Science.gov

Sample records for agents including viruses

  1. Other Viruses and Viruslike Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diseases reported under 'Virus and Virus-like Agents' in the first volume of this compendium, with the exception of Cherry rasp leaf virus and Rubus chinese seed-borne virus, should be considered oddities since there are no known type isolates available for these reported viruses. Without a po...

  2. The taxonomy of viruses should include viruses.

    PubMed

    Calisher, Charles H

    2016-05-01

    Having lost sight of its goal, the International Committee on Taxonomy of Viruses has redoubled its efforts. That goal is to arrive at a consensus regarding virus classification, i.e., proper placement of viruses in a hierarchical taxonomic scheme; not an easy task given the wide variety of recognized viruses. Rather than suggesting a continuation of the bureaucratic machinations of the past, this opinion piece is a call for insertion of common sense in sorting out the avalanche of information already, and soon-to-be, accrued data. In this way information about viruses ideally would be taxonomically correct as well as useful to working virologists and journal editors, rather than being lost, minimized, or ignored.

  3. [Anti-influenza virus agent].

    PubMed

    Nakamura, Shigeki; Kohno, Shigeru

    2012-04-01

    The necessity of newly anti-influenza agents is increasing rapidly after the prevalence of pandemic influenza A (H1N1) 2009. In addition to the existing anti-influenza drugs, novel neuraminidase inhibitors such as peramivir (a first intravenous anti-influenza agent) and laninamivir (long acting inhaled anti-influenza agent) can be available. Moreover favipiravir, which shows a novel anti-influenza mechanism acting as RNA polymerase inhibitor, has been developing. These drugs are expected to improve the prognosis of severe cases caused by not only seasonal influenza but pandemic influenza A (H1N1) 2009 virus and H5N1 avian influenza, and also treat oseltamivir-resistant influenza effectively.

  4. Ectromelia virus: the causative agent of mousepox.

    PubMed

    Esteban, David J; Buller, R Mark L

    2005-10-01

    Ectromelia virus (ECTV) is an orthopoxvirus whose natural host is the mouse; it is related closely to Variola virus, the causative agent of smallpox, and Monkeypox virus, the cause of an emerging zoonosis. The recent sequencing of its genome, along with an effective animal model, makes ECTV an attractive model for the study of poxvirus pathogenesis, antiviral and vaccine testing and viral immune and inflammatory responses. This review discusses the pathogenesis of mousepox, modulation of the immune response by the virus and the cytokine and cellular components of the skin and systemic immune system that are critical to recovery from infection.

  5. [Viruses as agents inducing cutaneous neoplasms].

    PubMed

    Bravo Puccio, Francisco

    2013-03-01

    The oncogenic role of viruses in cutaneous neoplasms has been known by humankind for more than a century, when the origin of the common wart, or verruca vulgaris, was attributed to the human papilloma virus (HPV). Currently, virus-induced cutaneous neoplasms may be grouped into solid tumors and lymphoproliferative disorders. HPV, from which various serotypes are now known, each being linked to a specific neoplasm, the human herpes virus type 8 producing Kaposi sarcoma, and the Merkel cell polyomavirus, highlight among the first group. Regarding the lymphoproliferative disorders, we should mention the human T-lymphotropic virus type I (HTLV-1), which is responsible for the T-cell lymphomas, in which the cutaneous manifestations are non-specific and have a wide spectrum, thus posing a challenge for differential diagnosis. The Epstein Barr virus, linked to nasal lymphomas of NK/T-cells and Hydroa-like cutaneous lymphomas, is also part of this group. In an era in which the genetic and molecular aspects of cancer research prevail, we may not leave behind the concept of neoplasms as a result an infection with a viral agent, which opens a wide array of new possibilities for cancer treatment based on antiviral drugs.

  6. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  7. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  8. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  9. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  10. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  11. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  12. Zika Virus: An Emergent Neuropathological Agent

    PubMed Central

    White, Martyn K.; Wollebo, Hassen S.; Beckham, J. David; Tyler, Kenneth L.; Khalili, Kamel

    2016-01-01

    The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain–Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda’s Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013–2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain–Barré syndrome make Zika an urgent public health concern. PMID:27464346

  13. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  14. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  15. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  16. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  17. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Funding Leverage by Use of Sba-Guaranteed Trust Certificates (âtcsâ) § 107.1620... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  18. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs (Leverage) Funding Leverage by Use of Guaranteed Trust Certificates (âtcsâ) § 4290.1620 Functions of agents... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial...

  19. Recombinant mumps virus as a cancer therapeutic agent

    PubMed Central

    Ammayappan, Arun; Russell, Stephen J; Federspiel, Mark J

    2016-01-01

    Mumps virus belongs to the family of Paramyxoviridae and has the potential to be an oncolytic agent. Mumps virus Urabe strain had been tested in the clinical setting as a treatment for human cancer four decades ago in Japan. These clinical studies demonstrated that mumps virus could be a promising cancer therapeutic agent that showed significant antitumor activity against various types of cancers. Since oncolytic virotherapy was not in the limelight until the beginning of the 21st century, the interest to pursue mumps virus for cancer treatment slowly faded away. Recent success stories of oncolytic clinical trials prompted us to resurrect the mumps virus and to explore its potential for cancer treatment. We have obtained the Urabe strain of mumps virus from Osaka University, Japan, which was used in the earlier human clinical trials. In this report we describe the development of a reverse genetics system from a major isolate of this Urabe strain mumps virus stock, and the construction and characterization of several recombinant mumps viruses with additional transgenes. We present initial data demonstrating these recombinant mumps viruses have oncolytic activity against tumor cell lines in vitro and some efficacy in preliminary pilot animal tumor models. PMID:27556105

  20. Rabies virus infection of IMR-32 human neuroblastoma cells and effect of neurochemical and other agents.

    PubMed

    Lentz, T L; Fu, Y; Lewis, P

    1997-06-01

    IMR-32 human neuroblastoma cells are a continuous nerve cell line expressing neuronal nicotinic acetylcholine receptors. These cells were found to be susceptible to infection by rabies virus (CVS strain). After infection, viral antigen accumulated in the cell body in puncta and larger masses and spread out into the processes until at 3-4 days the entire cell was filled with antigen and lysed. A variety of chemical agents including cholinergic agonists and antagonists were tested for ability to inhibit infection of IMR-32 cells in a fluorescent focus assay. Agents found to inhibit infection were antibodies against the viral glycoprotein, gangliosides, a synthetic peptide of the neurotoxin-binding site of Torpedo acetylcholine receptor alpha1 subunit, alpha-bungarotoxin, and lysosomotropic agents. All other agents tested including other cholinergic ligands and synthetic peptides were not effective. Except for lysosomotropic agents, the agents which inhibited infection also inhibited attachment of virus to the cell surface. These results indicate that IMR-32 cells are a useful model in studying the interaction of a neurotropic virus with human neurons. The ability of alpha-bungarotoxin to inhibit infection suggests that neuronal alpha-bungarotoxin-binding receptors might serve as central nervous system receptors for rabies virus.

  1. Evolution and Phylogeny of Large DNA Viruses, Mimiviridae and Phycodnaviridae Including Newly Characterized Heterosigma akashiwo Virus

    PubMed Central

    Maruyama, Fumito; Ueki, Shoko

    2016-01-01

    Nucleocytoplasmic DNA viruses are a large group of viruses that harbor double-stranded DNA genomes with sizes of several 100 kbp, challenging the traditional concept of viruses as small, simple ‘organisms at the edge of life.’ The most intriguing questions about them may be their origin and evolution, which have yielded the variety we see today. Specifically, the phyletic relationship between two giant dsDNA virus families that are presumed to be close, Mimiviridae, which infect Acanthamoeba, and Phycodnaviridae, which infect algae, is still obscure and needs to be clarified by in-depth analysis. Here, we studied Mimiviridae–Phycodnaviridae phylogeny including the newly identified Heterosigma akashiwo virus strain HaV53. Gene-to-gene comparison of HaV53 with other giant dsDNA viruses showed that only a small proportion of HaV53 genes show similarities with the others, revealing its uniqueness among Phycodnaviridae. Phylogenetic/genomic analysis of Phycodnaviridae including HaV53 revealed that the family can be classified into four distinctive subfamilies, namely, Megaviridae (Mimivirus-like), Chlorovirus-type, and Coccolitho/Phaeovirus-type groups, and HaV53 independent of the other three groups. Several orthologs found in specific subfamilies while absent from the others were identified, providing potential family marker genes. Finally, reconstruction of the evolutionary history of Phycodnaviridae and Mimiviridae revealed that these viruses are descended from a common ancestor with a small set of genes and reached their current diversity by differentially acquiring gene sets during the course of evolution. Our study illustrates the phylogeny and evolution of Mimiviridae–Phycodnaviridae and proposes classifications that better represent phyletic relationships among the family members. PMID:27965659

  2. Evolution and Phylogeny of Large DNA Viruses, Mimiviridae and Phycodnaviridae Including Newly Characterized Heterosigma akashiwo Virus.

    PubMed

    Maruyama, Fumito; Ueki, Shoko

    2016-01-01

    Nucleocytoplasmic DNA viruses are a large group of viruses that harbor double-stranded DNA genomes with sizes of several 100 kbp, challenging the traditional concept of viruses as small, simple 'organisms at the edge of life.' The most intriguing questions about them may be their origin and evolution, which have yielded the variety we see today. Specifically, the phyletic relationship between two giant dsDNA virus families that are presumed to be close, Mimiviridae, which infect Acanthamoeba, and Phycodnaviridae, which infect algae, is still obscure and needs to be clarified by in-depth analysis. Here, we studied Mimiviridae-Phycodnaviridae phylogeny including the newly identified Heterosigma akashiwo virus strain HaV53. Gene-to-gene comparison of HaV53 with other giant dsDNA viruses showed that only a small proportion of HaV53 genes show similarities with the others, revealing its uniqueness among Phycodnaviridae. Phylogenetic/genomic analysis of Phycodnaviridae including HaV53 revealed that the family can be classified into four distinctive subfamilies, namely, Megaviridae (Mimivirus-like), Chlorovirus-type, and Coccolitho/Phaeovirus-type groups, and HaV53 independent of the other three groups. Several orthologs found in specific subfamilies while absent from the others were identified, providing potential family marker genes. Finally, reconstruction of the evolutionary history of Phycodnaviridae and Mimiviridae revealed that these viruses are descended from a common ancestor with a small set of genes and reached their current diversity by differentially acquiring gene sets during the course of evolution. Our study illustrates the phylogeny and evolution of Mimiviridae-Phycodnaviridae and proposes classifications that better represent phyletic relationships among the family members.

  3. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer

    PubMed Central

    Yaghchi, Chadwan Al; Zhang, Zhongxian; Alusi, Ghassan; Lemoine, Nicholas R; Wang, Yaohe

    2015-01-01

    The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus. PMID:26595180

  4. TT virus (TTV)--etiologic agent of acute hepatitis?

    PubMed

    Tomasiewicz, Krzysztof; Modrzewska, Roma; Lyczak, Anna; Polz-Dacewicz, Małgorzata; Rajtar, Barbara

    2004-01-01

    TT virus (TTV) was first isolated in 1997 from the patient with acute posttransfusion hepatitis. This fact led to the conclusion the virus was hepatotropic and could be considered as one of causative agents of acute hepatitis. However, later it was found in other human tissues and serological studies have revealed it is widespread. Multiple tropisms of TTV and the fact the virus is found in high rate of general population, are considered arguments for lack of medical significance of TTV in human pathology. Here we present a report of two cases of acute viral hepatitis in patients hospitalized at the Department of Infectious Diseases, Medical University of Lublin, in whom TTV-DNA was found in serum and serological and virological markers of common primary and secondary hepatotropic viruses were negative. The cases of acute hepatitis we present here should be treated as a preliminary report and the comment in the discussion about the real role of TTV in human pathology.

  5. Experimental vaccinations for avian influenza virus including DIVA approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  6. Ongoing Clinical Trials of Human Immunodeficiency Virus Latency-Reversing and Immunomodulatory Agents

    PubMed Central

    Delagrèverie, Héloïse M.; Delaugerre, Constance; Lewin, Sharon R.; Deeks, Steven G.; Li, Jonathan Z.

    2016-01-01

    In chronic human immunodeficiency virus (HIV)-1 infection, long-lived latently infected cells are the major barrier to virus eradication and functional cure. Several therapeutic strategies to perturb, eliminate, and/or control this reservoir are now being pursued in the clinic. These strategies include latency reversal agents (LRAs) designed to reactivate HIV-1 ribonucleic acid transcription and virus production and a variety of immune-modifying drugs designed to reverse latency, block homeostatic proliferation, and replenish the viral reservoir, eliminate virus-producing cells, and/or control HIV replication after cessation of antiretroviral therapy. This review provides a summary of ongoing clinical trials of HIV LRAs and immunomodulatory molecules, and it highlights challenges in the comparison and interpretation of the expected trial results. PMID:27757411

  7. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  8. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  9. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  10. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  11. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  12. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  13. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  14. Mouse thymic necrosis virus: a novel murine lymphotropic agent.

    PubMed

    Morse, S S

    1987-12-01

    Mouse thymic necrosis virus (TA), one of two naturally occurring herpesviruses in laboratory mice, was first described in 1961. TA has received relatively little attention even though the virus has been isolated independently from various mouse colonies. This neglect is probably due, at least in part, to the lack of suitable cell culture systems. This review summarizes current knowledge concerning thymic necrosis virus, including new results from the author's laboratory. In vivo, TA causes massive thymic necrosis in newborn mice, with temporary ablation of thymocyte precursors for most T lymphocyte classes except T suppressor cells. All strains of laboratory mice appear susceptible. Severe immunosuppression has been demonstrated in acutely infected mice. Most infected animals survive and shed TA chronically from salivary glands and possibly other glandular tissues. In adult mice, primary infection results in persistent salivary gland infection without overt thymic lesions. Infection appears lifelong, with few clinical signs, but possible effects of chronic TA infection on immune function have been studied little. Recent evidence from the author's laboratory suggests that chronic infection may involve T lymphocytes. The name mouse T lymphotropic virus (abbreviation MTLV) is proposed.

  15. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  16. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  17. Genomic analysis of influenza A viruses, including avian flu (H5N1) strains.

    PubMed

    Ahn, Insung; Jeong, Byeong-Jin; Bae, Se-Eun; Jung, Jin; Son, Hyeon S

    2006-01-01

    This study was designed to conduct genomic analysis in two steps, such as the overall relative synonymous codon usage (RSCU) analysis of the five virus species in the orthomyxoviridae family, and more intensive pattern analysis of the four subtypes of influenza A virus (H1N1, H2N2, H3N2, and H5N1) which were isolated from human population. All the subtypes were categorized by their isolated regions, including Asia, Europe, and Africa, and most of the synonymous codon usage patterns were analyzed by correspondence analysis (CA). As a result, influenza A virus showed the lowest synonymous codon usage bias among the virus species of the orthomyxoviridae family, and influenza B and influenza C virus were followed, while suggesting that influenza A virus might have an advantage in transmitting across the species barrier due to their low codon usage bias. The ENC values of the host-specific HA and NA genes represented their different HA and NA types very well, and this reveals that each influenza A virus subtype uses different codon usage patterns as well as the amino acid compositions. In NP, PA and PB2 genes, most of the virus subtypes showed similar RSCU patterns except for H5N1 and H3N2 (A/HK/1774/1999) subtypes which were suspected to be transmitted across the species barrier, from avian and porcine species to human beings, respectively. This distinguishable synonymous codon usage patterns in non-human origin viruses might be useful in determining the origin of influenza A viruses in genomic levels as well as the serological tests. In this study, all the process, including extracting sequences from GenBank flat file and calculating codon usage values, was conducted by Java codes, and these bioinformatics-related methods may be useful in predicting the evolutionary patterns of pandemic viruses.

  18. Incidence, risk factors, and implemented prophylaxis of varicella zoster virus infection, including complicated varicella zoster virus and herpes simplex virus infections, in lenalidomide-treated multiple myeloma patients.

    PubMed

    König, C; Kleber, M; Reinhardt, H; Knop, S; Wäsch, R; Engelhardt, M

    2014-03-01

    In the era of high-dose chemotherapy and novel antimyeloma agents, the survival of multiple myeloma (MM) patients has substantially improved. Adverse effects, including infections, may however arise in the era of combination antimyeloma therapies. In general, MM patients have shown a risk of varicella zoster virus (VZV) infection of 1-4 %, increasing with bortezomib treatment or transplants, but whether immunomodulatory drugs also bear a risk of VZV/complicated herpes simplex virus (HSV) (e.g., VZV-encephalitis [VZV-E], disseminated VZV-infection [d-VZV-i], or conus-cauda syndrome [CCS]) has not been elucidated. We here assessed VZV, VZV-E, d-VZV-i, and CCS in 93 lenalidomide-treated MM patients, consecutively seen and treated in our department. Patients' data were analyzed via electronic medical record retrieval within our research data warehouse as described previously. Of the 93 MM patients receiving lenalidomide, 10 showed VZV or other complicated VZV/HSV infections. These VZV patients showed defined risk factors as meticulously assessed, including suppressed lymphocyte subsets, substantial cell-mediated immune defects, and compromised humoral immune response. Due to our findings-and in line with an aciclovir prophylaxis in bortezomib and stem cell transplant protocols-we introduced a routine aciclovir prophylaxis in our lenalidomide protocols in May 2012 to minimize adverse events and to avoid discontinuation of lenalidomide treatment. Since then, we have observed no case of VZV/complicated HSV infection. Based on our data, we encourage other centers to also focus on these observations, assess viral infections, and-in those centers facilitating a research data warehouse-advocate an analogue data review as an appropriate multicenter approach.

  19. Progress of small molecular inhibitors in the development of anti-influenza virus agents

    PubMed Central

    Wu, Xiaoai; Wu, Xiuli; Sun, Qizheng; Zhang, Chunhui; Yang, Shengyong; Li, Lin; Jia, Zhiyun

    2017-01-01

    The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs. PMID:28382157

  20. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry

    PubMed Central

    Wu, Wenjiao; Li, Richan; Li, Xianglian; He, Jian; Jiang, Shibo; Liu, Shuwen; Yang, Jie

    2015-01-01

    Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections. PMID:26712783

  1. Viruses as new agents of organomineralization in the geological record.

    PubMed

    Pacton, Muriel; Wacey, David; Corinaldesi, Cinzia; Tangherlini, Michael; Kilburn, Matt R; Gorin, Georges E; Danovaro, Roberto; Vasconcelos, Crisogono

    2014-07-03

    Viruses are the most abundant biological entities throughout marine and terrestrial ecosystems, but little is known about virus-mineral interactions or the potential for virus preservation in the geological record. Here we use contextual metagenomic data and microscopic analyses to show that viruses occur in high diversity within a modern lacustrine microbial mat, and vastly outnumber prokaryotes and other components of the microbial mat. Experimental data reveal that mineral precipitation takes place directly on free viruses and, as a result of viral infections, on cell debris resulting from cell lysis. Viruses are initially permineralized by amorphous magnesium silicates, which then alter to magnesium carbonate nanospheres of ~80-200 nm in diameter during diagenesis. Our findings open up the possibility to investigate the evolution and geological history of viruses and their role in organomineralization, as well as providing an alternative explanation for enigmatic carbonate nanospheres previously observed in the geological record.

  2. 9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed...

  3. Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus

    PubMed Central

    Liu, Jie; Ochieng, Caroline; Wiersma, Steve; Ströher, Ute; Towner, Jonathan S.; Whitmer, Shannon; Nichol, Stuart T.; Moore, Christopher C.; Kersh, Gilbert J.; Kato, Cecilia; Sexton, Christopher; Petersen, Jeannine; Massung, Robert; Hercik, Christine; Crump, John A.; Kibiki, Gibson; Maro, Athanasia; Mujaga, Buliga; Gratz, Jean; Jacob, Shevin T.; Banura, Patrick; Scheld, W. Michael; Juma, Bonventure; Onyango, Clayton O.; Montgomery, Joel M.

    2015-01-01

    Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus. PMID:26491176

  4. Oncolytic Measles Virus Strains as Novel Anticancer Agents

    PubMed Central

    Msaouel, Pavlos; Opyrchal, Mateusz; Domingo Musibay, Evidio; Galanis, Evanthia

    2013-01-01

    Introduction Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. Areas covered The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. Expert Opinion Clinical viral kinetic data derived from non-invasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed. PMID:23289598

  5. Modeling within-host dynamics of influenza virus infection including immune responses.

    PubMed

    Pawelek, Kasia A; Huynh, Giao T; Quinlivan, Michelle; Cullinane, Ann; Rong, Libin; Perelson, Alan S

    2012-01-01

    Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.

  6. New treatment strategy including biological agents in patients with systemic lupus erythematosus.

    PubMed

    Leszczyński, Piotr; Pawlak-Buś, Katarzyna

    2013-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous disease, in which B lymphocyte activation and chronic inflammation play the key role. Both the disease itself and its treatment cause damage to multiple organs and systems. So far, despite intensive treatment, disease remission has been achieved in few patients, and the ratio of organ complications has increased significantly. This is caused by a long‑term glucocorticoid therapy with a relatively rare use of immunosuppressive drugs. With a new treatment strategy and modern immunotherapy, it is possible to reduce the mortality rate, limit multiple‑organ damage, thereby significantly improving the quality of life and prognosis of patients with SLE. The "treat‑to‑target" strategy enables targeted treatment resulting in a long‑term symptom remission. It is based on an intensive immunosuppressive treatment with simultaneous reduction of glucocorticoid doses, and limiting their use solely to exacerbations in disease activity. The current idea for treatment is also the conscious use of the beneficial potential of background SLE treatment including antimalarial agents and standard immunosuppressive therapy. With the first biological agent approved for SLE treatment, the new age of therapy has dawned. Biologics offer new prospects and possibilities to induce clinical and immunological remission of SLE.

  7. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin.

    PubMed

    Ray, Balmiki; Lahiri, Debomoy K

    2009-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the elderly. Deposition of amyloid beta plaque and associated neuroinflammation are the major hallmarks of AD. Whereas reactive oxygen species (ROS) and activated microglial cells contribute to neuronal loss, nuclear factor kappaB and apolipoprotein E participate in inflammatory process of AD. Current FDA approved drugs provide only symptomatic relief in AD. For broad spectrum of activity, some natural products are also being tested. Turmeric is used as an anti-inflammatory medicine in various regions of Asia. Curcumin, which is a yellow colored polyphenol compound present in turmeric, showed anti-inflammatory properties. Herein, we discuss the neurobiological and neuroinflammatory pathways of AD, evaluate different molecular targets and potential therapeutic agents, including curcumin, for the treatment of AD.

  8. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  9. Advancing the agent methodology to include the higher order of neutron anisotropy with accelerated solutions

    NASA Astrophysics Data System (ADS)

    Satvat, Nader

    With the development of new core designs for generation IV reactors with their complexity and newer fuel designs, the need for consideration of neutron anisotropic scattering is becoming important for enchasing the economy and reliability of these designs. The theory and accurate modeling of neutron anisotropy is one of the most important problems of the transport solution to neutron Boltzmann equation. A number of methods based on careful theoretical developments, were established to numerically determine the effect of anisotropy; some of these methods are: the spherical harmonics method, the so-called function method (FN), the discrete ordinate method, and the Monte Carlo method. The AGENT methodology, based on the method of characteristics, currently the most accurate neutron transport method, represents the state-of-the-art advanced neutronics simulation tool available for 2D, 3D, and full core modeling. The higher order of anisotropic scattering (with no limitation of the number of expansion) is introduced into the AGENT code. An extensive analysis is performed to verify and validate this new model. It is shown that anisotropic scattering is important to be considered for complex geometries due to high angular dependence of neutron flux. The first principle in physics were used to explain the effects of anisotropic scattering (at the level on particle interactions), importance in including the higher moments in flux development for the core designs of high heterogonous structure promoting biased scattering (at the level of heterogeneous reactor assemblies in 2D and 3D). This inclusion of higher order of anisotropic scattering as expected increased the complexity of the mathematical model which in turn increased the computational time. An analysis of the computational time dependence on anisotropic scattering and the method of characteristics resolution parameters are analyzed with accurate predictions of scaling to larger geometries. Finally, an accelerated

  10. Aminosugar derivatives as potential anti-human immunodeficiency virus agents.

    PubMed Central

    Karpas, A; Fleet, G W; Dwek, R A; Petursson, S; Namgoong, S K; Ramsden, N G; Jacob, G S; Rademacher, T W

    1988-01-01

    Recent data suggest that aminosugar derivatives which inhibit glycoprotein processing have potential anti-human immunodeficiency virus (HIV) activity. These inhibitory effects may be due to disruption of cell fusion and subsequent cell-cell transmission of the acquired immunodeficiency syndrome (AIDS) virus. Free virus particles able to bind CD4-positive cells are still produced in the presence of these compounds with only partial reduction of infectivity. We now report a method to score in parallel both the degree of antiviral activity and the effect on cell division of aminosugar derivatives. We find that (i) the compounds 1,4-dideoxy-1,4-imino-L-arabinitol and N-(5-carboxymethyl-1-pentyl)-1,5-imino-L-fucitol partially inhibit the cytopathic effect (giant cell formation, etc.) of HIV and yield of infectious virus; (ii) the compounds N-methyldeoxynojirimycin and N-ethyldeoxynojirimycin reduce the yield of infectious HIV by an order of four and three logarithms, respectively; and (iii) one compound, N-butyldeoxynojirimycin, of the 47 compounds previously screened reduces infectious viral particles by a logarithmic order greater than five at noncytotoxic concentrations. In addition, long-term growth of infected cells in the presence of N-butyldeoxynojirimycin gradually decreases the proportion of infected cells, leading to eventual elimination of HIV from culture. This result suggests that replication is associated with cytolysis. The ability to break the cycle of replication and reinfection has important implications in the chemotherapy of AIDS. PMID:3264071

  11. Virus-based nanomaterials as PET and MR contrast agents: from technology development to translational medicine

    PubMed Central

    Shukla, Sourabh; Steinmetz, Nicole F.

    2015-01-01

    Viruses have recently emerged as ideal protein scaffolds for a new class of contrast agents that can be used in medical imaging procedures such as positron emission tomography (PET) and magnetic resonance imaging (MRI). Whereas synthetic nanoparticles are difficult to produce as homogeneous formulations due to the inherently stochastic nature of the synthesis process, virus-based nanoparticles are genetically encoded and are therefore produced as homogeneous and monodisperse preparations with a high degree of quality control. Because the virus capsids have a defined chemical structure that has evolved to carry cargoes of nucleic acids, they can be modified to carry precisely defined cargoes of contrast agents and can be decorated with spatially defined contrast reagents on the internal or external surfaces. Viral nanoparticles can also be genetically programed or conjugated with targeting ligands to deliver contrast agents to specific cells, and the natural biocompatibility of viruses means they are cleared rapidly from the body. Nanoparticles based on bacteriophages and plant viruses are safe for use in humans and can be produced inexpensively in large quantities as self-assembling recombinant proteins. Based on these considerations, a new generation of contrast agents has been developed using bacteriophages and plant viruses as scaffolds to carry positron-emitting radioisotopes such as [18F] fluorodeoxyglucose for PET imaging and iron oxide or Gd3+ for MRI. Although challenges such as immunogenicity, loading efficiency and regulatory compliance remain to be address, virus-based nanoparticles represent a promising new enabling technology for a new generation of highly biocompatible and biodegradable targeted imaging reagents. PMID:25683790

  12. Comparison of Herpes simplex virus plaque development after viral treatment with anti-DNA or antilipid agents

    SciTech Connect

    Coohill, T.P.; Babich, M.; Taylor, W.D.; Snipes, W.

    1980-06-01

    The plaque development of Herpes simplex virus type 1 (HSV) is slower for viruses treated with two anti-DNA agents: ultraviolet radiation (uv) or n-acetoxy-2-acetyl-aminofluorene. For HSV treated with three antimembrane agents - butylated hydroxytoluene, acridine plus near uv radiation, or ether - the plaque development time is the same as for untreated viruses. These differences hold even for viruses that survived treatment that lowered viability below the 1% level. Gamma ray inactivation of HSV produces no change in plaque development even though this agent is believed to preferentially affect viral DNA.

  13. Age-related changes in susceptibility of rat brain slice cultures including hippocampus to encephalomyocarditis virus

    PubMed Central

    Su, Weiping; Ueno-Yamanouchi, Aito; Uetsuka, Koji; Nakayama, Hiroyuki; Doi, Kunio

    1999-01-01

    Replication of the D variant of encephalomyocarditis virus (EMC-D) and its cytopathic effects were studied in the brain slice cultures including hippocampus (hippocampal slice) obtained from postnatal 1-, 4-, 7-, 14-, 28-and 56-day-old Fischer 344 rats. At 0, 12, 24, 36 and 48 h after infection, virus titres of the slices and culture media were assayed. Viral replication was observed in cultures from 1-to 28-day-old rats, and the highest titre was recorded in the slice and culture medium from the youngest rat. The peak of virus titre decreased with age and no distinct viral replication was observed in the cultures from 56-day-old rats. Light microscopy revealed that degenerative and necrotic changes appeared in the infected hippocampal slices from 1- to 28-day-old rats, and the changes became less prominent with age. In situ hybridization and indirect immunofluorescence staining showed that positive signals of viral RNA and antigen were prominent in younger rats and decreased with age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC-D is less related to the maturation of the immune system but possibly to that of the neurone. PMID:10632784

  14. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    PubMed Central

    Delvecchio, Rodrigo; Higa, Luiza M.; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P.; Monteiro, Fábio L.; Loiola, Erick C.; Dias, André A.; Silva, Fábio J. M.; Aliota, Matthew T.; Caine, Elizabeth A.; Osorio, Jorge E.; Bellio, Maria; O’Connor, David H.; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-01-01

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres. PMID:27916837

  15. Analysis of Arbovirus Isolates from Australia Identifies Novel Bunyaviruses Including a Mapputta Group Virus from Western Australia That Links Gan Gan and Maprik Viruses

    PubMed Central

    Kapoor, Vishal; Diviney, Sinead M.; Certoma, Andrea; Wang, Jianning; Johansen, Cheryl A.; Chowdhary, Rashmi; Mackenzie, John S.; Lipkin, W. Ian

    2016-01-01

    The Mapputta group comprises antigenically related viruses indigenous to Australia and Papua New Guinea that are included in the family Bunyaviridae but not currently assigned to a specific genus. We determined and analyzed the genome sequences of five Australian viruses isolated from mosquitoes collected during routine arbovirus surveillance in Western Australia (K10441, SW27571, K13190, and K42904) and New South Wales (12005). Based on matching sequences of all three genome segments to prototype MRM3630 of Trubanaman virus (TRUV), NB6057 of Gan Gan virus (GGV), and MK7532 of Maprik virus (MPKV), isolates K13190 and SW27571 were identified as TRUV, 12005 as GGV, and K42904 as a Mapputta group virus from Western Australia linking GGV and MPKV. The results confirmed serum neutralization data that had linked SW27571 to TRUV. The fifth virus, K10441 from Willare, was most closely related to Batai orthobunyavirus, presumably representing an Australian variant of the virus. Phylogenetic analysis also confirmed the close relationship of our TRUV and GGV isolates to two other recently described Australian viruses, Murrumbidgee virus and Salt Ash virus, respectively. Our findings indicate that TRUV has a wide circulation throughout the Australian continent, demonstrating for the first time its presence in Western Australia. Similarly, the presence of a virus related to GGV, which had been linked to human disease and previously known only from the Australian southeast, was demonstrated in Western Australia. Finally, a Batai virus isolate was identified in Western Australia. The expanding availability of genomic sequence for novel Australian bunyavirus variants supports the identification of suitably conserved or diverse primer-binding target regions to establish group-wide as well as virus-specific nucleic acid tests in support of specific diagnostic and surveillance efforts throughout Australasia. PMID:27764175

  16. Cricket Paralysis Virus, a Potential Control Agent for the Olive Fruit Fly, Dacus oleae Gmel

    PubMed Central

    Manousis, Thanasis; Moore, Norman F.

    1987-01-01

    Representatives of several families of insect viruses were tested for growth and pathogenicity in the olive fruit fly, Dacus oleae Gmel. The viruses included nuclear polyhedrosis viruses, an iridovirus, two picornaviruses, and Trichoplusia ni small RNA virus (a member of the Nudaurelia β family), in addition to two naturally occurring viruses of the olive fruit fly. Two viruses, one of the two picornaviruses (cricket paralysis virus [CrPV] and the iridovirus (type 21 from Heliothis armigera), were found to replicate in adult flies. Flies which were fed on a solution containing CrPV for 1 day demonstrated a high mortality with 50% dying within 5 days and nearly 80% dying within 12 days of being fed. The virus was transmissible from infected to noninfected flies by fecal contamination. The CrPV which replicated in the infected flies was demonstrated to be the same as input virus by infection of Drosophila melanogaster cells and examination of the expressed viral proteins, immunoprecipitation of the virus purified from flies, and electrophoretic analysis of the structural proteins. Images PMID:16347255

  17. Differentiation of human influenza A viruses including the pandemic subtype H1N1/2009 by conventional multiplex PCR.

    PubMed

    Furuse, Yuki; Odagiri, Takashi; Okada, Takashi; Khandaker, Irona; Shimabukuro, Kozue; Sawayama, Rumi; Suzuki, Akira; Oshitani, Hitoshi

    2010-09-01

    April 2009 witnessed the emergence of a novel H1N1 influenza A virus infecting the human population. Currently, pandemic and seasonal influenza viruses are co-circulating in human populations. Understanding the course of the emerging pandemic virus is important. It is still unknown how the novel virus co-circulates with or outcompetes seasonal viruses. Sustainable and detailed influenza surveillance is required throughout the world including developing countries. In the present study, a multiplex PCR using four primers was developed, which was designed to differentiate the pandemic H1N1 virus from the seasonal H1N1 and H3N2 viruses, to obtain amplicons of different sizes. Multiplex PCR analysis could clearly differentiate the three subtypes of human influenza A virus. This assay was performed using 206 clinical samples collected in 2009 in Japan. Between February and April, four samples were subtyped as seasonal H1N1 and four as seasonal H3N2. All samples collected after July were subtyped as pandemic H1N1. Currently, pandemic viruses seem to have replaced seasonal viruses almost completely in Japan. This is a highly sensitive method and its cost is low. Influenza surveillance using this assay would provide significant information on the epidemiology of both pandemic and seasonal influenza.

  18. Novel agents and strategies to treat herpes simplex virus infections.

    PubMed

    Kleymann, Gerald

    2003-02-01

    The quiet pandemic of herpes simplex virus (HSV) infection has plagued humanity since ancient times, causing mucocutaneous infection, such as herpes labialis and herpes genitalis. Disease symptoms often interfere with everyday activities and occasionally HSV infections are the cause of life-threatening or sight-impairing disease, especially in neonates and the immunocompromised patient population. After primary or initial infection the virus persists for life in a latent form in neurons of the host, periodically reactivating and often resulting in significant psychosocial distress for the patient. Currently, no cure is available. In the mid-1950s the first antiviral, idoxuridine, was developed for topical treatment of herpes disease and, in 1978, vidarabine was licensed for systemic use to treat HSV encephalitis. Acyclovir (Zovirax), a potent, specific and tolerable nucleosidic inhibitor of the herpes DNA polymerase, was a milestone in the development of antiviral drugs in the late 1970s. In the mid-1990s, when acyclovir became a generic drug, valacyclovir (Valtrex) and famciclovir (Famvir), prodrugs of the gold standard and penciclovir (Denavir), Vectavir), a close analogue, were launched. Though numerous approaches and strategies were tested and considerable effort was expended in the search of the next generation of an antiherpetic therapy, it proved difficult to outperform acyclovir. Notable in this regard was the award of a Nobel Prize in 1988 for the elucidation of mechanistic principles which resulted in the development of new drugs such as acyclovir. Vaccines, interleukins, interferons, therapeutic proteins, antibodies, immunomodulators and small-molecule drugs with specific or nonspecific modes of action lacked either efficacy or the required safety profile to replace the nucleosidic drugs acyclovir, valacyclovir, penciclovir and famciclovir as the first choice of treatment. Recently though, new inhibitors of the HSV helicase-primase with potent in vitro

  19. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  20. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  1. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  2. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  3. Cross-species infection of hepatitis E virus in a zoo-like location, including birds.

    PubMed

    Zhang, W; Shen, Q; Mou, J; Yang, Z B; Yuan, C L; Cui, L; Zhu, J G; Hua, X G; Xu, C M; Hu, J

    2008-08-01

    Hepatitis E virus (HEV) is a zoonotic pathogen of which several species of animals are considered to be reservoirs. Thirty-eight faecal samples, obtained from 22 species of animals including birds in a wildlife first-aid centre in Eastern China, were tested for HEV RNA. Our survey revealed that in total 28.9% (95% confidence interval 14.5-43.4) of the faecal samples from various mammals and birds were HEV RNA positive. Sequence and phylogenetic analyses of the 11 isolates demonstrated that all sequences clustered in genotype 4 with 96-100% identity to each other. In addition, serum samples from seven animal handlers have shown that five (71.4%) were seropositive. The findings imply that cross-species infection of HEV had probably occurred in this zoo-like location, and moreover, birds can be infected naturally with mammalian HEV.

  4. Naturally derived anti-hepatitis B virus agents and their mechanism of action.

    PubMed

    Wu, Yi-Hang

    2016-01-07

    Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus (HBV) are available for HBV patients, HBV infection is still a severe public health problem in the world. All the approved therapeutic drugs (including interferon-alpha and nucleoside analogues) have their limitations. No drugs or therapeutic methods can cure hepatitis B so far. Therefore, it is urgently needed to discover and develop new anti-HBV drugs, especially non-nucleoside agents. Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms. In this review, the natural products against HBV are discussed according to their chemical classes such as terpenes, lignans, phenolic acids, polyphenols, lactones, alkaloids and flavonoids. Furthermore, novel mode of action or new targets of some representative anti-HBV natural products are also discussed. The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20 years, especially novel skeletons and mode of action. Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date, scarcely any of them are found in the list of conventional anti-HBV drugs worldwide. Additionly, in anti-HBV mechanism of action, only a few references reported new targets or novel mode of action of anti-HBV natural products.

  5. Naturally derived anti-hepatitis B virus agents and their mechanism of action

    PubMed Central

    Wu, Yi-Hang

    2016-01-01

    Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus (HBV) are available for HBV patients, HBV infection is still a severe public health problem in the world. All the approved therapeutic drugs (including interferon-alpha and nucleoside analogues) have their limitations. No drugs or therapeutic methods can cure hepatitis B so far. Therefore, it is urgently needed to discover and develop new anti-HBV drugs, especially non-nucleoside agents. Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms. In this review, the natural products against HBV are discussed according to their chemical classes such as terpenes, lignans, phenolic acids, polyphenols, lactones, alkaloids and flavonoids. Furthermore, novel mode of action or new targets of some representative anti-HBV natural products are also discussed. The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20 years, especially novel skeletons and mode of action. Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date, scarcely any of them are found in the list of conventional anti-HBV drugs worldwide. Additionly, in anti-HBV mechanism of action, only a few references reported new targets or novel mode of action of anti-HBV natural products. PMID:26755870

  6. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... topical application and is accumulated in the body, giving rise to numerous adverse effects. Mercury is a... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13...

  7. Differential virulence mechanisms of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics

    USGS Publications Warehouse

    Penaranda, M.M.D.; Purcell, M.K.; Kurath, G.

    2009-01-01

    Host specificity is a phenomenon exhibited by all viruses. For the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV), differential specificity of virus strains from the U and M genogroups has been established both in the field and in experimental challenges. In rainbow trout (Oncorhynchus mykiss), M IHNV strains are consistently more prevalent and more virulent than U IHNV. The basis of the differential ability of these two IHNV genogroups to cause disease in rainbow trout was investigated in live infection challenges with representative U and M IHNV strains. When IHNV was delivered by intraperitoneal injection, the mortality caused by U IHNV increased, indicating that the low virulence of U IHNV is partly due to inefficiency in entering the trout host. Analyses of in vivo replication showed that U IHNV consistently had lower prevalence and lower viral load than M IHNV during the course of infection. In analyses of the host immune response, M IHNV-infected fish consistently had higher and longer expression of innate immune-related genes such as Mx-1. This suggests that the higher virulence of M IHNV is not due to suppression of the immune response in rainbow trout. Taken together, the results support a kinetics hypothesis wherein faster replication enables M IHNV to rapidly achieve a threshold level of virus necessary to override the strong host innate immune response. ?? 2009 SGM.

  8. Differential virulence mechanisms of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics.

    PubMed

    Peñaranda, Ma Michelle D; Purcell, Maureen K; Kurath, Gael

    2009-09-01

    Host specificity is a phenomenon exhibited by all viruses. For the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV), differential specificity of virus strains from the U and M genogroups has been established both in the field and in experimental challenges. In rainbow trout (Oncorhynchus mykiss), M IHNV strains are consistently more prevalent and more virulent than U IHNV. The basis of the differential ability of these two IHNV genogroups to cause disease in rainbow trout was investigated in live infection challenges with representative U and M IHNV strains. When IHNV was delivered by intraperitoneal injection, the mortality caused by U IHNV increased, indicating that the low virulence of U IHNV is partly due to inefficiency in entering the trout host. Analyses of in vivo replication showed that U IHNV consistently had lower prevalence and lower viral load than M IHNV during the course of infection. In analyses of the host immune response, M IHNV-infected fish consistently had higher and longer expression of innate immune-related genes such as Mx-1. This suggests that the higher virulence of M IHNV is not due to suppression of the immune response in rainbow trout. Taken together, the results support a kinetics hypothesis wherein faster replication enables M IHNV to rapidly achieve a threshold level of virus necessary to override the strong host innate immune response.

  9. Antibody-Mediated Protection Against SHIV Challenge Includes Systemic Clearance of Distal Virus

    PubMed Central

    Liu, Jinyan; Ghneim, Khader; Sok, Devin; Bosche, William J.; Li, Yuan; Chipriano, Elizabeth; Berkemeier, Brian; Oswald, Kelli; Borducchi, Erica; Cabral, Crystal; Peter, Lauren; Brinkman, Amanda; Shetty, Mayuri; Jimenez, Jessica; Mondesir, Jade; Lee, Benjamin; Giglio, Patricia; Chandrashekar, Abishek; Abbink, Peter; Colantonio, Arnaud; Gittens, Courtney; Baker, Chantelle; Wagner, Wendeline; Lewis, Mark G.; Li, Wenjun; Sekaly, Rafick-Pierre; Lifson, Jeffrey D.; Burton, Dennis R.; Barouch, Dan H.

    2017-01-01

    HIV-1-specific broadly neutralizing antibodies (bNAbs) can protect rhesus monkeys against simian-human immunodeficiency virus (SHIV) challenge. However, the site of antibody interception of virus and the mechanism of antibody-mediated protection remain unclear. We administered a fully protective dose of the bNAb PGT121 to rhesus monkeys and challenged them intravaginally with SHIV-SF162P3. In PGT121 treated animals, we detected low levels of viral RNA and viral DNA in distal tissues for several days following challenge. Viral RNA positive tissues showed transcriptomic changes indicative of innate immune activation, and cells from these tissues initiated infection following adoptive transfer into naïve hosts. These data demonstrate that bNAb mediated protection against a mucosal virus challenge can involve clearance of infectious virus in distal tissues. PMID:27540005

  10. Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against herpes simplex virus.

    PubMed

    Pujol, Carlos A; Sepúlveda, Claudia S; Richmond, Victoria; Maier, Marta S; Damonte, Elsa B

    2016-07-01

    Twelve polyhydroxylated sulfated steroids synthesized from a 5α-cholestane skeleton with different substitutions in C-2, C-3 and C-6 were evaluated for cytotoxicity and antiviral activity against herpes simplex virus (HSV) by a virus plaque reduction assay. Four compounds elicited a selective inhibitory effect against HSV. The disodium salt of 2β,3α-dihydroxy-6E-hydroximine-5α-cholestane-2,3-disulfate, named compound 7, was the most effective inhibitor of HSV-1, HSV-2 and pseudorabies virus (PrV) strains, including acyclovir-resistant variants, in human and monkey cell lines. Preliminary mechanistic studies demonstrated that compound 7 did not affect the initial steps of virus entry but inhibited a subsequent event in the infection process of HSV.

  11. Simian agent 12 is a BK virus-like papovavirus which replicates in monkey cells.

    PubMed Central

    Cunningham, T P; Pipas, J M

    1985-01-01

    We have begun to characterize the genomic structure and replication of the baboon papovavirus simian agent 12 (SA12). We have defined a wild-type clone of SA12 (SA12 wt100) by plaque purification from a heterogeneous stock. The functional map of SA12 wt100 can be aligned with those of the other primate papovaviruses by assigning one of the two EcoRI sites as 0/1.0 map units. The origin of bidirectional viral DNA replication maps near 0.67 map units, consistent with the limits of sequences homologous to origin sequences in the other papovaviruses. DNA sequence analysis shows that the organization of the SA12 genome is similar to that of the other primate papovaviruses studied. The arrangement and sequence of functional elements in the origin of replication region, as well as the sequences of the N-terminal regions of early protein products, indicate that SA12 is most closely related to the human virus BK, next most closely related to JC virus, and less closely related to simian virus 40. Unlike BK virus, SA12 is capable of productive infection of African green monkey kidney cells. Images PMID:2985810

  12. The genomic sequence of ectromelia virus, the causative agent of mousepox.

    PubMed

    Chen, Nanhai; Danila, Maria I; Feng, Zehua; Buller, R Mark L; Wang, Chunlin; Han, Xiaosi; Lefkowitz, Elliot J; Upton, Chris

    2003-12-05

    Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle.

  13. Viruses are essential agents within the roots and stem of the tree of life.

    PubMed

    Villarreal, Luis P; Witzany, Guenther

    2010-02-21

    In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.

