which include/exclude ionization and radiation, and (3) as an example the differences in post-shock parameters as function of the pre-shock temperature for the case with ionization and without radiation.

  19. Ionization potential of {sup 9}Be calculated including nuclear motion and relativistic corrections

    SciTech Connect

    Stanke, Monika; Kedziera, Dariusz; Bubin, Sergiy; Adamowicz, Ludwik

    2007-05-15

    Variational calculations employing explicitly correlated Gaussian functions have been performed for the ground states of {sup 9}Be and {sup 9}Be{sup +} including the nuclear motion [i.e., without assuming the Born-Oppenheimer (BO) approximation]. An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed, leading to energies of the two systems noticeably improved over those found in the recent paper of Pachucki and Komasa [Phys. Rev. A 73, 052502 (2006)]. The non-BO wave functions were used to calculate the {alpha}{sup 2} relativistic corrections ({alpha}=e{sup 2}/({Dirac_h}/2{pi})c). With those corrections and the {alpha}{sup 3} and {alpha}{sup 4} corrections taken from Pachucki and Komasa, a new value of the ionization potential (IP) of {sup 9}Be was determined. It agrees very well with the most recent experimental IP.

  20. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    PubMed

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  1. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents. PMID:16024060

  2. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  3. Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations

    NASA Astrophysics Data System (ADS)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2016-04-01

    We explore the impact of incorporating physically motivated ionization and recombination rates on the history and topology of cosmic reionization and the resulting 21 cm power spectrum, by incorporating inputs from small-volume hydrodynamic simulations into our semi-numerical code, SIMFAST21, that evolves reionization on large scales. We employ radiative hydrodynamic simulations to parametrize the ionization rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion scales superlinearly with halo mass ({R_ion}∝ M_h^{1.41}), in contrast to previous assumptions. Implementing these scalings into SIMFAST21, we tune our one free parameter, the escape fraction fesc, to simultaneously reproduce recent observations of the Thomson optical depth, ionizing emissivity and volume-averaged neutral fraction by the end of reionization. This yields f_esc=4^{+7}_{-2} per cent averaged over our 0.375 h-1 Mpc cells, independent of halo mass or redshift, increasing to 6 per cent if we also constrain to match the observed z = 7 star formation rate function. Introducing superlinear Rion increases the duration of reionization and boosts small-scale 21 cm power by two to three times at intermediate phases of reionization, while inhomogeneous recombinations reduce ionized bubble sizes and suppress large-scale 21 cm power by two to three times. Gas clumping on sub-cell scales has a minimal effect on the 21 cm power. Superlinear Rion also significantly increases the median halo mass scale for ionizing photon output to ˜ 1010 M⊙, making the majority of reionizing sources more accessible to next-generation facilities. These results highlight the importance of accurately treating ionizing sources and recombinations for modelling reionization and its 21 cm power spectrum.

  4. Fragmentation pathways and structural characterization of 14 nerve agent compounds by electrospray ionization tandem mass spectrometry.

    PubMed

    Housman, Kathleen J; Swift, Austin T; Oyler, Jonathan M

    2015-03-01

    Organophosphate nerve agents (OPNAs) are some of the most widely used and proliferated chemical warfare agents. As evidenced by recent events in Syria, these compounds remain a serious military and terrorist threat to human health because of their toxicity and the ease with which they can be used, produced and stored. There are over 2,000 known, scheduled compounds derived from common parent structures with many more possible. To address medical, forensic, attribution, remediation and other requirements, laboratory systems have been established to provide the capability to analyze 'unknown' samples for the presence of these compounds. Liquid chromatography/mass spectrometric methods have been validated and are routinely used in the analysis of samples for a very limited number of these compounds, but limited data exist characterizing the electrospray ionization (ESI) and mass spectrometric fragmentation pathways of the compound families. This report describes results from direct infusion ESI/MS, ESI/MS(2) and ESI/MS(3) analysis of 14 G and V agents, the major OPNA families, using an AB Sciex 4000 QTrap. Using a range of conditions, spectra were acquired and characteristic fragments identified. The results demonstrated that the reproducible and predictable fragmentation of these compounds by ESI/MS, ESI/MS(2) and ESI/MS(3) can be used to describe systematic fragmentation pathways specific to compound structural class. These fragmentation pathways, in turn, may be useful as a predictive tool in the analysis of samples by screening and confirmatory laboratories to identify related compounds for which authentic standards are not readily available. PMID:25519457

  5. Glycosaminoglycan Characterization by Electrospray Ionization Mass Spectrometry Including Fourier Transform Mass Spectrometry

    PubMed Central

    Laremore, Tatiana N.; Leach, Franklin E.; Solakyildirim, Kemal; Amster, I. Jonathan; Linhardt, Robert J.

    2011-01-01

    Electrospray ionization mass spectrometry (ESI MS) is a versatile analytical technique in glycomics of glycosaminoglycans (GAGs). Combined with enzymology, ESI MS is used for assessing changes in disaccharide composition of GAGs biosynthesized under different environmental or physiological conditions. ESI coupled with high-resolution mass analyzers such as a Fourier transform mass spectrometer (FTMS) permits accurate mass measurement of large oligosaccharides and intact GAGs as well as structural characterization of GAG oligosaccharides using information-rich fragmentation methods such as electron detachment dissociation. The first part of this chapter describes methods for disaccharide compositional profiling using ESI MS and the second part is dedicated to FTMS and tandem MS methods of GAG compositional and structural analysis. PMID:20816475

  6. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-01

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring. PMID:23339735

  7. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  8. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  9. Genome Sequencing of Four Strains of Rickettsia prowazekii, the Causative Agent of Epidemic Typhus, Including One Flying Squirrel Isolate.

    PubMed

    Bishop-Lilly, Kimberly A; Ge, Hong; Butani, Amy; Osborne, Brian; Verratti, Kathleen; Mokashi, Vishwesh; Nagarajan, Niranjan; Pop, Mihai; Read, Timothy D; Richards, Allen L

    2013-01-01

    Rickettsia prowazekii is a notable intracellular pathogen, the agent of epidemic typhus, and a potential biothreat agent. We present here whole-genome sequence data for four strains of R. prowazekii, including one from a flying squirrel. PMID:23814035

  10. Isolation and characterization of BHK cells sensitive to ionizing radiation and alkylating agents

    SciTech Connect

    Evans, H.H.; Horng, M.F.; Weber, M.C.; Glazier, K.G.

    1984-07-01

    A host-cell viral suicide enrichment procedure was used to isolate BHK strains sensitive to ionizing radiation. Of six strains surviving infection with irradiated herpes simplex virus (HSV), three were found to be more sensitive to ionizing radiation than the parental BHK cells. Strains V1 and V2 were studied in more detail and found to exhibit hypersensitivity to ethyl methanesulfonate (EMS), methyl methanesulfonate, and N-methyl-N'-nitro-N-nitrosoguanidine, but not to uv radiation. Susceptibility to mutation in response to EMS was also compared in BHK and strains V1 and V2. The frequency of induction of ouabain-resistant cells was 140% of the parental strain in the case of strain V1 and 58% of the parental strain in the case of strain V2.

  11. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  12. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  13. Structural elucidation of direct analysis in real time ionized nerve agent simulants with infrared multiple photon dissociation spectroscopy.

    PubMed

    Rummel, Julia L; Steill, Jeffrey D; Oomens, Jos; Contreras, Cesar S; Pearson, Wright L; Szczepanski, Jan; Powell, David H; Eyler, John R

    2011-06-01

    Infrared multiple photon dissociation (IRMPD) was used to generate vibrational spectra of ions produced with a direct analysis in real time (DART) ionization source coupled to a 4.7 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The location of protonation on the nerve agent simulants diisopropyl methylphosphonate (DIMP) and dimethyl methylphosphonate (DMMP) was studied while solutions of the compounds were introduced for extended periods of time with a syringe pump. Theoretical vibrational spectra were generated with density functional theory calculations. Visual comparison of experimental mid-IR IRMPD spectra and theoretical spectra could not establish definitively if a single structure or a mixture of conformations was present for the protonated parent of each compound. However, theoretical calculations, near-ir IRMPD spectra, and frequency-to-frequency and statistical comparisons indicated that the protonation site for both DIMP and DMMP was predominantly, if not exclusively, the phosphonyl oxygen instead of one of the oxygen atoms with only single bonds. PMID:21491962

  14. Modified agar dilution susceptibility testing method for determining in vitro activities of antifungal agents, including azole compounds.

    PubMed Central

    Yoshida, T; Jono, K; Okonogi, K

    1997-01-01

    In vitro activities of antifungal agents, including azole compounds, against yeasts were easily determined by using RPMI-1640 agar medium and by incubating the plates in the presence of 20% CO2. The end point of inhibition was clear by this method, even in the case of azole compounds, because of the almost complete inhibition of yeast growth at high concentrations which permitted weak growth of some Candida strains by traditional methods. MICs obtained by the agar dilution method were similar to those obtained by the broth dilution method proposed by the National Committee for Clinical Laboratory Standards. PMID:9174197

  15. Contrast agents and ionization with respect to safety for patients and doctors.

    PubMed

    von Tengg-Kobligk, Hendrik; Kara, Levent; Klink, Thorsten; Khanicheh, Elham; Heverhagen, Johannes T; Böhm, Ingrid B

    2015-01-01

    In hemodialysis patients, radiographic imaging with iodinated contrast medium (ICM) application plays a central role in the diagnosis and/or follow-up of disease-related conditions. Therefore, safety aspects concerning ICM administration and radiation exposure have a great impact on this group of patients. Current hardware and software improvements including the design and synthesis of modern contrast compounds allow the use of very small amounts of ICM in concert with low radiation exposure. Undesirable ICM side effects are divided into type A (predictable reactions such as heat feeling, headache, and contrast-induced acute kidney injury, for example) and type B (nonpredictable or hypersensitivity) reactions; this chapter deals with the latter. The first onset cannot be prevented. To prevent hypersensitivity upon reexposure of ICM, an allergological workup is recommended. If this is not possible and ICM is necessary, the patient should receive a premedication (H1 antihistamine with or without corticosteroids). Current imaging hardware and software improvements (e.g. such as additional filtration of the X-ray beam) allow the use of very small amount of ICM and small X-ray doses. Proper communication among the team involved in the treatment of a patient may allow to apply imaging protocols and efficient imaging strategies limiting radiation exposure to a minimum. Practical recommendations will guide the reader how to use radiation and ICM efficiently to improve both patient and staff safety. PMID:25676292

  16. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.

    PubMed

    Cotte-Rodríguez, Ismael; Justes, Dina R; Nanita, Sergio C; Noll, Robert J; Mulligan, Christopher C; Sanders, Nathaniel L; Cooks, R Graham

    2006-04-01

    The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described. PMID:16568176

  17. Long-term genetic and reproductive effects of ionizing radiation and chemotherapeutic agents on cancer patients and their offspring.

    PubMed

    Byrne, J

    1999-04-01

    The continuing search for a cure for cancer has lead to more aggressive therapies as new agents are developed with largely unknown late complications. Standard therapy for the majority of cancers today, following surgery, often consists of combinations of high doses of radiation and multi-drug therapy. Compared with exposures experienced by atomic bomb survivors, cancer survivors have been exposed to higher doses of partial body irradiation and combination chemotherapy over longer periods. Thus, cancer survivors provide a model system with which to evaluate the long-term effects on the human organism of high doses of agents known to damage DNA. Five-year survival after cancer diagnosis is now greater than 56%; more than 5 million Americans are considered cured of cancer. However, the late complications of cancer in long-term survivors has been poorly evaluated, especially in adults, and little is known of the most troubling possibility, that is, that the effects of cancer treatments could be passed on to the next generation. What little we know comes from studies of at most 5,000 survivors of childhood cancer, treated decades ago. So far, results are reassuring that with the means now available, we cannot detect clinical evidence of heritable damage. However, reproductive effects, including infertility, are common consequences of cancer therapy and may represent germ cell damage. We are just in the infancy of studies of germ cell mutagenesis in cancer survivors. The relatively small numbers of survivors, and the few types of exposures studied so far, provide only limited grounds for reassurance. More comprehensive, properly designed, studies of modern new agents are urgently need. PMID:10331521

  18. Direct Standard-Free Quantitation of Tamiflu® and Other Pharmaceutical Tablets using Clustering Agents with Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Leib, Ryan D.; Williams, Evan R.

    2010-01-01

    Accurate and rapid quantitation is advantageous to identify counterfeit and substandard pharmaceutical drugs. A standard-free electrospray ionization mass spectrometry method is used to directly determine the dosage in the prescription and over-the-counter drugs, Tamiflu®, Sudafed®, and Dramamine®. A tablet of each drug was dissolved in aqueous solution, filtered, and introduced into solutions containing a known concentration of either L-tryptophan, L-phenylalanine or prednisone as clustering agents. The active ingredient(s) incorporates statistically into large clusters of the clustering agent where effects of differential ionization/detection are substantially reduced. From the abundances of large clusters, the dosages of the active ingredients in each of the tablets were determined to typically better than 20% accuracy even when the ionization/detection efficiency of the individual components differed by over 100×. Although this unorthodox method for quantitation is not as accurate as using conventional standards, it has the advantages that it is fast, it can be applied to mixtures where the identities of the analytes are unknown, and it can be used when suitable standards may not be readily available, such as schedule I or II controlled substances or new designer drugs that have not previously been identified. PMID:20092258

  19. Ultratrace detection of chemical warfare agent simulants using supersonic-molecular-beam, resonance-enhanced multiphoton-ionization, time-of-flight mass spectroscopy. Final report

    SciTech Connect

    Syage, J.A.; Pollard, J.E.; Cohen, R.B.

    1988-02-15

    An ultratrace detection method that offers exceptional selectivity has been developed based on the technique of supersonic molecular beam, resonance enhanced multiphoton ionization, time-of-flight mass spectroscopy (MB/REMPI/TOFMS). Single ion detection capability has given detection limits as low as 300 ppt (dimethyl sulfide). Single vibronic level REMPI of the supercooled molecules in conjunction with TOFMS provides selectivity of 10,000 against chemically similar compounds. Studies were carried out using moist air expansions for a variety of organophosphonate and sulfide chemical warfare agent (CWA) simulant molecules. The preparation of molecules in single vibronic levels by laser excitation in supersonic molecular beams has enabled us to record high resolution spectra of higher excited electronic states showing fully resolved vibrational structure for diisopropyl methylphosphonate (DIMP) and dimethyl sulfide (DMS). VUV absorption spectra have also been recorded for several CWA molecules at ambient temperature, revealing several new electronic states extending up to the ionization threshold.

  20. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    NASA Astrophysics Data System (ADS)

    Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.

  1. Cancer morbidity in British military veterans included in chemical warfare agent experiments at Porton Down: cohort study

    PubMed Central

    Linsell, L; Brooks, C; Keegan, T J; Langdon, T; Doyle, P; Maconochie, N E S; Fletcher, T; Nieuwenhuijsen, M J; Beral, V

    2009-01-01

    Objective To determine cancer morbidity in members of the armed forces who took part in tests of chemical warfare agents from 1941 to 1989. Design Historical cohort study, with cohort members followed up to December 2004. Data source Archive of UK government research facility at Porton Down, UK military personnel records, and national death and cancer records. Participants All veterans included in the cohort study of mortality, excluding those known to have died or been lost to follow-up before 1 January 1971 when the UK cancer registration system commenced: 17 013 male members of the UK armed forces who took part in tests (Porton Down veterans) and a similar group of 16 520 men who did not (non-Porton Down veterans). Main outcome measures Cancer morbidity in each group of veterans; rate ratios, with 95% confidence intervals, adjusted for age group and calendar period. Results 3457 cancers were reported in the Porton Down veterans compared with 3380 cancers in the non-Porton Down veterans. While overall cancer morbidity was the same in both groups (rate ratio 1.00, 95% confidence interval 0.95 to 1.05), Porton Down veterans had higher rates of ill defined malignant neoplasms (1.12, 1.02 to 1.22), in situ neoplasms (1.45, 1.06 to 2.00), and those of uncertain or unknown behaviour (1.32, 1.01 to 1.73). Conclusion Overall cancer morbidity in Porton Down veterans was no different from that in non-Porton Down veterans. PMID:19318700

  2. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  3. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  4. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics..., mercury compounds have also been widely used as preservatives in cosmetics such as hand and body...

  5. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics..., mercury compounds have also been widely used as preservatives in cosmetics such as hand and body...

  6. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of mercury compounds in cosmetics including use... GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics..., mercury compounds have also been widely used as preservatives in cosmetics such as hand and body...

  7. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics..., mercury compounds have also been widely used as preservatives in cosmetics such as hand and body...

  8. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics..., mercury compounds have also been widely used as preservatives in cosmetics such as hand and body...

  9. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents

    PubMed Central

    Cui, Yuxia; Palii, Stela S; Innes, Cynthia L; Paules, Richard S

    2014-01-01

    DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway. PMID:25483091

  10. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.

    PubMed

    Iwai, Takahiro; Kakegawa, Ken; Aida, Mari; Nagashima, Hisayuki; Nagoya, Tomoki; Kanamori-Kataoka, Mieko; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi

    2015-06-01

    A gas-cylinder-free plasma desorption/ionization system was developed to realize a mobile on-site analytical device for detection of chemical warfare agents (CWAs). In this system, the plasma source was directly connected to the inlet of a mass spectrometer. The plasma can be generated with ambient air, which is drawn into the discharge region by negative pressure in the mass spectrometer. High-power density pulsed plasma of 100 kW could be generated by using a microhollow cathode and a laboratory-built high-intensity pulsed power supply (pulse width: 10-20 μs; repetition frequency: 50 Hz). CWAs were desorbed and protonated in the enclosed space adjacent to the plasma source. Protonated sample molecules were introduced to the mass spectrometer by airflow through the discharge region. To evaluate the analytical performance of this device, helium and air plasma were directly irradiated to CWAs in the gas-cylinder-free plasma desorption/ionization system and the protonated molecules were analyzed by using an ion-trap mass spectrometer. A blister agent (nitrogen mustard 3) and nerve gases [cyclohexylsarin (GF), tabun (GA), and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX)] in solution in n-hexane were applied to the Teflon rod and used as test samples, after solvent evaporation. As a result, protonated molecules of CWAs were successfully observed as the characteristic ion peaks at m/z 204, 181, 163, and 268, respectively. In air plasma, the limits of detection were estimated to be 22, 20, 4.8, and 1.0 pmol, respectively, which were lower than those obtained with helium plasma. To achieve quantitative analysis, calibration curves were made by using CWA stimulant dipinacolyl methylphosphonate as an internal standard; straight correlation lines (R(2) = 0.9998) of the peak intensity ratios (target per internal standard) were obtained. Remarkably, GA and GF gave protonated dimer ions, and the ratios of the protonated dimer ions to the protonated

  11. Analysis by liquid chromatography-electrospray ionization tandem mass spectrometry and acute toxicity evaluation for beta-blockers and lipid-regulating agents in wastewater samples.

    PubMed

    Hernando, M D; Petrovic, M; Fernández-Alba, A R; Barceló, D

    2004-08-13

    This paper describes a multiresidue method for the extraction and determination of two therapeutic groups of pharmaceuticals, lipid-regulating agents (clofibric acid, bezafibrate, gemfibrocil, fenofibrate) and beta-blockers (atenolol, sotalol, metoprolol, betaxolol) in waters by solid-phase extraction followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). Recoveries obtained from spiked HPLC water, as well as, from spiked real samples (sewage treatment plants influent and effluents, river and tap water) were all above 60%, with the exception of betaxolol with a 52% recovery. The quantitative MS analysis was performed using a multiple reaction monitoring. The LC-MS-MS method gave detection limits ranging from 0.017 to 1.25 microg/l in spiked effluent. Precision of the method, calculated as relative standard deviation, ranged from 3.7 to 18.5%. Individual and combined effects on Daphnia magna were evaluated for both therapeutic groups. Individual effects in culture medium showed these compounds as not harmful and not toxic, an exception is fenofibrate that was found to be harmful, but at high, in the environment unrealistic concentrations (EC50 of 50 mg/l). Combined effect in wastewater showed synergistic toxic effects at low concentration level (2 microg/l). PMID:15387181

  12. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents. PMID:19241065

  13. Screening of antimicrobial agents for in vitro radiation protection and mitigation capacity, including those used in supportive care regimens for bone marrow transplant recipients.

    PubMed

    Epperly, Michael W; Franicola, Darcy; Shields, Donna; Rwigema, Jean-Claude; Stone, Brandon; Zhang, Xichen; McBride, William; Georges, George; Wipf, Peter; Greenberger, Joel S

    2010-01-01

    Antibiotic and antifungal agents used in supportive care regimens for bone marrow transplantation recipients contribute to a significant dose-modifying effect of otherwise lethal total body irradiation. To determine whether drugs used in supportive care and other commonly used antibiotics such as tetracycline function as radiation protectors or damage mitigators in vitro, 13 drugs were tested for radiation protection and radiation damage mitigation of 32D cl 3 hematopoietic progenitor cells in clonagenic survival curves in vitro. Antibiotic/Antifungal agents including cilastatin, amikacin, ceftazidine, vancomycin, tetracycline, doxycycline, ciprofloxacin, metronidazole, methacycline, minocycline, meclocycline, oxytetracycline and rolitetracycline were added in 1, 10, or 100 micromolar concentrations to murine interleukin-3-dependent hematopoietic progenitor cell line 32D cl 3 cells either before or after irradiation of 0 to 8 Gy. Control irradiated 32D cl 3 cells showed radiosensitivity comparable to freshly explanted mouse marrow hematopoietic progenitor cells (D(0) 1.1+/-0.1 Gy, N 1.5+/-0.4). Positive control GS-nitroxide JP4-039 (known radiation mitigator) treated 32D cl 3 cells were radioresistant (D(0) 1.2+/-0.1, N 5.8+/-2.4 (p=0.009)). Of the 13 drugs tested, tetracycline was found to be a significant radiation mitigator (D(0) 0.9+/-0.1, N 13.9+/-0.4 (p=0.0027)). Thus, the radiation dose-modifying effect of some antibiotics, but not those currently used in the supportive care (antibiotic/antifungal regimens) for marrow transplant patients, may act as radiation damage mitigators for hematopoietic cells as well as decreasing the growth and inflammatory response to microbial pathogens. PMID:20133970

  14. Current state of evidence on 'off-label' therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland--a consensus report.

    PubMed

    Aringer, M; Burkhardt, H; Burmester, G R; Fischer-Betz, R; Fleck, M; Graninger, W; Hiepe, F; Jacobi, A M; Kötter, I; Lakomek, H J; Lorenz, H M; Manger, B; Schett, G; Schmidt, R E; Schneider, M; Schulze-Koops, H; Smolen, J S; Specker, C; Stoll, T; Strangfeld, A; Tony, H P; Villiger, P M; Voll, R; Witte, T; Dörner, T

    2012-04-01

    Systemic lupus erythematosus (SLE) can be a severe and potentially life-threatening disease that often represents a therapeutic challenge because of its heterogeneous organ manifestations. Only glucocorticoids, chloroquine and hydroxychloroquine, azathioprine, cyclophosphamide and very recently belimumab have been approved for SLE therapy in Germany, Austria and Switzerland. Dependence on glucocorticoids and resistance to the approved therapeutic agents, as well as substantial toxicity, are frequent. Therefore, treatment considerations will include 'off-label' use of medication approved for other indications. In this consensus approach, an effort has been undertaken to delineate the limits of the current evidence on therapeutic options for SLE organ disease, and to agree on common practice. This has been based on the best available evidence obtained by a rigorous literature review and the authors' own experience with available drugs derived under very similar health care conditions. Preparation of this consensus document included an initial meeting to agree upon the core agenda, a systematic literature review with subsequent formulation of a consensus and determination of the evidence level followed by collecting the level of agreement from the panel members. In addition to overarching principles, the panel have focused on the treatment of major SLE organ manifestations (lupus nephritis, arthritis, lung disease, neuropsychiatric and haematological manifestations, antiphospholipid syndrome and serositis). This consensus report is intended to support clinicians involved in the care of patients with difficult courses of SLE not responding to standard therapies by providing up-to-date information on the best available evidence. PMID:22072024

  15. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  16. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  17. Comparison of inhibition kinetics of several organophosphates, including some nerve agent surrogates, using human erythrocyte and rat and mouse brain acetylcholinesterase.

    PubMed

    Coban, Alper; Carr, Russell L; Chambers, Howard W; Willeford, Kenneth O; Chambers, Janice E

    2016-04-25

    Because testing of nerve agents is limited to only authorized facilities, our laboratory developed several surrogates that resemble nerve agents because they phosphylate the acetylcholinesterase (AChE) with the same moiety as the actual nerve agents. The inhibition kinetic parameters were determined for AChE by surrogates of cyclosarin (NCMP), sarin (NIMP, PIMP and TIMP) and VX (NEMP and TEMP) and other organophosphorus compounds derived from insecticides. All compounds were tested with rat brain and a subset was tested with mouse brain and purified human erythrocyte AChE. Within the compounds tested on all AChE sources, chlorpyrifos-oxon had the highest molecular rate constant followed by NCMP and NEMP. This was followed by NIMP then paraoxon and DFP with rat and mouse brain AChE but DFP was a more potent inhibitor than NIMP and paraoxon with human AChE. With the additional compounds tested only in rat brain, TEMP was slightly less potent than NEMP but more potent than PIMP which was more potent than NIMP. Methyl paraoxon was slightly less potent than paraoxon but more potent than TIMP which was more potent than DFP. Overall, this study validates that the pattern of inhibitory potencies of our surrogates is comparable to the pattern of inhibitory potencies of actual nerve agents (i.e., cyclosarin>VX>sarin), and that these are more potent than insecticidal organophosphates. PMID:26965078

  18. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis.

    PubMed

    Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-09-15

    A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. PMID:20740525

  19. Getting Acquainted: An Induction Training Guide for First-Year Extension Agents. Suggestions for Completing Certain Learning Experiences Included in the Induction Training Guide; a Supplement to "Getting Acquainted."

    ERIC Educational Resources Information Center

    Collings, Mary Louise; Gassie, Edward W.

    An induction guide to help the extension agent get acquainted with his role and suggestions for completing learning experiences that are included in the guide comprise this two-part publication. The training guide learning experiences, a total of 25, are made up of: Objectives of the New Worker; When Completed; Learning Experiences; Person(s)…

  20. Discovery and basic pharmacology of erythropoiesis-stimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact.

    PubMed

    Kiss, Zoltán; Elliott, Steven; Jedynasty, Kinga; Tesar, Vladimír; Szegedi, János

    2010-04-01

    Cloning of the human erythropoietin (EPO) gene and development of the first recombinant human erythropoietin (rHuEPO) drug were truly breakthroughs. This allowed a deeper understanding of the structure and pharmacology of rHuEpo, which in turn inspired the discovery and development of additional erythropoiesis-stimulating agents (ESAs). In vivo specific activity and serum half-life of rHuEPO are influenced by the amount and structure of the attached carbohydrate. Increased numbers of sialic acids on carbohydrate attached to rHuEPO correlated with a relative increase in in-vivo-specific activity and increased serum half-life. The effect of increasing the number of sialic-acid-containing carbohydrates on in-vivo-specific activity was explored. Initial research focused on solving the problem of how the protein backbone could be engineered so a cell would add more carbohydrate to it. Additional work resulted in darbepoetin alfa, a longer-acting molecule with two additional carbohydrate chains. PMID:20127232

  1. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  2. Poly(3,4-ethylenedioxypyrrole) Modified Emitter Electrode for Substitution of Homogeneous Redox Buffer Agent Hydroquinone in Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos

    2010-01-01

    The electrolysis inherent to the operation of the electrospray ionization (ESI) source used with mass spectrometry (MS) is a well-known attendant effect of generating unipolar spray droplets and may affect the analysis of the analyte of interest. Undesirable electrolysis of an analyte may be prevented by limiting the emitter electrode current and/or the mass transport characteristics of the system. However, these ways to avoid analyte electrolysis may not be applcable in all ESI-MS experiments. For example, in the case of specific nanospray systems (e.g. the wire-in-a-capillary bulk-loaded or chip-based tip-loaded nanospray configurations), the solution flow rate is fixed in the 50-500 nL/min range and the electrode surface to volume ratio is large presenting a very effcient analyte to electrode mass transport configuration. In these situations, control over the interfacial potential of the working electrode via homogeneous or traditional heterogeneous (sacrificial metal) redox buffering is a possible way to prevent analyte electrolysis. However, byproducts of these redox buffering approaches can appear in the mass spectra and/or they can chemically alter the analyte. For example, the main reason for using hydroquinone as a homogeneous redox buffer, in addition to its relatively low oxidation potential, is that neither the original compound nor its oxidation product benzoquinone can be detected directly by ESI-MS. However, benzoquinone can alter analytes with thiol functional groups by reacting with those groups via a 1,4-Michael addition.

  3. Ionization Driven Chemistry in Protoplanetary Disks and Observational Signatures of Ionization Suppression

    NASA Astrophysics Data System (ADS)

    Cleeves, Lauren Ilsedore; Bergin, Edwin A.

    2015-01-01

    Circumstellar disks around young stars set the stage for the formation of planetary systems. The ionization fraction of the disk fundamentally regulates turbulence, which drives accretion onto the star and plays a role in the formation of planetesimals. Ionization is also central to the chemistry of the coldest disk gas, where comets and other icy bodies are assembled. During my PhD I studied the expected levels --- including possible severe suppression --- of the primary ionizing agents in disks, including cosmic rays, X-rays and the decay of short-lived radionuclides. Within this framework, I examined how each of these sources impacts turbulence-free "dead zones," and I identified submillimeter molecular emission tracers that can be used to spatially map-out ionization in disks with ALMA. I applied these theoretical results to SMA and ALMA observations of the extensively studied TW Hya protoplanetary disk, and I measured a disk-averaged upper limit to the cosmic ray ionization rate ~100 times below the canonical rate of 10-17 s-1 per H2. These results point to extensive CR deflection by either natal winds or twisted magnetic fields from the background environment or within the disk itself. One of the important implications of this work is that cold disk chemistry is inefficient without sufficient ionization, and as a direct result, deuterated water (HDO) is not significantly produced in disks. Given the elevated levels of HDO/H2O present throughout Solar System bodies, these results point to a substantial interstellar inheritance of deuterium-enriched ices during the formation of our own planetary system.

