Science.gov

Sample records for agents sulfur mustard

  1. Mustard gas or sulfur mustard: an old chemical agent as a new terrorist threat.

    PubMed

    Wattana, Monica; Bey, Tareg

    2009-01-01

    Sulfur mustard is a member of the vesicant class of chemical warfare agents that causes blistering to the skin and mucous membranes. There is no specific antidote, and treatment consists of systematically alleviating symptoms. Historically, sulfur mustard was used extensively in inter-governmental conflicts within the trenches of Belgium and France during World War I and during the Iran-Iraq conflict. Longitudinal studies of exposed victims show that sulfur mustard causes long-term effects leading to high morbidity. Given that only a small amount of sulfur mustard is necessary to potentially cause an enormous number of casualties, disaster-planning protocol necessitates the education and training of first-line healthcare responders in the recognition, decontamination, triage, and treatment of sulfur mustard-exposed victims in a large-scale scenario.

  2. Surface decontamination for blister agents Lewisite, sulfur mustard and agent yellow, a Lewisite and sulfur mustard mixture.

    PubMed

    Stone, Harry; See, David; Smiley, Autumn; Ellingson, Anthony; Schimmoeller, Jessica; Oudejans, Lukas

    2016-08-15

    Sulfur mustard (HD) and Lewisite (L) are blister agents that have a high potential for terrorist use; Agent Yellow (HL) is the eutectic mixture of HD and L. Bench-scale testing was used to determine the residual amount of these chemical warfare agents remaining on three building materials (wood, metal and glass) after application of various decontaminants (household bleach, full strength and dilute; hydrogen peroxide 3% solution; and EasyDECON(®) DF200). All decontaminants reduced the amount of L recovered from coupons. Application of dilute bleach showed little or no difference compared to natural attenuation in the amount of HD recovered from coupons. Full-strength bleach was the most effective of four decontaminants at reducing the amount of HD from coupons. Hydrogen peroxide (3% solution) and DF200 did decrease the amount of HD recovered from coupons more than natural attenuation (except DF200 against HD on metal), but substantial amounts of HD remained on some materials. Toxic HD by-products were generated by hydrogen peroxide treatment. The effectiveness of decontaminants was found to depend on agent, material, and decontaminant. Increased decontaminant reaction time (60min rather than 30min) did not significantly increase effectiveness.

  3. Teratology Studies on Lewisite and Sulfur Mustard Agents: Effects of Sulfur Mustard in Rats and Rabbits

    SciTech Connect

    Hackett, P. L.; Rommereim, R. L.; Burton, F. G.; Buschbom, R. L.; Sasser, L . B.

    1987-09-30

    Sulfur mustard (HD) was administered to rats and rabbits by intragastric intubation. Rats were dosed daily from 6 through 15 days of gestation (dg) with 0. 0.5, 1.0 or 2.0 mg of HD/kg; rabbits were dosed with 0, 0.4, 0.6 or 0.8 mg/kg on 6 through 19 dg. Maternal animals were weighed periodically and, at necropsy, were examined for gross lesions of major organs and reproductive performance; live fetuses were weighed and examined for external, internal and skeletal defects. In rats, reductions in body weights were observed in maternal animals and their female fetuses at the lowest administered dose (0.5 mg/kg), but the incidence of fetal malformations was not increased. In rabbits the highest administered dose (0.8 mg/kg) induced maternal mortality and depressed body weight measures but did not affect fetal development. These results suggest that orally administered HD is not teratogenic in rats and rabbits since fetal effects were observed only at dose levels that induced frank maternal toxicity. Estimations of dose ranges for "no observable effects levels" in rats and rabbits, respectively, were: < 0.5 and < 0.4 mg/kg in maternal animals and < 0.5 and > 0.8 mg/kg in their fetuses.

  4. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Subchronic Toxicity of Sulfur Mustard (HD) In Rats Final Report

    SciTech Connect

    Sasser, L. B.; Miller, R. A.; Kalkwarf, D, R.; Buschbom, R. L.; Cushing, J. A.

    1989-06-30

    Occupational health standards have not been established for sulfur mustard [bis(2- chlorethyl)-sulfide], a strong alkylating agent with known mutagenic properties. Seventytwo Sprague-Dawley rats of each sex, 6-7 weeks old, were divided into six groups (12/group/ sex) and gavaged with either 0, 0.003 , 0.01 , 0.03 , 0.1 or 0.3 mg/kg of sulfur mustard in sesame oil 5 days/week for 13 weeks. No dose-related mortality was observed. A significant decrease (P ( 0.05) in body weight was observed in both sexes of rats only in the 0.3 mg/kg group. Hematological evaluations and clinical chemistry measurements found no consistent treatment-related effects at the doses studied. The only treatment-related lesion associated with gavage exposure upon histopathologic evaluation was epithelial hyperplasia of the forestomach of both sexes at 0.3 mg/kg and males at 0.1 mg/kg. The hyperplastic change was minimal and characterized by cellular disorganization of the basilar layer, an apparent increase in mitotic activity of the basilar epithelial cells, and thickening of the epithelial layer due to the apparent increase in cellularity. The estimated NOEL for HD in this 90-day study is 0.1 mg/kg/day when administered orally.

  5. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Modified Dominant Lethal Study of Sulfur Mustard in Rats Final Report

    SciTech Connect

    Sasser, L. B.; Cushing, J. A.; Kalkwarf, D. R.; Buschbom, R. L.

    1989-05-01

    Occupational health standards have not been established for sulfur mustard (HD) [bis{2-chloroethyl)-sulfide) ' a strong alkylating agent with known mutagenic properties. Little, however, is known about the mutagenic activity of HD in mammalian species and data regarding the dominant lethal effects of HD are ambiguous. The purpose of this study was to determine the dominant lethal effect in male and female rats orally exposed to HD. The study was conducted in two phases; a female dominant lethal phase and a male dominant lethal phase. Sprague-Dawley rats of each sex were administered 0.08, 0.20, or 0.50 mg/kg HD in sesame oil 5 days/week for 10 weeks. For the female phase, treated or untreated males were mated with treated females and their fetuses were evaluated at approximately 14 days after copulation. For the male dominant lethal phase, treated males cohabited with untreated femal (during 5 days of each week for 10 weeks) and females were sacrificed for fetal evaluation 14 days after the midweek of cohabitation during each of the 10 weeks. The appearance and behavior of the rats were unremarkable throughout the experiment and there were no treatment-related deaths. Growth rates were reduced in both female and male rats treated with 0.50 mg/kg HD. Indicators of reproductive performance did not demonstrate significant female dominant lethal effects, although significant male dominant lethal effects were observed at 2 and 3 week post-exposure. These effects included increases of early fetal resorptions and preimplantation losses and decreases of total live embryo implants. These effects were most consistently observed at a dose of 0.50 mg/kg, but frequently occurred at the lower doses. Although no treatment-related effects on male reproductive organ weights or sperm motility were found, a significant increase in the percentage of abnormal sperm was detected in males exposed to 0. 50 mg/kg HD. The timing of these effects is consistent with an effect during the

  6. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Mutagenicity of Sulfur Mustard in the Salmonella Histidine Reversion Assay Final Report

    SciTech Connect

    Stewart, D. L.; Sass, E. J.; Fritz, L. K.; Sasser, L. B.

    1989-07-31

    The mutagenic potential of bis 2-chloroethyl sulfide (HD} a bifunctional sulfur mustard was evaluated in the standard plate incorporation version and the preincubation modification of the Salmonella/microsomal assay with tester strains TA97, TA98, TA100 and TA102, with and without 59 activation. HD-induced point mutations in strain TA102 and frameshift mutations in TA97 but showed little or no mutagenicity against strains TA98 and TA100. Extensive HD-induced cell killing was observed with the excision repair deficient strains (TA100, TA98 and TA97) but not with strain TA102, which is wild-activation by Aroc1or induced rat liver microsomes (S9).

  7. Screening hydrolysis products of sulfur mustard agents by high-performance liquid chromatography with inductively coupled plasma mass spectrometry detection.

    PubMed

    Kroening, Karolin K; Richardson, Douglas D; Afton, Scott; Caruso, Joseph A

    2009-04-01

    Sulfur mustard (HD), bis(2-chloroethyl)sulfide, is one of a class of mustard agents which are chemical warfare agents. The main chemical warfare hydrolysis degradation products of sulfur mustards are: thiodiglycol, bis(2-hydroxyethylthio)methane, 1,2-bis(2-hydroxyethylthio)ethane, 1,3-bis(2-hydroxyethylthio)propane, and 1,4-bis(2-hydroxyethylthio)butane. The aim of this study is to identify these five hydrolysis degradation products utilizing reversed-phase high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS) for element-specific sulfur detection using a collision/reaction cell and electrospray ionization mass spectrometry to confirm the identification. To date, this is the first study utilizing ICP-MS with (32)S element-specific detection for the analysis of vesicant chemical warfare agent degradation products.

  8. Teratology Studies on Lewisite and Sulfur Mustard Agents: Effects of Sulfur Mustard in Rats and Rabbits - Part 2, Appendices

    SciTech Connect

    Hackett, P L; Rommereim, R L; Burton, F G; Buschbom, R L; Sasser, L B

    1987-09-30

    Sulfur mustard (HD) was administered to rats and rabbits by intragastric intubation. Rats were dosed daily from 6 through 15 days of gestation (dg) with o. 0.5, 1 .0 or 2.0 mg of HD/kg; rabbits were dosed with 0, 0.4, 0.6 or 0.8 mg/kg on 6 through 19 dg. Maternal animals were weighed periodically and, at necropsy, were examined for gross lesions of major organs and reproductive performance; live fetuses were weighed and examined for external, internal and skeletal defects. In rats, reductions in body weights were observed in maternal animals and their female fetuses at the lowest administered dose (0.5 mg/kg), but the incidence of fetal malformations was not increased. In rabbits the highest administered dose (0.8 mg/kg) induced maternal mortality and depressed body weight measures but did not affect fetal development These results suggest that orally administered HD is not teratogenic in rats • and rabbits since fetal effects were obs~rved only at dose levels that induced frank maternal toxicity. Estimations of dose ranges for •no observable effects levers· in rats and rabbits, respectively, were: < 0.5 and < 0.4 mg/kg in maternal animals and < 0.5 and > 0.8 mg/kg in their fetuses.

  9. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed

    2016-07-01

    In this study, zinc oxide nanoparticles (ZnO NPs) have been surveyed to decontaminate the chloroethyl phenyl sulfide as a sulfur mustard agent simulant. Prior to the reaction, ZnO NPs were successfully prepared through sol-gel method in the absence and presence of polyvinyl alcohol (PVA). PVA was utilized as a capping agent to control the agglomeration of the nanoparticles. The formation, morphology, elemental component, and crystalline size of nanoscale ZnO were certified and characterized by SEM/EDX, XRD, and FT-IR techniques. The decontamination (adsorption and destruction) was tracked by the GC-FID analysis, in which the effects of polarity of the media, such as isopropanol, acetone and n-hexane, reaction time intervals from 1 up to 18 h, and different temperatures, including 25, 35, 45, and 55 °C, on the catalytic/decontaminative capability of the surface of ZnO NPs/PVA were investigated and discussed, respectively. Results demonstrated that maximum decontamination (100 %) occurred in n-hexane solvent at 55 °C after 1 h. On the other hand, the obtained results for the acetone and isopropanol solvents were lower than expected. GC-MS chromatograms confirmed the formation of hydroxyl ethyl phenyl sulfide and phenyl vinyl sulfide as the destruction reaction products. Furthermore, these chromatograms proved the role of hydrolysis and elimination mechanisms on the catalyst considering its surface Bronsted and Lewis acid sites. A non-polar solvent aids material transfer to the reactive surface acid sites without blocking these sites.

  10. Neutralization and biodegradation of sulfur mustard. Final report, October 1995-June 1996

    SciTech Connect

    Harvey, S.P.; Szafraniec, L.L.; Beaudry, W.T.; Earley, J.T.; Irvine, R.L.

    1997-02-01

    The chemical warfare agent sulfur mustard was hydrolyzed to products that were biologically mineralized in sequencing batch reactors seeded with activated sludge. Greater than 90% carbon removal was achieved using laboratory scale bioreactors processing hydrolyzed munitions grade sulfur mustard obtained directly from the U.S. Chemical Stockpile. The bioreactor effluent was nontoxic and contained no detectable sulfur mustard or priority pollutants. The sulfur mustard hydrolysis biodegradation process has potential application to the congressionally mandated disposal of sulfur mustard stockpiles.

  11. Toxicology and pharmacology of the chemical warfare agent sulfur mustard - a review. Final technical report, 29 September 1994-31 January 1995

    SciTech Connect

    Dacre, J.C.; Beers, R.; Goldman, M.

    1995-04-05

    Sulfur mustard is a poisonous chemical agent which exerts a local action on the eyes, skin and respiratory tissue with subsequent systemic action on the nervous, cardiac, and digestive and endocrine systems in man and laboratory animals causing lacrimation, malaise, anorexia, salivation, respiratory distress, vomiting, hyperexcitability, cardiac distress, and death. Sulfur mustard is a cell poison which causes disumption and impairment of a variety of cellular activities which are dependent upon a very specific integral relationship. These cytotoxic effects are manifested in widespread metabolic disturbances whose variable characteristics are observed in enzymatic deficiencies, vesicant action, abnormal mitotic activity and cell division, bone marrow disruption, disturbances in hematopoietic activity and systemic poisoning. Indeed, mustard gas readily combines with various components of the cell such as amino acids, amines and proteins. Sulfur mustard has been shown to be mainly a lung carcinogen in various test animal species; this effect is highly dependent of size of the dose and the route of exposure. In the human, there is evidence of cancers of the respiratory tract in men exposed to mustard gas. Mutagenicity of sulfur mustard, due to the strong alkylating activity, has been reported to occur in many different species of animals, plants, bacteria, and fungi. There is no strong evidence that sulfur mustard is a teratogen but much further research, with particular emphasis on maternal and fetal toxicity, is needed and recommended.

  12. Locus-specific microemulsion catalysts for sulfur mustard (HD) chemical warfare agent decontamination.

    PubMed

    Fallis, Ian A; Griffiths, Peter C; Cosgrove, Terence; Dreiss, Cecile A; Govan, Norman; Heenan, Richard K; Holden, Ian; Jenkins, Robert L; Mitchell, Stephen J; Notman, Stuart; Platts, Jamie A; Riches, James; Tatchell, Thomas

    2009-07-22

    The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin-echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese-Schiff base catalysts at the oil droplet-water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol-water partition coefficient (K(ow)), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t(1/2) (HD) approximately 18 s, (2-chloroethyl phenyl sulfide, C(6)H(5)SCH(2)CH(2)Cl) approximately 15 s, (thiodiglycol, S(CH(2)CH(2)OH)(2)) approximately 19 s {20 degrees C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate.

  13. Wound Healing of Cutaneous Sulfur Mustard Injuries

    PubMed Central

    Graham, John S.; Chilcott, Robert P.; Rice, Paul; Milner, Stephen M.; Hurst, Charles G.; Maliner, Beverly I.

    2005-01-01

    Sulfur mustard is an alkylating chemical warfare agent that primarily affects the eyes, skin, and airways. Sulfur mustard injuries can take several months to heal, necessitate lengthy hospitalizations, and result in significant cosmetic and/or functional deficits. Historically, blister aspiration and/or deroofing (epidermal removal), physical debridement, irrigation, topical antibiotics, and sterile dressings have been the main courses of action in the medical management of cutaneous sulfur mustard injuries. Current treatment strategy consists of symptomatic management and is designed to relieve symptoms, prevent infections, and promote healing. There are currently no standardized or optimized methods of casualty management that prevent or minimize deficits and provide for speedy wound healing. Several laboratories are actively searching for improved therapies for cutaneous vesicant injury, with the aim of returning damaged skin to optimal appearance and normal function in the shortest time. Improved treatment will result in a better cosmetic and functional outcome for the patient, and will enable the casualty to return to normal activities sooner. This editorial gives brief overviews of sulfur mustard use, its toxicity, concepts for medical countermeasures, current treatments, and strategies for the development of improved therapies. PMID:16921406

  14. Effects of Exposure to Sulfur Mustard on Speech Aerodynamics

    ERIC Educational Resources Information Center

    Heydari, Fatemeh; Ghanei, Mostafa

    2011-01-01

    Sulfur mustard is an alkylating agent with highly cytotoxic properties even at low exposure. It was used widely against both military and civilian population by Iraqi forces in the Iraq-Iran war (1983-1988). Although various aspects of mustard gas effects on patients with chemical injury have been relatively well characterized, its effects on…

  15. Development and Application of Acute Exposure Guideline Levels (AEGLs) for Chemical Warfare Nerve and Sulfur Mustard Agents.

    SciTech Connect

    Watson, Annetta Paule; Opresko, Dennis M; Young, Robert A; Hauschild, Veronique

    2006-01-01

    Acute exposure guideline levels (AEGLs) have been developed for the chemical warfare agents GB, GA, GD, GF, VX, and sulfur mustard. These AEGLs were approved by the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances after Federal Register publication and comment, and judged as scientifically valid by the National Research Council Committee on Toxicology Subcommittee on AEGLs. AEGLs represent general public exposure limits for durations ranging from 10 min to 8 h, and for three levels of severity (AEGL-1, AEGL-2, AEGL-3). Mild effects are possible at concentrations greater than AEGL-1, while life-threatening effects are expected at concentrations greater than AEGL-3. AEGLs can be applied to various civilian and national defense purposes, including evacuation and shelter-in-place protocols, reentry levels, protective clothing specifications, and analytical monitoring requirements. This report documents development and derivation of AEGL values for six key chemical warfare agents, and makes recommendations for their application to various potential exposure scenarios.

  16. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates.

    PubMed

    Jung, H; Lee, H W

    2014-05-30

    We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event.

  17. Molecular Strategies Against Sulfur Mustard Toxicity

    DTIC Science & Technology

    2010-04-01

    meiosis . Our current understanding of epigenetic regulation of gene expression involves basically two classes of molecular mechanisms: histone...Molecular Strategies Against Sulfur Mustard Toxicity 30 - 4 RTO-MP-HFM-182 meiosis . Our current understanding of epigenetic gene regulation

  18. Putative roles of inflammation in the dermatopathology or sulfur mustard

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.

    1993-12-31

    Sulfur mustard (2,2`-dichlorodiethyl sulfide), a radiomimetic agent with mutagenic (Cappizzi et al., 1973; Fox and Scott, 1983), cytotoxic (Wheeler, 1962; Papirmeister and Davison, 1965), and vesicant (Anslow and Houck, 1946; Renshaw, 1946) properties, is also a chemical-warfare blistering agent with no known antidote. Sulfur mustard predominantly effects exposed epithelial tissues of the skin, the eye, and the respiratory tract, although higher doses can produce systemic toxicity (reviewed by Papirmeister et al., 1991). The severity of sulfur mustard toxicity is dose dependent, causing irritation, edema, necrosis and ulceration; characteristic symptoms are unique to the site of exposure, e.g., vesication, conjunctivitis, bronchopneumonia (reviewed by Papirmeister et al., 1991). The basic histopathology of mustard-induced cutaneous lesions has been reviewed by Papirmeister et al. (1985, 1991) and includes degeneration of epidermal cells, especially in the basal layer, followed by the formation of vesicles (and, in man, bullae) that have been variously characterized as intraepidermal or subcorneal but that appear in most cases to result from cleavage at the dermal-epidermal junction. However, despite general agreement concerning the morphologic changes caused by mustard and despite more than 50 years of research, the pathogenesis of mustard injury is still incompletely understood.

  19. Sulfur Mustard Toxicity Following Dermal Exposure

    PubMed Central

    Paromov, Victor; Suntres, Zacharias; Smith, Milton; Stone, William L.

    2007-01-01

    Objective: Sulfur mustard (bis-2-(chloroethyl) sulfide) is a chemical warfare agent (military code: HD) causing extensive skin injury. The mechanisms underlying HD-induced skin damage are not fully elucidated. This review will critically evaluate the evidence showing that oxidative stress is an important factor in HD skin toxicity. Oxidative stress results when the production of reactive oxygen (ROS) and/or reactive nitrogen oxide species (RNOS) exceeds the capacity of antioxidant defense mechanisms. Methods: This review will discuss the role of oxidative stress in the pathophysiology of HD skin toxicity in both in vivo and in vitro model systems with emphasis on the limitations of the various model systems. Evidence supporting the therapeutic potential of antioxidants and antioxidant liposomes will be evaluated. Antioxidant liposomes are effective vehicles for delivering both lipophilic (incorporated into the lipid bilayers) and water-soluble (encapsulated in the aqueous inner-spaces) antioxidants to skin. The molecular mechanisms interconnecting oxidative stress to HD skin toxicity are also detailed. Results: DNA repair and inflammation, in association with oxidative stress, induce intracellular events leading to apoptosis or to a programmable form of necrosis. The free radical, nitric oxide (NO), is of considerable interest with respect to the mechanisms of HD toxicity. NO signaling pathways are important in modulating inflammation, cell death, and wound healing in skin cells. Conclusions: Potential future directions are summarized with emphasis on a systems biology approach to studying sulfur mustard toxicity to skin as well as the newly emerging area of redox proteomics. PMID:18091984

  20. Development of reactive topical skin protectants against sulfur mustard and nerve agents.

    PubMed

    Koper, O; Lucas, E; Klabunde, K J

    1999-12-01

    The potential for highly reactive nanoparticles (RNP) to absorb destructively, i.e. to neutralize highly toxic substances such as the warfare agents GA, GB, HD and VX, has been demonstrated in the laboratory. Reactive nanoparticles represent a new class of nanoscale particles of metals and metal oxides that differ from other nanoparticles in reactivity and crystalline morphology. The potential for incorporating RNP into a protective barrier skin cream also has been demonstrated. Preliminary studies indicate that RNP are physically and chemically compatible with a base cream provided by the Army Medical Research Office and, importantly, remain reactive with chemical agents while promising to be compatible with skin contact.

  1. Cytometric analysis of DNA changes induced by sulfur mustard

    SciTech Connect

    Smith, W.J.; Sanders, K.M.; Ruddle, S.E.; Gross, C.L.

    1993-05-13

    Sulfur mustard is an alkylating agent which causes severe, potentially debilitating blisters following cutaneous exposure. Its mechanism of pathogenesis is unknown and no antidote exists to prevent its pathology. The biochemical basis of sulfur mustard's vesicating activity has been hypothesized to be a cascade of events beginning with alkylation of DNA. Using human cells in culture, we have assessed the effects of sulfur mustard on cell cycle activity using flow cytometry with propidium iodide. Two distinct patterns emerged, a Gl/S interface block at concentrations equivalent to vesicating doses (>50-micronM) and a G2 block at 10-fold lower concentrations. In addition, noticeable increases in amount of dye uptake were observed at 4 and 24 hours after sulfur mustard exposure. These increases are believed to be related to DNA repair activities and can be prevented by treatment of the cells with niacinamide, which inhibits DNA repair. Other drugs which provide alternate alkylating sites or inhibit cell cycle progression were shown to lower the cytotoxicity of sulfur mustard and to protect against its direct DNA damaging effects.

  2. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Genetic Toxicity of Sulfur Mustard (HD) in Chinese Hamster Ovary Cells Final Report

    SciTech Connect

    Jostes, Jr., R. F.; Sasser, L. B.; Rausch, R. J.

    1989-05-01

    The cytotoxic, clastogenic and mutagenic effects of sulfur nustard in Chinese hamster ovary cells are described in this reoort. The cytotoxicity data indicate that micromolar amounts of HC are highly toxic in microrolar amounts. Chromosone aberration frequencies increased in a dose-dependent manner over a dose range of 0. 5 to 1.0 {micro}m and SCE increased in a dose-dependent fashion in the dose range of 0.0625 to 0.25 {micro}M. Mutation induction at the HGPRT locus was sporadic, but the majority of the exoosures resulted in mutation frequencies which were 1.2 to 4.3 fold higher than the spontaneous frequencies.

  3. Comparison of latex body paint with wetted gauze wipes for sampling the chemical warfare agents VX and sulfur mustard from common indoor surfaces.

    PubMed

    Hernon-Kenny, Laura A; Behringer, Deborah L; Crenshaw, Michael D

    2016-05-01

    Comparison of solvent-wetted gauze with body paint, a peelable surface sampling media, for the sampling of the chemical warfare agents VX and sulfur mustard from nine surfaces was performed. The nine surfaces sampled are those typical of interior public venues and include smooth, rough, porous, and non-porous surfaces. Overall, solvent-wetted gauze (wipes) performed better for the recovery of VX from non-porous surfaces while body paint (BP) performed better for the porous surfaces. The average percent VX recoveries using wipes and BP, respectively, are: finished wood flooring, 86.2%, 71.4%; escalator handrail, 47.3%, 26.7%; stainless steel, 80.5%, 56.1%; glazed ceramic tile, 81.8%, 44.9%; ceiling tile, 1.77%, 13.1%; painted drywall 7.83%, 21.1%; smooth cement, 0.64%, 10.3%; upholstery fabric, 24.6%, 23.1%; unfinished wood flooring, 9.37%, 13.1%. Solvent-wetted gauze performed better for the recovery of sulfur mustard from three of the relatively non-porous surfaces while body paint performed better for the more porous surfaces. The average percent sulfur mustard recoveries using wipes and BP, respectively, are: finished wood flooring, 30.2%, 2.97%; escalator handrail, 4.40%, 4.09%; stainless steel, 21.2%, 3.30%; glazed ceramic tile, 49.7%, 16.7%; ceiling tile, 0.33%, 11.1%; painted drywall 2.05%, 10.6%; smooth cement, 1.20%, 35.2%; upholstery fabric, 7.63%, 6.03%; unfinished wood flooring, 0.90%, 1.74%.

  4. Medical Management of Cutaneous Sulfur Mustard Injuries

    DTIC Science & Technology

    2009-01-01

    Three of the four sites on each animal were xposed to undiluted liquid sulfur mustard for 8min to produce superficial dermal njuries. The fourth site...previously xposed to HD. If the primary aim of using this technology on a atient is to address hyperpigmentation by applying autologous elanocytes (along with

  5. Detoxication of sulfur half-mustards by nucleophilic scavengers: robust activity of thiopurines

    PubMed Central

    Liu, Jinyun; Powell, K. Leslie; Thames, Howard D.; MacLeod, Michael C.

    2010-01-01

    Sulfur mustard (bis-(2-chloroethyl)sulfide) has been used in chemical warfare since World War I, and is well known as an acutely toxic vesicant. It has been implicated as a carcinogen after chronic low-level exposure, and is known to form inter-strand crosslinks in DNA. Sulfur and nitrogen mustards are currently of interest as potential chemical threat agents for terrorists due to ease of synthesis. Sulfur mustard and monofunctional analogs (half-mustards, 2-[chloroethyl] alkyl sulfides) react as electrophiles, damaging cellular macromolecules, and thus are potentially subject to scavenging by nucleophilic agents. We have determined rate constants for the reaction of four purine derivatives that contain nucleophilic thiol moieties with several sulfur-half-mustards. Three of these compounds, 2,6-dithiopurine, 2,6-dithiouric acid, and 9-methyl-6-mercaptopurine, exhibit facile reaction with the electrophilic mustard compounds. At near neutral pH, these thiopurines are much better nucleophilic scavengers of mustard electrophiles than other low molecular weight thiols such as N-acetyl cysteine and glutathione. Progress curves calculated by numerical integration techniques indicate that equimolar concentrations of thiopurine provide significant reductions in the overall exposure to the episulfonium ions, which are the major reactive, electrophiles produced when sulfur mustards are dissolved in aqueous solution. PMID:20050632

  6. Detoxication of sulfur half-mustards by nucleophilic scavengers: robust activity of thiopurines.

    PubMed

    Liu, Jinyun; Powell, K Leslie; Thames, Howard D; MacLeod, Michael C

    2010-03-15

    Sulfur mustard (bis-(2-chloroethyl)sulfide) has been used in chemical warfare since World War I and is well known as an acutely toxic vesicant. It has been implicated as a carcinogen after chronic low-level exposure and is known to form interstrand cross-links in DNA. Sulfur and nitrogen mustards are currently of interest as potential chemical threat agents for terrorists because of ease of synthesis. Sulfur mustard and monofunctional analogues (half-mustards, 2-[chloroethyl] alkyl sulfides) react as electrophiles, damaging cellular macromolecules, and thus are potentially subject to scavenging by nucleophilic agents. We have determined rate constants for the reaction of four purine derivatives that contain nucleophilic thiol moieties with several sulfur-half-mustards. Three of these compounds, 2,6-dithiopurine, 2,6-dithiouric acid, and 9-methyl-6-mercaptopurine, exhibit facile reaction with the electrophilic mustard compounds. At near neutral pH, these thiopurines are much better nucleophilic scavengers of mustard electrophiles than other low molecular weight thiols such as N-acetyl cysteine and glutathione. Progress curves calculated by numerical integration techniques indicate that equimolar concentrations of thiopurine provide significant reductions in the overall exposure to the episulfonium ions, which are the major reactive, electrophiles produced when sulfur mustards are dissolved in aqueous solution.

  7. Neutralization and Biodegradation of Sulfur Mustard.

    DTIC Science & Technology

    1997-02-01

    obtained from activated sludge (Back River Wastewater Treatment Plant, Baltimore, MD). Initial mixed liquor suspended solids (MLSS) levels were...BIODEGRADATION OF SULFUR MUSTARD Steven P. Harvey Linda L. Szafraniec William T. Beaudry RESEARCH AND TECHNOLOGY DIRECTORATE James T. Earley SBR TECHNOLOGIES, INC... SBR Technologies, Inc.); and Irvine, Robert L. (University of Notre Dame) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  8. Capsaicinoids, Chloropicrin and Sulfur Mustard: Possibilities for Exposure Biomarkers

    PubMed Central

    Pesonen, Maija; Vähäkangas, Kirsi; Halme, Mia; Vanninen, Paula; Seulanto, Heikki; Hemmilä, Matti; Pasanen, Markku; Kuitunen, Tapio

    2010-01-01

    Incapacitating and irritating agents produce temporary disability persisting for hours to days after the exposure. One can be exposed to these agents occupationally in industrial or other working environments. Also general public can be exposed in special circumstances, like industrial accidents or riots. Incapacitating and irritating agents discussed in this review are chloropicrin and capsaicinoids. In addition, we include sulfur mustard, which is an old chemical warfare agent and known to cause severe long-lasting injuries or even death. Chloropicrin that was used as a warfare agent in the World War I is currently used mainly as a pesticide. Capsaicinoids, components of hot pepper plants, are used by police and other law enforcement personnel as riot control agents. Toxicity of these chemicals is associated particularly with the respiratory tract, eyes, and skin. Their acute effects are relatively well known but the knowledge of putative long-term effects is almost non-existent. Also, mechanisms of effects at cellular level are not fully understood. There is a need for further research to get better idea of health risks, particularly of long-term and low-level exposures to these chemicals. For this, exposure biomarkers are essential. Validated exposure biomarkers for capsaicinoids, chloropicrin, and sulfur mustard do not exist so far. Metabolites and macromolecular adducts have been suggested biomarkers for sulfur mustard and these can already be measured qualitatively, but quantitative biomarkers await further development and validation. The purpose of this review is, based on the existing mechanistic and toxicokinetic information, to shed light on the possibilities for developing biomarkers for exposure biomonitoring of these compounds. It is also of interest to find ideas for early effect biomarkers considering the need for studies on subchronic and chronic toxicity. PMID:21833179

  9. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  10. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard.

    PubMed

    Chang, Yoke-Chen; Wang, James D; Hahn, Rita A; Gordon, Marion K; Joseph, Laurie B; Heck, Diane E; Heindel, Ned D; Young, Sherri C; Sinko, Patrick J; Casillas, Robert P; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.

  11. Therapeutic Potential of a Non-Steroidal Bifunctional Anti-Inflammatory and Anti-Cholinergic Agent against Skin Injury Induced by Sulfur Mustard

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-01-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551

  12. Multiphoton imaging the disruptive nature of sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J.; Braue, Catherine R.; Dillman, James F.

    2005-03-01

    Sulfur mustard [bis-2-chloroethyl sulfide] is a vesicating agent first used as a weapon of war in WWI. It causes debilitating blisters at the epidermal-dermal junction and involves molecules that are also disrupted by junctional epidermolysis bullosa (JEB) and other blistering skin diseases. Despite its recurring use in global conflicts, there is still no completely effective treatment. We have shown by imaging human keratinocytes in cell culture and in intact epidermal tissues that the basal cells of skin contain well-organized molecules (keratins K5/K14, α6β4 integrin, laminin 5 and α3β1 integrin) that are early targets of sulfur mustard. Disruption and collapse of these molecules is coincident with nuclear displacement, loss of functional asymmetry, and loss of polarized mobility. The progression of this pathology precedes basal cell detachment by 8-24 h, a time equivalent to the "clinical latent phase" that defines the extant period between agent exposure and vesication. Our images indicate that disruption of adhesion-complex molecules also impairs cytoskeletal proteins and the integration of structures required for signal transduction and tissue repair. We have recently developed an optical system to test this hypothesis, i.e., to determine whether and how the early disruption of target molecules alters signal transduction. This environmentally controlled on-line system provides a nexus for real-time correlation of imaged lesions with DNA microarray analysis, and for using multiphoton microscopy to facilitate development of more effective treatment strategies.

  13. Assay techniques for detection of exposure to sulfur mustard, cholinesterase inhibitors, sarin, soman, GF, and cyanide. Technical bulletin

    SciTech Connect

    1996-05-01

    This technical bulletin provides analytical techniques to identify toxic chemical agents in urine or blood samples. It is intended to provide the clinician with laboratory tests to detect exposure to sulfur mustard, cholinesterase inhibitors, sarin, soman, GF, and cyanide.

  14. Evaporation Rates of Chemical Warfare Agents Using 5-CM Wind Tunnels I. CASARM Sulfur Mustard (HD) from Glass

    DTIC Science & Technology

    2008-10-01

    1.5 in. diameter circle) with the droplet of agent on it was placed on the piston and inserted into the wind tunnel. The humidified , temperature...n/i m’. extraction time ( ultrasonicate ): n/a min concentration of agent in extraction liquid nit ug nil. recovered mass: ny’ii mg Remarks drop

  15. A review on delayed toxic effects of sulfur mustard in Iranian veterans

    PubMed Central

    2012-01-01

    Iranian soldiers were attacked with chemical bombs, rockets and artillery shells 387 times during the 8-years war by Iraq (1980–1988). More than 1,000 tons of sulfur mustard gas was used in the battlefields by the Iraqis against Iranian people. A high rate of morbidities occurred as the result of these attacks. This study aimed to evaluate the delayed toxic effects of sulfur mustard gas on Iranian victims. During a systematic search, a total of 193 (109 more relevant to the main aim) articles on sulfur mustard gas were reviewed using known international and national databases. No special evaluation was conducted on the quality of the articles and their publication in accredited journals was considered sufficient. High rate of morbidities as the result of chemical attacks by sulfur mustard among Iranian people occurred. Iranian researchers found a numerous late complications among the victims which we be listed as wide range of respiratory, ocular, dermatological, psychological, hematological, immunological, gastrointestinal and endocrine complications, all influenced the quality of life of exposed victims. The mortality rate due to this agent was 3%. Although, mortality rate induced by sulfur mustard among Iranian people was low, variety and chronicity of toxic effects and complications of this chemical agent were dramatic. PMID:23351810

  16. Keratinocyte Spray Technology for the Improved Healing of Cutaneous Sulfur Mustard Injuries

    DTIC Science & Technology

    2008-07-01

    of allogeneic keratinocytes in suspension will improve epidermal wound healing of vesicating burns induced by the chemical warfare agent sulfur...improve epidermal wound healing of vesicating burns induced by the chemical warfare agent sulfur mustard (bis (2-chloroethyl) sulfide; HD). The...experiment is being conducted in two Phases. Phase I is a dose ranging study to determine the dose regimen needed to induce a deep dermal/full thickness

  17. TNF-alpha expression patterns as potential molecular biomarker for human skin cells exposed to vesicant chemical warfare agents: sulfur mustard (HD) and Lewisite (L).

    PubMed

    Arroyo, C M; Burman, D L; Kahler, D W; Nelson, M R; Corun, C M; Guzman, J J; Smith, M A; Purcell, E D; Hackley, B E; Soni, S-D; Broomfield, C A

    2004-11-01

    Studies were conducted to examine the effect of two vesicant chemical warfare agents (VCWA), one of them an arsenical, on cytokine gene expression in normal human epidermal keratinocyte (NHEK) cells. We tested 2,2'-dichlorethylsulfide (sulfur mustard, military designation HD) and 2,chlorovinyldichloroarsine (Lewisite, military designation L), which have significant differences in their chemical, physical, and toxicological properties. Human tumor necrosis factor-alpha (hTNF-alpha) cytokine was detected by using the enzyme-linked immunosorbent assay, a protein multiplex immunoassay, Luminex100, and reverse transcription-polymerase chain reaction (RT-PCR). The messenger RNA expression of hTNF-alpha was determined to provide a semi-quantitative analysis. HD-stimulated NHEK induced secretion of hTNF-alpha in a dose-dependent manner. Dose response effect of Lewisite decreased hTNF-alpha levels. Time-response data indicated that the maximum response for HD occurred at 24 h with an associated cytotoxic concentration of 10(-4) mol/L. NHEK cells stimulated with 10(-4) mol/L HD for 24 h at 37 degrees C increased detectable levels of hTNF-alpha from 5 to 28 ng/ml at an index of cell viability between 85 to 93% as detected by Luminex100. Our results indicated that the increased levels of hTNF-alpha by HD are dependent on the primary cultures, cell densities, and chemical properties of the stimulation. Lewisite under the same conditions as HD caused a reduction of hTNF-alpha from control levels of 1.5 ng/ml to 0.3 ng/ml after stimulation (10(-4) mol/L), with an index of cell viability of reverse similar 34%. We analyzed the transcriptional of hTNF-alpha gene and found that HD (10(-6) to 10(-4) mol/L) activates hTNF-alpha gene in cultured NHEK and that L at 10(-6) to 10(-4) mol/L markedly reduces hTNF-alpha gene. We conclude that the pro-inflammatory mediator, hTNF-alpha, could be a potential biomarker for differentiating between exposure of HD or L.

  18. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Two-Generation Reproduction Study of Lewisite in Rats Final Report

    SciTech Connect

    Sasser, L. B.; Cushing, J. A.; Kalkwarf, D. R.; Mellick, P. W.; Buschbom, R. L.

    1989-07-15

    Occupational health standards have not been established for Lewisite [bis(2-chlorethyl)arsine], a potent toxic vesicant which reacts with the sulfhydryl groups of proteins through its arsenic group. The purposes of this study were to determine the reproductive consequences and dose~response of continuing Lewisite exposure of parental males and females and their offspring in a 42-week two-generation study. Solutions of Lewisite were prepared for administration by diluting the neat agent with sesame oil. Rats were administered Lewisite (0, 0.10, 0.25 or 0.60 mg/kg/day for 5 days a week) via intragastric intubation prior to mating, during mating and after mating until the birth of their offspring. The dams continued to receive Lewisite during lactation. At weaning, male and female offspring of each group were selected to continue on the study; rece1v1ng Lewisite during adolescence, mating and throughout gestation. Again, the dams continued to receive Lewisite until weaning of the offspring. Lewisite had no adverse effect on reproduction performance, fertility or reproductive organ weights of male or female rats through two consecutive generations. No adverse effect to offspring were attributed to Lewisite exposure. Minor changes in growth was the only maternal effect observed. Lewisite exposure of parental rats caused no gross or microscopic lesions in testes, epididymis, prostrate, seminal vesicles, ovaries, uterus or vagina. Severe inflammation of the lung was observed at necropsy in cases in which Lewisite gained access to the respiratory system from accidental dosing or reflux and aspiration; this usually caused early death of the animal. The NOEL for reproductive effects in this study was greater than 0.60 mg/kg/day.

  19. Effect of sulfur mustard exposure on protease activity in human peripheral blood lymphocytes. (Reannouncement with new availability information)

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-12-31

    Sulfur mustard is a chemical warfare blistering agent for which neither the mechanism of action nor an antidote is known. Papirmeister et al. (1985) have postulated a biochemical hypothesis for mustard-induced cutaneous injury involving a sequelae of DNA alkylation, metabolic disruption and activation of protease. Human peripheral blood lymphocytes in cell cultures were employed as an in vitro model for alkylating agent toxicity. A chromogenic peptide substrate assay was used for detection of protease in lymphocytes treated with sulfur mustard or chloroethyl sulfide. Exposure of human peripheral blood lymphocytes from normal donors to these alkylating agents resulted in an increase in cell associated protease activity. This increase in protease activity may contribute to the pathology or act as an indicator to predict methods of therapeutic intervention for sulfur mustard toxicity.

  20. Determination and prevention of cytotoxic effects induced in human lymphocytes by the alkylating agent 2,2`-dichlorodiethyl sulfide (sulfur mustard, HD). (Reannouncement with new availability information)

    SciTech Connect

    Meier, H.L.; Johnson, J.B.

    1992-12-31

    2,2`-Dichlorodiethyl sulfide (sulfur mustard), HD, 1,1`thiobis(2-chloroethane) is a potent vesicant which can cause severe lesions to skin, lung, and eyes. There is no convenient in vitro or in vivo method(s) to objectively measure the damage induced by HD; therefore, a simple in vitro method was developed using human peripheral lymphocytes to study HD-induced cytotoxicity. The cytotoxicity of HD was measured using dye exclusion as an indicator of human lymphocyte viability. Exposure to HD resulted in both a time- and a concentration-dependent cytotoxic effect on human lymphocytes. Using this in vitro assay, the effectiveness of various therapeutics (niacin, niacinamide, and 3-aminobenzamide) in preventing HD-induced cytotoxicity was studied. Niacinamide and 3-aminobenzamide prevented the cytotoxic effects of HD for up to 2 days.

  1. Surface Decontamination of Blister Agents Lewisite, Sulfur ...

    EPA Pesticide Factsheets

    Journal Article Sulfur mustard (HD) and Lewisite (L) are blister agents that have a high potential for terrorist use. Agent Yellow (HL) is the eutectic mixture of HD and L. Bench-scale testing was used to determine the residual amount of these chemical warfare agents remaining on three building materials coupons (wood, metal and glass) after application of various decontaminants (household bleach, full strength and dilute; hydrogen peroxide 3 % solution; and EasyDECON® DF200).

  2. Ocular Effects of Sulfur Mustard and Therapeutic Approaches: A Review.

    PubMed

    Panahi, Yunes; Rajaee, Seyyed Mahdi; Sahebkar, Amirhossein

    2017-01-20

    Sulfur mustard (SM) is a strong blistering, highly reactive, lipophilic chemical war agent that causes injury in different organs including the skin, eyes and respiratory tract. The Eyes are especially susceptible to the consequences of SM poisoning because of the aqueous and mucosal nature of conjunctiva and cornea. DNA alkylation and depletion of glutathione, are the most important mechanisms of SM action in the eye injuries. Acute clinical symptoms are including decrease in visual acuity, dryness, photophobia, blepharospasm, conjunctivitis and complaints of foreign body sensation and soreness that gradually progress to severe ocular pain. Corneal abrasions, ulcerations, vesication and perforations are common corneal consequences in SM injured victims. Appearance of chronic symptoms has been reported as chronic inflammation of the corneal and conjunctival vasculature, ischemia, lipid and cholesterol deposition, scarring in cornea, corneal thinning, opacification and perforation of the cornea, limbal stem cell deficiency (LSCD) and neovascularization. Different medical and surgical protocols have been documented in the management of SM-induced ocular injuries, including preservative-free artificial tears, topical steroids and antibiotic, mydriatic, antiglaucoma drops, therapeutic contact lenses, dark glasses and punctal plugs/cauterization, N-acetylcysteine, tarsorrhaphy, amniotic membrane transplantation, stem cell transplantation and corneal transplantation. New drugs such as resolvin E1, topical form of essential fatty acids, thymosin β4, 43 amino-acid polypeptides, topical form of curcumin, newly formulated artificial tears, diquafosol, rebamipide, tretinoin and oral uridineseems to be beneficial in the management of ocular lesion associated with sulfur mustard poisoning. Further studies are needed to approve these drugs in SM victims. This article is protected by copyright. All rights reserved.

  3. Kinetics of the degradation of sulfur mustard on ambient and moist concrete.

    PubMed

    Brevett, Carol A S; Sumpter, Kenneth B; Nickol, Robert G

    2009-02-15

    The rate of degradation of the chemical warfare agent sulfur mustard, bis(2-chloroethyl) sulfide, was measured on ambient and moist concrete using (13)C Solid State Magic Angle Spinning Nuclear Magnetic Resonance (SSMAS NMR). Three samples of concrete made by the same formulation, but differing in age and alkalinity were used. The sulfur mustard eventually degraded to thiodiglycol and 1,4-oxathiane via the intermediate sulfonium ions CH-TG, H-TG, H-2TG and O(CH(2)CH(2))(2)S(+)CH(2)CH(2)OH on all of the concrete samples, and in addition formed 8-31% vinyl moieties on the newer, more alkaline concrete samples. This is the first observation of the formation of O(CH(2)CH(2))(2)S(+)CH(2)CH(2)OH on a solid substrate. The addition of 2-chloroethanol to concrete on which mustard had fully degraded to thiodiglycol and 1,4-oxathiane resulted in the formation of O(CH(2)CH(2))(2)S(+)CH(2)CH(2)OH, thus demonstrating the reversibility of sulfur mustard degradation pathways. The sulfur mustard degradation half-lives on ambient concrete at 22 degrees C ranged from 3.5 to 54 weeks. When the substrates were moistened, the degradation half-lives at 22 degrees C ranged from 75 to 350h. The degradation of sulfur mustard occurred more quickly at elevated temperatures and with added water. The non-volatile toxic sulfonium ions persisted for months to years on concrete at 22 degrees C and weeks to months on concrete at 35 degrees C, before decomposing to the relatively non-toxic compounds thiodiglycol and 1,4-oxathiane.

  4. Mustard: a potential agent of chemical warfare and terrorism.

    PubMed

    Saladi, R N; Smith, E; Persaud, A N

    2006-01-01

    As one of the most important vesicant agents, the destructive properties of mustards on the skin, eyes and respiratory system, combined with a lack of antidote, makes them effective weapons. Such weapons are inexpensive, easily obtainable and frequently stockpiled. Sulphur mustard (mustard gas) has been used as a chemical warfare agent in at least 10 conflicts. In this article, the use of mustard as a potential agent of chemical warfare and terrorism is outlined. The dose-dependent effects of acute sulphur mustard exposure on the skin, eyes, and respiratory system are described, as well as the possible extents of injuries, the mechanisms of action and the long-term complications. Prevention and management of mustard exposure are briefly discussed. The need for awareness and preparedness in the dermatological community regarding mustard exposure is emphasized.

  5. Sulfur Mustard Induces Immune Sensitization in Hairless Guinea Pigs

    PubMed Central

    Mishra, Neerad C.; Rir-sima-ah, Jules; March, Thomas; Weber, Waylon; Benson, Janet; Jaramillo, Richard; Seagrave, Jean-Clare; Schultz, Gregory; Grotendorst, Gary; Sopori, Mohan

    2009-01-01

    Sulfur mustard (SM, bis-(2-chloroethyl) sulfide) is a well known chemical warfare agent that may cause long-term debilitating injury. Because of the ease of production and storage, it has a strong potential for chemical terrorism; however, the mechanism by which SM causes chronic tissue damage is essentially unknown. SM is a potent protein alkylating agent, and we tested the possibility that SM modifies cellular antigens, leading to an immunological response to “altered self” and a potential long-term injury. To that end, in this communication, we show that dermal exposure of euthymic hairless guinea pigs induced infiltration of both CD4+ and CD8+ T cells into the SM-exposed skin and strong upregulated expression of proinflammatory cytokines and chemokines (TNF-α, IFN-γ, and IL-8) in distal tissues such as the lung and the lymph nodes. Moreover, we present evidence for the first time that SM induces a specific delayed-type hypersensitivity response that is associated with splenomegaly, lymphadenopathy, and proliferation of cells in these tissues. These results clearly suggest that dermal exposure to SM leads to immune activation, infiltration of T cells into the SM-exposed skin, delayed-type hypersensitivity response, and molecular imprints of inflammation in tissues distal from the site of SM exposure. These immunological responses may contribute to the long-term sequelae of SM toxicity. PMID:19887117

  6. Sulfur mustard induces immune sensitization in hairless guinea pigs.

    PubMed

    Mishra, Neerad C; Rir-sima-ah, Jules; March, Thomas; Weber, Waylon; Benson, Janet; Jaramillo, Richard; Seagrave, Jean-Clare; Schultz, Gregory; Grotendorst, Gary; Sopori, Mohan

    2010-02-01

    Sulfur mustard (SM, bis-(2-chloroethyl) sulfide) is a well known chemical warfare agent that may cause long-term debilitating injury. Because of the ease of production and storage, it has a strong potential for chemical terrorism; however, the mechanism by which SM causes chronic tissue damage is essentially unknown. SM is a potent protein alkylating agent, and we tested the possibility that SM modifies cellular antigens, leading to an immunological response to "altered self" and a potential long-term injury. To that end, in this communication, we show that dermal exposure of euthymic hairless guinea pigs induced infiltration of both CD4(+) and CD8(+) T cells into the SM-exposed skin and strong upregulated expression of proinflammatory cytokines and chemokines (TNF-alpha, IFN-gamma, and IL-8) in distal tissues such as the lung and the lymph nodes. Moreover, we present evidence for the first time that SM induces a specific delayed-type hypersensitivity response that is associated with splenomegaly, lymphadenopathy, and proliferation of cells in these tissues. These results clearly suggest that dermal exposure to SM leads to immune activation, infiltration of T cells into the SM-exposed skin, delayed-type hypersensitivity response, and molecular imprints of inflammation in tissues distal from the site of SM exposure. These immunological responses may contribute to the long-term sequelae of SM toxicity.