  14. Genomic and antigenic characterization of bovine parainfluenze-3 viruses in the United States including modified live virus vaccine (MLV) strains and field strains from cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the genetic and antigenic characterization of parainfluenza-3 virus (PI3V) of cattle. Using molecular tests including real time PCR and viral genome sequencing, PI3V strains could be separated into PI3V types, including PI3V A, PI3V B, and PI3V C. Isolates from cattle with bo...

  15. The clearance of viruses and transmissible spongiform encephalopathy agents from biologicals.

    PubMed

    Farshid, Mahmood; Taffs, Rolf E; Scott, Dorothy; Asher, David M; Brorson, Kurt

    2005-10-01

    The viral and transmissible spongiform encephalopathy (TSE) safety of therapeutics of biological origin (biologicals) is greatly influenced by the nature and degree of variability of the source material and by the mode of purification. Plasma-derived and recombinant DNA products currently have good viral safety records, but challenges remain. In general, large enveloped viruses are easier to remove from biologicals than small 'naked' viruses. Monoclonal antibodies and recombinant DNA biopharmaceuticals are derived from relatively homogeneous source materials and purified by multistep schemes that are robust and amenable to scientific analysis and engineering improvement. Viral clearance is more challenging for blood and cell products, as they are complex and labile. Source selection (e.g. country of origin, deferral for CJD risk factors) currently occupies the front line for ensuring that biologicals are free of TSE agents, but robust methods for their clearance from products are under development.

  16. Arbovirus investigations in Argentina, 1977-1980. III. Identification and characterization of viruses isolated, including new subtypes of western and Venezuelan equine encephalitis viruses and four new bunyaviruses (Las Maloyas, Resistencia, Barranqueras, and Antequera).

    PubMed

    Calisher, C H; Monath, T P; Mitchell, C J; Sabattini, M S; Cropp, C B; Kerschner, J; Hunt, A R; Lazuick, J S

    1985-09-01

    Forty viruses isolated from mosquitoes between 1977 and 1980 in Argentina have been identified and characterized. Nineteen strains of VEE virus, identical by neutralization (N) tests, were shown by hemagglutination-inhibition tests with anti-E2 glycoprotein sera to represent a new subtype VI of the VEE complex. RNA oligonucleotide fingerprints of this virus were distinct from subtype I viruses. The virus was not lethal for English short-haired guinea pigs, indicating that it is probably not equine-virulent. Three strains of a member of the WEE virus complex were shown to differ by N tests in 1 direction from prototype WEE virus. The new WEE subtype was also found to be distinct by RNA oligonucleotide mapping. Its vector relationships indicate that it is an enzootic virus, and it has not been associated with equine disease. A new member of the Anopheles A serogroup was identified, shown to be most closely related to Lukuni and Col An 57389 viruses, and given the name Las Maloyas virus. A strain of Para virus (Bunyaviridae, Bunyavirus) was identified. Six isolates, representing 3 new viruses morphologically resembling bunyaviruses are described; the names Antequera, Barranqueras, and Resistencia are proposed for these agents, which were all isolated from Culex (Melanoconion) delpontei in Chaco Province. No serologic relationships between these viruses and other bunyaviruses were found. Since they are antigenically interrelated, they form a new (Antequera) serogroup. Eight Gamboa serogroup viruses and 2 strains of St. Louis encephalitis virus were also identified.

  17. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken.

    PubMed

    Bohls, Ryan L; Linares, Jose A; Gross, Shannon L; Ferro, Pam J; Silvy, Nova J; Collisson, Ellen W

    2006-08-01

    Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.

  18. Persistent Bovine Viral Diarrhea Virus Infection in Domestic and Wild Small Ruminants and Camelids Including the Mountain Goat (Oreamnos americanus)

    PubMed Central

    Nelson, Danielle D.; Duprau, Jennifer L.; Wolff, Peregrine L.; Evermann, James F.

    2016-01-01

    Bovine viral diarrhea virus (BVDV) is a pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus). PMID:26779126

  19. Persistent Bovine Viral Diarrhea Virus Infection in Domestic and Wild Small Ruminants and Camelids Including the Mountain Goat (Oreamnos americanus).

    PubMed

    Nelson, Danielle D; Duprau, Jennifer L; Wolff, Peregrine L; Evermann, James F

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is a pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus).

  20. A new expanded host range of Cucurbit yellow stunting disorder virus includes three agricultural crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit yellow stunting disorder virus (CYSDV) was identified in the fall of 2006 affecting cucurbit production in the Imperial Valley of California, the adjacent Yuma, AZ region, as well as nearby Sonora, Mexico. There was nearly universal infection of fall melon crops in 2006 and 2007, and late,...

  1. Virus-mimicking nano-constructs as a contrast agent for near infrared photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Chatni, Muhammad R.; Rao, Ayala L. N.; Vullev, Valentine I.; Wang, Lihong V.; Anvari, Bahman

    2013-02-01

    We report the first proof-of-principle demonstration of photoacoustic imaging using a contrast agent composed of a plant virus protein shell, which encapsulates indocyanine green (ICG), the only FDA-approved near infrared chromophore. These nano-constructs can provide higher photoacoustic signals than blood in tissue phantoms, and display superior photostability compared to non-encapsulated ICG. Our preliminary results suggest that the constructs do not elicit an acute immunogenic response in healthy mice.We report the first proof-of-principle demonstration of photoacoustic imaging using a contrast agent composed of a plant virus protein shell, which encapsulates indocyanine green (ICG), the only FDA-approved near infrared chromophore. These nano-constructs can provide higher photoacoustic signals than blood in tissue phantoms, and display superior photostability compared to non-encapsulated ICG. Our preliminary results suggest that the constructs do not elicit an acute immunogenic response in healthy mice. Electronic supplemental information (ESI) available: Information on experimental procedure for fabrication of the nano-constructs, photoacoustic imaging, and immunogenic studies. See DOI: 10.1039/c3nr34124k

  2. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses

    PubMed Central

    González, Víctor M.; Martín, M. Elena; Fernández, Gerónimo; García-Sacristán, Ana

    2016-01-01

    Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers’ properties as a real tool for viral infection detection and treatment. PMID:27999271

  3. The Synthesis and Study of Azole Carboxamide Nucleosides as Agents Active Against RNA Viruses.

    DTIC Science & Technology

    1986-09-15

    5012 62770A 62770A8,1. AH 355 11. TITLE (Include Security Classification) The Synthesis and Study of Azole Carboxamide Nucleosides as Agents Active...broad-spectrum antiviral agent has stimulated a great deal of effort toward the chemical synthesis of nucleosides of other azole heterocycles. During the...4 II. Chemistry and Discussion . . .. .. . 6 1. Synthesis of Certain 5’-Substituted Derivatives of Ribavirin and Tiazofurin . . .. . 6 2

  4. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges.

    PubMed

    Claverie, Jean-Michel; Grzela, Renata; Lartigue, Audrey; Bernadac, Alain; Nitsche, Serge; Vacelet, Jean; Ogata, Hiroyuki; Abergel, Chantal

    2009-07-01

    Mimivirus, a giant DNA virus (i.e. "girus") infecting species of the genus Acanthamoeba, was first identified in 2003. With a particle size of 0.7microm in diameter, and a genome size of 1.2Mb encoding more than 900 proteins, it is the most complex virus described to date. Beyond its unusual size, the Mimivirus genome was found to contain the first viral homologues of many genes thought to be the trademark of cellular organisms, such as central components of the translation apparatus. These findings revived the debate on the origin of DNA viruses, and the role they might have played in the emergence of eukaryotes. Published and ongoing studies on Mimivirus continue to lead to unexpected findings concerning a variety of aspects, such as the structure of its particle, unique features of its replication cycle, or the distribution and abundance of Mimivirus relatives in the oceans. Following a summary of these recent findings, we present preliminary results suggesting that octocorals might have come in close contact with an ancestor of Mimivirus, and that modern sponges might be host to a yet unidentified, even larger, member of the Mimiviridae.

  5. Influenza: the virus and prophylaxis with inactivated influenza vaccine in "at risk" groups, including COPD patients.

    PubMed

    Hovden, Arnt-Ove; Cox, Rebecca Jane; Haaheim, Lars Reinhardt

    2007-01-01

    Influenza is a major respiratory pathogen, which exerts a huge human and economic toll on society. Influenza is a vaccine preventable disease, however, the vaccine strains must be annually updated due to the continuous antigenic changes in the virus. Inactivated influenza vaccines have been used for over 50 years and have an excellent safety record. Annual vaccination is therefore recommended for all individuals with serious medical conditions, like COPD, and protects the vaccinee against influenza illness and also against hospitalization and death. In COPD patients, influenza infection can lead to exacerbations resulting in reduced quality of life, hospitalization and death in the most severe cases. Although there is only limited literature on the use of influenza vaccination solely in COPD patients, there is clearly enough evidence to recommend annual vaccination in this group. This review will focus on influenza virus and prophylaxis with inactivated influenza vaccines in COPD patients and other "at risk" groups to reduce morbidity, save lives, and reduce health care costs.

  6. Cyclooxygenase‐2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents

    PubMed Central

    Lin, Chun-Kuang; Tseng, Chin-Kai; Wu, Yu-Hsuan; Liaw, Chih-Chuang; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-01-01

    Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E2 (PGE2) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection. PMID:28317866

  7. Role of Bacterial Exopolysaccharides as Agents in Counteracting Immune Disorders Induced by Herpes Virus

    PubMed Central

    Gugliandolo, Concetta; Spanò, Antonio; Maugeri, Teresa L.; Poli, Annarita; Arena, Adriana; Nicolaus, Barbara

    2015-01-01

    Extreme marine environments, such as the submarine shallow vents of the Eolian Islands (Italy), offer an almost unexplored source of microorganisms producing unexploited and promising biomolecules for pharmaceutical applications. Thermophilic and thermotolerant bacilli isolated from Eolian vents are able to produce exopolysaccharides (EPSs) with antiviral and immunomodulatory effects against Herpes simplex virus type 2 (HSV-2). HSV-2 is responsible for the most common and continuously increasing viral infections in humans. Due to the appearance of resistance to the available treatments, new biomolecules exhibiting different mechanisms of action could provide novel agents for treating viral infections. The EPSs hinder the HSV-2 replication in human peripheral blood mononuclear cells (PBMC) but not in WISH (Wistar Institute Susan Hayflic) cells line, indicating that cell-mediated immunity was involved in the antiviral activity. High levels of Th1-type cytokines were detected in PBMC treated with all EPSs, while Th2-type cytokines were not induced. These EPSs are water soluble exopolymers able to stimulate the immune response and thus contribute to the antiviral immune defense, acting as immunomodulators. As stimulants of Th1 cell-mediated immunity, they could lead to the development of novel drugs as alternative in the treatment of herpes virus infections, as well as in immunocompromised host. PMID:27682100

  8. Agents and strategies in development for improved management of herpes simplex virus infection and disease.

    PubMed

    Kleymann, Gerald

    2005-02-01

    The quiet pandemic of herpes simplex virus (HSV) infections has plagued humanity since ancient times, causing mucocutaneous infection such as herpes labialis and herpes genitalis. Disease symptoms often interfere with every-day activities and occasionally HSV infections are the cause of life-threatening or sight-impairing disease, especially in neonates and the immuno-compromised patient population. After infection the virus persists for life in neurons of the host in a latent form, periodically reactivating and often resulting in significant psychosocial distress for the patient. Currently no cure is available. So far, vaccines, ILs, IFNs, therapeutic proteins, antibodies, immunomodulators and small-molecule drugs with specific or non-specific modes of action lacked either efficacy or the required safety profile to replace the nucleosidic drugs acyclovir, valacyclovir, penciclovir and famciclovir as the first choice of treatment. The recently discovered inhibitors of the HSV helicase-primase are the most potent development candidates today. These antiviral agents act by a novel mechanism of action and display low resistance rates in vitro and superior efficacy in animal models. This review summarises the current therapeutic options, discusses the potential of preclinical or investigational drugs and provides an up-to-date interpretation of the challenge to establish novel treatments for herpes simplex disease.

  9. Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication

    PubMed Central

    Stachulski, Andrew V.; Pidathala, Chandrakala; Row, Eleanor C.; Sharma, Raman; Berry, Neil G.; Iqbal, Mazhar; Bentley, Joanne; Allman, Sarah A.; Edwards, Geoffrey; Helm, Alison; Hellier, Jennifer; Korba, Brent E.; Semple, J. Edward; Rossignol, Jean-Francois

    2011-01-01

    We report the syntheses and activities of a wide range of thiazolides [viz. 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide; NTZ] 1 is a broad spectrum antiinfective agent, effective against anaerobic bacteria, viruses and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent and selective inhibitor of hepatitis B replication (EC50 = 0.33 μm) but is inactive against anaerobes. Several 4′- and 5′-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1, viz. the O-acetate is an effective prodrug and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC90 s for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results. PMID:21553812

  10. Comparative in vivo efficiencies of hand-washing agents against hepatitis A virus (HM-175) and poliovirus type 1 (Sabin).

    PubMed Central

    Mbithi, J N; Springthorpe, V S; Sattar, S A

    1993-01-01

    The abilities of 10 hygienic hand-washing agents and tap water (containing approximately 0.5 ppm of free chlorine) to eliminate strain HM-175 of hepatitis A virus (HAV) and poliovirus (PV) type 1 (Sabin) were compared by using finger pad and whole-hand protocols with three adult volunteers. A mixture of the two viruses was prepared in a 10% suspension of feces, and 10 microliters of the mixture was placed on each finger pad. The inoculum was allowed to dry for 20 min, and the contaminated area was exposed to a hand-washing agent for 10 s, rinsed in tap water, and dried with a paper towel. In the whole-hand protocol, the hands were contaminated with 0.5 ml of the virus mixture, exposed for 10 s to a hand-washing agent, washed, and dried as described above. Tryptose phosphate broth was used to elute any virus remaining on the finger pads or hands. One part of the eluate was assayed directly for PV with FRhK-4 cells, while the other part was first treated with a PV-neutralizing serum and then assayed for HAV with the same cell line. The results are reported as mean percentages of reduction in PFU compared with the amount of infectious virus detectable after initial drying.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8250567

  11. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    PubMed

    Lundin, Anna; Dijkman, Ronald; Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-05-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  12. Irradiation of microorganism such as bacteria and viruses in the presence of chemical enhancing agent

    SciTech Connect

    Not Available

    1980-04-18

    This invention relates to a method for disinfecting waste material, such as sewage, containing harmful microorganisms by means of high energy ionizing radiation. This method includes the addition of a chemical enhancing agent such as aluminum chlorde or ferric chloride which would increase the sensitivity of the microorganisms to irradiation. Consequently lower radiation doses would be needed for disinfection.

  13. Wheat mosaic virus (WMoV), the causal agent of High Plains disease, is present in Ohio wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat mosaic virus (WMoV), the causal agent of High Plains disease in wheat, was found in wheat fields in three western counties in Ohio: Auglaize, Miami, and Paulding. WMoV nucleoprotein sequence was identified from Illumina deep sequencing of RNA collected from symptomatic and asymptomatic wheat s...

  14. Direct-acting Antivirals and Host-targeting Agents against the Hepatitis A Virus

    PubMed Central

    Kanda, Tatsuo; Nakamoto, Shingo; Wu, Shuang; Nakamura, Masato; Jiang, Xia; Haga, Yuki; Sasaki, Reina; Yokosuka, Osamu

    2015-01-01

    Hepatitis A virus (HAV) infection is a major cause of acute hepatitis and occasionally leads to acute liver failure in both developing and developed countries. Although effective vaccines for HAV are available, the development of new antivirals against HAV may be important for the control of HAV infection in developed countries where no universal vaccination program against HAV exists, such as Japan. There are two forms of antiviral agents against HAV: direct-acting antivirals (DAAs) and host-targeting agents (HTAs). Studies using small interfering ribonucleic acid (siRNA) have suggested that the HAV internal ribosomal entry site (IRES) is an attractive target for the control of HAV replication and infection. Among the HTAs, amantadine and interferon-lambda 1 (IL-29) inhibit HAV IRES-mediated translation and HAV replication. Janus kinase (JAK) inhibitors inhibit La protein expression, HAV IRES activity, and HAV replication. Based on this review, both DAAs and HTAs may be needed to control effectively HAV infection, and their use should continue to be explored. PMID:26623267

  15. Patterns of transcription of a virus-like agent in tumor and non-tumor tissues in bicolor damselfish.

    PubMed

    Rahn, Jennifer J; Gibbs, Patrick D L; Schmale, Michael C

    2004-07-01

    Damselfish neurofibromatosis (DNF) is a transmissible disease characterized by peripheral nerve sheath and pigment cell tumors which occurs in bicolor damselfish (Stegastes partitus) on Florida reefs. The damselfish virus-like agent (DVLA) is associated with the development of DNF and contains a 2.4-kb DNA genome which was found at high levels in tumors and tumor-derived cell lines and at lower levels in non-tumor tissues of both spontaneously diseased fish (TF) and fish with experimentally induced tumors (EF). An analysis of transcription patterns revealed up to five DVLA derived RNAs ranging in size from 300 to 1400 bp in these cell types. DNA was the most commonly distributed DVLA component in TF and EF followed by RNA. Prevalence of transcripts varied by tissue type. The smallest transcripts were the most common in all cell types and the most complete patterns, which included the larger transcripts, were observed primarily in tumors. The presence of viral RNAs in addition to DNA in non-tumor tissues suggested these tissues were infected by DVLA and indicated a wide tissue tropism for this agent. The high levels of DVLA nucleic acids found in tumors suggest that replication is occurring there. However, the potential for DVLA replication in other tissues where only a limited range of transcripts were present is not known. The mechanism of tumorigenesis by this agent is unknown. However, the association of the larger transcripts with most tumor tissues and their absence in most non-tumor tissues suggests that these RNAs may be involved in tumor formation.

  16. Virus receptors: implications for pathogenesis and the design of antiviral agents.

    PubMed

    Norkin, L C

    1995-04-01

    A virus initiates infection by attaching to its specific receptor on the surface of a susceptible host cell. This prepares the way for the virus to enter the cell. Consequently, the expression of the receptor on specific cells and tissues of the host is a major determinant of the route of entry of the virus into the host and of the patterns of virus spread and pathogenesis in the host. This review emphasizes the virus-receptor interactions of human immunodeficiency virus, the rhinoviruses, the herpesviruses, and the coronaviruses. These interactions are often found to be complex and dynamic, involving multiple sites or factors on both the virus and the host cell. Also, the receptor may play an important role in virus entry per se in addition to its role in virus binding. In the cases of human immunodeficiency virus and the rhinoviruses, ingenious approaches to therapeutic strategies based on inhibiting virus attachment and entry are under development and in clinical trials.

  17. The 5'-UTR of Turnip yellow mosaic virus does not include a critical encapsidation signal

    SciTech Connect

    Shin, Hyun-Il; Tzanetakis, Ioannis E.; Dreher, Theo W.; Cho, Tae-Ju

    2009-05-10

    Turnip yellow mosaic virus (TYMV) RNA has two hairpins in the 5' untranslated region (UTR) with internal Ccentre dotC and Ccentre dotA mismatches that become protonated and are able to base pair at a pH near 5. The protonatable hairpins have previously been implicated as playing an important role in RNA encapsidation. We have examined the role of the 5'-UTR in the amplification and packaging of TYMV RNA using agroinfiltration of Chinese cabbage leaves to express various TYMV constructs with mutations affecting the 5'-UTR and the two hairpins. Mutations affecting the protonatable centers of the two hairpins, as well as deletion of one or both hairpins and deletion or mutation of the 17-nucleotide region upstream of the hairpins decreased viral amplification to varying extents (c. 10- to 1000-fold). However, in all these cases, the viral RNAs present in non-denaturing leaf extracts were predominantly ribonuclease resistant, indicative of encapsidation. These results show that, while the 5' hairpins are necessary for efficient amplification of TYMV, there appears to be no essential role for the 5'-UTR or its protonatable hairpins in the packaging of TYMV RNA. In a second set of experiments, it was demonstrated that TYMV can efficiently amplify in plants held in the dark, and that the progeny RNAs are efficiently encapsidated. Together, these observations argue for a revision of the model for TYMV encapsidation in which packaging occurs in low pH conditions that are generated by proton gradients produced by photosynthetic activity in the light and RNA packaging is dependent on the protonatable 5' hairpins.

  18. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  19. Viruses infecting reptiles.

    PubMed

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  20. Rural-urban migration including formal and informal workers in the urban sector: an agent-based numerical simulation study

    NASA Astrophysics Data System (ADS)

    Branco, Nilton; Oliveira, Tharnier; Silveira, Jaylson

    2012-02-01

    The goal of this work is to study rural-urban migration in the early stages of industrialization. We use an agent-based model and take into account the existence of informal and formal workers on the urban sector and possible migration movements, dependent on the agents' social and private utilities. Our agents are place on vertices of a square lattice, such that each vertex has only one agent. Rural, urban informal and urban formal workers are represented by different states of a three-state Ising model. At every step, a fraction a of the agents may change sectors or migrate. The total utility of a given agent is then calculated and compared to a random utility, in order to check if this agent turns into an actual migrant or changes sector. The dynamics is carried out until an equilibrium state is reached and equilibrium variables are then calculated and compared to available data. We find that a generalized Harris-Todaro condition is satisfied [1] on these equilibrium regimes, i.e, the ratio between expected wages between any pair of sectors reach a constant value. [4pt] [1] J. J. Silveira, A. L. Esp'indola and T. J. Penna, Physica A, 364, 445 (2006).

  1. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus.

    PubMed Central

    Rossmann, M G

    1988-01-01

    The tertiary structure of most icosahedral viral capsid proteins consists of an eight-stranded antiparallel beta-barrel with a hydrophobic interior. In a group of picornaviruses, this hydrophobic pocket can be filled by suitable organic molecules, which thereby stop viral uncoating after attachment and penetration into the host cell. The antiviral activity of these agents is probably due to increased rigidity of the capsid protein, which inhibits disassembly. The hydrophobic pocket may be an essential functional component of the protein and, therefore, may have been conserved in the evolution of many viruses from a common precursor. Since eight-stranded anti-parallel beta-barrels, with a topology as in viral capsid proteins, are not generally found for other proteins involved in cell metabolism, this class of antiviral agents is likely to be more virus-specific and less cytotoxic. Furthermore, the greatest conservation of viral capsid proteins occurs within this pocket, whereas the least conserved part is the antigenic exterior. Thus, compounds that bind to such a pocket are likely to be effective against a broader group of serologically distinct viruses. Discovery of antiviral agents of this type will, therefore, depend on designing compounds that can enter and fit snugly into the hydrophobic pocket of a particular viral capsid protein. The major capsid protein, p24, of human immunodeficiency virus would be a likely suitable target. PMID:3133655

  2. Jamestown Canyon virus (California serogroup) is the etiologic agent of widespread infection in Michigan humans.

    PubMed

    Grimstad, P R; Calisher, C H; Harroff, R N; Wentworth, B B

    1986-03-01

    In a sample population of 780 Michigan residents tested for neutralizing antibodies to California serogroup viruses, 216 (27.7%) had specific neutralizing antibody to Jamestown Canyon virus. An additional eight (1.0%) had specific neutralizing to trivittatus virus; none had specific neutralizing antibody to La Crosse virus. Significantly more male residents than female residents of the Lower Peninsula had antibody to Jamestown Canyon virus. The frequency of neutralizing antibody titers fits the Poisson distribution, suggesting that Jamestown Canyon virus infections occur endemically in residents of Michigan. Among 128 sera with specific neutralizing antibody to Jamestown Canyon virus, only two (1.6%) were found to have significant hemagglutination-inhibiting antibody titers with La Crosse virus, while 23 of 44 (52%) had significant titers with Jamestown Canyon virus; a single serum had significant antibody by complement fixation tests with both La Crosse and Jamestown Canyon viruses. This study confirms earlier speculation that complement fixation and hemagglutination-inhibition tests with La Crosse virus (the only tests for California serogroup virus infections performed by most state diagnostic laboratories) fail to detect antibody to Jamestown Canyon virus. ASPEX computer-drawn maps demonstrated that the distribution of persons with antibody to Jamestown Canyon virus and residing in Michigan's Lower Peninsula is closely correlated with the estimated distribution of white-tailed deer in that part of the state, further supporting the hypothesis that white-tailed deer are the primary vertebrate host for Jamestown Canyon virus.

  3. Serological evidence for a hepatitis e virus-related agent in goats in the United States.

    PubMed

    Sanford, B J; Emerson, S U; Purcell, R H; Engle, R E; Dryman, B A; Cecere, T E; Buechner-Maxwell, V; Sponenberg, D P; Meng, X J

    2013-12-01

    Hepatitis E virus (HEV) causes an important public health disease in many developing countries and is also endemic in some industrialized countries. In addition to humans, strains of HEV have been genetically identified from pig, chicken, rat, mongoose, deer, rabbit and fish. While the genotypes 1 and 2 HEV are restricted to humans, the genotypes 3 and 4 HEV are zoonotic and infect humans and other animal species. As a part of our ongoing efforts to search for potential animal reservoirs for HEV, we tested goats from Virginia for evidence of HEV infection and showed that 16% (13/80) of goat sera from Virginia herds were positive for IgG anti-HEV. Importantly, we demonstrated that neutralizing antibodies to HEV were present in selected IgG anti-HEV positive goat sera. Subsequently, in an attempt to genetically identify the HEV-related agent from goats, we conducted a prospective study in a closed goat herd with known anti-HEV seropositivity and monitored a total of 11 kids from the time of birth until 14 weeks of age for evidence of HEV infection. Seroconversion to IgG anti-HEV was detected in seven of the 11 kids, although repeated attempts to detect HEV RNA by a broad-spectrum nested RT-PCR from the faecal and serum samples of the goats that had seroconverted were unsuccessful. In addition, we also attempted to experimentally infect laboratory goats with three well-characterized mammalian strains of HEV but with no success. The results indicate that a HEV-related agent is circulating and maintained in the goat population in Virginia and that the goat HEV is likely genetically very divergent from the known HEV strains.

  4. Real-World Experiences With a Direct-Acting Antiviral Agent for Patients With Hepatitis C Virus Infection

    PubMed Central

    Louie, Vincent; Latt, Nyan L; Gharibian, Derenik; Sahota, Amandeep; Yanny, Beshoy T; Mittal, Rasham; Bider-Canfield, Zoe; Cheetham, T Craig

    2017-01-01

    Context Traditional hepatitis C virus treatment was limited by low cure rates, side effects, and stringent monitoring requirements. Sofosbuvir, a direct-acting antiviral agent with a cure rate of 96%, was introduced in 2013. However, trials frequently excluded patients with advanced liver disease and prior treatment experience. This study aims to elucidate the real-world cure rates and sofosbuvir safety profile. Methods A retrospective cohort study was conducted at Kaiser Permanente Southern California involving patients with hepatitis C virus who received sofosbuvir treatment. Patients age 18 years and older were included, and pregnant patients were excluded. The primary end point was sustained virologic response at 12 weeks posttreatment. Secondary end points were safety and medication adherence. Multiple logistic regression analysis was used to compare patients with genotypes 1 and 2 infections. Results Of the 213 study patients, 42.3% had cirrhosis, and 38% were treatment-experienced. Most patients (69.5%) received dual therapy (sofosbuvir + ribavirin), whereas the remainder (30.5%) received triple therapy (sofosbuvir + ribavirin + interferon). The overall rate of sustained virologic response at 12 weeks posttreatment rate was 72.9% for genotype 1 infection, 64.7% in the treatment-experienced subgroup, and 66.7% in the cirrhosis subgroup. Rates of sustained virologic response at 12 weeks posttreatment for genotypes 2 and 3 were 90.8% and 55%, respectively. Most patients experienced anemia and fatigue. Women and patients with a lower baseline viral load were statistically more likely to be cured. Conclusion Real-world cure rates were similar to rates seen in clinical trials for genotype 2 infection and lower for genotype 1 infection. Patients with genotype 1 and 3 infection did better with triple therapy compared with dual therapy. Patients tolerated therapy well with side effects, serious adverse events, and discontinuation rates similar to clinical trials

  5. Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection

    PubMed Central

    Zeisel, Mirjam B.; Crouchet, Emilie; Baumert, Thomas F.; Schuster, Catherine

    2015-01-01

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection. PMID:26540069

  6. Incidence and clinical background of hepatitis B virus reactivation in multiple myeloma in novel agents' era.

    PubMed

    Tsukune, Yutaka; Sasaki, Makoto; Odajima, Takeshi; Isoda, Atsushi; Matsumoto, Morio; Koike, Michiaki; Tamura, Hideto; Moriya, Keiichi; Ito, Shigeki; Asahi, Maki; Imai, Yoichi; Tanaka, Junji; Handa, Hiroshi; Koiso, Hiromi; Tanosaki, Sakae; Hua, Jian; Hagihara, Masao; Yahata, Yuriko; Suzuki, Satoko; Watanabe, Sumio; Sugimori, Hiroki; Komatsu, Norio

    2016-09-01

    There are some reports regarding hepatitis B virus (HBV) reactivation in patients with myeloma who are HBV carriers or who have had a resolved HBV infection, and there is no standard prophylaxis strategy for these patients. We performed a retrospective multicenter study to determine the incidence and characteristics of HBV reactivation in patients with multiple myeloma. We identified 641 patients with multiple myeloma who had been treated using novel agents and/or autologous stem cell transplantation with high-dose chemotherapy between January 2006 and June 2014 at nine Japanese hospitals. The patients' characteristics, laboratory data, and clinical courses were retrieved and statistically analyzed. During a median follow-up of 101 weeks, one of eight (12.5 %) HBV carriers developed hepatitis and 9 of 99 (9.1 %) patients with resolved HBV infection experienced HBV reactivation; the cumulative incidences of HBV reactivation at 2 years (104 weeks) and 5 years (260 weeks) were 8 and 14 %, respectively. The nine cases of reactivation after resolved HBV infection had received entecavir as preemptive therapy or were carefully observed by monitoring their HBV DNA levels, and none of these cases developed hepatitis. Among patients with multiple myeloma, HBV reactivation was not rare. Therefore, long-term monitoring of HBV DNA levels is needed to prevent hepatitis that is related to HBV reactivation in these patients.

  7. Biosynthesis of the IFN-gamma binding protein of ectromelia virus, the causative agent of mousepox.

    PubMed

    Bai, Hongdong; Buller, R Mark L; Chen, Nanhai; Green, Michael; Nuara, Anthony A

    2005-03-30

    Ectromelia virus (ECTV), the causative agent of mousepox, expresses an extracellular interferon-gamma binding protein (IFN-gammaBP) with homology to the ligand binding domains of the IFN-gamma high affinity receptor (IFN-gammaR1). Unlike the cellular receptor, the IFN-gammaBP binds IFN-gamma from several species. The IFN-gammaBP is synthesized early after infection, accumulating in the extracellular milieu as dimers composed of two protein species with Mr of 34.6 or 33.0 kDa. Homodimers are covalently linked by an interchain disulphide bond at position 216. The IFN-gammaBP has complex N-linked oligosaccharides at positions 41 and 149 as determined by site-directed mutagenesis and glycosidase treatment. Glycosylation at position 41 is required for secretion from mammalian cells and may play a role in the activity of the IFN-gammaBP. Glycosylation at position 149 is not required for secretion, and the lack of glycosylation at this site does not diminish ligand binding as measured by surface plasmon resonance (SPR) and ELISA.

  8. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses.

    PubMed

    Liu, Rui; An, Liwei; Liu, Ge; Li, Xiaoyu; Tang, Wei; Chen, Xulin

    2015-08-01

    The influenza A virus is notoriously known for its ability to cause recurrent epidemics and global pandemics. Antiviral therapy is effective when treatment is initiated within 48h of symptom onset, and delaying treatment beyond this time frame is associated with decreased efficacy. Research on anti-inflammatory therapy to ameliorate influenza-induced inflammation is currently underway and seems important to the impact on the clinical outcome. Both antiviral and anti-inflammatory drugs with novel mechanisms of action are urgently needed. Current methods for evaluating the efficacy of anti-influenza drugs rely mostly on transformed cells and animals. Transformed cell models are distantly related to physiological and pathological conditions. Although animals are the best choices for preclinical drug testing, they are not time- or cost-efficient. In this study, we established an ex vivo model using mouse lung slices to evaluate both antiviral and anti-inflammatory agents against influenza virus infection. Both influenza virus PR8 (H1N1) and A/Human/Hubei/3/2005 (H3N2) can replicate efficiently in mouse lung slices and trigger significant cytokine and chemokine responses. The induction of selected cytokines and chemokines were found to have a positive correlation between ex vivo and in vivo experiments, suggesting that the ex vivo cultured lung slices may closely resemble the lung functionally in an in vivo configuration when challenged by influenza virus. Furthermore, a set of agents with known antiviral and/or anti-inflammatory activities were tested to validate the ex vivo model. Our results suggested that mouse lung slices provide a robust, convenient and cost-efficient model for the assessment of both antiviral and anti-inflammatory agents against influenza virus infection in one assay. This ex vivo model may predict the efficacy of drug candidates' antiviral and anti-inflammatory activities in vivo.

  9. Virus-mimicking nano-constructs as a contrast agent for near infrared photoacoustic imaging†‡

    PubMed Central

    Gupta, Sharad; Chatni, Muhammad R.; Rao, Ayala L. N.; Vullev, Valentine I.; Anvari, Bahman

    2013-01-01

    We report the first proof-of-principle demonstration of photoacoustic imaging using a contrast agent composed of a plant virus protein shell, which encapsulates indocyanine green (ICG), the only FDA-approved near infrared chromophore. These nano-constructs can provide higher photoacoustic signals than blood in tissue phantoms, and display superior photostability compared to non-encapsulated ICG. Our preliminary results suggest that the constructs do not elicit an acute immunogenic response in healthy mice. PMID:23334567

  10. Characteristics of human infection with avian influenza viruses and development of new antiviral agents

    PubMed Central

    Liu, Qiang; Liu, Dong-ying; Yang, Zhan-qiu

    2013-01-01

    Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths. The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains. The symptoms associated with viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms. The virulence and tissue tropism of viruses as well as the host responses contribute to the pathogenesis of human AIV infection. Several preventive and therapeutic approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc. In this article, we summarize the recent progress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV. PMID:24096642

  11. Scientific and ethical considerations in trial design for investigational agents for the treatment of human immunodeficiency virus infection.

    PubMed

    Feinberg, Judith; Japour, Anthony J

    2003-01-15

    The design of clinical trials for new antiretroviral agents poses unique challenges, given the availability of highly active antiretroviral therapy (HAART). These challenges include the selection of appropriate populations, the methods used to partition the effects of the study drug under observation from those of the other concurrently administered medications in early studies, performance of dose-ranging studies for disease states in which suboptimal drug exposure may lead to the development of viral resistance that limits future treatment options, and the need to fulfill the obligations of international regulatory agencies. Throughout, science and ethics are tightly woven elements in study designs for antiretroviral drug trials. Fast-track drug approval status and successful lobbying by advocates for patients with acquired immunodeficiency syndrome aimed at the US Food and Drug Administration, the National Institutes of Health, the Centers for Disease Control and Prevention, university teaching centers, pharmaceutical companies, and members of Congress undoubtedly contributed to the development and swift regulatory approvals of the 17 antiretroviral medications now available in the United States for the treatment of human immunodeficiency virus infection.

  12. Virus receptors: implications for pathogenesis and the design of antiviral agents.

    PubMed Central

    Norkin, L C

    1995-01-01

    A virus initiates infection by attaching to its specific receptor on the surface of a susceptible host cell. This prepares the way for the virus to enter the cell. Consequently, the expression of the receptor on specific cells and tissues of the host is a major determinant of the route of entry of the virus into the host and of the patterns of virus spread and pathogenesis in the host. This review emphasizes the virus-receptor interactions of human immunodeficiency virus, the rhinoviruses, the herpesviruses, and the coronaviruses. These interactions are often found to be complex and dynamic, involving multiple sites or factors on both the virus and the host cell. Also, the receptor may play an important role in virus entry per se in addition to its role in virus binding. In the cases of human immunodeficiency virus and the rhinoviruses, ingenious approaches to therapeutic strategies based on inhibiting virus attachment and entry are under development and in clinical trials. PMID:7621403

  13. Naked Viruses That Aren't Always Naked: Quasi-Enveloped Agents of Acute Hepatitis.

    PubMed

    Feng, Zongdi; Hirai-Yuki, Asuka; McKnight, Kevin L; Lemon, Stanley M

    2014-11-01

    Historically, viruses were considered to be either enveloped or nonenveloped. However, recent work on hepatitis A virus and hepatitis E virus challenges this long-held tenet. Whereas these human pathogens are shed in feces as naked nonenveloped virions, recent studies indicate that both circulate in the blood completely masked in membranes during acute infection. These membrane-wrapped virions are as infectious as their naked counterparts, although they do not express a virally encoded protein on their surface, thus distinguishing them from conventional enveloped viruses. The absence of a viral fusion protein implies that these quasi-enveloped virions have unique mechanisms for entry into cells. Like true enveloped viruses, however, these phylogenetically distinct viruses usurp components of the host ESCRT system to hijack host cell membranes and noncytolytically exit infected cells. The membrane protects these viruses from neutralizing antibodies, facilitating dissemination within the host, whereas nonenveloped virions shed in feces are stable in the environment, allowing for epidemic transmission.

  14. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  15. Viruses of the Bunya- and Togaviridae families: potential as bioterrorism agents and means of control.

    PubMed

    Sidwell, Robert W; Smee, Donald F

    2003-01-01

    When considering viruses of potential importance as tools for bioterrorism, several viruses in the Bunya- and Togaviridae families have been cited. Among those in the Bunyaviridae family are Rift Valley fever, Crimean-Congo hemorrhagic fever, hanta, and sandfly fever viruses, listed in order of priority. Those particularly considered in the Togaviridae family are Venezuelan, eastern and western equine encephalitis viruses. Factors affecting the selection of these viruses are the ability for them to induce a fatal or seriously incapacitating illness, their ease of cultivation in order to prepare large volumes, their relative infectivity in human patients, their ability to be transmitted by aerosol, and the lack of measures available for their control. Each factor is fully considered in this review. Vaccines for the control of infections induced by these viruses are in varying stages of development, with none universally accepted to date. Viruses in the Bunyaviridae family are generally sensitive to ribavirin, which has been recommended as an emergency therapy for infections by viruses in this family although has not yet been FDA-approved. Interferon and interferon inducers also significantly inhibit these virus infections in animal models. Against infections induced by viruses in the Togaviridae family, interferon-alpha would appear to currently be the most useful for therapy.

  16. A Multi-Agent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges

    DTIC Science & Technology

    2016-07-26

    A Multi-Agent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits 1 Robust and Durable Virus-Specific Immune Responses in Mice...Agent Alphavirus DNA Vaccine Protects Mice 12 13 #Address correspondence to Lesley C. Dupuy, lesley.c.dupuy.ctr@mail.mil. 14 *Present address...virus (VEEV) DNA vaccine 21 that was optimized for increased antigen expression and delivered by intramuscular (IM) 22 electroporation (EP) elicits

  17. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  18. Identification of 5-Methoxy-2-(Diformylmethylidene)-3,3-Dimethylindole as an Anti-Influenza A Virus Agent.

    PubMed

    Tan, Ming Cheang; Wong, Wan Ying; Ng, Wei Lun; Yeo, Kok Siong; Mohidin, Taznim Begam Mohd; Lim, Yat-Yuen; Lafta, Fadhil; Mohd Ali, Hapipah; Ea, Chee-Kwee

    2017-01-01

    Influenza virus is estimated to cause 3-5 million severe complications and about 250-500 thousand deaths per year. Different kinds of anti-influenza virus drugs have been developed. However, the emergence of drug resistant strains has presented a big challenge for efficient antiviral therapy. Indole derivatives have been shown to exhibit both antiviral and anti-inflammatory activities. In this study, we adopted a cell-based system to screen for potential anti-IAV agents. Four indole derivatives (named 525A, 526A, 527A and 528A) were subjected to the antiviral screening, of which 526A was selected for further investigation. We reported that pre-treating cells with 526A protects cells from IAV infection. Furthermore, 526A inhibits IAV replication by inhibiting the expression of IAV genes. Interestingly, 526A suppresses the activation of IRF3 and STAT1 in host cells and thus represses the production of type I interferon response and cytokines in IAV-infected cells. Importantly, 526A also partially blocks the activation of RIG-I pathway. Taken together, these results suggest that 526A may be a potential anti-influenza A virus agent.

  19. Identification of 5-Methoxy-2-(Diformylmethylidene)-3,3-Dimethylindole as an Anti-Influenza A Virus Agent

    PubMed Central

    Tan, Ming Cheang; Wong, Wan Ying; Ng, Wei Lun; Yeo, Kok Siong; Mohidin, Taznim Begam Mohd; Lim, Yat-Yuen; Lafta, Fadhil; Mohd Ali, Hapipah; Ea, Chee-Kwee

    2017-01-01

    Influenza virus is estimated to cause 3–5 million severe complications and about 250–500 thousand deaths per year. Different kinds of anti-influenza virus drugs have been developed. However, the emergence of drug resistant strains has presented a big challenge for efficient antiviral therapy. Indole derivatives have been shown to exhibit both antiviral and anti-inflammatory activities. In this study, we adopted a cell-based system to screen for potential anti-IAV agents. Four indole derivatives (named 525A, 526A, 527A and 528A) were subjected to the antiviral screening, of which 526A was selected for further investigation. We reported that pre-treating cells with 526A protects cells from IAV infection. Furthermore, 526A inhibits IAV replication by inhibiting the expression of IAV genes. Interestingly, 526A suppresses the activation of IRF3 and STAT1 in host cells and thus represses the production of type I interferon response and cytokines in IAV-infected cells. Importantly, 526A also partially blocks the activation of RIG-I pathway. Taken together, these results suggest that 526A may be a potential anti-influenza A virus agent. PMID:28114392

  20. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-08-14

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.

  1. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  2. Potential Military Chemical/Biological Agents and Compounds

    DTIC Science & Technology

    2005-01-01

    toxins, bioregulators, or prions. (1) Pathogens. Pathogens are disease-producing microorganisms,6 such as bacteria , rickettsiae , or viruses...disability. Potential biological antipersonnel agents include toxins, bacteria , rickettsiae , viruses, and toxins. (2) Antianimal. Biological...microorganisms such as pathogens (which include disease-causing bacteria , rickettsiae , and viruses) and toxins. NOTES: 1. See Table IV-1 (page IV-2) for the

  3. Trypsinized Human Group O Erythrocytes as an Alternative Hemagglutinating Agent for Japanese Encephalitis Virus

    PubMed Central

    Shortridge, K. F.; Hu, L. Y.

    1974-01-01

    Trypsinized human group O erythrocytes were found to be a suitable alternative to gander cells in hemagglutination (HA) and hemagglutination inhibition (HAI) tests for Japanese encephalitis (JE) virus. In the HAI test, no cross-reactions against JE virus were observed with immune sera containing antibody to taxonomically related or unrelated viruses, with mouse brain antigen, or with nonantibody serum inhibitors; specific antibody rise could be detected in an immunized rabbit. Gander and trypsinized human group O cells gave comparable titers in the HAI test, but the latter were preferable since (i) they required less challenging HA antigen, being more sensitive to agglutination by JE virus, and (ii) all human and some animal sera investigated were devoid of natural agglutinins for these cells, thereby eliminating or reducing the need for prior adsorption with packed cells. PMID:4856948

  4. Effect of changes in human ecology and behavior on patterns of sexually transmitted diseases, including human immunodeficiency virus infection.

    PubMed Central

    Wasserheit, J N

    1994-01-01

    The last 20 years have witnessed six striking changes in patterns of sexually transmitted diseases (STDs): emergence of new STD organisms and etiologies, reemergence of old STDs, shifts in the populations in which STDs are concentrated, shifts in the etiological spectra of STD syndromes, alterations in the incidence of STD complications, and increases in antimicrobial resistance. For example, human immunodeficiency virus (HIV) emerged to devastate the United States with a fatal pandemic involving at least 1 million people. The incidence of syphilis rose progressively after 1956 to reach a 40-year peak by 1990. In both cases, disease patterns shifted from homosexual men to include minority heterosexuals. Over the last decade, gonorrhea became increasingly concentrated among adolescents, and several new types of antimicrobial resistance appeared. Three interrelated types of environments affect STD patterns. The microbiologic, hormonal, and immunologic microenvironments most directly influence susceptibility, infectiousness, and development of sequelae. These microenvironments are shaped, in part, by the personal environments created by an individual's sexual, substance-use, and health-related behaviors. The personal environments are also important determinants of acquisition of infection and development of sequelae but, in addition, they mediate risk of exposure to infection. These are, therefore, the environments that most directly affect changing disease patterns. Finally, individuals' personal environments are, in turn, molded by powerful macroenvironmental forces, including socioeconomic, demographic, geographic, political, epidemiologic, and technological factors. Over the past 20 years, the profound changes that have occurred in many aspects of the personal environment and the macroenvironment have been reflected in new STD patterns. PMID:8146135

  5. Neonatal herpes simplex virus infection following Jewish ritual circumcisions that included direct orogenital suction - New York City, 2000-2011.