  4. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  5. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  6. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  7. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  8. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    PubMed

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-01

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. PMID:26118803

  9. Molecular characteristics and in vitro susceptibility to antimicrobial agents, including the des-fluoro(6) quinolone DX-619, of Panton-Valentine leucocidin-positive methicillin-resistant Staphylococcus aureus isolates from the community and hospitals.

    PubMed

    Yamamoto, Tatsuo; Dohmae, Soshi; Saito, Kohei; Otsuka, Taketo; Takano, Tomomi; Chiba, Megumi; Fujikawa, Katsuko; Tanaka, Mayumi

    2006-12-01

    Highly virulent, community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strains with Panton-Valentine leucocidin (PVL) genes have been found increasingly worldwide. Among a total of 2,101 MRSA strains isolated from patients in hospitals in Japan, two were positive for PVL genes. One strain was identified as a community-acquired MRSA strain with genotype sequence type 30 (ST30) and spa (staphylococcal protein A gene) type 19 from Japan and was resistant only to beta-lactam antimicrobial agents. The other strain was closely related to PVL+ multidrug-resistant, hospital-acquired MRSA strains (ST30, spa type 43) derived from nosocomial outbreaks in the 1980s to 1990s in Japan but with a divergent sequence type, ST765 (a single-locus variant of ST30). Twenty-two PVL+ MRSA strains, including those from Japan and those from other countries with various sequence types (ST1, ST8, ST30, ST59, and ST80) and genotypes, were examined for susceptibility to 31 antimicrobial agents. Among the agents, DX-619, a des-fluoro(6) quinolone, showed the greatest activity, followed by rifampin and sitafloxacin, a fluoroquinolone. The data suggest that DX-619 exhibits a superior activity against PVL+ MRSA strains with various virulence genetic traits from the community as well as from hospitals. PMID:17043124

  10. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  11. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  12. Trends in the susceptibility of commonly encountered clinically significant anaerobes and susceptibilities of blood isolates of anaerobes to 16 antimicrobial agents, including fidaxomicin and rifaximin, 2008-2012, northern Taiwan.

    PubMed

    Wang, F D; Liao, C H; Lin, Y T; Sheng, W H; Hsueh, P R

    2014-11-01

    We investigated the antimicrobial resistance trends and profiles of clinical anaerobic isolates in northern Taiwan. Trends in the susceptibility of five commonly encountered clinical anaerobic isolates to seven agents from 2008 to 2012 were measured using the Cochran-Armitage trend test. The minimum inhibitory concentrations (MICs) of 16 antimicrobial agents, including fidaxomicin and rifaximin, against anaerobic blood isolates from two medical centers were determined using the agar dilution method. During the study period, susceptibility data on 11,105 isolates were evaluated. Metronidazole and chloramphenicol retained excellent activities. Around 20-30 % of isolates of Bacteroides and Prevotella species were resistant to ampicillin-sulbactam, cefmetazole, flomoxef, and clindamycin. Of the 507 tested blood isolates, the rates of resistance to commonly used agents were much higher, namely, 16.2 % for amoxicillin-clavulanate, 15.6 % for ampicillin-sulbactam, 24.7 % for cefmetazole, and 36.1 % for clindamycin. Notably, 13.5 % of B. fragilis isolates were resistant to ertapenem. Also, 15.2 % of B. uniformis, 17.2 % of other Bacteroides species, 14.3 % of Prevotella species, and 14 % of Clostridium other than C. perfringens isolates were resistant to moxifloxacin. Cefoperazone-sulbactam was active against most isolates, except for Clostridium species other than perfringens (resistance rate, 18.6 %). Fidaxomicin exerted poor activities against most anaerobes tested (MIC90 of >128 μg/ml for B. fragilis and all isolates), except for C. perfringens (MIC90 of 0.03 μg/ml) and Peptostreptococcus micros (MIC90 of 2 μg/ml). However, rifaximin showed a wide range of susceptibilities against the tested anaerobes (MIC90 of 0.5 μg/ml for B. fragilis). The emergence of resistance to ertapenem and moxifloxacin among bacteremic anaerobes highlights the need for continuous monitoring. PMID:24930042

  13. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.

    PubMed Central

    Wilhelm, D; Bender, K; Knebel, A; Angel, P

    1997-01-01

    Monofunctional alkylating agents like methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are potent inducers of cellular stress leading to chromosomal aberrations, point mutations, and cell killing. We show that these agents induce a specific cellular stress response program which includes the activation of Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38 mitogen-activated protein kinase, and the upstream kinase SEK1/MKK4 and which depends on the reaction mechanism of the alkylating agent in question. Similar to another inducer of cellular stress, UV irradiation, damage of nuclear DNA by alkylation is not involved in the MMS-induced response. However, in contrast to UV and other inducers of the JNK/SAPKs and p38 pathways, activation of growth factor and G-protein-coupled receptors does not play a role in the MMS response. We identified the intracellular glutathione (GSH) level as critical for JNK/SAPK activation by MMS: enhancing the GSH level by pretreatment of the cells with GSH or N-acetylcysteine inhibits, whereas depletion of the cellular GSH pool causes hyperinduction of JNK/SAPK activity by MMS. In light of the JNK/SAPK-dependent induction of c-jun and c-fos transcription, and the Jun/Fos-induced transcription of xenobiotic-metabolizing enzymes, these data provide a potential critical role of JNK/SAPK and p38 in the induction of a cellular defense program against cytotoxic xenobiotics such as MMS. PMID:9234735

  14. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  15. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents.

    PubMed

    John, Harald; Breyer, Felicitas; Thumfart, Jörg Oliver; Höchstetter, Hans; Thiermann, Horst

    2010-11-01

    Toxic organophosphorus compounds (OPC), e.g., pesticides and nerve agents (NA), are known to phosphylate distinct endogenous proteins in vivo and in vitro. OPC adducts of butyrylcholinesterase and albumin are considered to be valuable biomarkers for retrospective verification of OPC exposure. Therefore, we have detected and identified novel adducts of human serum albumin (HSA) by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pure albumin and plasma were incubated with numerous pesticides and NA of the V- and G-type in different molar ratios. Samples were prepared either by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel enzymatic cleavage using endoproteinase Glu-C (Glu-C) or by combining highly albumin-selective affinity extraction with ultrafiltration followed by reduction, carbamidomethylation, and enzymatic cleavage (Glu-C) prior to MALDI-TOF MS analysis. Characteristic mass shifts for phosphylation revealed tyrosine adducts at Y(411) (Y(401)KFQNALLVRY(411)TKKVPQVSTPTLVE(425)), Y(148) and Y(150) (I(142)ARRHPY(148)FY(150)APE(153), single and double labeled), and Y(161) (L(154)LFFAKRY(161)KAAFTE(167)) produced by original NA (tabun, sarin, soman, cyclosarin, VX, Chinese VX, and Russian VX) as well as by chlorpyrifos-oxon, diisopropyl fluorophosphate (DFP), paraoxon-ethyl (POE), and profenofos. MALDI-MS/MS of the single-labeled I(142)-E(153) peptide demonstrated that Y(150) was phosphylated with preference to Y(148). Aged albumin adducts were not detected. The procedure described was reproducible and feasible for detection of adducts at the most reactive Y(411)-residue (S/N ≥ 3) when at least 1% of total albumin was labeled. This was achieved by incubating plasma with molar HSA/OPC ratios ranging from approximately 1:0.03 (all G-type NA, DFP, and POE) to 1:3 (V-type NA, profenofos). Relative signal intensity of the Y(411) adduct correlated well with the spotted relative

  16. Femtosecond Laser Ionization of Organic Amines with Very Low Ionization Potential.

    NASA Astrophysics Data System (ADS)

    Yatsuhashi, Tomoyuki; Obayashi, Takashi; Tanaka, Michinori; Murakami, Masanao; Nakashima, Nobuaki

    2006-03-01

    The interaction between high intensity femtosecond laser and molecules is one of the most attractive areas in laser chemistry and ionization is the most fundamental subject. Theoretical consideration successfully reproduced the ionization behavior of rare gases. However, the understanding of ionization mechanisms of large molecules is difficult more than those of rare gases due to their complexity. Generally speaking, molecules are harder to ionize than rare gases even if they have the same ionization potential. The suppressed ionization phenomena are one of the important features of molecular ionization. Hankin et al. examined 23 organic molecules with ionization potentials between 8.25 and 11.52 eV. We have examined ionization and/ or fragmentation of many organic molecules, including aromatic compounds, halogenated compounds, methane derivatives etc. at various wavelengths below 10^16 Wcm-2. In order to investigate the nature of molecular ionization, it is interesting to examine a variety of molecule in a wide range of ionization potential. In this study, we examined several organic amines because we can explore the uninvestigated ionization potential range down to 5.95 eV. In addition to the significant suppression of the ionization rates, stepwise ionization behavior, which was not observed in rare gases, was observed.

  17. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  18. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  19. The effectiveness and cost-effectiveness of erythropoiesis-stimulating agents (epoetin and darbepoetin) for treating cancer treatment-induced anaemia (including review of technology appraisal no. 142): a systematic review and economic model.

    PubMed Central

    Crathorne, Louise; Huxley, Nicola; Haasova, Marcela; Snowsill, Tristan; Jones-Hughes, Tracey; Hoyle, Martin; Briscoe, Simon; Coelho, Helen; Long, Linda; Medina-Lara, Antonieta; Mujica-Mota, Ruben; Napier, Mark; Hyde, Chris

    2016-01-01

    BACKGROUND Anaemia is a common side effect of cancer treatments and can lead to a reduction in quality of life. Erythropoiesis-stimulating agents (ESAs) are licensed for use in conjunction with red blood cell transfusions to improve cancer treatment-induced anaemia (CIA). OBJECTIVE To investigate the effectiveness and cost-effectiveness of ESAs in anaemia associated with cancer treatment (specifically chemotherapy). DATA SOURCES The following databases were searched from 2004 to 2013: The Cochrane Library, MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature, British Nursing Index, Health Management Information Consortium, Current Controlled Trials and ClinicalTrials.gov. The US Food and Drug Administration and European Medicines Agency websites were also searched. Bibliographies of included papers were scrutinised for further potentially includable studies. REVIEW METHODS The clinical effectiveness review followed principles published by the NHS Centre for Reviews and Dissemination. Randomised controlled trials (RCTs), or systematic reviews of RCTs, of ESAs (epoetin or darbepoetin) for treating people with CIA were eligible for inclusion in the review. Comparators were best supportive care, placebo or other ESAs. Anaemia- and malignancy-related outcomes, health-related quality of life (HRQoL) and adverse events (AEs) were evaluated. When appropriate, data were pooled using meta-analysis. An empirical health economic model was developed comparing ESA treatment with no ESA treatment. The model comprised two components: one evaluating short-term costs and quality-adjusted life-years (QALYs) (while patients are anaemic) and one evaluating long-term QALYs. Costs and benefits were discounted at 3.5% per annum. Probabilistic and univariate deterministic sensitivity analyses were performed. RESULTS Of 1457 titles and abstracts screened, 23 studies assessing ESAs within their licensed

  20. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  1. Complete parametrization of the plasma-sheath transition and I-V curves for a cylindrical or spherical Langmuir probe according to the features of the probe, simultaneously including geometry, ionization and collisions

    NASA Astrophysics Data System (ADS)

    Morales Crespo, R.

    2015-08-01

    This paper solves and analyses the complete characterization of the plasma-sheath transition and the characteristic I-V curves of an active and collisional plasma close to a cylindrical or spherical wall considering a wide range of the parameter which describe the model to be useful for experimental measures. Despite the difficulty of including the three possible pre-sheath mechanisms, this characterization is obtained from a self-consistent model using three easily measurable parameters, namely the electric potential of the wall, the positive ion current collected by the wall, and the radius of the wall. These parameters are easy to measure and facilitate the diagnosis of plasmas from an experimental point of view.

  2. Calcium - ionized

    MedlinePlus

    ... levels. These may include abnormal blood levels of albumin or immunoglobulins. Normal Results Children: 4.8 to ... 2016:chap 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test ...

  3. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... millions of gallons of Agent Orange and other herbicides on trees and vegetation during the Vietnam War. ...

  4. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  5. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  6. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  7. Development of dielectric-barrier-discharge ionization.

    PubMed

    Guo, Cheng'an; Tang, Fei; Chen, Jin; Wang, Xiaohao; Zhang, Sichun; Zhang, Xinrong

    2015-03-01

    Dielectric-barrier-discharge ionization is an ambient-ionization technique. Since its first description in 2007, it has attracted much attention in such fields as biological analysis, food safety, mass-spectrometry imaging, forensic identification, and reaction monitoring for its advantages, e.g., low energy consumption, solvent-free method, and easy miniaturization. In this review a brief introduction to dielectric barrier discharge is provided, and then a detailed introduction to the dielectric-barrier-discharge-ionization technique is given, including instrumentation, applications, and mechanistic studies. Based on the summary of reported work, possible future uses of this type of ionization source are discussed at the end. PMID:25510973

  8. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  9. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  10. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  11. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  12. Antifungal agents.

    PubMed

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  13. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  14. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  15. Combining tissue extraction and off-line capillary electrophoresis matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for neuropeptide analysis in individual neuronal organs using 2,5-dihydroxybenzoic acid as a multi-functional agent.

    PubMed

    Wang, Junhua; Jiang, Xiaoyue; Sturm, Robert M; Li, Lingjun

    2009-11-20

    In this study we report an improved protocol that combines simplified sample preparation and micro-scale separation for mass spectrometric analysis of neuropeptides from individual neuroendocrine organs of crab Cancer borealis. A simple, one-step extraction method with commonly used matrix-assisted laser desorption/ionization (MALDI) matrix, 2,5-dihydroxybenzoic acid (DHB), in saturated aqueous solution, is employed for improved extraction of neuropeptides. Furthermore, a novel use of DHB as background electrolyte for capillary electrophoresis (CE) separation in the off-line coupling of CE to MALDI-Fourier transform mass spectrometric (FT-MS) detection is also explored. The new CE electrolyte exhibits full compatibility with MALDI-MS analysis of neuropeptides in that both the peptide extraction process and MALDI detection utilize DHB. In addition, enhanced resolving power and improved sensitivity are also observed for CE-MALDI-MS of peptide mixture analysis. Collectively, the use of DHB has simplified the extraction and reduced the sample loss by elimination of homogenizing, drying, and desalting processes. In the mean time, the concurrent use of DHB as CE separation buffer and subsequent MALDI matrix offers improved spectral quality by eliminating the interferences from typical CE electrolyte in MALDI detection. PMID:19473662

  16. Chemical crowd control agents.

    PubMed

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  17. Field ionizing elements and applications thereof

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2003-01-01

    A field ionizing element formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. The membrane includes a supporting portion, and a non supporting portion where the ions are formed. The membrane may be used as the front end for a number of different applications including a mass spectrometer, a thruster, an ion mobility element, or an electrochemical device such as a fuel cell.

  18. Melatonin protection from chronic, low-level ionizing radiation.

    PubMed

    Reiter, Russel J; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Tan, Dun-Xian

    2011-12-15

    In the current survey, we summarize the published literature which supports the use of melatonin, an endogenously produced molecule, as a protective agent against chronic, low-level ionizing radiation. Under in vitro conditions, melatonin uniformly was found to protect cellular DNA and plasmid super coiled DNA from ionizing radiation damage due to Cs(137) or X-radiation exposure. Likewise, in an in vivo/in vitro study in which humans were given melatonin orally and then their blood lymphocytes were collected and exposed to Cs(137) ionizing radiation, nuclear DNA from the cells of those individuals who consumed melatonin (and had elevated blood levels) was less damaged than that from control individuals. In in vivo studies as well, melatonin given to animals prevented DNA and lipid damage (including limiting membrane rigidity) and reduced the percentage of animals that died when they had been exposed to Cs(137) or Co(60) radiation. Melatonin's ability to protect macromolecules from the damage inflicted by ionizing radiation likely stems from its high efficacy as a direct free radical scavenger and possibly also due to its ability to stimulate antioxidative enzymes. Melatonin is readily absorbed when taken orally or via any other route. Melatonin's ease of self administration and its virtual absence of toxicity or side effects, even when consumed over very long periods of time, are essential when large populations are exposed to lingering radioactive contamination such as occurs as a result of an inadvertent nuclear accident, an intentional nuclear explosion or the detonation of a radiological dispersion device, i.e., a "dirty" bomb. PMID:22185900

  19. The effects of selected drugs, including chlorpromazine and non-steroidal anti-inflammatory agents, on polyclonal IgG synthesis and interleukin 1 production by human peripheral blood mononuclear cells in vitro.

    PubMed

    Martinez, F; Coleman, J W

    1989-05-01

    We tested a range of drugs for their effects on in vitro polyclonal IgG synthesis by human peripheral blood mononuclear cells (PBMC) stimulated with the lectin pokeweed mitogen (PWM). The test drugs were selected on the basis of reported disruptive effects on immune function in vivo. IgG production between day 4 and days 7 or 8 of culture was measured by biotin-streptavidin sandwich ELISA. The anti-psychotic agent chlorpromazine (0.55-1.7 microM) enhanced IgG synthesis to approximately double control levels. In contrast, the non-steroidal anti-inflammatory drugs (NSAIDs) indomethacin, piroxicam, ibuprofen and aspirin inhibited IgG synthesis by up to 50%, with a rank order of potency that reflects their activity as inhibitors of cyclo-oxygenase. Phenytoin, procainamide, propylthiouracil, methimazole, D-penicillamine and D-penicillamine-L-cysteine all failed to modulate IgG synthesis at non-toxic concentrations. The potentiation and inhibition of IgG synthesis by chlorpromazine and indomethacin, respectively, was observed only when the drug was present during the first 24 h of culture. Neither chlorpromazine nor indomethacin, at non-toxic concentrations, affected PHA- and PWM-stimulated proliferation of PBMC. In addition, chlorpromazine, indomethacin and piroxicam, at concentrations which produced maximal modulation of IgG synthesis, and D-penicillamine and D-penicillamine-L-cysteine at 10 microM failed to influence production of interleukin-1-like activity. We conclude that chlorpromazine and NSAIDs, although they exert opposite effects on IgG synthesis, act at an early stage of B cell differentiation that appears to be independent of interleukin 1 synthesis and early proliferative events. PMID:2788047

  20. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  1. Ionizing photon budget: constraints from galaxies

    NASA Astrophysics Data System (ADS)

    Östlin, Göran

    2015-08-01

    I will discuss the the production and propagation of ionizing photons in galaxies. Multi wavelength HST imaging and spectroscopy of local starbursts, including candidate Lyman continuum leakers, from the UV to the i-band plus Halpha and Hbeta are used to investigate where ionizing protons are produced and absorbed. We add IFU data, e.g. from MUSE, to further constrain the optical depth to Lyman continuum photons. I will further discuss rest frame UV observations of galaxies at higher redshifts, and their implications for the ionizing photon budget.

  2. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  3. On-line HPLC-electrospray ionization mass spectrometry: a pharmacological tool for identifying and studying the stability of Gd3+ complexes used as magnetic resonance imaging contrast agents.

    PubMed

    Behra-Miellet, J; Briand, G; Kouach, M; Gressier, B; Cazin, M; Cazin, J C

    1998-01-01

    The identification of MRI contrast agents (CAg) as gadolinium complexes often used at very low concentrations in Pharmacology was carried out by ESI-MS or HPLC-ESI-MS. Firstly, Omniscan, Dotarem and Magnevist were tested. In these compounds, the Gd3+ ion must be solidly chelated by linear or macrocyclic ligands because of the severe toxicity of the free Gd3+. Spectra were obtained at low voltage, preserving the non-covalent binding integrity of the complexes, and at various higher voltages showing the progressive destruction of the complexes. Secondly, a direct reaction of these drugs with the oxidative human neutrophil production, induced in vitro by Phorbol 12-myristate 13-acetate enhancing the respiratory burst, was investigated. This was done to mimic what happens in the case of inflammatory diseases, or infection, or when people are likely to develop anaphylactoid reactions, as the i.v. injection of CAg causes contact between the complexes and neutrophils in the blood. Analysis by HPLC-ESI-MS coupling did not show any direct reaction between Gd complexes and the chemical compounds in the neutrophil oxidative metabolism, even if uncertainty remains as regards meglumine salt. HPLC-ESI-MS is a good way of visualizing characteristic, Gd isotopic distribution and of following its associations in biological samples. PMID:9470970

  4. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  5. Ionizing Radiation and Its Risks

    PubMed Central

    Goldman, Marvin

    1982-01-01

    Penetrating ionizing radiation fairly uniformly puts all exposed molecules and cells at approximately equal risk for deleterious consequences. Thus, the original deposition of radiation energy (that is, the dose) is unaltered by metabolic characteristics of cells and tissue, unlike the situation for chemical agents. Intensely ionizing radiations, such as neutrons and alpha particles, are up to ten times more damaging than sparsely ionizing sources such as x-rays or gamma rays for equivalent doses. Furthermore, repair in cells and tissues can ameliorate the consequences of radiation doses delivered at lower rates by up to a factor of ten compared with comparable doses acutely delivered, especially for somatic (carcinogenic) and genetic effects from x- and gamma-irradiation exposure. Studies on irradiated laboratory animals or on people following occupational, medical or accidental exposures point to an average lifetime fatal cancer risk of about 1 × 10-4 per rem of dose (100 per 106 person-rem). Leukemia and lung, breast and thyroid cancer seem more likely than other types of cancer to be produced by radiation. Radiation exposures from natural sources (cosmic rays and terrestrial radioactivity) of about 0.1 rem per year yield a lifetime cancer risk about 0.1 percent of the normally occurring 20 percent risk of cancer death. An increase of about 1 percent per rem in fatal cancer risk, or 200 rem to double the “background” risk rate, is compared with an estimate of about 100 rem to double the genetic risk. Newer data suggest that the risks for low-level radiation are lower than risks estimated from data from high exposures and that the present 5 rem per year limit for workers is adequate. PMID:6761969

  6. Fundamental studies of molecular multiphoton ionization

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures.

  7. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  8. Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale.

    PubMed

    Rebane, Riin; Kruve, Anneli; Liigand, Piia; Liigand, Jaanus; Herodes, Koit; Leito, Ivo

    2016-04-01

    Recent evidence has shown that the atmospheric pressure chemical ionization (APCI) mechanism can be more complex than generally assumed. In order to better understand the processes in the APCI source, for the first time, an ionization efficiency scale for an APCI source has been created. The scale spans over 5 logIE (were IE is ionization efficiency) units and includes 40 compounds with a wide range of chemical and physical properties. The results of the experiments show that for most of the compounds the ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source. Most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. At the same time, low-polarity hydrocarbons pyrene and anthracene are ionized in the APCI source but not in the ESI source. These results strongly imply that in APCI several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed. PMID:26943482

  9. Pediatric Antifungal Agents

    PubMed Central

    Cohen-Wolkowiez, Michael; Moran, Cassandra; Benjamin, Daniel K.; Smith, P Brian

    2009-01-01

    Purpose of review In immunocompromised hosts, invasive fungal infections are common and fatal. In the past decade, the antifungal armamentarium against invasive mycoses has expanded greatly. The purpose of this report is to review the most recent literature addressing the use of antifungal agents in children. Recent findings Most studies evaluating the safety and efficacy of antifungal agents are limited to adults. However, important progress has been made in describing the pharmacokinetics and safety of newer antifungal agents in children, including the echinocandins. Summary Dosage guidelines for newer antifungal agents are currently based on adult and limited pediatric data. Because important developmental pharmacology changes occur throughout childhood impacting the pharmacokinetics of these agents, antifungal studies specifically designed for children are necessary. PMID:19741525

  10. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  11. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  12. Martian Meteor Ionization Layers

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pesnell, W. D.

    1999-01-01

    Small interplanetary grains bombard Mars, like all the solar system planets, and, like all the planets with atmospheres, meteoric ion and atom layers form in the upper atmosphere. We have developed a comprehensive one-dimensional model of the Martian meteoric ionization layer including a full chemical scheme. A persistent layer of magnesium ions should exist around an altitude of 70 km. Unlike the terrestrial case, where the metallic ions are formed via charge-exchange with the ambient ions, Mg(+) in the Martian atmosphere is produced by photoionization. Nevertheless, the predicted metal layer peak densities for Earth and Mars are similar. Diffusion solutions, such as those presented here, should be a good approximation of the metallic ions in regions where the magnetic field is negligible and may provide a significant contribution to the nightside ionosphere. The low ultraviolet absorption of the Martian atmosphere may make Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  13. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    SciTech Connect

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-10-10

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10{sup –7}) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10{sup –6}-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H{sub 2}, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  14. Ionization in Atmospheres of Brown Dwarfs and Extrasolar Planets. V. Alfvén Ionization

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2013-10-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (>=10-7) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10-6-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H2, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  15. Polynucleotide kinase as a potential target for enhancing cytotoxicity by ionizing radiation and topoisomerase I inhibitors

    PubMed Central

    Bernstein, N. K.; Karimi-Busheri, F.; Rasouli-Nia, A.; Mani, R.; Dianov, G.; Glover, J. N. M.; Weinfeld, M.

    2010-01-01

    The cytotoxicity of many antineoplastic agents is due to their capacity to damage DNA and there is evidence indicating that DNA repair contributes to the cellular resistance to such agents. DNA strand breaks constitute a significant proportion of the lesions generated by a broad range of genotoxic agents, either directly, or during the course of DNA repair. Strand breaks that are caused by many agents including ionizing radiation, topoisomerase I inhibitors, and DNA repair glycosylases such as NEIL1 and NEIL2, often contain 5’-hydroxyl and/or 3’-phosphate termini. These ends must be converted to 5’-phosphate and 3’-hydroxyl termini in order to allow DNA polymerases and ligases to catalyze repair synthesis and strand rejoining. A key enzyme involved in this end-processing is polynucleotide kinase (PNK), which possesses two enzyme activities, a DNA 5’-kinase activity and a 3’-phosphatase activity. PNK participates in the single-strand break repair pathway and the non-homologous end joining pathway for double-strand break repair. RNAi-mediated down-regulation of PNK renders cells more sensitive to ionizing radiation and camptothecin, a topoisomerase I inhibitor. Structural analysis of PNK revealed the protein is composed of three domains, the kinase domain at the C-terminus, the phosphatase domain in the centre and a forkhead associated (FHA) domain at the N-terminus. The FHA domain plays a critical role in the binding of PNK to other DNA repair proteins. Thus each PNK domain may be a suitable target for small molecule inhibition to effectively reduce resistance to ionizing radiation and topoisomerase I inhibitors. PMID:18473721

  16. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  17. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  18. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.

    PubMed

    Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D

    2016-05-01

    Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. PMID:27113815

  19. Multiple ionization of argon by helium ions

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2016-09-01

    We apply the continuum distorted-wave eikonal initial state and the independent electron model to describe the multiple ionization of Ar by He2+ and He+ in the energy range 0.1–10 Mev amu–1. Auger-like post collisional processes are included, which enhance the high energy multiple ionization cross sections via ionization of the inner shells. All Ar electrons (K, L and M-shells) have been included in these calculations. The results agree well with the experimental data at high energies, where the post-collisional ionization is the main contribution. At intermediate impact energies the description is also good though it tends to overestimate the triple and quadruple ionization data at intermediate energies. We analyze this by comparing the present results for He+2 in Ar, with previous ones for He+2 in Ne and Kr. It was found that the theoretical description improves from Ne to Ar and Kr, with the latter being nicely described even at intermediate energies. The present formalism is also tested for Ar inner shell and total ionization cross sections. In all the cases the results above 0.1 MeV amu–1 are quite reasonable, as compared with the experimental data available and with the ECPSSR values.

  20. Screening of nerve agent degradation products by MALDI-TOFMS.

    PubMed

    Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang

    2006-07-01

    A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool. PMID:16808484

  1. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  2. Surface ionization of terpene hydrocarbons

    SciTech Connect

    Zandberg, E.Y.; Nezdyurov, A.L.; Paleev, V.I.; Ponomarev, D.A.

    1986-09-01

    By means of a surface ionization indicator for traces of materials in the atmosphere it has been established that many natural materials containing terpenes and their derivatives are ionized on the surface of heated molybdenum oxide at atmospheric air pressure. A mass-spectrometer method has been used to explain the mechanism of ionization of individual terpene hydrocarbons and to establish its principles. The ionization of ..cap alpha..-pinene, alloocimene, camphene, and also adamantane on oxidized tungsten under vacuum conditions has been investigated. The ..cap alpha..-pinene and alloocimene are ionized by surface ionization but camphene and adamantane are not ionized under vacuum conditions. The surface ionization mass spectra of ..cap alpha..-pinene and alloocimene are of low line brightness in comparison with electron ionization mass spectra and differ between themselves. The temperature relations for currents of the same compositions of ions during ionization of ..cap alpha..-pinene and alloocimene are also different, which leads to the possibility of surface ionization analysis of mixtures of terpenes being ionized. The ionization coefficients of alloocimene and ..cap alpha..-pinene on oxidized tungsten under temperatures optimum for ionization and the ionization potentials of alloocimene molecules and of radicals (M-H) of both compounds have been evaluated.

  3. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  4. Determination of the ionization potentials of security-relevant substances with single photon ionization mass spectrometry using synchrotron radiation.

    PubMed

    Schramm, E; Mühlberger, F; Mitschke, S; Reichardt, G; Schulte-Ladbeck, R; Pütz, M; Zimmermann, R

    2008-02-01

    Several ionization potentials (IPs) of security relevant substances were determined with single photon ionization time of flight mass spectrometry (SPI-TOFMS) using monochromatized synchrotron radiation from the "Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung" (BESSY). In detail, the IPs of nine explosives and related compounds, seven narcotics and narcotics precursors, and one chemical warfare agent (CWA) precursor were determined, whereas six IPs already known from the literature were verified correctly. From seven other substances, including one CWA precursor, the IP could not be determined as the molecule ion peak could not be detected. For these substances the appearance energy (AE) of a main fragment was determined. The analyzed security-relevant substances showed IPs significantly below the IPs of common matrix compounds such as nitrogen and oxygen. Therefore, it is possible to find photon energies in between, whereby the molecules of interest can be detected with SPI in very low concentrations due to the shielding of the matrix. All determined IPs except the one of the explosive EGDN were below 10.5 eV. Hence, laser-generated 118 nm photons can be applied for detecting almost all security-relevant substances by, e.g., SPI-TOFMS. PMID:18284801

  5. New standards for ionizing radiation measurements

    SciTech Connect

    Lamperti, P.J.; Johnson, C.M.