  7. Microarray gene expression analysis of the human airway in patients exposed to sulfur mustard.

    PubMed

    Najafi, Ali; Masoudi-Nejad, Ali; Imani Fooladi, Abbas Ali; Ghanei, Mostafa; Nourani, Mohamad Reza

    2014-08-01

    There is much data about the acute effects of sulfur mustard gas on humans, animals and cells. But less is known regarding the molecular basics of chronic complications in humans. Basically, mustard gas, as an alkylating agent, causes several chronic problems in the eyes, skin and more importantly in the pulmonary system which is the main cause of death. Although recent proteomic research has been carried out on bronchoalveolar lavage (BAL) and serum, but high-throughput transcriptomics have not yet been applied to chronic airway remodeling. This is the first cDNA-microarray report on the chronic human mustard lung disease, 25 years after exposure during the Iran-Iraq war. Microarray transcriptional profiling indicated that a total of 122 genes were significantly dysregulated in tissues located in the airway of patients. These genes are associated with the extracellular matrix components, apoptosis, stress response, inflammation and mucus secretion.

  8. Degradation of sulfur mustard on KF/Al2O3 supports: insights into the products and the reactions mechanisms.

    PubMed

    Zafrani, Yossi; Goldvaser, Michael; Dagan, Shai; Feldberg, Liron; Mizrahi, Dana; Waysbort, Daniel; Gershonov, Eytan; Columbus, Ishay

    2009-11-06

    The degradation of the warfare agent sulfur mustard (HD) adsorbed onto KF/Al(2)O(3) sorbents is described. These processes were explored by MAS NMR, using (13)C-labeled sulfur mustard (HD*) and LC-MS techniques. Our study on the detoxification of this blister agent showed the formation of nontoxic substitution and less-toxic elimination products (t(1/2) = 3.5-355 h). Interestingly, the reaction rates were found to be affected by MAS conditions, i.e., by a centrifugation effect. The products and the mechanisms of these processes are discussed.

  9. Sulfur mustard gas exposure: case report and review of the literature.

    PubMed

    Goverman, J; Montecino, R; Ibrahim, A; Sarhane, K A; Tompkins, R G; Fagan, S P

    2014-09-30

    This report describes a case of burn injury following exposure to sulfur mustard, a chemical agent used in war. A review of the diagnostic characteristics, clinical manifestations, and therapeutic measures used to treat this uncommon, yet extremely toxic, entity is presented. The aim of this report is to highlight the importance of considering this diagnosis in any war victim, especially during these unfortunate times of rising terrorist activities.

  10. Sulfur mustard gas exposure: case report and review of the literature

    PubMed Central

    Goverman, J.; Montecino, R.; Ibrahim, A.; Sarhane, K.A.; Tompkins, R.G.; Fagan, S.P.

    2014-01-01

    Summary This report describes a case of burn injury following exposure to sulfur mustard, a chemical agent used in war. A review of the diagnostic characteristics, clinical manifestations, and therapeutic measures used to treat this uncommon, yet extremely toxic, entity is presented. The aim of this report is to highlight the importance of considering this diagnosis in any war victim, especially during these unfortunate times of rising terrorist activities. PMID:26170794

  11. Degradation of VX and sulfur mustard by enzymatic haloperoxidation.

    PubMed

    Amitai, G; Adani, R; Hershkovitz, M; Bel, P; Rabinovitz, I; Meshulam, H

    2003-01-01

    Chloroperoxidase (CPO) isolated from Caldariomyces fumago (20 U ml(-1)) together with urea hydrogenperoxide (UPER, 0.5 mM) and sodium chloride as co-substrate (NaCl, 0.5 M) caused rapid breakdown of VX (10 microM) (t((1/2)) = 8 s, 25 C, 50 mM tartarate, pH 2.75). Glucose oxidase (GOX, Aspergillus niger) and glucose were used as an alternative source for H(2)O(2). A mixture of GOX (20 U ml(-1)), glucose (GLU 0.45 M), CPO (20 U ml(-1)) and NaCl (0.5 M) caused a 3.8-fold slower degradation of VX (10 microM) (t((1/2)) = 30 s, 25 C, 50 mM tartarate, pH 2.75). The concentrations of H(2)O(2) and chlorine produced by this enzyme/substrate mixture depended mainly on the GLU concentration. Horseradish peroxidase (HRP) together with UPER (1 mM) and sodium iodide (NaI, 0.05 M) caused progressive degradation of VX that was more than 400-fold slower than with CPO (20 U ml(-1)), UPER (0.5 mM) and NaCl (0.5 M) (t((1/2)) = 55 min, 25 C, pH 8). Skin decontamination of VX by CPO was tested in pig-ear skin in vitro. The chemical agent VX (0.01 M, 100 microl) was degraded by 98% within 3 h of skin diffusion when a mixture of UPER/NaCl/CPO was applied 60 min prior to VX application. A mixture of UPER/NaCl without CPO also caused significant VX degradation (94%) during skin diffusion whereas it did not cause any VX degradation in solution. Degradation of VX in skin, obtained without exogenous CPO, may indicate involvement of endogenous intradermal haloperoxidase-like enzyme. Reagent UPER (1 mM) did not cause any degradation of VX in solution or during its skin diffusion. Furthermore, a mixture of CPO, UPER and NaCl caused rapid degradation of sulfur mustard (HD). Sulfur mustard (50 microM) incubated in the presence of CPO (4 U ml(-1)), UPER (0.05 M) and NaCl (0.5 M) at pH 2.75 and 30 C was oxidized by 97% and 99% within 5 and 10 min, respectively. The oxidation products HD sulfoxide, HD sulfone and HD sulfoxidevinyl were identified by GC/MS in the enzymatic chloroperoxidation mixture.

  12. Biochemical manipulation of intracellular glutathione levels influences cytotoxicity to isolated human lymphocytes by sulfur mustard

    SciTech Connect

    Gross, C.L.; Innace, J.K.; Hovatter, R.C.; Meier, H.L.; Smith, W.J.

    1993-12-31

    Glutathione (GSH) is the major nonprotein thiol that can protect cells from damage due to electrophilic alkylating agents by forming conjugates with the agent. Sulfur mustard (HD) is an electrophilic alkylating agent that has potent mutagenic, carcinogenic, cytotoxic, and vesicant properties. Compounds that elevate or reduce intracellular levels of GSH may produce changes in cytotoxicity induced by sulfur mustard. Pretreatment of human peripheral blood lymphocytes (PBL) for 72 hr with 1 mM buthionine sulfoximine (BSO), which reduces intracellular GSH content to approximately 26% of control, appears to sensitize these in vitro cells to the cytotoxic effects of 10 AM HD but not to higher HD concentrations. Pretreatment of PBL for 48 hr with 10 mM N-acetyl cysteine (NA C), which elevates intracellular glutathione levels to 122% of control, appears to partially protect these in vitro cells from the cytotoxic effects of 10 LAIHD but not to higher HD concentrations. Augmentation of intracellular levels of glutathione may provide partial protection against cytotoxicity of sulfur mustard.

  13. Assessment of sulfur mustard interaction with basement membrane components

    SciTech Connect

    Zhang, Z.; Peters, B.P.; Monteiro-Rivier, N.A.

    1995-08-01

    Bis-2-chloroethyl sulfide (sulfur mustard, RD) is a bifunctional alkylating agent which causes severe vesication characterized by slow wound healing. Our previous studies have shown that the vesicant RD disrupts the epidermal-dermal junction at the lamina lucida of the basement membrane. The purpose of this study was to examine whether RD directly modifies basement membrane components (BMCs), and to evaluate the effect of RD on the cell adhesive activity of BMCs. EHS laminin was incubated with (14C)HRD, and extracted by gel filtration. Analysis of the (14C)HRD-conjugated laminin fraction by a reduced sodium dodecyl sulfate-polyacrylaminde gel electrophoresis (SD S-PAGE) revealed the incorporation of radioactivity into both laminin subunits and a laminin trimer resistant to dissociation in reduced SDS-PAGE sample buffer, suggesting direct alkylation and cross-linking of EHS laminin by (14C)HD. Normal human foreskin epidermal keratinocytes were biosynthetically labeled with (35S)cysteine. (35S)-labeled laminin isoforms, Ae.Ble.B2e. laminin and K.Ble.B2e. laminin (using the nomenclature of Engel), fibronectin, and heparan sulfate proteoglycan were isolated by irnmunoprecipitation from the cell culture medium, treated with RD or ethanol as control, and then analyzed by SDS-PAGE.

  14. NMR- and GC/MS-based metabolomics of sulfur mustard exposed individuals: a pilot study.

    PubMed

    Nobakht, B Fatemeh; Aliannejad, Rasoul; Rezaei-Tavirani, Mostafa; Arefi Oskouie, Afsaneh; Naseri, Mohammad Taghi; Parastar, Hadi; Aliakbarzadeh, Ghazaleh; Fathi, Fariba; Taheri, Salman

    2016-09-01

    Sulfur mustard (SM) is a potent alkylating agent and its effects on cells and tissues are varied and complex. Due to limitations in the diagnostics of sulfur mustard exposed individuals (SMEIs) by noninvasive approaches, there is a great necessity to develop novel techniques and biomarkers for this condition. We present here the first nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC/MS) metabolic profiling of serum from and healthy controls to identify novel biomarkers in blood serum for better diagnostics. Of note, SMEIs were exposed to SM 30 years ago and that differences between two groups could still be found. Pathways in which differences between SMEIs and healthy controls are observed are related to lipid metabolism, ketogenesis, tricarboxylic acid (TCA) cycle and amino acid metabolism.

  15. Mass spectral studies on vinylic degradation products of sulfur mustards under gas chromatography/mass spectrometry conditions.

    PubMed

    Sai Sachin, L; Karthikraj, R; Kalyan Kumar, K; Sony, T; Prasada Raju, N; Prabhakar, S

    2015-01-01

    Sulfur mustards are a class of vesicant chemical warfare agents that rapidly degrade in environmental samples. The most feasible degradation products of sulfur mustards are chloroethyl vinylic compounds and divinylic compounds, which are formed by the elimination of one and two HCl molecules from sulfur mustards, respectively. The detection and characterization of these degradation products in environmental samples are an important proof for the verification of sulfur mustard usage. In this study, we synthesized a set of sulfur mustard degradation products, i.e., divinylic compounds (1-7) and chloroethyl vinylic compounds (8-14), and characterized using gas chromatography/mass spectrometry (GC/MS) under electron ionization (EI) and chemical ionization (CI) (methane) conditions. The EI mass spectra of the studied compounds mainly included the fragment ions that resulted from homolytic cleavages with or without hydrogen migrations. The divinylic compounds (1-7) showed [M-SH](+) ions, whereas the chloroethylvinyl compounds (8-14) showed [M-Cl](+) and [M-CH2CH2Cl](+) ions. Methane/CI mass spectra showed [M+H](+) ions and provided molecular weight information. The GC retention index (RI) values were also calculated for the studied compounds. The EI and CI mass spectral data together with RI values are extremely useful for off-site analysis for the verification of the chemical weapons convention and also to participate in official Organization for the Prohibition of Chemical Weapons proficiency tests.

  16. Rapid monitoring of sulfur mustard degradation in solution by headspace solid-phase microextraction sampling and gas chromatography mass spectrometry.

    PubMed

    Creek, Jo-Anne M; McAnoy, Andrew M; Brinkworth, Craig S

    2010-12-15

    A method using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography/mass spectrometry (GC/MS) analysis has been developed to gain insight into the degradation of the chemical warfare agent sulfur mustard in solution. Specifically, the described approach simplifies the sample preparation for GC/MS analysis to provide a rapid determination of changes in sulfur mustard abundance. These results were found to be consistent with those obtained using liquid-liquid extraction (LLE) GC/MS. The utility of the described approach was further demonstrated by the investigation of the degradation process in a complex matrix with surfactant added to assist solvation of sulfur mustard. A more rapid reduction in sulfur mustard abundance was observed using the HS-SPME approach with surfactant present and was similar to results from LLE experiments. Significantly, this study demonstrates that HS-SPME can simplify the sample preparation for GC/MS analysis to monitor changes in sulfur mustard abundance in solution more rapidly, and with less solvent and reagent usage than LLE.

  17. Kojic acid reduces the cytotoxic effects of sulfur mustard on cultures containing human melanoma cells in vitro.

    PubMed

    Smith, C N; Lindsay, C D

    2001-01-01

    In vivo experiments have shown that melanocytes are more sensitive than keratinocytes to the cytotoxic effects of sulfur mustard when it is applied topically to pig skin.1 It has been hypothesized that this is caused by the uncoupling of the melanogenic pathway by depletion of cellular glutathione, resulting in the uncontrolled production of cytotoxic quinone free-radical species by tyrosinase.2. In the present study, the feasibility of blocking the melanogenic pathway as a means of reducing the cytotoxicity of sulfur mustard was evaluated using kojic acid. Kojic acid is a topically applied depigmenting agent that exerts its effect by acting as a slow-binding, competitive inhibitor of tyrosinase.3 Preincubation of G361 pigmented melanoma cells and mixed cultures of G361 cells and SVK keratinocytes with 2.5 mM kojic acid resulted in significant increases in the viability of these cultures as determined by neutral red (NR) and gentian violet (GV) dye binding assays for up to 48 h following exposure to 50 microM sulfur mustard. The highest levels of protection were seen in the G361 cultures, with a 26.8% increase in culture viability (NR assay) compared with the sulfur-mustard-only controls at 24 h. Preincubation of SVK cells alone with kojic acid resulted in lower increases in viability (2.5% at 24 h by the NR assay). Inhibition of the melanogenic pathway reduces the sensitivity of cultures containing pigment cells to sulfur mustard.

  18. Teratogenic Effects of Sulfur Mustard on Mice Fetuses

    PubMed Central

    Sanjarmoosavi, Nasrin; Sanjarmoosavi, Naser; Shahsavan, Marziyeh; Hassanzadeh-Nazarabadi, Mohammad

    2012-01-01

    Introduction Sulfur Mustard (SM) has been used as a chemical warfare agent, in the World War I and more recently during Iraq-Iran war in early 1980s’. Its biological poisoning effect could be local or systemic and its effect depends on environmental conditions, exposed organs, and the extent and duration of exposure. It is considered as a strong alkylating agent with known mutagenic, carcinogenic effects; although a few studies have been performed on its teratogenicity so far. Materials and Methods Mice were administered with SM intraperitoneally with a dose of 0.75 and 1.5 mg/kg in different periods of their gestation (gestational age of 11, 13 and 14 weeks). Control mice groups were included. Between 5 and 9 mice were used in each group. Dams underwent cesarean section on day 19 of their gestation. External examination was performed on the animals investigating craniofacial and septal defects and limb malformations such as adactyly and syndactyly. All data were analyzed by Chi-Square test and Fisher's exact test. The P- value less than 0.05 was considered significant. Results Craniofacial and septal defects as well as the limb malformations were the most common types of birth defects, displaying an extremely complex biomedical problem. Conclusion This study confirms a significant correlation between SM exposure and its teratogenic effect. We postulated that the malformations could be caused by an uncontrolled migration of neural crest cells, causing developmental disorders. In addition to environmental factors, modifying genes could play an important role in the pathogenesis of the defects. PMID:23493485

  19. Silibinin as a potential therapeutic for sulfur mustard injuries.

    PubMed

    Balszuweit, Frank; John, Harald; Schmidt, Annette; Kehe, Kai; Thiermann, Horst; Steinritz, Dirk

    2013-12-05

    Sulfur mustard (SM) is a vesicating chemical warfare agent causing skin blistering, ulceration, impaired wound healing, prolonged hospitalization and permanent lesions. Silibinin, the lead compound from Silybum marianum, has also been discussed as a potential antidote to SM poisoning. However, its efficacy has been demonstrated only with regard to nitrogen mustards. Moreover, there are no data on the efficacy of the water-soluble prodrug silibinin-bis-succinat (silibinin-BS). We investigated the effect of SIL-BS treatment against SM toxicity in HaCaT cells with regard to potential reduction of necrosis, apoptosis and inflammation including dose-dependency of any protective effects. We also demonstrated the biotransformation of the prodrug into free silibinin. HaCaT cells were exposed to SM (30, 100, and 300μM) for 30min and treated thereafter with SIL-BS (10, 50, and 100μM) for 24h. Necrosis and apoptosis were quantified using the ToxiLight BioAssay and the nucleosome ELISA (CDDE). Pro-inflammatory interleukins-6 and -8 were determined by ELISA. HaCaT cells, incubated with silibinin-BS were lysed and investigated by LC-ESI MS/MS. LC-ESI MS/MS results suggest that SIL-BS is absorbed by HaCaT cells and biotransformed into free silibinin. SIL-BS dose-dependently reduced SM cytotoxicity, even after 300μM exposure. Doses of 50-100μM silibinin-BS were required for significant protection. Apoptosis and interleukin production remained largely unchanged by 10-50μM silibinin-BS but increased after 100μM treatment. Observed reductions of SM cytotoxicity by post-exposure treatment with SIL-BS suggest this as a promising approach for treatment of SM injuries. While 100μM SIL-BS is most effective to reduce necrosis, 50μM may be safer to avoid pro-inflammatory effects. Pro-apoptotic effects after high doses of SIL-BS are in agreement with findings in literature and might even be useful to eliminate cells irreversibly damaged by SM. Further investigations will focus on the

  20. Hematological profile of the euthymic hairless guinea pig following sulfur mustard vesicant exposure.

    PubMed

    Gold, M B; Scharf, B A

    1995-01-01

    Sulfur mustard (HD) is a potent vesicating agent of military importance, with known radiomimetic properties. The euthymic hairless guinea pig (EHGP) (Cavia porcellus) is emerging as the animal model of choice for cutaneous HD study. With elucidation of the systemic effects, we may better utilize this animal for all HD toxicity work. To this end, studies were conducted to determine the definitive median lethal dose (MLD) of subcutaneously applied sulfur mustard (HD) in the EHGP, and to correlate the induced hematological changes. Eight groups of two animals each were dosed at 0.3 log intervals from an extrapolated expected dose, deriving a tentative mean around which five groups of six animals each were dosed at 0.1 log intervals, resulting in a definitive MLD of 48.17 mg kg(-1). Sulfur mustard was then administered to seven groups of six animals each at a dose of 30 mg kg(-1) and hematology performed. Significant leukocyte count suppression was found to occur on days 4, 5 and 6, following a leukocyte elevation on day 1 after exposure. Serum potassium levels were found to be elevated all 7 days after HD exposure. Establishing the MLD for subcutaneously applied HD and the pattern of induced leukocyte suppression allows for more definitive evaluation of successful toxicity counter-measures.

  1. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  2. Historical perspective on effects and treatment of sulfur mustard injuries.

    PubMed

    Graham, John S; Schoneboom, Bruce A

    2013-12-05

    Sulfur mustard (2,2'-dichlorodiethyl sulfide; SM) is a potent vesicating chemical warfare agent that poses a continuing threat to both military and civilian populations. Significant SM injuries can take several months to heal, necessitate lengthy hospitalizations, and result in long-term complications affecting the skin, eyes, and lungs. This report summarizes initial and ongoing (chronic) clinical findings from SM casualties from the Iran-Iraq War (1980-1988), with an emphasis on cutaneous injury. In addition, we describe the cutaneous manifestations and treatment of several men recently and accidentally exposed to SM in the United States. Common, chronic cutaneous problems being reported in the Iranian casualties include pruritis (the primary complaint), burning, pain, redness, desquamation, hyperpigmentation, hypopigmentation, erythematous papular rash, xerosis, multiple cherry angiomas, atrophy, dermal scarring, hypertrophy, and sensitivity to mechanical injury with recurrent blistering and ulceration. Chronic ocular problems include keratitis, photophobia, persistent tearing, sensation of foreign body, corneal thinning and ulceration, vasculitis of the cornea and conjunctiva, and limbal stem cell deficiency. Chronic pulmonary problems include decreases in lung function, bronchitis with hyper-reactive airways, bronchiolitis, bronchiectasis, stenosis of the trachea and other large airways, emphysema, pulmonary fibrosis, decreased total lung capacity, and increased incidences of lung cancer, pulmonary infections, and tuberculosis. There are currently no standardized or optimized methods of casualty management; current treatment strategy consists of symptomatic management and is designed to relieve symptoms, prevent infections, and promote healing. New strategies are needed to provide for optimal and rapid healing, with the goals of (a) returning damaged tissue to optimal appearance and normal function in the shortest period of time, and (b) ameliorating chronic

  3. Inflammatory effects of inhaled sulfur mustard in rat lung

    SciTech Connect

    Malaviya, Rama; Sunil, Vasanthi R.; Cervelli, Jessica; Anderson, Dana R.; Holmes, Wesley W.; Conti, Michele L.; Gordon, Ronald E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-10-15

    Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4 mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48 h or 7 days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-{alpha} (TNF{alpha}), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNF{alpha} and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.

  4. Compatibility and Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard

    DTIC Science & Technology

    2014-05-01

    COMPATIBILITY AND DECONTAMINATION OF HIGH-DENSITY POLYETHYLENE EXPOSED TO SULFUR MUSTARD ECBC-TR-1235...Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...study to determine the compatability of high-density polyethylene (HDPE) with liquid mustard (HD) material and decontamination of HDPE when exposed

  5. Evaluation of miR-9 and miR-143 expression in urine specimens of sulfur mustard exposed patients.

    PubMed

    Khafaei, Mostafa; Samie, Shahram; Mowla, Seyed Javad; Alvanegh, Akbar Ghorbani; Mirzaei, Behnaz; Chavoshei, Somaye; Dorraj, Ghamar Soltan; Esmailnejad, Mostafa; Tavallaie, Mahmood; Nourani, Mohammadreza

    2015-12-01

    Sulfur mustard (SM) or mustard gas is a chemical alkylating agent that causes blisters in the skin (blister gas), burns the eyes and causes lung injury. Some major cellular pathways are involved in the damage caused by mustard gas such as NF-κb signaling, TGF-β signaling, WNT pathway, inflammation, DNA repair and apoptosis. MicroRNAs are non-coding small RNAs (19-25 nucleotides) that are involved in the regulation of gene expression and are found in two forms, extracellular and intracellular. Changes in the levels of extracellular microRNAs are directly associated with many diseases, it is thus common to study the level of extracellular microRNAs as a biomarker to determine the pathophysiologic status. In this study, 32 mustard gas injured patients and 32healthy subjects participated. Comparative evaluation of miR-9 and miR-143 expression in urine samples was performed by Real Time PCR and Graph Pad software. The Mann Whitney t-test analysis of data showed that the expression level of miR-143 and miR-9 had a significant decrease in sulfur mustard individuals with the respective p-value of 0.0480 and 0.0272 compared to normal samples, with an imbalance of several above mentioned pathways. It seems that reducing the expression level of these genes has a very important role in the pathogenicity of mustard gas injured patients.

  6. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs.

  7. Development of an antibody that binds sulfur mustard. (Reannouncement with new availability information)

    SciTech Connect

    Lieske, C.N.; Klopcic, R.S.; Gross, C.L.; Clark, J.H.; Dolzine, T.W.

    1992-12-31

    An antibody that binds bis(2-chloroethyl)sulfide (sulfur mustard) was developed. The immunizing antigen was prepared from the hapten 4-(2-chloroethyl)benzoic acid covalently bound to keyhole limpet hemocyanin (KLH). The antibody was monitored by a solid phase enzyme-linked immunosorbent assay (ELISA). The test antigen consisted of a second hapten, 8-chlorocaprylic acid, covalently bound to bovine serum albumin (BSA). The test antigen was absorbed to the wells of 96-well plates. The immunizing and test antigens contain a common chloroethyl moiety. Thiodiglycol, the principal hydrolysis product of sulfur mustard, does not react with the antibody. This antibody, because of its specificity, has the potential to be a valuable tool for mustard research and forensic detection. Sulfur mustard, sulfur mustard antibody, antibody inhibition haptens.

  8. FTIR-ATR evaluation of topical skin protectants useful for sulfur mustard and related compounds

    NASA Astrophysics Data System (ADS)

    Braue, Ernest H., Jr.; Litchfield, Marty R.; Bangledorf, Catherine R.; Rieder, Robert G.

    1992-03-01

    The US Army has a need to develop topical protectants that can decrease the effects of cutaneous exposure to chemical warfare (CW) agents. Such materials would enhance a soldier's ability to carry out the mission in a chemically hostile environment, would lessen the burden on medical personnel, and may allow the casualties to return to duty in a shorter period of time than might otherwise be possible. In a preliminary report (E. H. Braue, Jr. and M. G. Pannella, Applied Spectrosc., 44, 1061 (1990)), we described a unique analytical method using FT-IR spectroscopy and the horizontal attenuated total reflectance (ATR) accessory for evaluating the effectiveness of topical skin protectants (TSPs) against penetration by chemical agents. We now describe the application of this method to the chemical warfare agent sulfur mustard (HD).

  9. Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure.

    PubMed

    Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    Exposure to the vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) causes severe skin injury with delayed blistering. Depending upon the dose and time of their exposure, edema and erythema develop into blisters, ulceration, necrosis, desquamation, and pigmentation changes, which persist weeks and even years after exposure. Research advances have generated data that have started to explain the probable mechanism of action of vesicant-induced skin toxicity; however, despite these advances, effective and targeted therapies are still deficient. This review highlights studies on two SM analogs, 2-chloroethyl ethyl sulfide (CEES) and NM, and CEES- and NM-induced skin injury mouse models that have substantially added to the knowledge on the complex pathways involved in mustard vesicating agent-induced skin injury. Furthermore, employing these mouse models, studies under the National Institutes of Health Countermeasures Against Chemical Threats program have identified the flavanone silibinin as a novel therapeutic intervention with the potential to be developed as an effective countermeasure against skin injury following exposure to mustard vesicating agents.

  10. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-05

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard.

  11. Teratology studies of lewisite and sulfur mustard agents: effects of lewisite in rats and rabbits. Final report, 15 May 1983-28 February 1987

    SciTech Connect

    Hackett, P.L.; Sasser, L.B.; Rommereim, R.L.; Cushing, J.A.; Buschbom, R.L.

    1987-12-31

    Lewisite, which is a prototype of one of two categories of vesicant war gases, functions by reacting with the sulfhydryl groups of proteins through its arsenic group. Since no information concerning the potential teratogenicity or developmental toxicity of lewisite was available, Pacific Northwest Laboratory, (PNL), under contract with USABRDL, conducted studies to evaluate maternal toxicity, intrauterine mortality, and developmental toxicity in rats and rabbits following the administration of this agent by intragastric intubation.

  12. Comparative toxic effect of nitrogen mustards (HN-1, HN-2, and HN-3) and sulfur mustard on hematological and biochemical variables and their protection by DRDE-07 and its analogues.

    PubMed

    Sharma, Manoj; Vijayaraghavan, R; Agrawal, Om Prakash

    2010-07-01

    The chemical warfare agents sulfur mustard (SM) and nitrogen mustards (HN-1, HN-2, and HN-3) are highly reactive vesicants. The study was planned to investigate the protective efficacy of amifostine, DRDE-07 and their analogues, and few conventional antidotes (30 minutes pretreatment) against dermally applied SM and nitrogen mustards in preventing hematological and biochemical changes in mice. Mustard agents (1.0 median lethal dose [LD(50)]) induced a significant decrease in the body weight and spleen weight. A significant decrease in the white blood cell (WBC) count and an increase in serum transaminases and alkaline phosphatases (ALPs) were observed. A significant decrease in reduced (GSH) and oxidized glutathione (GSSG) and an increase in thiobarbituric acid reactive substances were also observed. All the mustard agents increased DNA fragmentation. The effects of SM were significantly ameliorated by DRDE-07 analogues, and with nitrogen mustards the protection was partial. Overall, DRDE-30 (propyl analogue) followed by DRDE-35 (butyl analogue) are favored as safer and better compounds.

  13. Multiphoton imaging: a view to understanding sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J. S.; Madren-Whalley, Janna S.

    2003-07-01

    It is well known that topical exposure to sulfur mustard (SM) produces persistent, incapacitating blisters of the skin. However, the primary lesions effecting epidermal-dermal separation and disabling of mechanisms for cutaneous repair remain uncertain. Immunofluorescent staining plus multiphoton imaging of human epidermal tissues and keratinocytes exposed to SM (400 μM x 5 min)have revealed that SM disrupts adhesion-complex molecules which are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Images of keratin-14 showed early, progressive, postexposure collapse of the K5/K14 cytoskeleton that resulted in ventral displacement of the nuclei beneath its collapsing filaments. This effectively corrupted the dynamic filament assemblies that link basal-cell nuclei to the extracellular matrix via α6β4-integrin and laminin-5. At 1 h postexposure, there was disruption in the surface organization of α6β4 integrins, associated displacement of laminin-5 anchoring sites and a concomitant loss of functional asymmetry. Accordingly, our multiphoton images are providing compelling evidence that SM induces prevesicating lesions that disrupt the receptor-ligand organization and cytoskeletal systems required for maintaining dermal-epidermal attachment, signal transduction, and polarized mobility.

  14. Modified immunoslotblot assay to detect hemi and sulfur mustard DNA adducts.

    PubMed

    Kehe, Kai; Schrettl, Verena; Thiermann, Horst; Steinritz, Dirk

    2013-12-05

    Sulfur mustard (SM) is an old chemical warfare agent causing blisters (vesicant). Skin toxicity is thought to be partly caused by SM induced DNA damage. SM and the hemi mustard 2-chloroethyl ethyl sulfide (CEES) are bi- and monofunctional DNA alkylating agents, respectively. Both chemicals react especially with N7 guanine. The most abundant adducts are 7-hydroxyethylthioethylguanine for SM (61%) and 7-ethyl thioethylguanine for CEES. Thus, DNA alkylation should serve as a biomarker of SM exposure. A specific monoclonal antibody (2F8) was previously developed to detect SM and CEES adducts at N7 position by means of immunoslotblot (ISB) technique (van der Schans et al. (2004) [16]). Nitrogen mustards (HN-1, HN-2, HN-3) are alkylating agents with structural similarities, which can form DNA adducts with N7 guanine. The aim of the presented work was to modify the van der Schans protocol for use in a field laboratory and to test the cross reactivity of the 2F8 antibody against nitrogen mustards. Briefly, human keratinocytes were exposed to SM and CEES (0-300μM, 60min) or HN-1, HN-2, HN-3 (120min). After exposure, cells were scraped and DNA was isolated and normalized. 1μg DNA was transferred to a nitrocellulose membrane using a slotblot technique. After incubation with 2F8 antibody, the DNA adducts were visualized with chromogen staining (3,3'-diaminobenzidine (DAB), SeramunGrün). Blots were photographed and signal intensity was quantified. In general, DAB was superior to SeramunGrün stain. A staining was seen from 30nM to 300μM of SM or CEES, respectively. However, statistically significant DNA adducts were detected after CEES and SM exposure above 30μM which is below the vesicant threshold. No signal was observed after HN-1, HN-2, HN-3 exposure. The total hands-on time to complete the assay was about 36h. Further studies are necessary to validate SM or CEES exposure in blister roofs of exposed patients.

  15. Molecular Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death: Early and Late Cell Responses

    DTIC Science & Technology

    2005-10-01

    Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death : Early and late cell responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...It possess mutagenic, carcinogenic, cytotoxic, vesicating effects, and results in cell death . However, the biomedical mechanism of cell death induced... cell death via apoptosis: • In early stage, It induces JNK activity and then triggers apoptosis pathway. • In late stage, sulphur mustard attacks the

  16. Inhibition of sulfur mustard-increased protease activity by niacinamide, N-acetyl-L-cysteine or dexamethasone

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-03-11

    The pathologic mechanism of sulfur mustard-induced skin vesication is as yet undefined. Papirmeister et al. have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving sequelae of DNA alkylation, metabolic disruption resulting in NAD+ depletion and activation of protease. The authors have utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed 24 hr previously to sulfur mustard exhibited an increase in proteolytic activity. Doses of compounds known to alter the biochemical events associated with sulfur mustard exposure or reduce protease activity were tested in this system for their ability to block the sulfur mustard-induced protease activity. Treatment with niacinamide 1 hr after or with N-acetyl-L-cysteine or dexamethasone 24 hr prior to sulfur mustard exposure resulted in a decrease of 39%, 33% and 42% respectively of sulfur mustard-increased protease activity. These data suggest that therapeutic intervention into the biochemical pathways that culminate in protease activation might serve as an approach to treatment of sulfur mustard-induced pathology.

  17. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard.

    PubMed

    Tahmasbpour, Eisa; Ghanei, Mostafa; Qazvini, Ali; Vahedi, Ensieh; Panahi, Yunes

    2016-04-01

    Sulfur mustard (SM) is a potent alkylating agent that targets several organs, especially lung tissue. Although pathological effects of SM on mustard lung have been widely considered, molecular and cellular mechanisms for these pathologies are poorly understood. We investigated changes in expression of genes related to oxidative stress (OS) and antioxidant defense caused by SM in lung tissue of patients. We performed gene expression profiling of OS and antioxidant defense in lung tissue samples from healthy controls (n=5) and SM-exposed patients (n=6). Changes in gene expression were measured using a 96-well RT(2) Profiler ™PCR Array: Human Oxidative Stress and Antioxidant Defense, which arrayed 84 genes functionally involved in cellular OS response. 47 (55.95%) genes were found to be significantly upregulated in patients with mustard lung compared with controls (p<0.05), whereas 7 (8.33%) genes were significantly downregulated (p<0.05). Among the most upregulated genes were OS responsive-1 (OXSR1), forkhead box M1 (FOXM1), and glutathione peroxidase-2 (GPX2), while metallothionein-3 (MT3) and glutathione reductase (GSR) were the most downregulated genes. Expression of hypoxia-induced genes (CYGB and MB), antioxidants and reactive oxygen species (ROS)-producing genes were significantly altered, suggesting an increased oxidative damage in mustard lungs. Mustard lungs were characterized by hypoxia, massive production of ROS, OS, disruption of epithelial cells, surfactant dysfunction, as well as increased risk of lung cancer and pulmonary fibrosis. Oxidative stress induced by ROS is the major mechanism for direct effect of SM exposure on respiratory system. Antioxidant treatment may improve the main features of mustard lungs.

  18. The protective effect of Nigella sativa on lung injury of sulfur mustard-exposed Guinea pigs.

    PubMed

    Hossein, Boskabady Mohammad; Nasim, Vahedi; Sediqa, Amery

    2008-05-01

    The lung is one of the most exposable organs to chemical warfare agents such as sulfur mustard (SM) gas. Airway hyperresponsiveness and lung inflammation are reported in chemical warfare victims. There is no definite treatment for respiratory disorders induced by SM exposure. However, the protective effect of Nigella sativa on inflammatory process was shown. In the present study, the protective effect of Nigella sativa on tracheal responsiveness and lung inflammation of SM exposed guinea pigs was examined. Guinea pigs were exposed to diluent's solution (ethanol, control group), 100 mg/m(3) inhaled sulfur mustard (SME group), and SME treated with Nigella sativa, 0.08 g daily (SME+N), n = 6 for each group. Tracheal responsiveness (TR) to methacholine, total white blood cell (WBC) count of lung lavage, and differential WBC were done 14 days post exposure. The weigh of animal were measured at the beginning, middle (day 7), and the end (day 14) of the study. The TR of SM-exposed guinea pigs was significantly (P < .001) and WBC nonsignificantly higher than those of controls. In SME guinea pigs, there was a weight loss but in the case of SME+N guinea pigs, no obvious weight change thought the study was seen. The eosinophl, monocyte, and lympocytes in SME animals were significantly changed compared to control group (P < .001 for all cases). Monocyte, lymphocyte, and neutrophil number were decreased in SME+N group compared to SME animals, which was significant only for neutrophil (P < .05). These results showed a preventive effect of Nigella sativa on TR of SM-exposed guinea pigs.

  19. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    PubMed Central

    Imani, Saber; Panahi, Yunes; Salimian, Jafar; Fu, Junjiang; Ghanei, Mostafa

    2015-01-01

    Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD) and compared with mustard lung. PMID:26557960

  20. Spinach and mustard greens response to soil type, sulfur addition and lithium level

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  1. Wound Healing of Cutaneous Sulfur Mustard Injuries: Strategies for the Development of Improved Therapies

    DTIC Science & Technology

    2005-01-05

    of much greater potency that would likely be very efficacious if used early in the lesion development stage, such as betamethasone dipropionate ...Hunt Valley, MD. pp. 1179- 1186. 108. Miller TL, Graham JS, Hayes TL, Reid FM. Stability of sulfur mustard in vehicles suitable for cutaneous

  2. Mechanisms Mediating the Vesicant Actions of Sulfur Mustard after Cutaneous Exposure

    PubMed Central

    Shakarjian, Michael P.; Heck, Diane E.; Gray, Joshua P.; Sinko, Patrick J.; Gordon, Marion K.; Casillas, Robert P.; Heindel, Ned D.; Gerecke, Donald R.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-01-01

    Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action. PMID:19833738

  3. The quantitation of sulfur mustard by-products, sulfur-containing herbicides, and organophosphonates in soil and concrete

    SciTech Connect

    Tomkins, B.A.; Sega, G.A.; Macnaughton, S.J.

    1998-07-01

    For approximately thirty years, the facilities at Rocky Mountain Arsenal were used for producing, packaging, and shipping sulfur- and phosphorus-containing mustard, Sarin, and pesticides. Degradation and manufacturing by-products related to these species are analyzed quickly using a combination of accelerated solvent extraction and gas chromatography (flame photometric detector) to determine exactly how specific waste structure materials should be handled, treated, and landfilled. These by-products are extracted rapidly from heated samples of soil or crushed concrete using acetonitrile at 100 C and 1500 psi, then analyzed using a gas chromatograph equipped with a flame photometric detector in its phosphorus- or sulfur-selective mode. Thiodiglycol, the major hydrolysis product of sulfur mustard, must be converted to a trimethylsilyl ether prior to quantitation. Detection limits, calculated using two statistically-unbiased protocols, ranged between 2--13 {micro}g analyte/g soil or concrete.

  4. The Quantitation of Sulfur Mustard By-Products, Sulfur-Containing Herbicides, and Organophosphonates in Soil and Concrete

    SciTech Connect

    Tomkins, B.A., Sega, G.A. , Macnaughton, S.J.

    1997-12-31

    Over the past fifty years, the facilities at Rocky Mountain Arsenal have been used for the manufacturing, bottling, and shipping sulfur- containing herbicides, sulfur mustard, and Sarin. There is a need for analytical methods capable of determining these constituents quickly to determine exactly how specific waste structural materials should be handled, treated, and landfilled.These species are extracted rapidly from heated samples of soil or crushed concrete using acetonitrile at elevated pressure, then analyzed using a gas chromatograph equipped with a flame photometric detector. Thiodiglycol, the major hydrolysis product of sulfur mustard, must be converted to a silylated derivative prior to quantitation. Detection limits, calculated using two statistically-unbiased protocols, ranged between 2-13 micrograms analyte/g soil or concrete.

  5. The Mustard Consortium’s Elucidation of the Pathophysiology of Sulfur Mustard and Antidote Development

    DTIC Science & Technology

    2006-09-01

    to the use of CEES. Rat spleen , kidney, and liver that had been exposed to SM (in vivo) were sent to Doctors Stone and Crawford. Dr. Stone’s...expression for potentially several chemical weapons. A protocol is being developed for the isolation of mRNA from blood, spleen , and lung. It is... spleen and lung samples from rats exposed to CEES or mustard gas. In total, tissues from 58 rats have been analyzed for tocopherols (alpha- and gamma

  6. Photoassisted and photocatalytic degradation of sulfur mustard using TiO2 nanoparticles and polyoxometalates.

    PubMed

    Naseri, Mohammad Taghi; Sarabadani, Mansour; Ashrafi, Davood; Saeidian, Hamdollah; Babri, Mehran

    2013-02-01

    The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO(2) nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33 ± 2 °C). Degradation products during the treatment were identified by gas chromatography-mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min(-1)), the highest degradation rate is obtained in the presence of TiO(2) nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO(2), in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO(2) nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination.

  7. A choline oxidase amperometric bioassay for the detection of mustard agents based on screen-printed electrodes modified with Prussian Blue nanoparticles.

    PubMed

    Arduini, Fabiana; Scognamiglio, Viviana; Covaia, Corrado; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-02-13

    In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (-50 mV vs. Ag/AgCl), thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethyl)amine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.

  8. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    DTIC Science & Technology

    2004-11-16

    agents including sulfur mustard (SM). We observed concurrent activation of PARP and DNA ligase in SM-exposed human epidermal keratinocytes (HEK...Previous reports from other laboratories suggested that DNA ligase activation could be due to its modification by PARP. In humans, there are three distinct...DNA ligases, I, II and IV of which DNA ligase I participates in DNA replication and repair. By metabolically labeling HEK using 3H-adenosine

  9. Comparative Proteomic Study Reveals the Molecular Aspects of Delayed Ocular Symptoms Induced by Sulfur Mustard

    PubMed Central

    Pashandi, Zaiddodine; Saraygord-Afshari, Neda; Naderi-Manesh, Hossein; Naderi, Mostafa

    2015-01-01

    Objective. Sulfur mustard (SM) is a highly reactive alkylating agent which produces ocular, respiratory, and skin damages. Eyes are the most sensitive organ to SM due to high intrinsic metabolic and rapid turnover rate of corneal epithelium and aqueous-mucous interfaces of the cornea and conjunctiva. Here we investigate underlying molecular mechanism of SM exposure delayed effects which is still a controversial issue after about 30 years. Materials and Methods. Following ethical approval, we have analyzed serum proteome of ten severe SM exposed male patients with delayed eye symptoms with two-dimensional electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. The western blotting was used to confirm the proteins that have been identified. Results. We have identified thirteen proteins including albumin, haptoglobin, and keratin isoforms as well as immunoglobulin kappa chain which showed upregulation while transferrin and alpha 1 antitrypsin revealed downregulation in these patients in comparison with healthy control group. Conclusions. Our results elevated participation of free iron circulatory imbalance and local matrix-metalloproteinase activity in development of delayed ocular symptoms induced by SM. It demonstrates that SM induced systemic toxicity leads to some serum protein changes that continually and gradually exacerbate the ocular surface injuries. PMID:25685557

  10. Dermal and ocular exposure systems for the development of models of sulfur mustard-induced injury.

    PubMed

    Weber, Waylon M; Kracko, Dean A; Lehman, Mericka R; Cox, Christopher E; Cheng, Yung-Sung; Grotendorst, Gary R; McDonald, Jacob D

    2011-09-01

    Sulfur mustard (SM) is a chemical threat agent for which the effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present article details the techniques used to develop SM laboratory exposure systems for the development of animal models of ocular and dermal injury. These models are critical to enable evaluation of SM injury and therapeutics against that injury. Iterative trials were conducted to optimize dermal and ocular injury models in guinea pigs and rabbits respectively. The goal was a homogeneous and diffuse ocular and dermal injury that compares to the human injury. Dermal exposures were conducted by either a flow-past or static vapor cup system. Ocular exposures were conducted by a static exposure system. Ocular and dermal exposures were conducted with vaporized SM. Vapor concentrations increased with time in the dermal and ocular exposure systems but were stable with varying amounts of applied SM. A dermal deposition estimation study was also conducted. Deposited volumes increased with exposure time.

  11. Inhalation Exposure Systems for the Development of Rodent Models of Sulfur Mustard-Induced Pulmonary Injury

    PubMed Central

    Weber, Waylon M.; Kracko, Dean A.; Lehman, Mericka R.; Irvin, Clinton M.; Blair, Lee F.; White, Richard K.; Benson, Janet M.; Grotendorst, Gary R.; Cheng, Yung-Sung; McDonald, Jacob D.

    2011-01-01

    Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg · min/m3 resulted in homogeneous lung injury with no nasal degeneration. PMID:20025432

  12. The immunostatus of natural killer cells in people exposed to sulfur mustard.

    PubMed

    Ghotbi, Ladan; Hassan, Zuhair

    2002-06-01

    Sulfur mustard (2,2-dichloroethyl sulfide, SM) has been documented as an alkylating agent. It has been widely used as a chemical weapon during the last two decades. Despite extensive worldwide research, no effective therapy has yet been devised for the treatment of patients exposed to SM. A severe suppression of the immune system still remains as the major cause of opportunistic infections, septicemia and death in such patients. The aim of this study was to determine the possible effect of SM on natural killer (NK) cells in patients suffering from SM injuries. Patients were classified into three groups: mild, moderate and severe. Blood sample obtained from each patient was examined using flowcytometric technique. Results showed that the percentage of NK cells (CD45+/CD56+) is significantly lower in severe patients than that of the control group (P<0.05). It was also observed that the activity of NK cells (CD56+/CD25+) in severe alkylating group is noticeably higher compared with the control group (P<0.1).

  13. Sulfur Mustard Research—Strategies for the Development of Improved Medical Therapy

    PubMed Central

    Kehe, Kai; Balszuweit, Frank; Emmler, Judith; Kreppel, Helmut; Jochum, Marianne; Thiermann, Horst

    2008-01-01

    Objective: Sulfur mustard (SM) is a bifunctional alkylating substance being used as chemical warfare agent (vesicant). It is still regarded as a significant threat in chemical warfare and terrorism. Exposure to SM produces cutaneous blisters, respiratory and gastrointestinal tract injury, eye lesions, and bone marrow depression. Victims of World War I as well as those of the Iran-Iraq war have suffered from devastating chronic health impairment. Even decades after exposure, severe long-term effects like chronic obstructive lung disease, lung fibrosis, recurrent corneal ulcer disease, chronic conjunctivitis, abnormal pigmentation of the skin, and different forms of cancer have been diagnosed. Methods: This review briefly summarizes the scientific literature and own results concerning detection, organ toxicity of SM, its proposed toxicodynamic actions, and strategies for the development of improved medical therapy. Results: Despite extensive research efforts during the last century, efficient antidotes against SM have not yet been generated because its mechanism of action is not fully understood. However, deeper insights into these mechanisms gained in the last decade and promising developments of new drugs now offer new chances to minimize SM-induced organ damage and late effects. Conclusion: Polymerase inhibitors, anti-inflammatory drugs, antioxidants, matrix metalloproteinase inhibitors, and probably regulators of DNA damage repair are identified as promising approaches to improve treatment. PMID:18615149

  14. Inhalation exposure systems for the development of rodent models of sulfur mustard-induced pulmonary injury.

    PubMed

    Weber, Waylon M; Kracko, Dean A; Lehman, Mericka R; Irvin, Clinton M; Blair, Lee F; White, Richard K; Benson, Janet M; Grotendorst, Gary R; Cheng, Yung-Sung; McDonald, Jacob D

    2010-01-01

    Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg x min/m(3) resulted in homogeneous lung injury with no nasal degeneration.

  15. Evaluation of candidate decontaminants against percutaneous sulfur mustard and thickened soman challenges

    SciTech Connect

    Blank, J.A.; Hobson, D.W.; Menton, R.G.; Olson, C.T.; Korte, D.W.

    1993-05-13

    Studies were conducted to evaluate the efficacy of candidate skin decontaminants relative to a standard control decontaminant, XE-555 resin, against percutaneous sulfur mustard (HD) or thickened soman (TGD) challenge. Male, New Zealand White rabbits were used as the model system with lesion area as the end point for HD exposures and erythrocyte acetylcholinesterase (AChE) inhibition as the endpoint for TGD exposure. Initial studies were performed to establish assay parameters for, and to validate the use of, AChE inhibition as an endpoint for assessing candidate decontaminant efficacy against nerve agent exposures. XE-555 resin was concurrently evaluated with each candidate decontaminant for both assay control and comparative purpose. Decontamination was initiated at 1, 3, or 5 min after HD exposures and 2 min after TGD exposures. U.S. Army Medical Research Institute of Chemical Defense (USAMRICD) compounds 1513, 1514, 1515, 1516, and 1517 were evaluated against HD and against TGD. Results from these studies demonstrated the utility of AChE inhibition for evaluating skin decontaminants. None of the candidate decontaminants evaluated was more effective than the standard control decontaminant against HD or TGD exposures.

  16. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  17. Quenching action of monofunctional sulfur mustard on chlorophyll fluorescence: towards an ultrasensitive biosensor.

    PubMed

    Kaur, Simerjit; Singh, Minni; Flora, Swaran Jeet Singh

    2013-11-01

    An ultrasensitive fluorimetric biosensor for the detection of chemical warfare agent sulfur mustard (SM) was developed using its monofunctional analogue. SM is a vesicant and a potent chemical threat owing to its direct toxic effects on eyes, lungs, skin and DNA. This work investigates the quenching action of the analyte on chlorophyll fluorescence as elucidated by nuclear magnetic resonance, Fourier transform infrared spectroscopy and mass spectrometry studies suggesting the electrophilic attack of carbonium ion on nitrogens of the porphyrin moiety of chlorophyll. The properties of immobilisation matrix were optimised and scanning electron microscope observations confirmed improvement in pore size of sol-gels by addition of 32 % (v/v) glycerol, a feature enabling enhanced sensitivity towards the analyte. Chlorophyll embedded sol-gel was treated with increasing concentrations of monofunctional SM and the corresponding drop in maximum fluorescence intensity as measured by emission at 673 nm was observed, which varied linearly and had a detection limit of 7.68 × 10(-16) M. The biosensor was found to be 6 orders of magnitude more sensitive than the glass microfibre-based disc biosensor previously reported by us.

  18. Sulfur Mustard Exposure and Non-Ischemic Central Retinal Vein Occlusion

    PubMed Central

    Shoeibi, Nasser; Balali-Mood, Mahdi; Abrishami, Mojtaba

    2016-01-01

    A 41-year-old man was referred with a complaint of visual loss in his left eye and his best corrected visual acuity was 20/80. Slit lamp examination showed arborizing conjunctival vessels and dry eye. Fundus examination and fluorescein angiography revealed a non-ischemic central retinal vein occlusion. Cardiovascular, rheumatologic, and hematologic work up showed no abnormal findings. An ascertained history of exposure to sulfur mustard during the Iran-Iraq war was documented in his medical history. Four sessions of intravitreal bevacizumab injections were done as needed. After two-year follow-up, visual acuity in his left eye improved to 20/25 and macular edema was resolved without any need for further interventions. We conclude that sulfur mustard gas exposure may be considered as a predisposing factor for central retinal vein occlusion, as was found in our patient (an Iranian war veteran) by excluding all yet known etiologies and predisposing factors. PMID:26722147

  19. Thiodiglycol, the hydrolysis product of sulfur mustard: Analysis of in vitro biotransformation by mammalian alcohol dehydrogenases using nuclear magnetic resonance

    SciTech Connect

    Brimfield, A.A.; Hodgson, Ernest

    2006-06-15

    Thiodiglycol (2,2'-bis-hydroxyethylsulfide, TDG), the hydrolysis product of the chemical warfare agent sulfur mustard, has been implicated in the toxicity of sulfur mustard through the inhibition of protein phosphatases in mouse liver cytosol. The absence of any inhibitory activity when TDG was present in assays of pure enzymes, however, led us to investigate the possibility for metabolic activation of TDG to inhibitory compound(s) by cytosolic enzymes. We have successfully shown that mammalian alcohol dehydrogenases (ADH) rapidly oxidize TDG in vitro, but the classic spectrophotometric techniques for following this reaction provided no information on the identity of TDG intermediates and products. The use of proton NMR to monitor the oxidative reaction with structural confirmation by independent synthesis allowed us to establish the ultimate product, 2-hydroxyethylthioacetic acid, and to identify an intermediate equilibrium mixture consisting of 2-hydroxyethylthioacetaldehyde, 2-hydroxyethylthioacetaldehyde hydrate and the cyclic 1,4-oxathian-2-ol. The intermediate nature of this mixture was determined spectrophotometrically when it was shown to drive the production of NADH when added to ADH and NAD.