    PubMed

    2012-06-08

    Herpes simplex virus (HSV) infection commonly causes "cold sores" (HSV type 1 [HSV-1]) and genital herpes (HSV-1 or HSV type 2 [HSV-2]); HSV infection in newborns can result in death or permanent disability. During November 2000-December 2011, a total of 11 newborn males had laboratory-confirmed HSV infection in the weeks following out-of-hospital Jewish ritual circumcision, investigators from the New York City Department of Health and Mental Hygiene (DOHMH) learned. Ten of the 11 newborns were hospitalized; two died. In six of the 11 cases, health-care providers confirmed parental reports that the ritual circumcision included an ultra-Orthodox Jewish practice known as metzitzah b'peh, in which the circumciser (mohel, plural: mohelim) places his mouth directly on the newly circumcised penis and sucks blood away from the circumcision wound (direct orogenital suction). In the remaining cases, other evidence suggested that genital infection was introduced by direct orogenital suction (probable direct orogenital suction). Based on cases reported to DOHMH during April 2006-December 2011, the risk for neonatal herpes caused by HSV-1 and untyped HSV following Jewish ritual circumcision with confirmed or probable direct orogenital suction in New York City was estimated at 1 in 4,098 or 3.4 times greater than the risk among male infants considered unlikely to have had direct orogenital suction. Oral contact with a newborn's open wound risks transmission of HSV and other pathogens. Circumcision is a surgical procedure that should be performed under sterile conditions. Health-care professionals advising parents and parents choosing Jewish ritual circumcision should inquire in advance whether direct orogenital suction will be performed, and orogenital suction should be avoided.

  6. Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents Against Newcastle Disease Virus Infection in Chicken.

    PubMed

    K A, Suresh; Venkata Subbaiah, Kadiam C; Lavanya, Rayapu; Chandrasekhar, Kuruva; Chamarti, Naga Raju; Kumar, M Suresh; Wudayagiri, Rajendra; Valluru, Lokanatha

    2016-09-01

    Newcastle disease virus is the most devastating virus in poultry industry. It can eradicate the entire poultry flocks once infected. This study is aimed to investigate the antiviral efficacy of novel phosphorylated analogues of the drug abacavir (ABC) against Newcastle disease virus (NDV). About 16 analogues of ABC were designed and docking was performed against fusion protein of NDV. Three compounds were identified and selected for synthesis and biological evaluation based on binding affinity and docking scores. The compounds were synthesized and characterized by IR, (1)H, (13)C, (31)P and CHN analysis and mass spectra. These compounds were tested for antiviral efficacy against NDV-infected DF-1 cells. Compound ABC-1 had shown potent antiviral activity as evidenced by significant reduction in plaque units and cytopathic effect. Therefore, ABC-1 was selected to test for NDV-infected chicken survival rate. Effective dose50 concentrations were determined for ABC-1. Antioxidant enzyme levels in brain, liver and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised and lipid peroxidation and HA titer levels were decreased upon treatment with 2 mg/kg body weight ABC-1. Histopathological modifications were also restored in the ABC-1-treated group. These findings demonstrated ABC-1 as a potential antiviral agent against NDV in chicken.

  7. A viral agent isolated from a case of "non-paralytic poliomyelitis" and pathogenic for suckling mice: its possible relation to the coxsackie group of viruses.

    PubMed

    CHEEVER, F S; DANIELS, J B; HERSEY, E F

    1950-08-01

    1. A viral agent, Powers, causing myocarditis, adipositis, pancreatitis, hepatitis, and encephalomyelitis but not myositis in suckling mice 1 to 2 days old has been isolated from the stool of a patient in whom the clinical diagnosis was "non-paralytic poliomyelitis." 2. Serological evidence linking the virus to the clinical disease observed was clear only in the case of "non-paralytic poliomyelitis" from which it was isolated. 3. The possible relation of this agent to the Coxsackie group of viruses is discussed. No serological relationship with the Connecticut 5, Ohio R, and High Point strains was demonstrated. 4. A second virus, Matulaitis, has been isolated from a concurrent case of "non-paralytic poliomyelitis" in the same area. Lesions produced in infant mice by the two agents show certain differences.

  8. Serodiagnosis for Tumor Viruses

    PubMed Central

    Morrison, Brian J.; Labo, Nazzarena; Miley, Wendell J.; Whitby, Denise

    2015-01-01

    The known human tumor viruses include the DNA viruses Epstein-Barr virus, Kaposi sarcoma herpesvirus, Merkel cell polyomavirus, human papillomavirus, and hepatitis B virus. RNA tumor viruses include Human T-cell lymphotrophic virus type-1 and hepatitis C virus. The serological identification of antigens/antibodies in plasma serum is a rapidly progressing field with utility for both scientists and clinicians. Serology is useful for conducting seroepidemiology studies and to inform on the pathogenesis and host immune response to a particular viral agent. Clinically, serology is useful for diagnosing current or past infection and for aiding in clinical management decisions. Serology is useful for screening blood donations for infectious agents and for monitoring the outcome of vaccination against these viruses. Serodiagnosis of human tumor viruses has improved in recent years with increased specificity and sensitivity of the assays, as well as reductions in cost and the ability to assess multiple antibody/antigens in single assays. Serodiagnosis of tumor viruses plays an important role in our understanding of the prevalence and transmission of these viruses and ultimately in the ability to develop treatments/preventions for these globally important diseases. PMID:25843726

  9. Development of a multiplex real-time polymerase chain reaction for the detection of influenza virus type A including H5 and H9 subtypes.

    PubMed

    Li, Pei-Qiong; Zhang, Jun; Muller, Claude P; Chen, Jing-Xian; Yang, Zi-Feng; Zhang, Ren; Li, Juan; He, Yun-Shao

    2008-06-01

    Avian influenza viruses (AIVs) are endemic in wild birds and, if transmitted to poultry, can cause serious economic losses. The aim of this study was to develop a multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) for rapid detection of influenza virus type A, including H5 and H9 subtypes. The selected primers and various labeled TaqMan reporter probes corresponding to matrix, H5, and H9 genes were used in a multiplex real-time RT-PCR to simultaneously detect triple fluorescent signals. The results showed that the multiplex real-time RT-PCR assay can be applied to detect RNA of influenza virus type A including H5 and H9 subtypes with a high specificity and a sensitivity of 10 copies per reaction. As a result of its short turnaround times and a high specificity and sensitivity, the assay is very suitable for large-scale screening during AIV outbreaks.

  10. 9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... MSV that is found unsatisfactory by any prescribed test. (a) At least a 1.0 ml aliquot per cell... monkey kidney) cell line; (2) Embryonic cells, neonatal cells, or a cell line of the species for...

  11. 9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... MSV that is found unsatisfactory by any prescribed test. (a) At least a 1.0 ml aliquot per cell... monkey kidney) cell line; (2) Embryonic cells, neonatal cells, or a cell line of the species for...

  12. 9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... MSV that is found unsatisfactory by any prescribed test. (a) At least a 1.0 ml aliquot per cell... monkey kidney) cell line; (2) Embryonic cells, neonatal cells, or a cell line of the species for...

  13. 9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... MSV that is found unsatisfactory by any prescribed test. (a) At least a 1.0 ml aliquot per cell... monkey kidney) cell line; (2) Embryonic cells, neonatal cells, or a cell line of the species for...

  14. Inventing Viruses.

    PubMed

    Summers, William C

    2014-11-01

    In the nineteenth century, "virus" commonly meant an agent (usually unknown) that caused disease in inoculation experiments. By the 1890s, however, some disease-causing agents were found to pass through filters that retained the common bacteria. Such an agent was called "filterable virus," the best known being the virus that caused tobacco mosaic disease. By the 1920s there were many examples of filterable viruses, but no clear understanding of their nature. However, by the 1930s, the term "filterable virus" was being abandoned in favor of simply "virus," meaning an agent other than bacteria. Visualization of viruses by the electron microscope in the late 1930s finally settled their particulate nature. This article describes the ever-changing concept of "virus" and how virologists talked about viruses. These changes reflected their invention and reinvention of the concept of a virus as it was revised in light of new knowledge, new scientific values and interests, and new hegemonic technologies.

  15. Engineering herpes simplex viruses by infection-transfection methods including recombination site targeting by CRISPR/Cas9 nucleases.

    PubMed

    Russell, Tiffany A; Stefanovic, Tijana; Tscharke, David C

    2015-03-01

    Herpes simplex viruses (HSVs) are frequent human pathogens and the ability to engineer these viruses underpins much research into their biology and pathogenesis. Often the ultimate aim is to produce a virus that has the desired phenotypic change and no additional alterations in characteristics. This requires methods that minimally disrupt the genome and, for insertions of foreign DNA, sites must be found that can be engineered without disrupting HSV gene function or expression. This study advances both of these requirements. Firstly, the use of homologous recombination between the virus genome and plasmids in mammalian cells is a reliable way to engineer HSV such that minimal genome changes are made. This has most frequently been achieved by cotransfection of plasmid and isolated viral genomic DNA, but an alternative is to supply the virus genome by infection in a transfection-infection method. Such approaches can also incorporate CRISPR/Cas9 genome engineering methods. Current descriptions of infection-transfection methods, either with or without the addition of CRISPR/Cas9 targeting, are limited in detail and the extent of optimization. In this study it was found that transfection efficiency and the length of homologous sequences improve the efficiency of recombination in these methods, but the targeting of the locus to be engineered by CRISPR/Cas9 nucleases has an overriding positive impact. Secondly, the intergenic space between UL26 and UL27 was reexamined as a site for the addition of foreign DNA and a position identified that allows insertions without compromising HSV growth in vitro or in vivo.

  16. Carnation mottle virus, an important viral agent infecting carnation cut-flower crops in Mahallat of Iran.

    PubMed

    Safari, M; Koohi Habibi, M; Mosahebi, G; Dizadji, A

    2009-01-01

    One of the most important cut-flower crops grown worldwide on commercial scale is Carnation (Dianthus caryophyllus L.). It's the main production of Mahallat where is one of the most important ornamental plants production centers of Iran. Infection of carnation with pathogens Like viral agents causes economic losses in carnation cut-flower crop. One of the viral agents of this flower is Carnation mottle virus (CarMV) which is the type member of genus Carmovirus and belongs to the Tombusviridae family. It is naturally transmitted by grafting and contacting between plants. Although its infection lead to mild symptims, it weakens the plant to infection by other pathogens. The carnation greenhouses of Mahallat were visited during 2008 January to April and 100 samples with mild mosaic symptom were collected and tested by DAS-ELISA using CarMV specific polyclonal antibody. The results showed that 75% of samples wrere infected with this virus. Mechanical inocubation of Chenopodium quinoa, C. amaranticolor and Spinacea oleracea with extracted crude sap of CarMV infected carnation Leaves in phosphate buffer (pH, 7) resulted in appearance of chlorotic and necrotic local lesions on inoculated leaves 4-7 days after incubation. The virus was partially purified using C. amaranticolor locally symptomatic leaves. Total soluble proteins were extracted from healthy and CarMV infected C. amaranticolor plants and beside partially purified preparation electrophoresed through 15% poly acrylamide get according to SDS-PAGE standard procedure. Protein bands were electroblotted onto nitrocelluse membrane and incubated with CarMV polyclonal during western immunoblot analysis according to standard method. The result revealed a distinc protein band with Mr of 35.5 kDa in total protein preparation of infected plant and viral partial pure preparation, without any reaction in those of healthy plant. RT-PCR carried out using total RNA extracted from infected plant by Rneasy Plant Mini Kit (Qiagen

  17. Evaluation of Nipah Virus as a Human and Animal Biological Terrorism and Warfare Agent

    DTIC Science & Technology

    2001-09-01

    Reminder. SMJ Vol 40: 329-330. 10. Ling A.E. 1999. Lessons to be learnt from the Nipah Virus Outbreak in Singapore. SMJVoI4O: 331 -332. 11. Lim C.T...Sitoh Y.Y., Lee K.E., Kurup A., Hui F. 1999. Meningoencephalitis Caused by a Novel Paramyxovirus: An Advanced MRI Case Report in an Emerging Disease SMJ

  18. Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent

    NASA Astrophysics Data System (ADS)

    Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon

    2012-08-01

    In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106-107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105-106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.

  19. Antibiotic Agents

    MedlinePlus

    ... producing ). Examples of this type are the alcohols, chlorine, peroxides, and aldehydes. The second group consists mostly ... viruses have some kind of antibacterial agent. Alcohols, chlorine and peroxides have been used for many decades ...

  20. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    SciTech Connect

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-04-10

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  1. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4 domain of life including giant viruses.

    PubMed

    Boyer, Mickaël; Madoui, Mohammed-Amine; Gimenez, Gregory; La Scola, Bernard; Raoult, Didier

    2010-12-02

    The discovery of Mimivirus, with its very large genome content, made it possible to identify genes common to the three domains of life (Eukarya, Bacteria and Archaea) and to generate controversial phylogenomic trees congruent with that of ribosomal genes, branching Mimivirus at its root. Here we used sequences from metagenomic databases, Marseillevirus and three new viruses extending the Mimiviridae family to generate the phylogenetic trees of eight proteins involved in different steps of DNA processing. Compared to the three ribosomal defined domains, we report a single common origin for Nucleocytoplasmic Large DNA Viruses (NCLDV), DNA processing genes rooted between Archaea and Eukarya, with a topology congruent with that of the ribosomal tree. As for translation, we found in our new viruses, together with Mimivirus, five proteins rooted deeply in the eukaryotic clade. In addition, comparison of informational genes repertoire based on phyletic pattern analysis supports existence of a clade containing NCLDVs clearly distinct from that of Eukarya, Bacteria and Archaea. We hypothesize that the core genome of NCLDV is as ancient as the three currently accepted domains of life.

  2. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists’ arsenal

    PubMed Central

    Papanagnou, Panagiota; Baltopoulos, Panagiotis; Tsironi, Maria

    2015-01-01

    Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting. PMID:26056460

  3. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal.

    PubMed

    Papanagnou, Panagiota; Baltopoulos, Panagiotis; Tsironi, Maria

    2015-01-01

    Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting.

  4. Lassa virus.

    PubMed

    Günther, Stephan; Lenz, Oliver

    2004-01-01

    Lassa virus is a RNA virus belonging to the family of Arenaviridae. It was discovered as the causative agent of a hemorrhagic fever--Lassa fever--about 30 years ago. Lassa fever is endemic in West Africa and is estimated to affect some 100,000 people annually. Great progress in the understanding of the life cycle of arenaviruses, including Lassa virus, has been made in recent years. New insights have been gained in the pathogenesis and molecular epidemiology of Lassa fever, and state-of the-art technologies for diagnosing this life-threatening disease have been developed. The intention of this review is to summarize in particular the recent literature on Lassa virus and Lassa fever. Several aspects ranging from basic research up to clinical practice and laboratory diagnosis are discussed and linked together.

  5. Treatment of Oseltamivir-Resistant Influenza A (H1N1) Virus Infections in Mice With Antiviral Agents

    PubMed Central

    Smee, Donald F.; Julander, Justin G.; Tarbet, E. Bart; Gross, Matthew; Nguyen, Jack

    2012-01-01

    Influenza A/Mississippi/03/2001 (H1N1) and A/Hong Kong/2369/2009 (H1N1) viruses containing the neuraminidase gene mutation H275Y (conferring resistance to oseltamivir) were adapted to mice and evaluated for suitability as models for lethal infection and antiviral treatment. The viral neuraminidases were resistant to peramivir and oseltamivir carboxylate but sensitive to zanamivir. Similar pattern of antiviral activity were seen in MDCK cell assays. Lethal infections were achieved in mice with the two viruses. Oral oseltamivir at 100 and 300 mg/kg/day bid for 5 d starting at −2 h gave 30 and 60% protection from death, respectively, due to the A/Mississippi/03/2001 infection. Intraperitoneal treatments with zanamivir at 30 and 100 mg/kg/day starting at −2 h gave 60 and 90% protection, respectively. Neither compound at ≤300 mg/kg/day protected mice when treatments began at +24 h. Amantadine was effective at 10, 30, and 100 mg/kg/day, rimantadine was protective at 10 and 30 mg/kg/day (highest dose tested), and ribavirin was active at 30 and 75 mg/kg/day, with survival ranging from 60–100% for oral treatments initiated at −2 h. For treatments begun at +24 h, amantadine was protective at 30 and 100 mg/kg/day, rimantadine showed efficacy at 10 and 30 mg/kg/day, and ribavirin was active at 75 mg/kg/day, with 60–100% survival per group. In the A/Hong Kong/2369/2009 infection, oral oseltamivir at 100 and 300 mg/kg/day starting at −2 h gave 50 and 70% protection from death, respectively. These infection models will be useful to study newly discovered anti-influenza virus agents and to evaluate compounds in combination. PMID:22809862

  6. West Nile virus: an infectious viral agent to the central nervous system.

    PubMed

    Farrar, Francisca

    2013-06-01

    This article reviews the growing epidemic of West Nile virus (WNV), clinical manifestations of the 2 primary groups of WNV, diagnostic tests, critical nursing management, risk factors, and prevention of WNV. Critical care nursing management is based on symptom management and supportive therapy for neuroinvasive disease complications. Nursing management for complications such as altered level of consciousness, mechanical ventilator respiratory support, high fever, cerebral edema, increased intracranial pressure, seizures, and neuropsychiatric issues is outlined. Preventive measures for WNV, such as surveillance programs, personal protective measures, source reduction, mosquito programs, and vaccine development, are discussed.

  7. Biosecurity of Select Agents and Toxins

    DTIC Science & Technology

    2005-03-01

    ribosome inactivating proteins "* Tetrodotoxin Bacteria "* Rickettsia prowazekii "* Rickettsia rickettsii "* Yersinia pestis Fungi "* Coccidioides...CFR) 73, defines a select agent as: ... any microorganism (including, but not limited to, bacteria , viruses, fungi, rickettsiae , or protozoa), or...a substantially greater danger to the public health people of the United States and the world. Those substances (viruses, bacteria and toxins) were

  8. Influenza: the virus and prophylaxis with inactivated influenza vaccine in “at risk” groups, including COPD patients

    PubMed Central

    Hovden, Arnt-Ove; Cox, Rebecca Jane; Haaheim, Lars Reinhardt

    2007-01-01

    Influenza is a major respiratory pathogen, which exerts a huge human and economic toll on society. Influenza is a vaccine preventable disease, however, the vaccine strains must be annually updated due to the continuous antigenic changes in the virus. Inactivated influenza vaccines have been used for over 50 years and have an excellent safety record. Annual vaccination is therefore recommended for all individuals with serious medical conditions, like COPD, and protects the vaccinee against influenza illness and also against hospitalization and death. In COPD patients, influenza infection can lead to exacerbations resulting in reduced quality of life, hospitalization and death in the most severe cases. Although there is only limited literature on the use of influenza vaccination solely in COPD patients, there is clearly enough evidence to recommend annual vaccination in this group. This review will focus on influenza virus and prophylaxis with inactivated influenza vaccines in COPD patients and other “at risk” groups to reduce morbidity, save lives, and reduce health care costs. PMID:18229561

  9. Rapid viral expansion and short drug half-life explain the incomplete effectiveness of current herpes simplex virus 2-directed antiviral agents.

    PubMed

    Schiffer, Joshua T; Swan, David A; Corey, Lawrence; Wald, Anna

    2013-12-01

    The nucleoside analogues acyclovir (ACV) and famciclovir (FCV) reduce the frequency and severity of herpes simplex virus 2 (HSV-2) genital shedding, yet despite their high potency in vitro and a lack of induced drug resistance, frequent episodes of breakthrough mucosal shedding occur. We tested a published stochastic, spatial mathematical model of HSV-2 replication and spread, in concert with pharmacokinetic and pharmacodynamic equations, against virologic data from clinical trials of twice-daily acyclovir and famciclovir suppression. The model reproduced the key features of clinical trial data, including genital shedding episode rate, expansion and decay dynamics, and heterogeneous peak viral production and duration. In simulations, these agents shortened episode duration by limiting the extent of viral production by 1 to 2 log units and limiting the formation of secondary ulcers by ∼50%. However, drug concentrations were noninhibitory during 42% of the dosing cycle. Even if drug concentrations were high at episode initiation, prolonged episodes often ensued due to drug decay over ensuing hours and subsequent rebound of rapidly replicating HSV-2. The local CD8(+) T-cell density was more predictive of episode viral production (R(2) = 0.42) and duration (R(2) = 0.21) than the drug concentration at episode onset (R(2) = 0.14 and 0.05, respectively), though the model projected that an agent with an equivalent potency but a two times longer half-life would decrease shedding by 80% compared to that of standard twice-daily regimens. Therefore, long half-life is a key characteristic of any agent that might fully suppress HSV-2 reactivations.

  10. Detection and transmission in chimpanzees of hepatitis B virus-related agents formerly designated "non-A, non-B" hepatitis.

    PubMed Central

    Wands, J R; Lieberman, H M; Muchmore, E; Isselbacher, K; Shafritz, D A

    1982-01-01

    Four chimpanzees have been infected with three different inocula containing "non-A, non-B" hepatitis virus(es). After inoculation, serial studies established the presence of antigenemia or viremia (or both) by radioimmunoassay with high-affinity monoclonal antibodies directed toward separate and distinct determinants on hepatitis B surface antigen (HBsAg) and by molecular hybridization analysis using a cloned hepatitis B virus (HBV) DNA probe. In contrast to results observed during HBV infection, elevations in serum alanine aminotransferase values indicate that liver injury preceded antigenemia by several weeks. Thus, the time between inoculation and development of antigenemia (incubation period) varied from 64 to 190 days and, in some cases, single or multiple episodes of antigenemia or viremia occurred in the absence of elevated aminotransferase levels. In this study, two chimpanzees were high-titer positive for antibodies to HBsAg (anti-HBs) from previous infection with HBV, suggesting that the antigenic composition of HBV-related virus(es) is substantially different from that of HBV, since naturally occurring anti-HBs antibodies were not protective. Demonstration of HBV-related virus(es) by the methods used in this study of experimental hepatitis infection in chimpanzees should now permit detection, isolation, and characterization of these previously elusive agents. Images PMID:6818547

  11. The phthalocyanine prototype derivative Alcian Blue is the first synthetic agent with selective anti-human immunodeficiency virus activity due to its gp120 glycan-binding potential.

    PubMed

    François, Katrien O; Pannecouque, Christophe; Auwerx, Joeri; Lozano, Virginia; Pérez-Pérez, Maria-Jésus; Schols, Dominique; Balzarini, Jan

    2009-11-01

    Alcian Blue (AB), a phthalocyanine derivative, is able to prevent infection by a wide spectrum of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strains in various cell types [T cells, (co)receptor-transfected cells, and peripheral blood mononuclear cells]. With the exception of herpes simplex virus, AB is inactive against a broad variety of other (DNA and RNA) viruses. Time-of-addition studies show that AB prevents HIV-1 infection at the virus entry stage, exactly at the same time as carbohydrate-binding agents do. AB also efficiently prevents fusion between persistently HIV-1-infected HUT-78 cells and uninfected (CD4(+)) lymphocytes, DC-SIGN-directed HIV-1 capture, and subsequent transmission to uninfected (CD4(+)) T lymphocytes. Prolonged passaging of HIV-1 at dose-escalating concentrations of AB resulted in the selection of mutant virus strains in which several N-glycans of the HIV-1 gp120 envelope were deleted and in which positively charged amino acid mutations in both gp120 and gp41 appeared. A mutant virus strain in which four N-glycans were deleted showed a 10-fold decrease in sensitivity to the inhibitory effect of AB. These data suggest that AB is likely endowed with carbohydrate-binding properties and can be considered an important lead compound in the development of novel synthetic nonpeptidic antiviral drugs targeting the glycans of the envelope of HIV.

  12. Cancer-associated infectious agents and epigenetic regulation.

    PubMed

    Vedham, Vidya; Verma, Mukesh

    2015-01-01

    Infectious agents are one of the factors which contribute to cancer development. Few examples include human papilloma virus in cervical cancer, hepatitis virus in hepatocellular carcinoma, herpes virus in Kaposi's sarcoma, Epstein-Barr virus in nasopharyngeal carcinoma, human T-cell lymphotropic virus type-1 (HTLV-1) in T-cell leukemia and lymphoma, Helicobacter pylori in gastric cancer. These agents cause genomic instability in the host and most of them affect host immune system. Infectious agents may integrate in the host genome although their sit of integration is not fixed. Expression of some infectious agents involves epigenetic regulation by DNA methylation, histone modification, miRNA level alteration, and chromatin condensation. This chapter provides examples where epigenetic regulation has been reported in cancer-associated infectious agents. Epigenetic inhibitors and their potential in cancer control and treatment are also discussed.

  13. Cynaropicrin: A Comprehensive Research Review and Therapeutic Potential As an Anti-Hepatitis C Virus Agent

    PubMed Central

    Elsebai, Mahmoud F.; Mocan, Andrei; Atanasov, Atanas G.

    2016-01-01

    The different pharmacologic properties of plants-containing cynaropicrin, especially artichokes, have been known for many centuries. More recently, cynaropicrin exhibited a potential activity against all genotypes of hepatitis C virus (HCV). Cynaropicrin has also shown a wide range of other pharmacologic properties such as anti-hyperlipidemic, anti-trypanosomal, anti-malarial, antifeedant, antispasmodic, anti-photoaging, and anti-tumor action, as well as activation of bitter sensory receptors, and anti-inflammatory properties (e.g., associated with the suppression of the key pro-inflammatory NF-κB pathway). These pharmacological effects are very supportive factors to its outstanding activity against HCV. Structurally, cynaropicrin might be considered as a potential drug candidate, since it has no violations for the rule of five and its water-solubility could allow formulation as therapeutic injections. Moreover, cynaropicrin is a small molecule that can be easily synthesized and as the major constituent of the edible plant artichoke, which has a history of safe dietary use. In summary, cynaropicrin is a promising bioactive natural product that, with minor hit-to-lead optimization, might be developed as a drug for HCV. PMID:28008316

  14. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent

    PubMed Central

    Baradaran, Ali; Yusoff, Khatijah; Shafee, Norazizah; Rahim, Raha Abdul

    2016-01-01

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells. PMID:26918060

  15. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent.

    PubMed

    Baradaran, Ali; Yusoff, Khatijah; Shafee, Norazizah; Rahim, Raha Abdul

    2016-01-01

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells.

  16. Combination Immunosuppressive Therapy Including Rituximab for Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis in Adult-Onset Still's Disease

    PubMed Central

    Schäfer, Eva Johanna; Jung, Wolfram

    2016-01-01

    Hemophagocytic lymphopcytosis (HLH) is a life-threatening condition. It can occur either as primary form with genetic defects or secondary to other conditions, such as hematological or autoimmune diseases. Certain triggering factors can predispose individuals to the development of HLH. We report the case of a 25-year-old male patient who was diagnosed with HLH in the context of adult-onset Still's disease (AOSD) during a primary infection with Epstein-Barr virus (EBV). During therapy with anakinra and dexamethasone, he was still symptomatic with high-spiking fevers, arthralgia, and sore throat. His laboratory values showed high levels of ferritin and C-reactive protein. His condition improved after the addition of rituximab and cyclosporine to his immunosuppressive regimen with prednisolone and anakinra. This combination therapy led to a sustained clinical and serological remission of his condition. While rituximab has been used successfully for HLH in the context of EBV-associated lymphoma, its use in autoimmune diseases is uncommon. We hypothesize that the development of HLH was triggered by a primary EBV infection and that rituximab led to elimination of EBV-infected B-cells, while cyclosporine ameliorated the cytokine excess. We therefore propose that this combination immunosuppressive therapy might be successfully used in HLH occurring in the context of autoimmune diseases. PMID:28018698

  17. Whole genome sequence analysis of circulating Bluetongue virus serotype 11 strains from the United States including two domestic canine isolates.

    PubMed

    Gaudreault, Natasha N; Jasperson, Dane C; Dubovi, Edward J; Johnson, Donna J; Ostlund, Eileen N; Wilson, William C

    2015-07-01

    Bluetongue virus (BTV) is a vector-transmitted pathogen that typically infects and causes disease in domestic and wild ruminants. BTV is also known to infect domestic canines as discovered when dogs were vaccinated with a BTV-contaminated vaccine. Canine BTV infections have been documented through serological surveys, and natural infection by the Culicoides vector has been suggested. The report of isolation of BTV serotype 11 (BTV-11) from 2 separate domestic canine abortion cases in the states of Texas in 2011 and Kansas in 2012, were apparently unrelated to BTV-contaminated vaccination or consumption of BTV-contaminated raw meat as had been previously speculated. To elucidate the origin and relationship of these 2 domestic canine BTV-11 isolates, whole genome sequencing was performed. Six additional BTV-11 field isolates from Texas, Florida, and Washington, submitted for diagnostic investigation during 2011 and 2013, were also fully sequenced and analyzed. The phylogenetic analysis indicates that the BTV-11 domestic canine isolates are virtually identical, and both share high identity with 2 BTV-11 isolates identified from white-tailed deer in Texas in 2011. The results of the current study further support the hypothesis that a BTV-11 strain circulating in the Midwestern states could have been transmitted to the dogs by the infected Culicoides vector. Our study also expands the short list of available BTV-11 sequences, which may aid BTV surveillance and epidemiology.

  18. Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung.

    PubMed

    Numata, Mari; Grinkova, Yelena V; Mitchell, James R; Chu, Hong Wei; Sligar, Stephen G; Voelker, Dennis R

    2013-01-01

    There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV) infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG). Preparations of nanodiscs containing POPG (nPOPG) antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 μg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a halftime of 60-120 minutes (m), based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo.

  19. Treatment of hepatitis C virus genotype 3 infection with direct-acting antiviral agents

    PubMed Central

    Zanaga, L.P.; Miotto, N.; Mendes, L.C.; Stucchi, R.S.B.; Vigani, A.G.

    2016-01-01

    Hepatitis C virus (HCV) genotype 3 is responsible for 30.1% of chronic hepatitis C infection cases worldwide. In the era of direct-acting antivirals, these patients have become one of the most challenging to treat, due to fewer effective drug options, higher risk of developing cirrhosis and hepatocellular carcinoma and lower sustained virological response (SVR) rates. Currently there are 4 recommended drugs for the treatment of HCV genotype 3: pegylated interferon (PegIFN), sofosbuvir (SOF), daclatasvir (DCV) and ribavirin (RBV). Treatment with PegIFN, SOF and RBV for 12 weeks has an overall SVR rate of 83–100%, without significant differences among cirrhotic and non-cirrhotic patients. However, this therapeutic regimen has several contraindications and can cause significant adverse events, which can reduce adherence and impair SVR rates. SOF plus RBV for 24 weeks is another treatment option, with SVR rates of 82–96% among patients without cirrhosis and 62–92% among those with cirrhosis. Finally, SOF plus DCV provides 94–97% SVR rates in non-cirrhotic patients, but 59–69% in those with cirrhosis. The addition of RBV to the regimen of SOF plus DCV increases the SVR rates in cirrhotic patients above 80%, and extending treatment to 24 weeks raises SVR to 90%. The ideal duration of therapy is still under investigation. For cirrhotic patients, the optimal duration, or even the best regimen, is still uncertain. Further studies are necessary to clarify the best regimen to treat HCV genotype 3 infection. PMID:27783808

  20. Development of Anti-Infectives Using Phage Display: Biological Agents against Bacteria, Viruses, and Parasites

    PubMed Central

    Huang, Johnny X.; Bishop-Hurley, Sharon L.

    2012-01-01

    The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens. PMID:22664969

  1. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Kanwal, Shamsa

    2014-03-15

    Polymers either serve as shielding or capping agents to restrict the nanoparticle size. This study demonstrates the polymer depositions and their effects in synthesis and sharp stabilization of gold nanoparticles (AuNPs) and to develop gold/silver nanoalloys (Au/Ag nanoalloys). Effects of different polymers are tested to justify their role in synthesis and stability of phloroglucinol (PG) coated AuNPs and Au/Ag nanoalloys. Cationic and anionic i.e. [Polydiallyldimethylammonium](+) (PDDA), [Polyethyleneimine](+) (PEI), [Polystyrene sulfonate](2-) (PSS) and neutral polymer Polychlorotriflouroethylene (PCTFE) produce praiseworthy stable AuNPs and Au/Ag nanoalloy. To prove polymer effects characterization protocols including UV-vis, Fluorescence (PL), IR and AFM imaging are performed to fully investigate the mechanism and size characteristics of these nanoparticles/nanoalloys. In this study sharp size controlling/sheilding effects were observed particularly with cationic polymers simply through the favorable electrostatic interactions with the terminal ends of PG Potent/significant detection of doxorubicin (DOX, an antileukemic agent) via fluorescence resonance energy transfer (FRET) between PEI shielded AuNPs (AuNPEI) and DOX was achieved upto 10 pM level, while PDDA protected AuNPs facilitated the detection of ascorbic acid based on fluorescence enhancement effects in wide range (10-200 nM) and with detection limit of 200 pM. Similarly sensing performance of PEI stabilized Au/Ag nanoalloys on addition of halides (Cl(-), Br(-), I(-)) is evaluated through red shifted SPR along with continuous increase in absorbance and also through AFM. Moreover the addition of halide ions also helped the regeneration of AuNPs by taking away silver from the Au/Ag nanoalloys enabling their detections upto subnanomolar levels.

  2. Fecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular single-stranded DNA viruses.

    PubMed

    Lima, Diane; Cibulski, Samuel Paulo; Finkler, Fabrine; Teixeira, Thais; Varela, Ana Paula; Cerva, Cristine; Loiko, Márcia; Scheffer, Camila; Dos Santos, Helton; Mayer, Fabiana; Roehe, Paulo

    2017-01-18

    This study is focused on the identification of the fecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7,743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with BLASTx revealed that 279 contigs (4%) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding (CRESS) DNA viruses, were also identified. The characterization of the fecal virome of healthy chickens described here provides not only a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.

  3. Current state of evidence on 'off-label' therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland--a consensus report.

    PubMed

    Aringer, M; Burkhardt, H; Burmester, G R; Fischer-Betz, R; Fleck, M; Graninger, W; Hiepe, F; Jacobi, A M; Kötter, I; Lakomek, H J; Lorenz, H M; Manger, B; Schett, G; Schmidt, R E; Schneider, M; Schulze-Koops, H; Smolen, J S; Specker, C; Stoll, T; Strangfeld, A; Tony, H P; Villiger, P M; Voll, R; Witte, T; Dörner, T

    2012-04-01

    Systemic lupus erythematosus (SLE) can be a severe and potentially life-threatening disease that often represents a therapeutic challenge because of its heterogeneous organ manifestations. Only glucocorticoids, chloroquine and hydroxychloroquine, azathioprine, cyclophosphamide and very recently belimumab have been approved for SLE therapy in Germany, Austria and Switzerland. Dependence on glucocorticoids and resistance to the approved therapeutic agents, as well as substantial toxicity, are frequent. Therefore, treatment considerations will include 'off-label' use of medication approved for other indications. In this consensus approach, an effort has been undertaken to delineate the limits of the current evidence on therapeutic options for SLE organ disease, and to agree on common practice. This has been based on the best available evidence obtained by a rigorous literature review and the authors' own experience with available drugs derived under very similar health care conditions. Preparation of this consensus document included an initial meeting to agree upon the core agenda, a systematic literature review with subsequent formulation of a consensus and determination of the evidence level followed by collecting the level of agreement from the panel members. In addition to overarching principles, the panel have focused on the treatment of major SLE organ manifestations (lupus nephritis, arthritis, lung disease, neuropsychiatric and haematological manifestations, antiphospholipid syndrome and serositis). This consensus report is intended to support clinicians involved in the care of patients with difficult courses of SLE not responding to standard therapies by providing up-to-date information on the best available evidence.

  4. Association of Virus with Cases of Rubella Studied in Toronto: Propagation of the Agent and Transmission to Monkeys

    PubMed Central

    Sigurdardottir, Bergthora; Givan, Kathleen F.; Rozee, K. R.; Rhodes, A. J.

    1963-01-01

    Using an interference test with indicator virus Echo 11, a virus has been isolated in nine of 18 specimens from cases of typical rubella. The virus will interfere with the development of cytopathology in green monkey kidney cells with viruses Echo 11, Coxsackie B1 and B4, Poliovirus I and III (Sabin strains) and simian virus SV4. In four of five paired sera this virus was neutralized by convalescent but not by the acute phase serum, tested by interference inhibition. No cytopathology was observed in unstained cultures or in sequential cultures stained with acridine orange or fluorescent antibody. The virus was destroyed by exposure to 56° C. for 30 minutes and 15% ether at 4° C. for 24 hours, but survived with some reduction in titre at 4° C. for 24 hours. Green monkeys infected by this virus developed a macular rash, lymphadenopathy and modest rise in white blood cell count. PMID:13989076

  5. Relative potencies of different anti-herpes agents in the topical treatment of cutaneous herpes simplex virus infection of athymic nude mice.

    PubMed Central

    Descamps, J; De Clercq, E; Barr, P J; Jones, A S; Walker, R T; Torrence, P F; Shugar, D

    1979-01-01

    Thirteen established anti-herpes compounds have been directly compared in a single assay system for their effects on the development of herpetic skin lesions, and mortality associated therewith, in athymic nude (nu/nu) mice inoculated intracutaneously with herpes simplex virus type 1 (KOS). When applied topically (at 1% in a water-soluble ointment), phosphonoacetic acid, E-5-(2-bromovinyl)-2'-deoxyuridine, acycloguanosine, and trisodium phosphonoformate emerged as the most active agents. PMID:526011

  6. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.

  7. Assessment of burden of virus agents in an urban sewage treatment plant in Rio de Janeiro, Brazil.

    PubMed

    Fumian, Tulio Machado; Vieira, Carmen Baur; Leite, José Paulo Gagliardi; Miagostovich, Marize Pereira

    2013-03-01

    Sewage discharge is considered to be the main source of virus contamination in aquatic environments. There is no correlation between the presence of viruses and the presence of fecal coliforms in water; therefore virological markers are needed when monitoring contamination. This study investigates DNA and RNA virus concentrations in wastewater and evaluates a potential virus marker of human contamination. Influent and effluent samples were collected twice a month throughout a 1-year period. Viruses were detected using quantitative polymerase chain reaction protocols; nucleotide sequencing was carried out for virus genotyping. Human adenovirus (HAdV) and polyomavirus JC (JCPyV) were the most prevalent viruses found in influent samples (100%) with a virus load that ranged from 10(6) to 10(5) genome copies per liter (gc l(-1)). Norovirus genogroup II (NoV GII) and human astrovirus (HAstV) were less prevalent, and ranged from 10(4) to 10(3)gc l(-1). Quantitative data on virus profiles in wastewaters stress the high level of rotavirus species A environmental dissemination and address the potential of HAdV as a useful virological marker of virus contamination in aquatic environments. This study corroborates other studies performed in developed countries on DNA viruses as good markers of human fecal contamination.

  8. Modeling the 2014 Ebola Virus Epidemic - Agent-Based Simulations, Temporal Analysis and Future Predictions for Liberia and Sierra Leone.

    PubMed

    Siettos, Constantinos; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2015-03-09

    We developed an agent-based model to investigate the epidemic dynamics of Ebola virus disease (EVD) in Liberia and Sierra Leone from May 27 to December 21, 2014. The dynamics of the agent-based simulator evolve on small-world transmission networks of sizes equal to the population of each country, with adjustable densities to account for the effects of public health intervention policies and individual behavioral responses to the evolving epidemic. Based on time series of the official case counts from the World Health Organization (WHO), we provide estimates for key epidemiological variables by employing the so-called Equation-Free approach. The underlying transmission networks were characterized by rather random structures in the two countries with densities decreasing by ~19% from the early (May 27-early August) to the last period (mid October-December 21). Our estimates for the values of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate, are very close to the ones reported by the WHO Ebola response team during the early period of the epidemic (until September 14) that were calculated based on clinical data. Specifically, regarding the effective reproductive number Re, our analysis suggests that until mid October, Re was above 2.3 in both countries; from mid October to December 21, Re dropped well below unity in Liberia, indicating a saturation of the epidemic, while in Sierra Leone it was around 1.9, indicating an ongoing epidemic. Accordingly, a ten-week projection from December 21 estimated that the epidemic will fade out in Liberia in early March; in contrast, our results flashed a note of caution for Sierra Leone since the cumulative number of cases could reach as high as 18,000, and the number of deaths might exceed 5,000, by early March 2015. However, by processing the reported data of the very last period (December 21, 2014-January 18, 2015), we obtained more optimistic estimates indicative of a remission of

  9. Muscavirus (MdSGHV) disease dynamics in house fly populations--how is this virus transmitted and has it potential as a biological control agent?

    PubMed

    Lietze, Verena-Ulrike; Keesling, James E; Lee, Jo Ann; Vallejo, Celeste R; Geden, Christopher J; Boucias, Drion G

    2013-03-01

    The newly classified family Hytrosaviridae comprises several double-stranded DNA viruses that have been isolated from various dipteran species. These viruses cause characteristic salivary gland hypertrophy and suppress gonad development in their hosts. One member, Muscavirus or MdSGHV, exclusively infects adult house flies (Musca domestica) and, owing to its massive reproduction in and release from the salivary glands, is believed to be transmitted orally among feeding flies. However, results from recent experiments suggest that additional transmission routes likely are involved in the maintenance of MdSGHV in field populations of its host. Firstly, several hours before newly emerged feral flies begin feeding activities, the fully formed peritrophic matrix (PM) constitutes an effective barrier against oral infection. Secondly, flies are highly susceptible to topical virus treatments and intrahemocoelic injections. Thirdly, disease transmission is higher when flies are maintained in groups with infected conspecifics than when flies have access to virus-contaminated food. We hypothesize that interactions between flies may lead to cuticular damage, thereby providing an avenue to viral particles for direct access to the hemocoel. Based on our current knowledge, two options seem plausible for developing Muscavirus as a sterilizing agent to control house fly populations: The virus may either be formulated with PM-disrupting materials to facilitate oral infection from a feeding bait system, or amended with abrasive materials to enhance infection through a damaged cuticle after topical aerosol applications.

  10. Efficacy of CMX001 as a Prophylactic and Presymptomatic Antiviral Agent in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans

    PubMed Central

    Rice, Amanda D.; Adams, Mathew M.; Lampert, Bernhard; Foster, Scott; Lanier, Randall; Robertson, Alice; Painter, George; Moyer, Richard W.

    2011-01-01

    CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA viruses and, in contrast to CDV, is orally available and has shown no evidence of nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although smallpox has been eliminated from the environment, treatments are urgently being sought due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Here we first review and discuss the rabbitpox virus (RPV) infection of New Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a prophylactic and early disease antiviral. Our results should also be applicable to monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination. PMID:21369346

  11. Delta agent (Hepatitis D)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000216.htm Delta agent (Hepatitis D) To use the sharing features on this page, please enable JavaScript. Delta agent is a type of virus called hepatitis ...

  12. Molecular analysis of hepatitis B virus (HBV) in an HIV co-infected patient with reactivation of occult HBV infection following discontinuation of lamivudine-including antiretroviral therapy

    PubMed Central

    2011-01-01

    Background Occult hepatitis B virus (HBV) infection (OBI) is characterized by HBV DNA persistence even though the pattern of serological markers indicates an otherwise resolved HBV infection. Although OBI is usually clinically silent, immunocompromised patients may experience reactivation of the liver disease. Case presentation We report the case of an individual with human immunodeficiency virus (HIV) infection and anti-HBV core antibody positivity, who experienced severe HBV reactivation after discontinuation of lamivudine-including antiretroviral therapy (ART). HBV sequencing analysis showed a hepatitis B surface antigen escape mutant whose presence in an earlier sample excluded reinfection. Molecular sequencing showed some differences between two isolates collected at a 9-year interval, indicating HBV evolution. Resumption of ART containing an emtricitabine/tenofovir combination allowed control of plasma HBV DNA, which fell to undetectable levels. Conclusion This case stresses the ability of HBV to evolve continuously, even during occult infection, and the effectiveness of ART in controlling OBI reactivation in HIV-infected individuals. PMID:22054111

  13. Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses.

    PubMed

    Seligmann, Hervé; Raoult, Didier

    2016-06-01

    Putatively, stem-loop RNA hairpins explain networks of selfish elements and RNA world remnants. Their genomic density increases with intracellular lifestyle, especially when comparing giant viruses and their virophages. RNA protogenomes presumably templated for mRNAs and self-replicating stem-loops, ancestors of modern genes and parasitic sequences, including tRNAs and rRNAs. Primary and secondary structure analyses suggest common ancestry for t/rRNAs and parasitic RNAs, parsimoniously link diverse RNA metabolites (replication origins, tRNAs, ribozymes, riboswitches, miRNAs and rRNAs) to parasitic RNAs (ribosomal viroids, Rickettsia repeated palindromic elements (RPE), stem-loop hairpins in giant viruses, their virophages, and transposable retrovirus-derived elements). Results indicate ongoing genesis of small RNA metabolites, and common ancestry or similar genesis for rRNA and retroviral sequences. Assuming functional integration of modular duplicated RNA hairpins evolutionarily unifies diverse molecules, postulating stem-loop hairpin RNAs as origins of genetic innovation, ancestors of rRNAs, retro- and Mimivirus sequences, and cells.

  14. Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  15. Whole-Genome Sequence of Pseudomonas fluorescens EK007-RG4, a Promising Biocontrol Agent against a Broad Range of Bacteria, Including the Fire Blight Bacterium Erwinia amylovora

    PubMed Central

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke

    2017-01-01

    ABSTRACT Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. PMID:28360179

  16. Rapid multiplex reverse transcription-PCR typing of influenza A and B virus, and subtyping of influenza A virus into H1, 2, 3, 5, 7, 9, N1 (human), N1 (animal), N2, and N7, including typing of novel swine origin influenza A (H1N1) virus, during the 2009 outbreak in Milwaukee, Wisconsin.