    1995-12-31

    The Ionizing Radiation Division has developed new national standards for mammographic X rays and for brachytherapy sources, such as iodine-125. The Attix chamber, a variable volume free-air ionization chamber, has been established as the primary national standard for mammographic X rays. The Attix chamber resides in the newly developed NIST Mammography Calibration Range and will be used to perform routine calibrations. The wide-angle free-air ionization chamber utilizes a large volume and a novel electric field configuration in order to circumvent the limitations of conventional free-air chambers. Seventeen beam qualities for X rays from molybdenum (Mo) and rhodium (Rh) anodes have been parameterized for the calibration of mammographic ionization chambers. The beam qualities available include anode/filter combinations of Mo/Mo, Mo/Rh and Rh/Rh. The mammography range was developed in collaborations with the U.S. Food and Drug Administration`s (FDA) Center for Devices and Radiological Health, the implementors of the Mammography Quality Standards Act (MQSA) of 1992. The wide-angle free-air ionization chamber has been used to measure the output of two types of iodine-125 seeds, those with resin balls and those with silver wire. Both free-air chambers have been intercompared with the Ritz parallel-plate free-air ionization chamber.

  6. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  7. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  8. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    PubMed Central

    Loo, Rachel R. Ogorzalek; Lakshmanan, Rajeswari

    2014-01-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate to those observed by ESI– MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase the extent of charging. This region incorporates properties, e.g., basicities, intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging (“supercharging”) such as m–NBA, sulfolane, and 3–nitrobenzonitrile increase analyte charge from “denaturing” and “native” solvent systems. It is suggested that additives’ Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carryingfewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte). PMID:25135609

  9. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Ogorzalek Loo, Rachel R.; Lakshmanan, Rajeswari; Loo, Joseph A.

    2014-10-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).

  10. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  11. 34 CFR 303.15 - Include; including.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Include; including. 303.15 Section 303.15 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS...

  12. Whole blood versus serum ionized calcium concentrations in dialysis patients

    PubMed Central

    Kang, Seok Hui; Cho, Kyu Hyang; Park, Jong Won; Yoon, Kyung Woo

    2014-01-01

    Background/Aims The aim of this study is to measure the difference of ionized calcium between heparinized whole blood and serum. Methods We recruited 107 maintenance hemodialysis (HD) patients from our hospital HD unit. The clinical and laboratory data included ionized calcium in serum and in whole blood (reference, 4.07 to 5.17 mg/dL). Results The level of ionized calcium in serum was higher than that in whole blood (p < 0.001). Bland-Altman analysis showed that difference for ionized calcium was 0.5027. For the difference, the nonstandardized β was -0.4389 (p < 0.001) and the intercept was 2.2418 (p < 0.001). There was a significant difference in the distribution of categories of ionized calcium level between two methods (κ, 0.279; p < 0.001). Conclusions This study demonstrates that whole blood ionized calcium is underestimated compared with serum ionized calcium. Positive difference increases as whole blood ionized calcium decreases. Therefore, significant hypocalcemia in whole blood ionized calcium should be verified by serum ionized calcium. PMID:24648806

  13. Generating Electrospray Ionization on Ballpoint Tips.

    PubMed

    Ji, Baocheng; Xia, Bing; Gao, Yuanji; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2016-05-17

    In this study, we report a simple and economical ballpoint electrospray ionization mass spectrometry (BP-ESI-MS) technique. This combines a small ballpoint tip with a syringe pump for the direct loading and ionization of various samples in different phases (including solution, semisolid, and solid) and allows for additional applications in surface analysis. The tiny metal ball on the ballpoint tip exhibits a larger surface for ionization than that of a conventional sharp tip end, resulting in higher ionization efficiency and less sample consumption. The adamant properties of the ballpoint tip allow sampling by simply penetrating or scraping various surfaces, such as a fruit peel, paper, or fabric. Complex samples, such as fine herbal powders and small solid samples, could be stored in the hollow space in the ballpoint socket and subsequently extracted online, which greatly facilitated MS analysis with little to no sample preparation. Positive ion mode was attempted, and various compounds, including amino acids, carbohydrates, flavonoids, and alkaloids, were detected from different types of samples. The results demonstrated that the special and excellent physical characteristics of ballpoint tips allowed for fast and convenient sampling and ionization for mass spectrometry analysis by the BP-ESI-MS method. PMID:27111601

  14. Light, Including Ultraviolet

    PubMed Central

    Maverakis, Emanual; Miyamura, Yoshinori; Bowen, Michael P.; Correa, Genevieve; Ono, Yoko; Goodarzi, Heidi

    2009-01-01

    Ultraviolet (UV) light is intricately linked to the functional status of the cutaneous immune system. In susceptible individuals, UV radiation can ignite pathogenic inflammatory pathways leading to allergy or autoimmunity. In others, this same UV radiation can be used as a phototherapy to suppress pathogenic cutaneous immune responses. These vastly different properties are a direct result of UV light’s ability to ionize molecules in the skin and thereby chemically alter them. Sometimes these UV-induced chemical reactions are essential, the formation of pre-vitamin D3 from 7-dehydrocholesterol, for example. In other instances they can be potentially detrimental. UV radiation can ionize a cell’s DNA causing adjacent pyrimidine bases to chemically bond to each other. To prevent malignant transformation, a cell may respond to this UV-induced DNA damage by undergoing apoptosis. Although this pathway prevents skin cancer it also has the potential of inducing or exacerbating autoreactive immune responses by exposing the cell’s nuclear antigens. Ultaviolet-induced chemical reactions can activate the immune system by a variety of other mechanisms as well. In response to UV irradiation keratinocytes secrete cytokines and chemokines, which activate and recruit leukocytes to the skin. In some individuals UV-induced chemical reactions can synthesize novel antigens resulting in a photoallergy. Alternatively, photosensitizing molecules can damage cells by initiating sunburn-like phototoxic reactions. Herein we review all types of UV-induced skin reactions, especially those involving the immune system. PMID:20018479

  15. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  16. Antiparasitic agents.

    PubMed

    Rosenblatt, J E

    1999-11-01

    Several important developments have occurred in recent years in the chemotherapy for and prophylaxis of parasitic infections. Although mefloquine is clearly the most effective agent for prevention of chloroquine-resistant falciparum malaria, its use has been compromised by side effects, both real and imagined. Well-designed studies have shown that side effects occur no more frequently with low-dose mefloquine than with chloroquine. Use of mefloquine in pregnant women has not been associated with birth defects, but the incidence of stillbirths may be increased. Malarone is a new agent that combines atovaquone and proguanil, and it may be as effective as mefloquine; however, it is not yet available in the United States. Several newer agents have appeared in response to the development of multidrug resistant Plasmodium falciparum, especially in Southeast Asia. Halofantrine is available for the treatment of mild to moderate malaria due to P. falciparum and for P. vivax infections. Because of severe toxic effects, use of halofantrine should be restricted to only those unusual and rare situations in which other agents cannot be used. Artemisinin (an extract of the Chinese herbal remedy qinghaosu) and two derivatives, artesunate and artemether, are active against multidrug resistant P. falciparum and are widely used in Asia in oral, parenteral, and rectal forms. The antibacterial azithromycin in combination with atovaquone or quinine has now been reported to treat babesiosis effectively in experimental animals and in a few patients. Azithromycin in combination with paromomycin has also shown promise in the treatment of cryptosporidiosis (and toxoplasmosis when combined with pyrimethamine) in patients with the acquired immunodeficiency syndrome (AIDS). Albendazole is currently the only systemic agent available for treatment of microsporidiosis, an infection primarily of patients with AIDS. In addition, albendazole and ivermectin have emerged as effective broad

  17. Functional imaging of the lungs with gas agents.

    PubMed

    Kruger, Stanley J; Nagle, Scott K; Couch, Marcus J; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B

    2016-02-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children. PMID:26218920

  18. New agents for prostate cancer.

    PubMed

    Agarwal, N; Di Lorenzo, G; Sonpavde, G; Bellmunt, J

    2014-09-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has been revolutionized by the arrival of multiple novel agents in the past 2 years. Immunotherapy in the form of sipuleucel-T, androgen axis inhibitors, including abiraterone acetate and enzalutamide, a chemotherapeutic agent, cabazitaxel, and a radiopharmaceutical, radium-223, have all yielded incremental extensions of survival and have been recently approved. A number of other agents appear promising in early studies, suggesting that the armamentarium against castrate-resistant prostate cancer is likely to continue to expand. Emerging androgen pathway inhibitors include androgen synthesis inhibitors (TAK700), androgen receptor inhibitors (ARN-509, ODM-201), AR DNA binding domain inhibitors (EPI-001), selective AR downregulators or SARDs (AZD-3514), and agents that inhibit both androgen synthesis and receptor binding (TOK-001/galeterone). Promising immunotherapeutic agents include poxvirus vaccines and CTLA-4 inhibitor (ipilimumab). Biologic agents targeting the molecular drivers of disease are also being investigated as single agents, including cabozantinib (Met and VEGFR2 inhibitor) and tasquinimod (angiogenesis and immune modulatory agent). Despite the disappointing results seen from studies evaluating docetaxel in combination with other agents, including GVAX, anti-angiogentic agents (bevacizumab, aflibercept, lenalinomide), a SRC kinase inhibitor (dasatinib), endothelin receptor antagonists (atrasentan, zibotentan), and high-dose calcitriol (DN-101), the results from the trial evaluating docetaxel in combination with the clusterin antagonist, custirsen, are eagerly awaited. New therapeutic hurdles consist of discovering new targets, understanding resistance mechanisms, the optimal sequencing and combinations of available agents, as well as biomarkers predictive for benefit. Novel agents targeting bone metastases are being developed following the success of zoledronic acid

  19. Ultrahigh vacuum measuring ionization gauge

    NASA Technical Reports Server (NTRS)

    Brock, F. J. (Inventor)

    1968-01-01

    The ionization gage described consists of separate ionization and collector regions connected at an exit area with a modulator electrode. In addition to the standard modulation function, the modulator in this location yields a suprising increase in collector current, apparently due to improved focussing and extraction of ions from the ionization region.

  20. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  1. Technology assessment for the determination of chemical agent vapors in demilitarization facilities: Final report

    SciTech Connect

    Maskarinec, M.P.; Wise, M.B.; Buchanan, M.V.

    1987-01-01

    A survey of analytical methods for the determination of chemical agents GB, VX, and HD was made. HD, or mustard, is bis-2-chloroethyl sulfide, and is classified as a blishtering agent. GB, or Sarin, is isopropyl methyl phosphonofluoridate. VX is O-ethyl-S-(2-diisopropylaminoethyl)methylphosphonothioate. Both GB and VX are nerve agents. Included were methods capable of providing for monitoring requirements at the time weighted average (TWA) and allowable stack concentration (ASC) levels in near real time. A review of the currently used automatic continuous air monitoring system (ACAMS) was made as well as a review of the recently developed atmospheric pressure ionization mass spectrometry (APIMS). This report recommends a strategy for research and development for near term and medium term improvement of the overall monitoring program. 12 refs., 1 tab.

  2. The ionization sources of the diffuse ionized gas in nearby disk galaxies

    NASA Astrophysics Data System (ADS)

    Voges, Erica Susan

    Diffuse ionized gas (DIG) has been shown to be an important component of the interstellar medium (ISM), with its large filling factor (>= 20%) and a mass that makes it the most massive component of the Galactic ionized ISM. Given that it has been found to be ubiquitous in both the Galaxy and external disk galaxies, the energy source to create and maintain the DIG must necessarily be large. Massive OB stars are the only known sources with enough energy to power the DIG, and DIG is also linked morphologically to OB stars as it is brightest near bright star forming regions. However, the details of the location and spectral types of the ionizing stars, as well as the relevance of other ionizing mechanisms, are still not clear. I present the results of three different studies aimed at exploring the ionization sources of the DIG. Optical spectroscopy of DIG in M33 and NGC 891 using the Gemini-North telescope has been obtained to compare diagnostic emission line ratios with photoionization models. The first detection of (O I] l6300 was made in the DIG of M33. In M33, models in which ionizing photons leaking from H II regions are responsible for the ionization of the DIG best fit our observed line ratios. In NGC 891, we found evidence that shock ionization may need to be included along with photoionization in order to explain our observed emission line ratios. The diffuse Ha fraction in eight nearby galaxies was studied as a function of radius and star formation rate per unit area. We found no correlation with radius, but we did find that regions with higher star formation rates have lower diffuse fractions. Neither of these results had any dependence on galaxy type. These results have implications regarding the circumstances under which H II regions may be leaking ionizing photons and thus ionizing DIG. We also compared observed and predicted ionizing photon emission rates for 39 H II regions in the Large Magellanic Cloud. Our results indicate that five of the H II

  3. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  4. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  5. Interferometric measurement of ionization in a grassfire

    NASA Astrophysics Data System (ADS)

    Mphale, Kgakgamatso Marvel; Heron, M.; Ketlhwaafetse, R.; Letsholathebe, D.; Casey, R.

    2010-03-01

    Grassfire plumes are weakly ionized gas. The ionization in the fire plume is due to thermal and chemi-ionization of incumbent species, which may include graphitic carbon, alkalis and thermally excited radicals, e.g., methyl. The presence of alkalis (e.g., potassium and sodium) in the fires makes thermal ionization a predominant electron producing mechanism in the combustion zone. Alkalis have low dissociation and ionization potentials and therefore require little energy to thermally decompose and give electrons. Assuming a Maxwellian velocity distribution of flame particles and electron-neutral collision frequency much higher than plasma frequency, the propagation of radio waves through a grassfire is predicted to have attenuation and phase shift. Radio wave propagation measurements were performed in a moderate intensity (554 kW m-1) controlled grassfire at 30- and 151-MHz frequencies on a 44 m path using a radio wave interferometer. The maximum temperature measured in the controlled burn was 1071 K and the observed fire depth was 0.9 m. The radio wave interferometer measured attenuation coefficients of 0.033 and 0.054 dB m-1 for 30- and 151-MHz, respectively. At collision frequency of 1.0 × 1011 s-1, maximum electron density was determined to be 5.061 × 1015 m-3.

  6. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  7. Ionizing radiation and orthopaedic prostheses

    NASA Astrophysics Data System (ADS)

    Rimnac, Clare M.; Kurtz, Steven M.

    2005-07-01

    Ultra high molecular weight polyethylene (UHMWPE) materials have been used successfully as one half of the bearing couple (against metallic alloys or ceramics) in total hip and total knee joint replacements for four decades. This review describes the impact of ionizing radiation (used for sterilization and for microstructural modification via crosslinking) on the performance of UHMWPE total joint replacement components. Gamma radiation sterilization in air leads to oxidative degradation of UHMWPE joint components that occurs during shelf-aging and also during in vivo use. Efforts to mitigate oxidative degradation of UHMWPE joint components include gamma radiation sterilization in inert barrier-packaging and processing treatments to reduce free radicals. Ionizing radiation (both gamma and electron-beam) has recently been used to form highly crosslinked UHMWPEs that have better adhesive and abrasive wear resistance than non-crosslinked UHMWPE, thereby potentially improving the long-term performance of total joint replacements. Along with increased wear resistance, however, there are deleterious changes to ductility and fracture resistance of UHMWPE, and an increased risk of fracture of these components remains a clinical concern.

  8. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  9. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  10. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  11. Battlefield agent collaboration

    NASA Astrophysics Data System (ADS)

    Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.

    2001-09-01

    Small air and ground physical agents (robots) will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces in urban and open terrain scenarios. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA), intelligence, chemical and biological agent detection, logistics, decoy, sentry; and communications relay will have advanced sensors, communications, and mobility characteristics. It is anticipated that there will be many levels of individual and team collaboration between the soldier and robot, robot to robot, and robot to mother ship. This paper presents applications and infrastructure components that illustrate each of these levels. As an example, consider the application where a team of twenty small robots must rapidly explore and define a building complex. Local interactions and decisions require peer to peer collaboration. Global direction and information fusion warrant a central team control provided by a mother ship. The mother ship must effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. Any level of collaboration requires robust communications, specifically a mobile ad hoc network. The application of fixed ground sensors and mobile robots is also included in this paper. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of multi-robot collaboration. This research includes battlefield visualization, intelligent software agents, adaptive communications, sensor and information fusion, and multi-modal human computer interaction.

  12. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  13. Agent Building Software

    NASA Technical Reports Server (NTRS)

    2000-01-01

    AgentBuilder is a software component developed under an SBIR contract between Reticular Systems, Inc., and Goddard Space Flight Center. AgentBuilder allows software developers without experience in intelligent agent technologies to easily build software applications using intelligent agents. Agents are components of software that will perform tasks automatically, with no intervention or command from a user. AgentBuilder reduces the time and cost of developing agent systems and provides a simple mechanism for implementing high-performance agent systems.

  14. Ionization of polarized hydrogen atoms

    SciTech Connect

    Alessi, J.G.

    1983-01-01

    Methods are discussed for the production of polarized H/sup -/ ions from polarized atoms produced in ground state atomic beam sources. Present day sources use ionizers of two basic types - electron ionizers for H/sup +/ Vector production followed by double charge exchange in a vapor, or direct H/sup -/ Vector production by charge exchange of H/sup 0/ with Cs/sup 0/. Both methods have ionization efficiencies of less than 0.5%. Ionization efficiencies in excess of 10% may be obtained in the future by the use of a plasma ionizer plus charge exchange in Cs or Sr vapor, or ionization by resonant charge exchange with a self-extracted D/sup -/ beam from a ring magnetron or HCD source. 36 references, 4 figures.

  15. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  16. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  17. A resonance ionization imaging detector based on cesium atomic vapor

    NASA Astrophysics Data System (ADS)

    Temirov, J. P.; Chigarev, N. V.; Matveev, O. I.; Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    2004-05-01

    A novel Cs resonance ionization imaging detector (RIID) has been developed and evaluated. The detector is capable of two-dimensional imaging with high spectral resolution, which is determined by the Doppler broadened atomic linewidth of Cs at given temperature. Ionization schemes of Cs have been investigated using dye and color center tunable lasers pumped by an excimer laser and by a Nd:YAG laser. It has been experimentally shown that the most efficient ionization scheme for Cs RIID should include a three-step excitation/ionization ladder, for example, with transitions at λ1=852.11 (852.113) nm, λ2=917.22 (917.2197) nm, and λ3=1064 nm. The imaging capabilities of the detector have been evaluated using a simpler two-step ionization scheme with wavelengths λ1=852.11 nm and λ2=508 nm.

  18. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect

    Yalin, Azer P. Dumitrache, Ciprian; Wilvert, Nick; Joshi, Sachin; Shneider, Mikhail N.

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  19. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  20. Spontaneous-Desorption Ionizer for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Schultz, J. Albert

    2006-01-01

    A time-of-flight mass spectrometer (TOF-MS) like the one mentioned in the immediately preceding article has been retrofitted with an ionizer based on a surface spontaneous-desorption process. This ionizer includes an electron multiplier in the form of a microchannel plate (MCP). Relative to an ionizer based on a hot-filament electron source, this ionizer offers advantages of less power consumption and greater mechanical ruggedness. The current density and stability characteristics of the electron emission of this ionizer are similar to those of a filament-based ionizer. In tests of various versions of this ionizer in the TOF-MS, electron currents up to 100 nA were registered. Currents of microamperes or more - great enough to satisfy requirements in most TOFMS applications - could be obtained by use of MCPs different from those used in the tests, albeit at the cost of greater bulk. One drawback of this ionizer is that the gain of the MCP decreases as a function of the charge extracted thus far; the total charge that can be extracted over the operational lifetime is about 1 coulomb. An MCP in the ion-detector portion of the TOF-MS is subject to the same limitation.

  1. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then

  2. Radio-protective role of antioxidant agents

    PubMed Central

    Shirazi, Alireza; Mihandoost, Ehsan; Mahdavi, Seied Rabie; Mohseni, Mehran

    2012-01-01

    Ionizing radiation interacts with biological systems to produce reactive oxygen species and reactive nitrogen species which attack various cellular components. Radio-protectors act as prophylactic agents to shield healthy cells and tissues from the harmful effects of radiation. Past research on synthetic radio-protectors has brought little success, primarily due to the various toxicity-related problems. Results of experimental research show that antioxidant nutrients, such as vitamin E and herbal products and melatonin, are protective against the damaging effects of radiation, with less toxicity and side effects. Therefore, we propose that in the future, antioxidant radio-protective agents may improve the therapeutic index in radiation oncology treatments. PMID:25992214

  3. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  4. Two-Photon Ionization of Metastable Helium

    NASA Astrophysics Data System (ADS)

    Czechanski, James Poremba

    There have been relatively few investigations of multiphoton ionization from metastable helium. Of particular interest has been the work of Haberland et al. 1987 and Haberland and Oschwald 1988. In both the 1987 and 1988 papers they have described the two photon ionization of metastable helium. In each of these studies they have reported the occurrence of unexplained structure along the wings of their resonance profiles. Upon the performance of similar measurements by this study, the unexplained structure is not seen and the agreement of the experiment's measurements with the theoretical shape of the resonance curves has been good. To experimentally verify these resonance effects, we have used a tunable dye laser in conjunction with a time of flight mass spectrometer to create and detect ions from metastable helium by two-photon absorption. The use of a metastable state instead of the ground state is advantageous because of its proximity to the ionization continuum and its extended lifetime. Using a metastable state as a starting point for multiphoton absorption requires fewer photons to reach the ionization threshold. The extended lifetime of the state also makes it easy to access experimentally. For helium the singlet metastable state 2^1 S lies at 20.61 eV above the ground level with a natural lifetime of close to a millisecond. Two photons of 501.7 nm and 504.35 nm are required for the ionization processes in resonance with the 3^1P and the 3^1D states. This thesis is the accounting of the experimental process involved in the measurement of the dipole and quadrupole resonances of two photon ionization from singlet metastable helium. The study includes the description of the laser, electron gun assembly for metastable helium creation, and the time of flight mass spectrometer. A discussion of the theory of multiphoton processes is included along with the discussion of the data, its reduction and analysis, and a comparison with theoretical prediction. This study

  5. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  6. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  7. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  8. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  9. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  10. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  11. Calculating Relative Ionization Probabilities of Plutonium for Resonance Ionization Mass Spectrometry to Support Nuclear Forensic Investigations

    NASA Astrophysics Data System (ADS)

    Lensegrav, Craig; Smith, Craig; Isselhardt, Brett

    2015-03-01

    Ongoing work seeks to apply the technology of Resonance Ionization Mass Spectrometry (RIMS) to problems related to nuclear forensics and, in particular, to the analysis and quantification of debris from nuclear detonations. As part of this effort, modeling and simulation methods are being applied to analyze and predict the potential for ionization by laser excitation of isotopes of both uranium and plutonium. Early work focused on the ionization potential of isotopes of uranium, and the present effort has expanded and extended the previous work by identifying and integrating new data for plutonium isotopes. In addition to extending the effort to this important new element, we have implemented more accurate descriptions of the spatial distribution of the laser beams to improve the accuracy of model predictions compared with experiment results as well as an ability to readily incorporate new experimental data as they become available. The model is used to estimate ionization cross sections and to compare relative excitation on two isotopes as a function of wavelength. This allows the study of sensitivity of these measurements to fluctuations in laser wavelength, irradiance, and bandwidth. We also report on initial efforts to include predictions of americium ionization probabilities into our modeling package. I would like to thank my co-authors, Gamani Karunasiri and Fabio Alves. My success is a product of their support and guidance.

  12. Web Search Agents: "One-Stop Shopping" for Researchers.

    ERIC Educational Resources Information Center

    Perez, Ernest

    2002-01-01

    Explains Web search agents as tools that apply intelligent agent software technology for the purpose of automating, improving, and speeding up online search operations. Topics include intelligent desktop agents; search agent marketplace; comparing Web search agents; subjective evaluations; and use by researchers. (LRW)

  13. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  14. Towards universal ambient ionization: direct elemental analysis of solid substrates using microwave plasma ionization.

    PubMed

    Evans-Nguyen, K M; Gerling, J; Brown, H; Miranda, M; Windom, A; Speer, J

    2016-06-21

    A microwave plasma was used for direct ambient ionization mass spectrometry of solid substrates, rapidly yielding atomic spectra without sample digestion or pre-treatment. Further, molecular spectra for the organic components of the substrate were obtained simultaneously, in an ambient ionization format. Initial characterization of the microwave plasma coupling to an ion trap mass spectrometer was carried out using solution standards and a microwave plasma torch (MPT) configuration. The configuration of the microwave plasma was then optimized for ambient ionization. The atomic and organic composition for samples applicable to nuclear and conventional forensic screening, including explosive/radionuclide mixtures and inorganic/organic gunshot residue component mixtures were successfully determined. The technologies employed are readily fieldable; the feasibility of a multimode ion source that could be coupled with a portable ion trap mass spectrometer for rapid, on-site, elemental, isotopic, and molecular screening of samples is demonstrated. PMID:26979768

  15. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  16. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  17. Structure parameters in molecular tunneling ionization theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng

    2014-04-01

    We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.

  18. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  19. Signal and Charge Enhancement for Protein Analysis by Liquid Chromatography-Mass Spectrometry with Desorption Electrospray Ionization

    PubMed Central

    Liu, Yan; Miao, Zhixin; Lakshmanan, Rajeswari; Ogorzalek Loo, Rachel R.; Loo, Joseph A.; Chen, Hao

    2015-01-01

    We recently reported the use of desorption electrospray ionization (DESI) as a novel interface to couple high-performance liquid chromatography (HPLC) with mass spectrometry (MS) (Chem. Commun. 2011, 47, 4171). One of the benefits of such an interface is that post-column derivatization of separated analytes can be integrated with ionization via a “reactive” DESI approach in which a derivatizing reagent is doped into the spray solvent. The reactive DESI interface allows analyte desorption/ionization from the end of the chromatographic column with prompt MS detection; a short time delay of ~20 ms was demonstrated. In this study, we extended this application by “supercharging” proteins following HPLC separation using a DESI spray solvent containing supercharging reagents, m-nitrobenzyl alcohol (m-NBA) or sulfolane. Proteins (insulin, ubiquitin, lysozyme and α-lactalbumin) eluted out of the LC column can be supercharged with the protein charge state distributions (CSDs) significantly increased (to higher charge), which would be advantageous for subsequent top-down MS analysis of proteins. Interestingly, supercharging combined with reactive DESI enhances tolerance towards trifluoroacetic acid (TFA), which is known to be a superior additive in the mobile phase for premium peptide/protein chromatographic separation but has severe signal suppression effects for conventional electrospray ionization (ESI). In comparison to electrosonic spray ionization (ESSI), a variant form of ESI, the sensitivity of protein analysis using LC/DESI-MS with the mobile phase containing TFA can be improved by up to 70-fold for lysozyme and α-lactalbumin by including m-NBA in the DESI spray solvent. Presumably, by reducing TFA dissociation in the droplet, supercharging agents lower trifluoroacetate anion concentrations and concomitantly reduce ion pairing to analyte cationic sites. The reduced ion pairing therefore decreases the TFA signal suppression effect. The supercharging

  20. IEHI: Ionization Equilibrium for Heavy Ions

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2015-07-01

    IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

  1. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  2. A numerical scheme for ionizing shock waves

    SciTech Connect

    Aslan, Necdet . E-mail: naslan@yeditepe.edu.tr; Mond, Michael

    2005-12-10

    A two-dimensional (2D) visual computer code to solve the steady state (SS) or transient shock problems including partially ionizing plasma is presented. Since the flows considered are hypersonic and the resulting temperatures are high, the plasma is partially ionized. Hence the plasma constituents are electrons, ions and neutral atoms. It is assumed that all the above species are in thermal equilibrium, namely, that they all have the same temperature. The ionization degree is calculated from Saha equation as a function of electron density and pressure by means of a nonlinear Newton type root finding algorithms. The code utilizes a wave model and numerical fluctuation distribution (FD) scheme that runs on structured or unstructured triangular meshes. This scheme is based on evaluating the mesh averaged fluctuations arising from a number of waves and distributing them to the nodes of these meshes in an upwind manner. The physical properties (directions, strengths, etc.) of these wave patterns are obtained by a new wave model: ION-A developed from the eigen-system of the flux Jacobian matrices. Since the equation of state (EOS) which is used to close up the conservation laws includes electronic effects, it is a nonlinear function and it must be inverted by iterations to determine the ionization degree as a function of density and temperature. For the time advancement, the scheme utilizes a multi-stage Runge-Kutta (RK) algorithm with time steps carefully evaluated from the maximum possible propagation speed in the solution domain. The code runs interactively with the user and allows to create different meshes to use different initial and boundary conditions and to see changes of desired physical quantities in the form of color and vector graphics. The details of the visual properties of the code has been published before (see [N. Aslan, A visual fluctuation splitting scheme for magneto-hydrodynamics with a new sonic fix and Euler limit, J. Comput. Phys. 197 (2004) 1

  3. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; Lauenstein, Jean-Marie; Batchlor, David A.; Oldham, Timothy R.

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  4. Perturbation analysis of ionization oscillations in Hall effect thrusters

    SciTech Connect

    Hara, Kentaro Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-12-15

    A perturbation analysis of ionization oscillations, which cause low frequency oscillations of the discharge plasma, in Hall effect thrusters is presented including the electron energy equation in addition to heavy-species transport. Excitation and stabilization of such oscillations, often called the breathing mode, are discussed in terms of the growth rate obtained from the linear perturbation equations of the discharge plasma. The instability induced from the ionization occurs only when the perturbation in the electron energy is included while the neutral atom flow contributes to the damping of the oscillation. Effects of the electron energy loss mechanisms such as wall heat loss, inelastic collisions, and convective heat flux are discussed. It is shown that the ionization oscillations can be damped when the electron transport is reduced and the electron temperature increases so that the energy loss to the wall stabilizes the ionization instability.

  5. Perturbation analysis of ionization oscillations in Hall effect thrusters

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-12-01

    A perturbation analysis of ionization oscillations, which cause low frequency oscillations of the discharge plasma, in Hall effect thrusters is presented including the electron energy equation in addition to heavy-species transport. Excitation and stabilization of such oscillations, often called the breathing mode, are discussed in terms of the growth rate obtained from the linear perturbation equations of the discharge plasma. The instability induced from the ionization occurs only when the perturbation in the electron energy is included while the neutral atom flow contributes to the damping of the oscillation. Effects of the electron energy loss mechanisms such as wall heat loss, inelastic collisions, and convective heat flux are discussed. It is shown that the ionization oscillations can be damped when the electron transport is reduced and the electron temperature increases so that the energy loss to the wall stabilizes the ionization instability.