  20. Intervention of Sulfur Mustard Toxicity by Downregulation of Cell Proliferation and Metabolic Rates

    DTIC Science & Technology

    2000-01-01

    attenuating the apop- totic response due to HD.7 We reported that BAPTA AM does not affect the activation of DNA ligase (a DNA repair enzyme) in HD...R. DNA ligase activation fol- lowing sulfur mustard exposure in cultured human epi- dermal keratinocytes. In Vitro Mol. Toxicol. 1998; 11: 45-53. Published in 2000 by John Wiley & Sons, Ltd. J. Appl. Toxicol. 20, S87-S91 (2000)

  1. Pretreatment of Human Epidermal Keratinocytes In Vitro With Ethacrynic Acid Reduces Sulfur Mustard Cytotoxicity

    DTIC Science & Technology

    2004-01-01

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES...Ethacrynic Acid Reduces 5b. GRANT NUMBER Sulfur Mustard Toxicity 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Gross, CL, Nipwoda, MT, Nealley

  2. Progression of Ocular Sulfur Mustard Injury: Development of a Model System

    DTIC Science & Technology

    2010-01-01

    8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Thymosins in Health and Disease Progression of ocular sulfur mustard injury: development of a...Control corneas have hemidesmosomal- attachments, characteris- tic desmosomal adhesions, and a well-articulated epithelial-stromal architecture (Fig. 3A... desmosomal attachments (white arrow), and a well- articulated epithelial-stromal boundary. (Panel B) One week after exposure, a basal epithelial cell layer

  3. Baseline Serum Clinical Chemistry Values in African Green Monkeys Before and After Sulfur Mustard

    DTIC Science & Technology

    2007-05-01

    COVERED (From - To) March 2001 to June 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Baseline Serum Clinical Chemistry Values in African...models and can serve as an index for future HD AGM studies. 15. SUBJECT TERMS Sulfur mustard, African Green monkey, clinical chemistry , serum 16...Pathology Branch for necropsy histopathology review and clinical chemistry assistance. We also thank Steve Tucker and Dr. John McDonough, Ph.D., for

  4. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons.

  5. Synthesis and alkylation activity of a nitrogen mustard agent to penetrate the blood-brain barrier.

    PubMed

    Bartzatt, Ronald L

    2004-01-01

    Nitrogen mustard agents are widely used for the clinical treatment of cancers. A nitrogen mustard (N-mustard) agent was synthesized utilizing nicotinic acid as the carrier of the alkylating substituent (-OCH2CH2N(CH2CH2Cl)2) that forms an ester group (R-C(O)-OR) on a heterocyclic ring. The N-mustard agent is a solid at room temperature and is stable for more than 6 weeks when stored at -10 degrees C. To determine the kinetics of alkylation activity a nucleophilic primary amine compound (4-chloroaniline) was placed in aqueous solution with the mustard agent at physiological pH 7.4 (pH of blood) and 37 degrees C. The alkylation reaction was found to be second-order with rate equation: rate = k2[N-mustard][Nu], where Nu = nucleophile and k2 = 0.0415 L/(mol x min). Pharmacological descriptors calculated showed values indicating a strong potential of penetrating the blood-brain barrier. The partition coefficient (Log P) of the mustard agent is 1.95 compared with 0.58 for nicotinic acid. Values of descriptors such as dipole, polar surface area, Log BB, molar refractivity, parachor, and violations of Rule of 5 were found to be 5.057 Debye, 42.44 A2, 0.662, 72.7 cm3, 607.7 cm3, and 0.0 for the N-mustard agent. Value of polar surface area for the mustard agent (42.44 A2) predicts that >90% of any amount present in the intestinal tract will be absorbed.

  6. An evidence-based review of the genotoxic and reproductive effects of sulfur mustard.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Ismail Hassan, Fatima; Abdollahi, Mohammad

    2017-03-01

    Sulfur mustard (SM) is a chemical warfare agent which is cytotoxic in nature, and at the molecular level, SM acts as DNA alkylating agent leading to genotoxic and reproductive effects. Mostly, the exposed areas of the body are the main targets for SM; however, it also adversely affects various tissues of the body and ultimately exhibits long-term complications including genotoxic and reproductive effects, even in the next generations. The effect of SM on reproductive system is the reason behind male infertility. The chronic genotoxic and reproductive complications of SM have been observed in the next generation, such as reproductive hormones disturbances, testicular atrophy, deficiency of sperm cells, retarded growth of sperm and male infertility. SM exerts toxic effects through various mechanisms causing reproductive dysfunction. The key mechanisms include DNA alkylation, production of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NAD) depletion. However, the exact molecular mechanism of such long-term effects of SM is still unclear. In general, DNA damage, cell death and defects in the cell membrane are frequently observed in SM-exposed individuals. SM can activate various cellular and molecular mechanisms related to oxidative stress (OS) and inflammatory responses throughout the reproductive system, which can cause decreased spermatogenesis and impaired sperm quality via damage to tissue function and structure. Moreover, the toxic effects of SM on the reproductive system as well as the occurrence of male infertility among exposed war troopers in the late exposure phase is still uncertain. The chronic effects of SM exposure in parents can cause congenital defects in their children. In this review, we aimed to investigate chronic genotoxic and reproductive effects of SM and their molecular mechanisms in the next generations.

  7. DNA-directed alkylating agents. 1. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the reactivity of the mustard.

    PubMed

    Gourdie, T A; Valu, K K; Gravatt, G L; Boritzki, T J; Baguley, B C; Wakelin, L P; Wilson, W R; Woodgate, P D; Denny, W A

    1990-04-01

    A series of DNA-targeted aniline mustards have been prepared, and their chemical reactivity and in vitro and in vivo cytotoxicity have been evaluated and compared with that of the corresponding simple aniline mustards. The alkylating groups were anchored to the DNA-intercalating 9-aminoacridine chromophore by an alkyl chain of fixed length attached at the mustard 4-position through a link group X, while the corresponding simple mustards possessed an electronically identical small group at this position. The link group was varied to provide a series of compounds of similar geometry but widely differing mustard reactivity. Variation in biological activity should then largely be a consequence of this varying reactivity. Rates of mustard hydrolysis in the two series related only to the electronic properties of the link group, with attachment of the intercalating chromophore having no effect. The cytotoxicities of the simple mustards correlated well with group electronic properties (with a 200-300-fold range in IC50S). The corresponding DNA-targeted mustards were much more potent (up to 100-fold), but their IC50 values varied much less with linker group electronic properties. Most of the DNA-targeted mustards showed in vivo antitumor activity, being both more active and more dose-potent than either the corresponding untargeted mustards and chlorambucil. These results show that targeting alkylating agents to DNA by attachment to DNA-affinic units may be a useful strategy.

  8. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogs, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide

    PubMed Central

    Powell, K. Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M.; MacLeod, Michael C.

    2010-01-01

    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic due to its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogs of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells, and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes mutagenesis induced by CEMS and CEES in the human cells. PMID:20050631

  9. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogues, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide.

    PubMed

    Powell, K Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M; MacLeod, Michael C

    2010-03-15

    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well-known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic because of its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogues of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes the mutagenesis induced by CEMS and CEES in human cells.

  10. Long-term effects of sulfur mustard on civilians’ mental health 20 years after exposure (The Sardasht-Iran Cohort Study)

    PubMed Central

    2013-01-01

    Background Sulfur mustard (SM) is an alkylating agent that induces short and long term toxicity on various organs. The aim of this study was to assess the long-term psychological symptoms among samples of exposed to sulfur mustard gas compared with unexposed civilians 20 years after exposure. Methods This historical cohort study was conducted on 495 civilians of Sardasht and Rabat in two age matched groups, including 367 sulfur mustard exposed participants from Sardasht and 128 unexposed subjects from Rabat. Psychological symptoms was assessed using the Symptom Check List-90 Revised (SCL-90-R) including measures of somatization, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism providing three global distress indices namely: Global Severity Index (GSI), Positive Symptom Total (PST) and Positive Symptom Distress Index (PSDI). Comparison was made between exposed and unexposed civilians. Results There were significant differences in somatization (P = 0.002), obsessive-compulsive (P = 0.031), depression (P = 0.007), anxiety (P = 0.042), and hostility (P = 0.002), between the exposed and unexposed groups. In addition there were significant differences between two groups concerning the GSI (P = 0.045) and the PSDI (P < 0.001). The differences between two groups in other subscales were not significant. Conclusions The findings from this study showed that civilians who exposed to sulfur mustard gas were suffering from a number of psychological symptoms even 20 years after exposure. Providing mental health services and more resource allocation for this community are highly recommended. PMID:23618038

  11. DNA-directed alkylating agents. 4. 4-anilinoquinoline-based minor groove directed aniline mustards.

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1991-05-01

    A series of 4-anilinoquinoline-linked aniline mustards of widely varying mustard reactivity were prepared and evaluated for their antitumor activity. The compounds were designed as minor grove binding agents, where the aniline mustard ring is itself part of the DNA-binding ligand. While there was a general trend for cytotoxicity to correlate with mustard reactivity, this was much less pronounced than with untargeted mustards. The compounds were much more cytotoxic than the parent diols, and were also at least 10-fold more cytotoxic than the corresponding aniline mustards themselves. Comparative cell line studies suggested that the mechanism of cytotoxicity varied with mustard reactivity. The most reactive mustards cross-linked DNA, while cell killing by the less reactive compounds appeared to be by the formation of bulky monoadducts. The compounds were active but not particularly dose-potent against P388 leukemia in vivo. The modest potency may be related to their poor aqueous solubility, since the more soluble methyl quaternary salts were equally active at much lower doses.

  12. N-Acetyl-L-cysteine inhibits sulfur mustard-induced and TRPA1-dependent calcium influx.

    PubMed

    Stenger, Bernhard; Popp, Tanja; John, Harald; Siegert, Markus; Tsoutsoulopoulos, Amelie; Schmidt, Annette; Mückter, Harald; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2016-10-13

    Transient receptor potential family channels (TRPs) have been identified as relevant targets in many pharmacological as well as toxicological studies. TRP channels are ubiquitously expressed in different tissues and act among others as sensors for different external stimuli, such as mechanical stress or noxious impacts. Recent studies suggest that one member of this family, the transient receptor potential ankyrin 1 cation channel (TRPA1), is involved in pain, itch, and various diseases, suggesting TRPA1 as a potential therapeutic target. As a nociceptor, TRPA1 is mainly activated by noxious or electrophilic compounds, including alkylating substances. Previous studies already revealed an impact of 2-chloroethyl-ethyl sulfide on the ion channel TRPA1. In this study, we demonstrate that sulfur mustard (bis-(2-chloroethyl) sulfide, SM) activates the human TRPA1 (hTRPA1) in a dose-dependent manner measured by the increase in intracellular Ca(2+) concentration ([Ca(2+)]i). Besides that, SM-induced toxicity was attenuated by antioxidants. However, very little is known about the underlying mechanisms. Here, we demonstrate that N-acetyl-L-cysteine (NAC) prevents SM-induced hTRPA1-activation. HEK293-A1-E cells, overexpressing hTRPA1, show a distinct increase in [Ca(2+)]i immediately after SM exposure, whereas this increase is reduced in cells pretreated with NAC in a dose-dependent manner. Interestingly, glutathione, although being highly related to NAC, did not show an effect on hTRPA1 channel activity. Taken together, our results provide evidence that SM-dependent activation of hTRPA1 can be diminished by NAC treatment, suggesting a direct interaction of NAC and the hTRPA1 cation channel. Our previous studies already showed a correlation of hTRPA1-activation with cell damage after exposure to alkylating agents. Therefore, NAC might be a feasible approach mitigating hTRPA1-related dysregulations after exposure to SM.

  13. Medical documentation, bioanalytical evidence of an accidental human exposure to sulfur mustard and general therapy recommendations.

    PubMed

    Steinritz, Dirk; Striepling, Enno; Rudolf, Klaus-Dieter; Schröder-Kraft, Claudia; Püschel, Klaus; Hullard-Pulstinger, Andreas; Koller, Marianne; Thiermann, Horst; Gandor, Felix; Gawlik, Michael; John, Harald

    2016-02-26

    Sulfur mustard (SM) is a chemical warfare agent (CWA) that was first used in World War I and in several military conflicts afterwards. The threat by SM is still present even today due to remaining stockpiles, old and abandoned remainders all over the world as well as to its ease of synthesis. CWA are banned by the Chemical Weapons Convention (CWC) interdicting their development, production, transport, stockpiling and use and are subjected to controlled destruction. The present case report describes an accidental exposure of three workers that occurred during the destruction of SM. All exposed workers presented a characteristic SM-related clinical picture that started about 4h after exposure with erythema and feeling of tension of the skin at the upper part of the body. Later on, superficial blister and a burning phenomenon of the affected skin areas developed. Similar symptoms occurred in all three patients differing severity. One patient presented sustained skin affections at the gluteal region while another patient came up with affections of the axilla and genital region. Fortunately, full recovery was observed on day 56 after exposure except some little pigmentation changes that were evident even on day 154 in two of the patients. SM-exposure was verified for all three patients using bioanalytical GC MS and LC MS/MS based methods applied to urine and plasma. Urinary biotransformation products of the β-lyase pathway were detected until 5 days after poisoning whereas albumin-SM adducts could be found until day 29 underlining the beneficial role of adduct detection for post-exposure verification. In addition, we provide general recommendations for management and therapy in case of SM poisoning.

  14. Pretreatment of human epidermal keratinocytes in vitro with ethacrynic Acid reduces sulfur mustard cytotoxicity.

    PubMed

    Gross, Clark L; Nipwoda, Mary T; Nealley, Eric W; Smith, William J

    2004-01-01

    Sulfur mustard (SM) is a potent alkylating agent, profoundly cytotoxic, and a powerful vesicant. SM reacts quite extensively with glutathione (GSH) and forms GSH conjugates, which are presumably excreted through the mercapturic acid pathway in mammals. It is unknown whether any enzymes, such as the glutathione-S-transferases (GST), are involved in this detoxification of SM by the formation of conjugates. A prototypic inhibitor (ethacrynic acid, EAA) and a prototypic inducer (Oltipraz, OLT) of GSH-S-transferase, have been used as pretreatment compounds in human epidermal keratinocytes (HEK) to investigate the effect of enzyme levels on cytotoxicity following SM challenge from 50 muM to 300 muM. Pretreatment of HEK for 24 h with EAA doubled survival against 200 muM SM (36% viability in non-pretreated cells vs. 81% in EAA-pretreated cells) and quadrupled survival (17% viability in non-pretreated controls vs. 71% in EAA-pretreated cells), while OLT pretreatment had no effect on cytotoxicity at either SM dose. The role of GST in SM cytotoxicity could not be tested because of the lack of an effect on modulation of GST activities by these 2 drugs. Cellular levels of GSH were increased 250-300% over control values using EAA pretreatment, while OLT pretreatment did not lead to any increase in GSH. Pretreatment of HEK with buthionine sulfoximine (BSO), a known depleter of glutathione levels, reduced glutathione levels and increased cytotoxicity. This large increase in GSH appears to be solely responsible for the enhanced survivability of EAA-pretreated HEK.

  15. Biosynthesis and urinary excretion of methyl sulfonium derivatives of the sulfur mustard analog, 2-chloroethyl ethyl sulfide, and other thioethers

    SciTech Connect

    Mozier, N.M.; Hoffman, J.L. )

    1990-12-01

    Thioether methyltransferase was previously shown to catalyze the S-adenosylmethionine-dependent methylation of diemthyl selenide, dimethyl telluride, and various thioethers to produce the corresponding methyl onium ions. In this paper we show that the following thioethers are also substrates for this enzyme in vitro: 2-hydroxyethyl ethyl sulfide, 2-chloroethyl ethyl sulfide, thiodiglycol, t-butyl sulfide, and isopropyl sulfide. To demonstrate thioether methylation in vivo, mice were injected with (methyl-{sup 3}H)methionine plus different thioethers, and extracts of lungs, livers, kidneys, and urine were analyzed by high-performance liquid chromatography for the presence of ({sup 3}H)methyl sulfonium ions. The following thioethers were tested, and all were found to be methylated in vivo: dimethyl sulfide, diethyl sulfide, methyl n-propyl sulfide, tetrahydrothiophene, 2-(methylthio)ethylamine, 2-hydroxyethyl ethyl sulfide, and 2-chloroethyl ethyl sulfide. This supports our hypothesis that the physiological role of thioether methyltransferase is to methylate seleno-, telluro-, and thioethers to more water-soluble onium ions suitable for urinary excretion. Conversion of the mustard gas analog, 2-chloroethyl ethyl sulfide, to the methyl sulfonium derivative represents a newly discovered mechanism for biochemical detoxification of sulfur mustards, as this conversion blocks formation of the reactive episulfonium ion that is the ultimate alkylating agent for this class of compounds.

  16. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

    PubMed

    Mangerich, Aswin; Debiak, Malgorzata; Birtel, Matthias; Ponath, Viviane; Balszuweit, Frank; Lex, Kirsten; Martello, Rita; Burckhardt-Boer, Waltraud; Strobelt, Romano; Siegert, Markus; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Bürkle, Alexander

    2016-02-26

    Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of

  17. Study on evaporation characteristics of a sessile drop of sulfur mustard on glass.

    PubMed

    Jung, Hyunsook; Myung, Sung Min; Park, Myung Kyu; Lee, Hae Wan; Ryu, Sam Gon

    2012-05-01

    The evaporation characteristics (evaporation rates and process) of a sessile drop of sulfur mustard on glass has been studied using a laboratory-sized wind tunnel, gas chromatograph mass spectrometry, and drop shape analysis. It showed that the evaporation rates of the droplet increased with temperature and air flow. The effect of temperature on the rates was more pronounced at lower air flow. Air flow was less effective at lower temperature. The contact angle of the droplet was initially observed as θ = 19.5° ± 0.7 and decreased linearly with time until it switched to a constant mode.

  18. Effect of Sulfur Mustard on Mast Cells in Hairless Guinea Pig Skin

    DTIC Science & Technology

    1993-05-13

    AD-P008 756 EFFECT OF SULFUR MUSTARD ON MAST CELLS IN HAIRLESS GUINEA PIG SKIN JOHN S. GRAHAM, MARK A . BRYANT and ERNEST H. BRAUE U.S. Army Medical...with their granules of vasoactive histamine, mast cells might be expected to play a role in HD-induced injury. Changes in mast cells exposed to low...histopathology 94-07918 Best Available Copy C0t PONENT PART NOTICE THIS PAPER IS A CCWPOWENT PART OF THE FOLLOWING COIPILATION REPORT: TITLE: Proceedins of the

  19. Inhalation and Percutaneous Toxicokinetics of Sulfur Mustard and Its Adducts in Hairless Guinea Pigs and Marmosets. Efficacy of Naval Scavengers

    DTIC Science & Technology

    2005-08-01

    very rapid distribution phase and a very slow elimination phase. The concentration of sulfur mustard in tissues (lung, spleen , liver, and bone marrow...tissue, and spleen . The respiratory tract was isolated from animals that were nose-only exposed to 1 LCt50 of sulfur mustard in 5 min, at 4 h after...detected in spleen , bone marrow and small intestine, while rather low concentrations of N7-HETE-gua were measured in the lung at 10 min and 48 h after

  20. Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard

    PubMed Central

    Bashir, Humayra; Ibrahim, Mohamed M.; Bagheri, Rita; Ahmad, Javed; Arif, Ibrahim A.; Baig, M. Affan; Qureshi, M. Irfan

    2015-01-01

    Soils in many parts of the world are contaminated with heavy metals, leading to multiple, deleterious effects on plants and threats to world food production efficiency. Cadmium (Cd) is one such metal, being toxic at relatively low concentrations as it is readily absorbed and translocated in plants. Sulfur-rich compounds are critical to the impact of Cd toxicity, enabling plants to increase their cellular defence and/or sequester Cd into vacuoles mediated by phytochelatins (PCs). The influence of sulfur on Cd-induced stress was studied in the hyperaccumulator plant Indian mustard (Brassica juncea) using two sulfur concentrations (+S, 300 µM SO42− and S-deficient −S, 30μMSO42−) with and without the addition of Cd (100 µM CdCl2) at two different time intervals (7 and 14 days after treatment). Compared with control plants (+S/−Cd), levels of oxidative stress were higher in S-deficient (−S/−Cd) plants, and greatest in S-deficient Cd-treated (−S/+Cd) plants. However, additional S (+S/+Cd) helped plants cope with oxidative stress. Superoxide dismutase emerged as a key player against Cd stress under both −S and +S conditions. The activity of ascorbate peroxidase, glutathione reductase and catalase declined in Cd-treated and S-deficient plants, but was up-regulated in the presence of sulfur. Sulfur deficiency mediated a decrease in ascorbate and glutathione (GSH) content but changes in ascorbate (reduced : oxidized) and GSH (reduced : oxidized) ratios were alleviated by sulfur. Our data clearly indicate that a sulfur pool is needed for synthesis of GSH, non-protein thiols and PCs and is also important for growth. Sulfur-based defence mechanisms and the cellular antioxidant pathway, which are critical for tolerance and growth, collapsed as a result of a decline in the sulfur pool. PMID:25587194

  1. Comparison of fixation and processing methods for hairless guinea pig skin following sulfur mustard exposure. (Reannouncement with new availability information)

    SciTech Connect

    Bryant, M.A.; Braue Jr, E.H.

    1992-12-31

    Ten anesthetized hairless guinea pigs Crl:IAF(HA)BR were exposed to 10 pi of neat sulfur mustard (HD) in a vapor cup on their skin for 7 min. At 24 h postexposure, the guinea pigs were euthanatized and skin sections taken for histologic evaluation. The skin was fixed using either 10% neutral buffered formalin (NBF), McDowell Trump fixative (4CF-IG), Zenker`s formol-saline (Helly`s fluid), or Zenker`s fluid. Fixed skin sections were cut in half: one half was embedded in paraffin and the other half in plastic (glycol methacrylate). Paraffin-embedded tissue was stained with hematoxylin and eosin; plastic-embedded tissue was stained with Lee`s methylene blue basic fuchsin. Skin was also frozen unfixed, sectioned by cryostat, and stained with pinacyanole. HD-exposed skin was evaluated histologically for the presence of epidermal and follicular necrosis, microblister formation, epidermitis, and intracellular edema to determine the optimal fixation and embedding method for lesion preservation. The percentage of histologic sections with lesions varied little between fixatives and was similar for both paraffin and plastic embedding material. Plastic-embedded sections were thinner, allowing better histologic evaluation, but were more difficult to stain. Plastic embedding material did not infiltrate tissue fixed in Zenker`s fluid or Zenker`s formol-saline. Frozen tissue sections were prepared in the least processing time and lesion preservation was comparable to fixed tissue. It was concluded that standard histologic processing using formalin fixation and paraffin embedding is adequate for routine histopathological evaluation of HD skin lesions in the hairless guinea pig.... Sulfur mustard, Vesicating agents, Pathology, Hairless guinea pig model, Fixation.

  2. Pretreatment of isolated human peripheral blood lymphocytes with l-oxothiazolidine 4-carboxylate reduces sulfur mustard cytotoxicity

    SciTech Connect

    Gross, C.L.; Smith, W.J.

    1993-05-13

    Despite 70 years of research, there appears to be no satisfactory prophylaxis or treatment for the vesicant chemical warfare agent sulfur mustard (HD). Attempts to modify cytotoxicity of HD are now focusing on the use of intracellular 'scavengers' to interact with sulfur mustard before it can react with critical targets within the cell. Glutathione (GSH) is known to react readily with HD and is involved in the major metabolic pathway to HD detoxification. Glutathione level within the cell was raised 40-60% over control values by pretreatment of quiescent human peripheral blood lymphocytes (PBL) with 10 mM L-oxothiazolidine-4-carboxylate (OTC), a masked cysteine precursor. This increase in glutathione level was not toxic to the cells as judged by trypan blue dye exclusion and reached a maximum level in 48 hrs. PBL pretreated with 10 mM OTC for 48 hrs were harvested, washed, and exposed to 10, 50, or 100 uM HD. After an additional 48 hrs of incubation at 37 deg C, cytotoxicity was measured by propidium iodide dye uptake using flow cytometry. Pretreatment with OTC led to a 20% decrease in cytotoxicity with 10 uM HD, an 11% decrease in cytotoxicity with 50 uM HD, and an 8% decrease in cytotoxicity with 100 uM HD. Cytotoxicity of HD was not influenced by addition of 10 mM OTC 2 hrs after HD exposure. These results suggest that biochemical manipulation of intracellular GSH level may provide an important pretreatment regimen to reduce the cytotoxicity of HD.

  3. Effect of sulfur mustard on mast cells in hairless guinea pig skin

    SciTech Connect

    Graham, J.S.; Bryant, M.A.; Braue, E.H.

    1993-05-13

    The skin of 24 anesthetized hairless guinea pigs was exposed to saturated sulfur mustard (bis-2-chloroethyl sulfide; HD) for 5 and 7 minutes using 14-mm diameter vapor cups. Animals were euthanatized 24 hours after exposure and skin specimens taken for morphometric evaluation of granulated mast cells with an image analysis system (IAS). Tissue specimens were processed in paraffin, sectioned at 5 microns and stained with Unna's stain for mast cells. The number of granulated mast cells and the area occupied by mast cell granules was determined. There were significantly fewer mast cells (p < 0.05) in either HD exposure group than in sham-exposed animals, with significantly fewer mast cells in the 7-minute than the 5-minute HD group. There were also significantly smaller areas occupied by granules in either HD exposure group than in sham-exposed animals. HD-induced lesions in the hairless guinea pig have shown signs of an inflammatory response, and with their granules of vasoactive histamine, mast cells might be expected to play a role in HD-induced injury. Changes in mast cells exposed to low sulfur mustard levels, as detected by an IAS, may serve as an early marker for cutaneous damage, which might not be as easily determined with routine light microscopy.

  4. Teratology Studies on Lewisite and Sulfur Mustard Agents. Effects of Sulfur Mustard in Rats and Rabbits

    DTIC Science & Technology

    1987-09-21

    fetuses had incomplete closure of the sagittal suture, one accompanied by spina bifida and one with forelimb flexure. TABLE 27. Fetal Measures (Mean...Gross observations (fetuses/litters): Forelimb flexure Incomplete closure of sagittal suture Spina bifida 0 0 0 1/1 0 0 0 0 0 2/1d 5/1

  5. Mutagenicity and antimutagenicity studies of DRDE-07 and its analogs against sulfur mustard in the in vitro Ames Salmonella/microsome assay.

    PubMed

    Vijayan, Vinod; Pathak, Uma; Meshram, Ghansham Pundilikji

    2014-10-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM), a chemical warfare agent, is classified as a class I human carcinogen by IARC. No effective antidote against this agent is available. The synthetic aminothiol, amifostine, earlier known as WR-2721, has been extensively used as a chemical radioprotector for normal tissues in cancer radiotherapy and chemotherapy. SM is a radiomimetic agent; this prompted us to evaluate the protective efficacy of amifostine and three of its analogs, DRDE-07 [S-2(2-aminoethylamino) ethyl phenyl sulphide], DRDE-30 [S-2(2-aminoethyl amino) ethyl propyl sulphide] and DRDE-35 [S-2(2-aminoethyl amino) ethyl butyl sulphide], against sulfur mustard-induced mutagenicity in the Ames Salmonella/microsome assay. The antidotes were also evaluated for possible mutagenic activity. DRDE-07 was mutagenic in strain TA104 in the absence of S9; DRDE-30 was mutagenic in strain TA100; amifostine and DRDE-35 did not show mutagenic activity in any of the five tester strains used. SM is mutagenic in strains TA97a and TA102, with or without S9 activation. In the antimutagenicity studies, DRDE-07 and DRDE-35 showed promising antimutagenic activity against SM in the absence of S9, in comparison to amifostine. DRDE-07 and DRDE-35 are promising protective agents against SM-induced mutagenicity.

  6. Serum cytokine profiles of Khorasan veterans 23 years after sulfur mustard exposure.

    PubMed

    Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi; Mousavi, Seyed-Reza; Karimi, Gholamreza; Sadeghi, Mahmood; Shirmast, Elham; Mahmoudi, Mahmoud

    2014-12-01

    Sulfur mustard (SM) is an incapacitating chemical warfare agent that was used against Iranian soldiers during the period from 1983 to 1988. We have investigated serum cytokines profiles of Khorasan veterans who were exposed to SM >23 years earlier. Forty-four male Iranian veterans who had >40% disabilities due to delayed complications of SM poisoning and had disabilities were investigated. A total of 30 healthy male volunteers (relatives of the veterans) were selected as the control group. Cytokine levels were measured in the serum of case and control subjects using commercial ELISA kits. Hematologic parameters (white/red blood cell counts, hemoglobin levels, immune cell differentials) were also performed on blood samples from the study subjects. The results indicated that serum levels of ICAM-1 were significantly higher in the samples from SM-exposed veterans (772.8 [± 15.1] ng/ml [p=0.014] vs. control values of 710.2 [± 20.0] ng/ml). On the other hand, serum IL-1β, IL-8 levels and TNFα, were significantly lower for the veterans than the controls (IL-1β: 3.8 [± 0.1] vs. 4.3 [± 0.2] pg/ml, p=0.037; IL-8: 21.0 [± 6.1] vs. 84.6 [± 20.3] pg/ml, p=0.002; TNFα: 4.5 [± 0.1] vs. 5.5 [± 0.1] pg/ml, p=0.027). Levels of other assayed cytokines, e.g., IL-2, -4, -5, -6, -10, and -12, IFNγ, TNFβ, and sVCAM-1 were not significantly different between the study populations. None of the assayed hematologic parameters appeared to differ as well. It seems possible that dysfunctions could have been induced in the innate immune functions of the SM-exposed veterans as a result of these changes in cytokine expression and that these, in turn, may have contributed to the increased incidence of a myriad of diseases that have been documented in these veterans, including cancers. Future studies must focus on examining the significance of these changes in circulating cytokines and their potential contribution to the development of different diseases in veterans exposed to SM.

  7. Sulfur Mustard

    MedlinePlus

    ... CDC.gov . Specific Hazards Bioterrorism A-Z Anthrax (Bacillus anthracis) Arenaviruses Treatment & Infection Control Specimen Submission & Lab Testing Education & Training Related Bioterrorism Resources Bacillus anthracis (Anthrax) Botulism (Clostridium botulinum toxin) Brucella species ( ...

  8. Cancer Events After Acute or Chronic Exposure to Sulfur Mustard: A Review of the Literature

    PubMed Central

    Razavi, Seyed Mansour; Abdollahi, Mohammad; Salamati, Payman

    2016-01-01

    Background: Sulfur mustard (SM) has been considered as a carcinogen in the laboratory studies. However, its carcinogenic effects on human beings were not well discussed. The main purpose of our study is to assess carcinogenesis of SM following acute and/or chronic exposures in human beings. Methods: The valid scientific English and Persian databases including PubMed, Web of Science, Scopus, IranMedex, and Irandoc were searched and the collected papers reviewed. The used keywords were in two languages: English and Persian. The inclusion criteria were the published original articles indexed in above-mentioned databases. Eleven full-texts out of 296 articles were found relevant and then assessed. Results: Studies on the workers of the SM factories during the World Wars showed that the long-term chronic exposure to mustards can cause a variety of cancers in the organs such as oral cavity, larynx, lung, and skin. Respiratory system was the most important affected system. Acute single exposure to SM was assumed as the carcinogenic inducer in the lung and blood and for few cancers including basal cell carcinoma and squamous cell carcinoma. Conclusions: SM is a proven carcinogen in chronic situations although data are not enough to strongly conclude in acute exposure. PMID:27280012

  9. Ethylene Potentiates Sulfur-Mediated Reversal of Cadmium Inhibited Photosynthetic Responses in Mustard

    PubMed Central

    Khan, Nafees A.; Asgher, Mohd; Per, Tasir S.; Masood, Asim; Fatma, Mehar; Khan, M. I. R.

    2016-01-01

    The potential of exogenous ethylene and sulfur (S) in reversal of cadmium (Cd)-inhibited photosynthetic and growth responses in mustard (Brassica juncea L. cv. Pusa Jai Kisan) were studied. Plants grown with 50 μM Cd showed increased superoxide and H2O2 accumulation and lipid peroxidation together with increased activity of 1-aminocyclopropane carboxylic acid synthase (ACS) and ethylene production and inhibition of photosynthesis and growth. Application of 1 mM SO42- or 200 μL L-1 ethephon (ethylene source) influenced photosynthetic and growth performance equally in presence or absence of Cd. However, their combined application synergistically improved photosynthetic performance more in presence of Cd and reduced oxidative stress (lower superoxide and H2O2 accumulation) by decreasing ethylene and glucose sensitivity with the increase in cysteine and methionineand a non-proteinogenic thiol (reduced glutathione; GSH) contents. The central role of ethylene in potentiating S-mediated reversal of Cd-induced oxidative stress was evident with the use of ethylene action inhibitor, norbornadiene (NBD). The application of NBD resulted in decreased thiol production and photosynthetic responses. This suggests that ethylene promotes the effects of S in reversal of adverse effects of Cd, and thus, ethylene modulation may be considered as potential tool to substantiate the S effects in reversal of Cd inhibited photosynthesis and growth in mustard. PMID:27853462

  10. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception.

  11. Development of a liquid chromatography-multiple reaction monitoring procedure for concurrent verification of exposure to different forms of mustard agents.

    PubMed

    Yeo, Thong-Hiang; Ho, Mer-Lin; Loke, Weng-Keong

    2008-01-01

    A novel liquid chromatography-multiple reaction monitoring (LC-MRM) procedure has been developed for retrospective diagnosis of exposure to different forms of mustard agents. This concise method is able to validate prior exposure to nitrogen mustards (HN-1, HN-2, and HN-3) or sulfur mustard (HD) in a single run, which significantly reduces analysis time compared to separate runs to screen for different mustards' biomarkers based on tandem mass spectrometry. Belonging to one of the more toxic classes of chemical warfare agents, these potent vesicants bind covalently to the cysteine-34 residue of human serum albumin. This results in the formation of stable adducts whose identities were confirmed by a de novo sequencing bioinformatics software package. Our developed technique tracks these albumin-derived adduct biomarkers in blood samples which persist in vitro following exposure, enabling a detection limit of 200 nM of HN-1, 100 nM of HN-2, 200 nM of HN-3, or 50 nM of HD in human blood. The CWA-adducts formed in blood samples can be conveniently and sensitively analyzed by this MRM technique to allow rapid and reliable screening.

  12. Evidence of VX nerve agent use from contaminated white mustard plants.

    PubMed

    Gravett, Matthew R; Hopkins, Farrha B; Self, Adam J; Webb, Andrew J; Timperley, Christopher M; Baker, Matthew J

    2014-08-08

    The Chemical Weapons Convention prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by Member States. Verification of compliance and investigations into allegations of use require accurate detection of chemical warfare agents (CWAs) and their degradation products. Detection of CWAs such as organophosphorus nerve agents in the environment relies mainly upon the analysis of soil. We now present a method for the detection of the nerve agent VX and its hydrolysis products by gas chromatography and liquid chromatography mass spectrometry of ethanol extracts of contaminated white mustard plants (Sinapis alba) which retained the compounds of interest for up to 45 days. VX is hydrolysed by the plants to ethyl methylphosphonic acid and then to methylphosphonic acid. The utility of white mustard as a nerve agent detector and remediator of nerve agent-polluted sites is discussed. The work described will help deter the employment of VX in conflict.

  13. Evidence of VX nerve agent use from contaminated white mustard plants

    PubMed Central

    Gravett, Matthew R.; Hopkins, Farrha B.; Self, Adam J.; Webb, Andrew J.; Timperley, Christopher M.; Baker, Matthew J.

    2014-01-01

    The Chemical Weapons Convention prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by Member States. Verification of compliance and investigations into allegations of use require accurate detection of chemical warfare agents (CWAs) and their degradation products. Detection of CWAs such as organophosphorus nerve agents in the environment relies mainly upon the analysis of soil. We now present a method for the detection of the nerve agent VX and its hydrolysis products by gas chromatography and liquid chromatography mass spectrometry of ethanol extracts of contaminated white mustard plants (Sinapis alba) which retained the compounds of interest for up to 45 days. VX is hydrolysed by the plants to ethyl methylphosphonic acid and then to methylphosphonic acid. The utility of white mustard as a nerve agent detector and remediator of nerve agent-polluted sites is discussed. The work described will help deter the employment of VX in conflict. PMID:25104906

  14. Zinc oxide nanocubes as a destructive nanoadsorbent for the neutralization chemistry of 2-chloroethyl phenyl sulfide: A sulfur mustard simulant.

    PubMed

    Kiani, Armin; Dastafkan, Kamran

    2016-09-15

    Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes.

  15. Nitrogen mustard hydrochloride-induced acute respiratory failure and myelosuppression: A case report

    PubMed Central

    ZHANG, XIAOJUAN; ZHANG, ZHIDAN; CHEN, SONG; ZHAO, DONGMEI; ZHANG, FANGXIAO; HU, ZIWEI; XIAO, FENG; MA, XIAOCHUN

    2015-01-01

    Nitrogen mustards are chemical agents that are similar to sulfur mustards, with similar toxicities. The present study describes a case of nitrogen mustard-induced acute respiratory failure and myelosuppression in a 33-year-old man. The patient, who was accidentally exposed to nitrogen mustard hydrochloride in a pharmaceutical factory, exhibited severe inhalation injury and respiratory symptoms. Laboratory tests revealed reduced white blood cell counts and lowered platelet levels during the first 6 days after the skin exposure to nitrogen mustard. Following treatment with mechanical ventilation, immunity-enhancing agents and nutritional supplements for 1 month, the patient successfully recovered and was released from hospital. PMID:26622480

  16. Mustards and Vesicants

    SciTech Connect

    Young, Robert A; Bast, Cheryl B

    2009-01-01

    Vesicants (sulfur mustards, lewisite, and nitrogen mustards) are chemicals that cause blistering of the skin. Developed as chemical warfare agents, their biological activity is complex and not fully understood. These vesicants in liquid or vapor form are capable of causing injury to most any tissue. Contact with the skin results in erythema and blistering. Exposure to vapors produces ocular and respiratory effects which occur at exposures below those causing dermal effects. Systemic and long-lasting effects may occur, especially following acute exposures that result in severe injury. Multi-organ involvement and fluid loss shock resulting in death may follow severe exposures. As alkylating agents, all of the mustards are known or potential carcinogens. The carcinogenic potential of lewisite in humans is equivocal. Toxicity data in animals are available for the vesicants although data on sulfur mustard and lewisite are more extensive than for the nitrogen mustards. Data from tests with human volunteers and occupational exposure information are also available. These data collectively have provided a basis for the development of exposure standards, guidelines, and criteria for use in emergency planning and emergency response, and remediation efforts. The mode of action of the vesicants is complex, not fully understood, and represents an ongoing area of investigation especially with respect to treatment of vesicant-induced injury. Prevention of exposure and decontamination are critical initial steps in eliminating or minimizing injury. With the exception of arsenic chelating antidotes (e.g., British anti-lewisite; BAL) for lewisite, no antidotes exist for the vesicant agents. Medical management currently focuses on palliative treatment of signs and symptoms.

  17. The Mixture of Salvianolic Acids from Salvia miltiorrhiza and Total Flavonoids from Anemarrhena asphodeloides Attenuate Sulfur Mustard-Induced Injury.

    PubMed

    Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping

    2015-10-15

    Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p<0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries.

  18. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-01-01

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. PMID:23357548

  19. A simple degradation method for sulfur mustard at ambient conditions using nickelphthalocyanine incorporated polypyrrole modified electrode

    NASA Astrophysics Data System (ADS)

    Sharma, Pushpendra K.; Sikarwar, Bhavna; Gupta, Garima; Nigam, Anil K.; Tripathi, Brijesh K.; Pandey, Pratibha; Boopathi, Mannan; Ganesan, Kumaran; Singh, Beer

    2014-01-01

    Electrocatalytic degradation of sulfur mustard (SM) was studied using a gold electrode modified with nickelphthalocyanine and polypyrrole (NiPc/pPy/Au) in the presence of a cationic surfactant cetyltrimethyl ammonium bromide. Several techniques such as cyclic voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy have been employed for the characterization of modified electrodes. NiPc/pPy/Au modified electrode exhibited excellent electrochemical sensing and degradation ability towards SM. The present modification indicated two electron involvements in the electrocatalytic degradation of SM in addition to being an irreversible adsorption controlled process. Degraded products were identified by gas chromatography-mass spectrometry. Moreover, electrochemical parameters of oxidation of SM such as heterogeneous rate constant (0.436 s-1), transfer coefficient (0.47) and the number of electrons involved (2) were deduced from cyclic voltammetry results. The NiPc/pPy/Au modified electrode showed excellent electrocatalytic degradation towards SM when compared to bare gold, pPy/Au and NiPc/Au modified electrode at ambient conditions.

  20. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard

    PubMed Central

    Fatma, Mehar; Masood, Asim; Per, Tasir S.; Khan, Nafees A.

    2016-01-01

    The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg−1 soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but combined application of NO and S resulted in well-developed chloroplast thylakoids and properly stacked grana. The leaves from plants receiving NO plus S exhibited lower superoxide ion accumulation under salt stress than the plants receiving NO or S. These plants also exhibited increased activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants receiving NO plus S resulted in increased production of cysteine (Cys) and reduced glutathione (GSH). These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation. The results suggest that NO improves photosynthetic performance of plants grown under salt stress more effectively when plants received S. PMID:27200007

  1. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.

    PubMed

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young

    2017-01-01

    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and (13)C nuclear magnetic resonance ((13)C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment.

  2. The effect of vitamin E on lung pathology in sulfur mustard-exposed guinea pigs.

    PubMed

    Gholamnezhad, Zahra; Boskabady, Mohammad Hossein; Amery, Sediqa; Vahedi, Nassim; Tabatabaei, Abass; Boskabady, Morteza; Shahriary, Alireza

    2016-12-01

    Pulmonary complications of exposure to sulfur mustard (SM) gas range from no effect or mild symptoms to severe bronchial stenosis. In the present study, the protective effect of vitamin E on the lung inflammation of SM-exposed guinea pigs was examined. Guinea pigs (n = 5 for each group) were exposed to ethanol (control group), 40 mg/m(3) inhaled SM (SME group), SME treated with vitamin E (SME + E), SME treated with dexamethasone (SME + D), and SME treated with both treatments (SME + E + D). Pathological evaluation of the lung was done 14 days postexposure. The epithelial desquamation of trachea and other pathologic changes in the lung of the SME group were significantly higher than those in the control group. Furthermore, the pathological changes of trachea and lung in the SME + E and SME + E + D groups were significantly improved compared with those of SME group. In addition, the pathological changes of trachea and lung of SME + E and SME + E + D animals were significantly less than those of SME + D group.

  3. Topical sulfur mustard induces changes in prostaglandins and interleukin-1 alpha in isolated perfused porcine skin

    SciTech Connect

    Zhang, Z.; Riviere, J.E.; Monteiro-Rivier, N.A.

    1995-12-01

    Su1fur mustard BIS(2-CHLOROETHYL) SULFIDE, HD is an alkylating agent that causes severe cutaneous injury. The isolated perfused porcine skin flap (IPPSF) is an in vitro model that has been utilized in cutaneous toxicity research. The objective of this study was to characterize the local IPPSF inflammatory response after topical exposure to 5.0 and 10.0 mg/ml of I (n = 5/treatment, n = 5/control). Biochemical markers of viability CUMULATIVE GLUCOSE UTILIZATION (CGU), vascular resistance (VR), morphological parameters, and venous flux of prostaglandin E2 (PGE2), prostaglandin F2% (PGF2%, and interleukin la (IL la)) were determined. HD caused a dose-related response in the formation of gross blisters, and epidermal-dermal separation. Decreases in CGU and an increase in VR were seen in all HD-treated IPPsFs. Increase of both PGE2 and PGF2a was observed only in 5.0 mg/ml HD treatment, which showed the greatest increase in VR, while the 10.0 mg/nil concentration of HD enhanced the release of IL-1a. These results suggest that HD is a potent dermal toxic agent that induces alterations in glucose metabolism and vascular resistance, which resulted in dose-specific patterns of PGE2, PGF2a and IL-la release.

  4. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  5. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    SciTech Connect

    Gerecke, Donald R. Chen Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Y.-C.; Tong Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2009-01-15

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors.

  6. Salivary levels of secretary IgA, C5a and alpha 1-antitrypsin in sulfur mustard exposed patients 20 years after the exposure, Sardasht-Iran Cohort Study (SICS).

    PubMed

    Yarmohammadi, Mohammad Ebrahim; Hassan, Zuhair Mohammad; Mostafaie, Ali; Ebtekar, Massoumeh; Yaraee, Roya; Pourfarzam, Shahryar; Jalali-Nadoushan, Mohammadreza; Faghihzadeh, Soghrat; Vaez-Mahdavi, Mohammad-Reza; Soroush, Mohammad-Reza; Khamesipour, Ali; Faghihzadeh, Elham; Sharifnia, Zarin; Naghizadeh, Mohammad-Mehdi; Ghazanfari, Tooba

    2013-11-01

    Sulfur mustard (SM) is a strong toxic agent that causes acute and chronic health effects on a myriad of organs following exposure. Although the primary targets of inhaled mustard gas are the epithelia of the upper respiratory tract, the lower respiratory tract is the focus of the current study, and upper tract complications remain obscure. To our knowledge there is no study addressing the secretory IgA (S-IgA), C5a, alpha 1 antitrypsin (A1AT) in the saliva of SM-exposed victims. In this study, as many as 500 volunteers, including 372 SM-exposed cases and 128 control volunteers were recruited. A 3 ml sample of saliva was collected from each volunteer, and the level of secretory IgA, C5a, and alpha 1 antitrypsin in the samples were compared between the two groups. The SM-exposed group showed a significantly higher amount of salivary alpha 1 antitrypsin and secretary IgA compared to the control group (p<.006 and p<.018 respectively). The two groups showed no significant difference (p=0.192) in the level of C5a. The results also showed that the level of salivary A1AT is more than that of IgA in severely injured cases. The findings presented here provide valuable insight for both researchers and practitioners dealing with victims of the chemical warfare agent, sulfur mustard. This research indicates that certain branches of the inflammatory processes mandate serious attention in therapeutic interventions.

  7. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  8. Comparison of toxicity of selected mustard agents by percutaneous and subcutaneous routes.

    PubMed

    Sharma, Manoj; Vijayaraghavan, R; Ganesan, K

    2008-12-01

    Comparative toxicity of nitrogen mustards (HN-1, HN-2 and HN-3) and sulphur mustard was carried out in mice. Based on LD50, the toxicity pattern was HN-2 < HN-1 < HN-3 < sulphur mustard by percutaneous route whereas, by subcutaneous route the toxicity pattern was sulphur mustard < HN-3 < HN-2 < HN-1. Single dose of 1 LD50 of nitrogen mustards and sulphur mustard was administered percutaneously and various oxidative stress parameters were also evaluated. The weight loss was more in HN-2 on day 3 and in sulphur mustard on day 7. There was a drastic fall of WBC count on day 3 in all groups with a recovery in nitrogen mustard groups on day 7. The RBC count and haemoglobin content showed a significant increase on day 7 in sulphur mustard group. The plasma enzymes (ALT, AST and ALP) showed an increase in all groups on day 3 and day 7. The hepatic GSH and GSSG contents were reduced and MDA content increased in all groups, with a further change in sulphur mustard on 7 day. Extensive DNA fragmentation was observed in all the nitrogen mustard groups compared to sulphur mustard group, on day 3. However, on the day 7 the DNA fragmentation was same in all groups. This study showed that the nitrogen mustards and sulphur mustard were extremely toxic by percutaneous route and caused oxidative stress. Sulphur mustard was more toxic by the percutaneous route and the effects were delayed and progressive.

  9. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    SciTech Connect

    Rancourt, Raymond C. Veress, Livia A. Ahmad, Aftab Hendry-Hofer, Tara B. Rioux, Jacqueline S. Garlick, Rhonda B. White, Carl W.

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI

  10. Trans-Dermal Fentanyl Patches are a Cost-Effective Method of Long-Term Analgesic Delivery Following Corneal Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2012-01-01

    T., 2000. Beneficial effects of topical anti - inflammatory drugs against sulfur mustard-induced ocular lesions in rabbits. J Appl Toxicol 20 Suppl 1...nibble at food and readily consume fresh fruits and vegetables , although like most animals they exhibit individual preferences. Evidence of a lack of

  11. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  12. Evaluation of protective ointments used against dermal effects of nitrogen mustard, a vesicant warfare agent.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Yuksel, Altan; Gunhan, Omer; Kose, Songul; Kurt, Bulent

    2005-01-01

    Mustard, a vesicant warfare agent, has cytotoxic, mutagenic, and cytostatic effects via alkylation of DNA and inhibition of DNA replication. Since symptoms appear following a latent period, it can cause some subacute and chronic effects to occur and delay in the treatment. Therefore, the main approach should be the use of protective preparation to reduce the skin toxicity. Thus, this study was conducted in guinea pigs (350-400 g) shaved in areas of 10 x 10 cm. Mechlorethamine HCl (100 mg), a nitrogen mustard derivative, in ethanol was applied by spraying on hairless regions where previously prepared pharmaceutical topical formulations were medicated before. The experimental regions of the animals were kept preserved from environmental factors. Forty-eight hours after the application of the protective ointments and mechlorethamine consecutively, skin-damaging effects were macroscopically evaluated in terms of erythema formation, ulceration, necrosis, and inflammation occurrences. Then, punch biopsy was performed from these damaged sites for histopathological evaluation. Although numerous topical formulations were prepared and tested for protection, according to microscopic examination of the pathologic sections, tissue specimen treated with the ointment containing the mixture of zinc oxide, zinc chloride, dimethylpolysiloxane in a base of petroleum jelly was determined as being the most effective protective against skin injury caused by the vesicant agent.