    PubMed

    He, Jie; Bose, Michael E; Beck, Eric T; Fan, Jiang; Tiwari, Sagarika; Metallo, Jacob; Jurgens, Lisa A; Kehl, Sue C; Ledeboer, Nathan; Kumar, Swati; Weisburg, William; Henrickson, Kelly J

    2009-09-01

    A large outbreak of novel influenza A (H1N1) virus (swine origin influenza virus [S-OIV]) infection in Milwaukee, WI, occurred in late April 2009. We had recently developed a rapid multiplex reverse transcription-PCR enzyme hybridization assay (FluPlex) to determine the type (A or B) and subtype (H1, H2, H3, H5, H7, H9, N1 [human], N1 [animal], N2, or N7) of influenza viruses, and this assay was used to confirm the diagnoses for the first infected patients in the state. The analytical sensitivity was excellent at 1.5 to 116 copies/reaction, or 10(-3) to 10(-1) 50% tissue culture infective doses/ml. The testing of all existing hemagglutinin and neuraminidase subtypes of influenza A virus and influenza B virus (41 influenza virus strains) and 24 common respiratory pathogens showed only one low-level H3 cross-reaction with an H10N7 avian strain and only at 5.2 x 10(6) copies/reaction, not at lower concentrations. Comparisons of the FluPlex results with results from multiple validated in-house molecular assays, CDC-validated FDA-approved assays, and gene sequencing demonstrated 100% positive agreement for the typing of 179 influenza A viruses and 3 influenza B viruses, the subtyping of 110 H1N1 (S-OIV; N1 [animal]), 62 H1N1 (human), and 6 H3N2 (human) viruses, and the identification of 24 negative clinical samples and 100% negative agreement for all viruses tested except H1N1 (human) (97.7%). The small number of false-positive H1N1 (human) samples most likely represent increased sensitivity over that of other in-house assays, with four of four results confirmed by the CDC's influenza virus subtyping assay. The FluPlex is a rapid, inexpensive, sensitive, and specific method for the typing and subtyping of influenza viruses and demonstrated outstanding utility during the first 2 weeks of an S-OIV infection outbreak. Methods for rapid detection and broad subtyping of influenza viruses, including animal subtypes, are needed to address public concern over the emergence of

  17. Beneficial role of a nonpathogenic orbi-like virus: studies on the interfering effect of M14 virus in mice and mosquitoes infected with Japanese encephalitis virus.

    PubMed

    Huang, C H; Liang, H C; Jia, F L

    1985-01-01

    M14 virus, isolated from Culex tritaeniorhynchus mosquitoes collected in a Beijing suburb, was identified as a noncytopathogenic orbi-like virus. It was found to interfere with the growth of Japanese encephalitis (JE) virus, a mosquito-borne virus which infects humans, pigs, and horses in much of Asia, including China. JE virus is transmitted by C. tritaeniorhynchus mosquitoes and causes encephalitis in humans and horses and abortion in pigs. Because it had potential as an interfering agent for the biological control of JE, the M14 virus was characterized and its interfering effect was studied in mice and in C. tritaeniorhynchus mosquitoes.

  18. Isolation and characterization of avian influenza viruses, including highly pathogenic H5N1, from poultry in live bird markets in Hanoi, Vietnam, in 2001.

    PubMed

    Nguyen, Doan C; Uyeki, Timothy M; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M; Swayne, David E; Huynh, Lien P T; Nghiem, Ha K; Nguyen, Hanh H T; Hoang, Long T; Cox, Nancy J; Katz, Jacqueline M

    2005-04-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia.

  19. Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson’s disease and depression

    PubMed Central

    Lawal, Hakeem O.; Terrell, Ashley; Lam, Hoa A.; Djapri, Christine; Jang, Jennifer; Hadi, Richard; Roberts, Logan; Shahi, Varun; Chou, Man-Ting; Biedermann, Traci; Huang, Brian; Lawless, George M.; Maidment, Nigel T.; Krantz, David E.

    2012-01-01

    Small molecules that increase the presynaptic function of aminergic cells may provide neuroprotection in Parkinson’s disease as well as treatments for attention deficit hyperactivity disorder (ADHD) and depression. Model genetic organisms such as Drosophila melanogaster may enhance the detection of new drugs via modifier or “enhancer/suppressor” screens, but this technique has not been applied to processes relevant to psychiatry. To identify new aminergic drugs in vivo, we used a mutation in the Drosophila vesicular monoamine transporter (dVMAT) as a sensitized genetic background, and performed a suppressor screen. We fed dVMAT mutant larvae ~1000 known drugs and quantitated rescue (suppression) of an amine-dependent locomotor deficit in the larva. To determine which drugs might specifically potentiate neurotransmitter release, we performed an additional secondary screen for drugs that require presynaptic amine storage to rescue larval locomotion. Using additional larval locomotion and adult fertility assays, we validated that at least one compound previously used clinically as an antineoplastic agent potentiates the presynaptic function of aminergic circuits. We suggest that structurally similar agents might be used to development treatments for Parkinson’s disease, depression and ADHD and that modifier screens in Drosophila provide a new strategy to screen for neuropsychiatric drugs. More generally, our findings demonstrate the power of physiologically based screens for identifying bioactive agents for select neurotransmitter systems. PMID:23229049

  20. Historical Perspective: What Constitutes Discovery (of a New Virus)?

    PubMed

    Murphy, F A

    2016-01-01

    A historic review of the discovery of new viruses leads to reminders of traditions that have evolved over 118 years. One such tradition gives credit for the discovery of a virus to the investigator(s) who not only carried out the seminal experiments but also correctly interpreted the findings (within the technological context of the day). Early on, ultrafiltration played a unique role in "proving" that an infectious agent was a virus, as did a failure to find any microscopically visible agent, failure to show replication of the agent in the absence of viable cells, thermolability of the agent, and demonstration of a specific immune response to the agent so as to rule out duplicates and close variants. More difficult was "proving" that the new virus was the etiologic agent of the disease ("proof of causation")-for good reasons this matter has been revisited several times over the years as technologies and perspectives have changed. One tradition is that the discoverers get to name their discovery, their new virus (unless some grievous convention has been broken)-the stability of these virus names has been a way to honor the discoverer(s) over the long term. Several vignettes have been chosen to illustrate several difficulties in holding to the traditions (vignettes chosen include vaccinia and variola viruses, yellow fever virus, and influenza viruses. Crimean-Congo hemorrhagic fever virus, Murray Valley encephalitis virus, human immunodeficiency virus 1, Sin Nombre virus, and Ebola virus). Each suggests lessons for the future. One way to assure that discoveries are forever linked with discoverers would be a permanent archive in one of the universal virus databases that have been constructed for other purposes. However, no current database seems ideal-perhaps members of the global community of virologists will have an ideal solution.

  1. Estimation of the age-specific per-contact probability of Ebola virus transmission in Liberia using agent-based simulations

    NASA Astrophysics Data System (ADS)

    Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2016-06-01

    Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.

  2. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses

    PubMed Central

    Friedman, Gregory K.; Moore, Blake P.; Nan, Li; Kelly, Virginia M.; Etminan, Tina; Langford, Catherine P.; Xu, Hui; Han, Xiaosi; Markert, James M.; Beierle, Elizabeth A.; Gillespie, G. Yancey

    2016-01-01

    Background Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Methods Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. Results We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Conclusions Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. PMID:26188016

  3. Rhenium analogues of promising renal imaging agents with a [99mTc(CO)3]+ core bound to cysteine-derived dipeptides, including lanthionine.

    PubMed

    He, Haiyang; Lipowska, Malgorzata; Xu, Xiaolong; Taylor, Andrew T; Marzilli, Luigi G

    2007-04-16

    The coordination chemistry of lanthionine (LANH2) and cystathionine (CSTH2) dipeptides, which respectively consist of two cysteines and one cysteine and one homocysteine linked by a thioether bridge, is almost unstudied. Recently for fac-[99mTc(CO)3(LAN)]- isomers, the first small 99mTc(CO)3 agents evaluated in humans were found to give excellent renal images and to have a high specificity for renal excretion. Herein we report the synthesis and characterization of Re complexes useful for interpreting the nature of tracer 99mTc radiopharmaceuticals. Treatment of [Re(CO)3(H2O)3]OTf with commercially available LANH2 (a mixture of meso (d,l) and chiral (dd,ll) isomers) gave three HPLC peaks, 1A, 1B, and 1C, but treatment with CSTH2 (l,l isomer) gave one major product, Re(CO)3(CSTH) (2). Crystalline Re(CO)3(LANH) products were best obtained with synthetic LANH2, richer in meso or chiral isomers. X-ray crystallography showed that these dipeptides coordinate as tridentate N2S-bound ligands with two dangling carboxyls. The LANH ligand is meso in 1A and 1C and chiral in 1B. While 1A (kinetically favored) is stable at ambient temperature for days, it converted into 1C (thermodynamically favored) at 100 degrees C; after 6 h, equilibrium was reached at a 1A:1C ratio of 1:2 at pH 8. The structures provide a rationale for this behavior and for the fact that 1A and 1C have simple NMR spectra. This simplicity results from fluxional interchange between an enantiomer with both chelate rings having the same delta pucker and an enantiomer with both chelate rings having the same lambda pucker. Agents with the [99mTc(CO)3]+ core and N2S ligands show promise of becoming an important class of 99mTc radiopharmaceuticals. The chemistry of Re analogues with these ligands, such as the LAN2- complexes reported here, provides a useful background for designing new small agents and also tagged large agents because two uncoordinated carboxyl groups are available for conjugation with biological

  4. Liver toxicity of antiretroviral combinations including fosamprenavir plus ritonavir 1400/100 mg once daily in HIV/hepatitis C virus-coinfected patients.

    PubMed

    Merchante, Nicolás; López-Cortés, Luis F; Delgado-Fernández, Marcial; Ríos-Villegas, Maria J; Márquez-Solero, Manuel; Merino, Dolores; Pasquau, Juan; García-Figueras, Carolina; Martínez-Pérez, Maria Angeles; Omar, Mohamed; Rivero, Antonio; Macías, Juan; Mata, Rosario; Pineda, Juan Antonio

    2011-07-01

    Abstract Our objective was to evaluate the liver toxicity of antiretroviral regimens including fosamprenavir plus ritonavir (FPV/r) 1400/100 mg once daily (QD) in HIV/hepatitis C virus (HCV)-coinfected patients. This was a prospective cohort study that included 117 HIV/HCV-coinfected patients who started FPV/r 1400/100 mg QD-based antiretroviral therapy (ART) and who neither had received a previous antiretroviral regimen containing FPV nor had a past history of virologic failure while receiving protease inhibitors (PI). The primary end point of the study was the occurrence of grade 3-4 liver enzymes elevations (LEE) within 1 year after starting FPV/r QD. Factors potentially associated with grade 3-4 LEE, including baseline liver fibrosis, were analyzed. Eleven (9%) patients had a grade 3-4 LEE during the follow-up, resulting in an incidence of severe liver toxicity of 9% (95% confidence interval 4.1-14.6%). None of these cases led to FPV/r discontinuation. Baseline liver fibrosis could be assessed in 97 (83%) patients. Six of 71 patients (8%) with significant fibrosis had a grade 3-4 LEE versus 2 of 26 (8%) without significant fibrosis (p=1.0). Twenty (21%) patients had cirrhosis at baseline. There were no cases of LEE among cirrhotics. In conclusion, the incidence of severe liver toxicity after 1 year of therapy with FPV/r QD-based ART in HIV/HCV-coinfected patients is similar to what has been reported with other boosted PIs. In addition, the presence of significant fibrosis or cirrhosis was not associated with the emergence of liver toxicity. Thus, ART regimens containing FPV/r QD may be considered safe in HIV/HCV-coinfected patients, including those with cirrhosis.

  5. Experience with direct acting anti-viral agents for treating hepatitis C virus infection in renal transplant recipients.

    PubMed

    Goel, Amit; Bhadauria, Dharmendra Singh; Kaul, Anupma; Prasad, Narayan; Gupta, Amit; Sharma, Raj Kumar; Rai, Praveer; Aggarwal, Rakesh

    2017-03-27

    In recent past, direct-acting anti-viral drugs (DAAs) have become the standard of care for the treatment of hepatitis C virus (HCV) infection. However, the experience with the use of these drugs in Indian renal transplant recipients is limited. We retrospectively reviewed our experience with DAA-based treatment for HCV infection in such patients. Between April 2015 and December 2016, six adults (median age 41 [range 34-52] years, male 5; GT1 2, GT3 3, and GT4 1; including three with prior failed interferon-based treatment) had received genotype-guided, DAA-based anti-HCV treatment 1 to 158 (median 15) months after renal transplantation. Of them, four completed the planned 24-week treatment without any significant adverse event. One of them had increase in serum creatinine after 16 weeks of treatment with sofosbuvir and daclatasvir, with acute interstitial nephritis on kidney biopsy; his renal function improved on stopping the drugs. The other patient had preexisting mild renal dysfunction, which worsened after 8 weeks of sofosbuvir-ledipasvir treatment; this did not reverse on stopping treatment. All the six patients achieved undetectable HCV RNA after 4 weeks of treatment and also achieved sustained virologic response, i.e. lack of detectable HCV RNA in serum 12 weeks after stopping treatment. Overall, DAA-based treatment was effective in treating HCV infection in our renal transplant recipients; however, caution and monitoring of renal function during such treatment is advisable in patients who have additional factors that predispose to renal injury.

  6. Tumor promoter 12-O-tetradecanoylphorbol 13-acetate stimulates simian virus 40 induction by DNA-damaging agents and tumor initiators

    SciTech Connect

    Nomura, S.; Shobu, N.; Oishi, M.

    1983-05-01

    Simian virus 40 (SV40)-transformed Syrian hamster kidney cells produce infectious SV40 virus particles after treatments which damage DNA, such as UV irradiation or mitomycin C treatment. We have found that the induction of SV40 by DNA-damaging agents is greatly stimulated when a typical tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA), is present in the medium. Phorbol, which has a molecular structure similar to TPA but does not have any tumor-promoting activity, showed no such stimulatory effect on SV40 induction. This apparent synergistic effect of DNA-damaging agents and tumor promoter (TPA) was more pronounced when a tumor initiator, benzo (a)pyrene or 2-acetamido-fluorene, was combined with TPA. The effect of TPA on UV-triggered SV40 induction was greatly influenced by the timing of TPA addition to the culture medium, which was most efficient when addition of TPA was 5 to 20 h before UV irradiation. The effect of TPA, however, was not observed in SV40 rescue from hamster cells by cell fusion with permissive monkey (C7) cells.

  7. Novel Host-Related Virulence Factors Are Encoded by Squirrelpox Virus, the Main Causative Agent of Epidemic Disease in Red Squirrels in the UK

    PubMed Central

    Kjær, Karina Hansen; Wood, Ann R.; Hughes, Margaret; Martensen, Pia Møller; Radford, Alan D.; Hall, Neil; Chantrey, Julian

    2014-01-01

    Squirrelpox virus (SQPV) shows little evidence for morbidity or mortality in North American grey squirrels (Sciurus carolinensis), in which the virus is endemic. However, more recently the virus has emerged to cause epidemics with high mortality in Eurasian red squirrels (S. vulgaris) in Great Britain, which are now threatened. Here we report the genome sequence of SQPV. Comparison with other Poxviridae revealed a core set of poxvirus genes, the phylogeny of which showed SQPV to be in a new Chordopoxvirus subfamily between the Molluscipoxviruses and Parapoxviruses. A number of SQPV genes were related to virulence, including three major histocomaptibility class I homologs, and one CD47 homolog. In addition, a novel potential virulence factor showing homology to mammalian oligoadenylate synthetase (OAS) was identified. This family of proteins normally causes activation of an endoribonuclease (RNaseL) within infected cells. The putative function of this novel SQPV protein was predicted in silico. PMID:24983354

  8. IMPROVED DETECTION OF HUMAN ENTERIC VIRUSES IN FOODS BY RT-PCR. (R826139)

    EPA Science Inventory

    Human enteric viruses (including hepatitis A virus (HAV) and Norwalk-like viruses (NLVs)) are now recognized as common causes of foodborne disease. While methods to detect these agents in clinical specimens have improved significantly over the last 10 years, applications to fo...

  9. Getting Acquainted: An Induction Training Guide for First-Year Extension Agents. Suggestions for Completing Certain Learning Experiences Included in the Induction Training Guide; a Supplement to "Getting Acquainted."

    ERIC Educational Resources Information Center

    Collings, Mary Louise; Gassie, Edward W.

    An induction guide to help the extension agent get acquainted with his role and suggestions for completing learning experiences that are included in the guide comprise this two-part publication. The training guide learning experiences, a total of 25, are made up of: Objectives of the New Worker; When Completed; Learning Experiences; Person(s)…

  10. Sexually transmitted viruses.

    PubMed Central

    Rapp, F.

    1989-01-01

    Human viruses known to be spread by sexual contact include herpes simplex viruses (HSV), papillomaviruses (HPV), human immunodeficiency virus (HIV), hepatitis B virus, and cytomegalovirus. Infections with the first three (HSV, HPV, and HIV) have reached epidemic proportions and pose global health concerns. Most of what we know about these human pathogens has been learned only recently, owing to the advent of DNA technologies and advances in culture techniques. In fact, our awareness of one virally transmitted venereal disease, acquired immunodeficiency syndrome, dates to the early 1980s. This paper touches on various aspects of the biology, pathogenesis, clinical manifestations, and, where applicable, oncogenicity of these agents, as well as current treatments and vaccine initiatives. PMID:2549736

  11. Disease resistance and immune-relevant gene expression in golden mandarin fish, Siniperca scherzeri Steindachner, infected with infectious spleen and kidney necrosis virus-like agent.

    PubMed

    Shin, G W; White, S L; Dahms, H U; Jeong, H D; Kim, J H

    2014-12-01

    Infectious spleen and kidney necrosis virus (ISKNV), family Iridoviridae, genus Megalocytivirus, may cause high mortality rates such as those seen in mandarin fish, Siniperca chuatsi. ISKNV has attracted much attention due to the possible environmental threat and economic losses it poses on both cultured and wild populations. We have investigated the pathogenicity of ISKNV-like agent Megalocytivirus, isolated from infected pearl gourami, in golden mandarin fish, Siniperca scherzeri - a member of the Percichthyidae family - and in another Percichthyidae species, S. chuatsi. Fish were challenged with four different doses of ISKNV-like agent Megalocytivirus (1, 10, 100 or 1000 μg per fish) over a 30-day period, and cumulative fish mortalities were calculated for each group. No significant mortality was observed for fish challenged with the lowest dose (1 μg per fish) relative to a control group. However, all other challenged groups showed 100% mortality over a 30-day period in proportion to the challenge dose. Quantitative real-time PCR was performed to measure mRNA expression levels for six immune-related genes in golden mandarin fish following ISKNV-like agent challenge. mRNA expression levels for IRF1, Mx, viperin and interleukin 8 significantly increased, while mRNA levels for IRF2 and IRF7 remained constant or declined during the challenge period.

  12. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    PubMed Central

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  13. Antisense Treatments for Biothreat Agents

    DTIC Science & Technology

    2006-08-01

    oligomers (ASOs) represent a promising technology to treat viral and bacterial infections, and have already been shown to be successful against a...viral and bacterial agents have a history of state- sponsored ’weaponization’, including Marburg, Ebola, Junin, Machupo, yellow fever viruses and...14. ABSTRACT Antisense oligomers (ASOs) represent a promising technology to treat viral and bacterial infections, and have already been shown to be

  14. Discovery and SARs of Trans-3-Aryl Acrylic Acids and Their Analogs as Novel Anti- Tobacco Mosaic Virus (TMV) Agents

    PubMed Central

    Wu, Meng; Wang, Ziwen; Meng, Chuisong; Wang, Kailiang; Hu, Yanna; Wang, Lizhong; Wang, Qingmin

    2013-01-01

    A series of trans-3-aryl acrylic acids 1–27 and their derivatives 28–34 were prepared and evaluated for their antiviral activity against tobacco mosaic virus (TMV) for the first time. The bioassay results showed that most of these compounds exhibited good antiviral activity against TMV, of which compounds 1, 5, 6, 20, 27 and 34 exhibited significantly higher activity against TMV than commercial Ribavirin both in vitro and in vivo. Furthermore, these compounds have more simple structure than commercial Ribavirin, and can be synthesized more efficiently. These new findings demonstrate that trans-3-aryl acrylic acids and their derivatives represent a new template for antiviral studies and could be considered for novel therapy against plant virus infection. PMID:23418574

  15. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays

    SciTech Connect

    Hagiwara, Kyoji; Kondoh, Yasumitsu; Ueda, Atsushi; Yamada, Kazunori; Goto, Hideo; Watanabe, Toshiki; Nakata, Tadashi; Osada, Hiroyuki; Aida, Yoko

    2010-04-09

    The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.

  16. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents

    SciTech Connect

    Croughan, W.S.; Behbehani, A.M.

    1988-02-01

    A comparative study of the different reactions of herpes simplex virus types 1 and 2 to Lysol, Listerine, bleach, rubbing alcohol, Alcide disinfectant (Alcide Corp., Westport, Conn.), and various pHs, temperatures, and UV light exposures was performed. Both types of stock virus (titers of approximately 10(6) and 10(5.5) for types 1 and 2, respectively) were inactivated by 0.5% Lysol in 5 min; by Listerine (1:1 mixtures) in 5 min; by 2000 ppm (2000 microliters/liter) of bleach in 10 min; by rubbing alcohol (1:1 mixtures) at zero time; by Alcide disinfectant (0.2 ml of virus plus 2.0 ml of Alcide) at zero time; by pHs 3, 5, and 11 in 10 min; and by a temperature of 56 degrees C in 30 min. A germicidal lamp at a distance of 48 cm failed to completely inactivate the two types in 15 min. Type 1 showed slightly more resistance to Listerine and bleach and significantly more resistance to heat; moreover, pH 9 did not affect the infectivity of either type after 10 min.

  17. Complete nucleotide sequences and construction of full-length infectious cDNA clones of cucumber green mottle mosaic virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters.

    PubMed

    Park, Chan-Hwan; Ju, Hye-Kyoung; Han, Jae-Yeong; Park, Jong-Seo; Kim, Ik-Hyun; Seo, Eun-Young; Kim, Jung-Kyu; Hammond, John; Lim, Hyoun-Sub

    2017-04-01

    Seed-transmitted viruses have caused significant damage to watermelon crops in Korea in recent years, with cucumber green mottle mosaic virus (CGMMV) infection widespread as a result of infected seed lots. To determine the likely origin of CGMMV infection, we collected CGMMV isolates from watermelon and melon fields and generated full-length infectious cDNA clones. The full-length cDNAs were cloned into newly constructed binary vector pJY, which includes both the 35S and T7 promoters for versatile usage (agroinfiltration and in vitro RNA transcription) and a modified hepatitis delta virus ribozyme sequence to precisely cleave RNA transcripts at the 3' end of the tobamovirus genome. Three CGMMV isolates (OMpj, Wpj, and Mpj) were separately evaluated for infectivity in Nicotiana benthamiana, demonstrated by either Agroinfiltration or inoculation with in vitro RNA transcripts. CGMMV nucleotide identities to other tobamoviruses were calculated from pairwise alignments using DNAMAN. CGMMV identities were 49.89% to tobacco mosaic virus; 49.85% to pepper mild mottle virus; 50.47% to tomato mosaic virus; 60.9% to zucchini green mottle mosaic virus; and 60.96% to kyuri green mottle mosaic virus, confirming that CGMMV is a distinct species most similar to other cucurbit-infecting tobamoviruses. We further performed phylogenetic analysis to determine relationships of our new Korean CGMMV isolates to previously characterized isolates from Canada, China, India, Israel, Japan, Korea, Russia, Spain, and Taiwan available from NCBI. Analysis of CGMMV amino acid sequences showed three major clades, broadly typified as 'Russian,' 'Israeli,' and 'Asian' groups. All of our new Korean isolates fell within the 'Asian' clade. Neither the 128 nor 186 kDa RdRps of the three new isolates showed any detectable gene silencing suppressor function.

  18. Virus, Oncolytic virus and Human Prostate Cancer.

    PubMed

    Liu, Guang Bin; Zhao, Liang; Zhang, Lifang; Zhao, Kong-Nan

    2016-12-15

    Prostate cancer (PCa), a disease, is characterized by abnormal cell growth in the prostate - a gland in the male reproductive system. PCa is one of the leading causes of cancer death among men of all races. Although older age and a family history of the disease have been recognized as the risk factors of PCa, the cause of this cancer remains unclear. Mounting evidence suggests that infections with various viruses are causally linked to PCa pathogenesis. Published studies have provided strong evidence that at least two viruses (RXMV and HPV) contribute to prostate tumourigenicity and impact on the survival of patients with malignant PCa. Traditional therapies including chemotherapy and radiotherapy are unable to distinguish cancer cells from normal cells, which are a significant drawback and leads to toxicities for PCa patients undergoing treatment. So far, few other options are available for treating patients with advanced PCa. Virotherapy is being developed to be a novel therapy for cancers, which uses oncotropic and oncolytic viruses with their abilities to find and destroy malignant cells in the body. For PCa treatment, oncolytic virotherapy appears to be much more attractive, which uses live viruses to selectively kill cancer cells. Oncolytic viruses can be genetically engineered to induce cancer cell lysis through virus replication and expression of cytotoxic proteins. As oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents, several important barriers still exist on the road to the use of oncolytic viruses for PCa therapy. In this review, we first discuss the controversy of the contribution of virus infection to PCa, and subsequently summarize the development of oncolytic virotherapy for PCa in the past several years.

  19. Viral agents causing lower respiratory tract infections in hospitalized children: evaluation of the Speed-Oligo® RSV assay for the detection of respiratory syncytial virus.

    PubMed

    Sánchez-Yebra, W; Ávila-Carrillo, J A; Giménez-Sánchez, F; Reyes-Bertos, A; Sánchez-Forte, M; Morales-Torres, M; Rojas, A; Mendoza, J

    2012-03-01

    Respiratory syncytial virus (RSV) is the viral agent which is more frequently involved in lower respiratory tract infections (LRTIs) in infants under 1 year of age in developed countries. A new oligochromatographic assay, Speed-Oligo® RSV, was designed and optimized for the specific detection and identification of RSV subtypes A and B. The test was evaluated in 289 clinical samples from 169 hospitalized children using an immunochromatography (IC) test, virus isolation by culture, and an in-house real-time polymerase chain reaction (RT-PCR). Other viruses causing LRTIs were investigated by cell culture or PCR-based tests. Sixty-two patients were infected by RSV (36.7%). In addition, adenovirus, influenza B, parainfluenza 2, and human metapneumovirus were detected in rates ranging from 5 to 8%. A proportion of 10.1% of the patients had mixed infections. The sensitivity, specificity, and positive and negative predictive values were, respectively, 94.9, 99.4, 98.9, and 97.4% for Speed-Oligo® RSV, 92.9, 96.3, 92.9, and 96.3% for RT-PCR/RSV, and 58.4, 98.1, 93.3, and 82.6% for IC. Our rates of viral detection and co-infection were similar to those of previously reported series. Finally, we find that Speed-Oligo® RSV is a rapid and easy-to-perform technique for the detection of RSV and the identification of subtypes A and B.

  20. Whole genome sequencing and phylogenetic analysis of Bluetongue virus serotype 2 strains isolated in the Americas including a novel strain from the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bluetongue is caused by an arbovirus which produces widespread edema and tissue necrosis in domestic and wild ruminants that can be fatal. Bluetongue virus serotypes 10, 11, 13, and 17 are typically found throughout the United States (US), while serotype 2 was previously only detected in the southea...

  1. Whole genome sequence analysis of recently circulating Bluetongue virus serotype 11 strains from the United States including two domestic canine isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bluetongue virus (BTV) is a vector-transmitted pathogen that that typically infects and causes disease in domestic and wild ruminants. BTV is also known to infect domestic canines as discovered when dogs were vaccinated with a BTV-contaminated vaccine. Canine BTV infections have been documented thro...

  2. Whole genome sequencing and phylogenetic analysis of Bluetongue virus serotype 2 strains isolated in the Americas including a novel strain from the western United States.

    PubMed

    Gaudreault, Natasha N; Mayo, Christie E; Jasperson, Dane C; Crossley, Beate M; Breitmeyer, Richard E; Johnson, Donna J; Ostlund, Eileen N; MacLachlan, N James; Wilson, William C

    2014-07-01

    Bluetongue is a potentially fatal arboviral disease of domestic and wild ruminants that is characterized by widespread edema and tissue necrosis. Bluetongue virus (BTV) serotypes 10, 11, 13, and 17 occur throughout much of the United States, whereas serotype 2 (BTV-2) was previously only detected in the southeastern United States. Since 1998, 10 other BTV serotypes have also been isolated from ruminants in the southeastern United States. In 2010, BTV-2 was identified in California for the first time, and preliminary sequence analysis indicated that the virus isolate was closely related to BTV strains circulating in the southeastern United States. In the current study, the whole genome sequence of the California strain of BTV-2 was compared with those of other BTV-2 strains in the Americas. The results of the analysis suggest co-circulation of genetically distinct viruses in the southeastern United States, and further suggest that the 2010 western isolate is closely related to southeastern strains of BTV. Although it remains uncertain as to how this novel virus was translocated to California, the findings of the current study underscore the need for ongoing surveillance of this economically important livestock disease.

  3. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  4. Bagaza Virus in Partridges and Pheasants, Spain, 2010

    PubMed Central

    Agüero, Montserrat; Fernández-Pinero, Jovita; Buitrago, Dolores; Sánchez, Azucena; Elizalde, Maia; San Miguel, Elena; Villalba, Ruben; Llorente, Francisco

    2011-01-01

    In September 2010, an unusually high number of wild birds (partridges and pheasants) died in Cádiz in southwestern Spain. Reverse transcription PCR and virus isolation detected flavivirus infections. Complete nucleotide sequence analysis identified Bagaza virus, a flavivirus with a known distribution that includes sub-Saharan Africa and India, as the causative agent. PMID:21801633

  5. The influence of immunosuppressive agents on BK virus risk following kidney transplantation, and implications for choice of regimen.

    PubMed

    Suwelack, Barbara; Malyar, Viola; Koch, Martina; Sester, Martina; Sommerer, Claudia

    2012-07-01

    The increasing incidence of BK-associated nephropathy following kidney transplantation has prompted an examination of strategies for risk reduction and management through immunosuppression manipulation. Evidence from retrospective and prospective studies suggests that BK viruria and viremia, and the need for BK virus treatment, are higher with tacrolimus than cyclosporine. Combined therapy with tacrolimus and mycophenolic acid may be associated with a particularly higher risk of BK infection, but data are conflicting as to whether mycophenolic acid per se is an independent risk factor. The incidence of BK-related events may be reduced in patients receiving mTOR inhibitors (everolimus or sirolimus) with cyclosporine vs a calcineurin inhibitor with mycophenolic acid. De novo immunosuppression regimens that avoid rabbit antithymocyte globulin and tacrolimus, particularly tacrolimus with mycophenolic acid, may be advantageous, whereas low-exposure cyclosporine with an mTOR inhibitor appears a favorable option. Routine screening for BK infection during the first 2 years posttransplant is recommended to allow preemptive modification of the immunosuppressive regimen. In patients at high risk of BK virus infection, appropriate de novo immunosuppression or very early conversion to an mTOR inhibitor to facilitate reduction or discontinuation of calcineurin inhibitors or antimetabolites should be considered. Extensive further research into optimal avoidance, screening, and treatment strategies is required.

  6. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71.

    PubMed

    Lin, Cheng-Wen; Wu, Chia-Fang; Hsiao, Nai-Wan; Chang, Ching-Yao; Li, Shih-Wein; Wan, Lei; Lin, Ying-Ju; Lin, Wei-Yong

    2008-10-01

    In this study, aloe-emodin was identified as a potential interferon (IFN)-inducer by screening compounds from Chinese herbal medicine. Aloe-emodin showed low cytotoxicity to human HL-CZ promonocyte cells and TE-671 medulloblastoma cells and significantly activated interferon-stimulated response element (ISRE) and gamma-activated sequence (GAS)-driven cis-reporting systems. Moreover, aloe-emodin upregulated expression of IFN-stimulated genes such as dsRNA-activated protein kinase and 2',5'-oligoisoadenylate synthase. Aloe-emodin resulted in significant activation of nitric oxide production. The antiviral activity of aloe-emodin against Japanese encephalitis virus (JEV) and enterovirus 71 (EV71) was evaluated using dose- and time-dependent plaque reduction assays in HL-CZ cells and TE-671 cells. The 50% inhibitory concentration (IC(50)) of aloe-emodin ranged from 0.50microg/mL to 1.51microg/mL for JEV and from 0.14microg/mL to 0.52microg/mL for EV71. Aloe-emodin showed clearly potent virus inhibitory abilities and achieved high therapeutic indices, in particular for HL-CZ cells. Therefore, the study demonstrated dose- and time-dependent actions of aloe-emodin on the inhibition of JEV and EV71 replication via IFN signalling responses.

  7. Recommendations for standardized nomenclature and definitions of viral response in trials of hepatitis C virus investigational agents.

    PubMed

    Wedemeyer, Heiner; Jensen, Donald M; Godofsky, Eliot; Mani, Nina; Pawlotsky, Jean-Michel; Miller, Veronica

    2012-12-01

    Outdated virological response terms used at key trial timepoints in clinical trials with first-generation direct-acting antivirals plus pegylated interferon and ribavirin have failed to keep pace with hepatitis C virus (HCV) drug development. A more intuitive and flexible nomenclature capable of adapting to continuing advances in HCV drug development is needed. Assistance in standardization of the field was provided by members of the Hepatitis C Virus Drug Development Advisory Group, a project of the Forum for Collaborative HIV Research with participation from the American Association for the Study of Liver Diseases, European Association for the of the liver, and the Infectious Diseases Society of America. Our proposed descriptive, virological response nomenclature for key decision points in trials (with and without lead-in treatment) is based on an assay-specified lower limit of quantitation cutoff. This allows responses to be categorized as either quantifiable or unquantifiable HCV RNA, with unquantifiable responses further divided based on whether target HCV RNA was detected or not detected. The unified reporting recommendations will facilitate interpretation of results across clinical trials and validation of new response-guided timepoints. As time-critical treatment parameters are shortened in HCV trials, the proposed nomenclature will greatly simplify and facilitate future adaptations of virological response terms. Our proposed nomenclature will also be helpful in developing treatment guidelines for use in clinical practice.

  8. Susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents: in vitro phenotypic and genotypic analyses.

    PubMed Central

    Descamps, D; Collin, G; Letourneur, F; Apetrei, C; Damond, F; Loussert-Ajaka, I; Simon, F; Saragosti, S; Brun-Vézinet, F

    1997-01-01

    We investigated the phenotypic and genotypic susceptibility of 11 human immunodeficiency virus type 1 (HIV-1) group O strains to nucleoside and nonnucleoside reverse transcriptase (RT) inhibitors and protease inhibitors in vitro. Phenotypic susceptibility was determined by using a standardized in vitro assay of RT inhibition, taking into account the replication kinetics of each strain. HIV-1 group M and HIV-2 isolates were used as references. DNA from cocultured peripheral blood mononuclear cells was amplified by using pol-specific group O primers and cloned for sequencing. Group O isolates were highly sensitive to nucleoside inhibitors, but six isolates were naturally highly resistant to all of the nonnucleoside RT inhibitors tested. Phylogenetic analysis of the pol gene showed that these isolates formed a separate cluster within group O, and genotypic analysis revealed a tyrosine-to-cysteine substitution at residue 181. Differences in susceptibility to saquinavir and ritonavir (RTV) were not significant between group O and group M isolates, although the 50% inhibitory concentration of RTV for group O isolates was higher than that for the HIV-1 subtype B strains. The study of HIV-1 group O susceptibility to antiretroviral drugs revealed that the viruses tested had specific phenotypic characteristics contrasting with the group M phenotypic expression. PMID:9343254

  9. Evaluation of skin cancer chemoprevention potential of sunscreen agents using the Epstein-Barr virus early antigen activation in vitro assay.

    PubMed

    Kapadia, G J; Rao, G S; Takayasu, J; Takasaki, M; Iida, A; Suzuki, N; Konoshima, T; Tokuda, H

    2013-04-01

    In our continuing search for novel cancer chemopreventive compounds of natural and synthetic origin, we have evaluated 14 commonly used ultraviolet (UV) sunscreen agents (designated UV-1 to UV-14) for their skin cancer chemoprevention potential. They belong to 8 different chemical categories: aminobenzoate (UV-5, UV-7, UV-8 and UV-14), benzophenone (UV-1, UV-2, UV-3 and UV-13), benzotriazole (UV-10), benzyloxyphenol (UV-9), cinnamate (UV-6), quinolone (UV-4), salicylate (UV-11) and xanthone (UV-12). In the in vitro assay employed, the sunscreens were assessed by their inhibition of the Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in human lymphoblastoid Raji cells. All sunscreens tested were found to exhibit anti-tumour promoting activity: listed in decreasing order, moderate (UV-11, UV-2, UV-7, UV-12, UV-3, UV-9 and UV-14) to weak (UV-1, UV-6, UV-8, UV-16, UV-5, UV-4 and UV-10) with octyl salicylate (UV-11) as the most potent and drometrizole (UV-10) as the least potent among the compounds evaluated. A plausible relationship between the antioxidant property of sunscreens and their ability to promote anti-tumour activity was noted. The results call for a comprehensive analysis of skin cancer chemoprevention potential of currently used UV sunscreen agents around the globe to identify those with the best clinical profile.

  10. Enhanced inactivation of avian influenza virus at -20°C by disinfectants supplemented with calcium chloride or other antifreeze agents.

    PubMed

    Guan, Jiewen; Chan, Maria; Brooks, Brian W; Rohonczy, Elizabeth

    2015-10-01

    Avian influenza outbreaks have occurred during winter months, and effective disinfection of poultry premises at freezing temperatures is needed. The commercial disinfectants Virkon and Accel, supplemented with an antifreeze agent [propylene glycol (PG), methanol (MeOH), or calcium chloride (CaCl₂)], were evaluated for their effectiveness in killing avian influenza virus (AIV) at -20°C or 21°C. An AIV suspension was applied to stainless steel disks, air-dried, and covered with a disinfectant or antifreeze agent for 5 to 30 min. Virkon (2%) and Accel (6.25%) with 30% PG, 20% MeOH, or 20% CaCl₂ inactivated 6 log₁₀ AIV within 5 min at -20°C and 21°C. At these temperatures PG and MeOH alone did not kill AIV, but the 20% CaCl₂ solution alone inactivated 5 log10 AIV within 10 min. The results suggested that CaCl₂ is potentially useful to enhance the effectiveness of disinfection of poultry facilities after outbreaks of AIV infection in warm and cold seasons.

  11. Enhanced inactivation of avian influenza virus at −20°C by disinfectants supplemented with calcium chloride or other antifreeze agents

    PubMed Central

    Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Elizabeth

    2015-01-01

    Avian influenza outbreaks have occurred during winter months, and effective disinfection of poultry premises at freezing temperatures is needed. The commercial disinfectants Virkon and Accel, supplemented with an antifreeze agent [propylene glycol (PG), methanol (MeOH), or calcium chloride (CaCl2)], were evaluated for their effectiveness in killing avian influenza virus (AIV) at −20°C or 21°C. An AIV suspension was applied to stainless steel disks, air-dried, and covered with a disinfectant or antifreeze agent for 5 to 30 min. Virkon (2%) and Accel (6.25%) with 30% PG, 20% MeOH, or 20% CaCl2 inactivated 6 log10 AIV within 5 min at −20°C and 21°C. At these temperatures PG and MeOH alone did not kill AIV, but the 20% CaCl2 solution alone inactivated 5 log10 AIV within 10 min. The results suggested that CaCl2 is potentially useful to enhance the effectiveness of disinfection of poultry facilities after outbreaks of AIV infection in warm and cold seasons. PMID:26424918

  12. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    SciTech Connect

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.

  13. Novel Endorna-like viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae.

    PubMed

    Ong, Jamie W L; Li, Hua; Sivasithamparam, Krishnapillai; Dixon, Kingsley W; Jones, Michael G K; Wylie, Stephen J

    2016-12-01

    Viruses associated with wild orchids and their mycorrhizal fungi are poorly studied. Using a shotgun sequencing approach, we identified eight novel endornavirus-like genome sequences from isolates of Ceratobasidium fungi isolated from pelotons within root cortical cells of wild indigenous orchid species Microtis media, Pterostylis sanguinea and an undetermined species of Pterostylis in Western Australia. They represent the first endornaviruses to be described from orchid mycorrhizal fungi and from the Australian continent. Five of the novel endornaviruses were detected from one Ceratobasidium isolate collected from one Pterostylis plant. The partial and complete viral replicases shared low (9-30%) identities with one another and with endornaviruses described from elsewhere. Four had genome lengths greater than those of previously described endornaviruses, two resembled ascomycete-infecting endornaviruses, and unlike currently described endornaviruses, three had two open reading frames. The unusual features of these new viruses challenge current taxonomic criteria for membership of the family Endornaviridae.

  14. Significant Low Prevalence of Antibodies Reacting with Simian Virus 40 Mimotopes in Serum Samples from Patients Affected by Inflammatory Neurologic Diseases, Including Multiple Sclerosis

    PubMed Central

    Mazzoni, Elisa; Pietrobon, Silvia; Masini, Irene; Rotondo, John Charles; Gentile, Mauro; Fainardi, Enrico; Casetta, Ilaria; Castellazzi, Massimiliano; Granieri, Enrico; Caniati, Maria Luisa; Tola, Maria Rosaria; Guerra, Giovanni; Martini, Fernanda; Tognon, Mauro

    2014-01-01

    Many investigations were carried out on the association between viruses and multiple sclerosis (MS). Indeed, early studies reported the detections of neurotropic virus footprints in the CNS of patients with MS. In this study, sera from patients affected by MS, other inflammatory (OIND) and non-inflammatory neurologic diseases (NIND) were analyzed for antibodies against the polyomavirus, Simian Virus 40 (SV40). An indirect enzyme-linked immunosorbent assay (ELISA), with two synthetic peptides, which mimic SV40 antigens, was employed to detect specific antibodies in sera from patients affected by MS, OIND, NIND and healthy subjects (HS). Immunologic data indicate that in sera from MS patients antibodies against SV40 mimotopes are detectable with a low prevalence, 6%, whereas in HS of the same mean age, 40 yrs, the prevalence was 22%. The difference is statistically significant (P = 0.001). Significant is also the difference between MS vs. NIND patients (6% vs. 17%; P = 0.0254), whereas no significant difference was detected between MS vs OIND (6% vs 10%; P>0.05). The prevalence of SV40 antibodies in MS patients is 70% lower than that revealed in HS. PMID:25365364

  15. Phylogenetic and Phyletic Studies of Informational Genes in Genomes Highlight Existence of a 4th Domain of Life Including Giant Viruses

    PubMed Central

    Gimenez, Gregory; La Scola, Bernard; Raoult, Didier

    2010-01-01

    The discovery of Mimivirus, with its very large genome content, made it possible to identify genes common to the three domains of life (Eukarya, Bacteria and Archaea) and to generate controversial phylogenomic trees congruent with that of ribosomal genes, branching Mimivirus at its root. Here we used sequences from metagenomic databases, Marseillevirus and three new viruses extending the Mimiviridae family to generate the phylogenetic trees of eight proteins involved in different steps of DNA processing. Compared to the three ribosomal defined domains, we report a single common origin for Nucleocytoplasmic Large DNA Viruses (NCLDV), DNA processing genes rooted between Archaea and Eukarya, with a topology congruent with that of the ribosomal tree. As for translation, we found in our new viruses, together with Mimivirus, five proteins rooted deeply in the eukaryotic clade. In addition, comparison of informational genes repertoire based on phyletic pattern analysis supports existence of a clade containing NCLDVs clearly distinct from that of Eukarya, Bacteria and Archaea. We hypothesize that the core genome of NCLDV is as ancient as the three currently accepted domains of life. PMID:21151962

  16. Computer Viruses. Technology Update.

    ERIC Educational Resources Information Center

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  17. A quantitative structure-activity relationship study on a few series of anti-hepatitis C virus agents.

    PubMed

    Varshney, Jonish; Sharma, Anjana; Gupta, Satya P

    2012-05-01

    A 2-Dimensional Quantitative Structure-Activity Relationship study has been performed on 2 series of hepatitis C virus (HCV) inhibitors, i.e., Isothiazoles and Thiazolones. In each case significant correlations are found between the anti-HCV potencies and some physicochemical, electronic and steric properties of the compounds, indicating that for the first series the activity is controlled by density and two indicator parameters (one for halogen and other for methyl), while for the second series density, Hammett constant and Kier's first order valence molecular connectivity index are important for anti-HCV activity. The validity of the correlation has been judged by leave-one-out jackknife procedure and predicting the activity of some test compounds. Using the correlations obtained, some new compounds of high potency have been predicted in each series.

  18. Synthetic pregnenolone derivatives as antiviral agents against acyclovir-resistant isolates of Herpes Simplex Virus Type 1.

    PubMed

    Dávola, María Eugenia; Mazaira, Gisela I; Galigniana, Mario D; Alché, Laura E; Ramírez, Javier A; Barquero, Andrea A

    2015-10-01

    The conventional therapy for the management of Herpes Simplex Virus Type 1 (HSV-1) infections mainly comprises acyclovir (ACV) and other nucleoside analogues. A common outcome of this treatment is the emergence of resistant viral strains, principally when immunosuppressed patients are involved. Thus, the development of new antiherpetic compounds remains as a central challenge. In this work we describe the synthesis and the in vitro antiherpetic activity of a new family of steroidal compounds derived from the endogenous hormone pregnenolone. Some of these derivatives showed a remarkable inhibitory effect on HSV-1 spread both on wild type and ACV-resistant strains. The results also show that these compounds seem to interfere with the late steps of the viral cycle.

  19. Bacterial Exopolysaccharide of Shallow Marine Vent Origin as Agent in Counteracting Immune Disorders Induced by Herpes Virus.

    PubMed

    Spanò, Antonio; Arena, Adriana

    2016-01-01

    Herpes simplex virus type 2 (HSV-2) is responsible of the continuously increasing viral infections in humans. In a previous study we demonstrated that the exopolysaccharide produced by Bacillus licheniformis strain B3-15 (EPS-B3-15), was able to hinder the HSV-2 replication in peripheral blood mononuclear cells (PBMC) and this antiviral activity appear to be related to a significant stimulation of the Th1-cytokines. In this study we analyse the role of EPS-B3-15 on Th2 cytokine production by PBMC infected or not with HSV-2. EPS-B3-15 demonstrate the ability to induce a particular cytokine network with consequent effects on the immune cells during HSV-2 infection.