  6. WHAM observations of ionized gas in the inner Milky Way

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Haffner, L. Matthew; Benjamin, Robert A.; Gostisha, Martin; Barger, Kathleen

    2016-01-01

    We present Wisconsin H-Alpha Mapper (WHAM) observations of ionized gas in the southern Milky Way. We include spectroscopic maps of H-Alpha, [S II], and [N II]. The data includes the Scutum-Centaurus Arm, for which we measure an exponential scale height about 20% less than that in the Perseus Arm in the outer Galaxy. The H-alpha scale height suggests a lower electron scale height in both arms than is measured locally from pulsar dispersion. The [N II] and [S II] data provide information about the temperature and ionization state of the gas: gas in the warm ionized medium is generally warmer (≈8000 K) and in lower ionization states than gas in classical H II regions. WHAM research and operations are supported through NSF Award AST-1108911.

  7. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  8. Ratio of double to single ionization of helium: The relationship between ionization by photons and by bare charged particles

    SciTech Connect

    Manson, S.T. ); McGuire, J.H. )

    1995-01-01

    It is well known that cross sections for ionization of atoms by fast charged particles and by photons are related by the Bethe-Born theory. We employ this relationship to derive a corresponding relation for the ratio [ital R] of double to single ionization including the first two terms of the Bethe expansion. For sufficiently fast charged particles, where the second term can be ignored, the ratios as a function of [Delta][ital E]---the energies transferred to the atom by the projectile---for ionization by charged particles [ital R][sub [ital z

  9. Protection against ionizing radiation with eicosanoids

    SciTech Connect

    Steel, L.K.; Catravas, G.N.

    1988-01-01

    Prostaglandins (PGs) are extremely diverse in their pharmacological activities. They exhibit both antagonistic as well as cytoprotective properties in the pathogenesis of inflammation. Participation of PGs as chemical mediators in the regulation of immune responses and inflammation are increasingly apparent. The antagonistic properties of PGs have been implicated in a variety of symptoms resulting from exposure to ionizing radiation. Post-irradiation increases in small bowel motility, diarrhea, flatulence, abdominal pain, mucositis, and esophagitis have been attributed, in part, to excessive PG production. In contrast, exogenous PGs, particularly of the E type, have been shown to be cytoprotective against a variety of damaging agents, and a deficiency of endogeneous PG has been suggested to contribute to increase susceptibility to injury. These findings have provided much of the impetus to examine the potential cytoprotective effects of PGs in radiation injury.

  10. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  11. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  12. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. PMID:26851088

  13. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  14. Analysis of ancient Greco-Roman cosmetic materials using laser desorption ionization and electrospray ionization mass spectrometry.

    PubMed

    Van Elslande, Elsa; Guérineau, Vincent; Thirioux, Vincent; Richard, Ghislaine; Richardin, Pascale; Laprévote, Olivier; Hussler, Georges; Walter, Philippe

    2008-04-01

    Microsamples of pink cosmetic powders from the Greco-Roman period were analyzed using two complementary analytical approaches for identification of the colouring agents (lake pigments originally manufactured from madder plants with an inert binder, usually a metallic salt) present in the samples. The first technique was a methanolic acidic extraction of the archaeological samples with an additional ethyl acetate extraction of the anthraquinone-type colouring agents which were identified using high performance liquid chromatography coupled to electrospray ionization with high resolution mass spectrometry (LC-ESI-HRMS), and the second was direct analysis of a microsample by laser desorption ionization-mass spectrometry (LDI-MS). The latter technique is well suited when the quantity of samples is very low. This soft ionization technique enables the detection of very small quantities of compounds using the combination of positive and negative-ion modes. It was also successfully applied for the direct analysis of some laboratory-made reference compounds. However, the presence of lead in one of these ancient samples induced a spectral suppression phenomenon. In this case and conditional on a sufficient quantity of available sample, the former method is better adapted for the characterization of these anthraquinone-type molecules. This study also confirmed that purpurin, munjistin, and pseudopurpurin are the principal colouring agents present in these ancient cosmetic powders constituted from madder plants. PMID:18320177

  15. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  16. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  17. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  18. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  19. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  20. Plasmadynamics and ionization kinetics of thermionic energy conversion

    SciTech Connect

    Lawless, J.L. Jr.; Lam, S.H.

    1982-02-01

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

  1. The Extended Ionized Halos and Bridge of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Krishnarao, Dhanesh; Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Madsen, Gregory J.; Hill, Alex S.; Gaensler, Bryan M.

    2016-01-01

    The Wisconsin H-Alpha Mapper (WHAM) has revealed ubiquitous ionized emission throughout the gas complexes formed by the dynamic history of the Magellanic Clouds. We present an overview of the immediate environment around the galaxies themselves, including ionized halos of the Small and Large Magellanic Clouds (SMC & LMC) as well as the bridge of material between them. Using WHAM, Barger et al. (2013) found Hα emission extending throughout and beyond H I in the Bridge. We add these new maps of the SMC and LMC to provide the first complete view of the diffuse ionized gas near the interacting system. At R ~ 30,000, WHAM can cleanly separate diffuse emission at Magellanic velocities from the Milky Way and terrestrial sources to the limit of atmospheric line confusion (~ 10s of mR). We find that ionized gas extends at least 5° beyond the traditional boundary of the SMC when compared to recent deep-imaging surveys (e.g., MCELS; Smith et al. 2005). The diffuse ionized emission extent is similar to the neutral gas extent as traced by 21 cm emission. We compare the kinematic signatures between the neutral and ionized components throughout the region. Comprehensive multi-wavelength surveys are also underway to examine how physical parameters and ionization processes vary in these extended systems. WHAM research and operations are supported through NSF Award AST-1108911.

  2. Electron-impact ionization of W27 +

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Loch, S. D.

    2016-06-01

    Electron-impact ionization cross sections for W27 + are calculated using a semirelativistic configuration-average distorted-wave (CADW) method. Calculations for direct ionization, excitation autoionization, and branching ratios are compared with recent calculations by Jonauskas et al. [Phys. Rev. A 91, 012715 (2015), 10.1103/PhysRevA.91.012715], who used fully relativistic subconfiguration-average distorted-wave (SCADW) and level-to-level distorted-wave (LLDW) methods. Reasonable agreement is found between the CADW and the recent LLDW calculations for direct ionization of the 4 l (l =0 -1 ,3 ) subshells, but not the 4 d subshell, and between the CADW and recent SCADW-LLDW calculations for excitation autoionization of the 4 l (l =0 -2 ) subshells. Reasonable agreement is also found between the CADW and the recent SCADW calculations, including branching ratios, but both differ from the recent LLDW calculations. Additional CADW calculations are made for excitation autoionization, including branching ratios involving the important 3 l (l =1 -2 ) subshells, not examined by Jonauskas et al. [Phys. Rev. A 91, 012715 (2015), 10.1103/PhysRevA.91.012715].

  3. Perioperative allergy: uncommon agents.

    PubMed

    Caimmi, S; Caimmi, D; Cardinale, F; Indinnimeo, L; Crisafulli, G; Peroni, D G; Marseglia, G L

    2011-01-01

    Anesthesia may often be considered as a high-risk procedure and anaphylaxis remains a major cause of concern for anesthetists who routinely administer many potentially allergenic agents. Neuromuscular blocking agents, latex and antibiotics are the substances involved in most of the reported reactions. Besides these three agents, a wide variety of substances may cause an anaphylactic reaction during anesthesia. Basically all the administered drugs or substances may be potential causes of anaphylaxis. Among them, those reported the most in literature include hypnotics, opioids, local anesthetics, colloids, dye, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Iodinated Contrast Media (ICM), antiseptics, aprotinin, ethylene oxyde and formaldehyde, and protamine and heparins. No premedication can effectively prevent an allergic reaction and a systematic preoperative screening is not justified for all patients; nevertheless, an allergy specialist should evaluate those patients with a history of anesthesia-related allergy. Patients must be fully informed of investigation results, and advised to provide a detailed report prior to future anesthesia. PMID:22014927

  4. Intelligent Agents: It's Nice To Get Stuff Done for You.

    ERIC Educational Resources Information Center

    Perez, Ernest

    2002-01-01

    Explains intelligent agents, special software tools that help make the Web more interactive by helping with information retrieval. Describes major types of agents, including search agents and agents for specialized tasks including monitors and knowledge management; and lists relevant Web sites. (LRW)

  5. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  6. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  7. Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  8. Measuring Ionization at Extreme Densities

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik; Doeppner, Tilo; Kritcher, Andrea; Bachmann, Benjamin; Fletcher, Luke; Falcone, Roger; Gericke, Dirk; Glenzer, Siegfried; Masters, Nathan; Nora, Ryan; Boehm, Kurt; Divol, Laurent; Landen, Otto; Yi, Austin; Kline, John; Redmer, Ronald; Neumayer, Paul

    2015-11-01

    A precise knowledge of ionization at given temperature and density is crucial in order to properly model compressibility and heat capacity of ICF ablator materials for efficient implosions producing energy gain. Here, we present a new experimental platform to perform spectrally resolved x-ray scattering measurements of ionization, density and temperature in imploding CH or beryllium capsules on the National Ignition Facility. Recording scattered x-rays at 9 keV from a zinc He-alpha plasma source at a scattering angle of 120 degrees, first experiments show strong sensitivity to k-shell ionization, while at the same time constraining density and temperature. This platform will allow for x-ray Thomson scattering studies of dense plasmas with free electron densities up to 1025 cm-3, giving the possibility to investigate effects of continuum lowering and Pauli blocking on the ablator ionization state right before stagnation of the implosion.

  9. Double ionization of atomic cadmium

    SciTech Connect

    Linusson, P.; Fritzsche, S.; Eland, J. H. D.; Hedin, L.; Karlsson, L.; Feifel, R.

    2011-02-15

    We have recorded the double photoionization spectrum of atomic Cd at four different photon energies in the range 40-200 eV. The main channel is single ionization and subsequent decay of excited Cd{sup +} states, some involving Coster-Kronig processes, whereas direct double ionization is found to be weak. The decay of the excited Cd{sup +} states shows a strong selectivity, related to the configuration of the final state. Double ionization leading to the Cd{sup 2+} ground state is investigated in some detail and is found to proceed mainly through ionization and decay of 4d correlation satellites. The most prominent autoionization peaks have been identified with the aid of quantum-mechanical calculations.

  10. Salts Are Mostly NOT Ionized.

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    1996-01-01

    Discusses the misconception that salts are completely ionizing in solution, the presence of this error in textbooks, probable origins of the error, covalent bonding and ion pairs, and how to tell students the truth. (MKR)

  11. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  12. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  13. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.

  14. Alfvén ionization in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2013-09-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest such objects harbour an atmospheric, localized plasma. For lowmass objects, the degree of thermal ionization is insufficient to qualify the ionized gas as a plasma, posing the question: what ionization processes can efficiently produce the required plasma? We propose Alfvén ionization as a simple mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficiently large degrees of ionization (≥ 10^-7) that they constitute plasmas. We outline the criteria required for Alfvén ionization to occur and justify it's applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs and M-dwarfs for both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization ranging from 10^-6-1 can be obtained. Observable consequences include continuum Bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g. He, Mg, H2 or CO lines). Forbidden lines are also expected from the metastable population as a consequence of the Penning Effect. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models.

  15. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  16. Laser ionization mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernardez, Luis J., III; Siekhaus, W. J.

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument used is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which was frequency-quadrupled to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10(exp -8) and 10(exp -9) Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment.

  17. Laser ionization mass spectroscopy

    SciTech Connect

    Bernardez, L.J. III; Siekhaus, W.J. )

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument we use is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which we frequency-quadruple to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10{sup {minus}8} and 10{sup {minus}9} Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment. 6 figs., 1 tab.

  18. Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic-instability-associated diseases.

    PubMed

    Scott, Bobby R; Di Palma, Jennifer

    2007-01-01

    Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apoptosis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis). PMID:18648608

  19. Ion microprobe mass spectrometry using sputtering atomization and resonance ionization

    SciTech Connect

    Donohue, D.L.; Christie, W.H.; Goeringer, D.E.

    1985-01-01

    Resonance ionization mass spectrometry (RIMS) has recently been developed into a useful technique for isotope ratio measurements. Studies performed in our laboratory (1-6) have been reported for a variety of elements using thermal vaporization sources to produce the atom reservoir for laser-induced resonance ionization. A commercial ion microprobe mass analyzer (IMMA) has been interfaced with a tunable pulsed dye laser for carrying out resonance ionization mass spectrometry of sputtered atoms. The IMMA instrument has many advantages for this work, including a micro-focused primary ion beam (2 ..mu..m in diameter) of selected mass, complete sample manipulation and viewing capability, and a double-focusing mass spectrometer for separation and detection of the secondary or laser-generated ions. Data were obtained demonstrating the number and type of ions formed along with optical spectral information showing the wavelengths at which resonance ionization occurs. 7 refs.

  20. Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse

    NASA Astrophysics Data System (ADS)

    Yang, B. C.; Robicheaux, F.

    2014-12-01

    We study the field-ionization threshold behavior when a Rydberg atom is ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are considered. The required threshold field amplitude is found to scale inversely with the binding energy when the pulse duration becomes shorter than the classical Rydberg period, and, thus, more weakly bound electrons require larger fields for ionization. This threshold scaling behavior is confirmed by both three-dimensional classical trajectory Monte Carlo simulations and numerically solving the time-dependent Schrödinger equation. More surprisingly, the same scaling behavior in the short pulse limit is also followed by the ionization thresholds for much lower bound states, including the hydrogen ground state. An empirical formula is obtained from a simple model, and the dominant ionization mechanism is identified as a nonzero spatial displacement of the electron. This displacement ionization should be another important mechanism beyond the tunneling ionization and the multiphoton ionization. In addition, an "ionization window" is shown to exist for the ionization of Rydberg states, which may have potential applications to selectively modify and control the Rydberg-state population of atoms and molecules.

  1. Electron impact multiple ionization cross sections of heavy ions

    NASA Astrophysics Data System (ADS)

    Zeng, Jiaolong; Liu, Pengfei; Dai, Jiayu; Yuan, Jianmin

    2014-05-01

    Cross sections of electron impact ionization are important in modeling both astrophysical and laboratory plasmas. For heavy ions, accurate determination of this microscopic physical quantity is difficult due to the complex atomic structure. At high incident electron energy, inner-shell excitation and ionization processes can occur, which will result in complicated decay including Auger and radiative decay processes. For deep inner-shell excitation and ionization, cascaded Auger processes are very likely. Under conditions of collisional ionization equilibrium, the balance of electron-ion recombination and electron impact single ionization determines the charge state distribution (CSD). Accurate CSD, which in turn determined by accurate cross sections, is very important in a wide regime of spectroscopic diagnostics to infer the physical conditions of plasmas such as the electron temperature, electron density, and elemental abundance. As an illustrative example, the cross sections from the ground configuration of Sn13+ in forming Sn13+, -Sn16+ are reported in detail. The contributions from the electron impact excitation, electron impact ionization and resonant excitation processes are included.

  2. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  3. Diffuse ionizing radiation within HH jets

    SciTech Connect

    Esquivel, A.; Raga, A. C. E-mail: raga@nucleares.unam.mx

    2013-12-20

    We present numerical hydrodynamical simulations of a time-dependent ejection velocity precessing jet. The parameters used in our models correspond to a high excitation Herbig-Haro object, such as HH 80/81. We have included the transfer of ionizing radiation produced within the shocked regions of the jet. The radiative transfer is computed with a ray-tracing scheme from all the cells with an emissivity above a certain threshold. We show the development of a radiative precursor, and compare the morphology with a model without the diffuse radiation. Our simulations show that the morphology of the Hα emission is affected considerably if the diffuse ionizing radiation is accounted for. The predicted Hα position-velocity diagram (i.e., spatially resolved emission line profiles) from a model with the transfer of ionizing radiation has a relatively strong component at zero velocity, corresponding to the radiative precursor. Qualitatively similar 'zero velocity components' are observed in HH 80/81 and in the jet from Sanduleak's star in the Large Magellanic Cloud.

  4. IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS

    SciTech Connect

    Smith, Randall K.; Hughes, John P. E-mail: jph@physics.rutgers.ed

    2010-07-20

    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.

  5. Anchor Toolkit - a secure mobile agent system

    SciTech Connect

    Mudumbai, Srilekha S.; Johnston, William; Essiari, Abdelilah

    1999-05-19

    Mobile agent technology facilitates intelligent operation insoftware systems with less human interaction. Major challenge todeployment of mobile agents include secure transmission of agents andpreventing unauthorized access to resources between interacting systems,as either hosts, or agents, or both can act maliciously. The Anchortoolkit, designed by LBNL, handles the transmission and secure managementof mobile agents in a heterogeneous distributed computing environment. Itprovides users with the option of incorporating their security managers.This paper concentrates on the architecture, features, access control anddeployment of Anchor toolkit. Application of this toolkit in a securedistributed CVS environment is discussed as a case study.

  6. Exploration of the Dissociative Recombination following DNA ionization to DNA+ due to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Strom, Richard A.; Zimmerly, Andrew T.; Andrianarijaona, Vola M.

    2014-05-01

    It is known that ionizing radiation generates low-energy secondary electrons, which may interact with the surrounding area, including biomolecules, such as triggering DNA single strand and double strand breaks as demonstrated by Sanche and coworkers (Radiat. Res. 157, 227(2002)). The bio-effects of low-energy electrons are currently a topic of high interest. Most of the studies are dedicated to dissociative electron attachments; however, the area is still mostly unexplored and still not well understood. We are computationally investigating the effect of ionizing radiation on DNA, such as its ionization to DNA+. More specifically, we are exploring the possibility of the dissociative recombination of the temporary DNA+ with one of the low-energy secondary electrons, produced by the ionizing radiation, to be another process of DNA strand breaks. Our preliminary results, which are performed with the binaries of ORCA, will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  7. Cataracts induced by microwave and ionizing radiation

    SciTech Connect

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-11-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references.

  8. Hepatocytes as Immunological Agents.

    PubMed

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  9. Mammalian cells exposed to ionizing radiation: Structural and biochemical aspects.

    PubMed

    Sabanero, Myrna; Azorín-Vega, Juan Carlos; Flores-Villavicencio, Lérida Liss; Castruita-Dominguez, J Pedro; Vallejo, Miguel Angel; Barbosa-Sabanero, Gloria; Cordova-Fraga, Teodoro; Sosa-Aquino, Modesto

    2016-02-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv/year) and subsequently exposure to high doses produces greater effects in people. It has been reported that people who have been exposed to low doses of radiation (less than 50 mSv/year) and subsequently are exposed to high doses, have greater effects. However, at a molecular and biochemical level, it is an unknown alteration. This study, analyzes the susceptibility of a biological system (HeLa ATCC CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/90 s). Our research considers multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin microfilaments), nuclei (DAPI), and genomic DNA. The results indicate, that cells exposed to ionizing radiation show structural alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin microfilaments. Similar alterations were observed in cells treated with a genotoxic agent (200 μM H2O2/1h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between various line cells. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. PMID:26656429

  10. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    SciTech Connect

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  11. Nuclear-Electronic Coherence in Strong-Field Dissociative Ionization

    NASA Astrophysics Data System (ADS)

    Yu, Youliang; Wang, Yujun; Zeng, Shuo; Esry, B. D.

    2015-05-01

    In strong-field dissociative ionization of molecules, the ionization step is usually modeled since direct calculation is very challenging. In most of the models used to date, ionization is assumed to occur at several well-defined times accompanied by promotion of a nuclear wave packet to the ionic Born-Oppenheimer potential. Whether these nuclear wave packets should add coherently or incoherently in general is an open question. To answer it, we solve the time-dependent Schrödinger equation for one-dimensional H2+,where ionization is included naturally, and compare the observables, such as the kinetic energy release spectrum, with those from an ionization model. We then examine the validity of such models in strong-field dissociative ionization of H2+with reduced dimensionality. We do not, however, expect this physics to depend sensitively on the dimensionality. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  12. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    SciTech Connect

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael E-mail: avenkatesan@usfca.edu

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  13. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    SciTech Connect

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  14. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.

    PubMed

    Graichen, Adam M; Vachet, Richard W

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n](y+) complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n](2+) complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations. PMID:23532782

  15. Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Graichen, Adam M.; Vachet, Richard W.

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  16. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications.

    PubMed

    Duriez, Elodie; Armengaud, Jean; Fenaille, François; Ezan, Eric

    2016-03-01

    In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up. PMID:26956386

  17. DESI-MS/MS of Chemical Warfare Agents and Related Compounds

    NASA Astrophysics Data System (ADS)

    D'Agostino, Paul A.

    Solid phase microextraction (SPME) fibers were used to headspace ­sample chemical warfare agents and their hydrolysis products from glass vials and glass vials containing spiked media, including Dacron swabs, office carpet, paper and fabric. The interface of the Z-spray source was modified to permit safe introduction of the SPME fibers for desorption electrospray ionization mass spectrometric (DESI-MS) analysis. A "dip and shoot" method was also developed for the rapid sampling and DESI-MS analysis of chemical warfare agents and their hydrolysis products in liquid samples. Sampling was performed by simply dipping fused silica, stainless steel or SPME tips into the organic or aqueous samples. Replicate analyses were completed within several minutes under ambient conditions with no sample pre-treatment, resulting in a significant increase in sample throughput. The developed sample handling and analysis method was applied to the determination of chemical warfare agent content in samples containing unknown chemical and/or biological warfare agents. Ottawa sand was spiked with sulfur mustard, extracted with water and autoclaved to ensure sterility. Sulfur mustard was completely hydrolysed during the extraction/autoclave step and thiodiglycol was identified by DESI-MS, with analyses generally being completed within 1 min using the "dip and shoot" method.

  18. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  19. Microwave ionization of Rydberg atoms

    SciTech Connect

    Gallagher, T.F.

    1996-12-31

    An atom can be ionized by a static field if the field depresses the potential below the binding energy W, leading to the requirement E = W{sup 2}/4 in atomic units. The atomic units of field and energy are 5.14 {times} 10{sup 9} V/cm and 27.2 eV. The ionization field is often expressed in terms of the principal quantum number n of the state in question as E = 1/16n{sup 4}. In a microwave field with frequency far less than the separation {Delta}W = 1/n{sup 3} between adjacent n states, atoms other than H ionize at the much lower microwave field amplitude of E = 1/3n{sup 5}. This field corresponds to the Inglis-Teller limit, where it is impossible to resolve spectrally adjacent n states due to Stark broadening in a plasma. In H ionization occurs as it does in a static field. The difference exists because the finite sized ionic core of a non hydrogenic atom breaks one of the symmetries found in H. In non hydrogenic atoms the microwave field drives a series of transitions through successively higher n states culminating in ionization. These transitions can be understood in terms of a Landau-Zener picture based on the variation of the energies of the atoms produced by the time varying field or as the resonant multiphoton absorption of the microwave photons. In either case, the atoms make transitions through real intermediate states en route to ionization. With short, four cycle, microwave pulses complete ionization does not occur with fields of E = 1/3n{sup 5}, and population is left in intermediate states. The transition from ionization at fields near E = 1/3n{sup 5} to fields of E = 1/16n{sup 4} occurs when the frequency becomes low enough that the energies of the states vary adiabatically in the temporally varying field.

  20. [New agents for hypercholesterolemia].

    PubMed

    Pintó, Xavier; García Gómez, María Carmen

    2016-02-19

    An elevated proportion of high cardiovascular risk patients do not achieve the therapeutic c-LDL goals. This owes to physicians' inappropriate or insufficient use of cholesterol lowering medications or to patients' bad tolerance or therapeutic compliance. Another cause is an insufficient efficacy of current cholesterol lowering drugs including statins and ezetimibe. In addition, proprotein convertase subtilisin kexin type 9 inhibitors are a new cholesterol lowering medications showing safety and high efficacy to reduce c-LDL in numerous already performed or underway clinical trials, potentially allowing an optimal control of hypercholesterolemia in most patients. Agents inhibiting apolipoprotein B synthesis and microsomal transfer protein are also providing a new potential to decrease cholesterol in patients with severe hypercholesterolemia and in particular in homozygote familial hypercholesterolemia. Last, cholesteryl ester transfer protein inhibitors have shown powerful effects on c-HDL and c-LDL, although their efficacy in cardiovascular prevention and safety has not been demonstrated yet. We provide in this article an overview of the main characteristics of therapeutic agents for hypercholesterolemia, which have been recently approved or in an advanced research stage. PMID:25817449

  1. Optical recognition of biological agents

    NASA Astrophysics Data System (ADS)

    Baumgart, Chris W.; Linder, Kim Dalton; Trujillo, Josh J.

    2008-04-01

    Differentiation between particulate biological agents and non-biological agents is typically performed via a time-consuming "wet chemistry" process or through the use of fluorescent and spectroscopic analysis. However, while these methods can provide definitive recognition of biological agents, many of them have to be performed in a laboratory environment, or are difficult to implement in the field. Optical recognition techniques offer an additional recognition approach that can provide rapid analysis of a material in-situ to identify those materials that may be biological in nature. One possible application is to use these techniques to "screen" suspicious materials and to identify those that are potentially biological in nature. Suspicious materials identified by this screening process can then be analyzed in greater detail using the other, more definitive (but time consuming) analysis techniques. This presentation will describe the results of a feasibility study to determine whether optical pattern recognition techniques can be used to differentiate biological related materials from non-biological materials. As part of this study, feature extraction algorithms were developed utilizing multiple contrast and texture based features to characterize the macroscopic properties of different materials. In addition, several pattern recognition approaches using these features were tested including cluster analysis and neural networks. Test materials included biological agent simulants, biological agent related materials, and non-biological materials (suspicious white powders). Results of a series of feasibility tests will be presented along with a discussion of the potential field applications for these techniques.

  2. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  3. Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2010-01-01

    In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.

  4. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    PubMed

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered. PMID:25341291

  5. Why Do Extension Agents Resign?

    ERIC Educational Resources Information Center

    Manton, Linda Nunes; van Es, J. C.

    1985-01-01

    Past and current Illinois extension agents were surveyed via mail questionnaires as to reasons for staying or leaving extension programs. Reasons for leaving included family changes, family moves, opportunity to advance, better salary/benefits, dissatisfaction with administration, and too much time away from family. (CT)

  6. Mobile Agents Applications.

    ERIC Educational Resources Information Center

    Martins, Rosane Maria; Chaves, Magali Ribeiro; Pirmez, Luci; Rust da Costa Carmo, Luiz Fernando

    2001-01-01

    Discussion of the need to filter and retrieval relevant information from the Internet focuses on the use of mobile agents, specific software components which are based on distributed artificial intelligence and integrated systems. Surveys agent technology and discusses the agent building package used to develop two applications using IBM's Aglet…

  7. Mother ship and physical agents collaboration

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Budulas, Peter P.; Emmerman, Philip J.

    1999-07-01

    This paper discusses ongoing research at the U.S. Army Research Laboratory that investigates the feasibility of developing a collaboration architecture between small physical agents and a mother ship. This incudes the distribution of planning, perception, mobility, processing and communications requirements between the mother ship and the agents. Small physical agents of the future will be virtually everywhere on the battlefield of the 21st century. A mother ship that is coupled to a team of small collaborating physical agents (conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); logistics; sentry; and communications relay) will be used to build a completely effective and mission capable intelligent system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the smaller agents. The mother ship also establishes a robust communications network between the agents and is the primary information disseminating and receiving point to the external world. Because of its global knowledge and processing power, the mother ship does the high-level control and planning for the collaborative physical agents. This high level control and interaction between the mother ship and its agents (including inter agent collaboration) will be software agent architecture based. The mother ship incorporates multi-resolution battlefield visualization and analysis technology, which aids in mission planning and sensor fusion.

  8. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  9. Chemical protection against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  10. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  11. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, Steven Y.

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  12. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  13. Alfvén ionization in an MHD-gas interactions code

    NASA Astrophysics Data System (ADS)

    Wilson, A. D.; Diver, D. A.

    2016-07-01

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.

  14. Electron ionization dynamics of N2 and O2 molecules: Velocity-map imaging

    NASA Astrophysics Data System (ADS)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2015-02-01

    This paper reports a crossed-beam velocity-map imaging study into the electron ionization dynamics of jet-cooled N2 and O2 molecules at electron collision energies from 35 to 100 eV. The use of velocity-map imaging detection provides insight into the detailed ionization dynamics through the dimension of the product ion kinetic energy associated with impulsive dissociation. In particular, "mesoscopic" cross sections corresponding to ionization from manifolds of energetically close states converging to the same dissociation asymptote are reported for a number of single-ionization channels. In addition, a range of double-ionization cross sections have been characterized, including those yielding X2 2 + dications. These are found to be in excellent agreement with other cross sections determined in coincidence measurements. This agreement supports a meaningful and accurate determination of the single-ionization channels.

  15. Quantitative depth profiling by laser-ionization sputtered neutral mass spectrometry

    NASA Astrophysics Data System (ADS)

    Higashi, Yasuhiro

    1999-01-01

    Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.

  16. Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress

    PubMed Central

    Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666

  17. Haloprogin: a Topical Antifungal Agent

    PubMed Central

    Harrison, E. F.; Zwadyk, P.; Bequette, R. J.; Hamlow, E. E.; Tavormina, P. A.; Zygmunt, W. A.

    1970-01-01

    Haloprogin was shown to be a highly effective agent for the treatment of experimentally induced topical mycotic infections in guinea pigs. Its in vitro spectrum of activity also includes yeasts, yeastlike fungi (Candida species), and certain gram-positive bacteria. The in vitro and in vivo antifungal activity of haloprogin against dermatophytes was equal to that observed with tolnaftate. The striking differences between the two agents were the marked antimonilial and selective antibacterial activities shown by haloprogin, contrasted with the negligible activities found with tolnaftate. Addition of serum decreased the in vitro antifungal activity of haloprogin to a greater extent than that of tolnaftate; however, diminished antifungal activity was not observed when haloprogin was applied topically to experimental dermatophytic infections. Based on its broad spectrum of antimicrobial activity, haloprogin may prove to be a superior topical agent in the treatment of dermatophytic and monilial infections in man. PMID:5422306

  18. Next Generation Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna

    1999-01-01

    In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.

  19. Investigational antimicrobial agents of 2013.

    PubMed

    Pucci, Michael J; Bush, Karen

    2013-10-01

    New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  20. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  1. Intense laser ionization of transiently aligned CO

    SciTech Connect

    Pinkham, D.; Jones, R.R.