  13. Desorption of bis(2-chloroethyl) sulfide, mustard agent, from the surface of hardened cement paste (HCP) wafers.

    PubMed

    Tang, Hairong; Zhou, Xuezhi; Guan, Yingqiang; Zhou, Liming; Wang, Xinming; Yan, Huijuan

    2013-05-01

    The decontamination of surfaces exposed to chemical warfare agents is an interesting scientific topic. The desorption behavior of bis(2-chloroethyl) sulfide (sulfur mustard, HD) from the surface of the HD-contaminated hardened cement paste (HCP) was investigated under different weather conditions, which should provide scientific reference data for protection and decontamination projects involving HD-contaminated HCP in different conditions. The desorption of HD from the surface of HCP wafers was studied, and the effects of the purge air flow rate, water content, sorption temperature, and substrate age were investigated. HD desorption was detected from the surface of HD-contaminated HCP, but the desorption velocity was relatively slow. The desorption quantity remained within an order of magnitude throughout a time span of 36h (25°C at 200mL/min of purge air), and the amount of HD that was desorbed from each square meter of HCP surface was approximately 1.1g (25°C at 200mL/min of purge air), which was approximately 5.5 percent of the total HD that was initially applied. A higher flow rate of the purge air, increased water content, and longer substrate age of HCP all increased the HD desorption. In contrast, increased temperatures suppressed HD desorption.

  14. Veterans at risk: The health effects of mustard gas and lewisite

    SciTech Connect

    Pechura, C.M.; Rall, D.P.

    1993-01-01

    So vivid were the memories of the first use of mustard gas (sulfur mustard) by the Germans in World War I that the United States government began to prepare for chemical warfare even before the Japanese attacked Pearl Harbor in 1941. This work was also spurred by the fury of war in Europe and reports of Japanese use of sulfur mustard against the Chinese. The US preparations included the establishment of war-related research programs organized by President Roosevelt under the White House Office of Scientific Research and Development (OSRD). Two groups under the OSRD became involved in secret testing programs concerned with mustard agents (Sulfur and nitrogen mustard) and Lewisite: The Committee on Medical Research; This group studied protective ointments and other treatments through the National Research Council's Committee on Treatment of Gas Casualties, and The National Defense Research Committee; This group studied protective clothing and gas masks through military units such as the Chemical Warfare Service.

  15. Evaluation of risk assessment guideline levels for the chemical warfare agents mustard, GB, and VX.

    PubMed

    Hartmann, Heidi M

    2002-06-01

    The U.S. Army has estimated acute lethality guideline levels for inhalation of the chemical warfare agents mustard, GB, and VX. These levels are expressed as dosages measured in milligram-minutes per cubic meter (mg-min/m(3)). The National Advisory Council has also proposed acute emergency guideline levels (AEGLs) for the agents. The AEGLs are threshold exposure limits for the general public for mild effects, serious adverse effects, and lethality. They are expressed as air concentrations (in units of mg/m(3)) and are applicable to emergency exposure periods ranging from 10 min to 8 h. The report discusses strengths and deficiencies in the levels, important parameters (i.e., exposure time, breathing rate) that need to be explicitly addressed in deriving the guideline levels, and possible impacts that could result from using AEGLs instead of guideline dosages in future assessments.

  16. Domestic Preparedness Program: Phase 2 Sarin (GB) and Distilled Sulfur Mustard (HD) Vapor Challenge Testing of Commercial Self-Contained Breathing Apparatus Facepieces

    DTIC Science & Technology

    2005-03-01

    GB Mustard HD Self-Contained Breathing Apparatus Sarin Chemical Agent Breakthrough SCBA Agent Challenge Testing ...emergency escape breathing apparatus. 3. CHEMICAL AGENT TESTING 3.1 Chemical Agent Testing Equipment. 3.1.1 Vapor Generator. The GB and HD vapors were... agent seeped inside the other two within 4 min. For all three tests , the North Model 821 resisted HD for 60 min and GB for 25, 28, and 32 min.

  17. Comparative study of Unna's Boot and betamethasone cream in the treatment of sulfur mustard-related pruritus.

    PubMed

    Shohrati, Majid; Davoudi, Masoud; Almasi, Mahmoud; Sadr, Bardia; Peyman, Mohammadreza

    2007-01-01

    Pruritus, as a chronic lesion caused by sulfur mustard, is a common problem among chemical weapons veterans. Numerous treatments like antihistamines, local anesthetics, and corticosteroids have been prescribed in order to control pruritus in these patients, while long- term and widespread use of each one of them has its own restrictions. Nowadays different mixtures, including Unna's Boot, are being used. They are effective and have limited adverse effects. So in this study we compared this product with corticosteroids. In this double-blind randomized clinical trial in Baqyiatallah hospital, 90 veterans were included and randomly divided into three groups. Subjects of each group received one of the Betamethasone %1 cream, Unna's Boot cream, or placebo cream for three weeks. They used their medication on an itching area of body, one finger tip unit every night. To evaluate the drugs' efficacy we used pruritus score index and Visual Analysis Score index. From 90 patients, 75 patients completely used the medication and the other 15 subjects were excluded from the study. All three drugs caused significant decrease in both pruritus score and VAS (p < .001). Betamethasone and Unna's Boot were significantly more effective than placebo and despite more efficacy of betamethasone rather than Unna's Boot, they did not have any significant differences (p > .05). Pruritus is a chronic lesion in veterans that needs long-term conservation treatment. Regarding definite side effects of local long-term therapy with corticosteroids and nearly equal efficacy of Unna's Boot and betamethasone, Unna's Boot seems to be a better choice in controlling sulfur mustard-related pruritus compared with betamethason.

  18. The effect of vitamin E on tracheal responsiveness and lung inflammation in sulfur mustard exposed guinea pigs.

    PubMed

    Boskabady, Mohammad Hossein; Amery, Sediqa; Vahedi, Nassim; Khakzad, Mohammad Reza

    2011-02-01

    Pulmonary complications of sulfur mustard (SM) range from mild respiratory symptoms to even severe bronchial stenosis. In the present study, the protective effect of vitamin E on tracheal responsiveness (TR) and lung inflammation of SM-exposed guinea pigs were examined. Guinea pigs were exposed to ethanol (control group), 40 mg/m(3) inhaled SM and ethanol vehicle (sulfur mustard exposed (SME) group), SME treated with vitamin E (SME + E), SME with dexamethasone (SME + D) and both drugs (SME + E + D), (n = 8 for each group). TR to methacholine, total and differential white blood cell (WBC) count of lung lavage and serum cytokines were evaluated 14 days post-exposure. TR, WBC, interleukin 4 (IL-4), interferon gamma (INF-γ), eosinophil, and monocyte levels in SME guinea pigs were significantly higher, but lymphocyte was lower than those of controls (P < 0.05 to P < 0.001). TR, IL-4, and eosinophil levels in SME + E, SME + D and SME + E + D, INF-γ in SME + E and SME + E + D and WBC in SME + E were significantly decreased compared to that of the SME group (P < 0.01 to P < 0.001). In addition, the TR of SME + D + E was significantly higher than that of SME + E (P < 0.01) and SME + D (P < 0.05) groups. The results showed a preventive effect of vitamin E, dexamethasone and their combination on TR and lung inflammation in SME guinea pigs.

  19. Effects of Prednisolone Acetate on Ocular Sulfur Mustard Injury in a Rabbit Model

    DTIC Science & Technology

    2003-12-01

    perforations can be a potential risk. Steriods can greatly potentiate the effects of collagenase activity, resulting in severe destruction (melting...for mustard-induced ocular injury. Steriods are often used in combination but the effects ofjust the steroids alone have only been studied in a...of animals, it seemed likely that the steriod did have a contributing role particularly in corneas that were thinning and attempting to regenerate

  20. Site Plan Safety Submission for Sampling, Monitoring and Decontamination of Mustard Agent, South Plant, Rocky Mountain Arsenal. Volume 1

    DTIC Science & Technology

    1988-10-01

    Mustard is an insidious vesicant or blistering agent and has been identified as carcinogenic , mutagenic, and teratogenic. The agent’s garlic-like odor...butyl rubber . " Nonstandard gloves will be used only in a manner which prohibits intentional contact and has low potential for unintentional contact... rubber impermeable protective clothing will burn and does not possess self-extinguishing properties. Therefore, contact with an SPSS Plan - South Plant

  1. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  2. A novel decontaminant and wound healant formulation of N,N'-dichloro-bis[2,4,6-trichlorophenyl]urea against sulfur mustard-induced skin injury.

    PubMed

    Lomash, Vinay; Pant, Satish C

    2014-01-01

    Sulfur mustard (SM)-induced dermatotoxicity can be prevented by an immediate use of decontamination agents. However, practically due to the time lapse between decontamination and exposure, there is always a possibility of wound formation. In view of this, a hydrophilic decontamination formulation of CC-2 (DRDE/WH-03) was fortified with Aloe vera gel and betaine (DRDE/WH-01) for improving its wound healing ability. Swiss albino mice were exposed to SM percutaneously (5 mg/kg) once, and after 24 hours, DRDE/WH-01, DRDE/WH-03, framycetin, and aloe gel were applied topically, daily for 7 days. Skin sections were subjected to histopathology, histomorphologic grading, tissue leukocytosis, and immunohistochemistry of inflammatory-reparative biomarkers on 3 and 7 days, respectively. DRDE/WH-01, framycetin, and aloe gel showed better reepithelialization, angiogenesis, and fibroplasia compared with DRDE/WH-03 and SM control. On the basis of histomorphologic scale, DRDE/WH-01, framycetin, and aloe gel were found to be equally efficacious. Up-regulation of interleukin-6 and infiltrating leukocytes, endothelial nitric oxide synthase and angiogenesis, fibroblast growth factor, and transforming growth factor-alpha with fibroplasia and reepithelialization were well correlated at various stages of the healing process. DRDE/WH-01 was equally effective as framycetin and has shown improved wound healing efficacy compared with DRDE/WH-03. Thus, DRDE/WH-01 can be recommended as a universal decontaminant and wound healant against vesicant-induced skin injury.

  3. Site Plan Safety Submission for Sampling, Monitoring, and Decontamination of Mustard Agent - South Plant, Rocky Mountain Arsenal. Volume 1

    DTIC Science & Technology

    1988-10-01

    of Hazard and Physiolo&ical Effects Mustard is an insidious vesicant or blistering agent and has been identified as carcinogenic , mutagenic, and...in laboratory operations involving solvents incompatible with butyl rubber . 0 Nonstandard gloves will be used only in a manner which prohibits...will be monitored before delivery to the laundry. Butyl rubber impermeable protective clothing will burn and does not possess self-extinguishing

  4. Helium:oxygen versus air:oxygen noninvasive positive-pressure ventilation in patients exposed to sulfur mustard.

    PubMed

    Ghanei, Mostafa; Rajaeinejad, Mohsen; Motiei-Langroudi, Rouzbeh; Alaeddini, Farshid; Aslani, Jafar

    2011-01-01

    Exposure to sulfur mustard (SM) causes a variety of respiratory symptoms, such as chronic bronchitis and constrictive bronchiolitis. This study assessed the effectiveness of noninvasive positive-pressure ventilation, adjunct with 79:21 helium:oxygen instead of 79:21 air:oxygen, in 24 patients with a previous exposure to SM presenting with acute respiratory failure. Both air:oxygen and helium:oxygen significantly decreased systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse rate, respiratory rate, dyspnea, and increased oxygen saturation (P values: .007, .029, .002, <.001, <.001, <.001, and .002 for air:oxygen, respectively, and <.001, .020, .001, <.001, <.001, <.001, and .002, for helium:oxygen, respectively). Moreover, helium:oxygen more potently improved systolic pressure, mean arterial pressure, pulse rate, respiratory rate, and dyspnea (P values: .012, .048, <.001, <.001, and .012, respectively). The results of our study support the benefit of using helium:oxygen adjunct with noninvasive positive-pressure ventilation in patients exposed to SM with acute respiratory decompensation.

  5. Protection against the acute and delayed toxicities of sulfur mustard. Final report, 4 December 1992-3 March 1996

    SciTech Connect

    Ludlum, D.B.

    1996-04-01

    Based on the chemotherapeutic literature and cell culture studies of sulfur mustard (SM) toxicity reported here, we believe that DNA repair mechanisms act as cellular defenses against SM toxicity. Cell culture studies show that survival is increased by the nucleotide excision repair mechanism while biochemical studies show that human as well as bacterial glycosylase enzymes can release two SM- induced DNA adducts: 7-hydroxyethylthioethyl guanine and 3-hydroxyethylthioethyl adenine. The growth of cultured human fibroblasts exposed to 10 uM SM appears to be enhanced in comparison with cells incubated continuously at 37 deg C by subjecting them to a period of hypothermia at 28 deg C before returning them to 37 deg C incubation. Cells held at 28 deg C undergo cell cycle arrest and we believe that this arrest may allow more time for DNA repair before the next round of cell division, thus enhancing survival. Concurrently, we have developed a 32P-postlabeling method that can detect one 7-hydroxy-ethylthioethyl guanine in 10(6) DNA nucleotides in DNA extracted from SM-exposed cells. This method should prove useful in both exposure and DNA repair studies.

  6. Time course of lesion development in the hairless guinea-pig model of sulfur mustard-induced dermal injury

    PubMed Central

    Benson, Janet M.; Seagrave, JeanClare; Weber, Waylon M.; Santistevan, Colleen D.; Grotendorst, Gary R.; Schultz, Gregory S.; March, Thomas H.

    2013-01-01

    The objective of these studies was to provide detailed analyses of the time course of sulfur mustard (SM) vapor-induced clinical, histological, and biochemical changes following cutaneous exposure in hairless guinea-pigs. Three 6cm2 sites on the backs of each guinea-pig were exposed to SM vapor (314 mg3) for 6 minutes (low dose) or 12 minutes (high dose). Animals were killed at 6, 24, and 48 hours, or 2 weeks postexposure. Erythema, edema, histopathology, and analysis of matrix metalloproteinase (MMP)-2 and -9 content were evaluated. Erythema was observed by 6 hours, and edema by 24 hours postexposure. Vapor exposure caused epidermal necrosis with varying degrees of dermatitis, ulceration, hemorrhage, and separation of the dermis from the epidermis. Later changes included epidermal regeneration with hyperplasia and formation of granulation tissue in the dermis with loss of hair follicles and glandular structures. Relative amounts of pro and active MMP-2 and MMP-9 were significantly increased in the high-dose SM group at 2 weeks. Erythema, edema, and histologic changes are consistent with findings among human victims of SM attack. This model, with observations to 2 weeks, will be useful in assessing the efficacy of countermeasures against SM. PMID:21410818

  7. Use of epr spin-trapping techniques to detect radicals from rat lung lavage fluid following sulfur mustard vapor exposure

    SciTech Connect

    Anderson, D.R.; Yourick, J.J.; Arroyo, C.M.; Young, G.D.; Harris, L.W.

    1993-05-13

    Although well known for skin vesicating properties, pulmonary damage and associated infections account for most of the mortality associated with sulfur mustard (HD). We have employed an in vivo HD vapor exposure model, bronchoalveolar lavage and histopathology in conjunction with electron paramagnetic resonance (EPR) techniques to provide evidence for HD-induced (free radical/lipid peroxidation associated) lung injury. Anesthetized rats were intratracheally intubated and exposed to 0.35 mg HD vapor over 50 min. Immediately, 1 hr or 24 hr after exposure, lungs were lavaged with the spin trap, alpha-phenyl-t-butyl nitrone (PBN; 0.35 mg/ml). Recovered lavage fluid was assayed by EPR spectroscopy for radical spin adducts. Airway lipid extracts were assayed for thiobarbituric acid reactive products (TBARs); while separate groups of rats were used to evaluate histopathology. EPR results show the presence of an ascorbyl radical at 1 and 24 hr, and a carbon centered PBN spin adduct at 24 hr, both indicative of lipid peroxidation. TBAR (A532nm) formation was also detected at 24 hr. Histopathology revealed multifocal separation of the bronchial epithelium from the submucosa with little or no alveolar involvement at 24 hrs. These studies provide evidence that HD may affect lungs by a free radical mechanism which produces membrane and other tissue damage.

  8. Hypochlorite solution as a decontaminant in sulfur mustard contaminated skin defects in the euthymic hairless guinea pig

    SciTech Connect

    Gold, M.B.; Bongiovanni, R.; Scharf, B.A.; Gresham, V.C.; Woodard, C.L.

    1993-05-13

    Hypochlorite solutions are thought to be efficacious when used to topically decontaminate intact skin. However, few studies have examined the efficacy of decontamination of chemically contaminated wounds. Therefore, we compared the decontamination efficacy of sodium hypochlorite (0.5% and 2.5% solutions), calcium hypochlorite (0.5% and 2.5% solutions) and sterile water to untreated controls in wounds exposed to sulfur mustard (HD). Anesthetized euthymic hairless guinea pigs (EHGP) (n=6) were exposed to 0.4 LD50 HD in a full-thickness 8 mm surgical biopsy skin defect (i.e., wound). Each animal was subsequently decontaminated, after a two-minute intra-wound exposure to liquid HD, with one of the decontamination solutions. Decontamination efficacy was determined by the visual grading of the HD-traumatized wound lesion and by comparison of the expected HD-induced leukocyte suppression. Leukocyte suppression was inconsistent in all animals; therefore, the visual grading was the only viable evaluation method. No significant differences were observed among wounds decontaminated with any of the solutions. However, the skin surrounding undecontaminated (but exposed) control animals showed the least visual pathology. The lesions induced following decontamination are presumed to be due to the mechanical flushing HD onto the peri-lesional skin, or by chemical damage induced by the solution, or HD-solution interaction. Further studies are required to best delineate the optimal decontamination process for HD contaminated wounds.

  9. Hypochlorite solution as a decontaminant in sulfur mustard contaminated skin defects in the euthymic hairless guinea pig

    SciTech Connect

    Gold, M.B.; Bongiovanni, R.; Scharf, B.A.; Gresham, V.C.; Woodward, C.L.

    1994-12-31

    Hypochlorite solutions are thought to be efficacious when used to topically decontaminate intact skin. However, few studies have examined the efficacy of decontamination of chemically contaminated wounds. Therefore, we compared the decontamination efficacy of sodium hypochlorite (0.5% and 2.5% solutions), calcium hypochlorite (0.5% and 2.5% solutions) and sterile water to untreated controls in wounds exposed to sulfur mustard (HD). Anesthetized euthymic hairless guinea pigs (EHGP) (n=6) were exposed to 20 mg/kg (approximately 0.4 LD%) HD in a full-thickness 8 mm surgical biopsy skin defect (i.e., wound). Each animal was subsequently decontaminated, after a two-minute intra-wound exposure to liquid HD, with nothing or one of the decontamination solutions. Decontamination efficacy was determined by the visual grading of the HD-traumatized wound lesion and by comparison of the expected HD-induced leukocyte suppression. Leukocyte suppression was inconsistent in all animals; therefore, the visual grading was the only viable evaluation method. No significant differences were observed among wounds decontaminated with any of the solutions. However, the skin surrounding non-decontaminated (but exposed) control animals showed the least visual pathology. The lesions induced following decontamination are presumed to be due to the mechanical flushing of HD onto the peri-lesional skin, or by chemical damage induced by the solution, or ND-solution interaction. Further studies are required to best delineate the optimal decontamination process for HD contaminated wounds.

  10. Role of cytokines and reactive oxygen intermediates in the inflammatory response produced by sulfur mustard. A progress report

    SciTech Connect

    Dannenberg, A.M.; Tsuruta, J.

    1993-05-13

    Cytokines play a major role in both acute and chronic inflammatory processes, including those produced by sulfur mustard (SM). In situ hybridization of the mRNA of various cytokines with radiolabeled antisense RNA probes enables us to visualize under the microscope which cells in tissue sections of SM lesions are producing which type of cytokine. This technique, therefore, demonstrates cell function histologically, even though the cells are no longer alive at the time of analysis. Cytokines from infiltrating phagocytes. We have successfully demonstrated the mRNAs of four major cytokines in developing and healing rabbit SM lesions: Interleukin 1 beta (IL-1 beta), neutrophil attractant/activation protein 1 (NAP-1 or IL-8), monocyte chemoattractant (activating) protein 1 (MCP-1), and GRO, which is macrophage inflammatory protein 2. The macrophage/fibroblast group in the lesions contained the mRNA of all four cytokines, and granulocytes contained the mRNA of IL-1 beta and NAP-1. More cytokine producing cells were present in the peak lesions than in healing lesions.

  11. Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes

    SciTech Connect

    Mol, Marijke A.E. Berg, Roland M. van den; Benschop, Henk P.

    2008-07-01

    Although some toxicological mechanisms of sulfur mustard (HD) have been uncovered, new knowledge will allow for advanced insight in the pathways that lead towards epidermal-dermal separation in skin. In the present investigation, we aimed to survey events that occur at the protein level in human epidermal keratinocytes (HEK) during 24 h after exposure to HD. By using radiolabeled {sup 14}C-HD, it was found that proteins in cultured HEK are significant targets for alkylation by HD. HD-adducted proteins were visualized by two-dimensional gel electrophoresis and analyzed by mass spectrometry. Several type I and II cytokeratins, actin, stratifin (14-3-3{sigma}) and galectin-7 were identified. These proteins are involved in the maintenance of the cellular cytoskeleton. Their alkylation may cause changes in the cellular architecture and, in direct line with that, be determinative for the onset of vesication. Furthermore, differential proteomic analysis was applied to search for novel features of the cellular response to HD. Partial breakdown of type I cytokeratins K14, K16 and K17 as well as the emergence of new charge variants of the proteins heat shock protein 27 and ribosomal protein P0 were observed. Studies with caspase inhibitors showed that caspase-6 is probably responsible for the breakdown of type I cytokeratins in HEK. The significance of the results is discussed in terms of toxicological relevance and possible clues for therapeutic intervention.

  12. Plastic antibody for the recognition of chemical warfare agent sulphur mustard.

    PubMed

    Boopathi, M; Suryanarayana, M V S; Nigam, Anil Kumar; Pandey, Pratibha; Ganesan, K; Singh, Beer; Sekhar, K

    2006-06-15

    Molecularly imprinted polymers (MIPs) known as plastic antibodies (PAs) represent a new class of materials possessing high selectivity and affinity for the target molecule. Since their discovery, PAs have attracted considerable interest from bio- and chemical laboratories to pharmaceutical institutes. PAs are becoming an important class of synthetic materials mimicking molecular recognition by natural receptors. In addition, they have been utilized as catalysts, sorbents for solid-phase extraction, stationary phase for liquid chromatography and mimics of enzymes. In this paper, first time we report the preparation and characterization of a PA for the recognition of blistering chemical warfare agent sulphur mustard (SM). The SM imprinted PA exhibited more surface area when compared to the control non-imprinted polymer (NIP). In addition, SEM image showed an ordered nano-pattern for the PA of SM that is entirely different from the image of NIP. The imprinting also enhanced SM rebinding ability to the PA when compared to the NIP with an imprinting efficiency (alpha) of 1.3.

  13. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    SciTech Connect

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-12-01

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT{sup TM}, a commercially available full-thickness human skin equivalent. CEES (100-1000 {mu}M) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 {mu}M), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE{sub 2} synthases, leukotriene (LT) A{sub 4} hydrolase and LTC{sub 4} synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.

  14. Sulfur Mustard Effects on Mental Health and Quality-of-Life: A Review

    PubMed Central

    Razavi, Seyed Mansour; Negahban, Zahra; Pirhosseinloo, Mohsen; Razavi, Mahdiyeh Sadat; Hadjati, Gholamreza; Salamati, Payman

    2014-01-01

    Objective: Mental disorders are more common among the chemically injured veterans rather the than the normal population. The main aim of this study was to evaluate the effects of mustard gas (MG) on mental health and quality-of-life (QOL) in the people exposed to it based on reviewing valid published articles. Methods: We searched English databases including Medline, ISI and Scopus as well as Farsi databases including Iranmedex and Irandoc and reviewed them. The used keywords were in two English and Farsi languages. Forty related full texts out of more than 300 articles were assessed and for their qualification, only the publications in accredited journals were considered sufficient. Results: The average mental health score of victims using the general health questionnaire (GHQ) was 48.92. The frequency of anxiety was (18-65%), insomnia (13.63%), social performance disturbances (10.73%), severe depression (6-46%), low concentration (54%), emotional problems (98%), behavioral abnormalities (80%), thought processing disturbances (14%), memory impairment (80%), personality disorders (31%), seizures (6%), psychosis (3%). Post-traumatic stress disorder (PTSD) is one of the most common and important disorders with lifetime PTSD (8-59%), current PTSD (2-33%) and the QOL in chemical warfare victims decreased. Conclusion: Exposure to chemical weapons may lead to physical, mental, social, and economic damages and consequently decrease the victims’ (QOL. Therefore, they should be taken into more care. PMID:25780370

  15. Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria petiolata).

    PubMed

    Davis, Adam S; Landis, Douglas A; Nuzzo, Victoria; Blossey, Bernd; Gerber, Esther; Hinz, Hariet L

    2006-12-01

    Nonindigenous invasive plants pose a major threat to natural communities worldwide. Biological control of weeds via selected introduction of their natural enemies can affect control over large spatial areas but also risk nontarget effects. To maximize effectiveness while minimizing risk, weed biocontrol programs should introduce the minimum number of host-specific natural enemies necessary to control an invasive nonindigenous plant. We used elasticity analysis of a matrix model to help inform biocontrol agent selection for garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande). The Eurasian biennial A. petiolata is considered one of the most problematic invaders of temperate forests in North America. Four weevil species in the genus Ceutorhynchus (Coleoptera: Curculionidae) are currently considered potential biocontrol agents. These species attack rosettes (C. scrobicollis), stems (C. roberti, C. alliariae), and seeds (C. constrictus) of A. petiolata. Elasticity analyses using A. petiolata demographic parameters from North America indicated that changes in the rosette-to-flowering-plant transition and changes in fecundity consistently had the greatest impact on population growth rate. These results suggest that attack by the rosette-feeder C. scrobicollis, which reduces overwintering survival, and seed or stem feeders that reduce seed output should be particularly effective. Model outcomes differed greatly as A. petiolata demographic parameters were varied within ranges observed in North America, indicating that successful control of A. petiolata populations may occur under some, but not all, conditions. Using these a priori analyses we predict: (1) rosette mortality and reduction of seed output will be the most important factors determining A. petiolata demography; (2) the root-crown feeder C. scrobicollis will have the most significant impact on A. petiolata demography; (3) releases of single control agents are unlikely to control A. petiolata across

  16. Pathogenesis of Acute and Delayed Corneal Lesions after Ocular Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2012-01-01

    2000) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 299: 39–46. 28. Pal-Ghosh...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Pathogenesis of acute and delayed corneal lesions after ocular exposure to 5a. CONTRACT NUMBER sulfur...involves a progressive corneal degeneration resulting in chronic ocular discomfort and impaired vision for which clinical interventions have typically

  17. EPA Science Matters Newsletter: Chemical Warfare Agent Analytical Standards Facilitate Lab Testing (Published November 2013)

    EPA Pesticide Factsheets

    Learn about the EPA chemists' efforts to develop methods for detecting extremely low concentrations of nerve agents, such as sarin, VX, soman and cyclohexyl sarin, and the blister agent sulfur mustard.

  18. DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258)

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1994-12-09

    A series of nitrogen mustard analogues of the DNA minor groove binding fluorophore pibenzimol (Hoechst 33258) have been synthesized and evaluated for antitumor activity. Conventional construction of the bisbenzimidazole ring system from the piperazinyl terminus, via two consecutive Pinner-type reactions, gave low yields of products contaminated with the 2-methyl analogue which proved difficult to separate. An alternative synthesis was developed, involving construction of the bisbenzimidazole from the mustard terminus, via Cu(2+)-promoted oxidative coupling of the mustard aldehydes with 3,4-diaminobenzonitrile to form the monobenzimidazoles, followed by a Pinner-type reaction and condensation with 4-(1-methyl-4-piperazinyl)-o-phenylenediamine. This process gives higher yields and pure products. The mustard analogues showed high hypersensitivity factors (IC50AA8/IC50 UV4), typical of DNA alkylating agents. There was a large increase in cytotoxicity (85-fold) across the homologous series which cannot be explained entirely by changes in mustard reactivity and may be related to altering orientation of the mustard with respect to the DNA resulting in different patterns of alkylation. Pibenzimol itself (which has been evaluated clinically as an anticancer drug) was inactive against P388 in vivo using a single-dose protocol, but the short-chain mustard homologues were highly effective, eliciting a proportion of long-term survivors.

  19. Adipose-Derived Mesenchymal Stem Cells for Treatment of Airway Injuries in A Patient after Long-Term Exposure to Sulfur Mustard

    PubMed Central

    Nejad-Moghaddam, Amir; Ajdari, Soheila; Tahmasbpour, Eisa; Goodarzi, Hassan; Panahi, Yunes; Ghanei, Mostafa

    2017-01-01

    Objective Sulfur mustard (SM) is a potent mutagenic agent that targets several organs, particularly lung tissue. Changes in morphological structure of the airway system are associated with chronic obstructive pulmonary deficiency following exposure to SM. Although numerous studies have demonstrated pathological effects of SM on respiratory organs, unfortunately there is no effective treatment to inhibit further respiratory injuries or induce repair in these patients. Due to the extensive progress and achievements in stem cell therapy, we have aimed to evaluate safety and potential efficacy of systemic mesenchymal stem cell (MSC) administration on a SM-exposed patient with chronic lung injuries. Materials and Methods In this clinical trial study, our patient received 100×106cells every 20 days for 4 injections over a 2-month period. After each injection we evaluated the safety, pulmonary function tests (PFT), chronic obstructive pulmonary disease (COPD) Assessment Test (CAT), St. George’s Respiratory Questionnaire (SGRQ), Borg Scale Dyspnea Assessment (BSDA), and 6 Minute Walk Test (6MWT). One-way ANOVA test was used in this study which was not significant (P>0.05). Results There were no infusion toxicities or serious adverse events caused by MSC administration. Although there was no significant difference in PFTs, we found a significant improvement for 6MWT, as well as BSDA, SGRQ, and CAT scores after each injection. Conclusion Systemic MSC administration appears to be safe in SM-exposed patients with moderate to severe injuries and provides a basis for subsequent cell therapy investigations in other patients with this disorder (Registration Number: IRCT2015110524890N1). PMID:28367422

  20. Detection and measurement of sulfur mustard (HD) offgassing from the weanling pig following exposure to saturated HD vapor. Technical report, September-October 1994

    SciTech Connect

    Logan, T.P.; Graham, J.S.; Martin, J.L.; Zallnick, J.E.; Jakubowski, E.M.

    1997-11-01

    Sulfur mustard (HD) is a chemical warfare agent for which there is neither antidote nor adequate therapeutic protection. Animal models are employed to investigate mechanisms of injury and to evaluate protective measures against HD exposure. Researchers whose experiments involve cutaneous application of HD vapor to animals benefit from the detection and quantitation of HD at the exposed site. The ability to detect and quantify HD enables the researcher to follow safe procedures in handling skin samples. We have designed an experimental procedure to measure HD offgassing from animal models. A Minicams(R), which is a portable gas chromatograph (GC) equipped with a flame photometric detector (FPD) and with online sorbent collection and desorption, was used to monitor the HD concentration. Confirming measurements were made using a two-step process that trapped HD on a Tenax sorbent offline and then transferred the sample by means of an ACEM 900 to a OC equipped with either FPD or a mass spectrometer (MS). We collected data from six experiments in which weanling pigs were exposed to saturated HD vapor via vapor caps containing 10 micro of HD. HD concentration was measured in time-weighted-average (TWA) units at a specific HD application site. The currently recommended exposure value for HD is 3 ng/l, 1 TWA unit. In five of the six experiments, Minicams HD concentration values were less than 0.5 TWA, 2 hours postexposure, and in one of the experiments, TWA Minicams concentration was less than 0.5 TWA, 5 hours post-exposure. OCIMS detection was used in three of the experiments to confirm Minicams data and to provide greater sensitivity and selectivity at 0.1 TWA. GC/MS data confirmed that HD concentrations fell below 0.1 TWA in less than S hours for a specific site.

  1. Simultaneous determination of four sulfur mustard-DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Yajiao; Yue, Lijun; Nie, Zhiyong; Chen, Jia; Guo, Lei; Wu, Bidong; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-06-15

    Sulfur mustard (SM) is a classic vesicant agent, which has been greatly employed in several wars or military conflicts. The most lesion mechanism is its strong alkylation of DNAs in vivo. Until now there are four specific DNA adducts of SM identified for further retrospective detection, i.e., N(7)-(2-hydroxyethylthioethyl)-2'-guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA) and O(6)-(2-hydroxyethylthioethyl)-2'-guanine (O(6)-HETEG), respectively. Here, a novel and sensitive method of isotope-dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combining with solid phase extraction was reported for the simultaneous determination of four SM-DNA adducts. A lower limit of detection of 2-5ngL(-1), and a lower limit of quantitation of 5-10ngL(-1) were achieved, respectively, and the recoveries ranged from 87% to 116%. We applied this method in the determination of four SM-DNA adducts in rabbit urine after dermal exposure by SM in three dose levels (2, 5, 15mgkg(-1)), so as to investigate the related metabolic behavior in vivo. For the first time, in SM exposed rabbit urine, our results revealed the relative accumulation abundance of four SM-DNA adducts, i.e., 67.4% for N(7)-HETEG, 22.7% for Bis-G, 9.8% for N(3)-HETEA, 0.1% for O(6)-HETEG, and significant dose and time dependent responses of these SM-DNA adducts. The four adducts were detectable after 8h, afterwards, their contents continuously increased, achieved maximum in the first two or three days and then gradually decreased till the end of one month. Meanwhile, the amounts of SM-DNA adducts were positively correlated with the exposure doses.

  2. Aniline mustard analogues of the DNA-intercalating agent amsacrine: DNA interaction and biological activity.

    PubMed

    Fan, J Y; Valu, K K; Woodgate, P D; Baguley, B C; Denny, W A

    1997-04-01

    Two series of analogues of the clinical antileukemic drug and DNA-intercalating ligand amsacrine have been prepared, containing aniline mustard sidechains of varying reactivity, linked either at the 4-position of the intercalating acridine chromophore (type A) or at the 1'-position of the 9-anilino group (type B). DNase I footprinting assays showed that compounds of type B had stronger reversible binding to DNA than did compounds of type A. Compounds of each type showed similar patterns of alkylation-induced cleavage of DNA, and alkylate at the N7 of guanines in runs of guanines (similar to the pattern for untargeted mustards) as well as some adenines. Both classes of compounds crosslinked DNA, although those bearing relatively inactive mustards did so only at high drug/base pair ratios. However, while the patterns of DNA alkylation were broadly similar, the compounds were considerably more cytotoxic than analogous untargeted mustards. Comparison of their cytotoxicities in wild-type and DNA repair-deficient lines indicated this toxicity was due to DNA crosslinks (except for the least reactive SO2-linked mustards). The 4-linked analogues showed slightly higher in vivo antileukemic activity than the corresponding 1'-linked analogues.

  3. Identification of Reliable Reference Genes for Quantification of MicroRNAs in Serum Samples of Sulfur Mustard-Exposed Veterans

    PubMed Central

    Gharbi, Sedigheh; Shamsara, Mehdi; Khateri, Shahriar; Soroush, Mohammad Reza; Ghorbanmehr, Nassim; Tavallaei, Mahmood; Nourani, Mohammad Reza; Mowla, Seyed Javad

    2015-01-01

    Objective In spite of accumulating information about pathological aspects of sulfur mustard (SM), the precise mechanism responsible for its effects is not well understood. Circulating microRNAs (miRNAs) are promising biomarkers for disease diagnosis and prognosis. Accurate normalization using appropriate reference genes, is a critical step in miRNA expression studies. In this study, we aimed to identify appropriate reference gene for microRNA quantification in serum samples of SM victims. Materials and Methods In this case and control experimental study, using quantitative real-time polymerase chain reaction (qRT-PCR), we evaluated the suitability of a panel of small RNAs including SNORD38B, SNORD49A, U6, 5S rRNA, miR-423-3p, miR-191, miR-16 and miR-103 in sera of 28 SM-exposed veterans of Iran-Iraq war (1980-1988) and 15 matched control volunteers. Different statistical algorithms including geNorm, Normfinder, best-keeper and comparative delta-quantification cycle (Cq) method were employed to find the least variable reference gene. Results miR-423-3p was identified as the most stably expressed reference gene, and miR- 103 and miR-16 ranked after that. Conclusion We demonstrate that non-miRNA reference genes have the least stabil- ity in serum samples and that some house-keeping miRNAs may be used as more reliable reference genes for miRNAs in serum. In addition, using the geometric mean of two reference genes could increase the reliability of the normalizers. PMID:26464821

  4. Inhalation exposure to sulfur mustard in the guinea pig model: Clinical, biochemical and histopathological characterization of respiratory injuries

    SciTech Connect

    Allon, Nahum; Amir, Adina; Manisterski, Eliau; Rabinovitz, Ishay; Dachir, Shlomit; Kadar, Tamar

    2009-12-01

    Guinea pigs (GP) were exposed (head only) in individual plethysmographs to various concentrations of sulfur mustard vapor, determined online, using FTIR attached to flow chamber. The LCt{sub 50} and the inhaled LD{sub 50} were calculated at different time points post exposure. Surviving animals were monitored for clinical symptoms, respiratory parameters and body weight changes for up to 30 days. Clinical symptoms were noted at 3 h post exposure, characterized by erythematic and swelling nose with extensive mucous secretion (with or without bleeding). At 6 h post exposure most of the guinea pigs had breathing difficulties, rhonchi and dyspnea and few deaths were noted. These symptoms peaked at 48 h and were noted up to 8 days, associated with few additional deaths. Thereafter, a spontaneous healing was noted, characterized by recovery of respiratory parameters and normal weight gain with almost complete apparent healing within 2 weeks. Histopathological evaluation of lungs and trachea in the surviving GPs at 4 weeks post exposure revealed a dose-dependent residual injury in both lung and trachea expressed by abnormal recovery of the tracheal epithelium concomitant with a dose-dependent increase in cellular volume in the lungs. These abnormal epithelial regeneration and lung remodeling were accompanied with significant changes in protein, LDH, differential cell count and glutathione levels in the bronchoalveolar lavage (BAL). It is suggested that the abnormal epithelial growth and cellular infiltration into the lung as well as the continuous lung inflammation could cause recurrent lung injury similar to that reported for HD exposed human casualties.

  5. Epidermal hydration and skin surface lipids in patients with long-term complications of sulfur mustard poisoning

    PubMed Central

    Layegh, Pouran; Maleki, Masoud; Mousavi, Seyed Reza; Yousefzadeh, Hadis; Momenzadeh, Akram; Golmohammadzadeh, Shiva; Balali-Mood, Mahdi

    2015-01-01

    Background: Despite almost the three decades passed since the chemical attacks of Iraqi's army against the Iranian troops, some veterans are still suffering from long-term complications of sulfur mustard (SM) poisoning, including certain skin complaints specially dryness, burning, and pruritus. We thus aimed to evaluate the skin's water and lipid content in patients with a disability of >25% due to complications of SM poisoning and compare them with a matched control group. Materials and Methods: Sixty-nine male participants were included in this study; 43 SM-exposed patients, and 26 normal controls from their close relatives. The water and lipid content was measured in four different locations: Extensor and flexor sides of forearms and lateral and medial sides of legs by the Corneometer CM 820/Sebumeter SM 810. Collected data was analyzed and P ≤ 0.05 was considered as statistically significant. Results: The mean age of the patients and controls was 49.53 ± 11.34 (ranges: 40-71) and 29.08 ± 8.836 (ranges: 15-49 years), respectively. In the veterans group, the main cutaneous complaint was itching and skin dryness. Cherry angioma, dry skin, and pruritus were significantly more common in the SM-exposed cases than in the controls. (P = 0.01, 0.05, and 0.04, respectively). The moisture and lipid content of all areas were lower in the SM-exposed group, but it was only significant in skin sebum of lateral sides of legs (P = 0.02). Conclusion: Exposure to SM could decrease the function of stratum corneum and lipid production as a barrier, even after several years of its exposure. PMID:26622252

  6. Association of physical activity and IL-10 levels 20 years after sulfur mustard exposure: Sardasht-Iran cohort study.

    PubMed

    Ghazanfari, Zeinab; Ghazanfari, Tooba; Kermani-Jalilvand, Arezou; Yaraee, Roya; Vaez-Mahdavi, Mohammad R; Foroutan, Abbas; Araghizadeh, Hassan; Faghihzadeh, Soghrat; Moaiedmohseni, Sakine; Soroush, Mohammad R; Naghizadeh, Mohammad M; Hassan, Zuhair M

    2009-12-01

    IL-10 is an anti-inflammatory cytokine that is important in the regulation of inflammatory processes in different conditions. Sulfur mustard (SM) intoxicated patients are suffering from different inflammatory diseases in their lung, skin and eyes. Physical activity (PA) is reported to control inflammation by reducing pro-inflammatory and inducing anti-inflammatory cytokines. Our previous study revealed lower PA and more sedentary lifestyle among SM exposed population. This study aimed to determine the relationship of PA with IL-10 production in SM exposed subjects. Baseline, mitogen-induced and the serum levels of IL-10 were evaluated. In a historical cohort study, Sardasht-Iran Cohort Study (SICS), 372 SM exposed participants were studied 20 years after exposure and were compared with 128 unexposed control participants. The Global Physical Activity Questionnaire (GPAQ; developed by WHO) was used to obtain a self-reported measure of physical activity. Whole blood culture supernatants and serum samples were used for IL-10 measurement by ELISA technique. In both the control and exposed groups mitogen-induced IL-10 production was significantly elevated with severity of PA intensity (p<0.05). In the control subjects with moderate PA intensity, the mitogen-induced IL-10 production was higher than the corresponding in the exposed group (p<0.05). In the exposed group, mitogen-induced IL-10 production had significant positive correlation with total PA, total transport PA, total recreational PA and total moderate intensity work (p<0.05). The positive relationship between high PA and the levels of anti-inflammatory cytokine IL-10 indicates a need to encourage a more active lifestyle among the SM exposed subjects who have various inflammatory complications.

  7. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    SciTech Connect

    Ham, Hwa-Yong; Hong, Chang-Won; Lee, Si-Nae; Kwon, Min-Soo; Kim, Yeon-Ja; Song, Dong-Keun

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  8. Development of a dynamic headspace gas chromatography-mass spectrometry method for on-site analysis of sulfur mustard degradation products in sediments.

    PubMed

    Magnusson, R; Nordlander, T; Östin, A

    2016-01-15

    Sampling teams performing work at sea in areas where chemical munitions may have been dumped require rapid and reliable analytical methods for verifying sulfur mustard leakage from suspected objects. Here we present such an on-site analysis method based on dynamic headspace GC-MS for analysis of five cyclic sulfur mustard degradation products that have previously been detected in sediments from chemical weapon dumping sites: 1,4-oxathiane, 1,3-dithiolane, 1,4-dithiane, 1,4,5-oxadithiephane, and 1,2,5-trithiephane. An experimental design involving authentic Baltic Sea sediments spiked with the target analytes was used to develop an optimized protocol for sample preparation, headspace extraction and analysis that afforded recoveries of up to 60-90%. The optimized method needs no organic solvents, uses only two grams of sediment on a dry weight basis and involves a unique sample presentation whereby sediment is spread uniformly as a thin layer inside the walls of a glass headspace vial. The method showed good linearity for analyte concentrations of 5-200 ng/g dw, good repeatability, and acceptable carry-over. The method's limits of detection for spiked sediment samples ranged from 2.5 to 11 μg/kg dw, with matrix interference being the main limiting factor. The instrumental detection limits were one to two orders of magnitude lower. Full-scan GC-MS analysis enabled the use of automated mass spectral deconvolution for rapid identification of target analytes. Using this approach, analytes could be identified in spiked sediment samples at concentrations down to 13-65 μg/kg dw. On-site validation experiments conducted aboard the research vessel R/V Oceania demonstrated the method's practical applicability, enabling the successful identification of four cyclic sulfur mustard degradation products at concentrations of 15-308μg/kg in sediments immediately after being collected near a wreck at the Bornholm Deep dumpsite in the Baltic Sea.

  9. Gas Chromatographic-Mass Spectrometric Analysis of Sulfur Mustard-Plasma Protein Adducts: Validation and Use in a Rat Inhalation Model

    DTIC Science & Technology

    2008-01-01

    Capacio, 3100 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010·5400. E -mail: benerlicl.capacio@us.army.mil. military populations. Sulfur mustard is...1.0 to -0.5 cm H20). The endotracheal tube was connected to a nebulizer system (Aeroneb, Aerogen , Dangan, Galway, Ireland), which were in series...8217;6 o ~ 5 E ř 4 I.i=g 3 elle 2 III ell ’a1 Q :: 6 Time (h) Figure 1. Plasma concentration-time profile of inhaled nebulized HD in rats. Animals

  10. Low Level Exposure to Sulfur Mustard: Development of a SOP for Analysis of Albumin Adducts and of a System for Non-Invasive Diagnosis on Skin

    DTIC Science & Technology

    2004-12-01

    Separation voltage was 20 kV. The running buffer consisted of 100 mM Boric acid adjusted to pH 9.3 with sodium hydroxide. A concentration of 3 nM was easily...i.e., the most abundant amino acid adducts formed after exposure to sulfur mustard), a work-up procedure was developed in the first two years of the...cooperative agreement for isolation of these adducts from amino acid mixtures resulting from acidic hydrolysis of globin or albumin (part B). This

  11. DRDE-07 and its analogues as promising cytoprotectants to nitrogen mustard (HN-2)--an alkylating anticancer and chemical warfare agent.

    PubMed

    Sharma, Manoj; Vijayaraghavan, R; Gautam, Anshoo

    2009-08-10

    Nitrogen mustard (HN-2), also known as mechlorethamine, is an alkylating anticancer agent as well as blister inducing chemical warfare agent. We evaluated the cytoprotective efficacy of amifostine, DRDE-07 and their analogues, and other antidotes of mustard agents against HN-2. Administration of 1 LD(50) of HN-2 (20mg/kg) percutaneously, decreased WBC count from 24h onwards. Liver glutathione (GSH) level decreased prominently and the maximum depletion was observed on 7th day post-HN-2 administration. Oxidised glutathione (GSSG) level increased significantly at 24h post-administration and subsequently showed a progressive decrease. Hepatic malondialdehyde (MDA) level and percent DNA damage increased progressively following HN-2 administration. The spleen weight decreased progressively and reached a minimum on 3-4 days with subsequent increase. The antidotes were administered repeatedly for 4 and 8 days after percutaneous administration of single sublethal dose (0.5 and 0.25 LD(50)) of HN-2. Treatment with DRDE-07, DRDE-30 and DRDE-35 significantly protected the changes in spleen weight, WBC count, GSH, GSSG, MDA and DNA damage following HN-2 administration (0.5 and 0.25 LD(50)). There was no alteration in the transaminases (AST and ALT), and alkaline phosphatase (ALP) activities, neither with HN-2 nor with antidotes. The present study shows that HN-2 is highly toxic by percutaneous route and DRDE-07, DRDE-30 and DRDE-35 can partially protect it.

  12. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard.

    PubMed

    Ucar, Muharrem; Korkmaz, Ahmet; Reiter, Russel J; Yaren, Hakan; Oter, Sükrü; Kurt, Bülent; Topal, Turgut

    2007-09-10

    The cytotoxic mechanism of mustards has not been fully elucidated; recently, we reported that reactive oxygen species, nitric oxide [produced by inducible nitric oxide synthase (iNOS)] and peroxynitrite are involved in the pathogenesis and responsible for mustard-induced toxicity. Melatonin, a potent antioxidant molecule, acts as an iNOS inhibitor and a peroxynitrite scavenger. Using the prototypic nitrogen mustard (mechlorethamine/HN2) as a model and based on its known cytotoxic mechanisms, the present study was performed to test melatonin for its capability in protecting the lungs of injured male Wistar rats. Lung mustard toxicity was induced via an intratracheally injection of HN2 (0.5mg/kg) dissolved in saline (100microl). Control animals were injected the same amount of saline only. Melatonin was administered intraperitoneally with two different doses (20mg/kg or 40mg/kg) beginning 1h before HN2 application and continued every 12h for six replications. Forty-eight hours after the last melatonin injection, the animals were sacrificed and their lungs were taken for further assay, i.e., malondialdehyde (MDA) levels, and superoxide dismutase (SOD), glutathione peroxidase (GPx) and iNOS activity. Additionally their urine was collected for nitrite-nitrate (NO(x)) analysis. HN2 injection caused increased iNOS activity and MDA levels in lung tissue and NO(x) values in urine; lung GPx activity was significantly depressed. Melatonin restored all of these oxidative and nitrosative stress markers in a dose-dependent manner. In conclusion, the results of study provide evidence that melatonin may have the ability to reduce mustard-induced toxicity in the lungs.

  13. Effect of recombinant human IFNγ in the treatment of chronic pulmonary complications due to sulfur mustard intoxication.