  20. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    PubMed Central

    Chen, Yan; Williams, Vonetta; Filippova, Maria; Filippov, Valery; Duerksen-Hughes, Penelope

    2014-01-01

    Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer. PMID:25340830

  1. VIRAL STRATEGIES TO STUDY THE BRAIN, INCLUDING A REPLICATION-RESTRICTED SELF-AMPLIFYING DELTA-G VESICULAR STOMATIS VIRUS THAT RAPIDLY EXPRESSES TRANSGENES IN BRAIN AND CAN GENERATE A MULTICOLOR GOLGI-LIKE EXPRESSION

    PubMed Central

    van den Pol, Anthony N.; Ozduman, Koray; Wollmann, Guido; Ho, Winson; Simon, Ian; Yao, Yang; Rose, John K.; Ghosh, Prabhat

    2010-01-01

    Viruses have substantial value as vehicles to transport transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience-related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno-associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG-VSV) with the G-gene deleted and transgenes engineered into the first position of the RNA genome which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Due to its ability to rapidly replicate and express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500-fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. GFP expression is first detected within one hour of inoculation. The virus generates a Golgi-like appearance in all neuron or glia of regions of the brain tested. Whole cell patch clamp electrophysiology, calcium digital imaging with fura-2, and time-lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and drosophila cells. Using dG-VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG-VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied. PMID:19672982

  2. Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses.

    PubMed Central

    Sakaguchi, K

    1990-01-01

    Invertrons are genetic elements composed of DNA with inverted terminal repeats at both ends, covalently bonded to terminal proteins involved in the initiation of DNA replication at both their 5' termini when they exist in the cytoplasm of their host in free form. They function as viruses, linear DNA plasmids, transposable elements, and sometimes combinations of two of these properties. They differ from retroviruses and related retro-type transposons which have direct repeats on both their genomic ends and exploit RNA intermediates for replication of their DNA. A model for replication and integration of invertrons is presented, as well as a model for transposition of transposable elements. PMID:2157134

  3. Sendai virus as a backbone for vaccines against RSV and other human paramyxoviruses.

    PubMed

    Russell, Charles J; Hurwitz, Julia L

    2016-01-01

    Human paramyxoviruses are the etiological agents for life-threatening respiratory virus infections of infants and young children. These viruses, including respiratory syncytial virus (RSV), the human parainfluenza viruses (hPIV1-4) and human metapneumovirus (hMPV), are responsible for millions of serious lower respiratory tract infections each year worldwide. There are currently no standard treatments and no licensed vaccines for any of these pathogens. Here we review research with which Sendai virus, a mouse parainfluenza virus type 1, is being advanced as a Jennerian vaccine for hPIV1 and as a backbone for RSV, hMPV and other hPIV vaccines for children.

  4. Meta-Analysis of Infectious Agents and Depression

    PubMed Central

    Wang, Xiao; Zhang, Liang; Lei, Yang; Liu, Xia; Zhou, Xinyu; Liu, Yiyun; Wang, Mingju; Yang, Liu; Zhang, Lujun; Fan, Songhua; Xie, Peng

    2014-01-01

    Depression is a debilitating psychiatric disorder and a growing global public health issue. However, the relationships between microbial infections and depression remains uncertain. A computerized literature search of Medline, ISI Web of Knowledge, PsycINFO, and the Cochrane Library was conducted up to May 2013, and 6362 studies were initially identified for screening. Case-control studies detected biomarker of microorganism were included. Based on inclusion and exclusion criteria, 28 studies were finally included to compare the detection of 16 infectious agents in unipolar depressed patients and healthy controls with a positive incident being defined as a positive biochemical marker of microbial infection. A customized form was used for data extraction. Pooled analysis revealed that the majority of the 16 infectious agents were not significantly associated with depression. However, there were statistically significant associations between depression and infection with Borna disease virus, herpes simplex virus-1, varicella zoster virus, Epstein-Barr virus, and Chlamydophila trachomatis. PMID:24681753

  5. Consequences of inaccurate hepatitis C virus genotyping on the costs of prescription of direct antiviral agents in an Italian district

    PubMed Central

    Polilli, Ennio; Cento, Valeria; Restelli, Umberto; Ceccherini-Silberstein, Francesca; Aragri, Marianna; Di Maio, Velia Chiara; Sciacca, Antonina; Santoleri, Fiorenzo; Fazii, Paolo; Costantini, Alberto; Perno, Carlo Federico; Parruti, Giustino

    2016-01-01

    Available commercial assays may yield inaccurate hepatitis C virus (HCV) genotype assignment in up to 10% of cases. We investigated the cost-effectiveness of re-evaluating HCV genotype by population sequencing, prior to choosing a direct acting antiviral (DAA) regimen. Between March and September 2015, HCV sequence analysis was performed in order to confirm commercial LiPA-HCV genotype (Versant® HCV Genotype 2.0) in patients eligible for treatment with DAAs. Out of 134 consecutive patients enrolled, sequencing yielded 21 (15.7%) cases of discordant results. For three cases of wrong genotype assignment, the putative reduction in efficacy was gauged between 15% and 40%. Among the eight cases for whom G1b was assigned by commercial assays instead of G1a, potentially suboptimal treatments would have been prescribed. Finally, for five patients with G1 and indeterminate subtype, the choice of regimens would have targeted the worst option, with a remarkable increase in costs, as in the case of the four mixed HCV infections for whom pan-genotypic regimens would have been mandatory. Precise assignment of HCV genotype and subtype by sequencing may, therefore, be more beneficial than expected, until more potent pan-genotypic regimens are available for all patients. PMID:27695353

  6. Fluoxetine a novel anti-hepatitis C virus agent via ROS-, JNK-, and PPARβ/γ-dependent pathways.

    PubMed

    Young, Kung-Chia; Bai, Chyi-Huey; Su, Hui-Chen; Tsai, Pei-Ju; Pu, Chien-Yu; Liao, Chao-Sheng; Lin, Yu-Min; Lai, Hsin-Wen; Chong, Lee-Won; Tsai, Yau-Sheng; Tsao, Chiung-Wen

    2014-10-01

    More than 20% of chronic hepatitis C (CHC) patients receiving interferon-alpha (IFN-α)-based anti-hepatitis C virus (HCV) therapy experienced significant depression, which was relieved by treatment with fluoxetine. However, whether and how fluoxetine affected directly the anti-HCV therapy remained unclear. Here, we demonstrated that fluoxetine inhibited HCV infection and blocked the production of reactive oxygen species (ROS) and lipid accumulation in Huh7.5 cells. Fluoxetine facilitated the IFN-α-mediated antiviral actions via activations of signal transducer and activator of transcription (STAT)-1 and c-Jun amino-terminal kinases (JNK). Alternatively, fluoxetine elevated peroxisome proliferator-activated receptor (PPAR) response element activity under HCV infection. The inhibitory effects of fluoxetine on HCV infection and lipid accumulation, but not production of ROS, were partially reversed by the PPAR-β, -γ, and JNK antagonists. Furthermore, fluoxetine intervention to the IFN-α-2b regimen facilitated to reduce HCV titer and alanine transaminase level for CHC patients. Therefore, fluoxetine intervention to the IFN-α-2b regimen improved the efficacy of anti-HCV treatment, which might be related to blockades of ROS generation and lipid accumulation and activation of host antiviral JNK/STAT-1 and PPARβ/γ signals.

  7. Molecular epidemiology of outbreak-associated and wild-waterfowl-derived newcastle disease virus strains in Finland, including a novel class I genotype.

    PubMed

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Alasaari, Jukka; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2012-11-01

    Newcastle disease (ND) is a highly contagious, severe disease of poultry caused by pathogenic strains of Newcastle disease virus (NDV; or avian paramyxovirus-1). NDV is endemic in wild birds worldwide and one of the economically most important poultry pathogens. Most of the published strains are outbreak-associated strains, while the apathogenic NDV strains that occur in wild birds, posing a constant threat to poultry with their capability to convert into more virulent forms, have remained less studied. We screened for NDV RNA in cloacal and oropharyngeal samples from wild waterfowl in Finland during the years 2006 to 2010: 39 of 715 birds were positive (prevalence, 5.5%). The partial or full-length F genes of 37 strains were sequenced for phylogenetic purposes. We also characterized viruses derived from three NDV outbreaks in Finland and discuss the relationships between these outbreak-associated and the wild-bird-associated strains. We found that all waterfowl NDV isolates were lentogenic strains of class I or class II genotype I. We also isolated a genetically distinct class I strain (teal/Finland/13111/2008) grouping phylogenetically together with only strain HIECK87191, isolated in Northern Ireland in 1987. Together they seem to form a novel class I genotype genetically differing from other known NDVs by at least 12%.

  8. A mobile biosafety microanalysis system for infectious agents.

    PubMed

    Beniac, Daniel R; Hiebert, Shannon L; Siemens, Christine G; Corbett, Cindi R; Booth, Tim F

    2015-03-30

    Biological threats posed by pathogens such as Ebola virus must be quickly diagnosed, while protecting the safety of personnel. Scanning electron microscopy and microanalysis requires minimal specimen preparation and can help to identify hazardous agents or substances. Here we report a compact biosafety system for rapid imaging and elemental analysis of specimens, including powders, viruses and bacteria, which is easily transportable to the site of an incident.

  9. A mobile biosafety microanalysis system for infectious agents

    PubMed Central

    Beniac, Daniel R.; Hiebert, Shannon L.; Siemens, Christine G.; Corbett, Cindi R.; Booth, Tim F.

    2015-01-01

    Biological threats posed by pathogens such as Ebola virus must be quickly diagnosed, while protecting the safety of personnel. Scanning electron microscopy and microanalysis requires minimal specimen preparation and can help to identify hazardous agents or substances. Here we report a compact biosafety system for rapid imaging and elemental analysis of specimens, including powders, viruses and bacteria, which is easily transportable to the site of an incident. PMID:25820944

  10. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor.

    PubMed

    Bartosch, Birke; Vitelli, Alessandra; Granier, Christelle; Goujon, Caroline; Dubuisson, Jean; Pascale, Simona; Scarselli, Elisa; Cortese, Riccardo; Nicosia, Alfredo; Cosset, François-Loïc

    2003-10-24

    Several cell surface molecules have been proposed as receptor candidates, mediating cell entry of hepatitis C virus (HCV) on the basis of their physical association with virions or with soluble HCV E2 glycoproteins. However, due to the lack of infectious HCV particles, evidence that these receptor candidates support infection was missing. Using our recently described infectious HCV pseudotype particles (HCVpp) that display functional E1E2 glycoprotein complexes, here we show that HCV is a pH-dependent virus, implying that its receptor component(s) mediate virion internalization by endocytosis. Expression of the CD81 tetraspanin in non-permissive CD81-negative hepato-carcinoma cells was sufficient to restore susceptibility to HCVpp infection, confirming its critical role as a cell attachment factor. As a cell surface molecule likely to mediate endosomal trafficking, we demonstrate that the human scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein-internalization molecule that we previously proposed as a novel HCV receptor candidate due to its affinity with E2 glycoproteins, is required for infection of CD81-expressing hepatic cells. By receptor competition assays, we found that SR-B1 antibodies that blocked binding of soluble E2 could prevent HCVpp infectivity. Furthermore, we establish that the hyper-variable region 1 of the HCV E2 glycoprotein is a critical determinant mediating entry in SR-B1-positive cells. Finally, by correlating expression of HCV receptors and infectivity, we suggest that, besides CD81 and SR-B1, additional hepatocyte-specific co-factor(s) are necessary for HCV entry.

  11. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.

  12. Identification of 23-(S)-2-Amino-3-Phenylpropanoyl-Silybin as an Antiviral Agent for Influenza A Virus Infection In Vitro and In Vivo

    PubMed Central

    Dai, Jian-Ping; Wu, Li-Qi; Li, Rui; Zhao, Xiang-Feng; Wan, Qian-Ying; Chen, Xiao-Xuan; Li, Wei-Zhong

    2013-01-01

    It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection. PMID:23836164

  13. Human viruses and cancer.

    PubMed

    Morales-Sánchez, Abigail; Fuentes-Pananá, Ezequiel M

    2014-10-23

    The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt's lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers.

  14. Human Viruses and Cancer

    PubMed Central

    Morales-Sánchez, Abigail; Fuentes-Pananá, Ezequiel M.

    2014-01-01

    The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt’s lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers. PMID:25341666

  15. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients.

    PubMed

    Xicoy, Blanca; Ribera, Josep-Maria; Müller, Markus; García, Olga; Hoffmann, Christian; Oriol, Albert; Hentrich, Marcus; Grande, Carlos; Wasmuth, Jan-Christian; Esteve, Jordi; van Lunzen, Jan; Del Potro, Eloy; Knechten, Heribert; Brunet, Salut; Mayr, Christoph; Escoda, Lourdes; Schommers, Philipp; Alonso, Natalia; Vall-Llovera, Ferran; Pérez, Montserrat; Morgades, Mireia; González, José; Fernández, Angeles; Thoden, Jan; Gökbuget, Nicola; Hoelzer, Dieter; Fätkenheuer, Gerd; Wyen, Christoph

    2014-10-01

    The results of intensive immunochemotherapy were analyzed in human immunodeficiency virus (HIV)-related Burkitt lymphoma/leukemia (BLL) in two cohorts (Spain and Germany). Alternating cycles of chemotherapy were administered, with dose reductions for patients over 55 years. Eighty percent of patients achieved remission, 11% died during induction, 9% failed and 7% died in remission. Four-year overall survival (OS) and progression-free survival (PFS) probabilities were 72% (95% confidence interval [CI]: 62-82%) and 71% (95% CI: 61-81%). CD4 T-cell count < 200/μL and bone marrow involvement were associated with poor OS (hazard ratio [HR] 3.2 [1.2-8.3] and HR 2.7 [1.1-6.6]) and PFS (HR 3.5 [1.3-9.1] and HR 2.4 [1-5.7]), bone marrow involvement with poor disease-free survival (DFS) (HR 14.4 [1.7-119.7] and Eastern Cooperative Oncology Group (ECOG) score > 2 (odds ratio [OR] 11.9 [1.4-99.9]) with induction death. In HIV-related BLL, intensive immunochemotherapy was feasible and effective, but toxic. Prognostic factors were performance status, CD4 T-cell count and bone marrow involvement.

  16. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  17. Multiscale Modeling of Virus Structure, Assembly, and Dynamics

    NASA Astrophysics Data System (ADS)

    May, Eric R.; Arora, Karunesh; Mannige, Ranjan V.; Nguyen, Hung D.; Brooks, Charles L.

    Viruses are traditionally considered as infectious agents that attack cells and cause illnesses like AIDS, Influenza, Hepatitis, etc. However, recent advances have illustrated the potential for viruses to play positive roles for human health, instead of causing disease [1, 2]. For example, viruses can be employed for a variety of biomedical and biotechnological applications, including gene therapy[3], drug delivery[4], tumor targeting[5], and medical imaging[6]. Therefore, it is important to understand quantitatively how viruses operate such that they can be engineered in a predictive manner for beneficial roles.

  18. The liver partition coefficient-corrected inhibitory quotient and the pharmacokinetic-pharmacodynamic relationship of directly acting anti-hepatitis C virus agents in humans.

    PubMed

    Duan, Jianmin; Bolger, Gordon; Garneau, Michel; Amad, Ma'an; Batonga, Joëlle; Montpetit, Hélène; Otis, François; Jutras, Martin; Lapeyre, Nicole; Rhéaume, Manon; Kukolj, George; White, Peter W; Bethell, Richard C; Cordingley, Michael G

    2012-10-01

    Pharmacokinetic-pharmacodynamic (PK-PD) data analyses from early hepatitis C virus (HCV) clinical trials failed to show a good correlation between the plasma inhibitory quotient (IQ) and antiviral activity of different classes of directly acting antiviral agents (DAAs). The present study explored whether use of the liver partition coefficient-corrected IQ (LCIQ) could improve the PK-PD relationship. Animal liver partition coefficients (Kp(liver)) were calculated from liver to plasma exposure ratios. In vitro hepatocyte partition coefficients (Kp(hep)) were determined by the ratio of cellular to medium drug concentrations. Human Kp(liver) was predicted using an in vitro-in vivo proportionality method: the species-averaged animal Kp(liver) multiplied by the ratio of human Kp(hep) over those in animals. LCIQ was calculated using the IQ multiplied by the predicted human Kp(liver). Our results demonstrated that the in vitro-in vivo proportionality approach provided the best human Kp(liver) prediction, with prediction errors of <45% for all 5 benchmark drugs evaluated (doxorubicin, verapamil, digoxin, quinidine, and imipramine). Plasma IQ values correlated poorly (r(2) of 0.48) with maximum viral load reduction and led to a corresponding 50% effective dose (ED(50)) IQ of 42, with a 95% confidence interval (CI) of 0.1 to 148534. In contrast, the LCIQ-maximum VLR relationship fit into a typical sigmoidal curve with an r(2) value of 0.95 and an ED(50) LCIQ of 121, with a 95% CI of 83 to 177. The present study provides a novel human Kp(liver) prediction model, and the LCIQ correlated well with the viral load reductions observed in short-term HCV monotherapy of different DAAs and provides a valuable tool to guide HCV drug discovery.

  19. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    DTIC Science & Technology

    2004-05-20

    Warfare Agents, op. cit.; and the Health Canada Material Safety Data Sheet - Infectious Substances for Rickettsia rickettsii , found online at [http...cns.miis.edu/research/cbw/possess.htm]. Biological Agent Comparison Potential biological agents include the many bacteria and viruses that induce...barriers to their acquisition, regardless of the legality of such a transfer. In contrast, salmonella bacteria would be easy to obtain from natural

  20. [Norwalk virus and Noro virus].

    PubMed

    Furuta, Itaru; Yamazumi, Toshiaki; Kitahashi, Toshiaki; Yagi, Kazurou; Takemura, Tukasa

    2003-01-01

    Norwalk virus and Noro virus are members of the Caliciviridae. These viruses are morphological similarity in each other and shows small round structure. These viruses also are well known as main pathogens of acute infectious gastroenteritis. Clinical features include an incubation period of 24 of 48 hours and illness period of 18 to 72 hours with vomiting and diarrhea in most patients and high secondary attack rates. Oral transmitted infection occurs contaminated water and foods. In our country, outbreak of Noro virus-related gastroenteritis are reported sometimes in hospital and nursing home from winter to early spring seasons. This article are described to the morphlogy, physical characteristics, epidemiology, and clinical manifestation relating to Norwalk virus and Noro virus.

  1. Protecting poultry workers from exposure to avian influenza viruses.

    PubMed

    MacMahon, Kathleen L; Delaney, Lisa J; Kullman, Greg; Gibbins, John D; Decker, John; Kiefer, Max J

    2008-01-01

    Emerging zoonotic diseases are of increasing regional and global importance. Preventing occupational exposure to zoonotic diseases protects workers as well as their families, communities, and the public health. Workers can be protected from zoonotic diseases most effectively by preventing and controlling diseases in animals, reducing workplace exposures, and educating workers. Certain avian influenza viruses are potential zoonotic disease agents that may be transmitted from infected birds to humans. Poultry workers are at risk of becoming infected with these viruses if they are exposed to infected birds or virus-contaminated materials or environments. Critical components of worker protection include educating employers and training poultry workers about occupational exposure to avian influenza viruses. Other recommendations for protecting poultry workers include the use of good hygiene and work practices, personal protective clothing and equipment, vaccination for seasonal influenza viruses, antiviral medication, and medical surveillance. Current recommendations for protecting poultry workers from exposure to avian influenza viruses are summarized in this article.

  2. Studying NK cell responses to ectromelia virus infections in mice.

    PubMed

    Fang, Min; Sigal, Luis

    2010-01-01

    Here we describe methods for the in vivo study of antiviral NK cell responses using the mouse Orthopoxvirus ectromelia virus as a model, the agent of mousepox. The methods include those specific for the preparation and use of ectromelia virus such as the production of virus stocks in tissue culture and in live mice, the purification of virus stocks, the titration of virus stocks and virus loads in organs, and the infection of mice. The chapter also includes methods for the specific study of NK cell responses in infected mice such as the preparation of organs (lymph nodes, spleen, and liver) for analysis, the study of NK cell responses by flow cytometry, the adoptive transfer of NK cells, the measurement of NK cell cytolytic activity ex vivo and in vivo, and the determination of NK cell proliferation by bromodeoxyuridine loading or by dilution of carboxyfluorescein diacetate succinimidyl ester (CFSE).

  3. Treatment of ebola virus disease.

    PubMed

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  4. Raspberry (Rubus spp.)-Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several important virus diseases of raspberry and black raspberry in the Pacific Northwest. Pollen-borne viruses include Raspberry bushy dwarf virus and Strawberry necrotic shock virus (aka Tobacco streak virus –Rubus isolate or Black raspberry latent virus). Strawberry necrotic shock viru...

  5. Muscavirus (MdHV) disease dynamics in house fly populations – how is this virus transmitted and has it potential as a biological control agent?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly classified family Hytrosaviridae comprises several double-stranded DNA viruses that have been isolated from various dipteran species. These viruses cause characteristic salivary gland hypertrophy and suppress gonad development in their hosts. One member, Muscavirus or MdHV, exclusively in...

  6. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  7. Rescue from Cloned cDNAs and In Vivo Characterization of Recombinant Pathogenic Romero and Live-Attenuated Candid #1 Strains of Junin Virus, the Causative Agent of Argentine Hemorrhagic Fever Disease ▿

    PubMed Central

    Emonet, Sebastien F.; Seregin, Alexey V.; Yun, Nadezhda E.; Poussard, Allison L.; Walker, Aida G.; de la Torre, Juan C.; Paessler, Slobodan

    2011-01-01

    The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine. PMID:21123388

  8. Sexually transmitted diseases (STD) / reproductive tract infections (RTI) including acquired immunodeficiency syndrome (AIDS) / human immunodeficiency virus (HIV) infections among the women of reproductive age group: a review.

    PubMed

    Nahar, A; Azad, A K

    1999-06-01

    Despite great improvements in preventing and treating sexually transmitted diseases (STDs) and reproductive tract infections (RTIs), including HIV/AIDS, infections have been increasing significantly throughout the world. The problem of STDs, RTIs, and HIV/AIDS among women aged 15-49 years is increasing at an alarming rate. Certain biological risk factors and cultural practices enhance the vulnerability of women of reproductive age. Among these biological risks are age, gender, blood transfusion during pregnancy and childbirth, and the development of asymptomatic STDs/RTIs. These are exacerbated by cultural practices like douching with pharmaceutical products, use of intravaginal substances, and the practice of anal sex. STDs, RTIs, and HIV/AIDS affect female reproductive health in certain ways: mother-to-child transmission, effects on pregnancy (spontaneous abortion, premature birth, stillbirth, low birth weight, ectopic pregnancy), infertility, cancer, and rise in AIDS-related mortality. On the other hand, society will experience an increase in orphans, destabilization of the family unit, and a reduction in family income. Considering the impact of these diseases on the reproductive health of women and the community, measures should be taken to prevent and control the epidemic. The paper discusses certain interventions and diagnostic and preventive strategies against STDs, RTIs, and HIV/AIDS.

  9. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host-range, including thr...

  10. Enhanced immunogenicity of a sequence derived from hepatitis B virus surface antigen in a composite peptide that includes the immunostimulatory region from human interleukin 1.

    PubMed Central

    Rao, K V; Nayak, A R

    1990-01-01

    The effect on immunogenicity of coupling the immunostimulatory nonapeptide sequence (residues 163-171) from human interleukin 1 beta (IL-1 beta) to a small immunogen was examined. A 21-amino acid sequence spanning positions 12-32 on the large protein of hepatitis B surface antigen was chosen as a model. Three peptides were synthesized corresponding to the IL-1 beta-derived sequence [peptide IL-(163-171)], the hepatitis B surface antigen-derived sequence [peptide S1-(12-32)] and a composite peptide that included both these sequences separated by a spacer of two glycine residues [peptide S1-(12-32)-IL-(163-171)]. In an in vitro thymocyte proliferation assay, both peptides S1-(12-32)-IL-(163-171) and IL-(163-171) showed comparable activity, whereas peptide S1-(12-32) was inactive. Groups of five to seven mice each from C3H/CH, BALB/c, SJL/J, and C57BL/6 strains were immunized with equimolar amounts of either peptide S1-(12-32), peptide S1-(12-32)-IL-(163-171), or a mixture of peptides S1-(12-32) and IL-(163-171), and sera were screened for anti-S1-(12-32) antibodies. In all strains, peptide S1-(12-32)-IL-(163-171) elicited an increased primary and secondary anti-S1-(12-32) antibody response compared to the other two groups. Further, peptide S1-(12-32)-IL-(163-171) also induced an increased number of responders to primary immunization, though the number of responders was quantitative in all groups following secondary immunization. At least part of the enhanced immunogenicity of the S1-(12-32) sequence in peptide S1-(12-32)-IL-(163-171) appears to be due to augmented T-helper cell activity. These results suggest that coupling of the immunostimulatory IL-1 beta-derived sequence in tandem with an immunogen may confer inbuilt adjuvanticity. PMID:2371286

  11. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus.

    PubMed

    Fong, Chui-Yee; Biswas, Arijit; Stunkel, Walter; Chong, Yap-Seng; Bongso, Ariff

    2017-03-01

    The infants of mothers with gestational diabetes mellitus (GDM) have an increased risk of metabolic and cardiovascular disease. It has been difficult to study the direct effects of maternal hyperglycemia on the fetus because of inaccessibility of fetal tissues. The development of tissues that simulate the function of fetal organs using stem cell technology provides an unprecedented opportunity to study this disorder. Stem cells in the Wharton's jelly of the umbilical cord (hWJSCs), possess unique properties that are different from other stem cells. They are primitive, present in large numbers, non-tumorigenic, hypoimmunogenic, tumoricidal, and carry a genetic signature that represents the fetus. They are multipotent but their differentiation into functional pancreatic and cardiovascular tissues has been challenging. We have been able to reprogram hWJSCs from normal and GDM cords into induced pluripotent stem cells (iPSCs) from which a variety of functional fetal tissues including insulin-producing and cardiovascular tissues could be derived. Such tissues from reprogrammed hWJSCs of normal and GDM cords that physiologically and genetically mimic the fetus of the diabetic or non-diabetic mother are an ideal platform to study the effects of glucose, the Zika virus, and other harmful agents on the fetus. The immature stemness phenotype of hWJSCs, easy accessibility, availability in large numbers without the need for propagation, and lower risk of accumulation of epigenetic mutations make them the most attractive candidate over other umbilical cord cell types for reprogramming. Additionally, some of their beneficial genes may be retained in memory in the iPSCs derived from them. J. Cell. Biochem. 118: 437-441, 2017. © 2016 Wiley Periodicals, Inc.

  12. Insect-transmitted vertebrate viruses: flaviviridae.

    PubMed

    Ludwig, G V; Iacono-Connors, L C

    1993-04-01

    The Flaviviridae include almost 70 viruses, nearly half of which have been associated with human disease. These viruses are among the most important arthropod-borne viruses worldwide and include dengue, yellow fever, and Japanese encephalitis viruses. Morbidity and mortality caused by these viruses vary, but collectively they account for millions of encephalitis, hemorrhagic fever, arthralgia, rash, and fever cases per year. Most of the members of this family are transmitted between vertebrate hosts by arthropod vectors, most commonly mosquitoes or ticks. Transmission cycles can be simple or complex depending on the hosts, vectors, the virus, and the environmental factors affecting both hosts and viruses. Replication of virus in invertebrate hosts does not seem to result in any significant pathology, which suggests a close evolutionary relationship between virus and vector. Another example of this relationship is the ability of these viruses to grow in invertebrate cell culture, where replication usually results in a steady state, persistent infection, often without cytopathic effect. Yields of virus from insect cell culture vary but are generally similar to yields in vertebrate cells. Replication kinetics are comparable between insect and vertebrate cell lines, despite differences in incubation temperature. Both vertebrate and insect cell culture systems continue to play a significant role in flavivirus isolation and the diagnosis of disease caused by these agents. Additionally, these culture systems permit the study of flavivirus attachment, penetration, replication, and release from cells and have been instrumental in the production and characterization of live-attenuated vaccines. Both vertebrate and insect cell culture systems will continue to play a significant role in basic and applied flavivirus research in the future.

  13. Plant Virus Metagenomics: Advances in Virus Discovery.

    PubMed

    Roossinck, Marilyn J; Martin, Darren P; Roumagnac, Philippe

    2015-06-01

    In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.

  14. [Examination of biocides for their effectiveness against animal viruses according to European Union Standards with emphasis on the selection of a suitable test virus].

    PubMed

    Al-Khleif, Ahmad; Baljer, Georg; Herbst, Werner

    2009-01-01

    Because of the changes to be expected in the methods for testing disinfectants deemed to be used in the veterinary field, candidate viral species were evaluated for their suitability as test virus. Considered viral species included different non-enveloped viruses [bovine enterovirus type 1 (ECBO (Enteric Cytopathogenic Bovine Orphan) virus), mammalian reovirus type 1, feline calici virus (FCV), and bovine parvovirus (BPV)], as well as enveloped viruses, as equine arteritisvirus (EAV), bovine herpesvirus type 1 (BHV1), Newcastle disease virus (NDV) and vaccinia virus. Viruses were tested for their tenacity against different biocidal agents (formaldehyde, formic acid, peracetic acid, and sodium hypochlorite) in the suspension test at a temperature of 20 degrees C which is given as an optional test temperature according to prEN 14675 "Quantitative suspension test for the evaluation of virucidal activity of chemical disinfectants and antiseptics used in veterinary field--Test method and requirements"elaborated by the "Comite Européen de Normalisation"(CEN) (Anonym, 2004). Of the animal viruses tested for their tenacity highest tenacity against the disinfectants. FCV and the enveloped viruses were of lower resistance. In addition to the tenacity of viruses, other parameters, such as the ability of the virus to replicate in permanent cells, the magnitude of the virus titre that can be obtained from such cultures, as well as the threat a virus poses to humans and animals are to be considered when selecting a suitable test virus. Based on these criteria and despite its tenacity being inferior to that of BPV, the ECBO virus was chosen as the most suitable test virus. The result of the efficacy of disinfectants is not based on the most resistant virus in this case. This circumstance is to be considered when giving recommendations for the practical use of disinfectants.

  15. Quasispecies of dengue virus.

    PubMed

    Kurosu, Takeshi

    2011-12-01

    Pathogenic viruses have RNA genomes that cause acute and chronic infections. These viruses replicate with high mutation rates and exhibit significant genetic diversity, so-called viral quasispecies. Viral quasispecies play an important role in chronic infectious diseases, but little is known about their involvement in acute infectious diseases such as dengue virus (DENV) infection. DENV, the most important human arbovirus, is a causative agent of dengue fever (DF) and dengue hemorrhagic fever (DHF). Accumulating observations suggest that DENV exists as an extremely diverse virus population, but its biological significance is unclear. In other virus diseases, quasispecies affect the therapeutic strategies using drugs and vaccines. Here, I describe the quasispecies of DENV and discuss the possible role of quasispecies in the pathogenesis of and therapeutic strategy against DENV infection in comparison with other viruses such as Hepatitis C virus, human immunodeficiency virus type 1, and poliovirus.

  16. Emerging viruses in the Felidae: shifting paradigms.

    PubMed

    O'Brien, Stephen J; Troyer, Jennifer L; Brown, Meredith A; Johnson, Warren E; Antunes, Agostinho; Roelke, Melody E; Pecon-Slattery, Jill

    2012-02-01

    The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.

  17. Ebola Virus and Marburg Virus

    MedlinePlus

    ... chimps and fruit bats in Africa. Transmission from animals to humans Experts suspect that both viruses are transmitted to humans through an infected animal's bodily fluids. Examples include: Blood. Butchering or eating ...

  18. Mycoplasma viruses.

    PubMed

    Maniloff, J

    1988-01-01

    Unlike bacterial viruses that infect cells bounded by a cell wall, mycoplasma viruses have evolved to enter and propagate in mycoplasma cells bounded only by a single lipid-protein cell membrane. In addition, mycoplasmas have the smallest amount of genetic information of any known cells, so their complexity is constrained by a limited genetic coding capacity. As a consequence of these host cell differences, mycoplasma viruses have been found to have a variety of structures and replication strategies which are different from those of the bacterial viruses. This article is a critical review of mycoplasma viruses infecting the genera Acholeplasma, Spiroplasma, and Mycoplasma; included are data on classification, morphology and structure, biological and physical properties, chemical composition, and productive and lysogenic replication cycles.

  19. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    PubMed

    Nuss, Jonathan E; Kehn-Hall, Kylene; Benedict, Ashwini; Costantino, Julie; Ward, Michael; Peyser, Brian D; Retterer, Cary J; Tressler, Lyal E; Wanner, Laura M; McGovern, Hugh F; Zaidi, Anum; Anthony, Scott M; Kota, Krishna P; Bavari, Sina; Hakami, Ramin M

    2014-01-01

    Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  20. Virus transmission via food.

    PubMed

    Cliver, D O

    1997-01-01

    Viruses are transmitted to humans via foods as a result of direct or indirect contamination of the foods with human faeces. Viruses transmitted by a faecal-oral route are not strongly dependent on foods as vehicles of transmission, but viruses are important among agents of foodborne disease. Vehicles are most often molluscs from contaminated waters, but many other foods are contaminated directly by infected persons. The viruses most often foodborne are the hepatitis A virus and the Norwalk-like gastroenteritis viruses. Detection methods for these viruses in foods are very difficult and costly; the methods are not routine. Indicators that would rapidly and reliably suggest the presence of viral contamination of foods are still being sought. Contamination can be prevented by keeping faeces out of food or by treating vehicles such as water in order to inactivate virus that might be carried to food in this way. Virus cannot multiply in food, but can usually be inactivated by adequate heating. Other methods of inactivating viruses within a food are relatively unreliable, but viruses in water and on exposed surfaces can be inactivated with ultraviolet light or with strong oxidizing agents.

  1. Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water.

    PubMed

    Shin, Gwy-Am; Sobsey, Mark D

    2003-07-01

    Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5 degrees C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log(10) within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone.

  2. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  3. Squash vein yellowing virus, causal agent of viral watermelon vine decline in Florida, USA – reservoirs, genome characterization and mixed infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Squash vein yellowing virus (SqVYV) was identified in cucurbits in Florida in 2005, shown to be whitefly-transmissible and to induce a previously observed watermelon vine decline and fruit rind necrosis. SqVYV has been isolated from declining watermelons for the past six growing seasons in southwes...

  4. West nile virus disease and other arboviral diseases - United States, 2011.

    PubMed

    2012-07-13

    Arthropodborne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. Symptomatic infections most often manifest as a systemic febrile illness and, less commonly, as neuroinvasive disease (e.g., meningitis, encephalitis, or acute flaccid paralysis). West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States. However, several other arboviruses also cause seasonal outbreaks and sporadic cases. In 2011, CDC received reports of 871 cases of nationally notifiable arboviral diseases (excluding dengue); etiological agents included WNV (712 cases), La Crosse virus (LACV) (130), Powassan virus (POWV) (16), St. Louis encephalitis virus (SLEV) (six), Eastern equine encephalitis virus (EEEV) (four), and Jamestown Canyon virus (JCV) (three). Of these, 624 (72%) were classified as neuroinvasive disease, for a national incidence of 0.20 per 100,000 population. WNV and other arboviruses continue to cause focal outbreaks and severe illness in substantial numbers of persons in the United States.

  5. Newcastle Disease Strain F. Virus — A Review

    PubMed Central

    Lancaster, J. E.

    1962-01-01

    Strain F Newcastle disease virus is a virus of low virulence originally reported by Asplin (1952) in England. Since that date, the use of this virus as an immunizing agent in the form of a live vaccine, has been studied. As a result, Strain F Newcastle disease vaccine has been used in national and experimental control programs in several countries in Europe, Africa and Asia. The published literature is reviewed under the following headings: properties, viability, clinical effects of vaccination, duration of immunity and a simultaneous Newcastle disease fowl pox vaccination. This review includes 24 reports published outside North America. PMID:17649410

  6. Human Immunodeficiency Virus and Liver Disease Forum 2010: Conference Proceedings

    PubMed Central

    Sherman, Kenneth E.; Thomas, David L.; Chung, Raymond T.

    2013-01-01

    Liver disease continues to represent a critical mediator of morbidity and mortality in those with human immunodeficiency virus (HIV) infection. The frequent presence and overlap of concomitant injurious processes, including hepatitis C virus and hepatitis B virus infections, hepatoxicity associated with antiretroviral therapeutic agents, alcohol, and other toxins, in the setting of immunosuppression lead to rapid fibrotic progression and early development of end-stage liver disease. This conference summary describes the proceedings of a state-of-the-art gathering of international experts designed to highlight the status of current research in epidemiology, natural history, pathogenesis, and treatment of HIV and liver disease. PMID:21898501

  7. HoBi-like viruses: an emerging group of pestiviruses.

    PubMed

    Bauermann, Fernando V; Ridpath, Julia F; Weiblen, Rudi; Flores, Eduardo F

    2013-01-01

    The genus Pestivirus is composed of 4 important pathogens of livestock: Bovine viral diarrhea virus 1 and 2 (BVDV-1 and BVDV-2), Classical swine fever virus (CSFV), and Border disease virus of sheep (BDV). BVDV are major pathogens of cattle, and infection results in significant economic loss worldwide. A new putative pestivirus species, tentatively called "HoBi-like," "BVDV-3," or "atypical pestiviruses," was first identified in Europe in fetal bovine serum (FBS) imported from Brazil. HoBi-like viruses are related to BVDV at the genetic and antigenic levels. Further, the disease caused by these new viruses resembles clinical presentations historically associated with BVDV infection, including growth retardation, reduced milk production, respiratory disease, reduced reproductive performance, and increased mortality among young stock. Current BVDV diagnostic tests may fail to detect HoBi-like viruses or to differentiate between BVDV and HoBi-like viruses. Further, commercial tests for BVDV exposure, based on serological response, do not reliably detect HoBi-like virus exposure, and cross protection against HoBi-like viruses conferred by current BVDV vaccines is likely limited. As many HoBi-like viruses, characterized to date, were isolated from FBS originating from Brazil, it is assumed that the agent is probably widespread in Brazilian herds. Nevertheless, reports of natural infection in Southeast Asia and Europe demonstrate that these viruses are not restricted to South America. Increased demand for FBS has led to widespread distribution of FBS originating in HoBi-like virus endemic regions. The contamination of such FBS with HoBi-like viruses may lead to spread of this virus to other regions.

  8. Animal Capture Agents

    DTIC Science & Technology

    1990-01-01

    agents and delivery systems reviewed . Questionnaires were sent to 137 Air Force bases to obtain information about the chemical agents and delivery systems...used by animal control personnel. A literature review included chemical agents, delivery methods, toxicity information and emergency procedures from...34-like agent. Users should familiarize themselves with catatonia in general and particularly that its successful use as an immobilizer doesn’t necessarily

  9. Immunology of bats and their viruses: challenges and opportunities.

    PubMed

    Schountz, Tony

    2014-12-01

    Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock.

  10. A classification system for virophages and satellite viruses.

    PubMed

    Krupovic, Mart; Kuhn, Jens H; Fischer, Matthias G

    2016-01-01

    Satellite viruses encode structural proteins required for the formation of infectious particles but depend on helper viruses for completing their replication cycles. Because of this unique property, satellite viruses that infect plants, arthropods, or mammals, as well as the more recently discovered satellite-like viruses that infect protists (virophages), have been grouped with other, so-called "sub-viral agents." For the most part, satellite viruses are therefore not classified. We argue that possession of a coat-protein-encoding gene and the ability to form virions are the defining features of a bona fide virus. Accordingly, all satellite viruses and virophages should be consistently classified within appropriate taxa. We propose to create four new genera - Albetovirus, Aumaivirus, Papanivirus, and Virtovirus - for positive-sense single-stranded (+) RNA satellite viruses that infect plants and the family Sarthroviridae, including the genus Macronovirus, for (+)RNA satellite viruses that infect arthopods. For double-stranded DNA virophages, we propose to establish the family Lavidaviridae, including two genera, Sputnikvirus and Mavirus.

  11. Immunology of Bats and Their Viruses: Challenges and Opportunities

    PubMed Central

    Schountz, Tony

    2014-01-01

    Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock. PMID:25494448

  12. Statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor)-based therapy for hepatitis C virus (HCV) infection-related diseases in the era of direct-acting antiviral agents

    PubMed Central

    Kishta, Sara Sobhy; Kishta, Sobhy Ahmed; El-Shenawy, Reem

    2017-01-01

    Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs ( e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness. PMID:27583130

  13. Topical hemostatic agents: a review.

    PubMed

    Palm, Melanie D; Altman, Jeffrey S

    2008-04-01

    Topical hemostatic agents play an important role in both common and specialized dermatologic procedures. These agents can be classified based on their mechanism of action and include physical or mechanical agents, caustic agents, biologic physical agents, and physiologic agents. Some agents induce protein coagulation and precipitation resulting in occlusion of small cutaneous vessels, while others take advantage of latter stages in the coagulation cascade, activating biologic responses to bleeding. Traditional and newer topical hemostatic agents are discussed in this review, and the benefits and costs of each agent will be provided.

  14. Biological Warfare Agents, Toxins, Vectors and Pests as Biological Terrorism Agents

    DTIC Science & Technology

    2003-07-01

    virus Omsk fever virus Human pathogens ( bacteria , rickettsiae , protozoa and fungi) as biological terrorism agents: Bacteria / Rickettsia 1...Bacillus anthracis 2. Yersinia pestis 3. Francisella tularensis 4. Rickettsia prowazekii 5. Rickettsia rickettsii 6. Bulkholderia (Pseudomonas) mallei...assessment according to criteria for selecting pathogens as biological terrorism agents. Table 1b. Human pathogens ( bacteria , rickettsiae , protozoa

  15. 9 CFR 121.3 - VS select agents and toxins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agent or toxin to APHIS or CDC. (i) The seizure of any of the following VS select agents and toxins must... virus, and swine vesicular disease virus. This report must be followed by submission of APHIS/CDC Form 4... toxins, APHIS/CDC Form 4 must be submitted within 7 calendar days after seizure of the agent or...

  16. Mercadeo Virus: A Novel Mosquito-Specific Flavivirus from Panama

    PubMed Central

    Carrera, Jean-Paul; Guzman, Hilda; Beltrán, Davis; Díaz, Yamilka; López-Vergès, Sandra; Torres-Cosme, Rolando; Popov, Vsevolod; Widen, Steven G.; Wood, Thomas G.; Weaver, Scott C.; Cáceres-Carrera, Lorenzo; Vasilakis, Nikos; Tesh, Robert B.

    2015-01-01

    Viruses in the genus Flavivirus (family Flaviviridae) include many arthropod-borne viruses of public health and veterinary importance. However, during the past two decades an explosion of novel insect-specific flaviviruses (ISFs), some closely related to vertebrate pathogens, have been discovered. Although many flavivirus pathogens of vertebrates have been isolated from naturally infected mosquitoes in Panama, ISFs have not previously been reported from the country. This report describes the isolation and characterization of a novel ISF, tentatively named Mercadeo virus (MECDV), obtained from Culex spp. mosquitoes collected in Panama. Two MECDV isolates were sequenced and cluster phylogenetically with cell-fusing agent virus (CFAV) and Nakiwogo virus (NAKV) to form a distinct lineage within the insect-specific group of flaviviruses. PMID:26304915

  17. Small-Scale Terrorist Attacks Using Chemical and Biological Agents: An Assessment Framework and Preliminary Comparisons

    DTIC Science & Technology

    2004-06-23

    Rickettsia rickettsii , found online at [http://www.hc-sc.gc.ca/pphb-dgspsp/msds-ftss/msds129e.html]. w Information on Escherichia coli O157:H7 is...research/cbw/possess.htm]. Biological Agent Comparison Potential biological agents include the many bacteria and viruses that induce disease in human...their acquisition, regardless of the legality of such a transfer. In contrast, salmonella bacteria would be easy to obtain from natural sources and

  18. Bichat guidelines for the clinical management of haemorrhagic fever viruses and bioterrorism-related haemorrhagic fever viruses.

    PubMed

    Bossi, Philippe; Tegnell, Anders; Baka, Agoritsa; Van Loock, Frank; Hendriks, Jan; Werner, Albrecht; Maidhof, Heinrich; Gouvras, Georgios

    2004-12-15

    Haemorrhagic fever viruses (HFVs) are a diverse group of viruses that cause a clinical disease associated with fever and bleeding disorder. HFVs that are associated with a potential biological threat are Ebola and Marburg viruses (Filoviridae), Lassa fever and New World arenaviruses (Machupo, Junin, Guanarito and Sabia viruses) (Arenaviridae), Rift Valley fever (Bunyaviridae) and yellow fever, Omsk haemorrhagic fever, and Kyanasur Forest disease (Flaviviridae). In terms of biological warfare concerning dengue, Crimean-Congo haemorrhagic fever and Hantaviruses, there is not sufficient knowledge to include them as a major biological threat. Dengue virus is the only one of these that cannot be transmitted via aerosol. Crimean-Congo haemorrhagic fever and the agents of haemorrhagic fever with renal syndrome appear difficult to weaponise. Ribavirin is recommended for the treatment and the prophylaxis of the arenaviruses and the bunyaviruses, but is not effective for the other families. All patients must be isolated and receive intensive supportive therapy.