    2005-08-15

    We have measured the ionization rate for CO molecules exposed to intense 30 fsec 780 nm laser pulses as a function of the angle between the molecular and laser polarization axes. Nonionizing, 70 fsec laser pulses are used to coherently prepare the molecules, preferentially aligning them for the strong-field ionization experiments. We find a 2:1 ionization-rate ratio for molecules aligned parallel or perpendicular to the ionizing field.

  2. Five-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  3. Erythropoietic agents and the elderly.

    PubMed

    Agarwal, Neeraj; Prchal, Josef T

    2008-10-01

    Erythropoietin (Epo) is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development that either act as ligands for the cell surface receptors of Epo or promote Epo production, which stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents under active investigation include continuous erythropoietin receptor activator (CERA) or proline hydroxylase inhibitors that increase hypoxia-inducible factor-1 (HIF-1), thereby stimulating Epo production and iron availability and supply. Erythropoietic agents have been shown to promote neuronal regeneration and to decrease post-stroke infarct size in mouse models. They have also been reported to shorten survival when used to treat anemia in many cancer patients and to increase thromboembolism. In contrast, rapid decrease of Epo levels as observed in astronauts and high-altitude dwellers upon rapid descent to sea level leads to the decrease of erythroid mass, a phenomenon known as "neocytolysis." The relative decrease in the serum Epo level is known to occur in some subjects with otherwise unexplained anemia of aging. Anemia by itself is a predictor of poor physical function in the elderly and is a significant economic burden on society. One out of every five persons in the United States will be elderly by 2050. Erythropoietic agents, by preventing and treating otherwise unexplained anemias of the elderly and anemia associated with other disease conditions of the elderly, have the potential to improve the functional capacity and to decrease the morbidity and mortality in the elderly, thereby alleviating the overall burden of medical care in society. PMID:18809098

  4. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  5. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  6. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  7. New antifungal agents.

    PubMed

    Gupta, Aditya K; Tomas, Elizabeth

    2003-07-01

    Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. New formulations are being prepared to improve absorption and efficacy of some of these standard therapies. Various new antifungals have demonstrated therapeutic potential. These new agents may provide additional options for the treatment of superficial fungal infections and they may help to overcome the limitations of current treatments. Liposomal formulations of AmB have a broad spectrum of activity against invasive fungi, such as Candida spp., C. neoformans, and Aspergillus spp., but not dermatophyte fungi. The liposomal AmB is associated with significantly less toxicity and good rates of efficacy, which compare or exceed that of standard AmB. These factors may provide enough of an advantage to patients to overcome the increased costs of these formulations. Three new azole drugs have been developed, and may be of use in both systemic and superficial fungal infections. Voriconazole, ravuconazole, and posaconazole are triazoles, with broad-spectrum activity. Voriconazole has a high bioavailability, and has been used with success in immunocompromised patients with invasive fungal infections. Ravuconazole has shown efficacy in candidiasis in immunocompromised patients, and onychomycosis in healthy patients. Preliminary in vivo studies with posaconazole indicated potential use in a variety of invasive fungal infections including oropharyngeal candidiasis. Echinocandins and pneumocandins are a new class of antifungals, which act as fungal cell wall beta-(1,3)-D-glucan synthase enzyme complex inhibitors. Caspofungin (MK-0991) is the first of the echinocandins to receive Food and Drug Administration approval for patients with invasive aspergillosis not responding or intolerant to other antifungal therapies, and has been effective in patients with oropharyngeal and esophageal candidiasis. Standardization of MIC value determination has improved the

  8. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  9. Antagonistic formation motion of cooperative agents

    NASA Astrophysics Data System (ADS)

    Lu, Wan-Ting; Dai, Ming-Xiang; Xue, Fang-Zheng

    2015-02-01

    This paper investigates a new formation motion problem of a class of first-order multi-agent systems with antagonistic interactions. A distributed formation control algorithm is proposed for each agent to realize the antagonistic formation motion. A sufficient condition is derived to ensure that all of the agents make an antagonistic formation motion in a distributed manner. It is shown that all of the agents can be spontaneously divided into several groups and that agents in the same group collaborate while agents in different groups compete. Finally, a numerical simulation is included to demonstrate our theoretical results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203080 and 61473051) and the Natural Science Foundation of Chongqing City (Grant No. CSTC 2011BB0081).

  10. Characterization of chemical agent transport in paints.

    PubMed

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. PMID:23872337

  11. Kinetic theory of partially ionized complex (dusty) plasmas

    SciTech Connect

    Tsytovich, V.N.; De Angelis, U.; Ivlev, A.V.; Morfill, G.E.

    2005-08-15

    The general approach to the kinetic theory of complex (dusty) plasmas [Tsytovich and de Angelis, Phys. Plasmas 6, 1093 (1999)], which was formulated with the assumption of a regular (nonfluctuating) source of plasma particles, is reformulated to include ionization by electron impact on neutrals as the plasma source and the effects of collisions of ions and dust particles with neutrals.

  12. Effects of ionizing radiation on selected optical materials: An overview

    SciTech Connect

    Wirtenson, G.R.; White, R.H.

    1992-07-30

    This report gives an overview of the effects of ionizing radiation on optical materials that may be used in spacecraft sensors. It introduces the relevant phenomena and indicates were more detailed information can be found. The topics covered include radiation induced absorption in ultraviolet transmitting materials, ordinary optical glasses, cerium stabilized optical glasses, and infrared transmitting materials; bleaching and annealing, and radioluminesence.

  13. Desorption electrospray ionization mass spectrometry of intact bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used to differentiate 7 bacterial species based on their measured DESI-mass spectral profile. Both Gram positive and Gram negative bacteria were tested and included Escherichia coli, Staphyloccocus aureus, Enterococcus sp., Bordete...

  14. Electron-impact ionization of hydrogenlike ions in QED theory

    SciTech Connect

    Sun, H.-L.; Chang, J.-C.; Hsiao, J.-T.; Lin, S.-F.; Huang, K.-N.

    2010-04-15

    Relativistic cross sections for electron-impact ionization including quantum electrodynamic effects are studied for hydrogenlike ions in the two-potential formalism. Results are compared with other theoretical calculations and experimental data. Effects of the transverse-photon interaction as well as vacuum polarization potential between charges are analyzed. Systematic behaviors along the H-isoelectronic sequence are summarized.

  15. Agent Architectures for Compliance

    NASA Astrophysics Data System (ADS)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  16. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  17. Ionization coefficient approach to modeling breakdown in nonuniform geometries.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Nicolaysen, Scott D.

    2003-11-01

    This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.

  18. Direct Observations of the Evolution of Polar Cap Ionization Patches

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Zhang, B.; Lockwood, M. M.; Hu, H.; Moen, J. I.; Ruohoniemi, J.; Thomas, E. G.; Zhang, S.; Yang, H.; Liu, R.; McWilliams, K. A.; Baker, J. B.

    2013-12-01

    Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a 'tongue' of ionization (TOI).

  19. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.

    2013-12-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.

  20. Ionization and expansion of barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1993-01-01

    A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.

  1. Ionization Induced Trapping in a Laser Wakefield Accelerator

    SciTech Connect

    McGuffey, C.; Thomas, A. G. R.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F. J.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Bychenkov, V. Yu.; Glazyrin, I. V.; Karpeev, A. V.

    2010-01-15

    Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+-1.0 to 2.9+-0.8 mrad. The measurements are supported by particle-in-cell modeling including ionization. This mechanism should allow generation of electron beams with lower emittance and higher charge than in preionized gas.

  2. [Measurement of mutagenesis to study the effects of chemical agents]. Final report, August 1, 1993--July 31, 1994

    SciTech Connect

    Puck, T.T.

    1994-12-31

    This is the final report of a study conducted at the Eleanor Roosevelt Institute for Cancer Research, Inc. This study looked at mutagenesis as a measurement of the effects of chemical agents. Topics discussed in this report include: development of a new theory for the role of lipids and lipoproteins in the interactions of macromolecules; the action of caffeine in synergizing mutagenesis of agents like ionizing radiation by inhibition of cellular repair processes which was incorporated into a rapid procedure for detection of mutagenicity with high sensitivity; quantitative theoretical analysis of the mutagenesis process in cells exposed to physical and chemical mutagenic agents; theoretical analysis was developed leading to the conclusion that the visible chromosomal lesions described will also include a significant proportion of point mutations; application of this methodology for meaningful measurement of mutagenesis to study the effects of chemical agents was begun; and investigation of the cell cytoskeleton`s effect of genome exposure operating in the course of the differentiation process.

  3. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  4. Calculations of coincident ionization plus excitation

    SciTech Connect

    Becker, R.L.

    1986-01-01

    For Li- and Be-like ions, K x-ray yields, together with detection that the ionic charge has increased, give the cross section for ionization plus excitation (IE), a process which can exhibit electron-electron correlations. Measurements of IE for /sub 14/Si/sup 11 +/ + He stimulated our coupled-channels calculations in the independent-Fermi-particle model (IFPM), which includes Pauli correlations. We discuss how the IFPM expressions, generalized here to include an open shell, differ from those for distinguishable electrons. The sensitivity of sigma/sub IE/ to correlations is shown. Recent additional measurements and future ones giving excitation functions for resolved configurations and complementary Auger data will provide even more sensitive tests of collisional correlation theory. 15 refs., 3 figs., 1 tab.

  5. Positron scattering and ionization of neon atoms — theoretical investigations

    NASA Astrophysics Data System (ADS)

    Harshit, N. Kothari; N. Joshipura, K.

    2010-10-01

    Although positron scattering with inert gas atoms has been studied in theory as well as in experiment, there are discrepancies. The present work reports all the major total cross sections of e+—neon scattering at incident energies above ionization threshold, originating from a complex potential formalism. Elastic and cumulative inelastic scatterings are treated in the complex spherical e+—atom potential. Our total inelastic cross section includes positronium formation together with ionization and excitation channels in Ne. Because of the Ps formation channel it is difficult to separate out ionization cross sections from the total inelastic cross sections. An approximate method similar to electron—atom scattering has been applied to bifurcate ionization and cumulative excitation cross sections at energies from threshold to 2000 eV. Comparisons of present results with available data are made. An important outcome of this work is the relative contribution of different scattering processes, which we have shown by a bar-chart at the ionization peak.

  6. Ionization of Rydberg atoms colliding with a metal surface

    SciTech Connect

    Sjakste, J.; Borisov, A. G.; Gauyacq, J. P.

    2006-04-15

    We report on a theoretical study of the ionization process of Xe* Rydberg atoms colliding with a metal surface, in the presence of an external electric field. The evolution of the Xe* outer electron is studied by a wave packet propagation approach, allowing to include all dynamical aspects of the collision, in particular nonadiabatic inter-Rydberg transitions. We investigate how the different Xe* Stark states formed in the external field couple together and ionize on the surface and how the different polarizations of the electronic cloud in the Xe* states are reflected in their ionization properties. We show that the presence of the external electric field can significantly perturb the dynamics of the ionization process. Our results account for recent results from Dunning et al. [Nucl. Inst. Meth. B 203, 69 (2003)]. In particular, it is explained how the external electric field present in the experimental procedure of Dunning et al. leads to the apparent absence of a polarization effect in the ionization process.

  7. Melanoma and ionizing radiation: is there a causal relationship?

    PubMed

    Fink, Christopher A; Bates, Michael N

    2005-11-01

    This review was initiated in response to concerns that ionizing radiation could be a cause of melanoma. Studies presenting the relative risks for melanoma after external ionizing radiation exposure were in seven categories: (1) The Canadian Radiation Dose Registry, (2) nuclear industry workers, (3) subjects near nuclear test blasts, (4) survivors of the atomic bombings of Japan, (5) airline pilots and cabin attendants, (6) recipients of medical radiation, and (7) radiological technicians. Relative risks for leukemia in each of the studies were used to confirm the likelihood of exposure to ionizing radiation. When studies within a category were compatible, meta-analytic methods were used to obtain combined estimates of the relative risk, and a meta-regression analysis of melanoma relative risk compared to leukemia relative risk was used to examine consistency across exposure categories. Generally, exposure categories with elevated relative risks of leukemia had proportionately elevated relative risks of melanoma. This suggests that people exposed to ionizing radiation may be at increased risk of developing melanoma, although alternative explanations are possible. Future epidemiological studies of ionizing radiation effects should include melanoma as an outcome of interest. PMID:16238450

  8. Influence of Multiple Ionization on Charge State Distributions

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  9. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  10. Microwave remote sensing of ionized air.

    SciTech Connect

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  11. Ultraviolet femtosecond laser ionization mass spectrometry.

    PubMed

    Imasaka, Totaro

    2008-01-01

    For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry. PMID:18302290

  12. Associative ionization reactions involving excited atoms in nitrogen plasma

    SciTech Connect

    Popov, N. A.

    2009-05-15

    A model of kinetic processes in gas-discharge plasmas of pure nitrogen and its mixtures with nitrogen oxide and oxygen is presented. A distinctive feature of the model is that it includes associative ionization reactions involving N({sup 2}P) electronically excited atoms. Taking into account these processes allows one to explain both the anomalously slow decay of gas-discharge nitrogen plasma and the increase in the electron density in the region of the so-called pink afterglow in nitrogen. The possibility of substantially accelerating secondary ionization by adding NO molecules to a partially dissociated nitrogen is demonstrated. It is shown that such acceleration is caused by the associative ionization reaction N({sup 2}P) + O({sup 3}P) {yields} e + NO{sup +}. The calculated results agree well with available experimental data.

  13. Examination of nonequilibrium effects in an ionized nitrogen flow

    NASA Technical Reports Server (NTRS)

    Hatfield, John A.; Candler, Graham V.

    1993-01-01

    A thermo-chemical nonequilibrium ionized nitrogen flow in a shock tube is examined. A one-dimensional computational fluid dynamics code has been developed to study the flowfield incorporating a novel treatment of the electron energy equation. In the present approach, the electron pressure is included in the electron energy flux. In contrast, previous work has removed this term from the flux to facilitate the flux splitting. The code uses a five-species gas model for ionized nitrogen characterized by translational-rotational, vibrational, and electron-electronic temperatures. The results give good agreement with experimental data except for an inadequacy in the electronic source terms. A small difference is observed between the new and old splittings which increases with higher levels of ionization.

  14. JOHNSTON ATOLL CHEMICAL AGENT DISPOSAL SYSTEM (JACADS) CLOSURE PLAN DEVELOPMENT

    EPA Science Inventory

    The JACADS project consists of four incinerators including a liquid chemical agent waste processor, an explosives treatment incinerator and a batch metal parts treatment unit. Its mission was to disassemble and destroy chemcial weapons and bulk chemical agent. This prototypical...

  15. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  16. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  17. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  18. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  19. Nanotip Ambient Ionization Mass Spectrometry.

    PubMed

    Zhou, Zhenpeng; Lee, Jae Kyoo; Kim, Samuel C; Zare, Richard N

    2016-05-17

    A method called nanotip ambient ionization mass spectrometry (NAIMS) is described, which applies high voltage between a tungsten nanotip and a metal plate to generate a plasma in which ionized analytes on the surface of the metal plate are directed to the inlet and analyzed by a mass spectrometer. The dependence of signal intensity is investigated as a function of the tip-to-plate distance, the tip size, the voltage applied at the tip, and the current. These parameters are separately optimized to achieve sensitivity or high spatial resolution. A partially observable Markov decision process is used to achieve a stabilized plasma as well as high ionization efficiency. As a proof of concept, the NAIMS technique has been applied to phenanthrene and caffeine samples for which the limits of detection were determined to be 0.14 fmol for phenanthrene and 4 amol for caffeine and to a printed caffeine pattern for which a spatial resolution of 8 ± 2 μm, and the best resolution of 5 μm, was demonstrated. The limitations of NAIMS are also discussed. PMID:27087600

  20. Hypersensitivity to antineoplastic agents.

    PubMed

    Castells, M C

    2008-01-01

    The need to offer first line therapy for primary and recurrent cancers has spurred the clinical development of rapid desensitizations for chemotherapy and monoclonal antibodies. Rapid desensitizations allow patients to be treated with medications to which they have presented with hypersensitivity reactions (HSRs), including anaphylaxis. Rapid desensitization achieves temporary tolerization to full therapeutic doses by slow administration of incremental doses of the drug inducing the HSR. Protocols are available for most chemotherapy agents, including taxanes, platins, doxorubicin, monoclonal antibodies, and others. Candidate patients include those who present with type I HSRs, mast cell/IgE dependent, including anaphylaxis, and non-IgE mediated HSRs, during the chemotherapy infusion or shortly after. Idiosyncratic reactions, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis are not amenable to rapid desensitization. The recommendation for rapid desensitization can only be made by allergy and immunology specialists and can only be performed in settings with one-to-one nurse-patient care and where resuscitation personnel and resources are readily available. Repeated desensitizations can be safely performed in outpatient settings with similar conditions, which allow cancer patients to remain in clinical studies. We have generated a universal 12-step protocol that was applied to 413 cases of intravenous and intraperitoneal rapid desensitizations using taxanes, platins, liposomal doxorubicin, doxorubicin, rituximab, and other chemotherapy drugs. Under this protocol all patients were able to complete their target dose, and 94% of the patients had limited or no reactions. No deaths or codes were reported, indicating that the procedure was safe and effective in delivering first line chemotherapy drugs. PMID:18991707

  1. Degradation of cyanobacterial biosignatures by ionizing radiation.

    PubMed

    Dartnell, Lewis R; Storrie-Lombardi, Michael C; Mullineaux, Conrad W; Ruban, Alexander V; Wright, Gary; Griffiths, Andrew D; Muller, Jan-Peter; Ward, John M

    2011-12-01

    Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products. PMID:22149884

  2. Thyroid dysfunction from antineoplastic agents.

    PubMed

    Hamnvik, Ole-Petter Riksfjord; Larsen, P Reed; Marqusee, Ellen

    2011-11-01

    Unlike cytotoxic agents that indiscriminately affect rapidly dividing cells, newer antineoplastic agents such as targeted therapies and immunotherapies are associated with thyroid dysfunction. These include tyrosine kinase inhibitors, bexarotene, radioiodine-based cancer therapies, denileukin diftitox, alemtuzumab, interferon-α, interleukin-2, ipilimumab, tremelimumab, thalidomide, and lenalidomide. Primary hypothyroidism is the most common side effect, although thyrotoxicosis and effects on thyroid-stimulating hormone secretion and thyroid hormone metabolism have also been described. Most agents cause thyroid dysfunction in 20%-50% of patients, although some have even higher rates. Despite this, physicians may overlook drug-induced thyroid dysfunction because of the complexity of the clinical picture in the cancer patient. Symptoms of hypothyroidism, such as fatigue, weakness, depression, memory loss, cold intolerance, and cardiovascular effects, may be incorrectly attributed to the primary disease or to the antineoplastic agent. Underdiagnosis of thyroid dysfunction can have important consequences for cancer patient management. At a minimum, the symptoms will adversely affect the patient's quality of life. Alternatively, such symptoms can lead to dose reductions of potentially life-saving therapies. Hypothyroidism can also alter the kinetics and clearance of medications, which may lead to undesirable side effects. Thyrotoxicosis can be mistaken for sepsis or a nonendocrinologic drug side effect. In some patients, thyroid disease may indicate a higher likelihood of tumor response to the agent. Both hypothyroidism and thyrotoxicosis are easily diagnosed with inexpensive and specific tests. In many patients, particularly those with hypothyroidism, the treatment is straightforward. We therefore recommend routine testing for thyroid abnormalities in patients receiving these antineoplastic agents. PMID:22010182

  3. Erythropoietic Agents and the Elderly

    PubMed Central

    Agarwal, Neeraj; Prchal, Josef T.

    2008-01-01

    Erythropoietin is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development, which either act as ligands for the cell surface receptors of erythropoietin or promote erythropoietin production that stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents stimulating erythropoiesis (such as continuous erythropoietin receptor activator (CERA) or proline hydroxylase inhibitors that increase HIF-1 thereby stimulating erythropoietin production and iron availability and supply) are under active investigation. Erythropoietic agents have been shown to promote neuronal regeneration and to decrease post-stroke infarct size in mouse models. They have also been reported to shorten survival when used to treat anemia in many cancer patients and to increase thromboembolism. In contrast, rapid decrease of erythropoietin levels as observed in astronauts and high-altitude dwellers upon rapid descent to sea level leads to the decrease of erythroid mass, a phenomenon known as neocytolysis. The relative decrease in the serum erythropoietin level is known to occur in some subjects with otherwise unexplained anemia of aging. Anemia by itself is a predictor of poor physical function in the elderly and is a significant economic burden on society. One out of every five persons in the United States will be elderly by 2050. Erythropoietic agents, by preventing and treating otherwise unexplained anemias of the elderly and anemia associated with other disease conditions of the elderly, have the potential to improve the functional capacity and to decrease the morbidity and mortality in the elderly, thereby alleviating the overall burden of medical care in society. PMID:18809098

  4. Electron-impact multiple ionization of Ne, Ar, Kr and Xe

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2014-05-01

    This work describes the multiple ionization cross sections of rare gases by electron-impact. We pay special attention to the high energy region (0.1-10 keV) where the direct ionization is a minor contribution and the post-collisional electron emission dominates the final target charge state. We report here electron-impact single to sextuple ionization cross sections and total ionization cross sections including direct and post-collisional processes, even in the total values. We use the continuum distorted wave and the first Born approximations adapted to describe light-particle impact, i.e. energy, mass and trajectory corrections are incorporated, the latter by considering the electron-target potential and by using the Abel transformation. Auger-type post-collisional contributions are included in the multinomial expansion through experimental branching ratios after single ionization events. Tabulations of these experimental branching ratios for all the orbitals of the four targets are included. Present results are compared with the large amount of electron-impact experimental data available. We have obtained a good description of the multiple-ionization measurements at high energies, where the post-collisional ionization dominates. At intermediate energies, our theoretical results show the correct tendency, with the electron-impact ionization cross sections being far below the proton-impact ones.

  5. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  6. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  7. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    SciTech Connect

    Wood, W.M.; Siders, C.W.; Downer, M.C.

    1993-06-01

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N{sub 2} and noble gases subjected to high (10{sup 14} W/cm{sup 2} - 10{sup 16} W/cm{sup 2}) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  8. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    SciTech Connect

    Wood, W.M.; Siders, C.W.; Downer, M.C.

    1993-01-01

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N[sub 2] and noble gases subjected to high (10[sup 14] W/cm[sup 2] - 10[sup 16] W/cm[sup 2]) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  9. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    NASA Astrophysics Data System (ADS)

    Wood, W. M.; Siders, C. W.; Downer, M. C.

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N(sub 2) and noble gases subjected to high (10(sup 14) W/cm(sup 2) - 10(sup 16) W/cm(sup 2)) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  10. Dissociative ionization of sodium molecules via repulsive Rydberg states

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    In this thesis, an investigation of two color resonance multiphoton ionization (REMPI) and fragmentation processes in Na2 has been performed in combination with Linear Time-of-Flight Mass Spectrometry technique. The ionization and dissociative ionizations channels in the energy range up to 2500cm -1 above the dissociative ionization threshold into Na(3s)+Na ++e have been studied. After a mild supersonic expansion from the beam source, neutral sodium dimers in the ground state have been produced. Two tunable, pulsed lasers excite Na2 molecules via the intermediate A1S+u state to a single ro-vibrational level of the second intermediate 21pig state. Following absorption of a third photon, the total energy is above the dissociation limit into Na(3s) + Na+ + e. Typically, a small portion of atomic ions is produced under our experimental conditions. By varying the total available energy below and through the doubly excited states correlating with the Na(3p)+Na(4s) atom pair, there is no evidence that the doubly excited states positioned in the ionic continuum get involved. By calculation of the expected transition probabilities for all possible channels which can decay directly and indirectly into atomic ions, I find that direct dissociative ionization via 12S+u is impossible. The transition probabilities for dissociative ionization via the repulsive Rydberg states with principal quantum numbers n from 5˜12 converging toward the 12S+u state are three to four orders of magnitude larger than those for direct ionization into the continuum of the X2S+g ground state. These repulsive Rydberg states are much more likely to play a role in the photo-ionization through the intermediate 21Pg state. A semi-classical model which was originally developed for negative ion dissociative attachment (O'MAL'67) describes how dissociative ionization occurs along the repulsive Rydberg states. Its prediction concerning the ratio of atomic to molecular ion production as a function of initial

  11. Simulations of laser propagation and ionization in l'OASIS experiments

    SciTech Connect

    Dimitrov, D.A.; Bruhwiler, D.L.; Leemans, W.; Esarey, E.; Catravas, P.; Toth, C.; Shadwick, B.; Cary, J.R.; Giacone, R.

    2002-06-30

    We have conducted particle-in-cell simulations of laser pulse propagation through neutral He, including the effects of tunneling ionization, within the parameter regime of the l'OASIS experiments [1,2] at the Lawrence Berkeley National Laboratory (LBNL). The simulations show the theoretically predicted [3] blue shifting of the laser frequency at the leading edge of the pulse. The observed blue shifting is in good agreement with the experimental data. These results indicate that such computations can be used to accurately simulate a number of important effects related to tunneling ionization for laser-plasma accelerator concepts, such as steepening due to ionization-induced pump depletion, which can seed and enhance instabilities. Our simulations show self-modulation occurring earlier when tunneling ionization is included then for a pre-ionized plasma.

  12. Measurements of the time constant for steady ionization in shaped-charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.

    1993-01-01

    Quantitative measurements of three solar illuminated shaped-charge barium releases injected at small angles to the magnetic field were made using a calibrated color television camera. Two of the releases were from 1989. The third release, a reanalysis of an event included in Hallinan's 1988 study of three 1986 releases, was included to provide continuity between the two studies. Time constants for ionization, measured during the first 25 s of each release, were found to vary considerably. The two 1989 time constants differed substantially, and both were significantly less than any of the 1986 time constants. On the basis of this variability, we conclude that the two 1989 releases showed evidence of continuous nonsolar ionization. One release showed nonsolar ionization which could not he attributed to Alfven's critical ionization velocity process, which requires a component of velocity perpendicular to the magnetic field providing a perpendicular energy greater than the ionization potential.

  13. Tax Examiners, Revenue Agents, and Collectors.

    ERIC Educational Resources Information Center

    McCarron, Kevin M.

    2001-01-01

    Describes the nature of the work of tax examiners, revenue agents, and collectors. Includes employment outlook; benefits and drawbacks; qualifications, training, and advancement; and sources of additional information. (JOW)

  14. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  15. Constraining the X-Ray and Cosmic-Ray Ionization Chemistry of the TW Hya Protoplanetary Disk: Evidence for a Sub-interstellar Cosmic-Ray Rate

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Qi, Chunhua; Adams, Fred C.; Öberg, Karin I.

    2015-02-01

    We present an observational and theoretical study of the primary ionizing agents (cosmic rays (CRs) and X-rays) in the TW Hya protoplanetary disk. We use a set of resolved and unresolved observations of molecular ions and other molecular species, encompassing 11 lines total, in concert with a grid of disk chemistry models. The molecular ion constraints comprise new data from the Submillimeter Array on HCO+, acquired at unprecedented spatial resolution, and data from the literature, including ALMA observations of N2H+. We vary the model incident CR flux and stellar X-ray spectra and find that TW Hya's HCO+ and N2H+ emission are best-fit by a moderately hard X-ray spectra, as would be expected during the "flaring" state of the star, and a low CR ionization rate, ζCR <~ 10-19 s-1. This low CR rate is the first indication of the presence of CR exclusion by winds and/or magnetic fields in an actively accreting T Tauri disk system. With this new constraint, our best-fit ionization structure predicts a low turbulence "dead-zone" extending from the inner edge of the disk out to 50-65 AU. This region coincides with an observed concentration of millimeter grains, and we propose that the inner region of TW Hya is a dust (and possibly planet) growth factory as predicted by previous theoretical work.

  16. Biologic agents in juvenile spondyloarthropathies.

    PubMed

    Katsicas, María Martha; Russo, Ricardo

    2016-01-01

    The juvenile spondyloarthropathies (JSpA) are a group of related rheumatic diseases characterized by involvement of peripheral large joints, axial joints, and entheses (enthesitis) that begin in the early years of life (prior to 16(th) birthday).The nomenclature and concept of spondyloarthropathies has changed during the last few decades. Although there is not any specific classification of JSpA, diseases under the spondyloarthropathy nomenclature umbrella in the younger patients include: the seronegative enthesitis and arthropathy (SEA) syndrome, juvenile ankylosing spondylitis, reactive arthritis, and inflammatory bowel disease-associated arthritis. Moreover, the ILAR criteria for Juvenile Idiopathic Arthritis includes two categories closely related to spondyloarthritis: Enthesitis-related arthritis and psoriatic arthritis.We review the pathophysiology and the use of biological agents in JSpA. JSpA are idiopathic inflammatory diseases driven by an altered balance in the proinflammatory cytokines. There is ample evidence on the role of tumor necrosis factor (TNF) and interleukin-17 in the physiopathology of these entities. Several non-biologic and biologic agents have been used with conflicting results in the treatment of these complex diseases. The efficacy and safety of anti-TNF agents, such as etanercept, infliximab and adalimumab, have been analysed in controlled and uncontrolled trials, usually showing satisfactory outcomes. Other biologic agents, such as abatacept, tocilizumab and rituximab, have been insufficiently studied and their role in the therapy of SpA is uncertain. Interleukin-17-blocking agents are promising alternatives for the treatment of JSpA patients in the near future. Recommendations for the treatment of patients with JSpA have recently been proposed and are discussed in the present review. PMID:26968522

  17. Change Agent Survival Guide

    ERIC Educational Resources Information Center

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  18. Travel Agent Course Outline.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  19. How do agents represent?

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  20. Standard Agent Framework 1

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4)more » Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.« less

  1. Characterization of novel molecular photoacoustic contrast agents for in vivo photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Laoui, Samir

    Photoacoustic tomography is a hybrid imaging modality that takes advantage of the high contrast of pure optical imaging and the high intrinsic resolution of ultrasound without the necessity of ionizing radiation. Photoacoustic imaging (PM) is neither purely optical nor purely acoustical in nature, but a combination of the two. It is fundamentally based on light excitation and ultrasonic detection. Photoacoustic imaging has been successful without the introduction of exogenous contrast agents; however, to image deeper regions of biological tissue, a contrast agent is necessary. Several types of photoacoustic contrast agents have been made available for diagnostic purposes; however, the majority of literature has focused on gold nanoparticle systems for which the surface-plasmon resonance effect is important. The only option currently available for molecular PM contrast agents is to choose an existing near infrared absorbing fluorescent probes with the hope that they may generate a substantial photoacoustic (PA) response. However, these dyes have been designed with an optimized fluorescence emission response and are not anticipated to generate an adequate photoacoustic response. This dissertation addresses this lack of precedence in the literature for understanding the mechanism of a photoacoustic signal generation from strongly absorbing dye molecules including BODIPY, cyanine and curcumin systems. This work represents preliminary efforts in bringing novel molecular photoacoustic contrast agents (MPACs) into the photoacoustic imaging arena. To this end, photoacoustic and optical Z-scan experiments, and quenching studies were employed to demonstrate correlation of photoacoustic emission enhancement with excited state absorption mechanisms. To investigate further the photoacoustic emission in a practical imaging setting, MPACs were imaged using a recently developed photoacoustic imaging tomography system which was constructed exclusively for the purpose of this study.