    PubMed

    Panahi, Yunes; Ghanei, Mostafa; Vahedi, Ensieh; Ghazvini, Ali; Parvin, Shahram; Madanchi, Nima; Bagheri, Mahsa; Sahebkar, Amirhossein

    2014-01-01

    Pulmonary problems are among the most common chronic complications of sulfur mustard (SM) intoxication and adversely affect patients' quality-of-life. The present trial investigated the impact of immunotherapy with interferon (IFN)-γ on quality-of-life, respiratory symptoms, and circulating immunologic and oxidative parameters in patients suffering from chronic SM-induced complications. Patients (n = 15) were administered IFNγ (100 μg) every other day for a period of 6 months. Assessment of quality-of-life [using St. George respiratory Questionnaire (SGRQ) and COPD Assessment Test (CAT) indices], the severity and frequency of respiratory symptoms, and serum levels of immunologic [including interleukin (IL)-2, IL-4, IL-6, IL-10, IFNγ, calcitonin gene related peptide (CGRP), matrix metallopeptidase (MMP)-9, and tumor necrosis factor (TNF)-α], oxidative stress [malondialdehyde (MDA) as well as total and reduced glutathione, and catalase and superoxide dismutase (SOD) activity], and fibrogenic [transforming growth factor (TGF)-β] parameters were performed at baseline and at trial end. The results indicated that IFNγ therapy is associated with improvements in SGRQ (p < 0.001) and CAT (p < 0.001) scores, decreased severity of cough (p = 0.001), dyspnea (p < 0.001), and morning dyspnea (p < 0.001), reduced frequency of sputum production (p < 0.001) and hemoptysis (p < 0.001), and elevated FEV1 (p = 0.065). Serum levels of IL-4 (p < 0.001), IL-6 (p < 0.001), IL-10 (p < 0.001), CGRP (p < 0.001), MMP-9 (p = 0.001), TNFα (p < 0.001), TGFβ (p < 0.001) and MDA (p = 0.001) were decreased while those of IL-2 (p < 0.001), IFNγ (p < 0.001), and both total (p = 0.005) and reduced glutathione (p = 0.061) increased by the end of the trial. It was concluded that IFNγ has favorable effects on the quality-of-life and alleviates respiratory symptoms in patients suffering from chronic SM

  14. Childhood physical abnormalities following paternal exposure to sulfur mustard gas in Iran: a case-control study

    PubMed Central

    2010-01-01

    Background Mustard gas, a known chemical weapon, was used during the Iran-Iraq war of 1980-1988. We aimed to determine if exposure to mustard gas among men was significantly associated with abnormalities and disorders among progenies. Methods Using a case-control design, we identified all progenies of Sardasht men (exposed group, n = 498), who were born at least nine months after the exposure, compared to age-matched controls in Rabat, a nearby city (non-exposed group, n = 689). We conducted a thorough medical history, physical examination, and appropriate paraclinical studies to detect any physical abnormality and/or disorder. Given the presence of correlated data, we applied Generalized Estimating Equation (GEE) multivariable models to determine associations. Results The overall frequency of detected physical abnormalities and disorders was significantly higher in the exposed group (19% vs. 11%, Odds Ratio [OR] 1.93, 95% Confidence Interval [CI], 1.37-2.72, P = 0.0002). This was consistent across sexes. Congenital anomalies (OR 3.54, 95% CI, 1.58-7.93, P = 0.002) and asthma (OR, 3.12, 95% CI, 1.43-6.80, P = 0.004) were most commonly associated with exposure. No single abnormality was associated with paternal exposure to mustard gas. Conclusion Our study demonstrates a generational effect of exposure to mustard gas. The lasting effects of mustard gas exposure in parents effects fertility and may impact child health and development in the long-term. PMID:20630096

  15. Accumulation of intact sulfur mustard in adipose tissue and toxicokinetics by chemical conversion and isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Xu, Bin; Zong, Cheng; Zhang, Yajiao; Zhang, Tianhong; Wang, Xiaoying; Qi, Meiling; Wu, Jianfeng; Guo, Lei; Wang, Peng; Chen, Jia; Liu, Qin; Xu, Hua; Xie, Jianwei; Zhang, Zhenqing

    2017-02-01

    Sulfur mustard (SM) is a powerful vesicant and one of the most harmful chemical warfare agents. Although having been studied for a long time, it is still difficult to fully elucidate the mechanisms of SM poisoning, and there is no effective antidote or specific treatment for SM injury. The investigations on toxicokinetics and tissue distribution of SM will help to understand its toxicity and provide a theoretical basis for pretreatment and therapy of SM poisoning. But the metabolic trajectory or fate of intact SM in vivo remains unclear, and there are insufficient experimental data to elucidate, due to its high reactivity and difficulty in biomedical sample analysis. In this paper, a sensitive method for the detection and quantification of intact SM in blood or tissues using isotope-dilution LC-MS/MS coupled with chemical conversion was developed. By transforming highly reactive SM into stable derivative product, the real concentration of intact SM in biological samples was obtained accurately. The toxicokinetics and tissue distribution studies of intact SM in rats were successfully profiled by the novel method after intravenous (10 mg/kg) or cutaneous administration (1, 3 and 10 mg/kg). The SM level in blood with peak time at 30-60 min determined in cutaneous exposure experiment was found much higher than previously reported, and the mean residence time in blood extended to 1-1.5 h. A significant accumulation of intact SM was observed in adipose tissues, including the perirenal fat, epididymal fat, subcutaneous fat and brown fat, in which the concentrations of SM were at least 15 times greater than those in non-adipose tissues in cutaneous exposed rats. The recovery of SM in body fat was calculated as 3.3 % of bioavailable SM (the bioavailability after cutaneous exposure was evaluated as 16 %). Thus, the adipose tissue was important for SM distribution and toxicity, which may pioneer a new model for both the prevention and treatment of SM exposure.

  16. Evaluation of Protease Inhibitors and an Antioxidant for Treatment of Sulfur Mustard-Induced Toxic Lung Injury

    DTIC Science & Technology

    2009-01-01

    development of chronic obstructive pulmonary dis- ase (mustard lung), bronchiectasis, asthma , andfibrosis (Emadand ezaian, 1997). Although not fully...inhibitor pre- vents cigarette smoke-induced emphysema in the mouse. COPD 2 (3), 303– 310. utnam, J.B., Royston, D. (Eds.), 2003. Evaluating the Role

  17. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach

    PubMed Central

    Zhao, Li-Ming; Ma, Feng-Yan; Jin, Hai-Shan; Zheng, Shilong; Zhong, Qiu; Wang, Guangdi

    2016-01-01

    A series of hydroxyanthraquinones having an alkylating N-mustard pharmacophore at 1′-position were synthesized via a bioisostere approach to evaluate their cytotoxicity against four tumor cell lines (MDA-MB-231, HeLa, MCF-7 and A549). These compounds displayed significant in vitro cytotoxicity against MDA-MB-231 and MCF-7 cells, reflecting the excellent selectivity for the human breast cancer. Among them, compound 5k was the most cytotoxic with IC50 value of 0.263 nM and is more potent than DXR (IC50 = 0.294 nM) in inhibiting the growth of MCF-7 cells. The excellent cytotoxicity and good selectivity of compound 5k suggest that it could be a promising lead for further design and development of anticancer agents, especially for breast cancer. PMID:26291039

  18. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan

    2001-12-01

    We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

  19. High throughput quantitative analysis of the β-lyase sulfur mustard metabolite, 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] in urine via high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Bevan, Martin J; Wogen, Matthew T; Lunda, Mark D; Saravia, Stefan A

    2017-03-03

    Sulfur Mustard (HD) has a 100year history of use as a chemical warfare agent and recent events in the Middle East are causing it to once again be a potential concern. We report a new high-throughput method for the determination of HD exposure by the analysis of the β-lyase metabolite 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] (SBMSE) in human urine. This method features a hydrogen peroxide (H2O2) oxidative conversion of the β-lyase metabolites to SBMSE, followed by sample extraction and concentration using solid phase extraction in 96-well plate format. Subsequent high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis gave linear quantitation over a calibration range of 0.1-100ng/mL, with a method detection limit of 0.03ng/mL. Liquid chromatographic separation was achieved using a hydrophilic interaction liquid chromatography (HILIC) column with an analyte retention time of 0.9min and method time of 1.5min (cycle time=2.0min). Users of this method could prepare and analyze approximately 650 samples in 24h which would be important for an emergency response.

  20. Sulfur mustard disrupts human α3β1-integrin receptors in concert with α6β4-integrin receptors and collapse of the keratin K5/K14 cytoskeleton

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J.; Braue, Catherine R.

    2004-06-01

    Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a chemical warfare agent that produces persistent, incapacitating blisters of the skin. The lesions inducing vesication remain elusive, and there is no completely effective treatment. Using mulitphoton microscopy and immunofluorescent staining, we found that exposing human epidermal keratinocytes (HEK) and intact epidermis to SM (400 μm for 5 min) caused progressive collapse of the keratin (K5/K14) cytoskeleton and depletion of α6β integrins. We now report that SM causes concomitant disruption nad collapse of the basal cell's α3β1-integrin receptors. At 1 h postexposure, images of Alexa488-conjugated HEK/α3β1 integrins showed almost complete withdrawal and disappearance of retraction fibers and a progressive loss of polarized mobility. With stero imaging, in vitro expression of this SM effect was characterized by collapse and abutment of adjacent cell membranes. At 2 h postexposure, there was an average 13% dorso-ventral collapse of HEK membranes that paralleled progressive collapse of the K5/K14 cytoskeleton. α3β1 integrin, like α6β4 integrin, is a regulator of cytoskeletal assembly, a receptor for laminin 5 and a mediator of HEK attachment to the basement membrane. Our images indicate that SM disrupts these receptors. We suggest that the progressive disruption destabilizes and potentiates blistering of the epidermal-dermal junction.

  1. Alleviation of mutagenic effects of polycyclic aromatic agents (quinacrine mustard, ICR-191 and ICR-170) by caffeine and pentoxifylline.

    PubMed

    Piosik, Jacek; Ulanowska, Katarzyna; Gwizdek-Wiśniewska, Anna; Czyz, Agata; Kapuściński, Jan; Wegrzyn, Grzegorz

    2003-09-29

    Previous studies performed by others indicated that apart from its other biological effects, caffeine (CAF) may have a role in protection of organisms against cancer. However, biological mechanism of this phenomenon remained unknown. Recent studies suggested that caffeine can form stacking (pi-pi) complexes with polycyclic aromatic chemicals. Therefore, one might speculate that effective concentrations of polycyclic aromatic mutagens could be reduced in the presence of caffeine. Here we demonstrate that caffeine and another xanthine, pentoxifylline (PTX), effectively alleviate mutagenic action of polycyclic aromatic agents (exemplified by quinacrine mustard (QM), 2-methoxy-6-chloro-9-(3-(2-chloroethyl)aminopropylamino)acridine.2HCl (ICR-191) and 1,3,7-propanediamine-N-(2-chloroethyl)-N'-(6-chloro-2-methoxy-9-acridinyl)-N-ethyl.2HCl (ICR-170)), but not of aliphatic mutagens (exemplified by mechlorethamine), in the recently developed mutagenicity test based on bacterium Vibrio harveyi. Biophysical studies indicated that caffeine and pentoxifylline can form stacking complexes with the aromatic agents mentioned above. Molecular modeling also confirmed a possibility of stacking interactions between examined molecules.

  2. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Subchronic Toxicity Study of Lewisite in Rats

    DTIC Science & Technology

    1989-07-31

    buffered formalin (NBF). To standardize the degree of distension of pulmonary alveoli with fixative, the lungs were fixed by inserting a blunted needle into...the thickness of the mucosa, submucosa and muscular layers of the stomach and involved the serosa. Epithelial hyperplasia and hyperkeratosis of the

  3. Teratology Studies of Lewisite and Sulfur Mustard Agents: Effects of Lewisite in Rats and Rabbits

    DTIC Science & Technology

    1987-12-31

    DOSE RANGE AND TERATOLOGY STUDIES OF LEWISITE IN RATS AND RABBITS Quality Assurance Statement Listed below are the phases and/or procedures included in...5 FOREWORD ............. ............................... 7 LIST OF FIGURES ........ ............................ .... 10 LIST OF...GLOSSARY .. ........ ............... ......... 61 PERSONNEL LIST . .. .............. .............. 62 DISTRIBUTION LIST

  4. Development of Reactive Topical Skin Protectants against Sulfur Mustard and Nerve Agents

    DTIC Science & Technology

    1997-06-01

    that they corrode metals, paint and wood. Thus, new materials or adsorbents offering rapid kinetics yet suitable from a safety and cost standpoint... methanol solution. Upon autoclave treatment, the solution is converted to a gel-like metal-hydroxide solution. After the hypercritical drying step, a high...temperature dehydration step is required. This is done under a vacuum, but can also be accomplished by a fast flow of hot nitrogen gas. Conversely

  5. Development of Protective Agent Against Sulfur Mustard-Induced Skin Lesions

    DTIC Science & Technology

    2005-03-01

    conversion to hydroxyl radicals by horseradish peroxidase. The formed radical can be monitored by luminescence in the presence of luminol . Luminescence...assay The reaction mixture contained 0.2ml cells (106/ml) suspended in Hank’s balanced salt solution (HBSS), luminol (100gM) and horseradish peroxidase

  6. The Toxicity of Inhaled Sulphur Mustard

    DTIC Science & Technology

    2012-03-01

    acetyl -L- cysteine (Mucomyst™; NAC ), in ameliorating inhaled HD-induced lung injury was then assessed in the established model. This work was conducted...J and Sciuto AM. N- acetyl -L- cysteine ( NAC ) Protects Against Inhaled Sulfur Mustard (HD) Poisoning in the Large Swine. Clinical Toxicology, 2012...2012. N- acetyl -L- cysteine ( NAC ) Protects against inhaled sulfur mustard (HD) poisoning in the large swine. Clinical Toxicology; in preparation

  7. Efficacy and Safety of Immunotherapy with Interferon-Gamma in the Management of Chronic Sulfur Mustard-Induced Cutaneous Complications: Comparison with Topical Betamethasone 1%

    PubMed Central

    Panahi, Yunes; Sahebkar, Amirhossein; Davoudi, Seyyed Masoud; Amiri, Mojtaba; Beiraghdar, Fatemeh

    2012-01-01

    The present trial investigated the efficacy of immunotherapy with interferon-gamma (IFN-γ) in the treatment of sulfur mustard (SM)-induced chronic skin complications. Forty subjects who were suffering from chronic skin complications of SM and were diagnosed to have severe atopic dermatitis, were assigned to IFN-γ (50 μg/m2) subcutaneously three times per week (n = 20) or betamethasone valerate topical cream 0.1% (n = 20) every night for 30 days. Extent and intensity of cutaneous complications was evaluated using scoring atopic dermatitis (SCORAD) index, and quality of life using dermatology life quality index (DLQI) at baseline and at the end of trial. SCORAD-A and SCORAD-B scores were significantly decreased in both IFN-γ and betamethasone. However, SCORAD-C score was decreased only in the IFN-γ group. There were significant reductions in overall as well as objective SCORAD scores in both groups. As for the magnitude of changes, treatment with IFN-γ was associated with greater reductions in overall, objective and segmented SCORAD scores compared to betamethasone. DLQI reduction was found to be significantly greater in the IFN-γ group. Promising improvements in quality life and clinical symptoms that was observed in the present study suggest the application of IFN-γ as an effective therapy for the management of SM-induced chronic skin complications. PMID:22536131

  8. Novel Tissue Models of Junctional Epidermolysis Bullosa to Characterize Functional Mechanisms of Sulfur Mustard Injury to Human Skin

    DTIC Science & Technology

    2004-05-01

    skin have not been possible for ethical reasons. Therefore, we have used an approach that has allowed us to identify sites and pathways of sulfur...morphologic features of human skin to a high degree and ing epithelial morphogenesis of the embryoid body, J Cell Biol 153:811-822, demonstrates that

  9. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker.

    PubMed

    Marvania, Bhavin; Kakadiya, Rajesh; Christian, Wilson; Chen, Tai-Lin; Wu, Ming-Hsi; Suman, Sharda; Tala, Kiran; Lee, Te-Chang; Shah, Anamik; Su, Tsann-Long

    2014-08-18

    We synthesized a series of phenyl N-mustard-4-anilinoquinoline conjugates to study their antitumorigenic effects. These agents were prepared by the condensation of 4-[N,N-bis(2-chloroethyl)amino]phenyl isocyanate with 6-amino-4-methylamino or 4-anilinoquinolines. The structure-activity relationship (SAR) studies revealed that the C2-methylquinoline derivatives (18a-o) were generally more cytotoxic than the C2-phenylquinoline conjugates (23a-d) in inhibiting the cell growth of various human tumor cell lines in vitro. However, the methylamino or aniline substituents at C4 of quinoline did not influence the cytotoxic effects. The title conjugates were capable of inducing DNA cross-linking and promoting cell-cycle arrest at the G2/M phase. This study demonstrates that phenyl N-mustard-4-anilinoquinoline conjugates are generally more potent than phenyl N-mustard-4-anilinoquinazoline conjugates against the cell growth of various tumor cell-lines.

  10. Synthesis and evaluation of DNA-targeted spatially separated bis(aniline mustards) as potential alkylating agents with enhanced DNA cross-linking capability.

    PubMed

    Gourdie, T A; Prakash, A S; Wakelin, L P; Woodgate, P D; Denny, W A

    1991-01-01

    DNA-targeted separated bis-mustards were synthesized by attaching aniline mono-mustards at the 4- and 9-positions of the DNA-intercalating ligand 9-aminoacridine-4-carboxamide, with the intention of improving the low cross-link to monoadduct ratio found with most alkylating agents. The geometry of these compounds requires that, when the acridine binds to DNA by intercalation, one alkylating moiety is delivered to each DNA groove. Gel electrophoretic studies show that only one arm of these compounds (probably that attached to the 9-position) alkylates DNA, such alkylation occurring specifically in the major groove at the N7 of guanines. Cell-line studies confirm that the mode of cytotoxicity of these compounds (unlike that of untargeted aniline bis-mustards of comparable reactivity) is due to bulky DNA monoadduct formation. It is concluded that more information is required about the exact orientation of the initial monoadducts before ligands with specific DNA cross-linking ability can be designed.

  11. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA.

  12. Effect of mustard gas exposure on incidence of lung cancer: a longitudinal study.

    PubMed

    Doi, Mihoko; Hattori, Noboru; Yokoyama, Akihito; Onari, Yojiro; Kanehara, Masashi; Masuda, Kenji; Tonda, Tetsuji; Ohtaki, Megu; Kohno, Nobuoki

    2011-03-15

    Sulfur mustard, an agent used in chemical warfare, is an alkylating substance with carcinogenic potential. However, the precise long-term carcinogenic effects of mustard gas are unclear. Since 1952, the authors have conducted health surveys of former workers who were employed from 1929 to 1945 in a poisonous gas factory in Okuno-jima, Hiroshima, Japan. This prospective study was undertaken from 1952 to 2005 to examine the incidence of lung cancer among the workers who were exposed to mustard gas (n=480), lewisite (n=55), and/or diphenylcyanarsine (n=178), as well as the incidence among unexposed workers (n=969). The stochastic relation between exposure and lung cancer was explored on the basis of multistage carcinogenesis by using an accelerated hazard model with a transformed age scale. Mustard gas exposure was found to transform the age scale for developing lung cancer. One year of exposure in subjects ≤18 or >18 years old at first exposure shifted the age scale down by 4.9 years and 3.3 years, respectively. On the basis of the long-term follow-up of former workers in the poisonous gas factory, the authors concluded that sulfur mustard decreased the age at which people were at risk of developing lung cancer and that the effect declined with aging.

  13. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target.

    PubMed

    Fedeles, Bogdan I; Zhu, Angela Y; Young, Kellie S; Hillier, Shawn M; Proffitt, Kyle D; Essigmann, John M; Croy, Robert G

    2011-09-30

    The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action that likely explains this activity. Cellular fractionation experiments indicated that mitochondria are the major intracellular sink for 11β; flow cytometry studies showed that 11β exposure rapidly induced oxidative stress, mitochondria being an important source of reactive oxygen species (ROS). Additionally, 11β inhibited oxygen consumption both in intact HeLa cells and in isolated mitochondria. Specifically, 11β blocked uncoupled oxygen consumption when mitochondria were incubated with complex I substrates, but it had no effect on oxygen consumption driven by substrates acting downstream of complex I in the mitochondrial electron transport chain. Moreover, 11β enhanced ROS generation in isolated mitochondria, suggesting that complex I inhibition is responsible for ROS production. At the cellular level, the presence of antioxidants (N-acetylcysteine or vitamin E) significantly reduced the toxicity of 11β, implicating ROS production as an important contributor to cytotoxicity. Collectively, our findings establish complex I inhibition and ROS generation as a new mechanism of action for 11β, which supplements conventional DNA adduct formation to promote cancer cell death.

  14. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  15. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs.

  16. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    SciTech Connect

    Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.; Heredia-Langner, Alejandro

    2016-05-17

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative of specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.

  17. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials.

    PubMed

    Fraga, Carlos G; Bronk, Krys; Dockendorff, Brian P; Heredia-Langner, Alejandro

    2016-05-17

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities from the synthesis of tris(2-chloroethyl)amine (HN3) that point to the reagent and the specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. All the reagent stocks had impurity profiles that differentiated them from one another. This was demonstrated by building classification models with partial least-squares discriminant analysis (PLSDA) and obtaining average stock classification errors of 2.4, 2.8, 2.8, and 11% by cross-validation for chloroform (7 stocks), thionyl chloride (3 stocks), acetone (7 stocks), and TEA (3 stocks), respectively, and 0% for a validation set of chloroform samples. In addition, some reagent impurities indicative of reagent type were found in the HN3 batches that were originally present in the reagent stocks and presumably not altered during synthesis. More intriguing, impurities in HN3 batches that were apparently produced by side reactions of impurities unique to specific TEA and chloroform stocks, and thus indicative of their use, were observed.

  18. Evidence of Sulfur Mustard Exposure in Human Plasma by LC-ESI-MS-MS Detection of the Albumin-Derived Alkylated HETE-CP Dipeptide and Chromatographic Investigation of Its Cis/Trans Isomerism.

    PubMed

    Gandor, Felix; Gawlik, Michael; Thiermann, Horst; John, Harald

    2015-05-01

    Sulfur mustard (SM) is a chemical warfare agent that causes painful blisters and chemically modifies endogenous biomacromolecules by alkylation to hydroxyethylthioethyl (HETE) adducts representing valuable long-term markers for post-exposure analysis. The albumin adduct formed in human plasma in vitro (HETE bound to the side chain of cysteine 34) was isolated and cleaved by current lots of pronase primarily generating the internal modified dipeptide (HETE-cysteine-proline, HETE-CP) instead of the formerly reported HETE-CPF tripeptide. The analyte was detected by liquid chromatography-electrospray ionization tandem-mass spectrometry (LC-ESI-MS-MS). In principle, HETE-CP undergoes a dynamic on-column equilibrium of cis-trans isomerism thus requiring separation at 50°C to obtain one narrow peak. Accordingly, we developed both a novel longer lasting but more sensitive microbore (1 mm i.d., flow 30 µL/min, cycle time 60 min, LOD 50 nM) and a faster, less sensitive narrowbore (2.1 mm i.d., 200 µL/min, cycle time 16 min, LOD 100 nM, both on Atlantis T3 material at 50°C) LC-ESI-MS-MS method suitable for verification analysis. The corresponding tri- and tetrapeptide, Q(HETE)-CPF were monitored simultaneously. HETE-CP peak areas were directly proportional to SM concentrations added to plasma in vitro (0.05-100 µM). Albumin adducts formed by deuterated SM (d8-SM) served as internal standard.

  19. Poly (ADP-ribose) polymerase (PARP) is essential for sulfur mustard-induced DNA damage repair, but has no role in DNA ligase activation.

    PubMed

    Bhat, K Ramachandra; Benton, Betty J; Ray, Radharaman

    2006-01-01

    Concurrent activation of poly (ADP-ribose) polymerase (PARP) and DNA ligase was observed in cultured human epidermal keratinocytes (HEK) exposed to the DNA alkylating compound sulfur mustard (SM), suggesting that DNA ligase activation could be due to its modification by PARP. Using HEK, intracellular 3H-labeled NAD+ (3H-adenine) was metabolically generated and then these cells were exposed to SM (1 mM). DNA ligase I isolated from these cells was not 3H-labeled, indicating that DNA ligase I is not a substrate for (ADP-ribosyl)ation by PARP. In HEK, when PARP was inhibited by 3-amino benzamide (3-AB, 2 mM), SM-activated DNA ligase had a half-life that was four-fold higher than that observed in the absence of 3-AB. These results suggest that DNA repair requires PARP, and that DNA ligase remains activated until DNA damage repair is complete. The results show that in SM-exposed HEK, DNA ligase I is activated by phosphorylation catalysed by DNA-dependent protein kinase (DNA-PK). Therefore, the role of PARP in DNA repair is other than that of DNA ligase I activation. By using the DNA ligase I phosphorylation assay and decreasing PARP chemically as well as by PARP anti-sense mRNA expression in the cells, it was confirmed that PARP does not modify DNA ligase I. In conclusion, it is proposed that PARP is essential for efficient DNA repair; however, PARP participates in DNA repair by altering the chromosomal structure to make the DNA damage site(s) accessible to the repair enzymes.

  20. Short-term Curcuminoid Supplementation for Chronic Pulmonary Complications due to Sulfur Mustard Intoxication: Positive Results of a Randomized Double-blind Placebo-controlled Trial.

    PubMed

    Panahi, Y; Ghanei, M; Bashiri, S; Hajihashemi, A; Sahebkar, A

    2015-11-01

    Pulmonary problems are among the most frequent chronic complications of sulfur mustard (SM) intoxication and are often accompanied by deregulated production of pro-inflammatory cytokines. Curcuminoids, comprising curcumin, demethoxycurcumin and bisdemethoxycurcumin, are phytochemicals with remarkable anti-inflammatory properties that are derived from dried rhizomes of the plant Curcuma longa L. (turmeric). The present pilot study aimed to investigate the clinical effects of supplementation with curcuminoids on markers of pulmonary function and systemic inflammation in SM-intoxicated subjects. In a randomized double-blind placebo-controlled trial, 89 male subjects who were suffering from chronic SM-induced pulmonary complications were recruited and assigned to either curcuminoids (500 mg TID per oral; n=45) or placebo (n=44) for a period of 4 weeks. Efficacy measures were changes in the spirometric parameters (FVC, FEV1, FEV1/FVC) and serum levels of inflammatory mediators including interleukins 6 (IL-6) and 8 (IL-8), tumor necrosis factor-α (TNFα), transforming growth factor-β (TGFβ), high-sensitivity C-reactive protein (hs-CRP), calcitonin gene related peptide (CGRP), substance P and monocyte chemotactic protein-1 (MCP-1). 78 subjects completed the trial. Although FEV1 and FVC remained comparable between the groups, there was a greater effect of curcuminoids vs. placebo in improving FEV1/FVC (p=0.002). Curcuminoids were also significantly more efficacious compared to placebo in modulating all assessed inflammatory mediators: IL-6 (p<0.001), IL-8 (p=0.035), TNFα (p<0.001), TGFβ (p<0.001), substance P (p=0.016), hs-CRP (p<0.001), CGRP (p<0.001) and MCP-1 (p<0.001). Curcuminoids were safe and well-tolerated throughout the trial. Short-term adjunctive therapy with curcuminoids can suppress systemic inflammation in patients suffering from SM-induced chronic pulmonary complications.

  1. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.

  2. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    SciTech Connect

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.

  3. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2012-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FTTM). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100–1000 µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. PMID:21457723

  4. Medical defense against blistering chemical warfare agents. (Reannouncement with new availability information)

    SciTech Connect

    Smith, W.J.; Dunn, M.A.

    1991-08-01

    First used in World War I, chemical blistering agents present a serious medical threat that has stimulated renewed interest in the light of extensive use in recent conflicts. Current medical management cannot yet prevent or minimize injury from the principal agent of concern--sulfur mustard. Research directed at this goal depends on defining effective intervention in the metabolic alterations induced by exposure to sulfur mustard. Chemicals capable of inducing blisters, known as blistering or vesicating agents, have been widely known for more than 150 years. They were extensively used in chemical warfare during World War I, well before the development of the more deadly nerve agents 25 years later.

  5. An improved method for retrospective quantification of sulfur mustard exposure by detection of its albumin adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, ChangCai; Liang, LongHui; Xiang, Yu; Yu, HuiLan; Zhou, ShiKun; Xi, HaiLing; Liu, ShiLei; Liu, JingQuan

    2015-09-01

    Sulfur mustard (HD) adduct to human serum albumin (ALB) at Cys-34 residue has become an important and long-term retrospective biomarker of HD exposure. Here, a novel, sensitive, and convenient approach for retrospective quantification of HD concentration exposed to plasma was established by detection of the HD-ALB adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with a novel non-isotope internal standard (IS). The HD-ALB adduct was isolated from HD-exposed plasma with blue Sepharose. The adduct was digested with proteinase K to form sulfur-hydroxyethylthioethyl ([S-HETE])-Cys-Pro-Phe tripeptide biomarker. The tripeptide adduct could be directly analyzed by UHPLC-MS/MS without an additional solid phase extraction (SPE), which was considered as a critical procedure in previous methods. The easily available 2-chloroethyl ethylsulfide (2-CEES) as HD surrogate was first reported to be used as IS in place of traditional d8-HD for quantification of HD exposure. Furthermore, 2-CEES was also confirmed to be a good IS alternative for quantification of HD exposure by investigation of product ion spectra for their corresponding tripeptide adducts which exhibited identical MS/MS fragmentation behaviors. The method was found to be linear between 1.00 and 250 ng•mL(-1) HD exposure (R(2)>0.9989) with precision of <4.50% relative standard deviation (%RSD), accuracy range between 96.5% and 114%, and a calculated limit of detection (LOD) of 0.532 ng•mL(-1). The lowest reportable limit (LRL) is 1.00 ng•mL(-1), over seven times lower than that of the previous method. The entire method required only 0.1 mL of plasma sample and took under 7 h without special sample preparation equipment. It is proven to be a sensitive, simple, and rugged method, which is easily applied in international laboratories to improve the capabilities for the analysis of biomedical samples related to verification of the Chemical Weapon Convention (CWC).

  6. Molecular biology basis for the response of poly(ADP-rib) polymerase and NAD metabolism to dna damage caused by mustard alkylating agents. Final report, 30 April 1990-30 July 1994

    SciTech Connect

    Smulson, M.E.

    1994-08-30

    During the course of this contract, we have performed a variety of experiments whose intent has been to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PADPRP) in cultured keratinocytes. During this study, human keratinocyte lines were stably transfected with the cDNA for human PADPRP in the antisense orientation under an inducible promoter. Induction of this antisense RNA by dexamethasone in cultured cells selectively lowered levels of PADPRP in RNA, protein, and enzyme activity. Induction of antisense RNA led to a reduction in the levels of PADPRP in individual cell nuclei, as well as the loss of the ability of cells to synthesize and modify proteins by poly(ADP-ribose) polymer in response to an alkylating agent. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a sulfur mustard to the grafted transfected skin layers. Accordingly, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as well.

  7. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo

    PubMed Central

    Liu, Feng; Jiang, Ning; Xiao, Zhi-yong; Cheng, Jun-ping; Mei, Yi-zhou; Zheng, Pan; Wang, Li; Zhang, Xiao-rui; Zhou, Xin-bo

    2016-01-01

    Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD+/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage. PMID:27077006

  8. Monitoring urinary metabolites resulting from sulfur mustard exposure in rabbits, using highly sensitive isotope-dilution gas chromatography-mass spectrometry.

    PubMed

    Nie, Zhiyong; Zhang, Yajiao; Chen, Jia; Lin, Ying; Wu, Bidong; Dong, Yuan; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A highly sensitive method for the determination of sulfur mustard (SM) metabolites thiodiglycol (TDG) and thiodiglycol sulfoxide (TDGO) in urine was established and validated using isotope-dilution negative-ion chemical ionization (NICI) gas chromatography-mass spectrometry (GC-MS). TDGO in the samples was reduced with TiCl3, and then determined together with TDG as a single analyte. The sample preparation procedures, including two solid-phase-extraction (SPE) clean-up steps, were optimized to improve the sensitivity of the method. The limits of detection (LOD) for both TDG and TDG plus TDGO (TDG + TDGO) were 0.1 ng mL(-1), and the limits of quantitation (LOQ) for both were 0.3 ng mL(-1). The method was used in a rabbit cutaneous SM exposure model. Domestic rabbits were exposed to neat liquid SM at three dosage levels (0.02, 0.05, and 0.15 LD50), and the urinary excretion of four species of hydrolysis metabolites, namely free TDG, free plus conjugated TDG (total TDG), free TDG + TDGO, and free plus conjugated TDG + TDGO (total TDG + TDGO), was evaluated to investigate the metabolic processes. The total urinary excretion profiles of the metabolites, including the peak time, time window, and dose-response and time-response relationships, were clarified. The results revealed that the concentrations of TDG and TDG + TDGO in the urine increased quickly and then decreased rapidly in the first two days after SM exposure. The cumulative amount of total TDG + TDGO excreted in urine during the first five days accounted for 0.5-1% of the applied dose of SM. It is also concluded that TDG and TDGO in urine existed mainly in free form, the levels of glucuronide and of sulfate conjugates of TDG or TDGO were very low, and most hydrolysis metabolites were present in the oxidized form (TDGO). The study indicates that the abnormal increase of TDG and TDGO excretion levels can be used as a diagnostic indicator and establishes a reference time-window for retrospective analysis and

  9. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).

    PubMed

    Johnson, Kevin M; Parsons, Zachary D; Barnes, Charles L; Gates, Kent S

    2014-08-15

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells.

  10. sup 14 C-sulfur mustard adducts of calf thymus DNA. Final report, Aug-Sep 90

    SciTech Connect

    Yaverbaum, S.

    1991-02-01

    A grant was awarded to TNO-PML to develop immunochemical monitoring systems for the detection of DNA-HD and Protein-HD adducts in humans following exposure to HD. TNO-PML has been using 35S-HD to prepare adducts for their assays, which have inherent shortcomings that limit detection sensitivity. An experimental batch of 14C-HD-DNA adducts was prepared in an attempt to increase the assay sensitivity. Double - and single-stranded purified calf thymus DNA preparations were reacted with 142, 14.2 and 1.42 uM of 14C-HD under aqueousfree conditions. The 14C-HD-DNA adducts were isolated at -20C in 75% ethanol solution and freed of HD agent and organic solvents (i.e., acetone and alcohol). The 14C-HD-DNA adducts in aqueous buffer were analyzed for specific activity and purity. The ds-DNA-HD adducts were uncontaminated, but the ss-DNA-HD adducts were initially slightly contaminated with alcohol.

  11. Alterations in serum levels of inflammatory cytokines (TNF, IL-1alpha, IL-1beta and IL-1Ra) 20 years after sulfur mustard exposure: Sardasht-Iran cohort study.

    PubMed

    Yaraee, Roya; Ghazanfari, Tooba; Ebtekar, Massoumeh; Ardestani, Sussan K; Rezaei, Abbas; Kariminia, Amina; Faghihzadeh, Soghrat; Mostafaie, Ali; Vaez-Mahdavi, Mohammad R; Mahmoudi, Mahmoud; Naghizadeh, Mohammad M; Soroush, Mohammad R; Hassan, Zuhair M

    2009-12-01

    Mustard gas, even in low doses, has the ability to inflict damage in multiple organs especially the skin, eyes, as well as the respiratory tract. This damage may cause many complications which persist during the lifespan of exposed subjects. Pro-inflammatory cytokines including TNF, IL-1alpha, IL-1beta and IL-1Ra cause systemic inflammatory reactions and numerous changes including altered cell signaling and migration, changes in cytokine production and fever. The aim of this study was to determine the serum levels of these cytokines in subjects who were exposed to mustard gas 20 years ago in comparison with an unexposed control group. In this historical cohort study 368 sulfur mustard (SM) exposed participants from Sardasht and 126 age-matched unexposed volunteers from Rabat (a nearby town) as controls were chosen by a random systematic sampling. The serum concentrations of IL-1alpha, IL-1beta, IL-1Ra and TNF were measured by a sandwich ELISA technique. Median of the serum levels of cytokines TNF, IL-1alpha, IL-1beta and IL-1Ra in the control group was 23.79, 1.89, 1.91 and 32.9 pg/ml respectively, while in the SM-exposed participants these values were 11.11, 0.81, 1.73 and 26.7 pg/ml respectively. The serum pro-inflammatory cytokine levels were significantly lower in the exposed group than in controls (p<0.01). There was also significant positive correlation between concentration of all of mentioned cytokines, the strongest being between IL-1beta and TNF (r=0.809 in the control group). The observed down-regulation of pro-inflammatory cytokines should be considered in interpretation of diagnosis and therapeutic measures taken to improve clinical complications.

  12. Mustard vesicant-induced lung injury: Advances in therapy.

    PubMed

    Weinberger, Barry; Malaviya, Rama; Sunil, Vasanthi R; Venosa, Alessandro; Heck, Diane E; Laskin, Jeffrey D; Laskin, Debra L

    2016-08-15

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  13. Preclinical investigation of the pharmacokinetics, metabolism, and protein and red blood cell binding of DRDE-07: a prophylactic agent against sulphur mustard.

    PubMed

    Verma, Pankaj; Vijayaraghavan, Rajagopalan

    2014-10-01

    DRDE-07, a newly synthesized amifostine analog currently under clinical investigation in a phase I trial, is a potent antidote against sulfur mustard toxicity. The purpose of this research was to evaluate the pharmacokinetic profile of DRDE-07 in female Swiss Albino mice after a single oral dose of 400 or 600 mg/kg. The physicochemical properties of DRDE-07, including solubility, pK a, Log P, plasma protein binding and plasma/blood partitioning, were determined to support the pharmacokinetic characterization. DRDE-07 concentration was determined by an HPLC-UV method. The profile of plasma concentration versus time was analyzed using a non-compartmental model. Plasma protein binding was assessed using ultrafiltration. DRDE-07 appeared rapidly in plasma after oral administration with peak plasma levels (C max) observed in less than 15 min. There was a rapid decline in the plasma levels followed by a smaller second peak about 90 min after dosing. The plasma protein binding of DRDE-07 was found to be less than 25% at all concentrations studied. Plasma clearance of DRDE-07 is expected to be ~1.5 fold higher than the blood clearance of DRDE-07. The probable metabolite of DRDE-07 was identified as phenyl-S-ethyl amine.

  14. Sulfur

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, elemental sulfur and the byproduct sulfuric acid were produced at 109 operations in 29 states and the U.S. Virgin Islands. Total shipments were valued at about $1.6 billion. Elemental sulfur production was 8.2 Mt (9 million st); Louisiana and Texas accounted for about 53 percent of domestic production.

  15. Wipe selection for the analysis of surface materials containing chemical warfare agent nitrogen mustard degradation products by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Willison, Stuart A

    2012-12-28

    Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography–tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and compared with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) results. An evaluation of both techniques suggests UPLC–MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47–99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).

  16. A combined DNA-affinic molecule and N-mustard alkylating agent has an anti-cancer effect and induces autophagy in oral cancer cells.

    PubMed

    Lo, Wen-Liang; Chu, Pen-Yuan; Lee, Tsung-Heng; Su, Tsann-Long; Chien, Yueh; Chen, Yi-Wei; Huang, Pin-I; Tseng, Ling-Ming; Tu, Pang-Hsien; Kao, Shou-Yen; Lo, Jeng-Fan

    2012-01-01

    Although surgery or the combination of chemotherapy and radiation are reported to improve the quality of life and reduce symptoms in patients with oral cancer, the prognosis of oral cancer remains generally poor. DNA alkylating agents, such as N-mustard, play an important role in cancer drug development. BO-1051 is a new 9-anilinoacridine N-mustard-derivative anti-cancer drug that can effectively target a variety of cancer cell lines and inhibit tumorigenesis in vivo. However, the underlying mechanism of BO-1051-mediated tumor suppression remains undetermined. In the present study, BO-1051 suppressed cell viability with a low IC(50) in oral cancer cells, but not in normal gingival fibroblasts. Cell cycle analysis revealed that the tumor suppression by BO-1051 was accompanied by cell cycle arrest and downregulation of stemness genes. The enhanced conversion of LC3-I to LC3-II and the formation of acidic vesicular organelles indicated that BO-1501 induced autophagy. The expression of checkpoint kinases was upregulated as demonstrated with Western blot analysis, showing that BO-1051 could induce DNA damage and participate in DNA repair mechanisms. Furthermore, BO-1051 treatment alone exhibited a moderate tumor suppressive effect against xenograft tumor growth in immunocompromised mice. Importantly, the combination of BO-1051 and radiation led to a potent inhibition on xenograft tumorigenesis. Collectively, our findings demonstrated that BO-1051 exhibited a cytotoxic effect via cell cycle arrest and the induction of autophagy. Thus, the combination of BO-1051 and radiotherapy may be a feasible therapeutic strategy against oral cancer in the future.

  17. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  18. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    SciTech Connect

    Abel, E.L.; Boulware, S.; Fields, T.; McIvor, E.; Powell, K.L.; DiGiovanni, J.; Vasquez, K.M.; MacLeod, M.C.

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  19. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog.

    PubMed

    Abel, E L; Boulware, S; Fields, T; McIvor, E; Powell, K L; DiGiovanni, J; Vasquez, K M; MacLeod, M C

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas.

  20. The Toxicity of Inhaled Sulphur Mustard

    DTIC Science & Technology

    2012-10-01

    BLANK UK UNCLASSIFIED Dstl/TR60201 Page 1 of 92 UK UNCLASSIFIED 1 Introduction The use of sulphur mustard (bis(2-chloroethyl) sulphide ; HD) as a... sulphide ; HD) as a chemical warfare (CW) agent remains of concern to the Armed Forces. Since its first use in World War 1 (WW1; Prentiss, 1937) HD has...Methyl- salicylate (MS); Minute Volume; Model Development; Pig; Porcine; Sulphur Mustard (HD) • Vapor; Bis(2-chloroethyl) sulphide INTRODUCTION Sulphur

  1. Relationship between airway reactivity induced by methacholine or ultrasonically nebulized distilled cold water and BAL fluid cellular constituents in patients with sulfur mustard gas-induced asthma.

    PubMed

    Emad, Ali; Emad, Yasaman

    2007-01-01

    The objective of this article was to evaluate the relationship between the bronchial reactivity to methacholine and distilled cold water and inflammatory bronchial alveolar lavage (BAL) cells in mustard gas-induced asthma. This was a randomized, crossover clinical study set in a university hospital. The patients were 17 veterans with mustard gas-induced asthma and 17 normal veterans as a control group. Inhalation challenges with ultrasonically nebulized distilled water and methacholine and BAL via bronchoscopy and were performed in all patients and subjects. All patients did sustain a 20% fall in FEV(1) after methacholine, whereas two of them did not with distilled cold water. The patients were sensitive to distilled cold water with a median PD20 of 8.44 +/- 6.55 mL and sensitive to methacholine with the median PC20 of 4.88 +/- 4.22 mg/mL. Significant correlation was found between PC20 of methacholine and PD20 of distilled cold water (r = -0.74, p = 0.005). The proportion of BAL macrophages was significantly lower in patients with asthma than in the control group (p = 0.001). The proportions of lymphocytes and neutrophils were similar in the two groups. The percentage of eosinophils was higher in BAL fluid from the asthmatics compared with that in BAL fluid from the control group (p < 0.001). The percentage of the BAL eosinophils significantly correlated with both PC20 of methacholine (r = - 0.58, p = 0.01) and PD20 of distilled cold water (r = -0.81, p = 0.002). No relationship between PC20 of methacholine or PD20 of distilled cold water was found for other inflammatory BAL cells. This study showed that in patients with mustard gas-induced asthma, the degree of airway responsiveness to both methacholine and distilled water was associated with the percentage of BAL eosinophils.

  2. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2002-10-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. The PFS product was used in pilot-scale tests at a municipal water treatment facility and gave good results in removal of turbidity and superior results in removal of disinfection byproduct precursors (TOC, DOC, UV-254) when compared with equal doses of ferric chloride.

  3. DNA-directed alkylating agents. 3. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the length of the linker chain.

    PubMed

    Valu, K K; Gourdie, T A; Boritzki, T J; Gravatt, G L; Baguley, B C; Wilson, W R; Wakelin, L P; Woodgate, P D; Denny, W A

    1990-11-01

    Four series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties. Within each series, increasing the chain length did not alter the reactivity of the alkylating moiety but did appear to position it differently on the DNA, since cross-linking ability (measured by agarose gel assay) altered with chain length, being maximal with the C4 analogue. The in vivo antitumor activities of the compounds depended to some extent on the reactivity of the mustard, with the least reactive SO2 compounds being inactive. However, DNA-targeting did appear to allow the use of less reactive mustards, since the S-linked acridine mustards showed significant activity whereas the parent S-mustard did not. Within each active series, the most active compound was the C4 homologue, suggesting some relationship between activity and extent of DNA alkylation.

  4. Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants.

    PubMed

    Goswami, Bijoy Kumar; Pandey, Rajesh Kumar; Rathour, Kabindra Singh; Bhattacharya, Chaitali; Singh, Lokendra

    2006-11-01

    Experiments were carried out to study the effect of two fungal bioagents along with mustard oil cake and furadan against root knot nematode Meloidogyne incognita infecting tomato under greenhouse condition. Bioagents viz., Paecilomyces lilacinus and Trichoderma viride alone or in combination with mustard cake and furadan promoted plant growth, reduced number of galls/plant, egg masses/root system and eggs/egg mass. The fungal bioagents along with mustard cake and nematicide showed least nematodes reproduction factor as compared to untreated infested soil.

  5. Sulfur compounds in therapy: Radiation-protective agents, amphetamines, and mucopolysaccharide sulfation

    SciTech Connect

    Foye, W.O. )

    1992-09-01

    Sulfur-containing compounds have been used in the search for whole-body radiation-protective compounds, in the design of amphetamine derivatives that retain appetite-suppressive effects but lack most behavioral effects characteristic of amphetamines, and in the search for the cause of kidney stone formation in recurrently stoneforming patients. Organic synthetic procedures were used to prepare radiation-protective compounds having a variety of sulfur-containing functional groups, and to prepare amphetamine derivatives having electron-attracting sulfur functions. In the case of the kidney stone causation research, isolation of urinary mucopolysaccharides (MPS) from recurrently stoneforming patients was carried out and the extent of sulfation of the MPS was determined by electrophoresis. Whole-body radiation-protective agents with a high degree of protection against lethal doses of gamma-radiation in mice were found in a series of quinolinium and pyridinium bis(methylthio) and methylthio amino derivatives. Mechanism studies showed that the copper complexes of these agents mimicked the beneficial action of superoxide dismutase. Electron-attracting sulfur-containing functions on amphetamine nitrogen, as well as 4'-amino nitrogen provided amphetamine derivatives with good appetite-suppressant effects and few or no adverse behavioral effects. Higher than normal levels of sulfation of the urinary MPS of stone formers suggested a cause for recurrent kidney stone formation. A sulfation inhibitor was found to prevent recurrence of stone formation and inhibit growth of existing stones. The inclusion of various sulfur-containing functions in organic molecules yielded compounds having whole-body radiation protection from lethal doses of gamma-radiation in animals. The presence of electron-attracting sulfur functions in amphetamine gave derivatives that retained appetite-suppressant effects and eliminated most adverse behavioral effects.

  6. Evaporation Rates of Chemical Warfare Agents Measured Using 5 CM Wind Tunnels. 2. Munitions Grade Sulfur Mustard From Sand

    DTIC Science & Technology

    2009-07-01

    Result] Analyte Si02 A1203 K20 Fe203 MgO Ti02 Na20 CaO Zr02 P205 BaO Cr203 MnO S03 NiO SrO Rto20 Result Proc-Calc Line Net Int. BG Int...184.71034 1.6631 01 50 0.274805098 203.16629 1.6984 01 52 0.299737374 221.59898 1.7341 01 54 F-2 ULUlCROMERITICS ANALYTICAL ^^ ag rt’c’e Authority

  7. Evaporation Rates of Chemical Warfare Agents Measured using 5 cm Wind Tunnels III. Munition-Grade Sulfur Mustard on Concrete

    DTIC Science & Technology

    2010-02-01

    Technologies 6890N GC/5973 MSD equipped with a 30 m x 0.25 mm HP-5 capillary column (Agilent Technologies, Wilmington, DE). The thermal desorption...Subsstrates - Determination of Capillary Pressure Using a Continuum Approach. J. Colloid Interface Science 2008, (325), 440-446. 26 APPENDIX A...56.5304 g 4.4500 psia 127.8532 g 130.000 degrees 13.5335 g/ml Evacuation Pressure: Evacuation Time: Mercury Filling Pressure: Equilibration Time

  8. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Mutagenicity of Lewisite in the Salmonella Histidine Reversion Assay Final Report

    SciTech Connect

    Stewart, D. L.; Sass, E. J.; Fritz, L. K.; Sasser, L. B.

    1989-07-31

    The mutagenic potential of lewisite was evaluated in the standard plate incorporation method and by the preincubation modification of the Ames Salmonella/microsomal assay with tester strains TA97, TA98, TAlOO and TA102. All strains were tested with activation (20 and 50 {micro}l/ plate) and without activation. The lewisite was screened initially for toxicity with TA98 over a range of concentrations from 0.01 to 250 {micro}g of material per plate. However, concentrations selected for mutagenicity testing were adjusted to a range of 0.001 to 5 {micro}g/plate because of the sensitivity of tester strain TA102, which exhibited cytotoxicity at 0.01 ug/plate. No mutagenic response was exhibited by any of the strains in either method used. All other tester strains showed evidence of cytoxicity (reduction in mutagen response or sparse background lawn) at 5.0 {micro}g/plate or lower.

  9. TOXICOLOGY STUDIES OF LEWISITE AND SULFUR MUSTARD AGENTS:GENETIC TOXICITY OF LEWISITE (L) IN CHINESE HAMSTER OVARY CELLS

    SciTech Connect

    Jostes,R.F. Jr.; Sasser, LB; Rausch, R.J.

    1989-05-31

    The cytotoxic clastogenic and mutagenic effects of the arsenic containing vesicant, Lewisite (L) [dichloro(2-chlorovinyl) arsine], have been investigated using Chinese hamster ovary cells. One hour exposures to Lewisite were cytotoxic in uM amounts. The cell survival response yields a D37 of 0.6 uM and an extrapolation number of 2.5. The mutagenic response at the hypoxantnine-guanine phosporibosyl transferase (HGPRT) locus was sporadic and not significantly greater than control values when cells were exposed over a range of 0.125 to2.0 uM. Sister chromatid exchange (SCE) induction, a measure of chromosomal rearrangement, was weakly positive over a range of 0.25 to 1.0 uM but the values were not significantly greater than the control response. Chromosomal aberrations were induced at 0.75 and 1.0 UMin one experiment and 0.5 and 0.75 uM in another experiment. The Induced values were significantly greater than the control values. Lewisite appears to be cytotoxic and clastogenic in our investigations but SCE and mutation at the HGPRT locus are not significantly greater than control values. Lewisita toxicity was in some ways similar to radiomimetic chemicals such as bleomycin.