  19. The Role of Infectious Agents in the Etiology of Ocular Adnexal Neoplasia

    PubMed Central

    Verma, Varun; Shen, Defen; Sieving, Pamela C.; Chan, Chi-Chao

    2008-01-01

    Given the fact that infectious agents contribute to around 18% of human cancers worldwide, it would seem prudent to explore their role in neoplasms of the ocular adnexa: primary malignancies of the conjunctiva, lacrimal glands, eyelids, and orbit. By elucidating the mechanisms by which infectious agents contribute to oncogenesis, the management, treatment, and prevention of these neoplasms may one day parallel what is already in place for cancers such as cervical cancer, hepatocellular carcinoma, gastric mucosa-associated lymphoid tissue lymphoma and gastric adenocarcinoma. Antibiotic treatment and vaccines against infectious agents may herald a future with a curtailed role for traditional therapies of surgery, radiation, and chemotherapy. Unlike other malignancies for which large epidemiological studies are available, analyzing ocular adnexal neoplasms is challenging as they are relatively rare. Additionally, putative infectious agents seemingly display an immense geographic variation that has led to much debate regarding the relative importance of one organism versus another. This review discusses the pathogenetic role of several microorganisms in different ocular adnexal malignancies, including human papilloma virus in conjunctival papilloma and squamous cell carcinoma, human immunodeficiency virus in conjunctival squamous carcinoma, Kaposi sarcoma-associated herpes virus or human herpes simplex virus-8 (KSHV/HHV-8) in conjunctival Kaposi sarcoma, Helicobacter pylori (H. pylori,), Chlamydia, and hepatitis C virus in ocular adnexal mucosa-associated lymphoid tissue lymphomas. Unlike cervical cancer where a single infectious agent, human papilloma virus, is found in greater than 99% of lesions, multiple organisms may play a role in the etiology of certain ocular adnexal neoplasms by acting through similar mechanisms of oncogenesis, including chronic antigenic stimulation and the action of infectious oncogenes. However, similar to other human malignancies

  20. New viruses in veterinary medicine, detected by metagenomic approaches.

    PubMed

    Belák, Sándor; Karlsson, Oskar E; Blomström, Anne-Lie; Berg, Mikael; Granberg, Fredrik

    2013-07-26

    In our world, which is faced today with exceptional environmental changes and dramatically intensifying globalisation, we are encountering challenges due to many new factors, including the emergence or re-emergence of novel, so far "unknown" infectious diseases. Although a broad arsenal of diagnostic methods is at our disposal, the majority of the conventional diagnostic tests is highly virus-specific or is targeted entirely towards a limited group of infectious agents. This specificity complicates or even hinders the detection of new or unexpected pathogens, such as new, emerging or re-emerging viruses or novel viral variants. The recently developed approaches of viral metagenomics provide an effective novel way to screen samples and detect viruses without previous knowledge of the infectious agent, thereby enabling a better diagnosis and disease control, in line with the "One World, One Health" principles (www.oneworldonehealth.org). Using metagenomic approaches, we have recently identified a broad variety of new viruses, such as novel bocaviruses, Torque Teno viruses, astroviruses, rotaviruses and kobuviruses in porcine disease syndromes, new virus variants in honeybee populations, as well as a range of other infectious agents in further host species. These findings indicate that the metagenomic detection of viral pathogens is becoming now a powerful, cultivation-independent, and useful novel diagnostic tool in veterinary diagnostic virology.

  1. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity.

    PubMed

    Umemoto, Teruo; Singh, Rajendra P; Xu, Yong; Saito, Norimichi

    2010-12-29

    Versatile, safe, shelf-stable, and easy-to-handle fluorinating agents are strongly desired in both academic and industrial arenas, since fluorinated compounds have attracted considerable interest in many areas, such as drug discovery, due to the unique effects of fluorine atoms when incorporated into molecules. This article describes the synthesis, properties, and reactivity of many substituted and thermally stable phenylsulfur trifluorides, in particular, 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride (Fluolead, 1k), as a crystalline solid having surprisingly high stability on contact with water and superior utility as a deoxofluorinating agent compared to current reagents, such as DAST and its analogues. The roles of substituents on 1k in thermal and hydrolytic stability, fluorination reactivity, and the high-yield fluorination mechanism it undergoes have been clarified. In addition to fluorinations of alcohols, aldehydes, and enolizable ketones, 1k smoothly converts non-enolizable carbonyls to CF(2) groups, and carboxylic groups to CF(3) groups, in high yields. 1k also converts C(=S) and CH(3)SC(=S)O groups to CF(2) and CF(3)O groups, respectively, in high yields. In addition, 1k effects highly stereoselective deoxofluoro-arylsulfinylation of diols and amino alcohols to give fluoroalkyl arylsulfinates and arylsulfinamides, with complete inversion of configuration at fluorine and the simultaneous, selective formation of one conformational isomer at the sulfoxide sulfur atom. Considering the unique and diverse properties, relative safety, and ease of handling of 1k in addition to its convenient synthesis, it is expected to find considerable use as a novel fluorinating agent in both academic and industrial arenas.

  2. [The taxonomy of the Issyk-Kul virus (ISKV, Bunyaviridae, Nairovirus), the etiologic agent of the Issyk-Kul fever isolated from bats (Vespertilionidae) and ticks Argas (Carios) vespertilionis (Latreille, 1796)].

    PubMed

    Al'khovskiĭ, S V; L'vov, D K; Shchelkanov, M Iu; Shchetinin, A M; Deriabin, P G; Samokhvalov, E I; Gitel'man, A K; Botikov, A G

    2013-01-01

    The Issyk-Kul virus (etiological agent of the Issyk-Kul fever) was originally isolated from bats (Nyctalus noctula Schreber, 1774 (Chiroptera: Vespertilionidae)) and their parasites ticks (Argas (Carios) vespertilionis Latreille, 1796 (Parasitiformes: Argasidae)) in Kirghizia. Sporadic cases and epidemics of the Issyk-Kul fever are observed in Central Asia since 1979. The ISKV genome was de novo sequenced using the next-generation sequencing technology. According to the molecular-genetic and phylogenetic analysis, the ISKV is a member of a novel group in the genus Nairovirus (Bunyaviridae). Based on the data obtained, molecular-genetic methods can be used for ISKV detection (PCR) for the Issyk-Kul fever monitoring and diagnosis in the endemic areas.

  3. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo.

    PubMed

    Uddin, Md Bashir; Lee, Byeong-Hoon; Nikapitiya, Chamilani; Kim, Jae-Hoon; Kim, Tae-Hwan; Lee, Hyun-Cheol; Kim, Choul Goo; Lee, Jong-Soo; Kim, Chul-Joong

    2016-12-01

    Bee venom (BV) from honey bee (Apis Melifera L.) contains at least 18 pharmacologically active components including melittin (MLT), phospholipase A2 (PLA2), and apamin etc. BV is safe for human treatments dose dependently and proven to possess different healing properties including antibacterial and antiparasitidal properties. Nevertheless, antiviral properties of BV have not well investigated. Hence, we identified the potential antiviral properties of BV and its component against a broad panel of viruses. Co-incubation of non-cytotoxic amounts of BV and MLT, the main component of BV, significantly inhibited the replication of enveloped viruses such as Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV). Additionally, BV and MLT also inhibited the replication of non-enveloped viruses such as Enterovirus-71 (EV-71) and Coxsackie Virus (H3). Such antiviral properties were mainly explained by virucidal mechanism. Moreover, MLT protected mice which were challenged with lethal doses of pathogenic influenza A H1N1 viruses. Therefore, these results provides the evidence that BV and MLT could be a potential source as a promising antiviral agent, especially to develop as a broad spectrum antiviral agent.

  4. Radiolabelled D2 agonists as prolactinoma imaging agents

    SciTech Connect

    Otto, C.A.

    1991-12-31

    Research conducted in this terminal year of support centered on three distinct areas: mAChR ligand localization in pancreas and the effect of Ca{sup +2} on localization, continuation of assessment of quaternized and neutral mAChR ligands for possible use as PET myocardial imaging agents, and initiation of a study to determine the relationship of the nAChR receptor to the cellular receptor for measles virus. Several tables and figures illustrating the results are included.

  5. Heartland Virus

    MedlinePlus

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  6. Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents

    PubMed Central

    Hyrina, Anastasia; Meng, Fanrui; McArthur, Steven J.; Eivemark, Sharlene; Nabi, Ivan R.; Jean, François

    2017-01-01

    Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1–4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1–4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection. PMID:28339489

  7. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  8. Virus engineering: functionalization and stabilization.

    PubMed

    Mateu, Mauricio G

    2011-01-01

    Chemically and/or genetically engineered viruses, viral capsids and viral-like particles carry the promise of important and diverse applications in biomedicine, biotechnology and nanotechnology. Potential uses include new vaccines, vectors for gene therapy and targeted drug delivery, contrast agents for molecular imaging and building blocks for the construction of nanostructured materials and electronic nanodevices. For many of the contemplated applications, the improvement of the physical stability of viral particles may be critical to adequately meet the demanding physicochemical conditions they may encounter during production, storage and/or medical or industrial use. The first part of this review attempts to provide an updated general overview of the fast-moving, interdisciplinary virus engineering field; the second part focuses specifically on the modification of the physical stability of viral particles by protein engineering, an emerging subject that has not been reviewed before.

  9. Hepatitis Virus Infections in Poultry.

    PubMed

    Yugo, Danielle M; Hauck, Ruediger; Shivaprasad, H L; Meng, Xiang-Jin

    2016-09-01

    acute, fatal infections in ducklings with a rapid decline within 1-2 hr and clinical and pathologic signs virtually indistinguishable from DHAV. DAstV-1 has only been recognized in the United Kingdom and recently in China, while DAstV-2 has been reported in ducks in the United States. FAdV, the causative agent of inclusion body hepatitis, is a Group I avian adenovirus in the genus Aviadenovirus. The affected birds have a swollen, friable, and discolored liver, sometimes with necrotic or hemorrhagic foci. Histologic lesions include multifocal necrosis of hepatocytes and acute hepatitis with intranuclear inclusion bodies in the nuclei of the hepatocytes. THV is a picornavirus that is likely the causative agent of turkey viral hepatitis. Currently there are more questions than answers about THV, and the pathogenesis and clinical impacts remain largely unknown. Future research in viral hepatic diseases of poultry is warranted to develop specific diagnostic assays, identify suitable cell culture systems for virus propagation, and develop effective vaccines.

  10. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... Orange Parkinson’s Awareness Month Were you exposed to herbicides during service and have Parkinson’s disease? You may ...

  11. Sendai Virus as a Backbone for Vaccines against RSV and other Human Paramyxoviruses

    PubMed Central

    Russell, Charles J.; Hurwitz, Julia L.

    2016-01-01

    Summary Human paramyxoviruses are the etiological agents for life-threatening respiratory virus infections of infants and young children. These virusesincluding respiratory syncytial virus (RSV), the human parainfluenza viruses (hPIV1-4), and human metapneumovirus (hMPV) – are responsible for millions of serious lower respiratory tract infections each year worldwide. There are currently no standard treatments and no licensed vaccines for any of these pathogens. Here we review research with which Sendai virus, a mouse parainfluenza virus type 1, is being advanced as a Jennerian vaccine for hPIV1 and as a backbone for RSV, hMPV, and other hPIV vaccines for children. PMID:26648515

  12. Genetic evolution of H9 subtype influenza viruses from live poultry markets in Shanghai, China.

    PubMed

    Ge, Fei-Fei; Zhou, Jin-Ping; Liu, Jian; Wang, Jian; Zhang, Wei-Yi; Sheng, Li-Ping; Xu, Feng; Ju, Hou-Bing; Sun, Quan-Yun; Liu, Pei-Hong

    2009-10-01

    H9N2 influenza viruses have become established and maintain long-term endemicity in poultry. The complete genomes of seven avian H9N2 influenza viruses were characterized. These seven influenza virus isolates were obtained from live poultry markets in Shanghai, China, in 2002 and from 2006 to 2008. Genetic analysis revealed that all seven isolates had an RSSR motif at the cleavage site of hemagglutinin (HA), indicating low pathogenicity in chickens. Phylogenetic analyses indicated that the seven avian H9N2 viruses belonged to the lineage represented by Duck/Hong Kong/Y280/97 (H9N2), a virus belonging to the Chicken/Beijing/1/94-like (H9N2) lineage, and that they are all quadruple reassortants consisting of genes from different lineages. The six internal genes of the isolates possessed H5N1-like sequences, indicating that they were reassortants of H9 and H5 viruses. All of the viruses had nonstructural (as well as HA and neuraminidase) genes derived from the Duck/Hong Kong/Y280/97-like virus lineage but also had other genes of mixed avian virus origin, including genes similar to those of H5N1 viruses (Gs/GD-like). The infected chickens showed no signs of disease. These results show the genetic and biological diversity of H9N2 viruses in Shanghai and support their potential role as pandemic influenza agents.

  13. Virus discovery and recent insights into virus diversity in arthropods.

    PubMed

    Junglen, Sandra; Drosten, Christian

    2013-08-01

    Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.

  14. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate.

    PubMed

    Benelli, Giovanni; Govindarajan, Marimuthu; Rajeswary, Mohan; Senthilmurugan, Sengamalai; Vijayan, Periasamy; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M

    2017-04-01

    The effective and environmentally sustainable control of mosquitoes is a challenge of essential importance. This is due to the fact that some invasive mosquitoes, with special reference to the Aedes genus, are particularly difficult to control, due to their high ecological plasticity. Moreover, the indiscriminate overuse of synthetic insecticides resulted in undesirable effects on human health and non-target organisms, as well as resistance development in targeted vectors. Here, the leaf essential oil (EO) extracted from a scarcely studied plant of ethno-medicinal interest, Blumea eriantha (Asteraceae), was tested on the larvae of six mosquitoes, including Zika virus vectors. The B. eriantha EO was analyzed by GC and GC-MS. The B. eriantha EO showed high toxicity against 3rd instar larvae of six important mosquito species: Anopheles stephensi (LC50=41.61 μg/ml), Aedes aegypti (LC50=44.82 μg/ml), Culex quinquefasciatus (LC50 =48.92 μg/ml), Anopheles subpictus (LC50=51.21 μg/ml), Ae. albopictus (LC50=56.33 μg/ml) and Culex tritaeniorhynchus (LC50=61.33 μg/ml). The major components found in B. eriantha EO were (4E,6Z)-allo-ocimene (12.8%), carvotanacetone (10.6%), and dodecyl acetate (8.9%). Interestingly, two of the main EO components, (4E,6Z)-allo-ocimene and carvotanacetone, achieved LC50 lower than 10 μg/ml on all tested mosquito species. The acute toxicity of B. eriantha EO and its major constituents on four aquatic predators of mosquito larval instars was limited, with LC50 ranging from 519 to 11.431 μg/ml. Overall, the larvicidal activity of (4E,6Z)-allo-ocimene and carvotanacetone far exceed most of the LC50 calculated in current literature on mosquito botanical larvicides, allowing us to propose both of them as potentially alternatives for developing eco-friendly mosquito control tools.

  15. Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.

    PubMed

    Wang, Denong; Tang, Jin; Tang, Jiulai; Wang, Lai-Xi

    2015-03-12

    Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  16. Viruses and Breast Cancer

    PubMed Central

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  17. Foodborne illness and microbial agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illnesses result from the consumption of food containing microbial agents such as bacteria, viruses, parasites or food contaminated by poisonous chemicals or bio-toxins. Pathogen proliferation is due to nutrient composition of foods, which are capable of supporting the growth of microorgan...

  18. Self-assembly of virus particles: The role of genome

    NASA Astrophysics Data System (ADS)

    Erdemci-Tandogan, Gonca; Wagner, Jef; Podgornik, Rudolf; Zandi, Roya

    2013-03-01

    A virus is an infectious agent that inserts its genetic material into the cell and hijacks the cell's machinery to reproduce. The simplest viruses are made of a protein shell (capsid) that protects its genome (DNA or RNA). Many plant and animal viruses can be assembled spontaneously from a solution of proteins and genetic material in different capsid shapes and sizes. This work focuses on the role of genome in the assembly of spherical RNA viruses. The RNA, a highly flexible polymer, is modeled by mean field approximations. Two RNA models are discussed: (i) A linear polymer model including a pairing affinity between RNA base pairs, and (ii) a branched polymer model. Polymer density and electrostatic potential profiles are obtained, and the relevant free energies are calculated from these profiles. The optimal length of the encapsidated chain is examined as a function of the model parameters. The osmotic pressure of the system is also discussed.

  19. Insect-Specific Virus Discovery: Significance for the Arbovirus Community

    PubMed Central

    Bolling, Bethany G.; Weaver, Scott C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching. PMID:26378568

  20. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  1. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  2. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  3. Design and Engineering of a Multi-Target (Multiplex) DNA Simulant to Evaluate Nulceic Acid Based Assays for Detection of Biological Threat Agents

    DTIC Science & Technology

    2006-11-01

    Using the actual bio-threat agents for testing is impractical since producing a number of different threat bacteria and viruses, isolating and...Brucella species are recognized as potential agricultural, civilian, and military bioterrorism agents. Rickettsia are classified into two groups; the...spotted fever group (SFG), which includes R. conorii, R. sibirica, and R. rickettsii , and the typhus group (TG), which includes R. prowazekii and R

  4. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities

    PubMed Central

    Kaplan, N.; Murphy, B.

    2015-01-01

    This open-label noncontrolled, phase II multicenter trial was designed to evaluate the safety, tolerability, and efficacy of 200 mg of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), given by mouth twice daily in the treatment of acute bacterial skin and skin structure infections (ABSSSI) due to staphylococci. Important aspects of the current study included a comparison of early response efficacy endpoints with end-of-treatment and follow-up endpoints. Many patients in the intent-to-treat population (n = 103) had significant comorbidities. The overall early response rate at day 3 was 97.3% (wound, 100%; abscess, 96.6%; cellulitis, 94.4%) in the microbiologically evaluable (ME) population. Within the ME population, 82.9% of patients had a ≥20% decrease in the area of erythema, and 77.9% of patients had a ≥20% decrease in the area of induration, on day 3. S. aureus was detected in 97.7% of patients (n = 37 patients with methicillin-resistant S. aureus [MRSA], and n = 39 with methicillin-sensitive S. aureus [MSSA]). No isolates had increased AFN-1252 MICs posttreatment. Microbiologic eradication rates for S. aureus were 93.2% at short-term follow-up (STFU) and 91.9% at long-term follow-up (LTFU) in the ME population. Eradication rates for MRSA and MSSA were 91.9% and 92.3%, respectively, at STFU and 91.9% and 89.7%, respectively, at LTFU. The most frequently reported drug-related adverse events, which were mostly mild or moderate, were headache (26.2%) and nausea (21.4%). These studies demonstrate that AFN-1252 is generally well tolerated and effective in the treatment of ABSSSI due to S. aureus, including MRSA. (This study has been registered at ClinicalTrials.gov under registration no. NCT01519492.) PMID:26711777

  5. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities.

    PubMed

    Hafkin, B; Kaplan, N; Murphy, B

    2015-12-28

    This open-label noncontrolled, phase II multicenter trial was designed to evaluate the safety, tolerability, and efficacy of 200 mg of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), given by mouth twice daily in the treatment of acute bacterial skin and skin structure infections (ABSSSI) due to staphylococci. Important aspects of the current study included a comparison of early response efficacy endpoints with end-of-treatment and follow-up endpoints. Many patients in the intent-to-treat population (n = 103) had significant comorbidities. The overall early response rate at day 3 was 97.3% (wound, 100%; abscess, 96.6%; cellulitis, 94.4%) in the microbiologically evaluable (ME) population. Within the ME population, 82.9% of patients had a ≥ 20% decrease in the area of erythema, and 77.9% of patients had a ≥ 20% decrease in the area of induration, on day 3. S. aureus was detected in 97.7% of patients (n = 37 patients with methicillin-resistant S. aureus [MRSA], and n = 39 with methicillin-sensitive S. aureus [MSSA]). No isolates had increased AFN-1252 MICs posttreatment. Microbiologic eradication rates for S. aureus were 93.2% at short-term follow-up (STFU) and 91.9% at long-term follow-up (LTFU) in the ME population. Eradication rates for MRSA and MSSA were 91.9% and 92.3%, respectively, at STFU and 91.9% and 89.7%, respectively, at LTFU. The most frequently reported drug-related adverse events, which were mostly mild or moderate, were headache (26.2%) and nausea (21.4%). These studies demonstrate that AFN-1252 is generally well tolerated and effective in the treatment of ABSSSI due to S. aureus, including MRSA. (This study has been registered at ClinicalTrials.gov under registration no. NCT01519492.).

  6. Vaccinia virus infection & temporal analysis of virus gene expression: Part 3.

    PubMed

    Yen, Judy; Golan, Ron; Rubins, Kathleen

    2009-04-13

    The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (approximately 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.

  7. Vaccinia virus infection & temporal analysis of virus gene expression: part 1.

    PubMed

    Yen, Judy; Golan, Ron; Rubins, Kathleen

    2009-04-08

    The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (approximately 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.

  8. Vaccinia virus infection & temporal analysis of virus gene expression: Part 2.

    PubMed

    Yen, Judy; Golan, Ron; Rubins, Kathleen

    2009-04-10

    The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (approximately 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.

  9. Virus like particle-based vaccines against emerging infectious disease viruses.

    PubMed

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

  10. Cell culture and electron microscopy for identifying viruses in diseases of unknown cause.

    PubMed

    Goldsmith, Cynthia S; Ksiazek, Thomas G; Rollin, Pierre E; Comer, James A; Nicholson, William L; Peret, Teresa C T; Erdman, Dean D; Bellini, William J; Harcourt, Brian H; Rota, Paul A; Bhatnagar, Julu; Bowen, Michael D; Erickson, Bobbie R; McMullan, Laura K; Nichol, Stuart T; Shieh, Wun-Ju; Paddock, Christopher D; Zaki, Sherif R

    2013-06-01

    During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases.

  11. Foodborne viruses.

    PubMed

    Koopmans, Marion; von Bonsdorff, Carl Henrik; Vinjé, Jan; de Medici, Dario; Monroe, Steve

    2002-06-01

    culture systems. As currently available routine monitoring systems exclusively focus on bacterial pathogens, efforts should be made to combine epidemiological and virological information for a combined laboratory-based rapid detection system for foodborne viruses. With better surveillance, including typing information, outbreaks of foodborne infections could be reported faster to prevent further spread.

  12. Detection of Occult Hepatitis C Virus Infection in Patients Who Achieved a Sustained Virologic Response to Direct-Acting Antiviral Agents for Recurrent Infection After Liver Transplantation.

    PubMed

    Elmasry, Sandra; Wadhwa, Sanya; Bang, Bo-Ram; Cook, Linda; Chopra, Shefali; Kanel, Gary; Kim, Brian; Harper, Tammy; Feng, Zongdi; Jerome, Keith R; Kahn, Jeffrey A; Saito, Takeshi

    2017-02-01

    Occult infection with hepatitis C virus (HCV) is defined as the presence of the HCV genome in either liver tissue or peripheral blood monocytes, despite constant negative results from tests for HCV RNA in serum. We investigated whether patients who maintained a sustained virologic response 12 weeks after therapy (SVR12) with direct-acting antiviral (DAA) agents for recurrent HCV infection after liver transplantation had occult HCV infections. We performed a prospective study of 134 patients with recurrent HCV infection after liver transplantation who were treated with DAAs, with or without ribavirin, from 2014 through 2016 (129 patients achieved an SVR12). In >10% of the patients who achieved SVR12 (n = 14), serum levels of aminotransferases did not normalize during or after DAA therapy, or they normalized transiently but then increased sharply after DAA therapy. Of these 14 patients, 9 were assessed for occult HCV infection by reverse transcription quantitative polymerase chain reaction. This analysis revealed that 55% of these patients (n = 5) had an occult infection, with the detection of negative strand viral genome, indicating viral replication. These findings indicate the presence of occult HCV infection in some patients with abnormal levels of serum aminotransferases, despite SVR12 to DAAs for HCV infection after liver transplantation.

  13. Microbial agents associated with waterborne diseases.

    PubMed

    Leclerc, H; Schwartzbrod, L; Dei-Cas, E

    2002-01-01

    Many classes of pathogens excreted in feces are able to initiate waterborne infections. There are bacterial pathogens, including enteric and aquatic bacteria, enteric viruses, and enteric protozoa, which are strongly resistant in the water environment and to most disinfectants. The infection dose of viral and protozoan agents is lower than bacteria, in the range of one to ten infectious units or oocysts. Waterborne outbreaks of bacterial origin (particularly typhoid fever) in the developing countries have declined dramatically from 1900s. Therefore, some early bacterial agents such as Shigella sonnei remains prevalent and new pathogens of fecal origin such as zoonotic C. jejuni and E. coli O157:H7 may contaminate pristine waters through wildlife or domestic animal feces. The common feature of these bacteria is the low inoculum (a few hundred cells) that may trigger disease. The emergence in early 1992 of serotype O139 of V. cholerae with epidemic potential in Southeast Asia suggests that other serotypes than V. cholerae O1 could also getting on epidemic. Some new pathogens include environmental bacteria that are capable of surviving and proliferating in water distribution systems. Other than specific hosts at risk, the general population is refractory to infection with ingested P. aeruginosa. The significance of Aeromonas spp. in drinking water to the occurrence of acute gastroenteritis remains a debatable point and has to be evaluated in further epidemiological studies. Legionella and Mycobacterium avium complex (MAC) are environmental pathogens that have found an ecologic niche in drinking and hot water supplies. Numerous studies have reported Legionnaires' disease caused by L. pneumophila occurring in residential and hospital water supplies. M. avium complex frequently causes disseminated infections in AIDS patients and drinking water has been suggested as a source of infection; in some cases the relationship has been proven. More and more numerous reports show

  14. Virus movement within grafted watermelon plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon production in Florida is impacted by several viruses including whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit yellow stunting disorder virus and Cucurbit leaf crumple virus, and aphid-transmitted Papaya ringspot virus type W (PRSV-W). While germplasm resistant to some...

  15. Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere

    PubMed Central

    2016-01-01

    Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and vaccines. PMID:26962217

  16. New dimensions of the virus world discovered through metagenomics

    PubMed Central

    Kristensen, David M.; Mushegian, Arcady R.; Dolja, Valerian V.; Koonin, Eugene V.

    2012-01-01

    Metagenomic analysis of viruses suggests novel patterns of evolution, changes the existing ideas of the composition of the virus world and reveals novel groups of viruses and virus-like agents. The gene composition of the marine DNA virome is dramatically different from that of known bacteriophages. The virome is dominated by rare genes, many of which might be contained within virus-like entities such as gene transfer agents. Analysis of marine metagenomes thought to consist mostly of bacterial genes revealed a variety of sequences homologous to conserved genes of eukaryotic nucleocytoplasmic large DNA viruses, resulting in the discovery of diverse members of previously undersampled groups and suggesting the existence of new classes of virus-like agents. Unexpectedly, metagenomics of marine RNA viruses showed that representatives of only one superfamily of eukaryotic viruses, the picorna-like viruses, dominate the RNA virome. PMID:19942437

  17. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  18. [The antiretroviral agent Fullevir].

    PubMed

    Nosik, D N; Lialina, I K; Kalnina, L B; Lobach, O A; Chataeva, M S; Rasnetsov, L D

    2009-01-01

    The antiretroviral properties of Fullevir (sodium salt of fullerenepolyhydropolyaminocaproic acid) manufactured by IntelFarm Co.) were studied in the human cell culture infected with human immunodeficiency virus (HIV). The agent was ascertained to be able to protect the cell from the cytopathic action of HIV. The 90% effective concentration (EF90) was 5 microg/ml. The 50% average toxic concentration was 400 microg/ml. Testing of different (preventive and therapeutic) Fullevir dosage regimens has shown that the drug is effective when used both an hour before and an hour after infection and when administered simultaneously with cell infection. The longer contact time for the agent with the cells increased the degree of antiviral defense. Co-administration of Fullevir and the HIV reverse transcriptase inhibitor Retrovir (azidothymidine) showed a synergistic antiretroviral effect. Thus, Fullevir may be regarded as a new promising antiretroviral drug for the treatment of HIV infection.

  19. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial Assistance for NMVC Companies (Leverage) Funding Leverage by Use of Sba Guaranteed Trust Certificates (âtcsâ... financial markets to determine those factors that will minimize or reduce the cost of funding...

  20. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial Assistance for NMVC Companies (Leverage) Funding Leverage by Use of Sba Guaranteed Trust Certificates (âtcsâ... financial markets to determine those factors that will minimize or reduce the cost of funding...

  1. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial Assistance for NMVC Companies (Leverage) Funding Leverage by Use of Sba Guaranteed Trust Certificates (âtcsâ... financial markets to determine those factors that will minimize or reduce the cost of funding...

  2. Role of infectious agents in cutaneous T-cell lymphoma: facts and controversies.

    PubMed

    Mirvish, Judah J; Pomerantz, Rebecca G; Falo, Louis D; Geskin, Larisa J

    2013-01-01

    The etiology of cutaneous T-cell lymphoma (CTCL) remains unknown, with potential infectious causes having been explored. This contribution evaluates the evidence suggesting an infectious etiology and pathogenesis of the disease, characterizes the relationships between various specific pathogens and CTCL, and discusses some of the difficulties in establishing a causal link between infectious agents and CTCL carcinogenesis. Researchers have evaluated CTCL specimens for evidence of infection with a variety of agents, including human T-lymphotropic virus, Epstein-Barr virus, human herpesvirus-8, and Staphylococcus aureus, although other pathogens also have been detected in CTCL. Although there is significant evidence implicating one or more infectious agents in CTCL, studies to date have not linked definitively any pathogen to disease development, and various studies have yielded conflicting results.

  3. Junín Virus Pathogenesis and Virus Replication

    PubMed Central

    Grant, Ashley; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Brasier, Allan; Peters, Clarence; Paessler, Slobodan

    2012-01-01

    Junín virus, the etiological agent of Argentine hemorrhagic fever, causes significant morbidity and mortality. The virus is spread through the aerosolization of host rodent excreta and endemic to the humid pampas of Argentina. Recently, significant progress has been achieved with the development of new technologies (e.g. reverse genetics) that have expanded knowledge about the pathogenesis and viral replication of Junín virus. We will review the pathogenesis of Junín virus in various animal models and the role of innate and adaptive immunity during infection. We will highlight current research regarding the role of molecular biology of Junín virus in elucidating virus attenuation. We will also summarize current knowledge on Junín virus pathogenesis focusing on the recent development of vaccines and potential therapeutics. PMID:23202466

  4. Feline Immunodeficiency Virus in South America

    PubMed Central

    Teixeira, Bruno M.; Hagiwara, Mitika K.; Cruz, Juliano C. M.; Hosie, Margaret J.

    2012-01-01

    The rapid emergence of AIDS in humans during the period between 1980 and 2000 has led to extensive efforts to understand more fully similar etiologic agents of chronic and progressive acquired immunodeficiency disease in several mammalian species. Lentiviruses that have gene sequence homology with human immunodeficiency virus (HIV) have been found in different species (including sheep, goats, horses, cattle, cats, and several Old World monkey species). Lentiviruses, comprising a genus of the Retroviridae family, cause persistent infection that can lead to varying degrees of morbidity and mortality depending on the virus and the host species involved. Feline immunodeficiency virus (FIV) causes an immune system disease in domestic cats (Felis catus) involving depletion of the CD4+ population of T lymphocytes, increased susceptibility to opportunistic infections, and sometimes death. Viruses related to domestic cat FIV occur also in a variety of nondomestic felids. This is a brief overview of the current state of knowledge of this large and ancient group of viruses (FIVs) in South America. PMID:22590677

  5. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  6. High-throughput screening to enhance oncolytic virus immunotherapy

    PubMed Central

    Allan, KJ; Stojdl, David F; Swift, SL

    2016-01-01

    High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. PMID:27579293

  7. Ocular tropism of respiratory viruses.

    PubMed

    Belser, Jessica A; Rota, Paul A; Tumpey, Terrence M

    2013-03-01

    Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.

  8. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  9. Looking at protists as a source of pathogenic viruses.

    PubMed

    La Scola, Bernard

    2014-12-01

    In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances.

  10. Quantitative Studies on Fabrics as Disseminators of Viruses

    PubMed Central

    Sidwell, Robert W.; Dixon, Glen J.; Mcneil, Ethel

    1967-01-01

    Eight compounds were tested in vitro for virucidal and antiviral activity against poliovirus and vaccinia virus. These compounds included five quaternary ammonium salts, two bromosalicylanilides, and neomycin sulfate, an antibiotic. None of the compounds was active against poliovirus, but virucidal activity was demonstrated against vaccinia virus with three of the quarternary ammonium compounds: n-alkyl (C14, C12, C16) dimethyl benzyl ammonium chloride, di-isobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride monohydrate, and n-alkyl (60% C14, 30% C16, 5% C12, 5% C18) dimethyl benzyl ammonium chlorides plus n-alkyl (50% C12, 30% C14, 17% C16, 3% C18) dimethyl ethylbenzyl ammonium chlorides. Wool blanketing, wool gabardine, and cotton sheeting materials were impregnated with the first of the above virucidal compounds, and the persistence of vaccinia virus on these fabrics was compared with the persistence of the agent on nonimpregnated fabrics of the same type held at 25 C in 35 and 78% relative humidity. No virus could be recovered from the chemically treated fabrics at any time after virus exposure, whereas the virus persisted as long as 4 weeks on nonimpregnated materials. Viable vaccinia virus was also found to persist less than 1 day on a cotton fabric finished with a wash-and-wear modified triazone resin. Poliovirus persisted less than 5 days on this wash-and-wear fabric. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4292825

  11. Electron tomography of negatively stained complex viruses: application in their diagnosis

    PubMed Central

    Mast, Jan; Demeestere, Lien

    2009-01-01

    Background Electron tomographic analysis can be combined with the simple and rapid negative staining technique used in electron microscopy based virus diagnosis. Methods Standard negative staining of representative examples of parapoxviruses and paramyxoviruses was combined with electron tomographic analysis. Results Digital sectioning of reconstructions of these viruses at a selected height demonstrated the viral ultrastructure in detail, including the characteristic diagnostic features like the surface threads on C-particles of a parapoxvirus and individual glycoproteins and the internal nucleoprotein strand of Newcastle disease virus. For both viruses, deformation and flattening were observed. Conclusion The combination of negative staining of complex viruses with electron tomographic analysis, allows visualizing and measuring artifacts typical for negative staining. This approach allows sharp visualisation of structures in a subnanometer-thick plane, avoiding blurring due to superposition which is inherent to TEM. In selected examples, such analyses can improve diagnosis of viral agents. PMID:19208223

  12. Significant increase in titer of Raspberry bushy dwarf virus when present in combination with Raspberry leaf mottle virus and its effect on raspberry plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry crumbly fruit is a virus-induced disease widespread in the Pacific Northwest (PNW). Raspberry bushy dwarf virus (RBDV) has been attributed as the causal agent of the disease. Recently, the identification of two new viruses: Raspberry leaf mottle virus (RLMV) and Raspberry latent virus (RpL...

  13. Herpes and polyoma family viruses in thyroid cancer

    PubMed Central

    STAMATIOU, DIMITRIS P.; DERDAS, STAVROS P.; ZORAS, ODYSSEAS L.; SPANDIDOS, DEMETRIOS A.

    2016-01-01

    Thyroid cancer is considered the most common malignancy that affects the endocrine system. Generally, thyroid cancer derives from follicular epithelial cells, and thyroid cancer is divided into well-differentiated papillary (80% of cases) and follicular (15% of cases) carcinoma. Follicular thyroid cancer is further divided into the conventional and oncocytic (Hürthle cell) type, poorly differentiated carcinoma and anaplastic carcinoma. Both poorly differentiated and anaplastic carcinoma can arise either de novo, or secondarily from papillary and follicular thyroid cancer. The incidence of thyroid cancer has significantly increased for both males and females of all ages, particularly for females between 55–64 years of age, from 1999 through 2008. The increased rates refer to tumors of all stages, though they were mostly noted in localized disease. Recently, viruses have been implicated in the direct regulation of epithelial-mesenchymal transition (EMT) and the development of metastases. More specifically, Epstein-Barr virus (EBV) proteins may potentially lead to the development of metastasis through the regulation of the metastasis suppressor, Nm23, and the control of Twist expression. The significant enhancement of the metastatic potential, through the induction of angiogenesis and changes to the tumor microenvironment, subsequent to viral infection, has been documented, while EMT also contributes to cancer cell permissiveness to viruses. A number of viruses have been identified to be associated with carcinogenesis, and these include lymphotropic herpesviruses, namely EBV and Kaposi's sarcoma-associated herpesvirus [KSHV, also known as human herpesvirus type 8 (HHV8)]; two hepatitis viruses, hepatitis B virus (HBV) and hepatitis C virus (HCV); human papillomaviruses (HPVs); human T cell lymphoma virus (HTLV); and a new polyomavirus, Merkel cell polyomavirus identified in 2008. In this review, we examined the association between thyroid cancer and two oncogenic

  14. Agent Orange

    MedlinePlus

    ... Z) Hepatitis HIV Mental Health Mental Health Home Suicide Prevention Substance Abuse Military Sexual Trauma PTSD Research ( ... eligible Veterans a free Agent Orange Registry health exam for possible long-term health problems related to ...

  15. Virus diseases of peppers (Capsicum spp.) and their control.

    PubMed

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  16. Vaccinia Virus Vaccines: Past, Present and Future

    PubMed Central

    Jacobs, Bertram L.; Langland, Jeffrey O.; Kibler, Karen V.; Denzler, Karen L.; White, Stacy D.; Holechek, Susan A.; Wong, Shukmei; Huynh, Trung; Baskin, Carole R.

    2009-01-01

    Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence. PMID:19563829

  17. Smallpox vaccination and bioterrorism with pox viruses.

    PubMed

    Mayr, Anton

    2003-10-01

    Bioterrorist attacks occupy a special place amongst the innumerable potential types of terrorist attack, with the intentional release of pox viruses being especially feared in this connection. Apart from the variola virus, the agent responsible for smallpox in humans, the monkeypox virus and numerous other animal pox viruses pose potential risks for humans and animals. This risk scenario also includes recombinations between the various pox viruses, changes in hosts and genetically engineered manipulations of pox viruses. For over 200 years, the method of choice for combatting smallpox was via vaccination with a reproductive, original vaccinia virus. Worldwide eradication of smallpox at the end of the 1970s and the discontinuation of routine smallpox vaccination in 1980 can be credited to such vaccination. Unfortunately, these vaccinations were associated with a large number of postvaccinal impairments, sometimes resulting in death (e.g. postvaccinal encephalitis). The only way to restrict such postvaccinal complications was to carry out initial vaccination within the first 2 postnatal years. Initial vaccination at a later age led to such a sharp increase in the number of vaccines with complications that vaccination had to be discouraged. The dilemma of the smallpox vaccine stocks stems from the fact that a large portion of these stocks are produced with the same vaccinia strains as before. This is irresponsible, especially as the percentage of immune-suppressed persons in the population, for whom vaccination-related complications pose an especial threat, is increasing. One solution to the dilemma of the smallpox vaccine stocks is the MVA strain. It is harmless, protects humans and animals equally well against smallpox and can be applied parenterally.

  18. Characteristics of Filoviridae: Marburg and Ebola Viruses

    NASA Astrophysics Data System (ADS)

    Beer, Brigitte; Kurth, Reinhard; Bukreyev, Alexander

    Filoviruses are enveloped, nonsegmented negative-stranded RNA viruses. The two species, Marburg and Ebola virus, are serologically, biochemically, and genetically distinct. Marburg virus was first isolated during an outbreak in Europe in 1967, and Ebola virus emerged in 1976 as the causative agent of two simultaneous outbreaks in southern Sudan and northern Zaire. Although the main route of infection is known to be person-to-person transmission by intimate contact, the natural reservoir for filoviruses still remains a mystery.

  19. Favipiravir can evoke lethal mutagenesis and extinction of foot-and-mouth disease virus.

    PubMed

    de Avila, Ana Isabel; Moreno, Elena; Perales, Celia; Domingo, Esteban

    2017-03-17

    Antiviral agents are increasingly considered an option for veterinary medicine. An understanding of their mechanism of activity is important to plan their administration either as monotherapy or in combination with other agents. Previous studies have shown that the broad spectrum antiviral agent favipiravir (T-705) and its derivatives T-1105 and T-1106 are efficient inhibitors of foot-and-mouth disease virus (FMDV) replication in cell culture and in vivo. However, no mechanism for their activity against FMDV has been proposed. In the present study we show that favipiravir (T-705) can act as a lethal mutagen for FMDV in cell culture. Evidence includes virus extinction associated with increase in mutation frequency in the mutant spectrum of 860 residues of the 3D (polymerase)-coding region, and a decrease of specific infectivity while the consensus nucleotide sequence of the region analyzed remained invariant. The mutational spectrum evoked by favipiravir differs from that observed with other viruses in that no predominant transition type is observed, indicating that a movement towards A,U- or G,C-rich regions of sequence space is not a prerequisite for virus extinction. We discuss prospects for the use of favipiravir to assist in the control of FMDV, and its possible broader use in veterinary medicine as an extension of its current status as antiviral agent for human influenza virus.

  20. Viruses and other infections in stillbirth: what is the evidence and what should we be doing?

    PubMed

    Rawlinson, W D; Hall, B; Jones, C A; Jeffery, H E; Arbuckle, S M; Graf, N; Howard, J; Morris, J M

    2008-02-01

    In Australia, as in other developed countries, approximately 40-50% of stillbirths are of unknown aetiology. Emerging evidence suggests stillbirths are often multifactorial. The absence of a known cause leads to uncertainty regarding the risk of recurrence, which can cause extreme anguish for parents that may manifest as guilt, anger or bewilderment. Further, clinical endeavours to prevent recurrences in future pregnancies are impaired by lack of a defined aetiology. Therefore, efforts to provide an aetiological diagnosis of stillbirth impact upon all aspects of care of the mother, and inform many parts of clinical decision making. Despite the magnitude of the problem, that is 7 stillbirths per 1000 births in Australia, diagnostic efforts to discover viral aetiologies are often minimal. Viruses and other difficult to culture organisms have been postulated as the aetiology of a number of obstetric and paediatric conditions of unknown cause, including stillbirth. Reasons forwarded for testing stillbirth cases for infectious agents are non-medical factors, including addressing all parents' need for diagnostic closure, identifying infectious agents as a sporadic cause of stillbirth to reassure parents and clinicians regarding risk for future pregnancies, and to reduce unnecessary testing. It is clear that viral agents including rubella, human cytomegalovirus (CMV), parvovirus B19, herpes simplex virus (HSV), lymphocytic choriomeningitis virus (LCMV), and varicella zoster virus (VZV) may cause intrauterine deaths. Evidence for many other agents is that minimal or asymptomatic infections also occur, so improved markers of adverse outcomes are needed. The role of other viruses and difficult-to-culture organisms in stillbirth is uncertain, and needs more research. However, testing stillborn babies for some viral agents remains a useful adjunct to histopathological and other examinations at autopsy. Modern molecular techniques such as multiplex PCR, allow searches for

  1. Continuing evolution of H9N2 influenza viruses in Southeastern China.

    PubMed

    Choi, Y K; Ozaki, H; Webby, R J; Webster, R G; Peiris, J S; Poon, L; Butt, C; Leung, Y H C; Guan, Y

    2004-08-01

    H9N2 influenza viruses are panzootic in domestic poultry in Eurasia and since 1999 have caused transient infections in humans and pigs. To investigate the zoonotic potential of H9N2 viruses, we studied the evolution of the viruses in live-poultry markets in Hong Kong in 2003. H9N2 was the most prevalent influenza virus subtype in the live-poultry markets between 2001 and 2003. Antigenic and phylogenetic analysis of hemagglutinin (HA) showed that all of the 19 isolates found except one belonged to the lineage represented by A/Duck/Hong Kong/Y280/97 (H9N2). The exception was A/Guinea fowl/NT184/03 (H9N2), whose HA is most closely related to that of the human isolate A/Guangzhou/333/99 (H9N2), a virus belonging to the A/Chicken/Beijing/1/94-like (H9N2) lineage. At least six different genotypes were recognized. The majority of the viruses had nonstructural (and HA) genes derived from the A/Duck/Hong Kong/Y280/97-like virus lineage but had other genes of mixed avian virus origin, including genes similar to those of H5N1 viruses isolated in 2001. Viruses of all six genotypes of H9N2 found were able to replicate in chickens and mice without adaptation. The infected chickens showed no signs of disease, but representatives of two viral genotypes were lethal to mice. Three genotypes of virus replicated in the respiratory tracts of swine, which shed virus for at least 5 days. These results show an increasing genetic and biologic diversity of H9N2 viruses in Hong Kong and support their potential role as pandemic influenza agents.

  2. Broadband Respiratory Virus Surveillance

    DTIC Science & Technology

    2011-10-01

    HSV – Herpes Simplex Virus LOD – Limit of Detection PCR – Polymerase Chain Reaction PIV – Parainfluenza viruses 37 PRMS – Pacific Regional Medical...the RVS assay was determined by testing 109 pre-characterized samples collected at TAMC. This included 20 adenovirus, 20 RSV, 20 PIV, 19 Herpes ... Simplex Virus (HSV) and 19 Enterovirus 7 positive as well as 11 HSV negative specimens as determined by the TAMC Department of Pathology’s current gold

  3. Ablation of Programmed -1 Ribosomal Frameshifting in Venezuelan Equine Encephalitis Virus Results in Attenuated Neuropathogenicity.