  2. Assurance in Agent-Based Systems

    SciTech Connect

    Gilliom, Laura R.; Goldsmith, Steven Y.

    1999-05-10

    Our vision of the future of information systems is one that includes engineered collectives of software agents which are situated in an environment over years and which increasingly improve the performance of the overall system of which they are a part. At a minimum, the movement of agent and multi-agent technology into National Security applications, including their use in information assurance, is apparent today. The use of deliberative, autonomous agents in high-consequence/high-security applications will require a commensurate level of protection and confidence in the predictability of system-level behavior. At Sandia National Laboratories, we have defined and are addressing a research agenda that integrates the surety (safety, security, and reliability) into agent-based systems at a deep level. Surety is addressed at multiple levels: The integrity of individual agents must be protected by addressing potential failure modes and vulnerabilities to malevolent threats. Providing for the surety of the collective requires attention to communications surety issues and mechanisms for identifying and working with trusted collaborators. At the highest level, using agent-based collectives within a large-scale distributed system requires the development of principled design methods to deliver the desired emergent performance or surety characteristics. This position paper will outline the research directions underway at Sandia, will discuss relevant work being performed elsewhere, and will report progress to date toward assurance in agent-based systems.

  3. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  4. Differentiating microbial forensic qPCR target and control products by electrospray ionization mass spectrometry.

    PubMed

    Motley, S Timothy; Redden, Cassie L; Sannes-Lowery, Kristin A; Eshoo, Mark W; Hofstadler, Steven A; Burans, James P; Rosovitz, M J

    2013-06-01

    Molecular bioforensic research is dependent on rapid and sensitive methods such as real-time PCR (qPCR) for the identification of microorganisms. The use of synthetic positive control templates containing small modifications outside the primer and probe regions is essential to ensure all aspects of the assay are functioning properly, including the primers and probes. However, a typical qPCR or reverse transcriptase qPCR (qRT-PCR) assay is limited in differentiating products generated from positive controls and biological samples because the fluorescent probe signals generated from each type of amplicon are indistinguishable. Additional methods used to differentiate amplicons, including melt curves, secondary probes, and amplicon sequencing, require significant time to implement and validate and present technical challenges that limit their use for microbial forensic applications. To solve this problem, we have developed a novel application of electrospray ionization mass spectrometry (ESI-MS) to rapidly differentiate qPCR amplicons generated with positive biological samples from those generated with synthetic positive controls. The method has sensitivity equivalent to qPCR and supports the confident and timely determination of the presence of a biothreat agent that is crucial for policymakers and law enforcement. Additionally, it eliminates the need for time-consuming methods to confirm qPCR results, including development and validation of secondary probes or sequencing of small amplicons. In this study, we demonstrate the effectiveness of this approach with microbial forensic qPCR assays targeting multiple biodefense agents (bacterial, viral, and toxin) for the ability to rapidly discriminate between a positive control and a positive sample. PMID:23675878

  5. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    One of the major deleterious late effects of ionizing radiation is related to the induction of neoplasms. In the present report recent experimental results on neoplastic cell transformation by heavy ions are presented, and possible means to circumvent the carcinogenic effect of space radiation are discussed. Biological effects observed in experiments involving the use of energetic heavy ions accelerated at the Bevalac suggest that many of the biological effects observed in earlier space flight experiments may be due to space radiation, particularly cosmic rays. It is found that the effect of radiation on cell transformation is dose-rate dependent. The frequency of neoplastic transformation for a given dose decreases with a decrease of dose rate of Co-60 gamma rays. It is found that various chemical agents give radiation protection, including DMSO.

  6. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  7. Effects of ionizing radiation on CCD's

    NASA Technical Reports Server (NTRS)

    Hartsell, G. A.; Robinson, D. A.; Collins, D. R.

    1975-01-01

    The effects of 1.2 MeV gamma radiation and 20 MeV electrons on the operational characteristics of CCDs are studied. The effects of ionizing radiation on the charge transfer efficiency, dark current, and input/output circuitry are described. The improved radiation hardness of buried channel CCDs is compared to surface channel results. Both ion implanted and epitaxial layer buried channel device results are included. The advantages of using a single thickness SiO2 gate dielectric are described. The threshold voltage shifts and surface state density changes of dry, steam, and HCl doped oxides are discussed. Recent results on the recovery times and total dose effects of high dose rate pulses of 20 MeV electrons are reported.

  8. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  9. The Tevatron Ionization Profile Monitors

    SciTech Connect

    Jansson, A.; Fitzpatrick, T.; Bowie, K.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2006-05-01

    In designing an ionization profile monitor system for the Tevatron some novel approaches were taken, in particular for the readout electronics. This was motivated by the desire to resolve the individual bunches in both beams simultaneously. For this purpose, custom made electronics originally developed for Particle Physics experiments was used to provide a fast charge integration with very low noise. The various parts of the read-out electronics have been borrowed or adapted from the KTev, CMS, MINOS and BTev experiments. The detector itself also had to be modified to provide clean signals with sufficient bandwidth. The system design will be described along with the initial results.

  10. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  11. Optical Detection of Tunneling Ionization

    SciTech Connect

    Verhoef, Aart J.; Mitrofanov, Alexander V.; Kartashov, Daniil V.; Baltuska, Andrius

    2010-04-23

    We have experimentally detected optical harmonics that are generated due to a tunneling-ionization-induced modulation of the electron density. The optical signature of electron tunneling can be isolated from concomitant optical responses by using a noncollinear pump-probe setup. Whereas previously demonstrated tools for attosecond metrology of gases, plasmas, and surfaces rely on direct detection of charged particles, detection of the background-free time-resolved optical signal, which uniquely originates from electron tunneling, offers an interesting alternative that is especially suited for systems in which free electrons cannot be directly measured.

  12. 78 FR 56234 - Multi-Agency Informational Meeting Concerning Compliance with the Select Agent Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Compliance with the Select Agent Regulations; Public Webcast AGENCY: Centers for Disease Control and... guidance related to the select agent regulations established under the Public Health Security and... 11(Security) of the select agent regulations including information security, physical security,...

  13. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    SciTech Connect

    Stranak, Vitezslav; Hubicka, Zdenek; Cada, Martin; Drache, Steffen; Hippler, Rainer; Tichy, Milan

    2014-04-21

    The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionized flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.

  14. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  15. Influence of dust loading on atmospheric ionizing radiation on Mars

    NASA Astrophysics Data System (ADS)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  16. Biological warfare agents

    PubMed Central

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-01-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  17. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry

    PubMed Central

    Hamelin, Elizabeth I.; Schulze, Nicholas D.; Shaner, Rebecca L.; Coleman, Rebecca M.; Lawrence, Richard J.; Crow, Brian S.; Jakubowski, E. M.; Johnson, Rudolph C.

    2015-01-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of the hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman) and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid phase extraction coupled with high performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3–0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101–105%) and high precision (5–8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507

  18. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Hamelin, Elizabeth I; Schulze, Nicholas D; Shaner, Rebecca L; Coleman, Rebecca M; Lawrence, Richard J; Crow, Brian S; Jakubowski, E M; Johnson, Rudolph C

    2014-08-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman), and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid-phase extraction coupled with high-performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3 to 0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101-105%) and high precision (5-8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507

  19. Dioxin, agent orange

    SciTech Connect

    Gough, M.

    1986-01-01

    This book presents information on the following topics: dioxin, a prevalent problem; nobody wanted dioxin; agent organe and Vietnam; what we know about and may learn about agent orange and Veterans' health; agent organe and birth defects; dioxin in Missouri; 2, 4, 5-T: the U.S.' disappearing herbicide; Seveso: high-level environmental exposure; the nitro explosion; industrial exposures to dioxin; company behavior in the face of dioxin exposures; dioxin and specific cancers; animal tests of dioxin toxicity; dioxin decions; the present and the future.

  20. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  1. Aliphatic hydrocarbon spectra by helium ionization mass spectrometry (HIMS) on a modified atmospheric-pressure source designed for electrospray ionization.

    PubMed

    Yang, Zhihua; Attygalle, Athula B

    2011-08-01

    Chemical-ionization techniques that use metastable species to ionize analytes traditionally use a flat pin or a sharp solid needle onto which the high potential needed to generate the discharge plasma is applied. We report here that direct analysis of samples containing volatile and semivolatile compounds, including saturated and unsaturated aliphatic hydrocarbons, can be achieved on any electrospray-ionization mass spectrometer by passing helium though the sample delivery metal capillary held at a high potential. In the helium plasma ionization source (HPIS) described here, the typical helium flow required (about 20-30 mL/min), was significantly lower than that needed for other helium-ionization sources. By this procedure, positive ions were generated by nominal hydride ion removal from molecules emanating from heated saturated hydrocarbons as large as tetratetracontane (C(44)H(90)), at capillary voltages ranging from 2.0 to 4.0 kV. Unsaturated hydrocarbons, on the other hand, underwent facile protonation under much lower capillary voltages (0.9 to 2.0 kV). Although saturated and monounsaturated hydrocarbons bearing the same number of carbon atoms generate ions of the same m/z ratio, a gas-phase deuterium exchange method is described to ascertain the identity of these isomeric ions originating from either protonation or hydride abstraction mechanisms. Moreover, mass spectrometric results obtained by exposing unsaturated hydrocarbons to D(2)O vapor in an HPIS-MS instrument confirmed that the proton donor for ionization of unsaturated hydrocarbons is protonated water. PMID:21953194

  2. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.; Carts, Martin A.; O'Bryan, Martha V.

    2010-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  3. Electron impact ionization of glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.

    2005-05-01

    Positive ion formation upon electron impact ionization of the monomeric and dimeric form of glycolaldehyde is studied with high electron energy resolution. In the effusive neutral beam of evaporated monomeric glycolaldehyde some ions with a mass larger than the monomer indicate the presence of weakly bound neutral dimers. The yield of all ions that originate from the electron impact ionization of these neutral dimers exhibit a strong temperature dependence that can be interpreted as being due to the formation of dimers via three body collisions and thermal decomposition of the dimeric form back into monomers at higher temperatures. Ion efficiency curves are measured and analyzed for the 10 most abundant product cations of monomeric glycolaldehyde. The appearance energies of the parent ion signals of the monomer and dimer of glycolaldehyde (10.2 and 9.51 eV, respectively) are lower than the appearance energy of the parent cation of the more complex sugar deoxyribose that was recently determined to be 10.51 eV.

  4. H to Zn Ionization Equilibrium for the Non-Maxwellian Electron κ-distributions: Updated Calculations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Dudík, J.

    2013-05-01

    New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.

  5. Electron ionization of open/closed chain isocarbonic molecules relevant in plasma processing: Theoretical cross sections

    SciTech Connect

    Patel, Umang R.; Joshipura, K. N.; Pandya, Siddharth H.; Kothari, Harshit N.

    2014-01-28

    In this paper, we report theoretical electron impact ionization cross sections from threshold to 2000 eV for isocarbonic open chain molecules C{sub 4}H{sub 6}, C{sub 4}H{sub 8}, C{sub 4}F{sub 6} including their isomers, and closed chain molecules c-C{sub 4}H{sub 8} and c-C{sub 4}F{sub 8}. Theoretical formalism employed presently, viz., Complex Scattering Potential-ionization contribution method has been used successfully for a variety of polyatomic molecules. The present ionization calculations are very important since results available for the studied targets are either scarce or none. Our work affords comparison of C{sub 4} containing hydrocarbon versus fluorocarbon molecules. Comparisons of the present ionization cross sections are made wherever possible, and new ionization data are also presented.

  6. Pharmacologic Agents for Chronic Diarrhea

    PubMed Central

    2015-01-01

    Chronic diarrhea is usually associated with a number of non-infectious causes. When definitive treatment is unavailable, symptomatic drug therapy is indicated. Pharmacologic agents for chronic diarrhea include loperamide, 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists, diosmectite, cholestyramine, probiotics, antispasmodics, rifaximin, and anti-inflammatory agents. Loperamide, a synthetic opiate agonist, decreases peristaltic activity and inhibits secretion, resulting in the reduction of fluid and electrolyte loss and an increase in stool consistency. Cholestyramine is a bile acid sequestrant that is generally considered as the first-line treatment for bile acid diarrhea. 5-HT3 receptor antagonists have significant benefits in patients with irritable bowel syndrome (IBS) with diarrhea. Ramosetron improves stool consistency as well as global IBS symptoms. Probiotics may have a role in the prevention of antibiotic-associated diarrhea. However, data on the role of probiotics in the treatment of chronic diarrhea are lacking. Diosmectite, an absorbent, can be used for the treatment of chronic functional diarrhea, radiation-induced diarrhea, and chemotherapy-induced diarrhea. Antispasmodics including alverine citrate, mebeverine, otilonium bromide, and pinaverium bromide are used for relieving diarrheal symptoms and abdominal pain. Rifaximin can be effective for chronic diarrhea associated with IBS and small intestinal bacterial overgrowth. Budesonide is effective in both lymphocytic colitis and collagenous colitis. The efficacy of mesalazine in microscopic colitis is weak or remains uncertain. Considering their mechanisms of action, these agents should be prescribed properly. PMID:26576135

  7. Pharmacologic Agents for Chronic Diarrhea.

    PubMed

    Lee, Kwang Jae

    2015-10-01

    Chronic diarrhea is usually associated with a number of non-infectious causes. When definitive treatment is unavailable, symptomatic drug therapy is indicated. Pharmacologic agents for chronic diarrhea include loperamide, 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists, diosmectite, cholestyramine, probiotics, antispasmodics, rifaximin, and anti-inflammatory agents. Loperamide, a synthetic opiate agonist, decreases peristaltic activity and inhibits secretion, resulting in the reduction of fluid and electrolyte loss and an increase in stool consistency. Cholestyramine is a bile acid sequestrant that is generally considered as the first-line treatment for bile acid diarrhea. 5-HT3 receptor antagonists have significant benefits in patients with irritable bowel syndrome (IBS) with diarrhea. Ramosetron improves stool consistency as well as global IBS symptoms. Probiotics may have a role in the prevention of antibiotic-associated diarrhea. However, data on the role of probiotics in the treatment of chronic diarrhea are lacking. Diosmectite, an absorbent, can be used for the treatment of chronic functional diarrhea, radiation-induced diarrhea, and chemotherapy-induced diarrhea. Antispasmodics including alverine citrate, mebeverine, otilonium bromide, and pinaverium bromide are used for relieving diarrheal symptoms and abdominal pain. Rifaximin can be effective for chronic diarrhea associated with IBS and small intestinal bacterial overgrowth. Budesonide is effective in both lymphocytic colitis and collagenous colitis. The efficacy of mesalazine in microscopic colitis is weak or remains uncertain. Considering their mechanisms of action, these agents should be prescribed properly. PMID:26576135

  8. Tunneling Ionization Time Resolved by Backpropagation

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael

    2016-07-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular, the fraction of electrons that has tunneled out. We find that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion.

  9. Tunneling Ionization Time Resolved by Backpropagation.

    PubMed

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael

    2016-07-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular, the fraction of electrons that has tunneled out. We find that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion. PMID:27447504

  10. Two-step single-ionization mechanisms

    SciTech Connect

    Boeyen, R. W. van; Doering, J. P.; Watanabe, N.; Cooper, J. W.; Coplan, M. A.; Moore, J. H.

    2006-03-15

    In a recent publication [Phys. Rev. Lett. 92, 233202 (2004)] two different electron impact double ionization (e,3e) mechanisms were identified and the way in which two-electron momentum distributions for atoms and molecules could be obtained by triple coincidence (e,3e) measurements was discussed. The apparatus used detected the two ejected electrons both in and out of the scattering plane at an angle of 45 deg. to the momentum transfer direction in triple coincidence with the scattered electron. Ejected electrons detected out of the scattering plane were shown to be a result of two-step double ionization processes. With the same apparatus we have made double coincidence (e,2e) measurements of electron impact single ionization cross sections for ionization of magnesium 3s (valence) and 2p and 2s (inner) shell electrons at incident energies from 400 to 3000 eV in order to obtain more information about two-step ionization. The experimental results were compared with distorted-wave and plane-wave Born approximations carried out to second order. For the experimental conditions, two-step ionization processes involving one ionizing collision and a second elastic collision with the atomic core are the dominant contribution to the measured cross sections. Calculations are in moderate agreement with the data. The angular distributions of the ionized electrons in these two-step ionizations reflect the initial momentum distributions of the target electrons, a result that is analogous with the earlier (e,3e) measurements.

  11. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  12. On the ionization potential of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Gardner, J. L.

    1974-01-01

    The ionization potential of O2 was measured by the technique of high resolution photoelectron spectroscopy taking into account the influence of rotational structure on the shape of the vibrational bands. A value of 12.071 + or - .001 eV (1027.1 + or - 0.1 A) was found for the ionization potential. A lowering of the ionization potential caused by a branch-head when delta N = -2 gave an appearance potential for ionization of 12.068 + or - .001 eV (1027.4 + or - 0.1 A).

  13. Tunneling ionization time-resolved by backpropagation

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan M.; Max-Planck-Institut für Physik komplexer Systeme Team

    2016-05-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular the fraction of electrons that has tunneled out. We find, that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion. This work was supported by Alexander von Humboldt Foundation.

  14. Multiple ionization of xenon by proton impact

    SciTech Connect

    Manson, S.T.; DuBois, R.D.

    1987-12-01

    An experimental and theoretical study of multiple ionization of xenon for 0.2- to 2.0-MeV proton impact was made. Absolute cross sections for producing xenon ions with charges from +1 to +3 were measured, and calculations of subshell cross sections were performed. Experiment and theory are consistent and indicate that multiple ionization of xenon by fast protons occurs via inner-shell ionization. This is in contrast to the lighter noble gases where direct multiple outer shell ionization can be predominant.

  15. Chemotherapy Agents: A Primer for the Interventional Radiologist

    PubMed Central

    Mihlon, Frank; Ray, Charles E.; Messersmith, Wells

    2010-01-01

    In this article, the authors review the basic principles of cancer chemotherapy and provide an overview of each of the general classes of chemotherapeutic agents with a target audience of interventional radiologists in mind. Special attention is paid to agents used in regional chemotherapy as well as agents commonly included in systemic chemotherapeutic regimens for patients who also require regional chemotherapy. PMID:22550380

  16. Designing Distributed Learning Environments with Intelligent Software Agents

    ERIC Educational Resources Information Center

    Lin, Fuhua, Ed.

    2005-01-01

    "Designing Distributed Learning Environments with Intelligent Software Agents" reports on the most recent advances in agent technologies for distributed learning. Chapters are devoted to the various aspects of intelligent software agents in distributed learning, including the methodological and technical issues on where and how intelligent agents…

  17. A Multi-Agent System for Intelligent Online Education.

    ERIC Educational Resources Information Center

    O'Riordan, Colm; Griffith, Josephine

    1999-01-01

    Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…

  18. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  19. Riot Control Agents

    MedlinePlus

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly ... agent from your skin with large amounts of soap and water. Washing with soap and water will ...

  20. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  1. Agent amplified communication

    SciTech Connect

    Kautz, H.; Selman, B.; Milewski, A.

    1996-12-31

    We propose an agent-based framework for assisting and simplifying person-to-person communication for information gathering tasks. As an example, we focus on locating experts for any specified topic. In our approach, the informal person-to-person networks that exist within an organization are used to {open_quotes}referral chain{close_quotes} requests for expertise. User-agents help automate this process. The agents generate referrals by analyzing records of e-mail communication patterns. Simulation results show that the higher responsiveness of an agent-based system can be effectively traded for the higher accuracy of a completely manual approach. Furthermore, preliminary experience with a group of users on a prototype system has shown that useful automatic referrals can be found in practice. Our experience with actual users has also shown that privacy concerns are central to the successful deployment of personal agents: an advanced agent-based system will therefore need to reason about issues involving trust and authority.

  2. Differential mobility spectroscopy for chemical agent detection

    NASA Astrophysics Data System (ADS)

    Griffin, M. Todd

    2006-05-01

    General Dynamics ATP (GDATP) and Sionex Corporation (Sionex) are carrying out a cooperative development for a handheld chemical agent detector, being called JUNO TM, which will have lower false positives, higher sensitivity, and improved interference rejection compared with presently available detectors. This enhanced performance is made possible by the use of a new principle of ion separation called Differential Mobility Spectrometry (DMS). The enhanced selectivity is provided by the field tunable nature of the Sionex differential mobility technology (microDMxTM) which forms the analytical heart of the JUNO system and enables fingerprinting of molecules by characterization of the ionized molecular behavior under multiple electric field conditions. This enhanced selectivity is valuable in addressing not only the traditional list of chemical warfare agents (CWA) but also the substantial list of Toxic Industrial Compounds (TICs) and Toxic Industrial Materials (TIMs) which may be released in warfare or terrorist situations. Experimental results showing the ability of the microDMx to reject interferences, detect and resolve live agents are presented. An additional breakthrough in the technology was realized by operating the device at a reduced pressure of around 0.5 atmospheres. This reduced pressure operation resulted in roughly doubling the spectrometers resolution over what has previously been reported [1]. Advances have also been made in power consumption and packaging leading to a device suitable for portable, handheld, applications. Experimental results illustrating the performance of the microDMx technology employed in JUNO are highlighted.

  3. Proceedings of the Agent 2002 Conference on Social Agents : Ecology, Exchange, and Evolution

    SciTech Connect

    Macal, C., ed.; Sallach, D., ed.

    2003-04-10

    Welcome to the ''Proceedings'' of the third in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. The theme of this year's conference, ''Social Agents: Ecology, Exchange and Evolution'', was selected to foster the exchange of ideas on some of the most important social processes addressed by agent simulation models, namely: (1) The translation of ecology and ecological constraints into social dynamics; (2) The role of exchange processes, including the peer dependencies they create; and (3) The dynamics by which, and the attractor states toward which, social processes evolve. As stated in the ''Call for Papers'', throughout the social sciences, the simulation of social agents has emerged as an innovative and powerful research methodology. The promise of this approach, however, is accompanied by many challenges. First, modeling complexity in agents, environments, and interactions is non-trivial, and these representations must be explored and assessed systematically. Second, strategies used to represent complexities are differentially applicable to any particular problem space. Finally, to achieve sufficient generality, the design and experimentation inherent in agent simulation must be coupled with social and behavioral theory. Agent 2002 provides a forum for reviewing the current state of agent simulation scholarship, including research designed to address such outstanding issues. This year's conference introduces an extensive range of domains, models, and issues--from pre-literacy to future projections, from ecology to oligopolistic markets, and from design to validation. Four invited speakers highlighted major themes emerging from social agent simulation.

  4. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. PMID:26388363

  5. The role of partial ionization effects in the chromosphere.

    PubMed

    Martínez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats

    2015-05-28

    The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion-neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled atmospheres

  6. The role of partial ionization effects in the chromosphere

    PubMed Central

    Martínez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats

    2015-01-01

    The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion–neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled

  7. The role of partial ionization effects in the chromosphere

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats

    2015-04-01

    The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion-neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled atmospheres

  8. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  9. Multiphoton ionization of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Armstrong, D. P.; Harkins, D. A.; Compton, R. N.; Ding, D.

    1994-01-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy (TOFMS) and photoelectron spectroscopy (PES) studies of UF6 are reported using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF+x fragment ions, even at the lowest laser power densities at which signal could be detected. In general, the doubly charged uranium ion (U2+) intensity is much greater than that of the singly charged uranium ion (U+). For the case of the tunable dye laser experiments, the Un+ (n=1-4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The MPI-PES studies reveal only very slow electrons (≤0.5 eV) for all wavelengths investigated. The dominance of the U2+ ion, the absence or very small intensities of UF+x (x=1-3) fragments, the unstructured wavelength dependence, and the preponderance of slow electrons all indicate that mechanisms may exist other than ionization of bare U atoms following the stepwise photodissociation of F atoms from the parent molecule. The data also argue against stepwise photodissociation of UF+x (x=5,6) ions. Neither of the traditional MPI mechanisms (``neutral ladder'' or the ``ionic ladder'') are believed to adequately describe the ionization phenomena observed. We propose that the multiphoton excitation of UF6 under these experimental conditions results in a highly excited molecule, superexcited UF6**. The excitation of highly excited UF6** is proposed to be facilitated by the well known ``giant resonance,'' whose energy level lies in the range of 12-14 eV above that of ground state UF6. The highly excited molecule then primarily dissociates, via multiple channels, into Un+, UF+x, fluorine atoms, and ``slow'' electrons, although dissociation

  10. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  11. Influence of Multiple Ionization on Studies of Nanoflare Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-04-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. This, in turn, is determined by the corresponding rates for electron-impact ionization and recombination. Current CSD calculations for solar physics do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for solar physics is nanoflare heating. Recent work has attempted to predict the spectra of impulsively heated plasmas in order to identify diagnostics arising from non-equilibrium ionization that can constrain the nanoflare properties, but these calculations have ignored EIMI. Our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  12. Photo-ionization and photo-excitation of curcumin investigated by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Kun, Li; Gao, Bo; Zhu, Rongrong; Wu, Xianzheng; Wang, ShiLong

    2013-12-01

    Curcumin (Cur) has putative antitumor properties. In the current study, we examined photophysical and photochemical properties of Cur using laser flash photolysis. The results demonstrated that Cur could be photo-ionized at 355 nm laser pulse to produce radical cation (Currad +) and solvated electron esol- in 7:3 ethanol-water mixtures. The quantum yield of Cur photo-ionization and the ratio of photo-ionization to photo-excitation were also determined. Currad + could be transferred into neutral radical of Cur (Currad ) via deprotonation with the pKa 4.13. The excited singlet of Cur (1Cur*) could be transferred into excited triplet (3Cur*), which could be quenched by oxygen to produce singlet oxygen 1O2∗. Reaction of 3Cur* with tryptophan was confirmed. The results encourage developing curcumin as a photosensitive antitumor agent.

  13. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  14. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  15. Device for detecting ionizing radiation

    SciTech Connect

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-10-28

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon.

  16. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  17. Weakly ionized cerium plasma radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Koorikawa, Yoshitake; Murakami, Kazunori; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-02-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod cerium target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of cerium ions and electrons, forms by target evaporating. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, weakly ionized cerium plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 500 ns, and the time-integrated x-ray intensity had a value of about 40 μC/kg at 1.0 m from x-ray source with a charging voltage of 55 kV. In the angiography, we employed a film-less computed radiography (CR) system and iodine-based microspheres. Because K-series characteristic x-rays are absorbed easily by the microspheres, high-contrast angiography has been performed.

  18. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection Against Radiation (10 CFR part 20), relating to protection against occupational radiation exposure... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources...

  19. Ultrafast ionization and fragmentation of molecular silane

    SciTech Connect

    Sayres, Scott G.; Ross, Matt W.; Castleman, A. W. Jr.

    2010-09-15

    The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques.

  20. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection Against Radiation (10 CFR part 20), relating to protection against occupational radiation exposure... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources...

  1. 29 CFR 1910.1096 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Ionizing radiation. 1910.1096 Section 1910.1096 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1096 Ionizing radiation. (a)...

  2. MICE: The International Muon Ionization Cooling Experiment

    SciTech Connect

    Kaplan, Daniel M.

    2006-03-20

    Ionization cooling of a muon beam is a key technique for a Neutrino Factory or Muon Collider. An international collaboration is mounting an experiment to demonstrate muon ionization cooling at the Rutherford Appleton Laboratory. We aim to complete the experiment by 2010.

  3. Ion chemistry of VX surrogates and ion energetics properties of VX: new suggestions for VX chemical ionization mass spectrometry detection.

    PubMed

    Midey, Anthony J; Miller, Thomas M; Viggiano, A A; Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji

    2010-05-01

    Room temperature rate constants and product ion branching ratios have been measured for the reactions of numerous positive and negative ions with VX chemical warfare agent surrogates representing the amine (triethylamine) and organophosphonate (diethyl methythiomethylphosphonate (DEMTMP)) portions of VX. The measurements have been supplemented by theoretical calculations of the proton affinity, fluoride affinity, and ionization potential of VX and the simulants. The results show that many proton transfer reactions are rapid and that the proton affinity of VX is near the top of the scale. Many proton transfer agents should detect VX selectively and sensitively in chemical ionization mass spectrometers. Charge transfer with NO(+) should also be sensitive and selective since the ionization potential of VX is small. The surrogate studies confirm these trends. Limits of detection for commercial and research grade CIMS instruments are estimated at 80 pptv and 5 ppqv, respectively. PMID:20384284

  4. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-01-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  5. Ionization Scheme Development at the ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Fedosseev, V. N.; Marsh, B. A.; Fedorov, D. V.; Köster, U.; Tengborn, E.

    2005-04-01

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser step-wise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS complements the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapour lasers, ion beams of 24 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5-15%. As part of the ongoing RILIS development off-line resonance ionization spectroscopy studies carried out in 2003 and 2004 have determined the optimal three-step ionization schemes for scandium, antimony, dysprosium and yttrium.

  6. Inner-orbital ionization of iodine

    NASA Astrophysics Data System (ADS)

    Gibson, George; Smith, Dale; Tagliamonti, Vincent; Dragan, James

    2016-05-01

    Many coincidence techniques exist to study multiple ionization of molecules by strong laser fields. However, the first ionization step is critical in many experiments, although it is more difficult to obtain information about this initial step. We studied the single electron ionization of I2, as it presents interesting opportunities in that it is heavy and does not expand significantly during the laser pulse. Moreover, there are several distinct low-lying valence orbitals from which the electron may be removed. Most importantly, the kinetic energy release of the I+ + I dissociation channel can be measured and should correspond to well-known valence levels and separated atom limits. As it turns out, we must invoke deep valence orbits, built from the 5s electrons, to explain our data. Ionization from deep orbitals may be possible, as they have a smaller critical internuclear separation for enhanced ionization. We would like to acknowledge support from the NSF under Grant No. PHY-1306845.