  10. Optimization of alkylating agent prodrugs derived from phenol and aniline mustards: a new clinical candidate prodrug (ZD2767) for antibody-directed enzyme prodrug therapy (ADEPT).

    PubMed

    Springer, C J; Dowell, R; Burke, P J; Hadley, E; Davis, D H; Blakey, D C; Melton, R G; Niculescu-Duvaz, I

    1995-12-22

    Sixteen novel potential prodrugs derived from phenol or aniline mustards and their 16 corresponding drugs with ring substitution and/or different alkylating functionalities were designed. The [[[4-]bis(2-bromoethyl)-(1a), [[[4-[bis(2-iodoethyl)-(1b), and [[[4-[(2-chloroethyl)-[2-(mesyloxy)ethyl]amino]phenyl]oxy] carbonyl]-L-glutamic acids (1c), their [[[2- and 3-substituted-4-[bis(2-chloroethyl)amino]phenyl]oxy]carbonyl]-L- glutamic acids (1e-1), and the [[3-substituted-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl]-L- glutamic acids (1o-r) were synthesized. They are bifunctional alkylating agents in which the activating effect of the phenolic hydroxyl or amino function is masked through an oxycarbonyl or a carbamoyl bond to a glutamic acid. These prodrugs were designed to be activated to their corresponding phenol and aniline nitrogen mustard drugs at a tumor site by prior administration of a monoclonal antibody conjugated to the bacterial enzyme carboxypeptidase G2 (CPG2) in antibody-directed enzyme prodrug therapy (ADEPT). The synthesis of the analogous novel parent drugs (2a-r) is also described. The viability of a colorectal cell line (LoVo) was monitored with the potential prodrugs and the parent drugs. The differential in the cytotoxicity between the potential prodrugs and their corresponding active drugs ranged between 12 and > 195 fold. Compounds 1b-d,f,o exhibited substantial prodrug activity, since a cytotoxicity differential of > 100 was achieved compared to 2b-d,f,o respectively. The ability of the potential prodrugs to act as substrates for CPG2 was determined (kinetic parameters KM and kcat), and the chemical stability was measured for all the compounds. The unsubstituted phenols with different alkylating functionalities (1a-c) proved to have the highest ratio of the substrates kcat:KM. From these studies [[[4-[bis(2-iodoethyl)amino]phenyl]oxy]carbonyl]-L-glutamic acid (1b) emerges as a new ADEPT clinical trial candidate due to its physicochemical and

  11. The modulation of the DNA-damaging effect of polycyclic aromatic agents by xanthines. Part I. Reduction of cytostatic effects of quinacrine mustard by caffeine.

    PubMed

    Kapuscinski, Jan; Ardelt, Barbara; Piosik, Jacek; Zdunek, Malgorzata; Darzynkiewicz, Zbigniew

    2002-02-15

    Recently, accumulated statistical data indicate the protective effect of caffeine consumption against several types of cancer diseases. There are also reports about protective effect of caffeine and other xanthines against tumors induced by polycyclic aromatic hydrocarbons. One of the explanations is based on biological activation of such carcinogens by cytochromes that are also known for metabolism of caffeine. However, there is also numerous data indicating reverse effect on cytotoxicity of anticancer drugs that inhibit the action of topoisomerase I (e.g. Camptothecin or Topotecan) and topoisomerase II inhibitors (e.g. Doxorubicin, Mitoxantrone or mAMSA). In this work we tested the hypothesis that the caffeine protective effect is the result of sequestering of aromatic mutagens by formation of stacking (pi-pi) complexes. As the models for the study we have chosen two well-known mutagens, that do not require metabolical activation: quinacrine mustard(QM, aromatic, heterocyclic nitrogen mustard) and mechlorethamine (NM2, aliphatic nitrogen mustard). The flow cytometry study of these agents' action on the cell cycle of HL-60 cells indicated that caffeine prevents the cytotoxic action of QM, but not that of NM2. The formations of stacking complexes of QM with caffeine were confirmed by light absorption, calorimetric measurements and by molecular modeling calculation. Using the statistical thermodynamics calculations we calculated the "neighborhood" association constant (K(AC)=59+/-2M(-1)) and enthalpy change (DeltaH(0')=-116cal mol(-1)); the favorable entropy change of complex formation (DeltaS(0')=7.72cal mol(-1)K(-1), due to release of several water molecules, associated with components in the process of complex formation). The Gibbs' free energy change of QM-CAF formation is DeltaG(0')=-2.41kcal mol(-1). We were unable to detect any interaction between NM2 and caffeine either by spectroscopic or calorimetric measurement. In order to establish, whether the

  12. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  13. Waste form development/test. [Low-density polyethylene and modified sulfur cement as solidification agents

    SciTech Connect

    Kalb, P.D.; Colombo, P.

    1983-01-01

    The main objective of this study is to investigate new solidification agents relative to their potential application to wastes generated by advanced high volume reduction technologies, e.g., incinerator ash, dry solids, and ion exchange resins. Candidate materials selected for the solidification of these wastes include a modified sulfur cement and low-density polyethylene, neither of which are currently employed commerically for the solidification of low-level waste (LLW). As both the modified sulfur cement and the polyethylene are thermoplastic materials, a heated screw type extruder is utilized in the production of waste form samples for testing and evaluation. In this regard, work is being conducted to determine the range of conditions under which these solidification agents can be satisfactorily applied to the specific LLW streams and to provide information relevant to operating parameters and process control.

  14. Nitrogen and sulphur mustard induced histopathological observations in mouse visceral organs.

    PubMed

    Sharma, Manoj; Pant, S C; Pant, J C; Vijayaraghavan, R

    2010-11-01

    Nitrogen mustards (HN) and sulphur mustard (SM) are potent alkylating blister inducing chemical warfare agents. Single 1.0 LD50 dose produced a progressive fall in body weight from second day onwards in all groups of mustard agents exposed animals. Histological examination of spleen, liver skin and kidney revealed significant histopathological lesions in nitrogen mustards and sulphur mustard. These lesions include granulovascular degeneration with perinuclear clumping of the cytoplasm of hepatocytes and renal parenchymal cells. Renal lesions were characterized by congestion and hemorrhage. The maximum toxic manifestation were noted in spleen and skin of HN-3 exposed mice while sulphur mustard reported maximum toxicity in liver and kidneys. The study suggests both nitrogen mustards and sulphur mustard to be extremely toxic by percutaneous route based on histopathological observation and can contributed to earlier reported free radical generation by these toxicants.

  15. Arsenic and Old Mustard: Chemical Problems of Old Arsenical and 'Mustard' Munitions (Joseph F. Bunnett and Marian Mikotajczyk, Eds.)

    NASA Astrophysics Data System (ADS)

    Garrett, Benjamin

    1999-10-01

    What do Knute Rockne, Notre Dame's famed football coach, and Lewisite, a chemical warfare agent dubbed "the dew of death", have in common? Both owe their discovery to Father Julius Arthur Nieuwland.1 Rockne's legacy lives on in the Fighting Irish and their tradition of excellence on the gridiron. Lewisite, together with other arsenical- and mustard-type chemical warfare agents, provide a legacy that lives on, too, but with less cheerful consequences. The book Arsenic and Old Mustard: Chemical Problems of Old Arsenical and 'Mustard' Munitions makes clear the challenges faced in dealing with those consequences. This book documents the proceedings of a workshop devoted to arsenical- and mustard-type chemical warfare agents and their associated munitions. The workshop, held in Poland in 1996, included nine lectures, eight posters, and three discussion groups; and the contents of all these are presented. Major support for the workshop came from the Scientific Affairs Division of NATO as part of on ongoing series of meetings, cooperative research projects, and related efforts dealing with problems leftover from the Cold War and, in the case of the arsenicals and mustards, from conflicts dating to World War I. These problems can be seen in contemporary accounts, including a January 1999 news report that the U.S. Department of Defense intends to survey Washington, DC, areas near both American University and the Catholic University of America (CUA), site of the original synthesis of Lewisite, for chemical warfare agents and other materials disposed at the end of World War I.2 The first nine chapters of the book present the workshop's lectures. Of these, readers interested in chemical weapon destruction might find especially useful the first chapter, in which Ron Mansley of the Organisation for the Prohibition of Chemical Weapons presents a scholarly overview covering historical aspects of the arsenicals and mustards; their production and use; prospective destruction

  16. Evaluation of Molecular Markers and Analytical Methods Documenting the Occurrence of Mustard Gas and Arsenical Warfare Agents in Soil.

    PubMed

    Sassolini, Alessandro; Brinchi, Giampaolo; Di Gennaro, Antonio; Dionisi, Simone; Dominici, Carola; Fantozzi, Luca; Onofri, Giorgio; Piazza, Rosario; Guidotti, Maurizio

    2016-09-01

    The chemicals warfare agents (CWAs) are an extremely toxic class of molecules widely produced in many industrialized countries for decades, these compounds frequently contained arsenic. The plants where the CWAs have been produced or the plants where they have been demilitarized after the Second World War with unacceptable techniques can represent a serious environmental problem. CWAs standards are difficult to find on market so in present work an environmental assessment method based on markers has been proposed. Triphenylarsine, phenylarsine oxide and thiodiglycol have been selected as markers. Three reliable analytical methods based on gaschromatography and mass detection have been proposed and tested for quantitative analysis of markers. Methods performance have been evaluated testing uncertainty, linearity, recovery and detection limits and also comparing detection limits with exposure limits of reference CWAs. Proposed assessment methods have been applied to a case study of a former industrial plant sited in an area characterized by a high background of mineral arsenic.

  17. Estimated Chemical Warfare Agent Surface Clearance Goals for Remediation Pre-Planning

    SciTech Connect

    Dolislager, Frederick; Bansleben, Dr. Donald; Watson, Annetta Paule

    2010-01-01

    Health-based surface clearance goals, in units of mg/cm2, have been developed for the persistent chemical warfare agents sulfur mustard (HD) and nerve agent VX as well as their principal degradation products. Selection of model parameters and critical receptor (toddler child) allow calculation of surface residue estimates protective for the toddler child, the general population and adult employees of a facilty that has undergone chemical warfare agent attack.

  18. Toxicity of vesicant agents scheduled for destruction by the Chemical Stockpile Disposal Program.

    PubMed Central

    Watson, A P; Griffin, G D

    1992-01-01

    The vesicant agents of the unitary chemical munitions stockpile include various formulations of sulfur mustard [bis-(2-chloroethyl) sulfide; agents H, HD, and HT] and small quantities of the organic arsenical Lewisite [dichloro(2-chlorovinyl) arsine; agent L]. These agents can be dispersed in liquid, aerosol, or vapor form and are capable of producing severe chemical burns upon direct contact with tissue. Moist tissues such as the eyes, respiratory tract, and axillary areas are particularly affected. Available data summarizing acute dose response in humans and laboratory animals are summarized. Vesicant agents are also capable of generating delayed effects such as chronic bronchitis, carcinogenesis, or keratitis/keratopathy of the eye under appropriate conditions of exposure and dose. These effects may not become manifest until years following exposure. Risk analysis derived from carcinogenesis data indicates that sulfur mustard possesses a carcinogenic potency similar to that of benzo[a]pyrene. Because mustard agents are alkylating compounds, they destroy individual cells by reaction with cellular proteins, enzymes, RNA, and DNA. Once begun, tissue reaction is irreversible. Mustard agents are mutagenic; data for cellular and laboratory animal assays are presented. Reproductive effects have not been demonstrated in the offspring of laboratory rats. Acute Lewisite exposure has been implicated in cases of Bowen's disease, an intraepidermal squamous cell carcinoma. Lewisite is not known to generate reproductive or teratogenic effects. PMID:1486858

  19. Toxicity of vesicant agents scheduled for destruction by the chemical stockpile disposal program

    SciTech Connect

    Watson, A.P.; Griffin, G.D. )

    1992-11-01

    The vesicant agents of the unitary chemical munitions stockpile include various formulations of sulfur mustard [bis-(2-chloroethyl) sulfide; agents H, HD, and HT] and small quantities of the organic arsenical Lewisite [dichloro(2-chlorovinyl)arsine; agent L]. These agents can be dispersed in liquid, aerosol, or vapor form and are capable of producing severe chemical burns upon direct contact with tissue. Moist tissues such as the eyes, respiratory tract, and axillary areas are particularly affected. Available data summarizing acute dose response in humans and laboratory animals are summarized. Vesicant agents are also capable of generating delayed effects such as chronic bronchitis, carcinogenesis, or keratitis/keratopathy of the eye under appropriate conditions of exposure and dose. These effects may not become manifest until years following exposure. Risk analysis derived from carcinogenesis data indicates that sulfur mustard possesses a carcinogenic potency similar to that of benzo[a]pyrene. Because mustard agents are alkylating compounds, they destroy individual cells by reaction with cellular proteins, enzymes, RNA, and DNA. Once begun, tissue reaction is irreversible. Mustard agents are mutagenic; data for cellular and laboratory animal assays are presented. Reproductive effects have not been demonstrated in the offspring of laboratory rats. Acute Lewisite exposure has been implicated in cases of Bowen's disease, an intraepidermal squamous cell carcinoma. Lewisite is not known to generate reproductive or teratogenic effects. 112 refs., 1 fig., 6 tabs.

  20. A New Cross-Link for an Old Cross-Linking Drug: The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Derived from Abasic Sites in Addition to the Expected Drug-Bridged Cross-Links.

    PubMed

    Nejad, Maryam Imani; Johnson, Kevin M; Price, Nathan E; Gates, Kent S

    2016-12-20

    Nitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Monoadducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity. The N7-alkylguanine residues generated by nitrogen mustards are depurinated to yield abasic (Ap) sites in duplex DNA. Here, we show that Ap sites generated by the nitrogen mustard mechlorethamine lead to interstrand cross-links of a type not previously associated with this drug. Gel electrophoretic data were consistent with early evolution of the expected drug-bridged cross-links, followed by the appearance of Ap-derived cross-links. The evidence is further consistent with a reaction pathway involving alkylation of a guanine residue in a 5'-GT sequence, followed by depurination to generate the Ap site, and cross-link formation via reaction of the Ap aldehyde residue with the opposing adenine residue at this site [Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y., and Gates, K. S. (2014) J. Am. Chem. Soc. 136, 3483-3490]. The monofunctional DNA-alkylating agents 2-chloro-N,N-diethylethanamine 5, (2-chloroethyl)ethylsulfide 6, and natural product leinamycin similarly were found to induce the formation of Ap-derived cross-links in duplex DNA. This work provides the first characterization of Ap-derived cross-links at sequences in which a cytosine residue is located directly opposing the Ap site. Cross-linking processes of this type could be relevant in medicine and biology because Ap sites with directly opposing cytosine residues occur frequently in genomic DNA via spontaneous or enzymatic depurination of guanine and N7-alkylguanine residues.

  1. Sulfur Mustard Induces Apoptosis in Cultured Normal Human Airway Epithelial Cells: Evidence of a Dominant Caspase-8-Mediated Pathway and Differential Cellular Responses

    DTIC Science & Technology

    2008-01-01

    ELEMENT NUMBER 6. AUTHOR(S) Ray, R., Keyser, B., Benton, B., Daher , A., Simbulan-Rosenthal, C.M., Rosenthal, D. 5d. PROJECT NUMBER 5e. TASK...Responses “SM Induces Caspase-8-Dependent Apoptosis”Ray et al. Radharaman Ray,1 Brian Keyser,1 Betty Benton,1 Ahmad Daher ,2 Cynthia M. Simbulan-Rosenthal,2...5. Simbulan-Rosenthal, C., Ray, R., Benton, B., Soeda, E., Daher , A., Anderson, D., Smith, W., Rosenthal, D. (2006). Calmodulin mediates sulfur

  2. DOXYCYCLINE HYDROGELS WITH REVERSIBLE DISULFIDE CROSSLINKS FOR DERMAL WOUND HEALING OF MUSTARD INJURIES

    PubMed Central

    Anumolu, SivaNaga S; Menjoge, Anupa R.; Deshmukh, Manjeet; Gerecke, Donald; Stein, Stanley; Laskin, Jeffrey; Sinko, Patrick J.

    2010-01-01

    Doxycycline hydrogels containing reversible disulfide crosslinks were investigated for a dermal wound healing application. Nitrogen mustard (NM) was used as a surrogate to mimic the vesicant effects of the chemical warfare agent sulfur mustard. An 8-arm-poly(ethylene glycol) (PEG) polymer containing multiple thiol (-SH) groups was crosslinked using hydrogen peroxide (H2O2 hydrogel) or 8-arm-S-thiopyridyl (S-TP hydrogel) to form a hydrogel in situ. Formulation additives (glycerin, PVP and PEG 600) were found to promote dermal hydrogel retention for up to 24 h. Hydrogels demonstrated high mechanical strength and a low degree of swelling (<1.5%). Doxycycline release from the hydrogels was biphasic and sustained for up to 10-days in vitro. Doxycycline (8.5 mg/cm3) permeability through NM-exposed skin was elevated as compared to non vesicant-treated controls at 24, 72 and 168 h post exposure with peak permeability at 72 h. The decrease in doxycycline permeability at 168 h correlates to epidermal reepithelialization and wound healing. Histology studies of skin showed that doxycycline-loaded (0.25% w/v) hydrogels provided improved wound healing response on NM-exposed skin as compared to untreated skin and skin treated with placebo hydrogels in a SKH-1 mouse model. In conclusion, PEG-based doxycycline hydrogels are promising for dermal wound healing application of mustard injuries. PMID:20950853

  3. Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries.

    PubMed

    Anumolu, SivaNaga S; Menjoge, Anupa R; Deshmukh, Manjeet; Gerecke, Donald; Stein, Stanley; Laskin, Jeffrey; Sinko, Patrick J

    2011-02-01

    Doxycycline hydrogels containing reversible disulfide crosslinks were investigated for a dermal wound healing application. Nitrogen mustard (NM) was used as a surrogate to mimic the vesicant effects of the chemical warfare agent sulfur mustard. An 8-arm-poly(ethylene glycol) (PEG) polymer containing multiple thiol (-SH) groups was crosslinked using hydrogen peroxide (H(2)O(2) hydrogel) or 8-arm-S-thiopyridyl (S-TP hydrogel) to form a hydrogel in situ. Formulation additives (glycerin, PVP and PEG 600) were found to promote dermal hydrogel retention for up to 24 h. Hydrogels demonstrated high mechanical strength and a low degree of swelling (< 1.5%). Doxycycline release from the hydrogels was biphasic and sustained for up to 10-days in vitro. Doxycycline (8.5 mg/cm(3)) permeability through NM-exposed skin was elevated as compared to non vesicant-treated controls at 24, 72 and 168 h post-exposure with peak permeability at 72 h. The decrease in doxycycline permeability at 168 h correlates to epidermal re-epithelialization and wound healing. Histology studies of skin showed that doxycycline loaded (0.25% w/v) hydrogels provided improved wound healing response on NM-exposed skin as compared to untreated skin and skin treated with placebo hydrogels in an SKH-1 mouse model. In conclusion, PEG-based doxycycline hydrogels are promising for dermal wound healing application of mustard injuries.

  4. Gas chromatographic-tandem mass spectrometric analysis of β-lyase metabolites of sulfur mustard adducts with glutathione in urine and its use in a rabbit cutaneous exposure model.

    PubMed

    Lin, Ying; Dong, Yuan; Chen, Jia; Li, Chun-Zheng; Nie, Zhi-Yong; Guo, Lei; Liu, Qin; Xie, Jian-Wei

    2014-01-15

    A method for quantitation of β-lyase metabolites of sulfur mustard (SM) adducts with glutathione has been developed and validated using gas chromatography-tandem mass spectrometry (GC-MS/MS). The linear range of quantitation was 0.1-1000ng/mL in urine with a method detection limit of 0.02ng/mL. The method was applied in a rabbit exposure model. Domestic rabbits were cutaneously exposed to neat liquid SM in three dosage levels, and the β-lyase metabolites in urine were determined as 1,1'-sulfonylbis[2-(methylthio)ethane] (SBMTE). The study showed that even though more than 99% of the total amount of β-lyase metabolites was excreted in the first week after exposure, the β-lyase metabolites of SM adducts with glutathione could be detected in urine from rabbits for up to 3 or 4 weeks after the SM cutaneous exposure. For high dosage group (15mg/kg, 0.15 LD50), the mean concentration of SBMTE detected was 0.32ng/mL on day 28. For middle (5mg/kg, 0.05 LD50) and low (2mg/kg, 0.02 LD50) dosage groups, the mean concentrations of SBMTE were 0.07ng/mL and 0.02ng/mL on day 21, respectively. The data from this study indicate that the method is sensitive and provides a relatively long time frame for the retrospective detection of SM exposure.

  5. Effects of Curcuminoids-Piperine Combination on Systemic Oxidative Stress, Clinical Symptoms and Quality of Life in Subjects with Chronic Pulmonary Complications Due to Sulfur Mustard: A Randomized Controlled Trial.

    PubMed

    Panahi, Yunes; Ghanei, Mostafa; Hajhashemi, Ali; Sahebkar, Amirhossein

    2016-01-01

    Oxidative stress plays a key role in the development of chronic pulmonary complications of sulfur mustard (SM). Curcuminoids are polyphenols with documented safety and antioxidant activity. The present study aimed to investigate the efficacy of short-term supplementation with curcuminoids (co-administered with piperine to enhance the bioavailability of curcuminoids) in alleviating systemic oxidative stress and clinical symptoms, and improvement of health-related quality of life (HRQoL) in subjects suffering from chronic pulmonary complications due to SM exposure who are receiving standard respiratory treatments. Eighty-nine subjects were recruited to this randomized double-blind placebo-controlled trial, being randomly allocated to either curcuminoids (1500 mg/day) + piperine (15 mg/day) combination (n = 45) or placebo (n = 44) for a period of 4 weeks. High-resolution computed tomography suggested the diagnosis of bronchiolitis obliterans in all subjects. Efficacy measures were changes in serum levels of reduced glutathione (GSH) and malonedialdehyde (MDA). The severity and frequency of respiratory symptoms and HRQoL were also assessed using St. George respiratory Questionnaire (SGRQ) and COPD Assessment Test (CAT) indices. Serum levels of GSH were increased whilst those of MDA decreased by the end of trial in both groups. Likewise, there were significant improvements in the total as well as subscale (symptoms, activity and impact) SGRQ and CAT scores in both groups. However, comparison of magnitude of changes revealed a greater effect of curcuminoids-piperine combination compared to placebo in elevating GSH, reducing MDA and improving CAT and SGRQ (total and subscale) scores (p < 0.001). Regarding the promising effects of curcuminoids on the measures of systemic oxidative stress, clinical symptoms and HRQoL, these phytochemicals may be used as safe adjuvants in patients suffering from chronic SM-induced pulmonary complications who are receiving standard treatments.

  6. Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents.

    PubMed

    Nogales, B; Guerrero, R; Esteve, I

    1994-10-15

    Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim+sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.

  7. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure.

    PubMed

    Taysse, L; Dorandeu, F; Daulon, S; Foquin, A; Perrier, N; Lallement, G; Breton, P

    2011-06-01

    Using the hairless mouse screening model presented in the companion paper(1) the aim of this study was to assess two skin decontaminating systems: Fuller's earth (FE) and Reactive Skin Decontamination Lotion (RSDL) against two extremely toxic chemical warfare agents that represent a special percutaneous hazard, sulphur mustard (SM) and O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX). Five minutes after being exposed on the back to either 2 µL of neat sulphur mustard or 50 µg.kg(-1) of diluted VX, mice were decontaminated. Both systems were able to reduce blisters 3 days after SM exposure. However, RSDL was found to be more efficient than FE in reducing the necrosis of the epidermis and erosion. In the case of VX exposure, RSDL, whatever the ratio of decontaminant to toxicant used (RSDL 10, 20, 50), was not able to sufficiently prevent the inhibition of plasma cholinesterases taken as a surrogate marker of exposure and toxicity. Only FE reduced significantly the ChE inhibition. Some of these observations are different from our previous results obtained in domestic swine and these changes are thus discussed in the perspective of using SKH-1 hairless mice for the initial in vivo screening of decontaminants.

  8. Various concentrations of erucic acid in mustard oil and mustard.

    PubMed

    Wendlinger, Christine; Hammann, Simon; Vetter, Walter

    2014-06-15

    Erucic acid is a typical constituent of mustard or rape. Foodstuff with a high content of erucic acid is considered undesirable for human consumption because it has been linked to myocardial lipidosis and heart lesions in laboratory rats. As a result, several countries have restricted its presence in oils and fats. In this study, the erucic acid content in several mustard oils and prepared mustard samples from Germany and Australia was determined. Seven of nine mustard oil samples exceeded the permitted maximum levels established for erucic acid (range: 0.3-50.8%, limit: 5%). The erucic acid content in mustard samples (n=15) varied from 14% to 33% in the lipids. Two servings (i.e. 20 g) of the mustards with the highest erucic acid content already surpassed the tolerable daily intake established by Food Standards Australia New Zealand. However, a careful selection of mustard cultivars could lower the nutritional intake of erucic acid.

  9. Myeloperoxidase deficiency attenuates nitrogen mustard-induced skin injuries

    PubMed Central

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Orlicky, David J.; White, Carl W.; Agarwal, Rajesh

    2014-01-01

    The pathologic mechanisms of skin injuries, following the acute inflammatory response induced by vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) exposure, are poorly understood. Neutrophils which accumulate at the site of injury, abundantly express myeloperoxidase (MPO), a heme protein that is implicated in oxidant-related antimicrobial and cytotoxic responses. Our previous studies have shown that exposure to SM analog 2-chloroethyl ethyl sulfide (CEES) or NM results in an inflammatory response including increased neutrophilic infiltration and MPO activity. To further define the role of neutrophil-derived MPO in NM-induced skin injury, here we used a genetic approach and examined the effect of NM exposure (12 h and 24 h) on previously established injury endpoints in C57BL/6J wild type (WT) and B6.129X1-MPOtm1Lus/J mice (MPO KO), homozygous null for MPO gene. NM exposure caused a significant increase in skin bi-fold thickness, epidermal thickness, microvesication, DNA damage and apoptosis in WT mice compared to MPO KO mice. MPO KO mice showed relatively insignificant effect. Similarly, NM-induced increases in the expression of inflammatory and proteolytic mediators, including COX-2, iNOS and MMP-9 in WT mice, while having a significantly lower effect in MPO KO mice. Collectively, these results show that MPO, which generates microbicidal oxidants, plays an important role in NM-induced skin injuries. This suggests the development of mechanism-based treatments against NM- and SM-induced skin injuries that inhibit MPO activity and attenuate MPO-derived oxidants. PMID:24631667

  10. A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity.

    PubMed

    Wormser, Uri; Izrael, Michal; Van der Zee, Eddy A; Brodsky, Berta; Yanai, Joseph

    2005-01-01

    The chemical warfare blistering agent, sulfur mustard (SM), is a powerful mutagen and carcinogen. Due to its similarity to the related chemotherapy agents nitrogen mustard (mechlorethamine), it is expected to act as a developmental neurotoxicant. The present study was designed to establish a chick model for the mechanisms of SM on neurobehavioral teratogenicity, free of confounds related to mammalian maternal effects. Chicken eggs were injected with SM at a dose range of 0.0017-17.0 microg/kg of egg, which is below the threshold for dysmorphology, on incubation days (ID) 2 and 7, and then tests were conducted posthatching. Exposure to SM elicited significant deficits in the intermedial part of the hyperstriatum ventrale (IMHV)-related imprinting behavior. Parallel decreases were found in the level of membrane PKCgamma in the IMHV, while eliciting no net change in cytosolic PKCgamma. The chick, thus, provides a suitable model for the rapid evaluation of SM behavioral teratogenicity and elucidation of the mechanisms underlying behavioral anomalies. The results obtained, using a model that controls for confounding maternal effects, may be replicated in the mammalian model and provide the groundwork for studies designed to offset or reverse the SM-induced neurobehavioral defects in both avian and mammals.

  11. Mustard gas exposure in Iran–Iraq war – A scientometric study

    PubMed Central

    Nokhodian, Zary; ZareFarashbandi, Firoozeh; Shoaei, Parisa

    2015-01-01

    Background: The Iranian victims of sulfur mustard attack are now more than 20 years post-exposure and form a valuable cohort for studying the chronic effects of an exposure to sulfur mustard. Articles on sulfur mustard exposure in Iran–Iraq war were reviewed using three known international databases such as Scopus, Medline, and ISI. The objectives of the study were measurement of the author-wise distribution, year-wise distribution, subject area wise, and assessment of highly cited articles. Materials and Methods: We searched three known international databases, Scopus, Medline, and the international statistical institute (ISI), for articles related to mustard gas exposure in Iran–Iraq war, published between 1988 and 2012. The results were analyzed using scientometric methods. Results: During the 24 years under examination, about 90 papers were published in the field of mustard gas in Iran–Iraq war. Original article was the most used document type forming 51.4% of all the publications. The number of articles devoted to mustard gas and Iran–Iraq war research increased more than 10-fold, from 1 in 1988 to 11 in 2011. Most of the published articles (45.7%) included clinical and paraclinical investigations of sulfur mustard in Iranian victims. The most highly productive author was Ghanei who occupied the first rank in the number of publications with 20 papers. The affiliation of most of the researchers was Baqiyatallah Medical Sciences University (research center of chemical injuries and dermatology department) in Iran. Conclusion: This article has highlighted the quantitative share of Iran in articles on sulfur mustard and lays the groundwork for further research on various aspects of related problems. PMID:26430683

  12. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or...

  13. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or...

  14. 38 CFR 3.316 - Claims based on chronic effects of exposure to mustard gas and Lewisite.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., scar formation, or the following cancers: Nasopharyngeal; laryngeal; lung (except mesothelioma); or squamous cell carcinoma of the skin. (2) Full-body exposure to nitrogen or sulfur mustard or...

  15. Characterization of Lung Fibroblasts More than Two Decades after Mustard Gas Exposure

    PubMed Central

    Pirzad Jahromi, Gila; Ghanei, Mostafa; Hosseini, Seyed Kazem; Shamsaei, Alireza; Gholipourmalekabadi, Mazaher; Koochaki, Ameneh; Karkuki Osguei, Nushin; Samadikuchaksaraei, Ali

    2015-01-01

    Purpose In patients with short-term exposure to the sulfur mustard gas, the delayed cellular effects on lungs have not been well understood yet. The lung pathology shows a dominant feature consistent with obliterative bronchiolitis, in which fibroblasts play a central role. This study aims to characterize alterations to lung fibroblasts, at the cellular level, in patients with delayed respiratory complications after short-term exposure to the sulfur mustard gas. Methods Fibroblasts were isolated from the transbronchial biopsies of patients with documented history of exposure to single high-dose sulfur mustard during 1985–7 and compared with the fibroblasts of control subjects. Results Compared with controls, patients’ fibroblasts were thinner and shorter, and showed a higher population doubling level, migration capacity and number of filopodia. Sulfur mustard decreased the in vitro viability of fibroblasts and increased their sensitivity to induction of apoptosis, but did not change the rate of spontaneous apoptosis. In addition, higher expression of alpha smooth muscle actin showed that the lung's microenvironment in these patients is permissive for myofibroblastic differentiation. Conclusions These findings suggest that in patients under the study, the delayed pulmonary complications of sulfur mustard should be considered as a unique pathology, which might need a specific management by manipulation of cellular components. PMID:26679937

  16. [Effects of peeling agents (resorcinol, crystalline sulfur, salicylic acid) on the epidermis of guinea pig (author's transl)].

    PubMed

    Windhager, K; Plewig, G

    1977-08-22

    The mode of action of "classical peeling agents" such as resorcinol, crystalline sulfur, and salicylic acid on the epidermis is almost unknown. There are only a few experimental data available. Therefore the effects of resorcinol, crystalline sulfur, and salicylic acid were studied. A 1% and 3% concentration of these chemicals in vaselinum flavum or Unguentum Cordes was applied to the ears and flanks of adult male guinea pigs up to 14 days. Prior to biopsies at various time intervals, 3H-thymidine was injected intradermally. Specimens were paraffin embedded and routinely processed for autoradiographical analysis. The following parameters were assessed: Labelling index (L.I. in %); number of labelled basal cells per unit length of basement membrane; papillomatosis-index; and acanthosis-factor (projection histoplanimetry). The data were statistically analysed. The peeling agents induced a concentration-dependent increase of the L.I., acanthosis, and papillomatosis. Crystalline sulfur caused the most pronounced effect, followed by resorcinol. In contrast salicylic acid caused only a minute acanthosis factor and a slight increase in labelling. The correlation coefficient r of epidermal thickness to the L.I. for all concentrations and peeling agents used reaches the high figure of 0.978 for the ear. The 1% and 3% salicylic acid has a lower acanthosis factor than vaselinum flavum by itself. Preliminary autoradiographical studies in humans with 1% and 10% salicylic acid confirm these data. Salicylic acid counteracts acanthosis. These experiments show that crystalline sulfur and resorcinol have a potent effect on cell proliferation and acanthosis. They peel via proliferation hyperkeratosis. The mode of peeling by salicylic acid must be different, as cell proliferation and acanthosis are barely enhanced. The clinically known "keratolytic" effect of salicylic acid may be due to a direct action on the intercellular cement substance of the horny cells.

  17. Final report : multicomponent forensic signature development : interactions with common textiles; mustard precursors and simulants.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-02-01

    2-Chloroethyl phenyl sulfide (CEPS), a surrogate compound of the chemical warfare agent sulfur mustard, was examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a novel method of producing multiway data using a stepped thermal desorption. Various multivariate analysis schemes were employed to analyze the data. These methods may be able to discern different sources of CEPS. In addition, CEPS was applied to cotton, nylon, polyester, and silk swatches. These swatches were placed in controlled humidity chambers maintained at 23%, 56%, and 85% relative humidity. At regular intervals, samples were removed from each test swatch, and the samples analyzed using TD/GC-MS. The results were compared across fabric substrate and humidity.

  18. Molecular biological basis for the response of poly(ADP-rib) polymerase and NAD metabolism to DNA damage caused by mustard alkylating agents. Midterm report

    SciTech Connect

    Smulson, M.E.

    1996-07-01

    During the course of this contract, we have performed a variety of experiments to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PARP), in cultured keratinocytes. This enzyme modifies a variety of nuclear proteins utilizing NAD. DNA is required for the catalytic activity of the enzyme and the activity is dependent upon the presence of strand breaks in this DNA. It has been hypothesized that human skin exposed to mustards may develop blisters due to a generalized lowering of NAD in exposed skin cells. During the contract period, we have established a stably transfected human keratinocyte cell line which expresses antisense transcripts to PARP mRNA when these keratinocyte were grafted onto nude mice they formed histologically normal human skin. Accordingly, a model system has been developed in which the levels of PARP can be selectively manipulated in human keratinocytes in reconstituted epidermis as well. We also showed that PARP was proteolytically cleaved at the onset of spontaneous apoptosis following proteolytic conversion of CPP32b to its active form, termed `apopain`. Having characterized the events associated with apoptosis, we determined, during the last period, whether any or all of these features could be observed following exposure of keratinocytes to SM.

  19. Pulmonary complications of mustard gas exposure: a study on cadavers.

    PubMed

    Taghaddosinejad, Fakhreddin; Fayyaz, Amir Farshid; Behnoush, Behnam

    2011-01-01

    Sulfur mustard gas is one of the chemical warfare gases that roughly about 45000 soldiers continue to suffer long-lasting consequences of exposure during the Iran-Iraq war between 1980 and 1988. According to the common pulmonary lesions due to this gas exposure, we studied gross and microscopic pulmonary lesions in cadavers and also assessed the main causes of mortality caused by mustard gas exposure. A case-series study was performed on hospital record files of 100 cadavers that were exposed with documented sulfur mustard gas during the Iran-Iraq war from 1979 to 1988 and autopsied in legal medicine organization In Tehran between 2005 and 2007 and gross and microscopic pathological findings of autopsied organs such as hematological, pulmonary, hepatic, and renal changes were evaluated. All cases were male with the mean age of 43 years. The time interval between the gas exposure and death was almost 20years. The most frequent pulmonary complication was chronic bronchitis in 81% of autopsied cadavers. Other pulmonary findings were progressive pulmonary fibrosis (9%), pulmonary infections and tuberculosis (29%), malignant cellular infiltration (4%), and aspergilloma (1%). According to the chronic progressive lesions caused by mustard gas exposure such as pulmonary lesions and also its high mortality rate, suitable programming for protection of the gas exposed persons and prohibiting chemical warfare are recommended.

  20. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  1. Possible protein phosphatase inhibition by bis(hydroxyethyl) sulfide, a hydrolysis product of mustard gas

    SciTech Connect

    Brimfield, A.A.

    1995-12-31

    Recently, the natural vesicant cantharidin was shown to bind exclusively to and inhibit protein phosphatase 2A (PP2A) in mouse tissue extracts (Li and Casida (1992) Proc. Nati. Acad. Sci. USA 89, 11867-11870). To explore the generality of this effect in vesicant action, we measured the protein serinelthreonine phosphatase activity in mouse liver cytosol (in the form of the okadaic acid inhibitable increment of p-nitrophenyl phosphate (p-NPP) phosphatase activity) in the presence of aqueous sulfur mustard or its hydrolysis product, bis(hydroxyethyl)sulfide (TDG). Sulfur mustard inhibited p-NPP hydrolysis. However, inhibition correlated with the time elapsed between thawing and the addition of mustard to the enzyme preparation, not with concentration. TDG exhibited a direct, concentration-related inhibition of p-NPP hydrolysis between 30 and 300 1LM. We conclude that sulfur mustard also has an inhibitory effect on protein serinelthreonine phosphatases. However, the inhibition is an effect of its non-alkykating hydrolysis product TDG, not of sulfur mustard itself.

  2. Application of high performance liquid chromatography coupled to on-line solid-phase extraction-nuclear magnetic resonance spectroscopy for the analysis of degradation products of V-class nerve agents and nitrogen mustard.

    PubMed

    Mazumder, Avik; Kumar, Ajeet; Purohit, Ajay K; Dubey, Devendra K

    2010-04-23

    The detection and identification of the degradation products of nitrogen mustard and nerve agent VX by high performance liquid chromatography coupled to on-line solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-UV-SPE-NMR) were demonstrated. The analytes selected for the study were N,N-dimethylaminoethanol (DMAE), N,N-diethylaminoethanol (DEAE), N,N-diisopropylaminoethanol (DIAE) and triethanolamine (TEA). Offline solid-phase extraction (SPE) followed by derivatization was applied to eliminate the interferents and make the analytes amenable for UV detection. Thereafter, chromatographically separated derivatives were trapped on on-line SPE cartridges. They were subsequently eluted and 1H NMR and COSY spectra were obtained. The overall detection limits of the LC-UV-SPE-NMR method for the mentioned analytes were found to be 18, 23, 25, and 32 mg/L respectively. Applicability of the method to real samples was demonstrated by the analysis of samples provided during the 22nd OPCW official proficiency test. The method gave reproducible NMR spectra devoid of intense background signals.

  3. Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical Warfare Agent Sulfur Mustard

    DTIC Science & Technology

    2002-05-16

    Title of Thesis: “Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid...TITLE AND SUBTITLE Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical...phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). Five commercially available SPME fibers were investigated to determine the

  4. TNF-alpha Expression Patterns as Potential Molecular Biomarker for Human Skin Cells Exposed to Vesicant Chemical Warfare Agents: Sulfur Mustard (HD) and Lewisite (L)

    DTIC Science & Technology

    2004-01-01

    one of the key regulated by Lewisite stimulation (Figures 7) cytokines in irritant dermatitis for HD. at 10--6 to 10-4 mol/L for 24 h, stimulation with...indistinguishable. Microscopically, Irritant contact dermatitis is the clinical result the blister roof is slightly thicker than the of sufficient inflammation...is associated with HD or L, respec- erable necrosis of tissue, gangrene , and slough. tively. The difference in TNF--. induction is not Using RT-PCR

  5. Report on possible routes to breakdown products of mustard gas

    SciTech Connect

    Luman, F.M.

    1983-10-18

    This paper suggests possible routes to the formation of decontamination and breakdown products of the chemical agent Mustard Gas (HD). The terminal decontamination products, CaSO4 and CO2, are harmless to the environment. Oxathiane is formed by hydrolysis and dehydration reactions. Dithiane is formed with the application of heat in a low oxygen or nitrogen environment. (Author).

  6. Detection of Sulfur Reddening Agents in Irradiated Jupiter Trojans Ice Analogs

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Poston, Michael; Blacksberg, Jordana; Brown, Michael E.; Hand, Kevin P.; Eiler, John; Ehlmann, Bethany; Hodyss, Robert; Carlson, Robert W.; Choukroun, Mathieu; Wong, Ian

    2016-10-01

    Dynamical models, such as the Nice model, suggest that Trojan asteroids are formed out of the same body of material that produced the Kuiper Belt. In addition, telescopic observations show a color bimodality in VNIR spectral slopes of both Trojan asteroids and small KBOs. In one hypothesis, Wong & Brown (AJ, 2016, in revision) interpret the spectrally red and less red Trojans as descendant of sulfur-containing and sulfur-less primordial trans-Neptunian objects that experienced heating and irradiation during their migration inward. A sharp difference in the surface composition (i.e. presence or absence of sulfur) of the common progenitors of KBOs and Trojans would lead to different products of radiation chemistry, which in turn could lead to the observed color bimodality. In this paper, we address the issue of color bimodality through laboratory simulation. Electron irradiation products of ices containing CH3OH-NH3-H2O (without H2S) and H2S-CH3OH-NH3-H2O (with H2S) were examined. Temperature Programmed Desorption (TPD) of the post-irradiation mixtures shows mass spectra corresponding to small red sulfur allotropes (S2, S3, S4) desorbing while heating H2S-containing films. The production of these small allotropes likely contributes to the reddening slope observed in previously reported "with H2S" samples (Poston, M., et al. LPSC #2265, 2015) and adds significant soundness to the hypothesis connecting the color bimodality in Jupiter Trojans to sulfur chemistry. These small polymers are reactive and could further polymerize due to thermal processing, producing larger yellow sulfur polymers. We hypothesize that such polymerization would occur as a consequence of heating and increased irradiation experienced by an object as it migrated from the primordial trans-Neptunian disk to the current orbit of Trojans. This could explain the difference in the degree of spectral reddening observed between KBOs and Trojans.This work has been supported by the Keck Institute for Space

  7. Sulfur revisited.

    PubMed

    Lin, A N; Reimer, R J; Carter, D M

    1988-03-01

    Sulfur is a time-honored therapeutic agent useful in a variety of dermatologic disorders. Its keratolytic action is due to formation of hydrogen sulfide through a reaction that depends upon direct interaction between sulfur particles and keratinocytes. The smaller the particle size, the greater the degree of such interaction and the greater the therapeutic efficacy. When applied topically, sulfur induces various histologic changes, including hyperkeratosis, acanthosis, and dilatation of dermal vasculature. One study showed that sulfur was comedogenic when applied onto human and rabbit skin, findings that were not reproduced in other studies. About 1% of topically applied sulfur is systemically absorbed. Adverse effects from topically applied sulfur are uncommon and are mainly limited to the skin. In infants, however, fatal outcome after extensive application has been reported.

  8. Design, Synthesis and Biological Evaluation of Sulfur-Containing 1,1-Bisphosphonic Acids as Antiparasitic Agents

    PubMed Central

    Recher, Marion; Barboza, Alejandro P.; Li, Zhu-Hong; Galizzi, Melina; Ferrer-Casal, Mariana; Szajnman, Sergio H.; Docampo, Roberto; Moreno, Silvia N. J.

    2013-01-01

    As part of our efforts aimed at searching for new antiparasitic agents, 2-alkylmercaptoethyl-1,1-bisphosphonate derivatives were synthesized and evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and Toxoplasma gondii, the responsible agent for toxoplasmosis. Many of these sulfur-containing bisphosphonates were potent inhibitors against the intracellular form of T. cruzi, the clinically more relevant replicative form of this parasite, and tachyzoites of T. gondii targeting T. cruzi or T. gondii farnesyl diphosphate synthases (FPPSs), which constitute valid targets for the chemotherapy of these parasitic diseases. Interestingly, long chain length sulfur-containing bisphosphonates emerged as relevant antiparasitic agents. Taking compounds 37, 38, and 39 as representative members of this class of drugs, they exhibited ED50 values of 15.8 μM, 12.8 μM, and 22.4 μM, respectively, against amastigotes of T. cruzi. These cellular activities matched the inhibition of the enzymatic activity of the target enzyme (TcFPPS) having IC50 values of 6.4 μM, 1.7 μM, and 0.097 μM, respectively. In addition, these compounds were potent anti-Toxoplasma agents. They had ED50 values of 2.6 μM, 1.2 μM, and 1.8 μM, respectively, against T. gondii tachyzoites, while they exhibited a very potent inhibitory action against the target enzyme (TgFPPS) showing IC50 values of 0.024 μM, 0.025 μM, and 0.021 μM, respectively. Bisphosphonates bearing a sulfoxide unit at C-3 were also potent anti-Toxoplasma agents, particularly those bearing long aliphatic chains such as 43–45, which were also potent antiproliferative drugs against tachyzoites of T. gondii. These compounds inhibited the enzymatic activity of the target enzyme (TgFPPS) at the very low nanomolar range. These bisphosphonic acids have very good prospective not only as lead drugs but also as potential chemotherapeutic agents. PMID:23318904

  9. Mustard gas: clinical, toxicological, and mutagenic aspects based on modern experience.

    PubMed

    Aasted, A; Darre, E; Wulf, H C

    1987-10-01

    Based on a study of the literature and our own experience treating fisherman poisoned by mustard gas, this article outlines the clinical effects, and toxicological and mutagenic properties of the agent. Mustards are very persistent chemical agents that easily penetrate clothing. Mustard gas usually causes clinical symptoms after the liquid penetrates the skin or the vapor is inhaled. Skin lesions are similar to first- or second-degree burns and usually heal spontaneously in 4 to 6 weeks. Eye symptoms are photophobia and reduced vision. Following inhalation of the agent, pulmonary edema and long-term dyspnea may be seen. As mustard gas is an alkylating substance, it is conceivable that the risk of developing cancer may be increased, as observed in people who were involved with the production of mustard gas and in animals exposed to the gas. Also, transient significantly increased sister chromatid exchange rates have been found in fishermen exposed to mustard gas. Patients exposed to mustard gas must be treated immediately after exposure. Treatment should consist of cleaning of the exposed skin and clothes with an antigas powder and water and soap. The skin lesions should be treated as burns. Eye lesions and respiratory problems should be treated symptomatically.

  10. Indian mustard [Brassica juncea (L.) Czern.].

    PubMed

    Gasic, Ksenija; Korban, Schuyler S

    2006-01-01

    All economically important Brassica species have been successfully transformed using Agrobacterium tumefaciens. Although different tissues have been used as explants, hypocotyls remain the most desirable explants for Brassica tissue culture owing to their amenability to regeneration. Young explants excised from 3- to 4-d-old seedlings have exhibited optimal regeneration potential; the addition of adjuvants such as silver nitrate to the selection medium is necessary to achieve high efficiency of transformation. This chapter describes an Agrobacterium-mediated transformation protocol for Indian mustard based on inoculation of hypocotyls. The selectable marker gene used encodes for neomycin phosphotransferase II (nptII), and the selection agent is kanamycin.

  11. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent

    NASA Astrophysics Data System (ADS)

    Panwar, Vinay; Chattree, Ananya; Pal, Kaushik

    2015-09-01

    In this work, graphene oxide (GO) has been prepared through three different processes namely, eco-friendly Hummers method, modification in improved Hummers method and a new approach. This new approach has been designed by changing some processing parameters and intercalating agent for significant reduction in processing time and to improve the quantity of GO in comparison to the other two methods. This has been achieved through better oxidization of graphite using nitric-sulfuric acid (HNO3-H2SO4) as intercalating agent. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, and Thermogravimetric analysis (TGA) are used to characterize the GO prepared through different processes. These characterizations have confirmed an improved exfoliation of graphite, using addition of HNO3 in intercalating agent, in a short processing time and bring on higher yield of GO via this new process.

  12. Mustard Gas: Its Pre-World War I History

    NASA Astrophysics Data System (ADS)

    Duchovic, Ronald J.; Vilensky, Joel A.

    2007-06-01

    Mustard gas is perhaps the best-known chemical warfare agent and is commonly associated with World War I, both in its first use in warfare and its first synthesis. Although the former is correct, the latter is not. We review here the history of the repeated synthesis of mustard gas by 19th century European chemists. The techniques developed by these chemists were the ones relied upon by both the Central Powers and the Allies to manufacture this agent during World War I. Further, a historical review of mustard gas synthesis highlights the increasing sophistication of the chemical sciences. In particular, during the latter half of the 19th century, the concepts of atomic mass, chemical periodicity, and chemical structure underwent a rapid development that culminated in the application of quantum mechanics to chemistry in the 20th century. A comparison is made of the molecular formula for mustard gas from the 19th century with that of the 21st century, demonstrating that the concept of atomic mass has undergone significant refinement over this period of time.