    PubMed

    Kendra, Joseph A; de la Fuente, Cynthia; Brahms, Ashwini; Woodson, Caitlin; Bell, Todd M; Chen, Bin; Khan, Yousuf A; Jacobs, Jonathan L; Kehn-Hall, Kylene; Dinman, Jonathan D

    2017-02-01

    The alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) are arthropod-borne positive-strand RNA viruses that are capable of causing acute and fatal encephalitis in many mammals, including humans. VEEV was weaponized during the Cold War and is recognized as a select agent. Currently, there are no FDA-approved vaccines or therapeutics for these viruses. The spread of VEEV and other members of this family due to climate change-mediated vector range expansion underscores the need for research aimed at developing medical countermeasures. These viruses utilize programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the viral trans-frame (TF) protein, which has previously been shown to be important for neuropathogenesis in the related Sindbis virus. Here, the alphavirus -1 PRF signals were characterized, revealing novel -1 PRF stimulatory structures. -1 PRF attenuation mildly affected the kinetics of VEEV accumulation in cultured cells but strongly inhibited its pathogenesis in an aerosol infection mouse model. Importantly, the decreased viral titers in the brains of mice infected with the mutant virus suggest that the alphavirus TF protein is important for passage through the blood-brain barrier and/or for neuroinvasiveness. These findings suggest a novel approach to the development of safe and effective live attenuated vaccines directed against VEEV and perhaps other closely related -1 PRF-utilizing viruses.

  4. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells.

    PubMed

    Yamaya, Mutsuo; Nishimura, Hidekazu; Shinya, Kyoko; Hatachi, Yukimasa; Sasaki, Takahiko; Yasuda, Hiroyasu; Yoshida, Motoki; Asada, Masanori; Fujino, Naoya; Suzuki, Takaya; Deng, Xue; Kubo, Hiroshi; Nagatomi, Ryoichi

    2010-08-01

    Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H(3)N(2)). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an alpha2,6-linkage (SAalpha2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAalpha2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-kappaB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-kappaB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.

  5. Die Virus-induzierten Lebererkrankungen des Menschen

    NASA Astrophysics Data System (ADS)

    Eisenburg, J.

    1982-12-01

    Although many viral agents may be associated with inflammatory hepatic changes, the vast majority of clinically important viral hepatitis is caused by hepatitis A, hepatitis B and the non A, non B agents. Infection of the liver of man by these hepatotropic agents is still a major public health problem in all parts of the world and constitutes a major hazard of the transfusion of blood and plasma derivatives. The magnitude of this hepatitis problem is not only documented by the about 200 million carriers of the hepatitis-B virus throughout the world, many of them asymptomatic, but also by the fact, that hepatitis B and non A, non B may progress to chronic liver disease, including cirrhosis and probably primary liver cancer. Potentially important pathogenetic determinants include viral factors such as subtype, dosage and mode of transmission and host factors such as age, sex, preexisting liver disease, coexisting non-liver disease (diabetes etc.), genetics and immune response to viral or autoantigens. As the virus itself seems not directly cytopathic, the diversity of lesions has been attributed to variation in the capacity of the host's response.

  6. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  7. [Arbovirus infections. From virus, mosquitoes, animals and humans].

    PubMed

    Jouan, A

    1997-01-01

    Arboviruses occur throughout the world in plants and animals: reptiles, birds and mammals including man. These relatively recent RNA-containing viruses have great evolutionary potential and are a major cause of epidemics. Arboviruses exhibit a dual life cycle involving continual transmission to and from the vertebrate host and arthropod vector which ingests or inoculates the agent during blood meals. Agents belong to many different viral families and represent an important source of emerging diseases. Because of the mode of transmission is vectorial, spread can enhanced by man-made changes in the ecosystem. This risk is often underestimated. The population explosion provides a great opportunity for the progression of these arboviruses.

  8. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  9. Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses.

    PubMed

    Li, Yanmei; Wang, Lihua; Li, Shunlin; Chen, Xiaoying; Shen, Yuemao; Zhang, Zhongkai; He, Hongping; Xu, Wenbo; Shu, Yuelong; Liang, Guodong; Fang, Rongxiang; Hao, Xiaojiang

    2007-05-08

    Plants have evolved multiple mechanisms to selectively suppress pathogens by production of secondary metabolites with antimicrobial activities. Therefore, direct selections for antiviral compounds from plants can be used to identify new agents with potent antiviral activity but not toxic to hosts. Here, we provide evidence that a class of compounds, seco-pregnane steroid glaucogenin C and its monosugar-glycoside cynatratoside A of Strobilanthes cusia and three new pantasugar-glycosides of glaucogenin C of Cynanchum paniculatum, are effective and selective inhibitors to alphavirus-like positive-strand RNA viruses including plant-infecting tobacco mosaic virus (TMV) and animal-infecting Sindbis virus (SINV), eastern equine encephalitis virus, and Getah virus, but not to other RNA or DNA viruses, yet they were not toxic to host cells. In vivo administration of the compounds protected BALB/c mice from lethal SINV infection without adverse effects on the mice. Using TMV and SINV as models, studies on the action mechanism revealed that the compounds predominantly suppress the expression of viral subgenomic RNA(s) without affecting the accumulation of viral genomic RNA. Our work suggested that the viral subgenomic RNA could be a new target for the discovery of antiviral drugs, and that seco-pregnane steroid and its four glycosides found in the two medicinal herbs have the potential for further development as antiviral agents against alphavirus-like positive-strand RNA viruses.

  10. An Immune Agent for Web-Based AI Course

    ERIC Educational Resources Information Center

    Gong, Tao; Cai, Zixing

    2006-01-01

    To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…

  11. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.

  12. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  13. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  14. The Central Role of the Matrix Protein in Nipah Virus Assembly and Morphogenesis

    DTIC Science & Technology

    2007-03-23

    disease virus Ebola virus, Marburg virus Rabies virus, Vesicular stomatitis virus 5 Paramyxoviridae include several well-known viruses such as Measles...of virus-like particles (VLPs). Similar results have been observed for vesicular stomatitis virus (VSV) (54, 70, 74) and Ebola virus (EBOV) (5, 53...influenza A and vesicular stomatitis virus (VSV) are reported to be insensitive to DN mutants of either VPS4A (VSV) (68) or VPS4B (influenza) (58), and

  15. Molecular identification of a recent type of canine distemper virus in Japan by restriction fragment length polymorphism.

    PubMed

    Ohashi, K; Iwatsuki, K; Nakamura, K; Mikami, T; Kai, C

    1998-11-01

    Restriction fragment length polymorphism analysis was used to differentiate recent field viruses of canine distemper virus (CDU) from vaccine strains. Virus genomes were amplified by using reverse transcriptase-polymerase chain reaction in part of the haemagglutinin gene. After digestion with EcoRV, the PCR products of recent field isolates were cut into two fragments that differ from the uncut form of old strains including all of vaccine strains. This method could be applied to fresh or stored brains, spleens and peripheral blood mononuclear cells of infected dogs. This molecular approach is useful for determining the causative agent of postvaccinated CDV infection.

  16. The Medicinal Chemistry of Dengue Virus.

    PubMed

    Behnam, Mira A M; Nitsche, Christoph; Boldescu, Veaceslav; Klein, Christian D

    2016-06-23

    The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.

  17. Detection of Lassa virus, Mali.

    PubMed

    Safronetz, David; Lopez, Job E; Sogoba, Nafomon; Traore', Sékou F; Raffel, Sandra J; Fischer, Elizabeth R; Ebihara, Hideki; Branco, Luis; Garry, Robert F; Schwan, Tom G; Feldmann, Heinz

    2010-07-01

    To determine whether Lassa virus was circulating in southern Mali, we tested samples from small mammals from 3 villages, including Soromba, where in 2009 a British citizen probably contracted a lethal Lassa virus infection. We report the isolation and genetic characterization of Lassa virus from an area previously unknown for Lassa fever.

  18. Ipomoviruses: Squash vein yellowing virus, Cucumber vein yellowing virus, Cassava brown streak virus, and Ugandan cassava brown streak virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ipomoviruses including Squash vein yellowing virus, Cucumber vein yellowing virus and Cassava brown streak virus are currently causing significant economic impact on crop production in several regions of the world. Only recently have results of detailed characterization of their whitefly transmissi...

  19. Interventions to Prevent Sexually Transmitted Infections, Including HIV Infection

    PubMed Central

    Cates, Willard

    2011-01-01

    The Centers for Disease Control and Prevention (CDC) Sexually Transmitted Disease (STD) Treatment Guidelines were last updated in 2006. To update the “Clinical Guide to Prevention Services” section of the 2010 CDC STD Treatment Guidelines, we reviewed the recent science with reference to interventions designed to prevent acquisition of STDs, including human immunodeficiency virus (HIV) infection. Major interval developments include (1) licensure and uptake of immunization against genital human papillomavirus, (2) validation of male circumcision as a potent prevention tool against acquisition of HIV and some other sexually transmitted infections (STIs), (3) failure of a promising HIV vaccine candidate to afford protection against HIV acquisition, (4) encouragement about the use of antiretroviral agents as preexposure prophylaxis to reduce risk of HIV and herpes simplex virus acquisition, (5) enhanced emphasis on expedited partner management and rescreening for persons infected with Chlamydia trachomatis and Neisseria gonorrhoeae, (6) recognition that behavioral interventions will be needed to address a new trend of sexually transmitted hepatitis C among men who have sex with men, and (7) the availability of a modified female condom. A range of preventive interventions is needed to reduce the risks of acquiring STI, including HIV infection, among sexually active people, and a flexible approach targeted to specific populations should integrate combinations of biomedical, behavioral, and structural interventions. These would ideally involve an array of prevention contexts, including (1) communications and practices among sexual partners, (2) transactions between individual clients and their healthcare providers, and (3) comprehensive population-level strategies for prioritizing prevention research, ensuring accurate outcome assessment, and formulating health policy. PMID:22080271

  20. Computer virus information update CIAC-2301

    SciTech Connect

    Orvis, W.J.

    1994-01-15

    While CIAC periodically issues bulletins about specific computer viruses, these bulletins do not cover all the computer viruses that affect desktop computers. The purpose of this document is to identify most of the known viruses for the MS-DOS and Macintosh platforms and give an overview of the effects of each virus. The authors also include information on some windows, Atari, and Amiga viruses. This document is revised periodically as new virus information becomes available. This document replaces all earlier versions of the CIAC Computer virus Information Update. The date on the front cover indicates date on which the information in this document was extracted from CIAC`s Virus database.

  1. Viruses, schizophrenia, and bipolar disorder.

    PubMed Central

    Yolken, R H; Torrey, E F

    1995-01-01

    The hypothesis that viruses or other infectious agents may cause schizophrenia or bipolar disorder dates to the 19th century but has recently been revived. It could explain many clinical, genetic, and epidemiologic aspects of these diseases, including the winter-spring birth seasonality, regional differences, urban birth, household crowding, having an older sibling, and prenatal exposure to influenza as risk factors. It could also explain observed immunological changes such as abnormalities of lymphocytes, proteins, autoantibodies, and cytokines. However, direct studies of viral infections in individuals with these psychiatric diseases have been predominantly negative. Most studies have examined antibodies in blood or cerebrospinal fluid, and relatively few studies have been done on viral antigens, genomes, cytopathic effect on cell culture, and animal transmission experiments. Viral research on schizophrenia and bipolar disorder is thus comparable to viral research on multiple sclerosis and Parkinson's disease: an attractive hypothesis with scattered interesting findings but no clear proof. The application of molecular biological techniques may allow the identification of novel infectious agents and the associations of these novel agents with serious mental diseases. PMID:7704891

  2. Thirty years of the human immunodeficiency virus epidemic and beyond

    PubMed Central

    Younai, Fariba S

    2013-01-01

    After more than 30 years of battling a global epidemic, the prospect of eliminating human immunodeficiency virus (HIV) as the most challenging infectious disease of the modern era is within our reach. Major scientific discoveries about the virus responsible for this immunodeficiency disease state, including its pathogenesis, transmission patterns and clinical course, have led to the development of potent antiretroviral drugs that offer great hopes in HIV treatment and prevention. Although these agents and many others still in development and testing are capable of effectively suppressing viral replication and survival, the medical management of HIV infection at the individual and the population levels remains challenging. Timely initiation of antiretroviral drugs, adherence to the appropriate therapeutic regimens, effective use of these agents in the pre and post-exposure prophylaxis contexts, treatment of comorbid conditions and addressing social and psychological factors involved in the care of individuals continue to be important considerations. PMID:24136672

  3. The interaction between human papillomavirus and other viruses.

    PubMed

    Guidry, J T; Scott, R S

    2017-03-02

    The etiological role of human papillomavirus (HPV) in anogenital tract and head and neck cancers is well established. However, only a low percentage of HPV-positive women develop cancer, indicating that HPV is necessary but not sufficient in carcinogenesis. Several biological and environmental cofactors have been implicated in the development of HPV-associated carcinoma that include immune status, hormonal changes, parity, dietary habits, tobacco usage, and co-infection with other sexually transmissible agents. Such cofactors likely contribute to HPV persistent infection through diverse mechanisms related to immune control, efficiency of HPV infection, and influences on tumor initiation and progression. Conversely, HPV co-infection with other factors may also harbor anti-tumor effects. Here, we review epidemiological and experimental studies investigating human immunodeficiency virus (HIV), herpes simplex virus (HSV) 1 and 2, human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), BK virus (BKV), JC virus (JCV), and adeno-associated virus (AAV) as viral cofactors in or therapeutic factors against the development of genital and oral HPV-associated carcinomas.

  4. Virulent Newcastle disease viruses isolated from cormorant and gull species in the states of the Atlantic Flyway in 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease viruses (NDV) have been the causative agent for die-offs of juvenile double-crested cormorants (Phalacrocorax auritus) in the northern border-states focused around the Great Lakes of the U.S. in years past. However, the most recent die-off has included not only great cormorants (P...

  5. Cross talk between animal and human influenza viruses.

    PubMed

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  6. Dissecting vectorial capacity for mosquito-borne viruses

    PubMed Central

    Kramer, Laura D.; Ciota, Alexander T.

    2015-01-01

    The inter-relationship between mosquitoes and the viruses they transmit is complex. While previously understood barriers to infection and transmission remain valid, additional factors have been uncovered that suggest an “arms race” between mosquito and virus. These include the mosquito microbiota and interplay between mosquito and viral genetics. Following an infectious blood meal, the mosquito mounts an immune and transcriptional response, leading to altered expression of multiple genes. These complex interactions, specific to vector and virus genotypes, combine with external influences, particularly temperature, to determine vector competence. The mosquito’s response to the infecting agent may have consequences in terms of longevity, feeding behavior and/or fecundity. These factors, together with population density and the frequency of host contact determine vectorial capacity. PMID:26569343

  7. Dissecting vectorial capacity for mosquito-borne viruses.

    PubMed

    Kramer, Laura D; Ciota, Alexander T

    2015-12-01

    The inter-relationship between mosquitoes and the viruses they transmit is complex. While previously understood barriers to infection and transmission remain valid, additional factors have been uncovered that suggest an 'arms race' between mosquito and virus. These include the mosquito microbiota and interplay between mosquito and viral genetics. Following an infectious blood meal, the mosquito mounts an immune and transcriptional response, leading to altered expression of multiple genes. These complex interactions, specific to vector and virus genotypes, combine with external influences, particularly temperature, to determine vector competence. The mosquito's response to the infecting agent may have consequences in terms of longevity, feeding behavior and/or fecundity. These factors, together with population density and the frequency of host contact determine vectorial capacity.

  8. Virus diseases of fish

    USGS Publications Warehouse

    Watson, Stanley W.

    1954-01-01

    The degenerative or non-neoplastic diseases of possible virus origin give the fish-culturist the most concern because of the severe mortalities resulting from infection. Epizootics of this nature have been reported in carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri) in Europe, in acara (Geophagus brasiliensis) in South America, in kokanee, (Oncorhynchus nerka kennerlyi) and in sockeye salmon (Oncorhynchus nerka nerka) in the State of Washington. It has been demonstrated that each epizootic was caused by an infectious filterable agent, probably a virus.

  9. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    PubMed Central

    Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739

  10. Foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  11. Topical hemostatic agents for dermatologic surgery.

    PubMed

    Larson, P O

    1988-06-01

    Topical hemostatic agents are very helpful in attaining capillary and small vessel hemostasis in dermatologic surgery. The commonly used topical hemostatic agents, including oxidized cellulose, absorbable gelatin, and thrombin are reviewed, along with newer agents such as microfibrillar collagen, fibrin sealants, and acrylates. Agents best suited for certain situations are recommended.

  12. Safe Computing: An Overview of Viruses.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    A computer virus is a program that replicates itself, in conjunction with an additional program that can harm a computer system. Common viruses include boot-sector, macro, companion, overwriting, and multipartite. Viruses can be fast, slow, stealthy, and polymorphic. Anti-virus products are described. (MLH)

  13. Viruses and human cancers: a long road of discovery of molecular paradigms.

    PubMed

    White, Martyn K; Pagano, Joseph S; Khalili, Kamel

    2014-07-01

    About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved.

  14. Virus identification in unknown tropical febrile illness cases using deep sequencing.

    PubMed

    Yozwiak, Nathan L; Skewes-Cox, Peter; Stenglein, Mark D; Balmaseda, Angel; Harris, Eva; DeRisi, Joseph L

    2012-01-01

    Dengue virus is an emerging infectious agent that infects an estimated 50-100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.

  15. [An update on Lassa virus].

    PubMed

    Leparc-Goffart, I; Emonet, S F

    2011-12-01

    Lassa virus, the etiologic agent of Lassa hemorrhagic fever, infects 100,000 to 300,000 people every year in West Africa with an overall mortality rate ranging from 1 to 2%. It was discovered in 1969 and remains a significant public health risk in endemic areas. Because airborne transmission is possible and mortality can be high under certain conditions, Lassa virus has been classified as a category A bioterrorism agent. Early diagnosis is difficult due to insidious non-specific onset and to the great genetic divergence of the virus that makes RT-PCR assays unreliable. The lack of proper diagnostic tools promotes nosocomial infection and diminishes the efficacy of treatment. Recently, numerous advances have been made in the development of both diagnostic and vaccination techniques. The purpose of this review is to present an update on that research as well as the current epidemiology of Lassa virus.

  16. Synthetic peptides in the study of the interaction of rabies virus and the acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Donnelly-Roberts, D; Wilson, P T

    1988-01-01

    the region of the virus involved in binding and the binding domain on the receptor may be helpful in developing new strategies for treatment, especially for viruses that infect the central nervous system or evade the immune response through genetic drift. These strategies include development of antiviral agents that cross the blood-brain barrier and inhibit viral binding and the utilization as immunogens the regions of viruses, such as their binding domains, that are highly conserved among different strains.

  17. [West Nile virus infection].

    PubMed

    Pérez Ruiz, Mercedes; Gámez, Sara Sanbonmatsu; Clavero, Miguel Angel Jiménez

    2011-12-01

    West Nile virus (WNV) is an arbovirus usually transmitted by mosquitoes. The main reservoirs are birds, although the virus may infect several vertebrate species, such as horses and humans. Up to 80% of human infections are asymptomatic. The most frequent clinical presentation is febrile illness, and neuroinvasive disease can occur in less than 1% of cases. Spain is considered a high-risk area for the emergence of WNV due to its climate and the passage of migratory birds from Africa (where the virus is endemic). These birds nest surrounding wetlands where populations of possible vectors for the virus are abundant. Diagnosis of human neurological infections can be made by detection of IgM in serum and/or cerebrospinal fluid samples, demonstration of a four-fold increase in IgG antibodies between acute-phase and convalescent-phase serum samples, or by detection of viral genome by reverse transcription-polymerase chain reaction (especially useful in transplant recipients). Since WNV is a biosafety level 3 agent, techniques that involve cell culture are restricted to laboratories with this level of biosafety, such as reference laboratories. The National Program for the Surveillance of WNV Encephalitis allows the detection of virus circulation among birds and vectors in areas especially favorable for the virus, such as wetlands, and provides information for evaluation of the risk of disease in horses and humans.

  18. Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia

    PubMed Central

    Janssen, Mandy E. W.; Takagi, Yuko; Parent, Kristin N.; Cardone, Giovanni

    2014-01-01

    ABSTRACT Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related “T=2” capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a “primitive” (early-branching) eukaryotic host and an important enteric pathogen of humans. IMPORTANCE Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa

  19. Chronic bee paralysis: a disease and a virus like no other?

    PubMed

    Ribière, Magali; Olivier, Violaine; Blanchard, Philippe

    2010-01-01

    Chronic bee paralysis which was called Paralysis is a rather unusual disease caused by a rather unusual virus. In this review, we explore current knowledge of the disease and its etiological agent. Paralysis is the only common viral disease of adult bees whose symptoms include both behavioural and physiological modifications: trembling and hair loss. The disease often affects the strong colonies of an apiary and thousands of dead individuals are then observed in front of the hives. Two sets of symptoms have traditionally been described in the existing literature, but nowadays we can define a general syndrome. The morphology of the Chronic bee paralysis virus (CBPV) particles and the multipartite organisation of the RNA genome are exceptional, as most honey bee viruses are picorna-like viruses belonging to the Iflavirus and Cripavirus genera with symmetric particles and monopartite positive, single-strand RNA genomes. CBPV is currently classified as an RNA virus but is not included in any family or genus. Although it shares several characteristics with viruses in the Nodaviridae and Tombusviridae families, it differs from previously known viruses according to the various demarcation criteria defined by the International Committee on Taxonomy of Viruses (ICTV). Thus, it should be considered as the type species of a new group of positive-strand RNA viruses. The recent sequencing of the complete CBPV genome has opened the way for phylogenetic studies and development of new molecular tools able to detect variable isolates and to quantify genomic loads. This article considers the results of such recent detection tests but also previous studies including: (i) the distribution of CBPV infection within the bees and the hive, (ii) the way the virus spreads and its persistence in the colony environment, and (iii) geographical and seasonal distribution and impact of CBPV infections.

  20. Newly discovered insect RNA viruses in China.

    PubMed

    Qiu, Yang; Wang, ZhaoWei; Liu, YongXiang; Qi, Nan; Si, Jie; Xiang, Xue; Xia, XiaoLing; Hu, YuanYang; Zhou, Xi

    2013-08-01

    Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.

  1. Simian hemorrhagic fever virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Simian hemorrhagic fever virus (SHFV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biological pro...

  2. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  3. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed

    McCarthy, Mary K; Morrison, Thomas E

    2017-02-16

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways.

  4. Enzyme-Linked Immunosorbant Assays for Identification of Biological Agents in Sample Unknowns: NATO SIBCA. Exercise 5

    DTIC Science & Technology

    2004-12-01

    des organismes irradi6 par des rayons gamma Bacillus anthracis, Yersinia pestis. Brucella melitensis , Francisella tularensis, Vibrio cholerae... Brucella melitensis , VEE virus, Burkholderia mallei, Vaccinia virus, and Yellow fever virus were used to screen SIBCA samples for homologous agents...cholerae, Brucella melitensis , le virus EEV, Burkholderia mnallei, le virus de la vaccine et le virus de la fi~vre jaune ont k6 utilis~es pour analyser les

  5. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... genetically modified. (d) Overlap select agents or toxins that meet any of the following criteria are excluded... Equine Encephalitis virus (c) Genetic Elements, Recombinant Nucleic Acids, and Recombinant Organisms:...

  6. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... animal health, or to animal products. (b) Overlap select agents and toxins: Bacillus anthracis Brucella... CDC or APHIS. (i) The seizure of Bacillus anthracis, Brucella melitensis, Hendra virus, Nipah...

  7. A new reassortment of influenza A (H7N9) virus causing human infection in Beijing, 2014

    PubMed Central

    Bi, Yuhai; Liu, Jingyuan; Xiong, Haofeng; Zhang, Yue; Liu, Di; Liu, Yingxia; Gao, George F.; Wang, Beibei

    2016-01-01

    A 73-year-old man was confirmed to have an influenza A (H7N9) virus infection, and the causative agent A/Beijing/02/2014(H7N9) virus was isolated. Genetic and phylogenetic analyses revealed that the virus belonged to a novel genotype, which probably emerged and further reassorted with other H9 or H7 viruses in poultry before transmitting to humans. This virus caused a severe infection with high levels of cytokines and neutralizing antibodies. Eventually, the patient was cured after serially combined treatments. Taken together, our findings indicated that this novel genotype of the human H7N9 virus did not evolve directly from the first Beijing isolate A/Beijing/01/2013(H7N9), suggesting that the H7N9 virus has not obtained the ability for human-to-human transmissibility and the virus only evolves in poultry and then infects human by direct contact. Hence, the major measures to prevent human H7N9 virus infection are still to control and standardize the live poultry trade. Early antiviral treatment with combination therapies, including mechanical ventilation, nutrition support and symptomatic treatment, are effective for H7N9 infection. PMID:27230107

  8. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever

    PubMed Central

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J.; Scott, Dana P.; Feldmann, Heinz; Ebihara, Hideki

    2016-01-01

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF. PMID:27976688

  9. Herpes simplex virus NV1020 as a novel and promising therapy for hepatic malignancy

    PubMed Central

    Kelly, Kaitlyn J; Wong, Joyce; Fong, Yuman

    2012-01-01

    Background Patients with hepatic malignancy have a dismal prognosis with standard therapies. NV1020 is an oncolytic herpes simplex virus that has potential to be a safe and effective therapeutic agent for this disease. Objective We set out to discuss the development of NV1020 as an oncolytic agent and explore the potential role of this particular virus in the setting of human hepatic cancer. Methods The scope of this review includes an overview of preclinical experience with NV1020, as well as an examination of current standard and developing therapies for liver cancer. The primary focus, however, is on the safety and potential clinical efficacy of NV1020 against hepatic malignancy. Results/conclusion We have found that NV1020 is a safe, novel therapeutic agent for treatment of refractory hepatic malignancy. PMID:18549346

  10. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever.

    PubMed

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J; Scott, Dana P; Feldmann, Heinz; Ebihara, Hideki

    2016-12-15

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF.

  11. Negative contrast electron microscopic techniques for diagnosis of viruses of veterinary importance.

    PubMed

    England, J J; Reed, D E

    1980-04-01

    Negative contrast electron microscopy (NCEM) was utilized as a routine tool in the diagnosis of viral infections of domestic and wild animals. Viruses identified by this technique were observed in infected culture systems or clinical specimens from several species including horses, cattle, sheep, dogs, cats, pigs, deer, Rocky Mountain bighorn sheep, antelope, and several avian species. Viruses were identified by NCEM based on their size, morphology, and symmetry and consisted of adenoviruses, herpesviruses, paramyxoviruses, myxoviruses, picornaviruses, parvoviruses, coronaviruses, reoviruses, rotaviruses, and poxviruses. Mixed populations were also readily demonstrable by this technique: the most common mixed infections consisted of coronaviruses and rotaviruses, and picorna- or parvo-viruses with coronaviruses, rotaviruses, herpesviruses, or adenoviruses. Immunoelectron microscopy was also used to serotype viral agents present in the specimens examined. Viruses identified by this technique were bovine rotaviruses, coronaviruses, and herpesviruses, and bovine and equine adenoviruses.

  12. [Bacteriophages as antibacterial agents].

    PubMed

    Shasha, Shaul M; Sharon, Nehama; Inbar, Michael

    2004-02-01

    Bacteriophages are viruses that only infect bacteria. They have played an important role in the development of molecular biology and have been used as anti-bacterial agents. Since their independent discovery by Twort and d'Herelle, they have been extensively used to prevent and treat bacterial infections, mainly in Eastern Europe and the former Soviet Union. In western countries this method has been sporadically employed on humans and domesticated animals. However, the discovery and widespread use of antibiotics, coupled with doubts about the efficacy of phage therapy, led to an eclipse in the use of phage in medicine. The emergence of antibiotic resistant bacteria, especially strains that are multiply resistant, has resulted in a renewed interest in alternatives to conventional drugs. One of the possible replacements for antibiotics is the use of bacteriophages as antimicrobial agents. This brief review aims to describe the history of bacteriophage and early clinical studies on their use in bacterial disease prophylaxis and therapy, and discuss the advantages and disadvantages of bacteriophage in this regard.

  13. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses.

    PubMed

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  14. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses

    PubMed Central

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention. PMID:27088104

  15. Herpes zoster virus vaccine.

    PubMed

    Woolery, William Alan

    2008-10-01

    Varicella zoster virus (VZV) is the etiologic agent of varicella and herpes zoster (HZ) in humans. Herpes zoster is the result of reactivation of VZV within certain sensory ganglia. The burden of illness from HZ and post-herpetic neuralgia (PHN) is high. Herpes-zoster vaccine contains live attenuated varicella-zoster virus in an amount approximately 14 times greater than that found in the varicella virus vaccine. Herpes zoster vaccine is approved for the prevention of shingles in appropriate persons aged 60 and older. The vaccine is administered in a single subcutaneous dose. Reported side effects are mild and generally limited to localized injection site findings. Herpes-zoster vaccine reportedly decreases the occurrence of herpes zoster by approximately 50 percent and prevents the development of PHN by two thirds. The vaccine appears to be minimally effective in those individuals over the age of 80 and is not recommended in this age group.

  16. Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing.

    PubMed

    McClenahan, Shasta D; Uhlenhaut, Christine; Krause, Philip R

    2014-12-12

    We employed a massively parallel sequencing (MPS)-based approach to test reagents and model cell substrates including Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), African green monkey kidney (Vero), and High Five insect cell lines for adventitious agents. RNA and DNA were extracted either directly from the samples or from viral capsid-enriched preparations, and then subjected to MPS-based non-specific virus detection with degenerate oligonucleotide primer (DOP) PCR. MPS by 454, Illumina MiSeq, and Illumina HiSeq was compared on independent samples. Virus detection using these methods was reproducibly achieved. Unclassified sequences from CHO cells represented cellular sequences not yet submitted to the databases typically used for sequence identification. The sensitivity of MPS-based virus detection was consistent with theoretically expected limits based on dilution of virus in cellular nucleic acids. Capsid preparation increased the number of viral sequences detected. Potential viral sequences were detected in several samples; in each case, these sequences were either artifactual or (based on additional studies) shown not to be associated with replication-competent viruses. Virus-like sequences were more likely to be identified in BLAST searches using virus-specific databases that did not contain cellular sequences. Detected viral sequences included previously described retrovirus and retrovirus-like sequences in CHO, Vero, MDCK and High Five cells, and nodavirus and endogenous bracovirus sequences in High Five insect cells. Bovine viral diarrhea virus, bovine hokovirus, and porcine circovirus sequences were detected in some reagents. A recently described parvo-like virus present in some nucleic acid extraction resins was also identified in cells and extraction controls from some samples. The present study helps to illustrate the potential for MPS-based strategies in evaluating the presence of viral nucleic acids in various sample types

  17. Control of pome and stone fruit virus diseases.

    PubMed

    Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella

    2015-01-01

    Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The

  18. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  19. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  20. New aspects of influenza viruses.

    PubMed Central

    Shaw, M W; Arden, N H; Maassab, H F

    1992-01-01

    Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands. PMID:1310439

  1. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  2. Cancer preventive agents 9. Betulinic acid derivatives as potent cancer chemopreventive agents.

    PubMed

    Nakagawa-Goto, Kyoko; Yamada, Koji; Taniguchi, Masahiko; Tokuda, Harukuni; Lee, Kuo-Hsiung

    2009-07-01

    C-3 esterifications of betulinic acid (BA, 1) and its A-ring homolog, ceanothic acid (CA, 2), were carried out to provide sixteen terpenoids, 4-19, including nine new compounds (4-12). All synthesized compounds were evaluated in an in vitro antitumor-promoting assay using the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Among them, compounds 4-6, 11-14, 16, and 17 displayed remarkable inhibitory effects of EBV-EA activation. BA analog 6, which contains a prenyl-like group, showed the most potent inhibitory effect (100%, 76%, 37%, and 11% inhibition of EBA activation at 1000, 500, 100, and 10mol ratio/TPA, respectively, with IC(50) value of 285mol ratio/32pmol TPA). Compound 6 merits further development as a cancer preventive agent.

  3. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  4. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases

    PubMed Central

    Delgui, Laura R.; Colombo, María I.

    2017-01-01

    Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response. PMID:28164038

  5. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases.

    PubMed

    Delgui, Laura R; Colombo, María I

    2017-01-01

    Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.

  6. Sheeppox Virus SPPV14 Encodes a Bcl-2-Like Cell Death Inhibitor That Counters a Distinct Set of Mammalian Proapoptotic Proteins

    PubMed Central

    Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M.; Barry, Michele

    2012-01-01

    Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus. PMID:22896610

  7. Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses.

    PubMed

    Granberg, Fredrik; Vicente-Rubiano, Marina; Rubio-Guerri, Consuelo; Karlsson, Oskar E; Kukielka, Deborah; Belák, Sándor; Sánchez-Vizcaíno, José Manuel

    2013-01-01

    The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and "unknown", emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.

  8. Beijerinck's work on tobacco mosaic virus: historical context and legacy.

    PubMed Central

    Bos, L

    1999-01-01

    Beijerinck's entirely new concept, launched in 1898, of a filterable contagium vivum fluidum which multiplied in close association with the host's metabolism and was distributed in phloem vessels together with plant nutrients, did not match the then prevailing bacteriological germ theory. At the time, tools and concepts to handle such a new kind of agent (the viruses) were non-existent. Beijerinck's novel idea, therefore, did not revolutionize biological science or immediately alter human understanding of contagious diseases. That is how bacteriological dogma persisted, as voiced by Loeffler and Frosch when showing the filterability of an animal virus (1898), and especially by Ivanovsky who had already in 1892 detected filterability of the agent of tobacco mosaic but kept looking for a microbe and finally (1903) claimed its multiplication in an artificial medium. The dogma was also strongly advocated by Roux in 1903 when writing the first review on viruses, which he named 'so-called "invisible" microbes', unwittingly including the agent of bovine pleuropneumonia, only much later proved to be caused by a mycoplasma. In 1904, Baur was the first to advocate strongly the chemical view of viruses. But uncertainty about the true nature of viruses, with their similarities to enzymes and genes, continued until the 1930s when at long last tobacco mosaic virus particles were isolated as an enzyme-like protein (1935), soon to be better characterized as a nucleoprotein (1937). Physicochemical virus studies were a key element in triggering molecular biology which was to provide further means to reveal the true nature of viruses 'at the threshold of life'. Beijerinck's 1898 vision was not appreciated or verified during his lifetime. But Beijerinck already had a clear notion of the mechanism behind the phenomena he observed. Developments in virology and molecular biology since 1935 indicate how close Beijerinck (and even Mayer, Beijerinck's predecessor in research on tobacco

  9. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus.

    PubMed

    Olagnier, David; Amatore, Donatella; Castiello, Luciano; Ferrari, Matteo; Palermo, Enrico; Diamond, Michael S; Palamara, Anna Teresa; Hiscott, John

    2016-08-28

    Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus.

  10. Topical hemostatic agents in otolaryngologic surgery.

    PubMed

    Acar, Baran; Babademez, Mehmet Ali; Karabulut, Hayriye

    2010-01-01

    Topical hemostatic agents are largely used to reduce blood loss during otolaryngologic surgery. These agents play an important role in both keeping the patient's hemodynamic equilibrium and allowing for a better view of the surgical field. These agents can be classified based on their mechanism of action, and include physical or mechanical agents. Most complications of topical hemostatic agents are sustained because of the antigenic reaction of those products. This paper reviews traditional and newer topical hemostatic agents with regard to their chemical properties, their mechanisms of action, and the benefits and complications of topical agents.

  11. An introduction to computer viruses

    SciTech Connect

    Brown, D.R.

    1992-03-01

    This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

  12. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  13. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent

    PubMed Central

    Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I.; Pérez, Lester J.

    2015-01-01

    Background Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Methodology/Principal Findings Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. Conclusions/Significance This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain

  14. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model

    PubMed Central

    Farooqui, Amber; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Su, Min; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zhang, Li; Liu, Yisu; Zeng, Tiansheng; Paquette, Stephane G.; Khan, Adnan; Kelvin, Alyson A.

    2015-01-01

    The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes. PMID:26369969

  15. Zika Virus

    MedlinePlus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  16. Chikungunya virus

    MedlinePlus

    Chikungunya virus infection; Chikungunya ... Where Chikungunya is found Before 2013, the virus was found in Africa, Asia, Europe, and the Indian and Pacific oceans. In late 2013, outbreaks occurred for the first time in the ...

  17. Chikungunya Virus

    MedlinePlus

    ... is key! Prevent Infection. Use mosquito repellent. Chikungunya Virus Distribution Chikungunya in the U.S. What's New Surveillance ... Clinical Challenge For Travelers CDC Travelers' Health Chikungunya Virus Home Prevention Transmission Symptoms & Treatment Geographic Distribution Chikungunya ...

  18. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  19. Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites.

    PubMed

    Flores-Villegas, A L; Salazar-Schettino, P M; Córdoba-Aguilar, A; Gutiérrez-Cabrera, A E; Rojas-Wastavino, G E; Bucio-Torres, M I; Cabrera-Bravo, M

    2015-10-01

    Triatomines are vectors that transmit the protozoan haemoflagellate Trypanosoma cruzi, the causative agent of Chagas disease. The aim of the current review is to provide a synthesis of the immune mechanisms of triatomines against bacteria, viruses, fungi and parasites to provide clues for areas of further research including biological control. Regarding bacteria, the triatomine immune response includes antimicrobial peptides (AMPs) such as defensins, lysozymes, attacins and cecropins, whose sites of synthesis are principally the fat body and haemocytes. These peptides are used against pathogenic bacteria (especially during ecdysis and feeding), and also attack symbiotic bacteria. In relation to viruses, Triatoma virus is the only one known to attack and kill triatomines. Although the immune response to this virus is unknown, we hypothesize that haemocytes, phenoloxidase (PO) and nitric oxide (NO) could be activated. Different fungal species have been described in a few triatomines and some immune components against these pathogens are PO and proPO. In relation to parasites, triatomines respond with AMPs, including PO, NO and lectin. In the case of T. cruzi this may be effective, but Trypanosoma rangeli seems to evade and suppress PO response. Although it is clear that three parasite-killing processes are used by triatomines - phagocytosis, nodule formation and encapsulation - the precise immune mechanisms of triatomines against invading agents, including trypanosomes, are as yet unknown. The signalling processes used in triatomine immune response are IMD, Toll and Jak-STAT. Based on the information compiled, we propose some lines of research that include strategic approaches of biological control.

  20. Hepadna viruses

    SciTech Connect

    Robinson, W.; Koike, K.; Will, H.

    1987-01-01

    This book examines the molecular biology, disease pathogenesis, epidemiology, and clinical features of hepadna and other viruses with hepatic tropism and outlines future directions and approaches for their management. The volume's six sections provide a review of the various features, mechanisms, and functions of these viruses, ranging from hepadna virus replication and regulation of gene expression to the structure and function of hepadna-virus gene products.

  1. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  2. Coping with Computer Viruses: General Discussion and Review of Symantec Anti-Virus for the Macintosh.

    ERIC Educational Resources Information Center

    Primich, Tracy

    1992-01-01

    Discusses computer viruses that attack the Macintosh and describes Symantec AntiVirus for Macintosh (SAM), a commercial program designed to detect and eliminate viruses; sample screen displays are included. SAM is recommended for use in library settings as well as two public domain virus protection programs. (four references) (MES)

  3. Strains of Citrus tristeza virus do not exclude superinfection by other strains of the virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Superinfection exclusion or homologous interference, a phenomenon in which a primary viral infection prevents a secondary infection with the same or closely-related virus, has been observed commonly for viruses in various systems, including viruses of bacteria, plants, and animals. With plant viruse...

  4. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  5. DBatVir: the database of bat-associated viruses.

    PubMed

    Chen, Lihong; Liu, Bo; Yang, Jian; Jin, Qi

    2014-01-01

    Emerging infectious diseases remain a significant threat to public health. Most emerging infectious disease agents in humans are of zoonotic origin. Bats are important reservoir hosts of many highly lethal zoonotic viruses and have been implicated in numerous emerging infectious disease events in recent years. It is essential to enhance our knowledge and understanding of the genetic diversity of the bat-associated viruses to prevent future outbreaks. To facilitate further research, we constructed the database of bat-associated viruses (DBatVir). Known viral sequences detected in bat samples were manually collected and curated, along with the related metadata, such as the sampling time, location, bat species and specimen type. Additional information concerning the bats, including common names, diet type, geographic distribution and phylogeny were integrated into the database to bridge the gap between virologists and zoologists. The database currently covers >4100 bat-associated animal viruses of 23 viral families detected from 196 bat species in 69 countries worldwide. It provides an overview and snapshot of the current research regarding bat-associated viruses, which is essential now that the field is rapidly expanding. With a user-friendly interface and integrated online bioinformatics tools, DBatVir provides a convenient and powerful platform for virologists and zoologists to analyze the virome diversity of bats, as well as for epidemiologists and public health researchers to monitor and track current and future bat-related infectious diseases. Database URL: http://www.mgc.ac.cn/DBatVir/.

  6. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    PubMed

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents.

  7. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  8. Detecting agents.

    PubMed Central

    Johnson, Susan C

    2003-01-01

    This paper reviews a recent set of behavioural studies that examine the scope and nature of the representational system underlying theory-of-mind development. Studies with typically developing infants, adults and children with autism all converge on the claim that there is a specialized input system that uses not only morphological cues, but also behavioural cues to categorize novel objects as agents. Evidence is reviewed in which 12- to 15-month-old infants treat certain non-human objects as if they have perceptual/attentional abilities, communicative abilities and goal-directed behaviour. They will follow the attentional orientation of an amorphously shaped novel object if it interacts contingently with them or with another person. They also seem to use a novel object's environmentally directed behaviour to determine its perceptual/attentional orientation and object-oriented goals. Results from adults and children with autism are strikingly similar, despite adults' contradictory beliefs about the objects in question and the failure of children with autism to ultimately develop more advanced theory-of-mind reasoning. The implications for a general theory-of-mind development are discussed. PMID:12689380

  9. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease

    PubMed Central

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P.

    2016-01-01

    ABSTRACT Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales. To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such

  10. Radiolabelled D2 agonists as prolactinoma imaging agents. Final technical report, January 31, 1990--August 31, 1991

    SciTech Connect

    Otto, C.A.

    1991-12-31

    Research conducted in this terminal year of support centered on three distinct areas: mAChR ligand localization in pancreas and the effect of Ca{sup +2} on localization, continuation of assessment of quaternized and neutral mAChR ligands for possible use as PET myocardial imaging agents, and initiation of a study to determine the relationship of the nAChR receptor to the cellular receptor for measles virus. Several tables and figures illustrating the results are included.

  11. Sucessful transmission of Solenopsis invicta Virus 3 to field colonies of Solenopsis invicta (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solenopsis invicta virus 3 (SINV-3) is a positive sense, single stranded virus that exhibits host specificity toward saevissima complex fire ants. The virus is being considered for release as a biological control agent in areas in which the virus is absent. This study demonstrates that field trans...

  12. Susceptibility of poultry to pandemic (H1N1) 2009 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in April 2009, cases of acute respiratory disease were reported in humans caused by a novel H1N1 influenza A virus in Mexico. The causative agent was complex reassortant influenza A virus with gene segments from North American classic H1N1 swine viruses, North American avian viruses, huma...

  13. Hepatitis G virus: is it a hepatitis virus?

    PubMed Central

    Cheung, R C; Keeffe, E B; Greenberg, H B

    1997-01-01

    Hepatitis G virus (HGV) and GB virus C (GBV-C) are two newly discovered viral agents, different isolates of a positive-sense RNA virus that represents a new genus of Flaviviridae. The purpose of this review is to analyze new data that have recently been published on the epidemiology and associations between HGV and liver diseases such as posttransfusion hepatitis, acute and chronic non-A-E hepatitis, fulminant hepatitis, cryptogenic cirrhosis, and hepatocellular carcinoma. The role of HGV in coinfection with other hepatitis viruses, the response to antiviral therapy, and the impact of HGV on liver transplantation are also discussed. HGV is a transmissible blood-borne viral agent that frequently occurs as a coinfection with other hepatitis viruses due to common modes of transmission. The prevalence of HGV ranges from 0.9 to 10% among blood donors throughout the world and is found in 1.7% of volunteer blood donors in the United States. The majority of patients infected with HGV by blood transfusion do not develop chronic hepatitis, but hepatitis G viremia frequently persists without biochemical evidence of hepatitis. Serum HGV RNA has been found in 0 to 50% of patients with fulminant hepatitis of unknown etiology and 14 to 36% of patients with cryptogenic cirrhosis. The association between HGV and chronic non-A-E hepatitis remains unclear. Although HGV appears to be a hepatotrophic virus, its role in independently causing acute and chronic liver diseases remains uncertain. PMID:9265860

  14. Using Bovine Viral Diarrhea Virus (BVDV) As Surrogate for Human Hepatitis C Virus

    EPA Pesticide Factsheets

    This test is designed to validate virucidal effectiveness claims for a product to be registered as a virucide. It determines the potential of the test agent to disinfect hard surfaces contaminated with human Hepatitis C virus (HCV).

  15. [Simultaneous detection of respiratory viruses and influenza A virus subtypes using multiplex PCR].