  7. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  8. Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Oǧuzman, Ismail H.; Bellotti, Enrico; Brennan, Kevin F.; Kolník, Ján; Wang, Rongping; Ruden, P. Paul

    1997-06-01

    In this article, the first calculations of hole initiated interband impact ionization in bulk zincblende and wurtzite phase GaN are presented. The calculations are made using an ensemble Monte Carlo simulation including the full details of all of the relevant valence bands, derived from an empirical pseudopotential approach, for each crystal type. The model also includes numerically generated hole initiated impact ionization transition rates, calculated based on the pseudopotential band structure. The calculations predict that both the average hole energies and ionization coefficients are substantially higher in the zincblende phase than in the wurtzite phase. This difference is attributed to the higher valence band effective masses and equivalently higher effective density of states found in the wurtzite polytype. Furthermore, the hole ionization coefficient is found to be comparable to the previously calculated electron ionization coefficient in zincblende GaN at an applied electric field strength of 3 MV/cm. In the wurtzite phase, the electron and hole impact ionization coefficients are predicted to be similar at high electric fields, but at lower fields, the hole ionization rate appears to be greater.

  9. Who's your neighbor? neighbor identification for agent-based modeling.

    SciTech Connect

    Macal, C. M.; Howe, T. R.; Decision and Information Sciences; Univ. of Chicago

    2006-01-01

    Agent-based modeling and simulation, based on the cellular automata paradigm, is an approach to modeling complex systems comprised of interacting autonomous agents. Open questions in agent-based simulation focus on scale-up issues encountered in simulating large numbers of agents. Specifically, how many agents can be included in a workable agent-based simulation? One of the basic tenets of agent-based modeling and simulation is that agents only interact and exchange locally available information with other agents located in their immediate proximity or neighborhood of the space in which the agents are situated. Generally, an agent's set of neighbors changes rapidly as a simulation proceeds through time and as the agents move through space. Depending on the topology defined for agent interactions, proximity may be defined by spatial distance for continuous space, adjacency for grid cells (as in cellular automata), or by connectivity in social networks. Identifying an agent's neighbors is a particularly time-consuming computational task and can dominate the computational effort in a simulation. Two challenges in agent simulation are (1) efficiently representing an agent's neighborhood and the neighbors in it and (2) efficiently identifying an agent's neighbors at any time in the simulation. These problems are addressed differently for different agent interaction topologies. While efficient approaches have been identified for agent neighborhood representation and neighbor identification for agents on a lattice with general neighborhood configurations, other techniques must be used when agents are able to move freely in space. Techniques for the analysis and representation of spatial data are applicable to the agent neighbor identification problem. This paper extends agent neighborhood simulation techniques from the lattice topology to continuous space, specifically R2. Algorithms based on hierarchical (quad trees) or non-hierarchical data structures (grid cells) are

  10. Secondary electrospray ionization of complex vapor mixtures. Theoretical and experimental approach.

    PubMed

    Vidal-de-Miguel, Guillermo; Herrero, Ana

    2012-06-01

    In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an electrospray plume become ionized after charge is transferred from the charging electrosprayed particles (the charging agent) to the vapor species. Currently available SESI models are valid for simplified systems having only one type of electrosprayed species, which ionizes only one single vapor species, and for the limit of low vapor concentration. More realistic models require considering other effects. Here we develop a theoretical model that accounts for the effects of high vapor concentration, saturation effects, interferences between different vapor species, and electrosprays producing different types of species from the liquid phase. In spite of the relatively high complexity of the problem, we find simple relations between the different ionic species concentrations that hold independently of the particular ion source configuration. Our model suggests that an ideal SESI system should use highly concentrated charging agents composed preferably of only one dominating species with low mobility. Experimental measurements with a MeOH-H(2)O-NH(3) electrospray and a mixture of fatty acids and lactic acid served to test the theory, which gives good qualitative results. These results also suggest that the SESI ionization mechanism is primarily based on ions rather than on charged droplets. PMID:22528202

  11. Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1993-01-01

    Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.

  12. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  13. Status of MICE, the international Muon Ionization Cooling Experiment

    SciTech Connect

    Sandstroem, R.

    2008-02-21

    An international experiment designed to demonstrate muon ionization cooling is being built at Rutherford Appleton Laboratory (RAL). The experiment consists of one cell of a Neutrino Factory cooling channel, along with upstream and downstream detectors to identify individual muons and measure their initial and final emittance to a precision of 0.1%. Magnetic design of the beamline and cooling channel are complete, and portions are under construction. This paper describes the experiment, including cooling channel hardware designs, fabrication status, and running plans.

  14. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  15. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison

    NASA Astrophysics Data System (ADS)

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-01

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters.

  16. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison.

    PubMed

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-28

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697

  17. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  18. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  19. Ionization sensitization of doping in co-deposited organic semiconductor films

    SciTech Connect

    Shinmura, Yusuke Yamashina, Yohei; Kaji, Toshihiko; Hiramoto, Masahiro

    2014-11-03

    Sensitization of the dopant ionization in co-deposited films of organic semiconductors was found. The ionization rate of cesium carbonate (Cs{sub 2}CO{sub 3}), which acts as a donor dopant in single films of metal-free phthalocyanine (H{sub 2}Pc) and fullerene (C{sub 60}), was increased from 10% to 97% in a H{sub 2}Pc:C{sub 60} co-deposited film. A charge separation superlattice model that includes electron transfer from the conduction band of H{sub 2}Pc to that of C{sub 60}, which increases the rate of dopant ionization, is proposed.

  20. Perpendicular currents and electric fields in fully and partially ionized magnetized plasma

    SciTech Connect

    Rozhansky, V.

    2013-10-15

    Perpendicular currents and self-consistent electric fields in fully and partially ionized plasma in strong magnetic field are analyzed. In fully ionized plasma, the analyses are concentrated on closing of viscosity driven currents. For partially ionized plasma, it is demonstrated that the perpendicular currents could be expressed through the total pressure gradient (including the pressure gradient of neutral particles) and viscosity of neutrals. The self-consistent electric fields and corresponding E(vector sign)×B(vector sign) could be quite large, which is important for various applications, in particular, for the divertor plasma of a tokamak in the detached regime.

  1. Desorption Electrospray Ionization Mass Spectrometry for Lipid Characterization and Biological Tissue Imaging

    PubMed Central

    Eberlin, Livia S.; Ferreira, Christina R.; Dill, Allison L.; Ifa, Demian R.; Cooks, R. Graham

    2011-01-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) imaging of biological samples allows untargeted analysis and structural characterization of lipids ionized from the near-surface region of a sample under ambient conditions. DESI is a powerful and sensitive MS ionization method for 2D and 3D imaging of lipids from direct and unmodified complex biological samples. This review describes the strengths and limitations of DESI-MS for lipid characterization and imaging together with the technical workflow and a survey of applications. Included are discussions of lipid mapping and biomarker discovery as well as a perspective on the future of DESI imaging. PMID:21645635

  2. Ionization sensitization of doping in co-deposited organic semiconductor films

    NASA Astrophysics Data System (ADS)

    Shinmura, Yusuke; Yamashina, Yohei; Kaji, Toshihiko; Hiramoto, Masahiro

    2014-11-01

    Sensitization of the dopant ionization in co-deposited films of organic semiconductors was found. The ionization rate of cesium carbonate (Cs2CO3), which acts as a donor dopant in single films of metal-free phthalocyanine (H2Pc) and fullerene (C60), was increased from 10% to 97% in a H2Pc:C60 co-deposited film. A charge separation superlattice model that includes electron transfer from the conduction band of H2Pc to that of C60, which increases the rate of dopant ionization, is proposed.

  3. VOLTTRON: An Agent Execution Platform for the Electric Power System

    SciTech Connect

    Akyol, Bora A.; Haack, Jereme N.; Ciraci, Selim; Carpenter, Brandon J.; Vlachopoulou, Maria; Tews, Cody W.

    2012-06-05

    Volttron is an agent execution platform that is engineered for use in the electric power system. Volttron provides resource guarantees for agents and the platform including memory and processor utilization; authentication and authorization services; directory services for agent and resource location; and agent mobility. Unlike most other agent platforms, Volttron does not depend on a single agent authoring language. Instead, we chose to design and implement Volttron as a platform service and framework that is decoupled from the agent execution environment. A prototype implementation of Volttron has been written in Python (using Python v2.7.2) and we have executed agents written in Python and Java and as shell scripts. The intended use of Volttron is in the power distribution system for managing distributed generation, demand-response, and plug-in electric vehicles.

  4. MpcAgent

    SciTech Connect

    Nutaro, James

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of the building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.

  5. MpcAgent

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of themore » building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.« less

  6. Gadofullerene MRI contrast agents.

    PubMed

    Bolskar, Robert D

    2008-04-01

    A promising new class of MRI contrast-enhancing agents with high relaxivities is based on gadolinium-containing metallofullerenes, which are also termed gadofullerenes. Detailed study of the water-proton relaxivity properties and intermolecular nanoclustering behavior of gadofullerene derivatives has revealed valuable information about their relaxivity mechanisms and given a deeper understanding of this new class of paramagnetic contrast agent. Here, the latest findings on water-solubilized gadofullerene materials and how these findings relate to their future applications in MRI are reviewed and discussed. PMID:18373426

  7. Anticancer agents from marine sponges.

    PubMed

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics. PMID:25402340

  8. Method For Detecting Biological Agents

    DOEpatents

    Chen, Liaohai; McBranch, Duncan W.; Wang, Hsing-Lin; Whitten, David G.

    2005-12-27

    A sensor is provided including a polymer capable of having an alterable measurable property from the group of luminescence and electrical conductivity, the polymer having an intermediate combination of a recognition element, a tethering element and a property-altering element bound thereto and capable of altering the measurable property, the intermediate combination adapted for subsequent separation from the polymer upon exposure to an agent having an affinity for binding to the recognition element whereupon the separation of the intermediate combination from the polymer results in a detectable change in the alterable measurable property, and, detecting said detectable change in the alterable measurable property.

  9. [Decorporation agents for internal radioactive contamination].

    PubMed

    Ohmachi, Yasushi

    2015-01-01

    When radionuclides are accidentally ingested or inhaled, blood circulation or tissue/organ deposition of the radionuclides causes systemic or local radiation effects. In such cases, decorporation therapy is used to reduce the health risks due to their intake. Decorporation therapy includes reduction and/or inhibition of absorption from the gastrointestinal tract, isotopic dilution, and the use of diuretics, adsorbents, and chelating agents. For example, penicillamine is recommended as a chelating agent for copper contamination, and diethylene triamine pentaacetic acid is approved for the treatment of internal contamination with plutonium. During chelation therapy, the removal effect of the drugs should be monitored using a whole-body counter and/or bioassay. Some authorities, such as the National Council on Radiation Protection and Measurements and International Atomic Energy Agency, have reported recommended decorporation agents for each radionuclide. However, few drugs are approved by the US Food and Drug Administration, and many are off-label-use agents. Because many decontamination agents are drugs that have been available for a long time and have limited efficacy, the development of new, higher-efficacy drugs has been carried out mainly in the USA and France. In this article, in addition to an outline of decorporation agents for internal radioactive contamination, an outline of our research on decorporation agents for actinide (uranium and plutonium) contamination and for radio-cesium contamination is also presented. PMID:25832835

  10. Guest-Service Agent. Teacher Edition.

    ERIC Educational Resources Information Center

    Al-Harake, Mounzer

    This teacher's guide for the hospitality and tourism industry is designed to include the entry-level competencies students will need to enter any of the occupational areas identified in the front-desk section of the lodging occupations cluster. These occupations include front-desk clerk, cashier, telephone operator, guest-service agent,…

  11. Assessment of nerve agent exposure: existing and emerging methods.

    PubMed

    Langenberg, Jan P; van der Schans, Marcel J; Noort, Daan

    2009-07-01

    The perceived threat of the use of nerve agents by terrorists against civilian targets implies the need for methods for point-of-care (POC) diagnosis. This review presents an overview of methods that are currently available for the assessment of exposure to nerve agents. Since these methods are mostly MS based, they require complex and expensive equipment and well-trained personnel and, consequently, they are not very suitable for rapid POC diagnosis. However, new technologies are emerging that allow, among others, immunochemical detection of acetylcholinesterase inhibited by nerve agents. Also, lab-on-a-chip methodologies are under development. It is anticipated that MS methods will be suitable for POC diagnosis within a few years, due to the miniaturization of equipment and the emergence of methodologies that enable mass spectrometric analysis with little sample pretreatment and that are potentially fieldable, such as direct analysis in real time and desorption electrospray ionization MS. PMID:21083135

  12. Agent Persuasion Mechanism of Acquaintance

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    Agent persuasion can improve negotiation efficiency in dynamic environment based on its initiative and autonomy, and etc., which is being affected much more by acquaintance. Classification of acquaintance on agent persuasion is illustrated, and the agent persuasion model of acquaintance is also illustrated. Then the concept of agent persuasion degree of acquaintance is given. Finally, relative interactive mechanism is elaborated.

  13. nMHDust: A 4-Fluid Partially Ionized Dusty Plasma Code

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel

    2008-11-01

    nMHDust is a next generation 4-fluid partially ionized magnetized dusty plasma code, treating the inertial dynamics of dust, ion and neutral components. Coded in ANSI C, the numerical method is based on the MHDust 3-fluid fully ionized dusty plasma code. This code expands the features of the MHDust code to include ionization/recombination effects and the netCDF data format. Tests of this code include: ionization instabilities, wave mode propagation (electromagnetic and acoustic), shear-flow instabilities, and magnetic reconnection. Relevant parameters for the space environment are considered, allowing a comparison to be made with previous dusty plasma codes (MHDust and DENISIS). The utility of the code is expanded through the possibility of a small dust mass. This allows nMHDust to be used as a 2-ion plasma code. nMHDust completes the array of fluid dusty plasma codes available for numerical investigations into nonlinear phenomena in the field of astrophysical dusty plasmas.

  14. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  15. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  16. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko; Aikawa, Yuri

    2012-03-10

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO{sup +}, N{sub 2}H{sup +}, H{sub 2}O, CO{sub 2}, and CH{sub 3}OH. The only molecule significantly affected by the X-ray ionization is N{sub 2}H{sup +}, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H{sub 2} and C{sup +}/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable 'dead zone' where accretion is suppressed, present in a layer, Z/R {approx}< 0.1-0.2, in the disk midplane, within R Almost-Equal-To 200 AU.

  17. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Silberring, Jerzy

    2016-01-01

    Plasma-based ambient ionization mass spectrometry techniques are gaining growing interest due to their specific features, such as the need for little or no sample preparation, its high analysis speed, and the ambient experimental conditions. Samples can be analyzed in gas, liquid, or solid forms. These techniques allow for a wide range of applications, like warfare agent detection, chemical reaction control, mass spectrometry imaging, polymer identification, and food safety monitoring, as well as applications in biomedical science, e.g., drug and pharmaceutical analysis, medical diagnostics, biochemical analysis, etc. Until now, the main drawback of plasma-based techniques is their quantitative aspect, but a lot of efforts have been done to improve this obstacle. PMID:25988731

  18. Can Subscription Agents Survive?

    ERIC Educational Resources Information Center

    Tuttle, Marcia

    1985-01-01

    With the saturation of traditional markets for their services, subscription agents have evolved from orders and invoices to serving customers by communicating with librarians and publishers and making automated and paper products available. Magazine fulfillment centers, publisher discounts, and electronic publishing will influence the subscription…

  19. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; Norvig, Peter (Technical Monitor)

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  20. E-Learning Agents

    ERIC Educational Resources Information Center

    Gregg, Dawn G.

    2007-01-01

    Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…

  1. Mobility control agent

    SciTech Connect

    Argabright, P.A.; Phillips, B.L.; Rhudy, J.S.

    1983-05-17

    Polymer mobility control agents useful in supplemental oil recovery processes, which give improved reciprocal relative mobilities, are prepared by initiating the polymerization of a monomer containing a vinyl group with a catalyst comprising a persulfate and ferrous ammonium sulfate. The vinyl monomer is an acrylyl, a vinyl cyanide, a styryl and water soluble salts thereof.

  2. Natural compounds as anticancer agents: Experimental evidence

    PubMed Central

    Wang, Jiao; Jiang, Yang-Fu

    2012-01-01

    Cancer prevention research has drawn much attention worldwide. It is believed that some types of cancer can be prevented by following a healthy life style. Cancer chemoprevention by either natural or synthetic agents is a promising route towards lowering cancer incidence. In recent years, the concept of cancer chemoprevention has evolved greatly. Experimental studies in animal models demonstrate that the reversal or suppression of premalignant lesions by chemopreventive agents is achievable. Natural occurring agents such as dietary phytochemicals, tea polyphenols and resveratrol show chemopreventive activity in animal models. Moreover, clinical trials for testing the safety and efficacy of a variety of natural agents in preventing or treating human malignancy have been ongoing. Here, we summarize experimental data on the chemopreventive or tumor suppressive effects of several natural compounds including curcumin, (-)-epigallocatechin-3-gallate, resveratrol, indole-3-carbinol, and vitamin D. PMID:24520533

  3. Dissociation reactions of protonated anthracycline antibiotics following electrospray ionization-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sleno, Lekha; Campagna-Slater, Valerie; Volmer, Dietrich A.

    2006-09-01

    Fragmentation pathways of doxorubicin, a common cancer therapy agent, and three closely related analogs (epirubicin, daunorubicin, idarubicin) were compared using electrospray ionization with tandem mass spectrometry. This class of antibiotics with anti-tumour activity has important structural features, with a tetracyclic aromatic, polyketide portion, which is glycosylated with an amino sugar in order to exhibit its biological activity. Collision-induced dissociation spectra revealed very similar product ions for each analog, however, important differences were seen in the relative abundances and the ease at which certain fragments were formed. Fragment ions observed included those from cleavage of the glycosidic bond, loss of the side chain from the aglycone moiety, water losses and loss of a methyl radical. Following cleavage of the glycosidic bond, the charge can either reside on the aglycone portion or the sugar moiety, and each of these primary fragments undergoes several secondary dissociation pathways, depending on the collision energy. By ramping the collision voltage, we were able to correlate the changes in fragmentation behavior with small alterations in the structure of the precursor ion. The detailed study of the fragmentation behavior of doxorubicin was supported by accurate mass measurements, using an electrospray-time of flight instrument, as well as MS3 data from a quadrupole-linear ion trap mass spectrometer. Computational studies were also performed to help explain the role of certain functional groups in the fragmentation reactions.

  4. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle.

    PubMed

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618

  5. Rapid detection of terbufos in stomach contents using desorption electrospray ionization mass spectrometry.

    PubMed

    Wilson, Christina R; Mulligan, Christopher C; Strueh, Kurt D; Stevenson, Gregory W; Hooser, Stephen B

    2014-03-26

    Desorption electrospray ionization mass spectrometry (DESI-MS) is an emerging analytical technique that permits the rapid and direct analysis of biological or environmental samples under ambient conditions. Highlighting the versatility of this technique, DESI-MS has been used for the rapid detection of illicit drugs, chemical warfare agents, agricultural chemicals, and pharmaceuticals from a variety of sample matrices. In diagnostic veterinary toxicology, analyzing samples using traditional analytical instrumentation typically includes extensive sample extraction procedures, which can be time consuming and labor intensive. Therefore, efforts to expedite sample analyses are a constant goal for diagnostic toxicology laboratories. In the current report, DESI-MS was used to directly analyze stomach contents from a dog exposed to the organophosphate insecticide terbufos. The total DESI-MS analysis time required to confirm the presence of terbufos and diagnose organophosphate poisoning in this case was approximately 5 min. This highlights the potential of this analytical technique in the field of veterinary toxicology for the rapid diagnosis and detection of toxicants in biological samples. PMID:24670950

  6. Helium Ionization in the Diffuse Ionized Gas surrounding Ultra-compact HII regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, Edward B.

    2016-01-01

    We observed radio recombination lines (RRLs) from regions surrounding three Ultra-compact HII (UCHII) regions at frequencies near 5 GHz. The observations were made with the Green Bank Telescope (GBT). From existing observations we know that helium in the diffuse ionized gas (DIR), located far from the ionizing source, is not fully ionized. The objectives of our observations are to determine (a) the distance from the ionizing stars where helium is under ionized for a variety of physical conditions and (b) whether the helium ionization depends on the age of the ionizing star. With these objectives, we observed RRLs towards 16 positions in the envelops of UCHII regions G10.15-0.34, G23.46-0.20 and G29.96-0.02. Helium lines were detected toward 10 of the observed positions and hydrogen RRLs were detected toward all the observed positions. The observed ratio of ionized helium to ionized hydrogen (He^+/H^+) at the positions where helium lines are detected range between 0.03 and 0.09. At positions where helium lines are not detected the upper limit on the ratio is ~ 0.05. We discuss the dependence of He^+/H^+ ratio on the distance from and age of the ionizing star clusters in the observed sources.

  7. Measurement of electron-impact ionization cross sections for hydrogenlike high-Z ions

    SciTech Connect

    Marrs, R.E.; Elliott, S.R.; Scofield, J.H.

    1997-08-01

    Electron-impact ionization cross sections have been measured for the hydrogenlike ions of molybdenum, dysprosium, gold, and bismuth at selected electron energies between 1.3 and 3.9 times threshold. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted-wave calculations that include both the Moeller interaction and exchange. {copyright} {ital 1997} {ital The American Physical Society}

  8. Non-equilibrium ionized blast wave

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  9. Thermochromic behaviors and ionization potentials of organopolysilanes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kenji; Yokoyama, Masaaki

    1989-04-01

    Ionization potentials of organopolysilanes with different kinds of substituents were evaluated from the low energy photo-electron emission measurements in air. An aryl-substituted organopolysilane capable of σ - π mixing between Si backbone σ and side-group π electrons gave smaller ionization potential by about 0.1˜0.15 eV compared with alkyl-substituted organopolysilanes. The value of ionization potentials in some alkyl-substituted organopolysilanes which showed thermochromic behaviors was found to vary substantially with thermally induced reversible changes in polymer backbone conformation, indicating that the effective conjugation length of σ electrons decreases above the thermochromic transition temperature.

  10. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  11. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  12. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  13. Camouflaging Agents for Vitiligo Patients.

    PubMed

    Hossain, Claudia; Porto, Dennis A; Hamzavi, Iltefat; Lim, Henry W

    2016-04-01

    Vitiligo is an acquired condition resulting in patches of depigmented skin that is cosmetically disfiguring and can subsequently be psychologically disturbing. For patients seeking to mask their vitiligo, camouflage options have historically been limited and been designated as a cosmetic, rather than a medical, concern. As research has indicated that proper concealment of vitiligo lesions can vastly improve quality of life, we believe it is essential that dermatologists become aware of all the options available to their patients and that discussions of camouflage options be broached from the first visit. Methods for concealment include cosmetic tattoos, dihydroxyacetone, general cosmetics, and various topical camouflage agents, including the newest product, Microskin™. We conducted a literature review of all of the available options for vitiligo concealment and evaluated their advantages and disadvantages. Ultimately, temporary methods of concealment are recommended; but the particular agent used can come from discussion with the patient based on the location of the lesions, degree of concealment desired, cost, and availability. PMID:27050692

  14. Direct observations of the evolution of polar cap ionization patches.

    PubMed

    Zhang, Qing-He; Zhang, Bei-Chen; Lockwood, Michael; Hu, Hong-Qiao; Moen, Jøran; Ruohoniemi, J Michael; Thomas, Evan G; Zhang, Shun-Rong; Yang, Hui-Gen; Liu, Rui-Yuan; McWilliams, Kathryn A; Baker, Joseph B H

    2013-03-29

    Patches of ionization are common in the polar ionosphere, where their motion and associated density gradients give variable disturbances to high-frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a "tongue" of ionization (TOI). PMID:23539601

  15. Fisher-Shannon analysis of ionization processes and isoelectronic series

    SciTech Connect

    Sen, K. D.; Antolin, J.; Angulo, J. C.

    2007-09-15

    The Fisher-Shannon plane which embodies the Fisher information measure in conjunction with the Shannon entropy is tested in its ability to quantify and compare the informational behavior of the process of atomic ionization. We report the variation of such an information measure and its constituents for a comprehensive set of neutral atoms, and their isoelectronic series including the mononegative ions, using the numerical data generated on 320 atomic systems in position, momentum, and product spaces at the Hartree-Fock level. It is found that the Fisher-Shannon plane clearly reveals shell-filling patterns across the periodic table. Compared to position space, a significantly higher resolution is exhibited in momentum space. Characteristic features in the Fisher-Shannon plane accompanying the ionization process are identified, and the physical reasons for the observed patterns are described.

  16. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed Central

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    Introduction The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Methods Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. Results OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136–11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0–16), compared with patients with OA caused by HMW agents (0.87, range 0–72), (p = 0.024). Conclusions OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents. PMID:27280473

  17. Joint chemical agent detector (JCAD): the future of chemical agent detection

    NASA Astrophysics Data System (ADS)

    Laljer, Charles E.

    2003-08-01

    The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  18. Micro-Radiography of Living Biological Organisms with MEDIPIX2 Detector and Application of Various Contrast Agents

    NASA Astrophysics Data System (ADS)

    Dammer, Jiri; Sopko, Vit; Jakubek, Jan; Weyda, Frantisek; Benes, Jiri; Zahorovsky, Julian

    2012-08-01

    We describe a newly developed radiographic system equipped with Medipix2 semiconductor pixel detector and a micro-focus FeinFocus X-ray tube tabletop. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by the X-ray tube. The digital pixel detectors of the Medipix family represent a highly efficient type of imaging devices with high spatial resolution better than 1μm, and unlimited dynamic range allowing single particle of radiation and to determine their energies. The setup is particularly suitable for radiographic imaging of small biological samples, including in vivo observations with various contrast agents (iodine and lanthanum nitrate). Along with the description of the apparatus we provide examples of application of iodine and lanthanum nitrate contrast agents as tracers in various insects as model organisms. The iodine contrast agent increases the absorption of X-rays and this leads to better resolution of internal structures of biological organisms, and especially the various cavities, pores, etc. Micro-radiographic imaging helps to detect organisms living in a not visible environment, visualize internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  19. Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent

    PubMed Central

    Han, Jing; Wang, Lin

    2013-01-01

    For a given multi-agent system where the local interaction rule of the existing agents can not be re-designed, one way to intervene the collective behavior of the system is to add one or a few special agents into the group which are still treated as normal agents by the existing ones. We study how to lead a Vicsek-like flocking model to reach synchronization by adding special agents. A popular method is to add some simple leaders (fixed-headings agents). However, we add one intelligent agent, called ‘shill’, which uses online feedback information of the group to decide the shill's moving direction at each step. A novel strategy for the shill to coordinate the group is proposed. It is strictly proved that a shill with this strategy and a limited speed can synchronize every agent in the group. The computer simulations show the effectiveness of this strategy in different scenarios, including different group sizes, shill speed, and with or without noise. Compared to the method of adding some fixed-heading leaders, our method can guarantee synchronization for any initial configuration in the deterministic scenario and improve the synchronization level significantly in low density groups, or model with noise. This suggests the advantage and power of feedback information in intervention of collective behavior. PMID:23658695

  20. The highly intelligent virtual agents for modeling financial markets

    NASA Astrophysics Data System (ADS)

    Yang, G.; Chen, Y.; Huang, J. P.

    2016-02-01

    Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.

  1. Two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    van der Hart, Hugo W.; Feng, Liang; McKenna, Claire

    2003-12-01

    The combination of B-spline basis sets with R-matrix theory has provided a powerful tool for the description of double ionization processes. We demonstrate this first by investigating electron-impact ionization of Li2+. By applying the Floquet Ansatz, the same techniques can be employed to describe multiphoton double ionization processes through the R-matrix Floquet approach. Results for two-photon double ionization of He confirm the lower values of time-dependent close-coupling calculations compared to perturbation theory. The approach can be extended to quasi-two-electron systems through the use of model potentials. This is demonstrated by calculating photoionization cross sections near threshold for the m = 0 level of the 4s4p 1Po state of calcium.

  2. Lucky drift impact ionization in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Rowlands, J. A.; Baranovskii, S. D.; Tanioka, Kenkichi

    2004-08-01

    The review of avalanche multiplication experiments clearly confirms the existence of the impact ionization effect in this class of semiconductors. The semilogarithmic plot of the impact ionization coefficient (α) versus the reciprocal field (1/F) for holes in a-Se and electrons in a-Se and a-Si :H places the avalanche multiplication phenomena in amorphous semiconductors at much higher fields than those typically reported for crystalline semiconductors with comparable bandgaps. Furthermore, in contrast to well established concepts for crystalline semiconductors, the impact ionization coefficient in a-Se increases with increasing temperature. The McKenzie and Burt [S. McKenzie and M. G. Burt, J. Phys. C 19, 1959 (1986)] version of Ridley's lucky drift (LD) model [B. K. Ridley, J. Phys. C 16, 3373 (1988)] has been applied to impact ionization coefficient versus field data for holes and electrons in a-Se and electrons in a-Si :H. We have extracted the electron impact ionization coefficient versus field (αe vs F) data for a-Si :H from the multiplication versus F and photocurrent versus F data recently reported by M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys.41, 2552 (2002). Provided that one accepts the basic assumption of the Ridley LD model that the momentum relaxation rate is faster than the energy relaxation rate, the model can satisfactorily account for impact ionization in amorphous semiconductors even with ionizing excitation across the bandgap, EI=Eg. If λ is the mean free path associated with momentum relaxing collisions and λE is the energy relaxation length associated with energy relaxing collisions, than the LD model requires λE>λ. The application of the LD model with energy and field independent λE to a-Se leads to ionization threshold energies EI that are quite small, less than Eg/2, and requires the possible but improbable ionization of localized states. By making λE=λE(E ,F) energy and field dependent, we were

  3. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  4. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  5. Ionization balance in EBIT and tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Peacock, N. J.; Barnsley, R.; O'Mullane, M. G.; Tarbutt, M. R.; Crosby, D.; Silver, J. D.; Rainnie, J. A.