  13. Limitations and challenges in treatment of acute chemical warfare agent poisoning.

    PubMed

    Thiermann, Horst; Worek, Franz; Kehe, Kai

    2013-12-05

    Recent news from Syria on a possible use of chemical warfare agents made the headlines. Furthermore, the motivation of terrorists to cause maximal harm shifts these agents into the public focus. For incidents with mass casualties appropriate medical countermeasures must be available. At present, the most important threats arise from nerve agents and sulfur mustard. At first, self-protection and protection of medical units from contamination is of utmost importance. Volatile nerve agent exposure, e.g. sarin, results in fast development of cholinergic crisis. Immediate clinical diagnosis can be confirmed on-site by assessment of acetylcholinesterase activity. Treatment with autoinjectors that are filled with 2mg atropine and an oxime (at present obidoxime, pralidoxime, TMB-4 or HI-6) are not effective against all nerve agents. A more aggressive atropinisation has to be considered and more effective oximes (if possible with a broad spectrum or a combination of different oximes) as well as alternative strategies to cope with high acetylcholine levels at synaptic sites should be developed. A further gap exists for the treatment of patients with sustained cholinergic crisis that has to be expected after exposure to persistent nerve agents, e.g. VX. The requirement for long-lasting artificial ventilation can be reduced with an oxime therapy that is optimized by using the cholinesterase status for guidance or by measures (e.g. scavengers) that are able to reduce the poison load substantially in the patients. For sulfur mustard poisoning no specific antidote is available until now. Symptomatic measures as used for treatment of burns are recommended together with surgical or laser debridement. Thus, huge amounts of resources are expected to be consumed as wound healing is impaired. Possible depots of sulfur mustard in tissues may aggravate the situation. More basic knowledge is necessary to improve substantially therapeutic options. The use of stem cells may provide a new

  14. History and perspectives of bioanalytical methods for chemical warfare agent detection.

    PubMed

    Black, Robin M

    2010-05-15

    This paper provides a short historical overview of the development of bioanalytical methods for chemical warfare (CW) agents and their biological markers of exposure, with a more detailed overview of methods for organophosphorus nerve agents. Bioanalytical methods for unchanged CW agents are used primarily for toxicokinetic/toxicodynamic studies. An important aspect of nerve agent toxicokinetics is the different biological activity and detoxification pathways for enantiomers. CW agents have a relatively short lifetime in the human body, and are hydrolysed, metabolised, or adducted to nucleophilic sites on macromolecules such as proteins and DNA. These provide biological markers of exposure. In the past two decades, metabolites, protein adducts of nerve agents, vesicants and phosgene, and DNA adducts of sulfur and nitrogen mustards, have been identified and characterized. Sensitive analytical methods have been developed for their detection, based mainly on mass spectrometry combined with gas or liquid chromatography. Biological markers for sarin, VX and sulfur mustard have been validated in cases of accidental and deliberate human exposures. The concern for terrorist use of CW agents has stimulated the development of higher throughput analytical methods in support of homeland security.

  15. Poisoning of a silica supported cobalt catalyst due to the presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effect of chelating agent

    SciTech Connect

    Bambal, A.S.; Gardner, T.H.; Kugler, E.L.; Dadyburjor, D.B.

    2012-01-01

    Sulfur compounds that are generally found in syngas derived from coal and biomass are a poison to Fischer-Tropsch (FT) catalysts. The presence of sulfur impurities in the ppm range can limit the life of a FT catalyst to a few hours or a few days. In this study, FT synthesis was carried out in a fixed-bed reactor at 230 °C, 20 bar, and 13,500 Ncm3/h/gcat for 72 h using syngas with H2/CO = 2.0. Cobalt-based catalysts were subjected to poisoning by 10 and 50 ppm sulfur in the syngas. The performance of FT catalyst was compared in context of syngas conversion, product selectivities and yields, during the poisoning as well as post-poisoning stages. At both the impurity concentrations, the sulfur was noted to cause permanent loss in the activity, possibly by adsorbing irreversibly on the surface. The sulfur poison affects the hydrogenation and the chain-propagation ability of the catalysts, and shifts the product selectivity towards short-chain hydrocarbons with higher percentages of olefins. Additional diffusion limitations caused due to sulfur poisoning are thought to alter the product selectivity. The shifts in product selectivities suggest that the sulfur decreases the ability of the catalyst to form C-C bonds to produce longer-chain hydrocarbons. The selective blocking of sulfur is thought to affect the hydrogenation ability on the catalyst, resulting in more olefins in the product after sulfur poisoning. The sulfur poisoning on the cobalt catalyst is expected to cause an increase in the number of sites responsible for WGS or to influence the Boudouard reaction, resulting in a higher CO2 selectivity. Both the sites responsible for CO adsorptions as well as the sites for chain growth are poisoned during the poisoning. Additionally, the performance of a base-case cobalt catalyst is compared with that of catalysts modified by chelating agents (CAs). The superior performance of CA-modified catalysts during sulfur poisoning is attributed to the presence of smaller

  16. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants.

  17. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    PubMed Central

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-01-01

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51% reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  18. The fate of the chemical warfare agent during DNA extraction.

    PubMed

    Wilkinson, Della A; Hulst, Albert G; de Reuver, Leo P J; van Krimpen, Simon H; van Baar, Ben M L

    2007-11-01

    Forensic laboratories do not have the infrastructure to process or store contaminated DNA samples that have been recovered from a crime scene contaminated with chemical or biological warfare agents. Previous research has shown that DNA profiles can be recovered from blood exposed to several chemical warfare agents after the agent has been removed. The fate of four toxic agents, sulfur mustard, sodium 2-fluoroacetate, sarin, and diazinon, in a lysis buffer used in Promega DNA IQ extraction protocol was studied to determine if extraction would render the samples safe. Two independent analytical methods were used per agent, selected from GC-MS, 1H NMR, 19F NMR, (31)P NMR, or LC-ES MS. The methods were validated before use. Determinations were carried out in a semi-quantitative way, by direct comparison to standards. Agent levels in the elution buffer were found to be below the detectable limits for mustard, sarin, sodium 2-fluoroacetate or low (<0.02 mg/mL) for diazinon. Therefore, once extracted these DNA samples could be safely processed in a forensic laboratory.

  19. The decay of chemical weapons agents under environmental conditions

    SciTech Connect

    McGuire, R.R.; Haas, J.S.; Eagle, R.J.

    1993-04-09

    The rate and mechanism of decay of chemical agents in the environment was studied via live agent field trials at the chemical and Biological Defence Establishment, Porton Down, UK. The plan was to deposit the agents GD (Soman), VX, and H (sulfur mustard) on separate l-m{sup 2} plots on three successive days; i.e., Tuesday through Thursday. The depositions were to be made so as to give an areal concentration of 10 g/m{sup 2}. Four felt pads of approximately 25 cm{sup 2} each were placed at the corners of each of the test plots. These were subsequently extracted and analyzed by CBDE to determine the actual agent concentration. Samples for LLNL (two different types of soil, disks of silicone rubber gasket material, and short cylinders of concrete were to be contaminated and analyzed. Results are described.

  20. Protocol for determination of chemical warfare agent simulant movement through porous media

    SciTech Connect

    Jenkins, R.A.; Buchanan, M.V.; Merriweather, R.; Ilgner, R.H.; Gayle, T.M.; Moneyhun, J.H.; Watson, A.P.

    1992-07-01

    In the event of an unplanned release of chemical warfare agent during any phase of the Chemical Stockpile Disposal Program (CSDP), a (small) potential exists for contamination of buildings and materials used in their construction. Guidelines for unrestricted access to potentially agent-contaminated private and public property are presently undefined due to uncertainties regarding the adequacy of decontaminating porous surfaces such as wood, masonry and gypsum wall board. Persistent agents such as VX or mustard are particularly problematic. The report which follows documents a measurement protocol developed in a scoping investigation characterizing the permeation of chemical warfare agent simulants [diisopropylmethyl phosphonate (DIMP) for warfare agent GB, dimethylmethyl phosphonate (DMMP) for warfare agent VX and chlorethylethyl sulfide (CEES) for warfare agent sulfur mustard] through several, common porous, construction materials. The ``porous media`` selected for examination were wood, brick, cinder block, and gypsum wall board. Simulants were tested rather than actual warfare agents because of their low toxicity, commercial availability, and the lack of surety capability at Oak Ridge National Laboratory (ORNL). The present work is considered a protocol for confirmation testing with ``live`` agents.

  1. Protocol for determination of chemical warfare agent simulant movement through porous media

    SciTech Connect

    Jenkins, R.A.; Buchanan, M.V.; Merriweather, R.; Ilgner, R.H.; Gayle, T.M.; Moneyhun, J.H.; Watson, A.P.

    1992-07-01

    In the event of an unplanned release of chemical warfare agent during any phase of the Chemical Stockpile Disposal Program (CSDP), a (small) potential exists for contamination of buildings and materials used in their construction. Guidelines for unrestricted access to potentially agent-contaminated private and public property are presently undefined due to uncertainties regarding the adequacy of decontaminating porous surfaces such as wood, masonry and gypsum wall board. Persistent agents such as VX or mustard are particularly problematic. The report which follows documents a measurement protocol developed in a scoping investigation characterizing the permeation of chemical warfare agent simulants (diisopropylmethyl phosphonate (DIMP) for warfare agent GB, dimethylmethyl phosphonate (DMMP) for warfare agent VX and chlorethylethyl sulfide (CEES) for warfare agent sulfur mustard) through several, common porous, construction materials. The porous media'' selected for examination were wood, brick, cinder block, and gypsum wall board. Simulants were tested rather than actual warfare agents because of their low toxicity, commercial availability, and the lack of surety capability at Oak Ridge National Laboratory (ORNL). The present work is considered a protocol for confirmation testing with live'' agents.

  2. [Chemical treatment and decomposition technique of the chemical warfare agents containing arsenicals].

    PubMed

    Kaise, Toshikazu; Kinoshita, Kenji

    2009-01-01

    The old Japanese army developed several chemical warfare agents on Ohkuno Island in Seto inland sea, Hiroshima Japan, during the period between 1919 and 1944. These chemical agents including yperite (mustard; irritating agent), lewisite (irritating agent), diphenylchloroarsine (DA; vomiting agent), diphenylcyanoarsine (DC; vomiting agent) and other poisonous gases were manufactured to be used in China. After World War II, the old Japanese army abandoned or dumped these agents into seas inside or outside of Japan and interior of China. Rather than being used for terrorism, these chemical warfare agents containing arsenicals may cause injury to some workers at the digging site of abandoned chemical weapons. Moreover, the leakage of chemical agents or an explosion of the bomb may result in environmental pollution, as a result, it is highly possible to cause serious health damage to the residents. There are still many abandoned or dumped warfare agents in Japan and China, therefore chemical agents containing arsenic are needed to be treated with alkaline for decomposition or to decompose with oxidizing agent. Presently, a large quantity of chemical agents and the contaminated soil are processed by combustion, and industrial waste is treated with sulfur compounds as the insoluble sulfur arsenic complex. This report describes the methods for the disposal of these organic arsenic agents that have been implemented until present and examines the future prospects.

  3. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    SciTech Connect

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P M.; Kleimeyer, J; Rowland, Brad; Gardner, Patrick J.

    2003-04-21

    Quantitative high resolution (0.1 cm -1) infrared spectra have been acquired for a number of pressure broadened (101.3 KPa N2), vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, nitrogen mustard (HN3), sulfur mustard (HD) and Lewisite (L).

  4. Evaluation of the vesicating properties of neutralized chemical agent identification sets. Final report, November 1995-August 1997

    SciTech Connect

    Olajos, E.J.; Salem, H.; Gieseking, J.K.

    1997-08-01

    Vesication and skin irritation studies were conducted in hairless guinea-pigs to determine the vesicant and skin irritation potential of Chemical Agent Identification Sets (CAIS). Guinea-pigs were topically dosed with `test article` NEAT HD, 10% agent/chloroform solutions, or product solutions (wastestreams) and evaluated for skin-damaging effects (gross and light microscopic). Product solutions from the chemical neutralization of neat sulfur mustard resulted in microvesicle formation (vesication). All agent-dosed (agent/chloroform solutions or HD) sites exhibited microblisters, as well as other histopathologic lesions of the skin. Wastestreams from the neutalization of agent (agent/chloroform; agent on charcoal) were devoid of microvesicant activity. Dermal irritant effects (erythema and edema) were consistent with the skin-injurious activity associated with the neutralizing reagent 1,3-dichloro-5,5-dimethylhydantoin (DCDMH).

  5. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    PubMed Central

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  6. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  7. Inhibition of Listeria monocytogenes and Salmonella by combinations of oriental mustard, malic acid, and EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2014-04-01

    The antimicrobial activities of oriental mustard extract alone or combined with malic acid and EDTA were investigated against Salmonella spp. or Listeria monocytogenes at different temperatures. Five strain Salmonella or L. monocytogenes cocktails were separately inoculated in Brain Heart Infusion broth containing 0.5% (w/v) aqueous oriental mustard extract and incubated at 4 °C to 21 °C for 21 d. For inhibitor combination tests, Salmonella Typhimurium 02:8423 and L. monocytogenes 2-243 were individually inoculated in Mueller Hinton broth containing the mustard extract with either or both 0.2% (w/v) malic acid and 0.2% (w/v) EDTA and incubated at 10 °C or 21 °C for 10 to 14 d. Mustard extract inhibited growth of the L. monocytogenes cocktail at 4 °C up to 21 d (2.3 log10 CFU/mL inhibition) or at 10 °C for 7 d (2.4 log10 CFU/mL inhibition). Salmonella spp. viability was slightly, but significantly reduced by mustard extract at 4 °C by 21 d. Although hydrolysis of sinigrin in mustard extract by both pathogens was 2 to 6 times higher at 21 °C than at 4 °C to 10 °C, mustard was not inhibitory at 21 °C, perhaps because of the instability of its hydrolysis product (allyl isothiocyanate). At 21 °C, additive inhibitory effects of mustard extract with EDTA or malic acid led to undetectable levels of S. Typhimurium and L. monocytogenes by 7 d and 10 d, respectively. At 10 °C, S. Typhimurium was similarly susceptible, but combinations of antimicrobials were not more inhibitory to L. monocytogenes than the individual agents.

  8. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    SciTech Connect

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L.; Vasquez, Karen M.; MacLeod, Michael C.

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  9. Poisoning of a Silica-Supported Cobalt Catalyst due to Presence of Sulfur Impurities in Syngas during Fischer–Tropsch Synthesis: Effects of Chelating Agent

    SciTech Connect

    Bambal, Ashish S.; Guggilla, Vidya S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2014-04-09

    The effects of sulfur impurities on the performance of cobalt-based Fischer–Tropsch catalysts are evaluated under industrially relevant operating conditions of temperature, pressure, and impurity levels. Chelating agents (CAs) were used to modify the SiO2 support, and the performances of the CA-modified catalysts are compared with conventional Co/SiO2 catalysts. For both the Co/SiO2 and CA-modified catalysts, the presence of sulfur in the inlet syngas results in a notable drop in the CO conversion, an undesired shift in the hydrocarbon selectivity toward short-chain hydrocarbons, more olefins in the products, and lower product yields. In the post-poisoning stage, i.e., after termination of sulfur introduction in the inlet syngas, the CA-modified catalysts recover activity and selectivity (to some extent at least), whereas such trends are not observed for the base-case, i.e., unmodified Co/SiO2 catalyst. Finally, the improved performance of the CA-modified catalysts in the presence of sulfur is attributed to higher densities of active sites.

  10. DESI-MS/MS of Chemical Warfare Agents and Related Compounds

    NASA Astrophysics Data System (ADS)

    D'Agostino, Paul A.

    Solid phase microextraction (SPME) fibers were used to headspace ­sample chemical warfare agents and their hydrolysis products from glass vials and glass vials containing spiked media, including Dacron swabs, office carpet, paper and fabric. The interface of the Z-spray source was modified to permit safe introduction of the SPME fibers for desorption electrospray ionization mass spectrometric (DESI-MS) analysis. A "dip and shoot" method was also developed for the rapid sampling and DESI-MS analysis of chemical warfare agents and their hydrolysis products in liquid samples. Sampling was performed by simply dipping fused silica, stainless steel or SPME tips into the organic or aqueous samples. Replicate analyses were completed within several minutes under ambient conditions with no sample pre-treatment, resulting in a significant increase in sample throughput. The developed sample handling and analysis method was applied to the determination of chemical warfare agent content in samples containing unknown chemical and/or biological warfare agents. Ottawa sand was spiked with sulfur mustard, extracted with water and autoclaved to ensure sterility. Sulfur mustard was completely hydrolysed during the extraction/autoclave step and thiodiglycol was identified by DESI-MS, with analyses generally being completed within 1 min using the "dip and shoot" method.

  11. Clinically-Relevant Cutaneous Lesions by Nitrogen Mustard: Useful Biomarkers of Vesicants Skin Injury in SKH-1 Hairless and C57BL/6 Mice

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2013-01-01

    A paucity of clinically applicable biomarkers to screen therapies in laboratory is a limitation in the development of countermeasures against cutaneous injuries by chemical weapon, sulfur mustard (SM), and its analog nitrogen mustard (NM). Consequently, we assessed NM-caused progression of clinical cutaneous lesions; notably, skin injury with NM is comparable to SM. Exposure of SKH-1 hairless and C57BL/6 (haired) mice to NM (3.2 mg) for 12–120 h caused clinical sequelae of toxicity, including microblister formation, edema, erythema, altered pigmentation, wounding, xerosis and scaly dry skin. These toxic effects of NM were similar in both mouse strains, except that wounding and altered pigmentation at 12–24 h and appearance of dry skin at 24 and 72 h post-NM exposure were more pronounced in C57BL/6 compared to SKH-1 mice. Conversely, edema, erythema and microblister formation were more prominent in SKH-1 than C57BL/6 mice at 24–72 h after NM exposure. In addition, 40–60% mortality was observed following 120 h of NM exposure in the both mouse strains. Overall, these toxic effects of NM are comparable to those reported in humans and other animal species with SM, and thus represent clinically-relevant cutaneous injury endpoints in screening and optimization of therapies for skin injuries by vesicating agents. PMID:23826320

  12. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.

    PubMed

    Carniato, Fabio; Bisio, Chiara; Psaro, Rinaldo; Marchese, Leonardo; Guidotti, Matteo

    2014-09-15

    A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder.

  13. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    SciTech Connect

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  14. Cutaneous Injury-Related Structural Changes and Their Progression following Topical Nitrogen Mustard Exposure in Hairless and Haired Mice

    PubMed Central

    Orlicky, David J.; White, Carl W.; Agarwal, Rajesh

    2014-01-01

    To identify effective therapies against sulfur mustard (SM)-induced skin injuries, various animals have been used to assess the cutaneous pathology and related histopathological changes of SM injuries. However, these efforts to establish relevant skin injury endpoints for efficacy studies have been limited mainly due to the restricted assess of SM. Therefore, we employed the SM analog nitrogen mustard (NM), a primary vesicating and bifunctional alkylating agent, to establish relevant endpoints for efficient efficacy studies. Our published studies show that NM (3.2 mg) exposure for 12–120 h in both the hairless SKH-1 and haired C57BL/6 mice caused clinical sequelae of toxicity similar to SM exposure in humans. The NM-induced cutaneous pathology-related structural changes were further analyzed in this study and quantified morphometrically (as percent length or area of epidermis or dermis) of skin sections in mice showing these lesions. H&E stained skin sections of both hairless and haired mice showed that NM (12–120 h) exposure caused epidermal histopathological effects such as increased epidermal thickness, epidermal-dermal separation, necrotic/dead epidermis, epidermal denuding, scab formation, parakeratosis (24–120 h), hyperkeratosis (12–120 h), and acanthosis with hyperplasia (72–120 h). Similar NM exposure in both mice caused dermal changes including necrosis, edema, increase in inflammatory cells, and red blood cell extravasation. These NM-induced cutaneous histopathological features are comparable to the reported lesions from SM exposure in humans and animal models. This study advocates the usefulness of these histopathological parameters observed due to NM exposure in screening and optimization of rescue therapies against NM and SM skin injuries. PMID:24416404

  15. Cutaneous injury-related structural changes and their progression following topical nitrogen mustard exposure in hairless and haired mice.

    PubMed

    Tewari-Singh, Neera; Jain, Anil K; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2014-01-01

    To identify effective therapies against sulfur mustard (SM)-induced skin injuries, various animals have been used to assess the cutaneous pathology and related histopathological changes of SM injuries. However, these efforts to establish relevant skin injury endpoints for efficacy studies have been limited mainly due to the restricted assess of SM. Therefore, we employed the SM analog nitrogen mustard (NM), a primary vesicating and bifunctional alkylating agent, to establish relevant endpoints for efficient efficacy studies. Our published studies show that NM (3.2 mg) exposure for 12-120 h in both the hairless SKH-1 and haired C57BL/6 mice caused clinical sequelae of toxicity similar to SM exposure in humans. The NM-induced cutaneous pathology-related structural changes were further analyzed in this study and quantified morphometrically (as percent length or area of epidermis or dermis) of skin sections in mice showing these lesions. H&E stained skin sections of both hairless and haired mice showed that NM (12-120 h) exposure caused epidermal histopathological effects such as increased epidermal thickness, epidermal-dermal separation, necrotic/dead epidermis, epidermal denuding, scab formation, parakeratosis (24-120 h), hyperkeratosis (12-120 h), and acanthosis with hyperplasia (72-120 h). Similar NM exposure in both mice caused dermal changes including necrosis, edema, increase in inflammatory cells, and red blood cell extravasation. These NM-induced cutaneous histopathological features are comparable to the reported lesions from SM exposure in humans and animal models. This study advocates the usefulness of these histopathological parameters observed due to NM exposure in screening and optimization of rescue therapies against NM and SM skin injuries.

  16. Absence of a p53 allele delays nitrogen mustard-induced early apoptosis and inflammation of murine skin.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Jain, Anil K; Roy, Srirupa; White, Carl W; Agarwal, Rajesh

    2013-09-15

    Bifunctional alkylating agent sulfur mustard (SM) and its analog nitrogen mustard (NM) cause DNA damage leading to cell death, and potentially activating inflammation. Transcription factor p53 plays a critical role in DNA damage by regulating cell cycle progression and apoptosis. Earlier studies by our laboratory demonstrated phosphorylation of p53 at Ser15 and an increase in total p53 in epidermal cells both in vitro and in vivo following NM exposure. To elucidate the role of p53 in NM-induced skin toxicity, we employed SKH-1 hairless mice harboring wild type (WT) or heterozygous p53 (p53+/-). Exposure to NM (3.2mg) caused a more profound increase in epidermal thickness and apoptotic cell death in WT relative to p53+/- mice at 24h. However, by 72h after exposure, there was a comparable increase in NM-induced epidermal cell death in both WT and p53+/- mice. Myeloperoxidase activity data showed that neutrophil infiltration was strongly enhanced in NM-exposed WT mice at 24h persisting through 72h of exposure. Conversely, robust NM-induced neutrophil infiltration (comparable to WT mice) was seen only at 72h after exposure in p53+/- mice. Similarly, NM-exposure strongly induced macrophage and mast cell infiltration in WT, but not p53+/- mice. Together, these data indicate that early apoptosis and inflammation induced by NM in mouse skin are p53-dependent. Thus, targeting this pathway could be a novel strategy for developing countermeasures against vesicants-induced skin injury.

  17. Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2014-01-01

    Nitrogen mustard (NM), a structural analog of chemical warfare agent sulfur mustard (SM), forms adducts and crosslinks with DNA, RNA and proteins. Here we studied the mechanism of NM-induced skin toxicity in response to double strand breaks (DSBs) resulting in cell cycle arrest to facilitate DNA repair, as a model for developing countermeasures against vesicant-induced skin injuries. NM exposure of mouse epidermal JB6 cells decreased cell growth and caused S-phase arrest. Consistent with these biological outcomes, NM exposure also increased comet tail extent moment and the levels of DNA DSB repair molecules phospho H2A.X Ser139 and p53 Ser15 indicating NM-induced DNA DSBs. Since DNA DSB repair occurs via non homologous end joining pathway (NHEJ) or homologous recombination repair (HRR) pathways, next we studied these two pathways and noted their activation as defined by an increase in phospho- and total DNA-PK levels, and the formation of Rad51 foci, respectively. To further analyze the role of these pathways in the cellular response to NM-induced cytotoxicity, NHEJ and HRR were inhibited by DNA-PK inhibitor NU7026 and Rad51 inhibitor BO2, respectively. Inhibition of NHEJ did not sensitize cells to NM-induced decrease in cell growth and cell cycle arrest. However, inhibition of the HRR pathway caused a significant increase in cell death, and prolonged G2M arrest following NM exposure. Together, our findings, indicating that HRR is the key pathway involved in the repair of NM-induced DNA DSBs, could be useful in developing new therapeutic strategies against vesicant-induced skin injury.

  18. Sequence selectivity, cross-linking efficiency and cytotoxicity of DNA-targeted 4-anilinoquinoline aniline mustards.

    PubMed

    McClean, S; Costelloe, C; Denny, W A; Searcey, M; Wakelin, L P

    1999-06-01

    We have investigated the sequence selectivity, DNA binding site characteristics, interstrand cross-linking ability and cytotoxicity of four 4-anilinoquinoline aniline mustards related to the AT-selective minor groove-binding bisquaternary ammonium heterocycles. The compounds studied include two full mustards that differ in alkylating power, a half mustard and a quaternary anilinoquinolinium bismustard. We have also compared their cytotoxicity with their precursor diols and their toxicity and cross-linking ability with the classical alkylating agents melphalan and chlorambucil. We find that the anilinoquinoline aniline mustards weakly and non-specifically alkylate guanines in the major groove and that they bind strongly to AT-rich sequences in the minor groove, where they alkylate both adenines and guanines at the N3 position. The most preferred sites are classical minor groove binder AT-tracts to which all four ligands bind equally well. The remaining sites are AT-rich, but include GC base pairs, to which the ligands bind with preferences depending on their structure. The full mustards alkylate at the 3' ends of the binding site in an orientation that depends on the spatial disposition of the purines within the two strands. Generally speaking guanines are found to be much less reactive than adenines. The anilinoquinoline aniline mustards are interstrand cross-linking agents that are 60- to 100-fold more effective than melphalan, with the quaternary compound being the most efficacious. However, the type of binding site at which the cross-links occur is not clear, since distamycin challenge fails to antagonize them fully. The full mustards are 20- to 50-fold more cytotoxic than their diol precursors, are more cytotoxic than the half mustard and are 20- to 30-fold more active than melphalan and chlorambucil. The quaternary ligand is the most potent. Given the evidence to hand, it appears that antitumour activity correlates with capacity to cause interstrand cross

  19. Immunomodulatory Properties of Mesenchymal Stem Cells Can Mitigate Oxidative Stress and Inflammation Process in Human Mustard Lung.

    PubMed

    Nejad-Moghaddam, Amir; Ajdary, Sohiela; Tahmasbpour, Eisa; Rad, Farhad Riazi; Panahi, Yunes; Ghanei, Mostafa

    2016-12-01

    Oxidative stress and inflammation are one of the main pathological consequences of sulfur mustard on human lungs. Unfortunately, there is no effective treatment to mitigate pathological effects of sulfur mustard in mustard lungs. Here, we aimed to evaluate potential efficacy of systemic mesenchymal stem cells administration on expression of oxidative stress- and inflammation-related genes in sulfur mustard-exposed patients. Our patient received 100 million cells per injection, which was continued for four injections within 2 months. Sputum samples were provided after each injection. Oxidative stress was evaluated by determining sputum levels of malondialdehyde and glutathione. Furthermore, changes in expression of several oxidative stress- (metallothionein 3, glutathione reductase, oxidative stress responsive 1, glutathione peroxidase 2, lacto peroxidase, forkhead box M1) and inflammation-related genes (matrix metallopeptidase 2, matrix metallopeptidase 9, transforming growth factor-β1, vascular endothelial growth factor, metallopeptidase inhibitor 1, metallopeptidase inhibitor 2) were also evaluated using real-time PCR after treatments. Two-lung epithelial-specific proteins including Clara cell protein 16 and Mucin-1 protein levels were measured using enzyme immunoassay method. No significant differences were found between serum levels of Clara cell protein 16 and serum Mucin-1 protein in patient before and after cell therapy. Most of the oxidative stress responsive genes, particularly oxidative stress responsive 1, were overexpressed after treatments. Expressions of antioxidants genes such as metallothionein 3, glutathione reductase and glutathione peroxidase 2 were increased after cell therapy. Upon comparison of inflammation-related genes, we observed upregulation of vascular endothelial growth factor and matrix metallopeptidase 9 after mesenchymal stem cells therapy. Additionally, a trend for increased value of glutathione and decreased levels of

  20. Protective and Therapeutic Agents for War Gases: Therapeutic Agents for Mustard and Nitrogen Mustards 2

    DTIC Science & Technology

    1946-01-10

    amount of product), made strongly alkaline with concentrated ammonia while cooling In ice, and filtered. The crude free base thus obtained was...SK Step III. Isolation of Crude ^-Amlno-3-mercaptobenzolc Acid (NDR-602^ (N.B. S2Q1-12S^ A caustic hydrolysate containing O.652 mole of...porcelain evaporating dish and dried under vacuum over P20c for two to three days. The crude faintly greenish solid contained large amounts of

  1. Chemical warfare agent and high explosive identification by spectroscopy of neutron-induced gamma rays

    SciTech Connect

    Caffrey, A.J.; Cole, J.D.; Gehrke, R.J.; Greenwood, R.C. )

    1992-10-01

    This paper reports on a non-destructive assay method to identify chemical warfare (CW) agents and high explosive (HE) munitions which was tested with actual chemical agents and explosives at the Tooele Army Depot, Tooele, Utah, from 22 April 1991 through 3 May 1991. The assay method exploits the gamma radiation produced by neutron interactions inside a container or munition to identify the elemental composition of its contents. The characteristic gamma-ray signatures of the chemical elements chlorine, phosphorus, and sulfur were observed form the CW agent containers and munitions, in sufficient detail to enable us to reliably discern agents GB (sarin), HD (mustard gas), and VX from one another, and from HE-filled munitions. By detecting of the presence of nitrogen, the key indictor of explosive compounds, and the absence of elements Cl, P, and S, HE shells were also clearly identified.

  2. Detecting hydrolysis products of blister agents in water by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Farquharson, Stuart

    2005-11-01

    Protecting the nation's drinking water from terrorism, requires microg/L detection of chemical agents and their hydrolysis products in less than 10 minutes. In an effort to aid military personnel and the public at large, we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect microgram per liter (part-per-billion) concentrations of chemical agents in water. It is equally important to detect and distinguish the hydrolysis products of these agents to eliminate false-positive responses and evaluate the extent of an attack. Previously, we reported the SER spectra of GA, GB, VX and most of their hydrolysis products. Here we extend these studies to include the chemical agent sulfur-mustard, also known as HD, and its principle hydrolysis product thiodiglycol. We also report initial continuous measurements of thiodiglycol flowing through a SERS-active capillary.

  3. Natural occurrence of bisphenol F in mustard

    PubMed Central

    Zoller, Otmar; Brüschweiler, Beat J.; Magnin, Roxane; Reinhard, Hans; Rhyn, Peter; Rupp, Heinz; Zeltner, Silvia; Felleisen, Richard

    2016-01-01

    ABSTRACT Bisphenol F (BPF) was found in mustard up to a concentration of around 8 mg kg−1. Contamination of the raw products or caused by the packaging could be ruled out. Also, the fact that only the 4,4ʹ-isomer of BPF was detected spoke against contamination from epoxy resin or other sources where technical BPF is used. Only mild mustard made of the seeds of Sinapis alba contained BPF. In all probability BPF is a reaction product from the breakdown of the glucosinolate glucosinalbin with 4-hydroxybenzyl alcohol as an important intermediate. Hot mustard made only from brown mustard seeds (Brassica juncea) or black mustard seeds (Brassica nigra) contained no BPF. BPF is structurally very similar to bisphenol A and has a similar weak estrogenic activity. The consumption of a portion of 20 g of mustard can lead to an intake of 100–200 µg of BPF. According to a preliminary risk assessment, the risk of BPF in mustard for the health of consumers is considered to be low, but available toxicological data are insufficient for a conclusive evaluation. It is a new and surprising finding that BPF is a natural food ingredient and that this is the main uptake route. This insight sheds new light on the risk linked to the family of bisphenols. PMID:26555822

  4. The Mexican poppy poisons the Indian mustard facts and figures.

    PubMed

    Thatte, U; Dahanukar, S

    1999-03-01

    Argemone seeds are mixed with mustard seeds either accidentally or purposefully, and, ingestion of this contaminated oil can lead to often fatal "epidemic dropsy". The liver, heart, kidney and lungs are the major target organs of the toxins (the alkaloids, sanguinarine and dihydrosanguinarine) and damage is mostly caused by free radical (singlet oxygen and hydroxyl radical) to the cell membranes. Treatment at present is mainly symptomatic but therapy with anti-secretory agents for glaucoma and anti-oxidants/free radical scavengers for systemic manifestations appear to be logical.

  5. Differences in sequence selectivity of DNA alkylation by isomeric intercalating aniline mustards.

    PubMed

    Prakash, A S; Denny, W A; Wakelin, L P

    1990-01-01

    Two DNA-targeted mustard derivatives, N,N-bis(2-chloroethyl)-4-(5-[9-acridinylamino]-pentamido)aniline and 4-(9-[acridinylamino]butyl 4-(N,N-bis[2-chloroethyl]-aminobenzamide, which are isomeric compounds where the mustard is linked to the DNA-binding 9-aminoacridine moiety by either a -CONH- or a -NHCO- group, show significant differences in the sequence selectivity of their alkylation of DNA. The CONH isomer is a more efficient alxylating agent than the NHCO compound by an order of magnitude, consistent with the larger electron release of the CONH group to the aniline ring. However, the pattern of alkylation by the two compounds is also very different, with the CONH isomer preferring alkylation of guanines adjacent to 3'- or 5'-adenines and cytosines (for example those in sequences 5'-CGC, 5'-AGC, 5'-CGG and 5'-AGA) while the isomeric NHCO compound shows preference for guanines in runs of Gs. In addition, both isomers alkylate 3'-adenines in runs of adenines. Both compounds also show completely different patterns of alkylation to their untargeted mustard counterparts, since 4-MeCONH-aniline mustard alkylates all guanines and adenines in runs of adenines, while 4-Me2NCO-aniline mustard fails to alkylate DNA at all. These differences in alkylation patterns between the CONH- and its isomeric NHCO- compounds and their relationships between the alkylation patterns of the isomers and their biological activities are discussed.

  6. Free radical production from the interaction of 2-chloroethyl vesicants (mustard gas) with pyridine nucleotide-driven flavoprotein electron transport systems

    SciTech Connect

    Brimfield, A.A. Mancebo, A.M.; Mason, R.P.; Jiang, J.J.; Siraki, A.G.; Novak, M.J.

    2009-01-01

    The biochemical sequelae to chloroethyl mustard exposure correspond very well to toxic processes initiated by free radicals. Additionally, mustard solutions contain spontaneously formed cyclic onium ions which produce carbon free radicals when reduced electrochemically. Therefore, we hypothesized that the onium ions of sulfur or nitrogen mustards might produce carbon free radicals upon being reduced enzymatically, and that these radicals might constitute a metabolic activation. We set out to document radical production using an in vitro metabolic system and electron paramagnetic resonance (EPR). Our system consisted of NADPH, one of several pyridine nucleotide-driven flavoprotein reductases, cytochrome c as a terminal electron acceptor, various sulfur or nitrogen mustards and the spin trap {alpha}-[4-pyridyl-1-oxide]-N-tert-butylnitrone in buffer. Reactions were started by adding the reductase to the other materials, vortexing and immediately transferring the mixture to a 10 mm EPR flat cell. Repeated scans on a Bruker ESP 300E EPR spectrometer produced a triplet of doublets with hyperfine splitting constants of a{sub N} = 15.483 G and a{sub H} = 2.512 G. The outcome supported our hypothesis that carbon-centered free radicals are produced when mustard-related onium ions are enzymatically reduced. The EPR results varied little with the chloroethyl compound used or with porcine or human cytochrome P450 reductase, the reductase domain of rat brain neuronal nitric oxide synthase or rat liver thioredoxin reductase. Our results offer new insight into the basis for mustard-induced vesication and the outcome of exposure to different mustards. The free radical model provides an explanation for similarities in the lesions arising from mustard exposure and energy-based lesions such as those from heat, ultraviolet and nuclear radiation as well as damage across tissue types such as skin, eyes or airway epithelium.

  7. Sulfur Mustard-Induced Increase in Intracellular Calcium: A Mechanism of Mustard Toxicity

    DTIC Science & Technology

    1993-05-13

    mitochondria and endoplasmic reticula , in the cytosol, and in particular in the euchromatin regions of the nucleus beginning at 6 hr after 0.3 mM SM exposure...CCMI’F•ENT PART NOTICE THIS PAPER IS A CCtPOENT PART OF THE FOLLOWING CCMPILATIOI REPORT: TITLE: Procf-edinms of the Medical Defense Bioscience Review...1993) Held in Baltimore, Maryland on 10-13 May 1993. Volume 1. To ORDER THE Ca*LETE COMILATION REPORi, USE AD-A275 667 THE C"tWONENT PART IS PROVII.ED

  8. A preliminary report on zinc-induced resistance to nitrogen mustard toxicity in mice

    SciTech Connect

    Shackelford, M.E.; Tobey, R.A.

    1988-12-01

    Previous studies with cultured human normal fibroblasts indicated that treatment of cells with zinc before exposure to alkylating agents enhanced cell survival by seven- to nine-fold. To establish whether a similar zinc-induced protective response could be elicited in vivo, a set of preliminary experiments was carried out in which Balb/cJ mice were treated with zinc chloride (2 mg/kg body weight) or saline by intraperitoneal (ip) injection at 48, 36, 24, and 12 h before ip administration of 4 mg/kg of the alkylating agent nitrogen mustard. Of the animals that received saline before nitrogen mustard, 57% were killed compared with only 20% in the group treated with zinc before administration of the alkylating agent. These results (which almost certainly were achieved with less than optimal induction conditions) provide evidence for the existence, in vivo, of a zinc-inducible process that reduces alkylating agent lethality. 12 refs., 4 figs.

  9. Comparative toxicity of mono- and bifunctional alkylating homologues of sulphur mustard in human skin keratinocytes.

    PubMed

    Sawyer, Thomas W; McNeely, Karin; Louis, Kristen; Lecavalier, Pierre; Song, Yanfeng; Villanueva, Mercy; Clewley, Robin

    2017-03-08

    Sulphur mustard (bis(2-chloroethyl) sulphide; agent H) is a vesicant chemical warfare (CW) agent whose mechanism of action is not known with any certainty and for which there are no effective antidotes. It has a pronounced latent period before signs and symptoms of poisoning appear which it shares with the nitrogen mustards, and that differentiates it from other classes of vesicant agents. Sulphur mustard, the sulphur mustard CW agents Q (1,2-bis(2-chloroethylthio) ethane) and T (1,1 bis(2-chloroethylthioethyl) ether), the H partial hydrolysis product hemi-sulphur mustard (2-chloroethyl 2-hydroxyethyl sulphide; HSM), and the commercially available 2-chloroethyl ethyl sulphide (CEES) were characterized with respect to their toxicity in first passage cultures of proliferating human skin keratinocytes, the target cell of H-induced skin vesication. Agents H and T were equitoxic and half as toxic as agent Q. Hemi-sulphur mustard and CEES were approximately six times and seventeen times, respectively less cytotoxic than H. 2-Chloroethyl ethyl sulphide was only slightly less toxic in confluent cultures compared to actively proliferating cells. In contrast, the toxicity of H, Q, T and HSM significantly decreased as the cultures became confluent, paralleling the decreasing sensitivity of skin keratinocytes to H as they leave the basement membrane of the skin. The toxicity of CEES was maximal by 24h. In contrast, the maximal toxicity of the other four agents occurred at 48h, mirroring the latent period observed for these agents in vivo. The markedly different characteristics of toxicity between CEES and the other four test compounds indicate that it is likely that different mechanisms of action are operative between them. Caution should therefore be taken when interpreting the results of studies utilizing CEES as a simulant for the mechanistic study of H, or in the elucidation of medical countermeasures against this CW agent. It is also notable that the toxicity

  10. The Role of Energy Metabolism in Cutaneous Sulfur Mustard Injury

    DTIC Science & Technology

    2006-11-01

    the initial insult, as several key metabolic enzymes are regulated by the NAD(P)H / NAD(P)+ ratio. 2.6 Effects of HD on Oxidative Metabolism ... Glucose Metabolism: Oxidative metabolism of glucose via the Krebs cycle was determined as the production of 14CO2 from 6-14C-glucose (Martens, 1998

  11. Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication

    DTIC Science & Technology

    2000-06-01

    SM may induce apoptosis as well. Recent evidence has revealed that Bcl-2 can complex with both the Caenorhabditis elegans death proteins 3 and 4 (Ced-3...the product of a gene required for programmed Tris-HCl (pH 6.8), and 0.02% bromophenol blue. Samples were re- cell death in Caenorhabditis elegans [17...biochemical or mor- which is required for apoptosis in Caenorhabditis elegans (8). phological changes characteristic of apoptosis when In human

  12. Signaling Molecules in Sulfur Mustard-Induced Cutaneous Injury

    DTIC Science & Technology

    2007-11-27

    effect on skin , mucous membranes, eyes, and the respiratory tract.1 Several investigators have reported the signs and symptoms of the clini- cal and...rapidly after latency, and is then followed by varying degrees of blistering and necrosis depending on dose. Histological observations of skin lesions show...keratinocytes.3–6 As the injury progresses, degenerative changes occur throughout the layers of the skin , but these changes are more prevalent in the

  13. Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication

    DTIC Science & Technology

    2006-05-01

    µM; (Meier and Millard, 1998 ), KC (50-300 µM; (Rosenthal et al., 1998c; Stoppler et al., 1998 ), and endothelial cells ( µM; (Dabrowska et al...1996), a time- and dose- dependent shift to necrosis at higher doses was observed in SM-treated lymphocytes (Meier and Millard, 1998 ), endothelial...recruitment of FADD was shown to mediate UV apoptosis of HaCaT KC (Aragane et al., 1998 ). Since Fas-neutralizing antibodies were unable to block this

  14. Storage studies on mustard oil blends.

    PubMed

    Chugh, Bhawna; Dhawan, Kamal

    2014-04-01

    Mustard oil blends were investigated for fatty acid composition and oxidative stability during storage for 3 months at room temperature (15 °C to 35 °C). The blends were prepared using raw mustard oil with selected refined vegetable oils namely; palm, safflower, soybean, rice bran, sunflower and sesame oil (raw). The fatty acid compositions of all these blends were studied using GLC. The developed blends were found to obey the ideal fatty acid ratio as laid down by health agencies i.e. 1:2:1:: SFA:MUFA:PUFA. The oxidative stability of blends was studied by measuring peroxide value (PV), Kries and Thiobarbituric acid (TBA) test. Blends MPSu (mustard oil, palm oil and sunflower oil), MPT (mustard oil, palm oil and sesame oil) and MPGr (mustard oil, palm oil and groundnut oil) were more stable than other blends during storage. The presence of mustard oil in all blends might make them a healthier option for many consumers as it is a rich source of ω-3 fatty acids and has anti-carcinogenic properties.

  15. Histopathological and immunohistochemical evaluation of nitrogen mustard-induced cutaneous effects in SKH-1 hairless and C57BL/6 mice

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Orlicky, David J.; White, Carl W.; Agarwal, Rajesh

    2014-01-01

    Sulfur mustard (SM) is a vesicant warfare agent which causes severe skin injuries. Currently, we lack effective antidotes against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for efficacy studies in laboratory settings to identify effective therapies. Therefore, to develop a relevant mouse skin injury model, we examined the effects of nitrogen mustard (NM), a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. Specifically, we conducted histopathological and immunohistochemical evaluation of several applicable cutaneous pathological lesions following skin NM (3.2 mg) exposure for 12–120 h in SKH-1 and C57BL/6 mice. NM caused a significant increase in epidermal thickness, incidence of microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages and mast cells) and myleoperoxidase activity in the skin in both mouse strains. However, there was a more prominent NM-induced increase in epidermal thickness, and macrophages and mast cell infiltration, in SKH-1 mice relative to what was seen in C57BL/6 mice. NM also caused collagen degradation and edema at early time points (12–24 h); however, at later time points (72 and 120 h), dense collagen staining was observed, indicating either water loss or start of integument repair in both mouse strains. This study provides quantitative measurement of NM-induced histopathological and immunohistochemical cutaneous lesions in both hairless and haired mouse strains that could serve as useful tools for screening and identification of effective therapies for treatment of skin injuries due to NM and SM. PMID:24373750

  16. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration - effects of α-linolenic acid and N-acetylcysteine.

    PubMed

    Steinritz, Dirk; Schmidt, Annette; Simons, Thilo; Ibrahim, Marwa; Morguet, Christian; Balszuweit, Frank; Thiermann, Horst; Kehe, Kai; Bloch, Wilhelm; Bölck, Birgit

    2014-08-05

    Alkylating agents (e.g. sulfur and nitrogen mustards) cause a variety of cell and tissue damage including wound healing disorder. Migration of endothelial cells is of utmost importance for effective wound healing. In this study we investigated the effects of chlorambucil (a nitrogen mustard) on early endothelial cells (EEC) with special focus on cell migration. Chlorambucil significantly inhibited migration of EEC in Boyden chamber and wound healing experiments. Cell migration is linked to cytoskeletal organization. We therefore investigated the distribution pattern of the Golgi apparatus as a marker of cell polarity. Cells are polarized under control conditions, whereas chlorambucil caused an encircling perinuclear position of the Golgi apparatus, indicating non-polarized cells. ROS are discussed to be involved in the pathophysiology of alkylating substances and are linked to cell migration and cell polarity. Therefore we investigated the influence of ROS-scavengers (α-linolenic acid (ALA) and N-acetylcysteine (NAC)) on the impaired EEC migration. Both substances, in particular ALA, improved EEC migration. Notably ALA restored cell polarity. Remarkably, investigations of ROS and RNS biomarkers (8-isoprostane and nitrotyrosine) did not reveal a significant increase after chlorambucil exposure when assessed 24h post exposure. A distinct breakdown of mitochondrial membrane potential (measured by TMRM) that recovered under ALA treatment was observed. In conclusion our results provide compelling evidence that the alkylating agent chlorambucil dramatically impairs directed cellular migration, which is accompanied by perturbations of cell polarity and mitochondrial membrane potential. ALA treatment was able to reconstitute cell polarity and to stabilize mitochondrial potential resulting in improved cell migration.

  17. Histopathological and immunohistochemical evaluation of nitrogen mustard-induced cutaneous effects in SKH-1 hairless and C57BL/6 mice.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2014-03-01

    Sulfur mustard (SM) is a vesicant warfare agent which causes severe skin injuries. Currently, we lack effective antidotes against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for efficacy studies in laboratory settings to identify effective therapies. Therefore, to develop a relevant mouse skin injury model, we examined the effects of nitrogen mustard (NM), a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. Specifically, we conducted histopathological and immunohistochemical evaluation of several applicable cutaneous pathological lesions following skin NM (3.2mg) exposure for 12-120h in SKH-1 and C57BL/6 mice. NM caused a significant increase in epidermal thickness, incidence of microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages and mast cells) and myleoperoxidase activity in the skin of both mouse strains. However, there was a more prominent NM-induced increase in epidermal thickness, and macrophages and mast cell infiltration, in SKH-1 mice relative to what was seen in C57BL/6 mice. NM also caused collagen degradation and edema at early time points (12-24h); however, at later time points (72 and 120h), dense collagen staining was observed, indicating either water loss or start of integument repair in both the mouse strains. This study provides quantitative measurement of NM-induced histopathological and immunohistochemical cutaneous lesions in both hairless and haired mouse strains that could serve as useful tools for screening and identification of effective therapies for treatment of skin injuries due to NM and SM.

  18. Review of the U.S. Army's health risk assessments for oral exposure to six chemical-warfare agents. Introduction.

    PubMed

    2000-03-01

    The U.S. Army is under a congressional mandate and the Chemical Weapons Convention of January 1993 to destroy its entire stockpile of chemical munitions. In addition to stockpiled munitions, nonstockpile chemical materiel (NSCM) has been identified for destruction. NSCM includes a host of lethal wastes from past disposal efforts, unserviceable munitions, chemically contaminated containers, chemical-production facilities, newly located chemical munitions, known sites containing substantial quantities of buried chemical weapons and wastes, and binary weapons and components. There are eight stockpile sites located in the continental United States and one on an island in the Pacific Ocean, and 82 NSCM locations have been identified. There are concerns, based on storage and past disposal practices, about soil and groundwater contamination at those sites. Six of the most commonly found chemical-warfare agents at stockpile and NSCM sites are the nerve agents GA, GB, GD, and VX and the vesicating (blistering) agents sulfur mustard and lewisite. To ensure that chemical contamination is reduced to safe concentrations at stockpile and NSCM sites before they are used for residential, occupational, or wildlife purposes, the U.S. Army requested that health-based exposure limits for GA, GB, GD, VX, sulfur mustard, and lewisite be developed to protect the public and the environment. Oak Ridge National Laboratory (ORNL) was asked to conduct the health risk assessments and propose chronic oral reference doses (RfDs) and, where appropriate, oral slope factors (SFs) for the six agents. RfDs are toxicological values developed for noncancer effects and used as reference points to limit human oral exposure to potentially hazardous concentrations of chemicals thought to have thresholds for their effects. RfDs are estimates (with uncertainty spanning an order of magnitude or greater) of daily oral chemical exposures that are unlikely to have deleterious effects during a human lifetime. For

  19. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    SciTech Connect

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  20. Mustard Gas: Its Pre-World War I History

    ERIC Educational Resources Information Center

    Duchovic, Ronald J.; Vilensky, Joel A.

    2007-01-01

    The Meyer-Clarke synthetic method was used in the German process for large scale production of mustard gas during World War I, which clearly shows the historical connection of synthesis of mustard gas.

  1. Mustard gas surrogate, 2-chloroethyl ethylsulfide (2-CEES), induces centrosome amplification and aneuploidy in human and mouse cells : 2-CEES induces centrosome amplification and chromosome instability.

    PubMed

    Bennett, Richard A; Behrens, Elizabeth; Zinn, Ashtyn; Duncheon, Christian; Lamkin, Thomas J

    2014-08-01

    Mustard gas is a simple molecule with a deadly past. First used as a chemical weapon in World War I, its simple formulation has raised concerns over its use by terrorist organizations and unstable governments. Mustard gas is a powerful vesicant and alkylating agent that causes painful blisters on epithelial surfaces and increases the incidence of cancer in those exposed. The mechanism of mustard gas toxicity and tumorigenesis is not well understood but is thought to be mediated by its ability to induce oxidative stress and DNA damage. Interestingly, several proteins that have been shown to either be targets of mustard gas or mediate mustard gas toxicity have also been shown to regulate centrosome duplication. Centrosomes are small nonmembrane-bound organelles that direct the segregation of chromosomes during mitosis through the formation of the bipolar mitotic spindle. Cells with more or less than two centrosomes during mitosis can segregate their chromosomes unequally, resulting in chromosome instability, a common phenotype of cancer cells. In our studies, we show that subtoxic levels of 2-chloroethyl ethylsulfide (2-CEES), a mustard gas analog, induce centrosome amplification and chromosome instability in cells, which may hasten the mutation rate necessary for tumorigenesis. These data may explain why those exposed to mustard gas exhibit higher incidences of cancer than unexposed individuals of the same cohort.