    PubMed

    Ciçek, Candan; Bayram, Nuri; Anıl, Murat; Gülen, Figen; Pullukçu, Hüsnü; Saz, Eylem Ulaş; Telli, Canan; Cok, Gürsel

    2014-10-01

    This study was conducted to investigate the respiratory viruses and subtyping of influenza A virus when positive by multiplex PCR in patients with flu-like symptoms, after the pandemic caused by influenza A (H1N1)pdm09. Nasopharyngeal swab samples collected from 700 patients (313 female, 387 male; age range: 24 days-94 yrs, median age: 1 yr) between December 2010 - January 2013 with flu-like symptoms including fever, headache, sore throat, rhinitis, cough, myalgia as defined by the World Health Organization were included in the study. Nucleic acid extractions (Viral DNA/RNA Extraction Kit, iNtRON, South Korea) and cDNA synthesis (RevertAid First Strand cDNA Synthesis Kits, Fermentas, USA) were performed according to the manufacturer's protocol. Multiplex amplification of nucleic acids was performed using DPO (dual priming oligonucleotide) primers and RV5 ACE Screening Kit (Seegene, South Korea) in terms of the presence of influenza A (INF-A) virus, influenza B (INF-B) virus, respiratory syncytial virus (RSV), and the other respiratory viruses. PCR products were detected by automated polyacrylamide gel electrophoresis using Screen Tape multiple detection system. Specimens which were positive for viral nucleic acids have been further studied by using specific DPO primers, FluA ACE Subtyping and RV15 Screening (Seegene, South Korea) kits. Four INF-A virus subtypes [human H1 (hH1), human H3 (hH3), swine H1 (sH1), avian H5 (aH5)] and 11 other respiratory viruses [Adenovirus, parainfluenza virus (PIV) types 1-4, human bocavirus (HBoV), human metapneumovirus (HMPV), rhinovirus types A and B, human coronaviruses (HCoV) OC43, 229E/NL63] were investigated with those tests. In the study, 53.6% (375/700) of the patients were found to be infected with at least one virus and multiple respiratory virus infections were detected in 15.7% (59/375) of the positive cases, which were mostly (49/59, 83%) in pediatric patients. RSV and rhinovirus coinfections were the most prevalent (18

  16. Experimental vaccinations for avian influenza virus including DIVA approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We continue to improve our understanding of avian immunology and are gaining new technological tools that can be used for the immunization of domestic animals. With all these advances we still have to balance the protection that we receive from treatment (i.e vaccination) versus the cost to adminis...

  17. Isolation of an agent causing bilirubinemia and jaundice in raccoons

    USGS Publications Warehouse

    Kilham, L.; Herman, C.M.

    1954-01-01

    An infectious agent, which appears to be a virus (RJV) has been isolated from the liver of a wild raccoon which has led to a highly fatal type of disease characterized by conjunctivitis and an elevated serum bilirubin frequently accompanied by jaundice on inoculation of raccoons. Ferrets also appear to be susceptible to infections with this agent.

  18. Survey of nine abortifacient infectious agents in aborted bovine fetuses from dairy farms in Beijing, China, by PCR.

    PubMed

    Yang, Na; Cui, Xia; Qian, Weifeng; Yu, Shanshan; Liu, Qun

    2012-03-01

    Abortion in dairy cattle causes considerable economic losses to the dairy industry. Aborted fetuses and samples from the corresponding aborting dams from 12 dairy herds in Beijing were tested for 9 abortifacient infectious pathogens by PCR between 2008 and 2010. From a total of 80 abortion cases collected during this period, infectious agents were detected in 45 (56.3%) cases, 22 (48.9%) of which represented co-infections with two or three infectious agents. The detected pathogens included infectious bovine rhinotracheitis virus (36.3%) and Neospora caninum (31.3%), followed by bovine viral diarrhoea virus (7.5%), Brucella abortus (6.3%), Tritrichomonas foetus (5%) and Toxoplasma gondii (1.3%). Campylobacter fetus, Coxiella burnetii and Chlamydophila psittaci were not detected in any abortion case. Findings from this study indicated that infectious bovine rhinotracheitis virus and Neospora caninum were the main potential causes of abortions in Beijing dairy herds, whereas the bacterial pathogens were not, in contrast to reports from other countries. This is the first study to test nine abortifacient infectious agents by PCR at the same time, and it is also the first time to report the involvement of a variety of infectious agents in bovine abortion cases in China.

  19. Vaporizing Fire Extinguishing Agents

    DTIC Science & Technology

    1950-08-18

    the pro- ject under contract included: Dr. Earl T. McBee, Head, Chemistry Department; Dr. Zara D. Welch, Researbh Supervisor; and Dr’s T. R. Santelli...Aeronautics Authority kxperimental Station, Indianapolis, Indiana, which has supplied test data for inclusion in this report. The Medical Division of the...Development of sources of supply for agent anAL con- tainers. f. Service testing. This report oovers technical phases a, b, and a to 1 April 1950, and

  20. Agents Technology Research

    DTIC Science & Technology

    2010-02-01

    62702F 6. AUTHOR(S) Robert Wright, Jeffrey Hudack, Nathaniel Gemelli, Steven Loscalzo, and Tsu Kong Lue 5d. PROJECT NUMBER 558S 5e. TASK...NAME OF RESPONSIBLE PERSON Robert Wright a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) N/A...avoided by the other agents removing the incentive to lie or free-load. This phenomenon is termed as the shadow of the future and was shown in Robert

  1. Including Jews in Multiculturalism.

    ERIC Educational Resources Information Center

    Langman, Peter F.

    1995-01-01

    Discusses reasons for the lack of attention to Jews as an ethnic minority within multiculturalism both by Jews and non-Jews; why Jews and Jewish issues need to be included; and addresses some of the issues involved in the ethical treatment of Jewish clients. (Author)

  2. Bloodborne viruses and occupational exposure in the dental setting.

    PubMed

    Webber, L M

    2000-09-01

    Occupational hazards in dentistry are most commonly associated with physical, chemical and biological agents. Bloodborne viruses, notably hepatitis B virus and human immunodeficiency virus (HIV), pose a risk for occupational exposure among oral health care workers in South Africa. Although post-exposure prophylaxis can be prescribed after exposure to either or both these viruses, universal precautions and strategies must be implemented in order to protect the oral health care professional.

  3. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection.

    PubMed

    Bossart, Katharine N; Zhu, Zhongyu; Middleton, Deborah; Klippel, Jessica; Crameri, Gary; Bingham, John; McEachern, Jennifer A; Green, Diane; Hancock, Timothy J; Chan, Yee-Peng; Hickey, Andrew C; Dimitrov, Dimiter S; Wang, Lin-Fa; Broder, Christopher C

    2009-10-01

    Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.

  4. Well begun is half done: Rubella virus perturbs autophagy signaling, thereby facilitating the construction of viral replication compartments.

    PubMed

    Orosz, László; Megyeri, Klára

    2016-04-01

    The rubella virus is the causative agent of postnatal German measles and the congenital rubella syndrome. The majority of the rubella virus replication complexes originate from the endomembrane system. The rubella virus perturbs the signaling pathways regulating the formation of autophagic membranes in the infected cells, including the Ras/Raf/MEK/ERK and PI3K/Akt pathways. It is widely accepted that these pathways inhibit autophagy. In contrast, the class III PI3K enzymes are essential for autophagy initiation. By manipulating the Ras/Raf/MEK/ERK, class I PI3K/Akt and class III PI3K axes of signal transduction, the rubella virus may differentially regulate the autophagic cascade, with consequent stimulation of the initiation and strong suppression of the later phases. Dysregulation of autophagy by this virus can have a significant impact on the construction of replication compartments by regulating membrane trafficking. We hypothesize that the rubella virus perturbs the autophagic process in order to prevent the degradation of the virus progeny, and to ensure its replication by hijacking omegasomes for the construction of the replication complexes. The virus is therefore able to utilize an antiviral mechanism to its own advantage. Therapeutic modalities targeting the autophagic process may help to ameliorate the serious consequences of the congenital rubella syndrome.

  5. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  6. Massively parallel sequencing, a new method for detecting adventitious agents.

    PubMed

    Onions, David; Kolman, John

    2010-05-01

    There has been an upsurge of interest in developing new veterinary and human vaccines and, in turn, this has involved the development of new mammalian and insect cell substrates. Excluding adventitious agents from these cells can be problematic, particularly for cells derived from species with limited virological investigation. Massively parallel sequencing is a powerful new method for the identification of viruses and other adventitious agents, without prior knowledge of the nature of the agent. We have developed methods using random priming to detect viruses in the supernatants from cell substrates or in virus seed stocks. Using these methods we have recently discovered a new parvovirus in bovine serum. When applied to sequencing the transcriptome, massively parallel sequencing can reveal latent or silent infections. Enormous amounts of data are developed in this process usually between 100 and 400 Mbp. Consequently, sophisticated bioinformatic algorithms are required to analyse and verify virus targets.

  7. Comprehensive detection and identification of human coronaviruses, including the SARS-associated coronavirus, with a single RT-PCR assay.

    PubMed

    Adachi, D; Johnson, G; Draker, R; Ayers, M; Mazzulli, T; Talbot, P J; Tellier, R

    2004-12-01

    The SARS-associated human coronavirus (SARS-HCoV) is a newly described, emerging virus conclusively established as the etiologic agent of the severe acute respiratory syndrome (SARS). This study presents a single-tube RT-PCR assay that can detect with high analytical sensitivity the SARS-HCoV, as well as several other coronaviruses including other known human respiratory coronaviruses (HCoV-OC43 and HCoV-229E). Species identification is provided by sequencing the amplicon, although a rapid screening test by restriction enzyme analysis has proved to be very useful for the analysis of samples obtained during the SARS outbreak in Toronto, Canada.

  8. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41.

    PubMed

    Vogel, Erica P; Curtis-Fisk, Jaime; Young, Kaitlin M; Weliky, David P

    2011-11-22

    Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41.

  9. Anti-influenza Virus Effects of Catechins: A Molecular and Clinical Review.

    PubMed

    Ide, Kazuke; Kawasaki, Yohei; Kawakami, Koji; Yamada, Hiroshi

    2016-01-01

    Influenza infection and associated epidemics represent a serious public health problem. Several preventive and curative measures exist against its spread including vaccination and therapeutic agents such as neuraminidase inhibitors (e.g., oseltamivir, zanamivir, as well as peramivir and laninamivir, which are licensed in several countries) and adamantanes (e.g., amantadine and rimantadine). However, neuraminidase inhibitor- and adamantane- resistant viruses have been detected, whereas vaccines exhibit strain-specific effects and are limited in supply. Thus, new approaches are needed to prevent and treat influenza infections. Catechins, a class of polyphenolic flavonoids present in tea leaves, have been reported as potential anti-influenza virus agents based on experimental and clinical studies. (-)-epigallocatechin gallate (EGCG), a major and highly bioactive catechin, is known to inhibit influenza A and B virus infections in Madin-Darby canine kidney cells. Additionally, EGCG and other catechin compounds such as epicatechin gallate and catechin-5-gallate also show neuraminidase inhibitory activities as demonstrated via molecular docking. These catechins can bind differently to neuraminidase and might overcome known drug resistancerelated virus mutations. Furthermore, the antiviral effects of chemically modified catechin derivatives have also been investigated, and future structure-based drug design studies of catechin derivatives might contribute to improvements in influenza prevention and treatment. This review briefly summarizes probable mechanisms underlying the inhibitory effects of tea catechins against influenza infection and their clinical benefits on influenza prevention and treatment. Additionally, the great potential of tea catechins and their chemical derivatives as effective antiviral agents is described.

  10. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction

    PubMed Central

    Mirvish, Ezra D.; Shuda, Masahiro

    2016-01-01

    Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV. PMID:27242703

  11. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  12. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents

    PubMed Central

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Javier P.; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Botta, Maurizio

    2016-01-01

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832

  13. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents.

    PubMed

    Euler, Milena; Wang, Yongjie; Heidenreich, Doris; Patel, Pranav; Strohmeier, Oliver; Hakenberg, Sydney; Niedrig, Matthias; Hufert, Frank T; Weidmann, Manfred

    2013-04-01

    Syndromic panels for infectious disease have been suggested to be of value in point-of-care diagnostics for developing countries and for biodefense. To test the performance of isothermal recombinase polymerase amplification (RPA) assays, we developed a panel of 10 RPAs for biothreat agents. The panel included RPAs for Francisella tularensis, Yersinia pestis, Bacillus anthracis, variola virus, and reverse transcriptase RPA (RT-RPA) assays for Rift Valley fever virus, Ebola virus, Sudan virus, and Marburg virus. Their analytical sensitivities ranged from 16 to 21 molecules detected (probit analysis) for the majority of RPA and RT-RPA assays. A magnetic bead-based total nucleic acid extraction method was combined with the RPAs and tested using inactivated whole organisms spiked into plasma. The RPA showed comparable sensitivities to real-time RCR assays in these extracts. The run times of the assays at 42°C ranged from 6 to 10 min, and they showed no cross-detection of any of the target genomes of the panel nor of the human genome. The RPAs therefore seem suitable for the implementation of syndromic panels onto microfluidic platforms.

  14. Ball Python Nidovirus: a Candidate Etiologic Agent for Severe Respiratory Disease in Python regius

    PubMed Central

    Stenglein, Mark D.; Jacobson, Elliott R.; Wozniak, Edward J.; Wellehan, James F. X.; Kincaid, Anne; Gordon, Marcus; Porter, Brian F.; Baumgartner, Wes; Stahl, Scott; Kelley, Karen; Towner, Jonathan S.

    2014-01-01

    ABSTRACT A severe, sometimes fatal respiratory disease has been observed in captive ball pythons (Python regius) since the late 1990s. In order to better understand this disease and its etiology, we collected case and control samples and performed pathological and diagnostic analyses. Electron micrographs revealed filamentous virus-like particles in lung epithelial cells of sick animals. Diagnostic testing for known pathogens did not identify an etiologic agent, so unbiased metagenomic sequencing was performed. Abundant nidovirus-like sequences were identified in cases and were used to assemble the genome of a previously unknown virus in the order Nidovirales. The nidoviruses, which were not previously known to infect nonavian reptiles, are a diverse order that includes important human and veterinary pathogens. The presence of the viral RNA was confirmed in all diseased animals (n = 8) but was not detected in healthy pythons or other snakes (n = 57). Viral RNA levels were generally highest in the lung and other respiratory tract tissues. The 33.5-kb viral genome is the largest RNA genome yet described and shares canonical characteristics with other nidovirus genomes, although several features distinguish this from related viruses. This virus, which we named ball python nidovirus (BPNV), will likely establish a new genus in Torovirinae subfamily. The identification of a novel nidovirus in reptiles contributes to our understanding of the biology and evolution of related viruses, and its association with lung disease in pythons is a promising step toward elucidating an etiology for this long-standing veterinary disease. PMID:25205093

  15. Virus meningo-encephalitis in Slovenia

    PubMed Central

    Vesenjak-Zmijanac, J.; Bedjanič, M.; Rus, S.; Kmet, J.

    1955-01-01

    An organism was isolated from the blood of a patient clinically diagnosed as suffering from virus meningo-encephalitis; the organism causes illness and death in white mice. The antigen prepared from the brains of mice infected with this organism fixes complement with sera from typical cases of virus meningo-encephalitis. From its biological and serological characteristics, the isolated organism appears to belong to the group of neurotropic viruses and to be the causative agent of virus meningo-encephalitis in Slovenia. PMID:14378996

  16. Web Search Agents: "One-Stop Shopping" for Researchers.

    ERIC Educational Resources Information Center

    Perez, Ernest

    2002-01-01

    Explains Web search agents as tools that apply intelligent agent software technology for the purpose of automating, improving, and speeding up online search operations. Topics include intelligent desktop agents; search agent marketplace; comparing Web search agents; subjective evaluations; and use by researchers. (LRW)

  17. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  18. Survey of causative agents for acute respiratory infections among patients in Khartoum- State, Sudan, 2010–2011

    PubMed Central

    2013-01-01

    Background This study was carried out to determine causative agents of acute respiratory illness of patients in Khartoum State, Sudan. Methods Four hundred patients experiencing respiratory infections within January-March 2010 and January-March 2011 were admitted at Khartoum Hospital and had their throat swab samples subjected to multiplex real-time RT-PCR to detect influenza viruses (including subtypes) and other viral agents. Isolation, nucleotide sequence and phylogenetic analysis on some influenza viruses based on the HA gene were done. Results Out of 400 patients, 66 were found to have influenza viruses (35, 27, 2, and 2 with types A, B, C, and A and B co-infections, respectively). Influenza viruses were detected in 28, 33 and 5 patients in the age groups <1, 1–10, and 11–30 years old, respectively but none in the 31–50 years old group. Out of 334 patients negative for influenza viruses, 27, 14, and 2 were positive for human respiratory syncytial virus, rhinovirus and adenovirus, respectively. Phylogenetic tree on influenza A (H1N1) pdm09 subtype shows that Sudan strains belong to the same clade and are related to those strains from several countries such as USA, Japan, Italy, United Kingdom, Germany, Russia, Greece, Denmark, Taiwan, Turkey and Kenya. Seasonal A H3 subtypes have close similarity to strains from Singapore, Brazil, Canada, Denmark, USA and Nicaragua. For influenza B, Sudan strains belong to two different clades, and just like influenza A (H1N1) pdm09 and A H3 subtypes, seem to be part of worldwide endemic population (Kenya, USA, Brazil, Russia, Taiwan and Singapore). Conclusions In Sudan, the existence of respiratory viruses in patients with acute respiratory infection was confirmed and characterized for the first time by using molecular techniques. PMID:24160894

  19. Measles to the Rescue: A Review of Oncolytic Measles Virus

    PubMed Central

    Aref, Sarah; Bailey, Katharine; Fielding, Adele

    2016-01-01

    Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS) can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated. PMID:27782084

  20. Nutritional therapies (including fosteum).

    PubMed

    Nieves, Jeri W

    2009-03-01

    Nutrition is important in promoting bone health and in managing an individual with low bone mass or osteoporosis. In adult women and men, known losses of bone mass and microarchitecture occur, and nutrition can help minimize these losses. In every patient, a healthy diet with adequate protein, fruits, vegetables, calcium, and vitamin D is required to maintain bone health. Recent reports on nutritional remedies for osteoporosis have highlighted the importance of calcium in youth and continued importance in conjunction with vitamin D as the population ages. It is likely that a calcium intake of 1200 mg/d is ideal, and there are some concerns about excessive calcium intakes. However, vitamin D intake needs to be increased in most populations. The ability of soy products, particularly genistein aglycone, to provide skeletal benefit has been recently studied, including some data that support a new medical food marketed as Fosteum (Primus Pharmaceuticals, Scottsdale, AZ).

  1. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    PubMed

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  2. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  3. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  4. Major tomato viruses in the Mediterranean basin.

    PubMed

    Hanssen, Inge M; Lapidot, Moshe

    2012-01-01

    Tomato (Solanum lycopersicum L.) originated in South America and was brought to Europe by the Spaniards in the sixteenth century following their colonization of Mexico. From Europe, tomato was introduced to North America in the eighteenth century. Tomato plants show a wide climatic tolerance and are grown in both tropical and temperate regions around the world. The climatic conditions in the Mediterranean basin favor tomato cultivation, where it is traditionally produced as an open-field plant. However, viral diseases are responsible for heavy yield losses and are one of the reasons that tomato production has shifted to greenhouses. The major tomato viruses endemic to the Mediterranean basin are described in this chapter. These viruses include Tomato yellow leaf curl virus, Tomato torrado virus, Tomato spotted wilt virus, Tomato infectious chlorosis virus, Tomato chlorosis virus, Pepino mosaic virus, and a few minor viruses as well.

  5. Rescue of rinderpest virus from cloned cDNA.

    PubMed Central

    Baron, M D; Barrett, T

    1997-01-01

    Rinderpest virus is a morbillivirus and is the causative agent of a widespread and important disease of cattle. The viral genome is a single strand of RNA in the negative sense. We have constructed plasmids containing cDNA copies of the 5' and 3' termini of the virus separated by a reporter gene and have shown that antigenome-sense RNA transcripts of these model genomes can be replicated, transcribed, and packaged by helper virus, both rinderpest virus and the related measles virus. Further, these genome analogs can be replicated and transcribed by viral proteins expressed from cDNA clones by using a recombinant vaccinia virus expressing T7 RNA polymerase (MVA-T7). Using this latter system, we have rescued live rinderpest virus from a full-length cDNA copy of the genome of the RBOK vaccine strain. The recombinant virus appears to grow in tissue culture identically to the original virus. PMID:8995650

  6. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Epidemiology of gastroenteritis viruses in Japan: Prevalence, seasonality, and outbreak.

    PubMed

    Thongprachum, Aksara; Khamrin, Pattara; Maneekarn, Niwat; Hayakawa, Satoshi; Ushijima, Hiroshi

    2016-04-01

    Acute gastroenteritis has been recognized as one of the most common diseases in humans and continues to be a major public health problem worldwide. Several groups of viruses have been reported as the causative agents of acute gastroenteritis, including rotavirus, norovirus, sapovirus, human astrovirus, adenovirus, and an increasing number of others which have been reported more recently. The epidemiology, prevalence, seasonality, and outbreaks of these viruses have been reviewed in a number of studies conducted in Japan over three decades. Rotavirus and norovirus were the two most common viruses detected almost equally in children under 5 years of age who were suffering from acute gastroenteritis. Like many other countries, the main rotavirus strains circulating in pediatric patients in Japan are G1P[8], G2P[4], G3P[8], and G9P[8]. Norovirus GII.4 was involved in most outbreaks in Japan and found to be associated with the emergence of new variants Sydney_2012. The classic human astrovirus, MLB, and VA clades astroviruses were also commonly found in pediatric patients with acute diarrhea. The sapovirus and adenovirus have been identified as the minor viral causative agents for acute gastroenteritis in Japan.

  8. Proteorhodopsin genes in giant viruses.

    PubMed

    Yutin, Natalya; Koonin, Eugene V

    2012-10-04

    Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists.

  9. PC viruses: How do they do that

    SciTech Connect

    Pichnarczyk, K.

    1992-07-01

    The topic of PC Viruses has been an issue for a number of years now. They've been reported in every major newspaper, tabloids, television and radio. People from all fields get viruses: government, private sector businesses, home computers, schools, computer software suppliers. A definition is proposed to introduce the virus phenomenon. Virus authors come from a variety of communities. Motives and ideologies of authors are discussed, and examples of viruses are offered. Also mentioned is the growing number of viruses developed, isolated, and never distributed to the public at large, but kept within the antivirus research community. Virus examples are offered as well. Viruses are distributed not only through bulletin boards and shareware, but also from areas previously assumed to be safe, including the threat of receiving a virus through a standard in-house function, such as an in-house hardware maintenance shop. Three categories of viruses are presented: File Infecter viruses, Boot Sector Infecters, and the new category of Directory Entry Infecter virus. Also discussed are crossover viruses, that is, viruses which utilize a variety of techniques to ensure survival. An explanation of what is occurring within every stage of various viruses is given. Replication strategies common to all three types is noted, mainly the two different replication strategies of memory resident infecters and active selection infecters. A detailed definition, description and application of a stealth virus is presented. Detection strategies are discussed as each topic in this section is completed; a high level schemata of the operation of various virus detection programs ispresented. Since most eradication today is done using virus detection/eradication software, this paper attempts to reveal the techniques used by these packages.Included in the paper is the topic of manual eradication.

  10. PC viruses: How do they do that?

    SciTech Connect

    Pichnarczyk, K.

    1992-07-01

    The topic of PC Viruses has been an issue for a number of years now. They`ve been reported in every major newspaper, tabloids, television and radio. People from all fields get viruses: government, private sector businesses, home computers, schools, computer software suppliers. A definition is proposed to introduce the virus phenomenon. Virus authors come from a variety of communities. Motives and ideologies of authors are discussed, and examples of viruses are offered. Also mentioned is the growing number of viruses developed, isolated, and never distributed to the public at large, but kept within the antivirus research community. Virus examples are offered as well. Viruses are distributed not only through bulletin boards and shareware, but also from areas previously assumed to be safe, including the threat of receiving a virus through a standard in-house function, such as an in-house hardware maintenance shop. Three categories of viruses are presented: File Infecter viruses, Boot Sector Infecters, and the new category of Directory Entry Infecter virus. Also discussed are crossover viruses, that is, viruses which utilize a variety of techniques to ensure survival. An explanation of what is occurring within every stage of various viruses is given. Replication strategies common to all three types is noted, mainly the two different replication strategies of memory resident infecters and active selection infecters. A detailed definition, description and application of a stealth virus is presented. Detection strategies are discussed as each topic in this section is completed; a high level schemata of the operation of various virus detection programs ispresented. Since most eradication today is done using virus detection/eradication software, this paper attempts to reveal the techniques used by these packages.Included in the paper is the topic of manual eradication.

  11. Satellite RNAs and Satellite Viruses of Plants

    PubMed Central

    Hu, Chung-Chi; Hsu, Yau-Heiu; Lin, Na-Sheng

    2009-01-01

    The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites. PMID:21994595

  12. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  13. Satellite RNAs and Satellite Viruses of Plants.

    PubMed

    Hu, Chung-Chi; Hsu, Yau-Heiu; Lin, Na-Sheng

    2009-12-01

    The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites.

  14. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms

    PubMed Central

    Munang'andu, Hetron M.; Mugimba, Kizito K.; Byarugaba, Denis K.; Mutoloki, Stephen; Evensen, Øystein

    2017-01-01

    The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture. PMID:28382024

  15. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis

    PubMed Central

    Phadke, Varun K.; Friedman-Moraco, Rachel J.; Quigley, Brian C.; Farris, Alton B.; Norvell, J. P.

    2016-01-01

    Abstract Background: Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. Methods: We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. Results: A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Conclusions: Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease. PMID:27759636

  16. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms.

    PubMed

    Munang'andu, Hetron M; Mugimba, Kizito K; Byarugaba, Denis K; Mutoloki, Stephen; Evensen, Øystein

    2017-01-01

    The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.

  17. Survey for evidence of Colorado tick fever virus outside of the known endemic area in California.

    PubMed

    Lane, R S; Emmons, R W; Devlin, V; Dondero, D V; Nelson, B C

    1982-07-01

    A virus very similar or identical to Colorado tick fever (CTF) virus was recovered from the blood clot of one of 104 black-tailed jack rabbits (Lepus californicus) examined during a survey for various zoonotic agents in mammals and ticks from the University of California, Hopland Field Station, Mendocino County, California, 1974--79. This is the first reported isolation of a CTF-like virus from L. californicus, and only the second time such a virus has been found in northwestern California. Mendocino County is located far outside the known distributional ranges of the most common mammalian hosts of CTF virus and of Dermacentor andersoni, the only proven tick vector for man. The viral isolate is very similar to a CTF-like virus previously recovered from the blood and spleen of a western gray squirrel (Sciurus griseus) from San Luis Obispo County, an area also outside of the previously-known CTF area. Virus was not isolated from 14 additional species of mammals (354 specimens) or from eight species of ticks (4,487 individuals), but CTF-neutralizing antibodies were detected in 28 of 771 (3.6%) sera from seven of 15 mammalian species including significant titers (greater than or equal to 1:8) in two species and one subspecies not previously reported as natural hosts, i.e., brush mouse (Peromyscus boylii), pinyon mouse (P. truei), and Columbian black-tailed deer (Odocoileus hemionus columbianus). CTF indirect immunofluorescent antibodies also were detected in 26 of 129 (20.2%) sera belonging to four of five mammalian species tested. Neutralizing antibodies were found in sera of deer from other localities in Mendocino County, from a deer mouse from Napa County, and from a brush rabbit from Monterey County as well. These findings suggest that a virus identical or similar to CTF virus is widespread in northwestern-westcentral California, and that surveillance for human cases of CTF or a similar disease should be extended to cover this region.

  18. Hepatitis E virus as an emerging zoonotic pathogen.

    PubMed

    Park, Woo-Jung; Park, Byung-Joo; Ahn, Hee-Seop; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Yoo, Han-Sang; Choi, In-Soo

    2016-03-01

    Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status.

  19. Hepatitis E virus as an emerging zoonotic pathogen

    PubMed Central

    Park, Woo-Jung; Park, Byung-Joo; Ahn, Hee-Seop; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Yoo, Han-Sang

    2016-01-01

    Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status. PMID:27051334

  20. Hepatitis viruses and non-Hodgkin’s lymphoma: A review

    PubMed Central

    Datta, Sibnarayan; Chatterjee, Soumya; Policegoudra, Rudragoud S; Gogoi, Hemant K; Singh, Lokendra

    2012-01-01

    Non-Hodgkin’s lymphoma (NHL) is among the haematological malignancies with high prevalence worldwide, causing estimated 355 900 new cases and 191 400 deaths in 2008. High prevalence of NHL is documented in economically more developed areas while low prevalence is observed in less developed areas of the globe. A wide array of environmental factors have been reported to be either directly involved or in modifying the risk of NHL development. In addition to these factors, a number of infectious agents, chiefly viruses have also been implicated in the development of NHL. This article reviews the available literature to discuss the role of hepatitis viruses in NHL development, possible mechanisms of lymphomagenesis and also identify the areas in which further research is required to better understand this disease. A brief discussion on the clinical aspects such as classification, staging, treatment approaches have also been included in this article. PMID:24175222

  1. Antibodies to Epstein-Barr virus in patients with cryptococcosis.

    PubMed Central

    Levine, P H; Diamond, R D; Reisher, J I

    1975-01-01

    Antibody levels to the Epstein-Barr virus, the etiological agent for heterophile-positive infectious mononucleosis, have been demonstrated in high titer in a number of lymphomas as well as infectious mononucleosis. Recent reports have suggested that the elevated antibody levels to Epstein-Barr virus may be the nonspecific result of disordered cell-mediated immunity. This study of patients with cryptococcosis was therefore undertaken to examine another disorder of known etiology associated with a defect in cell-mediated immunity. In this study we found that antibody levels in cryptococcosis patients, including a group specifically demonstrated to be anergic to a series of skin test antigens, were no different than those in matched normal controls. At the present time, therefore, it is unlikely that elevated antibody levels can be explained solely on the basis of depressed cellular immunity. PMID:170312

  2. Newer antifungal agents.

    PubMed

    Türel, Ozden

    2011-03-01

    The frequency and spectrum of fungal infections have been increasing steadily over the last several decades. The reason for this increase may be explained by the increase in the number of immunocompromised patients due to malignancies, AIDS, invasive surgical procedures and transplantation. In parallel with this increase, several therapeutic options have become available but problems such as intrinsic or acquired antifungal resistance have led researchers to develop new antifungal drugs with expanded effectiveness. Reduced toxicity, enhancement of bioavailability and counteraction of resistance are features desired by clinicians. The aim of this article is to summarize the studies involving isavuconazole, ravuconazole, albaconazole, aminocandin and some other investigational antifungal agents. Most data on the clinical use of ravuconazole, isavuconazole and albaconazole are mainly available as meeting abstracts or limited to animal studies or Phase I/II studies in humans. These new antifungal agents in development offer extended half-lives, possibly reduced drug interaction profiles and good tolerance. In addition to activity against Candida and Aspergillus spp., they have a broad spectrum of activity including activity against resistant and emerging pathogens. The real possibilities of these agents will only be fully understood after adequate randomized clinical trials.

  3. Recent developments in antiviral agents against enterovirus 71 infection

    PubMed Central

    2014-01-01

    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease. PMID:24521134

  4. [Visceral leishmaniasis: clinical sensitivity and resistance to various therapeutic agents].

    PubMed

    Janvier, F; Morillon, M; Olliaro, P

    2008-02-01

    Visceral leishmaniasis is present in 61 countries but 90% of the 500,000 new cases that arise annually occur in five countries, i.e., India, Bangladesh, Nepal, Sudan, and Brazil. Annual mortality is approximately 59000 cases. Agents based on pentavalent antimony have been the mainstay of treatment for the last 60 years. In recent years, however, clinical resistance to these agents has been reported especially in the state of Bihar in India. Pentamidine and amphotericin B were introduced in the 1950s and 1960s. More recent additions to the therapeutic arsenal include liposomal amphotericin B, miltefosine, and paromomycin. Among these recent molecules, miltefosine, i.e., the only oral agent, appears most vulnerable because it involves long-term treatment and has a long half-life. The main therapeutic problems now being encountered are the emergence of acquired resistance to antimonials, the high cost of treatment, and failure of therapy in immunocompromised patients mainly due to concurrent human immunodeficiency virus (HIV) infection. For eradication initiatives such as the one aimed at eliminating leishmaniasis on the Indian subcontinent, the appearance of drug resistance increases the risk associated to parasite infection and, as for malaria, tuberculosis and HIV infection, raises fears that the problems in the implementation of public health policies will lead to highly refractory forms.

  5. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality

    PubMed Central

    Chen, Yi-Hsiang; Chang, Gi-Kung; Kuo, Shu-Ming; Huang, Sheng-Yu; Hu, I-Chen; Lo, Yu-Lun; Shih, Shin-Ru

    2016-01-01

    Influenza is one of the most common human respiratory diseases, and represents a serious public health concern. However, the high mutability of influenza viruses has hampered vaccine development, and resistant strains to existing anti-viral drugs have also emerged. Novel anti-influenza therapies are urgently needed, and in this study, we describe the anti-viral properties of a Spirulina (Arthrospira platensis) cold water extract. Anti-viral effects have previously been reported for extracts and specific substances derived from Spirulina, and here we show that this Spirulina cold water extract has low cellular toxicity, and is well-tolerated in animal models at one dose as high as 5,000 mg/kg, or 3,000 mg/kg/day for 14 successive days. Anti-flu efficacy studies revealed that the Spirulina extract inhibited viral plaque formation in a broad range of influenza viruses, including oseltamivir-resistant strains. Spirulina extract was found to act at an early stage of infection to reduce virus yields in cells and improve survival in influenza-infected mice, with inhibition of influenza hemagglutination identified as one of the mechanisms involved. Together, these results suggest that the cold water extract of Spirulina might serve as a safe and effective therapeutic agent to manage influenza outbreaks, and further clinical investigation may be warranted. PMID:27067133

  6. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality.

    PubMed

    Chen, Yi-Hsiang; Chang, Gi-Kung; Kuo, Shu-Ming; Huang, Sheng-Yu; Hu, I-Chen; Lo, Yu-Lun; Shih, Shin-Ru

    2016-04-12

    Influenza is one of the most common human respiratory diseases, and represents a serious public health concern. However, the high mutability of influenza viruses has hampered vaccine development, and resistant strains to existing anti-viral drugs have also emerged. Novel anti-influenza therapies are urgently needed, and in this study, we describe the anti-viral properties of a Spirulina (Arthrospira platensis) cold water extract. Anti-viral effects have previously been reported for extracts and specific substances derived from Spirulina, and here we show that this Spirulina cold water extract has low cellular toxicity, and is well-tolerated in animal models at one dose as high as 5,000 mg/kg, or 3,000 mg/kg/day for 14 successive days. Anti-flu efficacy studies revealed that the Spirulina extract inhibited viral plaque formation in a broad range of influenza viruses, including oseltamivir-resistant strains. Spirulina extract was found to act at an early stage of infection to reduce virus yields in cells and improve survival in influenza-infected mice, with inhibition of influenza hemagglutination identified as one of the mechanisms involved. Together, these results suggest that the cold water extract of Spirulina might serve as a safe and effective therapeutic agent to manage influenza outbreaks, and further clinical investigation may be warranted.

  7. Hantaan Virus M RNA: Coding Strategy, Nucleotide Sequence, and Gene Order

    DTIC Science & Technology

    1987-01-01

    Hantaan virus is the etiologic agent of Ko- have found that Hantaan, like other viruses in the family, rean hemorrhagic fever, which is one of the better...rm m m ml ’ HANTAAN VIRUS M RNA 33 female New Zealand white rabbits. Rabbits were was determined by dideoxy chain termination synthesis boosted with...and MCCORMICK, J. B. (1984). Hantaan Antigenic and genetic properties of viruses linked to hemorrhagic virus : Identification of virion proteins.., Gen

  8. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human

    PubMed Central

    Gillet, Nicolas; Florins, Arnaud; Boxus, Mathieu; Burteau, Catherine; Nigro, Annamaria; Vandermeers, Fabian; Balon, Hervé; Bouzar, Amel-Baya; Defoiche, Julien; Burny, Arsène; Reichert, Michal; Kettmann, Richard; Willems, Luc

    2007-01-01

    In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far. PMID:17362524

  9. NON-FATAL INFECTION OF MICE FOLLOWING INTRACEREBRAL INOCULATION OF YELLOW FEVER VIRUS

    PubMed Central

    Fox, John P.

    1943-01-01

    Observations have been reported which indicate that mice inoculated intracerebrally with active yellow fever virus may develop an infection which is not only non-fatal but may also be completely inapparent. The most extensive observations were made on mice which showed signs of infection but were still alive 22 days after inoculation with virus of one or another of several 17D substrains. In such cases, the infection usually progressed no further and partial or complete recovery often ensued. Agents other than yellow fever virus were excluded as a significant cause of such nonfatal infections by the failure of repeated attempts to isolate other infective agents, by the demonstration of antibodies against yellow fever virus in the sera of the mice, and by the demonstration of a high degree of resistance on the part of such surviving mice to reinoculation with large doses of neurotropic yellow fever virus. Completely inapparent infections with 17D virus were also shown to occur. Studies of apparently normal survivors of 17D virus titrations revealed a small but significant number of animals resistant to intracerebral challenge with neurotropic yellow fever virus. Further, pooled sera from such mice were shown to contain specific protective antibodies. The occurrence of non-fatal infections with 17D virus was found related to virus dose and substrain. Small doses of virus provoked a significantly higher proportion of non-fatal infections than large doses; while different 17D substrains, tested over equivalent ranges of virus dose, varied greatly with respect to the proportion of infections which did not terminate with death. In the case of two substrains (17DD low and 17D3), non-fatal infections (as demonstrated by resistance to intracerebral challenge with neurotropic virus) were sufficiently frequent to cause an increase, when included in the computation of the infective titers, of 25 per cent above the figures based on deaths alone. The demonstration of non

  10. Full genome characterization of the culicoides-borne marsupial orbiviruses: Wallal virus, Mudjinbarry virus and Warrego viruses.

    PubMed

    Belaganahalli, Manjunatha N; Maan, Sushila; Maan, Narender S; Pritchard, Ian; Kirkland, Peter D; Brownlie, Joe; Attoui, Houssam; Mertens, Peter P C

    2014-01-01

    Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively.

  11. Competitive virus assay method for titration of noncytopathogenic bovine viral diarrhea viruses (END⁺ and END⁻ viruses).

    PubMed

    Muhsen, Mahmod; Ohi, Kota; Aoki, Hiroshi; Ikeda, Hidetoshi; Fukusho, Akio

    2013-03-01

    A new, reliable and secure virus assay method, named the competitive virus assay (CVA) method, has been established for the titration of bovine viral diarrhea viruses (BVDVs) that either show the exaltation of Newcastle disease virus (END) phenomenon or heterologous interference phenomenon (but not the END phenomenon). This method is based on the principle of (1) homologous interference between BVDVs, by using BVDV RK13/E(-) or BVDV RK13/E(+) strains as competitor virus, and (2) END phenomenon and heterologous interference, by using attenuated Newcastle disease virus (NDV) TCND strain as challenge virus. In titration of BVDV END(+) and BVDV END(-) viruses, no significant difference in estimated virus titer was observed between CVA and conventional methods. CVA method demonstrated comparable levels of sensitivity and accuracy as conventional END and interference methods, which require the use of a velogenic Miyadera strain of NDV and vesicular stomatitis virus (VSV), both of which are agents of high-risk diseases. As such, the CVA method is a safer alternative, with increased bio-safety and bio-containment, through avoidance of virulent strains that are commonly employed with conventional methods.

  12. Nigericin is a potent inhibitor of the early stage of vaccinia virus replication.

    PubMed

    Myskiw, Chad; Piper, Jessica; Huzarewich, Rhiannon; Booth, Tim F; Cao, Jingxin; He, Runtao

    2010-12-01

    Poxviruses remain a significant public health concern due to their potential use as bioterrorist agents and the spread of animal borne poxviruses, such as monkeypox virus, to humans. Thus, the identification of small molecule inhibitors of poxvirus replication is warranted. Vaccinia virus is the prototypic member of the Orthopoxvirus genus, which also includes variola and monkeypox virus. In this study, we demonstrate that the carboxylic ionophore nigericin is a potent inhibitor of vaccinia virus replication in several human cell lines. In HeLa cells, we found that the 50% inhibitory concentration of nigericin against vaccinia virus was 7.9 nM, with a selectivity index of 1038. We present data demonstrating that nigericin targets vaccinia virus replication at a post-entry stage. While nigericin moderately inhibits both early vaccinia gene transcription and translation, viral DNA replication and intermediate and late gene expression are severely compromised in the presence of nigericin. Our results demonstrate that nigericin has the potential to be further developed into an effective antiviral to treat poxvirus infections.

  13. Initial incursion of pandemic (H1N1) 2009 influenza A virus into European pigs.

    PubMed

    Welsh, M D; Baird, P M; Guelbenzu-Gonzalo, M P; Hanna, A; Reid, S M; Essen, S; Russell, C; Thomas, S; Barrass, L; McNeilly, F; McKillen, J; Todd, D; Harkin, V; McDowell, S; Choudhury, B; Irvine, R M; Borobia, J; Grant, J; Brown, I H

    2010-05-22

    The initial incursion of pandemic (H1N1) 2009 influenza A virus (pH1N1) into a European pig population is reported. Diagnosis of swine influenza caused by pandemic virus was made during September 2009 following routine submission of samples for differential diagnosis of causative agents of respiratory disease, including influenza A virus. All four pigs (aged six weeks) submitted for investigation from a pig herd of approximately 5000 animals in Northern Ireland, experiencing acute-onset respiratory signs in finishing and growing pigs, were positive by immunofluorescence for influenza A. Follow-up analysis of lung tissue homogenates by real-time RT-PCR confirmed the presence of pH1N1. The virus was subsequently detected on two other premises in Northern Ireland; on one premises, detection followed the pre-export health certification testing of samples from pigs presumed to be subclinically infected as no clinical signs were apparent. None of the premises was linked to another epidemiologically. Sequencing of the haemagglutinin and neuraminidase genes revealed high nucleotide identity (>99.4 per cent) with other pH1N1s isolated from human beings. Genotypic analyses revealed all gene segments to be most closely related to those of contemporary pH1N1 viruses in human beings. It is concluded that all three outbreaks occurred independently, potentially as a result of transmission of the virus from human beings to pigs.

  14. Mission critical: mobilization of essential animal models for Ebola, Nipah, and Machupo virus infections.

    PubMed

    Zumbrun, E E

    2015-01-01

    The reports for Ebola virus Zaire (EBOV), Nipah virus, and Machupo virus (MACV) pathogenesis, in this issue of Veterinary Pathology, are timely considering recent events, both nationally and internationally. EBOV, Nipah virus, and MACV cause highly lethal infections for which no Food and Drug Administration (FDA) licensed vaccines or therapies exist. Not only are there concerns that these agents could be used by those with malicious intent, but shifts in ecological distribution of viral reservoirs due to climate change or globalization could lead to more frequent infections within remote regions than previously seen as well as outbreaks in more populous areas. The current EBOV epidemic shows no sign of abating across 3 West African nations (as of October 2014), including densely populated areas, far outpacing infection rates of previous outbreaks. A limited number of cases have also arisen in the United States and Europe. With few treatment options for these deadly viruses, development of animal models reflective of human disease is paramount to combat these diseases. As an example of this potential, a new treatment compound, ZMapp, that had demonstrated efficacy against EBOV infection in nonhuman primates (NHPs) received an emergency compassionate use exception from the FDA for the treatment of 2 American medical workers infected with EBOV, and they are currently virus free and recovering.

  15. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response.

    PubMed

    Paran, Nir; Lustig, Shlomo; Zvi, Anat; Erez, Noam; Israely, Tomer; Melamed, Sharon; Politi, Boaz; Ben-Nathan, David; Schneider, Paula; Lachmi, Batel; Israeli, Ofir; Stein, Dana; Levin, Reuven; Olshevsky, Udy

    2013-07-10

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.

  16. Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals

    PubMed Central

    Heldt, Frank S.; Frensing, Timo; Pflugmacher, Antje; Gröpler, Robin; Peschel, Britta; Reichl, Udo

    2013-01-01

    Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases. PMID:24278009

  17. Animal models on HTLV-1 and related viruses: what did we learn?

    PubMed Central

    Hajj, Hiba El; Nasr, Rihab; Kfoury, Youmna; Dassouki, Zeina; Nasser, Roudaina; Kchour, Ghada; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali

    2012-01-01

    Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to

  18. The impact of eastern equine encephalitis virus on efforts to recover the endangered whooping crane

    USGS Publications Warehouse

    Carpenter, J.W.; Clark, G.G.; Watts, D.M.; Cooper, J.E.

    1989-01-01

    The whooping crane (Grus americana), although never abundant in North America, became endangered primarily because of habitat modification and destruction. To help recovery, a captive propagation and reintroduction program was initiated at the Patuxent Wildlife Research Center (PWRC) in 1966. However, in 1984, 7 of 39 whooping cranes at PWRC died from infection by eastern equine encephalitis (EEE) virus, an arbovirus that infects a wide variety of indigenous bird species, although mortality is generally restricted to introduced birds. Following identification of the aetiological agent, surveillance and control measures were implemented, including serological monitoring of both wild and captive birds for EEE viral antibody and assay of locally-trapped mosquitoes for virus. In addition, an inactivated EEE virus vaccine developed for use in humans was evaluated in captive whooping cranes. Results so far suggest that the vaccine will afford protection to susceptible birds.

  19. Ectromelia virus encodes an anti-apoptotic protein that regulates cell death.

    PubMed

    Mehta, Ninad; Taylor, John; Quilty, Douglas; Barry, Michele

    2015-01-15

    Apoptosis serves as a powerful defense against damaged or pathogen-infected cells. Since apoptosis is an effective defense against viral infection, many viruses including poxviruses, encode proteins to prevent or delay apoptosis. Here we show that ectromelia virus, the causative agent of mousepox encodes an anti-apoptotic protein EVM025. Here we demonstrate that expression of functional EVM025 is crucial to prevent apoptosis triggered by virus infection and staurosporine. We demonstrate that the expression of EVM025 prevents the conformational activation of the pro-apoptotic proteins Bak and Bax, allowing the maintenance of mitochondrial membrane integrity upon infection with ECTV. Additionally, EVM025 interacted with intracellular Bak. We were able to demonstrate that EVM025 ability to inhibit Bax activation is a function of its ability to inhibit the activity of an upstream BH3 only protein Bim. Collectively, our data indicates that EVM025 inhibits apoptosis by sequestering Bak and inhibiting the activity of Bak and Bax.

  20. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.