    2001-01-01

    The equilibrium state in tokamak core plasmas has been studied using the relative intensities of resonance x-ray lines, for example Lyα (H-like), "w" (He-like), and "q" (Li-like) from test ions such as Ar+15, Ar+16, and Ar+17. A full spatial analysis involves comparison of the line intensities with ion diffusion calculations, including relevant atomic rates. A zero-dimensional model using a global ion loss rate approximation has also been demonstrated by comparison with the data collected from a Johann configuration spectrometer with a charged coupled device (CCD) detector. Since the lines are nearly monoenergetic, their intensities are independent of the instrument sensitivity and are directly proportional to the ion abundances. This method has recently been applied to Ar in the Oxford electron beam ion trap (EBIT) with a beam energy in the range 3-10 keV. Taking into account the cross sections for monoenergetic electron collisions and polarization effects, model calculations agree with the observed line ratios at 4.1 keV beam energy. This work will be expanded to provide nomograms of ionization state versus line intensity ratios as a function of EBIT beam energy.

  6. Effects of prenatal exposure to ionizing radiation

    SciTech Connect

    Miller, R.W. )

    1990-07-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

  7. Real-time monitoring of matrix acidizing including the effects of diverting agents

    SciTech Connect

    Hill, A.D.; Zhu, D.

    1996-05-01

    Real-time monitoring of the injection rate and pressure during matrix acidizing provides operators with a way to determine the changing skin factor as stimulation proceeds. Current methods are based either on the assumption of steady-state flow in the region around the wellbore affected by acid injection or on computer solution of the transient flow equations describing the unsteady reservoir flow process occurring during acidizing. In this paper, a new method for real-time monitoring of matrix acidizing, the inverse injectivity vs. superposition time function plot, is presented. This new method can be applied with a spreadsheet computer program or a programmable calculator and accounts for the transient flow effects occurring during matrix acidizing at multiple rates and injection pressures. The evolving skin factor during a matrix treatment is readily obtained from the diagnostic plot. Hypothetical examples show how the inverse injectivity plot can be used to assess the efficiency of stimulation and diversion. Comparisons with previously presented field cases show the new method to be a simple and accurate means of monitoring the evolving skin factor during matrix acidizing.

  8. Radiation pressure confinement - III. The origin of the broad ionization distribution in AGN outflows

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Behar, Ehud; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-12-01

    The winds of ionized gas driven by active galactic nuclei (AGN) can be studied through absorption lines in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe0+ to Fe25+). This characteristic feature can be quantified with the absorption measure distribution (AMD), defined as the distribution of column density with ionization parameter |dN/d log ξ|. Observed AMDs extend over 0.1 ≲ ξ ≲ 104 (cgs), and are remarkably similar in different objects. Power-law fits (|dN/d log ξ| ≈ N1ξa) yield N1 = 3 × 1021 cm- 2 ± 0.4 dex and a = 0-0.4. What is the source of this broad ionization distribution, and what sets the small range of observed N1 and a? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform gas pressure medium. However, the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore to a broad range of ionization states within a single slab. We show that this compression of the gas by the radiation pressure leads to an AMD with |dN/d log ξ| = 8 × 1021 ξ0.03 cm-2, remarkably similar to that observed. The calculated values of N1 and a depend weakly on the gas metallicity, the ionizing spectral slope, the distance from the nucleus, the ambient density, and the total absorber column. Thus, radiation pressure compression (RPC) of the photoionized gas provides a natural explanation for the observed AMD. RPC predicts that the gas pressure increases with decreasing ionization, which can be used to test the validity of RPC in ionized AGN outflows.

  9. Distributed Agents for Autonomy

    NASA Astrophysics Data System (ADS)

    Blake, Rick; Amigoni, Francesco; Brambilla, Andrea; de la Rosa Steinz, Sonia; Lavagna, Michele; le Duc, Ian; Page, Jonathan; Page, Oliver; Steel, Robin; Wijnands, Quirien

    2010-08-01

    The Distributed Agents for Autonomy (DAFA) Study has been performed for ESA by SciSys UK Ltd, Vega GmbH and Politecnico di Milano. An analysis of past, present and future space missions has been conducted, structured around a set of three pre-defined mission scenarios: Formation Flying, Earth Observation and Planetary Exploration. This analysis led to the definition of a framework of use cases where the application of distributed autonomy seems necessary or appropriate, and a set of metrics that may be used to assess such deployments. Agent technology and architectures were extensively surveyed and the results used to elaborate each of the mission scenarios to the point where a software prototype could be constructed. Such a prototype was developed for a scenario based on the ExoMars mission and this has been used to highlight the advantages of a DAFA approach to the mission architecture.

  10. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  11. New plasma source based on contact ionization

    SciTech Connect

    Schrittwieser, R.; Koslover, R.; Karim, R.; Rynn, N.

    1985-07-01

    A new type of plasma source is presented: A collisionless plasma is formed by producing ions on one end and electrons on the other of a cylindrical vacuum chamber in a solenoidal magnetic field. The ions are produced by contact ionization of potassium on tungsten. The source of electrons is a LaB/sub 6/ plate. In the usual single-ended Q machine the elements rhenium, iridium, and platinum are tested as ionizing metals for potassium and barium.

  12. Multifluid magnetohydrodynamics of weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond

    show that the total electric field in the asteroid may either be of comparable strength to the electric field predicted by Sonett et al. or vanish depending on the magnetic field geometry. We include the effects of dust grains in the gas and calculate the heating rates in the plasma flow due to ion-neutral scattering and viscous dissipation. We term this newly discovered heating mechanism "electrodynamic heating", use measurements of asteroid electrical conductivities to estimate the upper limits of the possible heating rates and amount of thermal energy that can be deposited in the solid body, and compare these to the heating produced by the decay of radioactive nuclei like Al26. For the second problem we modeled molecular line emission from time-dependent multifluid MHD shock waves in star-forming regions. By incorporating realistic radiative cooling by CO and H2 into the numerical method developed by Ciolek & Roberge (2013), we present the only current models of truly time-dependent multifluid MHD shock waves in weakly-ionized plasmas. Using the physical conditions determined by our models, we present predictions of molecular emission in the form of excitation diagrams, which can be compared to observations of protostellar outflows in order to trace the physical conditions of these environments. Current work focuses on creating models for varying initial conditions and shock ages, which are and will be the subject of several in progress studies of observed molecular outflows and will provide further insight into the physics and chemistry of these flows.

  13. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  14. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  15. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  16. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  17. WARM IONIZED GAS REVEALED IN THE MAGELLANIC BRIDGE TIDAL REMNANT: CONSTRAINING THE BARYON CONTENT AND THE ESCAPING IONIZING PHOTONS AROUND DWARF GALAXIES

    SciTech Connect

    Barger, K. A.; Haffner, L. M.; Bland-Hawthorn, J. E-mail: haffner@astro.wisc.edu

    2013-07-10

    The Magellanic System includes some of the nearest examples of galaxies disturbed by galaxy interactions. These interactions have redistributed much of their gas into the halos of the Milky Way (MW) and the Magellanic Clouds. We present Wisconsin H{alpha} Mapper kinematically resolved observations of the warm ionized gas in the Magellanic Bridge over the velocity range of +100 to +300 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map and the corresponding intensity-weighted mean velocity map of the Magellanic Bridge across (l, b) = (281 Degree-Sign .5, -30 Degree-Sign .0) to (302. Degree-Sign 5, -46. Degree-Sign 7). Using the H{alpha} emission from the Small Magellanic Cloud (SMC)-Tail and the Bridge, we estimate that the mass of the ionized material is between (0.7-1.7) Multiplication-Sign 10{sup 8} M{sub Sun }, compared to 3.3 Multiplication-Sign 10{sup 8} M{sub Sun} for the neutral mass over the same region. The diffuse Bridge is significantly more ionized than the SMC-Tail, with an ionization fraction of 36%-52% compared to 5%-24% for the Tail. The H{alpha} emission has a complex multiple-component structure with a velocity distribution that could trace the sources of ionization or distinct ionized structures. We find that incident radiation from the extragalactic background and the MW alone are insufficient to produced the observed ionization in the Magellanic Bridge and present a model for the escape fraction of the ionizing photons from both the SMC and Large Magellanic Cloud (LMC). With this model, we place an upper limit of 4.0% for the average escape fraction of ionizing photons from the LMC and an upper limit of 5.5% for the SMC. These results, combined with the findings of a half a dozen other studies for dwarf galaxies in different environments, provide compelling evidence that only a small percentage of the ionizing photons escape from dwarf galaxies in the present epoch to

  18. Two-photon ionization thresholds of matrix-assisted laser desorption/ionization matrix clusters.

    PubMed

    Lin, Q; Knochenmuss, R

    2001-01-01

    Direct two-photon ionization of the matrix has been considered a likely primary ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. This mechanism requires that the vertical ionization threshold of matrix materials be below twice the laser photon energy. Because dimers and larger aggregates may be numerous in the early stages of the MALDI plume expansion, their ionization thresholds are important as well. We have used two-color two-photon ionization to determine the ionization thresholds of jet cooled clusters of an important matrix, 2,5-dihydroxy benzoic acid (DHB), and mixed clusters with the thermal decomposition product of DHB, hydroquinone. The thresholds of the clusters were reduced by only a few tenths of an eV compared to the monomers, to an apparent limit of 7.82 eV for pure DHB clusters. None of the investigated clusters can be directly ionized by two nitrogen laser photons (7.36 eV), and the ionization efficiency at the thresholds is low. PMID:11507754

  19. Excitation in the ionized diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Sivan, J.-P.; Stasińska, G.; Lequeux, J.

    1986-04-01

    Large-scale spectra have been obtained in the diffuse, ionized background of the Sagittarius-Carina arm and in the large complex of loops and filaments located in Orion and Eridanus. The intensity ratios of the emission lines of O III forbidden line, H-beta, H-alpha, N II forbidden line and S II forbidden line have been derived from these spectra, and are analyzed using models of H II regions in ionization equilibrium at very low densities, down to 0.01/cu cm. The confrontation of the observed ratios with the predictions of the models, which have been calibrated against observations of classical H II regions, shows that the S II forbidden line (6717 + 6731)/H-alpha ratio is too large to arise in a gas submitted only to a stellar flux with which it comes into ionization equilibrium, whatever the dilution of the matter. Contribution of shock excitation seems a natural explanation, as shocks are likely to occur considering the chaotic morphology of the studied regions. Some alternative explanations are also suggested. However, this medium is principally ionized by radiation, and it is shown that the forbidden line O III/H-beta ratios are well accounted for by the known population of O stars within the expected uncertainties, while ionization by white dwarfs or by B stars suggested by previous authors are excluded. The mean effective temperature for ionizing stars (less than 35,000 K) is lower than that of stars exciting classical H II regions.

  20. The ionization energy of C2.

    PubMed

    Krechkivska, O; Bacskay, G B; Welsh, B A; Nauta, K; Kable, S H; Stanton, J F; Schmidt, T W

    2016-04-14

    Resonant two-photon threshold ionization spectroscopy is employed to determine the ionization energy of C2 to 5 meV precision, about two orders of magnitude more precise than the previously accepted value. Through exploration of the ionization threshold after pumping the 0-3 band of the newly discovered 4(3)Πg←a(3)Πu band system of C2, the ionization energy of the lowest rovibronic level of the a(3)Πu state was determined to be 11.791(5) eV. Accounting for spin-orbit and rotational effects, we calculate that the ionization energy of the forbidden origin of the a(3)Πu state is 11.790(5) eV, in excellent agreement with quantum thermochemical calculations which give 11.788(10) eV. The experimentally derived ionization energy of X(1)Σg (+) state C2 is 11.866(5) eV. PMID:27083719

  1. The ionization energy of C2

    NASA Astrophysics Data System (ADS)

    Krechkivska, O.; Bacskay, G. B.; Welsh, B. A.; Nauta, K.; Kable, S. H.; Stanton, J. F.; Schmidt, T. W.

    2016-04-01

    Resonant two-photon threshold ionization spectroscopy is employed to determine the ionization energy of C2 to 5 meV precision, about two orders of magnitude more precise than the previously accepted value. Through exploration of the ionization threshold after pumping the 0-3 band of the newly discovered 43Πg←a3Πu band system of C2, the ionization energy of the lowest rovibronic level of the a3Πu state was determined to be 11.791(5) eV. Accounting for spin-orbit and rotational effects, we calculate that the ionization energy of the forbidden origin of the a3Πu state is 11.790(5) eV, in excellent agreement with quantum thermochemical calculations which give 11.788(10) eV. The experimentally derived ionization energy of X1Σg+ state C2 is 11.866(5) eV.

  2. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery. PMID:26561279

  3. [Clinical pharmacology of anticancer agents. (Part 1) Introduction, alkylating agents and platinum compounds].

    PubMed

    Fujita, H

    1991-11-01

    Pharmacokinetic concepts as to absorption, distribution, metabolism and excretion of anticancer agents, and how drugs reach to the site of action were reviewed. Then, roles of the liver and kidney to the excretion and metabolism, intracellular pharmacokinetics, and relationships between drug response and cell proliferation kinetics or cell cycle phase were explained. Drug development, mode of action and pharmacokinetics of alkylating agents and platinum compounds were reviewed. This includes: alkylating agents: nitrogen mustard, phenylalanine mustard, estracyte, cyclophosphamide, carboquone, busulfan, nitrosourea, etc., and platinum compounds: cisplatin, carboplatin, 254-S, DWA-2114 R, NK-121. PMID:1952967

  4. Environmental mimics of chemical warfare agents.

    PubMed

    Claborn, David M

    2004-12-01

    There are several natural and artificial factors that mimic the effects of chemical warfare agents, thereby causing unwarranted alarm and confusion on the battlefield. Symptoms associated with chemical warfare include paralysis, muscle tremors, heavy salivation, severe burns, blistering, and corrosive skin injuries among others. Similar symptoms can be produced from a variety of environmental sources, artificial and natural. This article reviews several published and unpublished examples of environmental factors that produce syndromes similar to those caused by these agents. Examples of such mimics include pesticides, blistering exudates from insects and plants, various types of bites, and naturally occurring diseases. The potential for confusion caused by these factors is discussed and means of discriminating between warfare agents and naturally occurring events are identified. Recommendations for the use of this information and for needed research are also discussed. PMID:15646185

  5. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  6. Two-center approach to fully differential positron-impact ionization of hydrogen

    NASA Astrophysics Data System (ADS)

    Kadyrov, A. S.; Bailey, J. J.; Bray, I.; Stelbovics, A. T.

    2014-01-01

    The two-center approach to positron-impact ionization of atomic hydrogen is shown to follow from the exact post form of the breakup amplitude [Kadyrov, Bray, Mukhamedzhanov, and Stelbovics, Phys. Rev. Lett. 101, 230405 (2008), 10.1103/PhysRevLett.101.230405]. In such approaches distinct ionization amplitudes arise from each center for the same ionization process. The fully differential cross section for the positron-impact breakup of atomic hydrogen is calculated including direct ionization of the target and electron capture into the positronium continuum. We show that the coherent combination of the amplitudes leads to oscillations in the differential cross sections, whereas the incoherent combination does not. The latter has also the advantage of being consistent with the unitary close-coupling formalism.

  7. M-shell ionization of atoms by C, N, and O ions

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Braziewicz, J.; Semaniak, J.; CzyŻewski, T.; Glowacka, L.; Jaskól, M.; Haller, M.; Karschnick, R.; Kretschmer, W.; Kobzev, A. P.; Trautmann, D.; Lapicki, G.

    1997-02-01

    M-shell ionization in selected heavy atoms (Au, Bi, Th and U) by energetic Cq+, Nq+ and Oq+, ions of different charge states (q=1-6) has been studied in the energy range 0.1-2 MeV/amu. The measurements were performed using target thicknesses allowing ion charge equilibration in the target. Derived equilibrium M-shell ionization cross sections are compared with the theoretical predictions based on the semiclassical (SCA) and the PWBA approximations for direct ionization and the OBK approximation for the electron capture, as well as the ECPSSR theory including the corrections for higher-order effects. Substantial contribution of the electron capture caused by the ion charge equilibration is observed for high energies. The influence of the multiple ionization in M-, N- and O-shells on measured cross sections is discussed.

  8. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Chen, Hao

    2016-06-12

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future. PMID:27145689

  9. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow–extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  10. Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1973-01-01

    Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.

  11. Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1972-01-01

    Shock structure during ionization of a hydrogen-helium mixture was studied using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement was achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2 - 0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.

  12. A Descriptive Analysis of the Del Mod System's Field Agent Component, Final Report, Volume III.

    ERIC Educational Resources Information Center

    Golts, Uldis R.

    This monograph describes the field agent of the Delaware Del Mod System. The following sections are included in the report: (1) The Duties and Activities of the Del Mod System Field Agents; (2) The Field Agents' Mode of Operation; (3) The Conduct of Projects; (4) The Hiring and Training of Del Mod Field Agents; (5) The Administration of Del Mod…

  13. Multi-Agent Design and Implementation for an Online Peer Help System

    ERIC Educational Resources Information Center

    Meng, Anbo

    2014-01-01

    With the rapid advance of e-learning, the online peer help is playing increasingly important role. This paper explores the application of MAS to an online peer help system (MAPS). In the design phase, the architecture of MAPS is proposed, which consists of a set of agents including the personal agent, the course agent, the diagnosis agent, the DF…

  14. Neoclassical Transport Including Collisional Nonlinearity

    SciTech Connect

    Candy, J.; Belli, E. A.

    2011-06-10

    In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  15. Families classification including multiopposition asteroids

    NASA Astrophysics Data System (ADS)

    Milani, Andrea; Spoto, Federica; Knežević, Zoran; Novaković, Bojan; Tsirvoulis, Georgios

    2016-01-01

    In this paper we present the results of our new classification of asteroid families, upgraded by using catalog with > 500,000 asteroids. We discuss the outcome of the most recent update of the family list and of their membership. We found enough evidence to perform 9 mergers of the previously independent families. By introducing an improved method of estimation of the expected family growth in the less populous regions (e.g. at high inclination) we were able to reliably decide on rejection of one tiny group as a probable statistical fluke. Thus we reduced our current list to 115 families. We also present newly determined ages for 6 families, including complex 135 and 221, improving also our understanding of the dynamical vs. collisional families relationship. We conclude with some recommendations for the future work and for the family name problem.

  16. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  17. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    PubMed

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. PMID:24594810

  18. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  19. Dissipative many-electron dynamics of ionizing systems.

    PubMed

    Tremblay, Jean Christophe; Klinkusch, Stefan; Klamroth, Tillmann; Saalfrank, Peter

    2011-01-28

    In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (ρ-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the ρ-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (∼N(2)) with the number of configurations N used to represent the reduced density matrix in the ρ-TDCI method, as compared to a N(3) scaling for the model in its original form. PMID:21280729

  20. Simulations of Parametric Resonance Ionization Cooling of Muon Beams

    SciTech Connect

    K. Beard; S.A. Bogacz; Y.S. Derbenev; R.P. Johnson; K. Paul; T.J. Roberts; K. Yonehara

    2005-05-16

    The technique of using a parametric resonance to allow better ionization cooling is being developed to create small beams so that high collider luminosity can be achieved with fewer muons. In the linear channel that is studied in this effort, a half integer resonance is induced such that the normal elliptical motion of particles in x-x' phase space becomes hyperbolic, with particles moving to smaller x and larger x' as they pass down the channel. Thin absorbers placed at the focal points of the channel then cool the angular divergence of the beam by the usual ionization cooling mechanism where each absorber is followed by RF cavities. Thus the phase space of the beam is compressed in transverse position by the dynamics of the resonance and its angular divergence is compressed by the ionization cooling mechanism. We report the first results of simulations of this process, including comparisons to theoretical cooling rates and studies of sensitivity to variations in absorber thickness and initial beam conditions.

  1. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  2. Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons.

    PubMed

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2015-08-01

    In order to suppress the fragmentation and improve the sensitivity for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs), the mechanism of multiphoton ionization was studied for the following representative NPAHs, 9-nitroanthracene, 3-nitrofluoranthene, and 1-nitropyrene. The analytes were extracted from the PM2.5 on the sampling filter ultrasonically, and were measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry with a femtosecond tunable laser in the range from 267 to 405 nm. As a result, a molecular ion was observed as the major ion and fragmentation was suppressed at wavelengths longer than 345 nm. Furthermore, the detection limit measured at 345 nm was measured to be the subpicogram level. The organic compounds were extracted from a 2.19 mg sample of particulate matter 2.5 (PM2.5), and the extract was subjected to multiphoton ionization mass spectrometry after gas chromatograph separation. The background signals were drastically suppressed at 345 nm, and the target NPAHs, including 9-nitroanthracene and 1-nitropyrene, were detected, and their concentrations were determined to be 5 and 3 pg/m(3), respectively. PMID:26048831

  3. Combined effects of ionizing radiation and cycloheximide on gene expression

    SciTech Connect

    Woloschak, G.E.; Felcher, P.; Chang-Liu, Chin-Mei

    1993-11-01

    Experiments were done to determine the effects of ionizing radiation exposure on expression of genes following exposure of Syrian hamster embryo (SHE) cells to the protein synthesis inhibitor cycloheximide (including such genes as {beta}-actin, c-fos, H4-histone, c-myc, c-jun, Rb, and p53). Results revealed that when ionizing radiations (either fission-spectrum neutrons or {gamma}-rays) were administered 15 min following the cycloheximide treatment of SHE cells, the radiation exposure reduced cycloheximide-mediated gene induction for most of the induced genes studied (c-fos, H4-histone, c-jun) In addition, dose-rate differences were found when radiation exposure most significantly inhibited the cycloheximide response. Our results suggest (1) that ionizing radiation does not act as a general protein synthesis inhibitor and (2) that the presence of a labile (metastable) protein is required for the maintenance of transcription and mRNA accumulation following radiation exposure, especially for radiation administered at high dose-rates.

  4. Effects of Ionization Feedback in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Banerjee, R.; Klessen, R. S.; Mac Low, M.

    2009-01-01

    We present 3D high-resolution radiation-hydrodynamical simulations of massive star formation. We model the collapse of a massive molecular cloud core forming a high-mass star in its center. We use a version of the FLASH code that has been extended by including sink particles which are a source of both ionizing and non-ionizing radiation. The sink particles evolve according to a prestellar model which determines the stellar and accretion luminosities. Radiation transfer is done using the hybrid characteristics raytracing approach on the adaptive mesh developed by Rijkhorst et al. (2006). The radiative transfer module has been augmented to allow simulations with arbitrarily high resolution. Our highest resolution models resolve the disk scale height by at least 16 zones. Opacities for non-ionizing radiation have been added to account for the accretion heating, which is expected to be strong at the initial stage of star formation and believed to prevent fragmentation. Studies of collapsing massive cores show the formation of a gravitationally highly unstable disk. The accretion heating is not strong enough to suppress this instability. The ionizing radiation builds up an H II region around the protostar, which destroys the accretion disk close to it. We describe preliminary results, with a focus on how long the H II region remains confined by the accretion flow, and whether it can ever cut off accretion entirely. Thomas Peters acknowledges support from a Kade Fellowship for his visit to the American Museum of Natural History. He is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg and the Heidelberg Graduate School of Fundamental Physics. We also thank the DFG for support via the Emmy Noether Grant BA 3607/1 and the individual grant KL1358/5.

  5. Ionization of cluster atoms in a strong laser field

    SciTech Connect

    Smirnov, M.B.; Krainov, V.P.

    2004-04-01

    Inner and outer multiple ionization of clusters by a superintense ultrashort laser pulse is studied. The barrier-suppression mechanism governs inner field ionization in this case, while impact ionization can be neglected. Outer ionization produces a static Coulomb field inside the ionized cluster. This field increases the charge multiplicity of the atomic ions produced inside the cluster approximately by a factor of 1.5. Various models are suggested for the charge distribution inside the cluster.

  6. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  7. Eukaryotic transposable elements as mutagenic agents

    SciTech Connect

    Lambert, M.E. . Banbury Center); McDonald, J.F. ); Weinstein, I.B. )

    1988-01-01

    This book contains the proceedings on eukaryotic transposable elements as mutagenic agents. Topics covered include: overview of prokaryotic transposable elements, mutational effects of transposable element insertions, inducers/regulators of transposable element expression and transposition, genomic stress and environmental effects, and inducers/regulators of retroviral element expression.

  8. Multiple medical problems following agent orange exposure.

    PubMed

    Ambrus, J L; Islam, A; Akhter, S; Dembinski, W; Kulaylat, M; Ambrus, C M

    2004-01-01

    A patient exposed to agent orange and a gunshot wound during the Vietnam War has developed multiple medical problems including nocardiosis, onychomycosis (Trichophyton rubrum), multiple thromboembolic episodes, hemochromatosis, diabetes mellitus type 2, diabetic neuropathy, activated protein C resistance (without Leyden V 1st mutation), degree A-V block, lung cancer (metastatic adenocarcinoma), carpal tunnel syndrome and arthritis. PMID:18084883

  9. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    SciTech Connect

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  10. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  11. Chemical warfare agents.

    PubMed

    Ganesan, K; Raza, S K; Vijayaraghavan, R

    2010-07-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  12. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  13. Chemical warfare agents

    PubMed Central

    Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.

    2010-01-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  14. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  15. Fatal Nocardia farcinica Bacteremia Diagnosed by Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry in a Patient with Myelodysplastic Syndrome Treated with Corticosteroids

    PubMed Central

    Moretti, Amedeo; Guercini, Francesco; Cardaccia, Angela; Furbetta, Leone; Agnelli, Giancarlo; Bistoni, Francesco; Mencacci, Antonella

    2013-01-01

    Nocardia farcinica is a Gram-positive weakly acid-fast filamentous saprophytic bacterium, an uncommon cause of human infections, acquired usually through the respiratory tract, often life-threatening, and associated with different clinical presentations. Predisposing conditions for N. farcinica infections include hematologic malignancies, treatment with corticosteroids, and any other condition of immunosuppression. Clinical and microbiological diagnoses of N. farcinica infections are troublesome, and the isolation and identification of the etiologic agent are difficult and time-consuming processes. We describe a case of fatal disseminated infection in a patient with myelodysplastic syndrome, treated with corticosteroids, in which N. farcinica has been isolated from blood culture and identified by Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry. The patient died after 18 days of hospitalization in spite of triple antimicrobial therapy. Nocardia farcinica infection should be suspected in patients with history of malignancy, under corticosteroid therapy, suffering from subacute pulmonary infection,and who do not respond to conventional antimicrobial therapy. Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry can be a valuable tool for rapid diagnosis of nocardiosis. PMID:23690786

  16. Drug therapy reviews: antirheumatic agents.

    PubMed

    Evens, R P

    1979-05-01

    The pathophysiology, symptoms and drug treatment of rheumatic disease are reviewed. Antirheumatic drugs reviewed are salicylates (including aspirin, sodium salicylate, choline salicylate, choline magnesium salicylate, salsalate), phenylpropionic acid derivatives (fenoprofen, ibuprofen, naproxen), indole derivatives (sulindac, tolmetin and indomethacin), pyrazolone derivatives (phenylbutazone, oxyphenbutazone), gold compounds, penicillamine, antimalarials mefenamic acid, corticosteroids and immunosuppressives. Simple analgesic therapy (acetaminophen, aspirin, propoxyphene) is used in the early stage of the disease. As the disease progresses, aspirin remains the drug of choice for antiinflammatory activity but the phenylpropionic acid or indole derivatives may be preferred in patients unable to tolerate salicylates. If such nonsteroidal antiinflammatory agents are not effective, parenteral therapy with gold compounds or oral penicillamine usually is indicated. Indomethacin or phenylbutazone, then antimalarials, are resorted to next. Corticosteroids or immunosuppressives are reserved for patients who are unsuccessfully controlled or who have major side effects with the other drugs. Mefenamic acid occupies a very secondary place in rheumatoid arthritis treatment. PMID:377958

  17. [Anticonvulsant agents in neuralgic pain.].

    PubMed

    Jurna, I; Zenz, M

    1992-06-01

    The anticonvulsants, carbamazepine, clonazepam, phenytoin, and valproic acid are capable of depressing attacks of shooting pain in neuralgia. Shooting pain is perceived in trigeminal, intercostal, and other neuralgias, as a consequence of infectious diseases such as herpes zoster, and in the course of polyneuropathies of various causes. It is due to injury of nociceptive afferents, which generate bursts of activity in response to appropriate environmental changes. The anticonvulsant agents have no analgesic property per se, so that background pain remains unchanged. The depression of shooting pain results from the anticonvulsant action of the compounds. Both carbamazepine and phenytoin block synaptic transmission of neuronal hyperactivity by a direct depressant action that includes reduction of sodium conductance and by activation of inhibitory control. Clonazepam and valproic acid act by enhancing GABA-mediated inhibition of synaptic transmission. Carbamazepine is by far the most widely used compound; phenytoin, clonazepam, and valproic acid are not so popular because of their side effects. PMID:18415623

  18. Biotherapeutic agents and vaginal health.

    PubMed

    Al-Ghazzewi, F H; Tester, R F

    2016-07-01

    Treatment of vaginal infection requires different drugs although the recurrence rate post treatment remains high due to adverse effects on the beneficial microbiota. Thus, there are clear clinical advantages for the use of biotherapeutic agents (prebiotics and/or probiotics) for treating these infections. Pre- and probiotic beneficial effects can be delivered topically or systemically. In general, both approaches have the potential to optimize, maintain and restore the ecology of the vaginal ecosystem. Specific carbohydrates provide a therapeutic approach for controlling infections by stimulating the growth of the indigenous lactobacilli but inhibiting the growth and adhesion of pathogens to the vaginal epithelial cells. Overall, little evidence exists to promote the prevention or treatment of vaginal disease with prebiotic carbohydrates in formulations such as pessaries, creams or douches. However, recent reports have promoted prebiotic applications in ecosystems other than the gut and include the mouth, skin and vagina. This review focuses on the utilization of pre- and probiotics for vaginal health. PMID:26757173

  19. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization.

    PubMed

    Teeny, Nicolas; Yakaboylu, Enderalp; Bauke, Heiko; Keitel, Christoph H

    2016-02-12

    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field. PMID:26918986

  20. Distinction between sequential and direct ionization in two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Selstø, Sølve; Raynaud, Xavier; Simonsen, Aleksander Skjerlie; Førre, Morten

    2014-11-01

    This paper aims to shed some light on the role of the direct, or nonsequential, ionization channel in the regime in which the sequential channel is open in two-photon double ionization (TPDI) of helium. In this regime the sequential channel dominates any direct contribution unless the laser pulse is of very short duration, in which case their distinction is hard to draw. Based on both a simple model and full solutions of the time-dependent Schrödinger equation, we aim to provide evidence of direct double ionization by identifying a term proportional to the pulse duration in the double ionization yield. Indeed, such a term is identified in the energy-differential yield. When it comes to the total double ionization probability, however, it turns out that the net first-order contribution is negative. The nature of the negative first-order contribution is discussed, and we argue that it is of correlated origin.