  2. Chemical Warfare Agent Degradation and Decontamination

    SciTech Connect

    Talmage, Sylvia Smith; Watson, Annetta Paule; Hauschild, Veronique; Munro, Nancy B; King, J.

    2007-02-01

    The decontamination of chemical warfare agents (CWA) from structures, environmental media, and even personnel has become an area of particular interest in recent years due to increased homeland security concerns. In addition to terrorist attacks, scenarios such as accidental releases of CWA from U.S. stockpile sites or from historic, buried munitions are also subjects for response planning. To facilitate rapid identification of practical and effective decontamination approaches, this paper reviews pathways of CWA degradation by natural means as well as those resulting from deliberately applied solutions and technologies; these pathways and technologies are compared and contrasted. We then review various technologies, both traditional and recent, with some emphasis on decontamination materials used for surfaces that are difficult to clean. Discussion is limited to the major threat CWA, namely sulfur mustard (HD, bis(2-chloroethyl)sulfide), VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate), and the G-series nerve agents. The principal G-agents are GA (tabun, ethyl N,N-dimethylphosphoramidocyanidate), GB (sarin, isopropyl methylphosphonofluoridate), and GD (soman, pinacolyl methylphosphonofluoridate). The chemical decontamination pathways of each agent are outlined, with some discussion of intermediate and final degradation product toxicity. In all cases, and regardless of the CWA degradation pathway chosen for decontamination, it will be necessary to collect and analyze pertinent environmental samples during the treatment phase to confirm attainment of clearance levels.

  3. Mesoporous titanium-manganese dioxide for sulphur mustard and soman decontamination

    SciTech Connect

    Stengl, Vaclav; Bludska, Jana; Oplustil, Frantisek; Nemec, Tomas

    2011-11-15

    Highlights: {yields} New nano-dispersive materials for warfare agents decontamination. {yields} 95% decontamination activities for sulphur mustard. {yields} New materials base on titanium and manganese oxides. -- Abstract: Titanium(IV)-manganese(IV) nano-dispersed oxides were prepared by a homogeneous hydrolysis of potassium permanganate and titanium(IV) oxo-sulphate with 2-chloroacetamide. Synthesised samples were characterised using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (HD or bis(2-chloroethyl)sulphide) and soman (GD or (3,3'-dimethylbutan-2-yl)-methylphosphonofluoridate). Mn{sup 4+} content affects the decontamination activity; with increasing Mn{sup 4+} content the activity increases for sulphur mustard and decreases for soman. The best decontamination activities for sulphur mustard and soman were observed for samples TiMn{sub 3}7 with 18.6 wt.% Mn and TiMn{sub 5} with 2.1 wt.% Mn, respectively.

  4. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents.

    PubMed

    Zimmermann, Stefan; Barth, Sebastian; Baether, Wolfgang K M; Ringer, Joachim

    2008-09-01

    Ion mobility spectrometry (IMS) is a well-known method for detecting hazardous compounds in air. Typical applications are the detection of chemical warfare agents, highly toxic industrial compounds, explosives, and drugs of abuse. Detection limits in the low part per billion range, fast response times, and simple instrumentation make this technique more and more popular. In particular, there is an increasing demand for miniaturized low-cost IMS for hand-held devices and air monitoring of public areas by sensor networks. In this paper, we present a miniaturized aspiration condenser type ion mobility spectrometer for fast detection of chemical warfare agents. The device is easy to manufacture and allows single substance identification down to low part per billion-level concentrations within seconds. The improved separation power results from ion focusing by means of geometric constraints and fluid dynamics. A simple pattern recognition algorithm is used for the identification of trained substances in air. The device was tested at the German Armed Forces Scientific Institute for Protection Technologies-NBC-Protection. Different chemical warfare agents, such as sarin, tabun, soman, US-VX, sulfur mustard, nitrogen mustard, and lewisite were tested. The results are presented here.

  5. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog.

    PubMed

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K Leslie; Abel, Erika L; Vasquez, Karen M; MacLeod, Michael C

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM.

  6. Adsorption-desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal.

    PubMed

    Gupta, Vinod K; Jain, Rajeev; Malathi, S; Nayak, Arunima

    2010-08-15

    Deoiled mustard obtained from local oil mills has been used as an inexpensive and effective adsorbent for the removal of indigocarmine dye from industrial effluents. The influence of various factors on the adsorption capacity has been studied by batch experiments. The adsorption studies validate both Langmuir and Freundlich adsorption isotherms. Thermodynamic parameters such as DeltaG degrees, DeltaH degrees, and DeltaS degrees for the adsorption process were calculated, which indicated the feasibility of the adsorption process. Desorption profiles revealed that a significant portion (85%) could be desorbed from deoiled mustard by using 30% glycerol as eluting agent.

  7. Retinoic acid conjugates as potential antitumor agents: synthesis and biological activity of conjugates with Ara-A, Ara-C, 3(2H)-furanone, and aniline mustard moieties.

    PubMed

    Manfredini, S; Simoni, D; Ferroni, R; Bazzanini, R; Vertuani, S; Hatse, S; Balzarini, J; De Clercq, E

    1997-11-07

    In a dual targeting approach, to explore the ability of tretinoin (all-trans-retinoic acid) to behave as a covalent carrier for cytotoxic entities, conjugates of retinoic acid with a few representative molecules, being important examples of antitumor pharmacophores (i.e., nucleoside analogues and alkylating agents), have been synthesized and tested for their cytostatic and differentiating activity. All compounds were stable to in vitro hydrolysis in human plasma and more lipophilic than the parent compounds, thus consenting enhanced uptake into the cells. Among the nucleoside analogues the Ara-C derivatives 3 and 6 and the Ara-A derivative 7 proved the most cytostatic (IC50 < 0.32 microgram/mL) resulting from 25- to > 144-fold more active (Ara-A derivatives) or at least as equally active (Ara-C derivatives) as compared to the parent nucleosides. Compound 3, endowed with a highly lipophilic silyl moiety at the 3' and 5' positions, showed the highest differentiating activity (54% and 44% differentiated HL-60 cells at 0.2 and 0.05 microgram/mL respectively). With regard to the retinoic acid conjugates of alkylating agents, compound 10 was the most cytostatic agent (IC50 < 0.32 microgram/mL) and the most potent differentiating agent (33-34% at 0.32 and 0.08 microgram/mL). These structures may also be regarded as analogs of either retinoic acid or the cytotoxic compound.

  8. Impedance based detection of chemical warfare agent mimics using ferrocene-lysine modified carbon nanotubes.

    PubMed

    Diakowski, Piotr M; Xiao, Yizhi; Petryk, Michael W P; Kraatz, Heinz-Bernhard

    2010-04-15

    A recognition layer formed by multiwalled carbon nanotubes (MWCNTs) covalently modified with a ferrocene-lysine conjugate deposited on the indium tin oxide (ITO) was investigated as a sensor for chemical warfare agent (CWA) mimics. Electrochemical impedance spectroscopy measurements showed that upon addition of CWA mimic dramatic changes occurred in the electrical properties of the recognition layer. These changes allowed the detection of nerve agent analogues at the micromolar level, and a limited sensitivity was observed toward a sulfur mustard mimic. Experimental parameters were optimized so as to allow the detection of CWAs at single frequency, thereby significantly reducing acquisition time and simplifying data treatment. A proposed method of detection represents a significant step toward the design of an affordable and "fieldable" electrochemical CWA sensor.

  9. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  10. Covalent sequestration of the nitrogen mustard mechlorethamine by metallothionein.

    PubMed

    Antoine, M; Fabris, D; Fenselau, C

    1998-09-01

    The research reported here demonstrates covalent binding to the metal-binding protein metallothionein (MT) by the therapeutic nitrogen mustard mechlorethamine. The most surprising aspect of this interaction is the selectivity of the alkylating agent for specific residues of MT. A combination of MS and proteolytic and enzymatic methods was used to deduce specific locations of mechlorethamine alkylation. These experiments indicated that alkylation occurs predominantly in the carboxyl domain of MT, with one molecule of mechlorethamine covalently cross-linking two cysteine residues. Electrospray MS revealed the retention of all seven metal ions in the cross-linked MT/mechlorethamine adducts, highlighting the uniqueness of this protein. Computerized docking experiments supported the hypothesis that selective binding precedes selective alkylation, and the structure of the drug indicates the minimal structural requirements for this binding. These results support the idea that MT overexpressed in tumor cells contributes to the inactivation of anticancer drugs.

  11. Use of acid whey and mustard seed to replace nitrites during cooked sausage production.

    PubMed

    Wójciak, Karolina M; Karwowska, Małgorzata; Dolatowski, Zbigniew J

    2014-02-01

    The aim was to determine the effects of sea salt, acid whey, native and autoclaved mustard seed on the physico-chemical properties, especially colour formation, microbial stability and sensory evaluation of non-nitrite cooked sausage during chilling storage. The cooked pork sausages were divided into 4 groups (group I--control sausages with curing salt (2.8%) and water (5%) added; group II--sausages with sea salt (2.8%) and acid whey (5%) added; group III--sausages with sea salt (2.8%), acid whey (5%) and mustard seed (1%) added; group IV--sausages with sea salt (2.8%), acid whey (5%) and autoclaved mustard seed (1%) added). Instrumental colour (L*, a*, b*), oxygenation index (ΔR), 650/570 nm ratio, heme iron, pH value and water activity (aw) were determined 1 day after production and after 10, 20 and 30 days of refrigerated storage (4 °C). Sensory analysis was conducted immediately after production (day 1). Microbial analysis (lactic acid bacteria, total viable count, Clostridium spp.) was determinated at the end of storage (30 days). The autoclaved mustard with acid whey can be used at 1.0% (w/w) of model cooked sausages with beneficial effect on physico-chemical and sensory qualities of no-nitrite sausage. This product can be stored at refrigeration temperature for up to 30 days, in vacuum, with good acceptability. The colour, visual appearance and overall quality of samples with autoclaved mustard seed and acid whey were similar to the control with curing agent.

  12. Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.

    PubMed

    Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D

    2011-11-01

    Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.

  13. 'Dilute-and-shoot' RSLC-MS-MS method for fast detection of nerve and vesicant chemical warfare agent metabolites in urine.

    PubMed

    Rodin, Igor; Braun, Arcady; Stavrianidi, Andrey; Baygildiev, Timur; Shpigun, Oleg; Oreshkin, Dmitry; Rybalchenko, Igor

    2015-01-01

    A sensitive screening method based on fast liquid chromatography tandem mass-spectrometry (RSLC-MS-MS) has shown the feasibility of separation and detection of low concentration β-lyase metabolites of sulfur mustard and of nerve agent phosphonic acids in urine. The analysis of these compounds is of interest because they are specific metabolites of the chemical warfare agents (CWAs), sulfur mustard (HD), sarin (GB), soman (GD), VX and Russian VX (RVX). The 'dilute-and-shoot' RSLC-MS-MS method provides a sensitive and direct approach for determining CWA exposure in non-extracted non-derivatized samples from urine. Chromatographic separation of the metabolites was achieved using a reverse phase column with gradient mobile phases consisting of 0.5% formic acid in water and acetonitrile. Identification and quantification of species were achieved using electrospray ionization-tandem mass-spectrometry monitoring two precursor-to-product ion transitions for each compound. The method demonstrates linearity over at least two orders of magnitude and had detection limits of 0.5 ng/mL in urine.

  14. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration.

  15. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  16. The chemical agent experience at Rocky Mountain Arsenal

    SciTech Connect

    Mohrman, G.

    1995-06-01

    Rocky Mountain Arsenal (RMA) was constructed and commissioned in 1942 for the production of sulfur mustard and other chemical munitions for possible use in World War II. RMA also became a production site for Lewisite and Sarin, including synthesis and munition filling. Other chemical agents such as Phosgene were routinely handled, filled into munitions and demilitarized. During the 1970`s and the early 1980`s, RMA served as a primary demilitarization facility for the destruction of chemical agents. Throughout its chemical weapons history, RMA generated waste materials from production, neutralization, decontamination and testing. These operations led to the possibility of chemical agent contamination in soils, process equipment and structures that have required special attention as part of the overall Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) environmental cleanup operations being conducted by the Program Manager Rocky Mountain Arsenal (PMRMA). Adjusting normal sampling operations associated with CERCLA-type activities for the special Army regulations covering chemical agents has been a difficult task. This presentation will describe the evolution of chemical agent related efforts and operations as they pertain to RMA environmental cleanup activities, to include field sampling requirements, analytical methods, commercial laboratory use and the role of the on-site PMRMA laboratory.

  17. [Resorcinol-spectrophotometric method for the determination of fructose in mustard leaf's amylose].

    PubMed

    Hasenqimeng; He, Feng-ga

    2002-06-01

    A method using seliwanoff reaction is proposed for the determination of fructose in the amylose of mustard leaves. Fructose reacts with resorcinol forming a red compound with a maximum absorption at 473 nm. The calibration curve is linear over the range of 0-83 micrograms.mL-1 with a correlation coefficient of 0.9998. The content of fructose in the amylose of mustard leaves is found to be 11.41%. Quantitative analysis used for the fructose of syrup include such as volumetric analysis, then layer chromatography, polarimetry, high pressure liquid chromatography and spectrophotometric analysis. According to different color-developing agents, spectrophotometric analysis may be classified as carbazole method, ammonium molybdate way and resorcinol way etc. reported by foreign papers is hard to operate and colored complex is unstable.

  18. Sensitivity of mitomycin C and nitrogen mustard crosslinks to extreme alkaline conditions

    SciTech Connect

    Gruenert, D.C.; Cleaver, J.E.

    1984-09-17

    DNA-DNA crosslinks in cells treated with mitomycin C, nitrogen mustard, or decarbamoyl mitomycin C were measured in alkaline isopycnic gradients as a function of pH. Crosslinks from cells treated with mitomycin C and nitrogen mustard, which react with DNA purines, could be detected at pH 12.5 but not at pH 14. No crosslinks from cells treated with decarbamoyl mitomycin C were detected at either pH. Previous studies with cells exposed to psoralen derivatives plus 360 nm light, which produce DNA-DNA crosslinks with pyrimidines, demonstrated stable crosslinks at pH 14. These studies indicate that DNA-DNA crosslinks involving DNA purines are much less stable at high pH than those involving pyrimidines, and that methods involving exposure to extreme alkaline conditions may give inaccurate information for some agents. 25 references, 1 figure.

  19. Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard.

    PubMed Central

    Salt, D. E.; Prince, R. C.; Pickering, I. J.; Raskin, I.

    1995-01-01

    Indian mustard (Brassica juncea L.), a high biomass crop plant, accumulated substantial amounts of cadmium, with bioaccumulation coefficients (concentration of Cd in dry plant tissue/concentration in solution) of up to 1100 in shoots and 6700 in roots at nonphytotoxic concentrations of Cd (0.1 [mu]g/mL) in solution. This was associated with a rapid accumulation of phytochelatins in the root, where the majority of the Cd was coordinated with sulfur ligands, probably as a Cd-S4 complex, as demonstrated by x-ray absorption spectroscopy. In contrast, Cd moving in the xylem sap was coordinated predominantly with oxygen or nitrogen ligands. Cd concentrations in the xylem sap and the rate of Cd accumulation in the leaves displayed similar saturation kinetics, suggesting that the process of Cd transport from solution through the root and into the xylem is mediated by a saturable transport system(s). However, Cd translocation to the shoot appeared to be driven by transpiration, since ABA dramatically reduced Cd accumulation in leaves. Within leaves, Cd was preferentially accumulated in trichomes on the leaf surface, and this may be a possible detoxification mechanism. PMID:12228679

  20. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Chinese cabbage, cauliflower, collards, garden cress, upland cress, water cress, kale, Chinese kale, Siberian kale, kohlrabi, mustard, pakchoi, radish, rape, rutabaga, and turnip. (a) General description....

  1. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Chinese cabbage, cauliflower, collards, garden cress, upland cress, water cress, kale, Chinese kale, Siberian kale, kohlrabi, mustard, pakchoi, radish, rape, rutabaga, and turnip. (a) General description....

  2. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Chinese cabbage, cauliflower, collards, garden cress, upland cress, water cress, kale, Chinese kale, Siberian kale, kohlrabi, mustard, pakchoi, radish, rape, rutabaga, and turnip. (a) General description....

  3. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Chinese cabbage, cauliflower, collards, garden cress, upland cress, water cress, kale, Chinese kale, Siberian kale, kohlrabi, mustard, pakchoi, radish, rape, rutabaga, and turnip. (a) General description....

  4. Putting Some Mustard into Economic Growth

    PubMed Central

    Evans, Robert G.

    2012-01-01

    On September 27, 2012, the University of Toronto launched the Fraser Mustard Institute for Human Development – an appropriate recognition of an extraordinary individual. Fraser was a keen student of the science of human development and, most particularly, of early child development (ECD). He was also a powerful and tireless advocate for translating science into action. His institute must do both. Action is needed also because 25% of Canadians lack the competencies to function effectively in a modern economy. Other countries do much better. Facing a low-growth future, we cannot afford to waste this untapped potential. Although Prime Minister Harper's personal ideology has no place for ECD, the Mustard Institute can help keep the flame alive. PMID:23968611

  5. Putting some mustard into economic growth.

    PubMed

    Evans, Robert G

    2012-11-01

    On September 27, 2012, the University of Toronto launched the Fraser Mustard Institute for Human Development - an appropriate recognition of an extraordinary individual. Fraser was a keen student of the science of human development and, most particularly, of early child development (ECD). He was also a powerful and tireless advocate for translating science into action. His institute must do both. Action is needed also because 25% of Canadians lack the competencies to function effectively in a modern economy. Other countries do much better. Facing a low-growth future, we cannot afford to waste this untapped potential. Although Prime Minister Harper's personal ideology has no place for ECD, the Mustard Institute can help keep the flame alive.

  6. Effect of Greens and Soil Type, Sulfur Addition and Lithium Level on Leaf Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  7. Aromatic nitrogen mustard-based prodrugs: activity, selectivity, and the mechanism of DNA cross-linking.

    PubMed

    Chen, Wenbing; Han, Yanyan; Peng, Xiaohua

    2014-06-10

    Three novel H2O2-activated aromatic nitrogen mustard prodrugs (6-8) are reported. These compounds contain a DNA alkylating agent connected to a H2O2-responsive trigger by different electron-withdrawing linkers so that they are inactive towards DNA but can be triggered by H2O2 to release active species. The activity and selectivity of these compounds towards DNA were investigated by measuring DNA interstrand cross-link (ICL) formation in the presence or absence of H2O2. An electron-withdrawing linker unit, such as a quaternary ammonia salt (6), a carboxyamide (7), and a carbonate group (8), is sufficient to deactivate the aromatic nitrogen mustard resulting in less than 1.5 % cross-linking formation. However, H2O2 can restore the activity of the effectors by converting a withdrawing group to a donating group, therefore increasing the cross-linking efficiency (>20 %). The stability and reaction sites of the ICL products were determined, which revealed that alkylation induced by 7 and 8 not only occurred at the purine sites but also at the pyrimidine site. For the first time, we isolated and characterized the monomer adducts formed between the canonical nucleosides and the aromatic nitrogen mustard (15) which supported that nitrogen mustards reacted with dG, dA, and dC. The activation mechanism was studied by NMR spectroscopic analysis. An in vitro cytotoxicity assay demonstrated that compound 7 with a carboxyamide linker dramatically inhibited the growth of various cancer cells with a GI50 of less than 1 μM, whereas compound 6 with a charged linker did not show any obvious toxicity in all cell lines tested. These data indicated that a neutral carboxyamide linker is preferable for developing nitrogen mustard prodrugs. Our results showed that 7 is a potent anticancer prodrug that can serve as a model compound for further development. We believe these novel aromatic nitrogen mustards will inspire further and effective applications.

  8. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries.

    PubMed

    Niu, Shuzhang; Lv, Wei; Zhou, Guangmin; He, Yanbing; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2015-12-28

    Nitrogen and sulfur co-doped porous carbon spheres (NS-PCSs) were prepared using L-cysteine to control the structure and functionalization during the hydrothermal reaction of glucose and the subsequent activation process. As the sulfur hosts in Li-S batteries, NS-PCSs combine strong physical confinement and surface chemical interaction to improve the affinity of polysulfides to the carbon matrix.

  9. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  10. Detection and monitoring of early airway injury effects of half-mustard (2-chloroethylethylsulfide) exposure using high-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kreuter, Kelly A.; Mahon, Sari B.; Mukai, David S.; Su, Jianping; Jung, Woong-Gyu; Narula, Navneet; Guo, Shuguang; Wakida, Nicole; Raub, Chris; Berns, Michael W.; George, Steven C.; Chen, Zhongping; Brenner, Matthew

    2009-07-01

    Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging technology capable of delivering real-time, near-histologic images of tissues. Mustard gas is a vesicant-blistering agent that can cause severe and lethal damage to airway and lungs. The ability to detect and assess airway injury in the clinical setting of mustard exposure is currently limited. The purpose of this study is to assess the ability to detect and monitor progression of half-mustard [2-chloroethylethylsulfide (CEES)] airway injuries with OCT techniques. A ventilated rabbit mustard exposure airway injury model is developed. A flexible fiber optic OCT probe is introduced into the distal trachea to image airway epithelium and mucosa in vivo. Progression of airway injury is observed over eight hours with OCT using a prototype time-domain superluminescent diode OCT system. OCT tracheal images from CEES exposed animals are compared to control rabbits for airway mucosal thickening and other changes. OCT detects the early occurrence and progression of dramatic changes in the experimental group after exposure to CEES. Histology and immunofluorescence staining confirms this finding. OCT has the potential to be a high resolution imaging modality capable of detecting, assessing, and monitoring treatment for airway injury following mustard vesicant agent exposures.

  11. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    SciTech Connect

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L. )

    1990-03-27

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.

  12. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Mustard family, Brassicaceae (Cruciferae). 201.56-3 Section 201.56-3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...-3 Mustard family, Brassicaceae (Cruciferae). Kinds of seed: Broccoli, brussels sprouts,...

  13. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    SciTech Connect

    Štengl, Václav; Grygar, Tomáš Matys; Bludská, Jana; Opluštil, František; Němec, Tomáš

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  14. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals.

  15. Technical support for recovery phase decision-making in the event of a chemical warfare agent release

    SciTech Connect

    Watson, A.; Shugart, L.; Buchanan, M.; Jenkins, R.; Kistner, S.; Halbrook, R.

    1995-12-31

    Persistent chemical warfare agents such as the nerve agent VX and sulfur mustard were originally designed as terrain denial materials on the chemical battlefield. As a consequence, they do not rapidly degrade. In the course of preparedness planning for disposal of the US unitary stockpile of chemical warfare agents, communities have raised the issue of determining environmental concentrations and the potential health consequences of persistent agents following any agent event. This issue is common to several chemical warfare munition and materiel disposal activities in the United States, as well as for developing verification and compliance monitoring programs integral to the international Chemical Weapons Convention. Experimental research supporting the development of environmental monitoring protocols are summarized. They include the development of blood cholinesterase activity as a biomonitor of nerve agent exposure in domestic beef and dairy cattle, horses and sheep; measuring the permeation rates of construction materials such as unpainted wood and gypsum wall board to agent simulants; and developing an experimental monitoring protocol for agents in meat and grain.

  16. Blaptica dubia as sentinels for exposure to chemical warfare agents - a pilot study.

    PubMed

    Worek, Franz; Seeger, Thomas; Neumaier, Katharina; Wille, Timo; Thiermann, Horst

    2016-11-16

    The increased interest of terrorist groups in toxic chemicals and chemical warfare agents presents a continuing threat to our societies. Early warning and detection is a key component for effective countermeasures against such deadly agents. Presently available and near term solutions have a number of major drawbacks, e.g. lack of automated, remote warning and detection of primarily low volatile chemical warfare agents. An alternative approach is the use of animals as sentinels for exposure to toxic chemicals. To overcome disadvantages of vertebrates the present pilot study was initiated to investigate the suitability of South American cockroaches (Blaptica dubia) as warning system for exposure to chemical warfare nerve and blister agents. Initial in vitro experiments with nerve agents showed an increasing inhibitory potency in the order tabun - cyclosarin - sarin - soman - VX of cockroach cholinesterase. Exposure of cockroaches to chemical warfare agents resulted in clearly visible and reproducible reactions, the onset being dependent on the agent and dose. With nerve agents the onset was related to the volatility of the agents. The blister agent lewisite induced signs largely comparable to those of nerve agents while sulfur mustard exposed animals exhibited a different sequence of events. In conclusion, this first pilot study indicates that Blaptica dubia could serve as a warning system to exposure of chemical warfare agents. A cockroach-based system will not detect or identify a particular chemical warfare agent but could trigger further actions, e.g. specific detection and increased protective status. By designing appropriate boxes with (IR) motion sensors and remote control (IR) camera automated off-site warning systems could be realized.

  17. Cleanout and Decontamination of a Mustard Agent Ton Container.

    DTIC Science & Technology

    1997-06-01

    HD TCs using pressurized hot water and steam. ERDEC has successfully decontaminated two HD TCs in an ERDEC Toxic Test Chamber to a 3X condition using...this process. 14. SUBJECT TERMS 15. NUMBER OF PAGES Ton Containers HD Decontamination Alternative Technology Program 143 3X Condition Heel Hot Water ...the interior of the TC with pressurized hot water . The demonstration was designed to confirm the results of the first HD TC Cleanout Demonstration, and

  18. ADAM17 Inhibitors Attenuate Corneal Epithelial Detachment Induced by Mustard Exposure

    PubMed Central

    DeSantis-Rodrigues, Andrea; Chang, Yoke-Chen; A. Hahn, Rita; P. Po, Iris; Zhou, Peihong; Lacey, C. Jeffrey; Pillai, Abhilash; C. Young, Sherri; A. Flowers II, Robert; A. Gallo, Michael; D. Laskin, Jeffrey; R. Gerecke, Donald; K. H. Svoboda, Kathy; D. Heindel, Ned; Gordon, Marion K.

    2016-01-01

    Purpose Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial–stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial–stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. Methods Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3–100 nmol in 20 μL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. Results Nitrogen mustard–induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial–stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial–stromal attachment. Conclusions Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial–stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial–stromal separation. PMID:27058125

  19. Identification of the major lesion from the reaction of an acridine-targeted aniline mustard with DNA as an adenine N1 adduct.

    PubMed

    Boritzki, T J; Palmer, B D; Coddington, J M; Denny, W A

    1994-01-01

    DNA adducts of two acridine-linked aniline half-mustards have been isolated and identified. The compound where the half-mustard is attached to the DNA-targeting acridine moiety by a short linker chain alkylates both double- and single-stranded DNA exclusively at guanine N7, as do the majority of known aromatic and aliphatic nitrogen mustards. The longer-chain analogue, also containing a more reactive half-mustard, shows a strikingly different pattern, alkylating double-stranded DNA to yield primarily (> 90%) the adenine N1 adduct, together with < 10% of the adenine N3 adduct and only trace amounts of the guanine N7 adduct. In the presence of MgCl2 (which is known not to inhibit the interaction of drugs at minor groove sites), the adenine N3 adduct is the major product. The latter compound is the first known aniline mustard (and apparently the first known alkylating agent of any type) to preferentially alkylate adenine at the N1 position in duplex DNA. These results are consistent with previous work [Prakash et al. (1990) Biochemistry 29, 9799-9807], which showed that the preferred site of DNA alkylation by the corresponding long-chain acridine-linked aniline bis-mustards in general was at major groove sites of adenines and identifies the major site of alkylation as adenine N1 and not N7. This selectivity for adenine N1 alkylation is suggested to result from a preference for the acridine mustard side chain of these compounds to project into the major groove following intercalation of the acridine, coupled with structural distortion of the DNA helix to make the N1 positions of adenines adjacent to the intercalation sites more accessible.

  20. THE EFFECT OF NITROGEN MUSTARDS ON ENZYMES AND TISSUE METABOLISM

    PubMed Central

    Barron, E. S. Guzman; Bartlett, Grant R.; Miller, Zelma Baker; Meyer, Joe; Seegmiller, J. E.

    1948-01-01

    Nitrogen mustards at a concentration forty times the minimum lethal dose inhibited the respiration of all tissues studied but affected anaerobic glycolysis very little. The inhibiting effect increased with time. The respiration of lymphoid tissue was extremely sensitive to nitrogen mustard, as concentrations below the LD50 definitely inhibited the respiration of rabbit lymph nodes. In tissue slices nitrogen mustards inhibited the oxidation of pyruvate and of l-amino acids and the utilization of NH3. A number of synthesis reactions were also inhibited, such as the synthesis of carbohydrate, of creatine, and of urea. When added to growing seeds, nitrogen mustards inhibited their growth. In rats given lethal doses of nitrogen mustards there were found complete inhibition of choline oxidation and strong inhibition of pyruvate oxidation by the kidney and partial inhibition of urea synthesis by the liver. Inhibition of bone marrow respiration by nitrogen mustards was prevented by the addition of choline, and of dimethylaminoethanol plus methionine The possible mechanism of nitrogen mustard intoxication is discussed. PMID:18858641

  1. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  2. Apoptotic Cell Death in Rat Lung Following Mustard Gas Inhalation.

    PubMed

    Andres, Devon Katherine; Keyser, Brian M; Melber, Ashley A; Benton, Betty Jean; Hamilton, Tracey A; Kniffin, Denise M; Martens, Magaret E; Ray, Radharaman

    2017-03-30

    To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3 and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 hr after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased 5-fold between 6 to 24 hr, decreasing to the unexposed-control level at 48 hr. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked (p<0.01) at 24 hr; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 hr. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L, mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. SFas-L increased significantly at 24 hr after SM exposure in both BALF cells (p<0.01) and BALF (p<0.05). However, mFas-L increased only in BALF cells between 24 to 48 hr (p<0.1, <0.001, respectively). Fas-R increased only in BALF cells by 6 hr (p<0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspse-3 and -9 antibodies and TUNEL staining as early as 6 hr in the proximal trachea and bronchi, but not before 48 hr in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals.

  3. Silibinin, Dexamethasone, and Doxycycline as Potential Therapeutic Agents for Treating Vesicant-Inflicted Ocular Injuries

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K; Inturi, Swetha; Ammar, David A; Agarwal, Chapla; Tyagi, Puneet; Kompella, Uday B; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh

    2014-01-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 µg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. PMID:22841772

  4. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    PubMed

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  5. Models of invasion and establishment of African Mustard (Brassica tournefortii)

    USGS Publications Warehouse

    Berry, Kristin H.; Gowan, Timothy A.; Miller, David M.; Brooks, Matthew L.

    2015-01-01

    Introduced exotic plants can drive ecosystem change. We studied invasion and establishment ofBrassica tournefortii (African mustard), a noxious weed, in the Chemehuevi Valley, western Sonoran Desert, California. We used long-term data sets of photographs, transects for biomass of annual plants, and densities of African mustard collected at irregular intervals between 1979 and 2009. We suggest that African mustard may have been present in low numbers along the main route of travel, a highway, in the late 1970s; invaded the valley along a major axial valley ephemeral stream channel and the highway; and by 2009, colonized 22 km into the eastern part of the valley. We developed predictive models for invasibility and establishment of African mustard. Both during the initial invasion and after establishment, significant predictor variables of African mustard densities were surficial geology, proximity to the highway and axial valley ephemeral stream channel, and number of small ephemeral stream channels. The axial valley ephemeral stream channel was the most vulnerable of the variables to invasions. Overall, African mustard rapidly colonized and quickly became established in naturally disturbed areas, such as stream channels, where geological surfaces were young and soils were weakly developed. Older geological surfaces (e.g., desert pavements with soils 140,000 to 300,000 years old) were less vulnerable. Microhabitats also influenced densities of African mustard, with densities higher under shrubs than in the interspaces. As African mustard became established, the proportional biomass of native winter annual plants declined. Early control is important because African mustard can colonize and become well established across a valley in 20 yr.

  6. Technical support for recovery phase decision-making in the event of a chemical warfare agent release

    SciTech Connect

    Watson, A.; Kistner, S.; Halbrook, R.

    1995-12-31

    In late 1985, Congress mandated that the U.S. stockpile of lethal unitary chemical agents and munitions be destroyed by the Department of the Army in a manner that provides maximum protection to the environment, the general public and personnel involved in the disposal program (Public Law 99-1, Section 1412, Title 14, Part b). These unitary munitions were last manufactured in the late 1960`s. The stockpiled inventory is estimated to approximate 25,000-30,000 tons, an includes organophosphate ({open_quotes}nerves{close_quotes}) agents such as VX [O-ethylester of S-(diisopropyl aminoethyl) methyl phosphonothiolate, C{sub 11}H{sub 26}NO{sub 2}PS] and vesicant ({open_quotes}blister{close_quotes}) agents such as Hd [sulfur mustard; bis (2-chloroethyl sulfide), C{sub 4}H{sub 8}Cl{sub 2}S]. The method of agent destruction selected by the Department of the Army is combined high-temperature and high-residence time incineration at secured military installations where munitions are currently stockpiled. This program supports the research program to address: the biomonitoring of nerve agent exposure; agent detection limits in foods and milk; and permeation of agents through porous construction materials.

  7. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    SciTech Connect

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  8. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    SciTech Connect

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Ammar, David A.; Agarwal, Chapla; Tyagi, Puneet; Kompella, Uday B.; Enzenauer, Robert W.; Petrash, J. Mark; Agarwal, Rajesh

    2012-10-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  9. Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation.

    PubMed

    Sladek, N E; Doeden, D; Powers, J F; Krivit, W

    1984-10-01

    Plasma half-life and area under the curve (AUC) values for cyclophosphamide were determined in patients given this agent iv at doses of 50-60 mg/kg/infusion. Apparent plasma half-life and AUC values for the metabolites 4-hydroxycyclophosphamide and phosphoramide mustard were also determined in some of these patients. Disappearance from the plasma of the parent compound as well as that of the metabolites was approximately first-order. Plasma half-life values for cyclophosphamide ranged from 45 to 480 mins; AUC values ranged from 10 to 188 mM X min. As expected, AUC values for cyclophosphamide increased approximately linearly with an increase in its plasma half-life. Apparent plasma half-life values for 4-hydroxycyclophosphamide and phosphoramide mustard increased approximately linearly with an increase in plasma half-life values for cyclophosphamide; the slopes of these relationships were 1.35 and 1.97, respectively, but did not quite extrapolate to zero. AUC values for 4-hydroxycyclophosphamide and phosphoramide mustard remained approximately constant at about 5 and 15 mM X min, respectively, over the relatively wide range of plasma half-life and AUC values obtained for cyclophosphamide. On the basis of these observations we suggest that (a) changes in the rate of cyclophosphamide hydroxylation, effected by whatever means, will not alter the systemic therapeutic and toxic responses to a given dose of cyclophosphamide, given that the cytotoxic effects of this agent are directly proportional to AUC values of 4-hydroxycyclophosphamide and/or phosphoramide mustard, and (b) in most cases, 4-hydroxycyclophosphamide, and not phosphoramide mustard, is likely to be the circulating metabolite of therapeutic importance in humans since the AUC values for phosphoramide mustard exceeded those for 4-hydroxycyclophosphamide by only a factor of 3 and tumor and bone marrow cells proliferating in culture are generally substantially (8-25-fold) more sensitive to 4

  10. Mechanism by which caffeine potentiates lethality of nitrogen mustard.

    PubMed Central

    Lau, C C; Pardee, A B

    1982-01-01

    Caffeine is synergistic with many DNA-damaging agents in increasing lethality to mammalian cells. The mechanism is not well understood. Our results show that caffeine potentiates the lethality of the nitrogen mustard 2-chloro-N-(2-chloroethyl)-N-methylethanamine (HN2) by inducing damaged cells to undergo mitosis before properly repairing lesions in their DNA. Treatment with low doses of HN2 (0.5 microM for 1 hr) caused little lethality in baby hamster kidney cells (90% survival). These cells were arrested in G2 shortly after treatment with HN2 as shown by flow microfluorimetry and autoradiography. After an arrest of 6 hr, HN2-treated cells began to move into mitosis and from then on behaved like normal cells. Repair synthesis was shown to continue during the G2 arrest by using synchronized cells pulse labeled with [3H]thymidine after HN2 treatment and autoradiography. Caffeine (2mM) increased the lethality of HN2 by 5- to 10-fold. It prevented the G2 arrest. Caffeine did not prevent these HN2-treated cells from entering or completing S phase but rather allowed them to divide without finishing the repair processes and as a consequence caused nuclear fragmentation after mitosis. Caffeine-induced nuclear fragmentation and enhanced lethality were proportional, as shown with dose--response curves and time dependence. In addition, both lethality and nuclear fragmentation were abolished by low doses of cycloheximide, an inhibitor of protein synthesis. Images PMID:6953438

  11. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien; Bérard, Izabel

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.

  12. Validation of minicams for measuring concentrations of chemical agent in environmental air

    SciTech Connect

    Menton, R.G.; Hayes, T.L.; Chou, Y.L.; Hobson, D.W.

    1993-05-13

    Environmental monitoring for chemical agents is necessary to ensure that notification and appropriate action will be taken in the, event that there is a release exceeding control limits of such agents into the workplace outside of engineering controls. Prior to implementing new analytical procedures for environmental monitoring, precision and accuracy (PA) tests are conducted to ensure that an agent monitoring system performs according to specified accuracy, precision, and sensitivity requirements. This testing not only establishes the accuracy and precision of the method, but also determines what factors can affect the method's performance. Performance measures that are particularly important in agent monitoring include the Detection Limit (DL), Decision Limit (DC), Found Action Level (FAL), and the Target Action Level (TAL). PA experiments were performed at Battelle's Medical Research and Evaluation Facility (MREF) to validate the use of the miniature chemical agent monitoring system (MINICAMs) for measuring environmental air concentrations of sulfur mustard (HD). This presentation discusses the experimental and statistical approaches for characterizing the performance of MINICAMS for measuring HD in air.

  13. Release of allyl isothiocyanate from mustard seed meal powder.

    PubMed

    Dai, Ruyan; Lim, Loong-Tak

    2014-01-01

    Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products.

  14. Ionic dependence of sulphur mustard cytotoxicity

    SciTech Connect

    Sawyer, Thomas W. Nelson, Peggy; Bjarnason, Stephen; Vair, Cory; Shei Yimin; Tenn, Catherine; Lecavalier, Pierre; Burczyk, Andrew

    2010-09-15

    The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1 h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC{sub 50} values of {approx} 100-150 {mu}M when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner to values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.

  15. Protection of human upper respiratory tract cell lines against sulphur mustard toxicity by hexamethylenetetramine (HMT).

    PubMed

    Andrew, D J; Lindsay, C D

    1998-07-01

    1. Sulphur mustard ('mustard gas', HD) is a highly toxic chemical warfare agent which affects the skin and respiratory tract. The primary targets of inhaled HD are the epithelia of the upper respiratory tract. Hexamethylenetetramine (HMT) has been shown to protect human lung cells against HD toxicity and has also been shown to be effective in vivo against the chemical warfare agent phosgene. The ability of HMT to protect against the toxicity of HD was investigated in the human upper respiratory tract cell lines BEAS-2B and RPMI 2650. 2. HD was highly toxic to both cell lines, with LC50 values of 15-30 microM. HMT, at a concentration of 10 mM, was shown to protect the cell lines against the toxic effects of 20 microM and 40 microM HD. Results demonstrated that it was necessary for HMT to be in situ at the time of exposure to HD for effective cytoprotection. No protection was seen when cells were treated with HMT following exposure to HD, or where HMT was removed prior to HD exposure. 3. Results suggest that HMT may be effective prophylaxis for exposure to HD by inhalation.

  16. Comparison of cake compositions, pepsin digestibility and amino acids concentration of proteins isolated from black mustard and yellow mustard cakes.

    PubMed

    Sarker, Ashish Kumar; Saha, Dipti; Begum, Hasina; Zaman, Asaduz; Rahman, Md Mashiar

    2015-01-01

    As a byproduct of oil production, black and yellow mustard cakes protein are considered as potential source of plant protein for feed applications to poultry, fish and swine industries. The protein contents in black and yellow mustard cakes were 38.17% and 28.80% and their pepsin digestibility was 80.33% and 77.43%, respectively. The proteins were extracted at different pH and maximum proteins (89.13% of 38.17% and 87.76% of 28.80% respectively) isolated from black and yellow mustard cakes at pH 12. The purity of isolated proteins of black and yellow mustard cakes was 89.83% and 91.12% respectively and their pepsin digestibility was 89.67% and 90.17% respectively which assigned the absence of antinutritional compounds. It was found that essential amino acids isoleucine, lysine, methionine, threonine and tryptophan and non essential amino acids arginine and tyrosine were present in greater concentration in black mustard cake protein whereas other amino acids were higher in yellow mustard cake protein.

  17. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  18. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    PubMed

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander

    2016-02-26

    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  19. Advanced treatment technique for swine wastewater using two agents: Thermally polymerized amorphous silica and hydrated lime for color and phosphorus removal and sulfur for nitrogen removal.

    PubMed

    Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo

    2017-04-12

    The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P2 O5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater.

  20. Survey: Destruction of chemical agent simulants in supercritical water oxidation. Master's thesis

    SciTech Connect

    Blank, M.R.

    1992-07-01

    The supercritical water oxidation (SCWO) process exhibits distinct advantages for destruction of toxic wastes. Examples of these wastes are two chemical agent simulants, dimethyl methylphosphonate (DMMP) and thiodiglycol (2,2'-thiodiethanol). DMMP is similar to the nerve agent GB Sarin in structure, and thiodiglycol is a hydrolysis product of the blister agent HD Sulfur Mustard. Both simulants are miscible in water and relatively non-toxic in comparison to the actual chemical agents. Using a Laboratory-scale, batch three temperatures were investigated: 425 deg C, 450 deg C, and 500 deg C with an initial concentration of one percent by volume, 11,450 mg/L for DMMP and 12,220 mg/L for thiodiglycol. Residence times investigated were: 1, 2, 3, 6, and 8 minutes. Reactor beat-up (H.U.) was determined to be one minute. Both pyrolysis and oxidation tests were conducted. Oxygen levels were uniformly set at 200% of stoichiometric requirements for the parent compounds.

  1. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  2. Mustard seed meal for management of root-knot nematode and weeds in tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mustard seed meals of indian mustard [InM (Brassica juncea)] and yellow mustard [YeM (Sinapis alba)], alone and combined, were tested for effects on tomato (Solanum lycopersicum) plants and for suppression of southern root-knot nematode [RKN (Meloidogyne incognita)] and weed populations. In the gree...

  3. Pacific Northwest Condiment Yellow Mustard (Sinapis alba L.) Grower Guide: 2000-2002

    SciTech Connect

    Brown, J.; Davis, J. B.; Esser, A.

    2005-07-01

    This report is a grower guide for yellow mustard. Yellow mustard (Sinapis alba L.), synonymous with white mustard, is a spring annual crop and well adapted to hot, dry growing conditions. It has shown potential as an alternative crop in rotations with small grain cereals and has fewer limitations compared to other traditional alternative crops.

  4. [Mustard gas bombs found astray in the Faxaflói bay. Mustard gas: usage and poisonings].

    PubMed

    Kristinsson, Jakop; Jóhannesson, Thorkell

    2009-05-01

    The finding in 1972 of two World War II mustard gas artillery shells in crushed shell sediment dredged in the Faxaflói Bay and transported as raw material for cement production at Akranes (Western Iceland) is reported. One of the shells was wedged in a stone crusher in the raw material processing line and was ruptured. As a result dark fluid with a garlic like smell seeped out from the metal canister. The attending employees believed the metal object to be inert and tried to cut it out with a blow torch. This resulted in the explosion of the shell charge and in the exposure of four employees to mustard gas. All suffered burns on their hands and two of them in the eyes also. The second shell was detonated in the open at a distance from the factory. Emphasis is given to the fact that instant, or at least as soon as possible, cleansing and washing is the most efficient measure to be taken against the debilitating effects of mustard gas. It is also pointed out that the active principle in mustard gas (dichlorodiethyl sulphide) can easily be synthesized and none of the precursor substances are subjected to any restrictions of use. The authors conclude that mustard gas bombs may still be found in the arsenals of some military powers in spite of an international convention that prohibits the production, stockpiling and the use of chemical weapons. Terrorist groups have also seemingly tried to aquire mustard gas bombs and other chemical weapons. Therefore cases of mustard gas poisoning might still occur.

  5. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items

    SciTech Connect

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  6. Long-term effects of mustard gas on respiratory system of Iranian veterans after Iraq-Iran war: a review.

    PubMed

    Razavi, Seyed-Mansour; Ghanei, Mostafa; Salamati, Payman; Safiabadi, Mehdi

    2013-01-01

    To review long-term respiratory effects of mustard gas on Iranian veterans having undergone Iraq-Iran war. Electronic databases of Scopus, Medline, ISI, IranMedex, and Irandoc sites were searched. We accepted articles published in scientific journals as a quality criterion.The main pathogenic factors are free radical mediators. Prevalence of pulmonary involvement is approximately 42.5%. The most common complaints are cough and dyspnea. Major respiratory complications are chronic obstructive pulmonary disease, bronchiectasis, and asthma. Spirometry results can reveal restrictive and obstructive pulmonary disease. Plain chest X-ray does not help in about 50% of lung diseases. High-resolution CT of the lung is the best modality for diagnostic assessment of parenchymal lung and bronchi. There is no definite curative treatment for mustard lung. The effective treatment regimens consist of oxygen administration, use of vaporized moist air, respiratory physiotherapy, administration of mucolytic agents, bronchodilators, corticosteroids, and long-acting beta-2 agonists, antioxidants, surfactant, magnesium ions, therapeutic bronchoscopy, laser therapy, placement of respiratory stents, early tracheostomy in laryngospasm, and ultimately lung transplantation. High-resolution CT of the lung is the most accurate modality for the evaluation of the lung parenchyma and bronchi. The treatment efficacy of patients exposed to mustard gas depends on patient conditions (acute or chronic, upper or lower respiratory tract involvement). There are various treatment protocols, but unfortunately none of them is definitely curable.

  7. The activation of phosphoramide mustard anticancer drugs from ab initio simulations.

    NASA Astrophysics Data System (ADS)

    Allesch, Markus; Schwegler, Eric; Colvin, Mike; Gygi, Francois; Galli, Giulia

    2007-03-01

    The nitrogen mustard based DNA alkylating agents were the first nonhormonal drugs to be used effectively in the treatment of cancer and remain one of the most important drugs for the chemotherapeutic management of many common malignancies today. An understanding of the activation of these compounds is, in itself, of scientific interest, but also critical in designing improved analogs of greater selectivity and efficacy. We have investigated the activation pathways of one of the most active metabolites, phosphoramide mustard (PM), and its methylated ester (PMME). In particular, we have examined the activation barrier and reaction free energy for the intramolecular cyclization reaction using first principles molecular dynamics simulations with explicit and continuum solvation models. Structural, dynamical and electronic properties along the reaction path have been computed mainly to address the question why de-esterification is required to activate these drugs. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  8. Phytotoxicity of mercury in Indian mustard (Brassica juncea L.).

    PubMed

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Frank B; Gu, Mengmeng; Su, Yi

    2009-02-01

    This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.). Two common cultivars (Florida Broad Leaf and Long-standing) were grown hydroponically in a mercury-spiked solution. Mercury exhibited a significant phytotoxicity in these two cultivars of Indian mustard at elevated concentrations (>or=2 mg L(-1)). Mercury uptake induced a significant reduction in both biomass and leaf relative water content. Microscopy studies indicated that elevated mercury concentrations in plants significantly changed leaf cellular structure: thickly stained areas surrounding the vascular bundles; decreases in the number of palisade and spongy parenchyma cells; and reduced cell size and clotted depositions. The palisade chloroplasts exhibited decreases in their amounts and starch grains as well as a loss of spindle shape. However, due to high accumulation of mercury in plants, especially in the roots, Indian mustard might be a potential candidate plant for phytofiltration of contaminated water and phytostabilization of mercury-contaminated soils.

  9. Cyclic process for the removal of sulfur dioxide and the recovery of sulfur from gases

    SciTech Connect

    Lo, C.L.

    1991-11-19

    This patent describes a process for the removal of sulfur dioxide from a gas containing sulfur dioxide. It comprises contacting a gas containing sulfur dioxide with an aqueous solution comprising water, ferric chloride and a salt selected from the group consisting of barium chloride and calcium chloride to form ferrous chloride, hydrochloric acid and a precipitate selected from the group consisting of barium sulfate and calcium sulfate; and treating the aqueous solution with an oxidizing agent to convert ferrous chloride to ferric chloride.

  10. Treating exposure to chemical warfare agents: implications for health care providers and community emergency planning.

    PubMed Central

    Munro, N B; Watson, A P; Ambrose, K R; Griffin, G D

    1990-01-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the U.S. stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the U.S. atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanolol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers. PMID:2088748

  11. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    PubMed

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.

  12. Treating exposure to chemical warfare agents: Implications for health care providers and community emergency planning

    SciTech Connect

    Munro, N.B.; Watson, A.P.; Ambrose, K.R.; Griffin, G.D. )

    1990-11-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the US stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the US, atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers.

  13. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Kanamori-Kataoka, Mieko; Seto, Yasuo

    2015-09-04

    To establish adequate on-site solvent trapping of volatile chemical warfare agents (CWAs) from air samples, we measured the breakthrough volumes of CWAs on three adsorbent resins by an elution technique using direct electron ionization mass spectrometry. The trapping characteristics of Tenax(®) TA were better than those of Tenax(®) GR and Carboxen(®) 1016. The latter two adsorbents showed non-reproducible breakthrough behavior and low VX recovery. The specific breakthrough values were more than 44 (sarin) L/g Tenax(®) TA resin at 20°C. Logarithmic values of specific breakthrough volume for four nerve agents (sarin, soman, tabun, and VX) showed a nearly linear correlation with the reciprocals of their boiling points, but the data point of sulfur mustard deviated from this linear curve. Next, we developed a method to determine volatile CWAs in ambient air by thermal desorption-gas chromatography (TD-GC/MS). CWA solutions that were spiked into the Tenax TA(®) adsorbent tubes were analyzed by a two-stage TD-GC/MS using a Tenax(®) TA-packed cold trap tube. Linear calibration curves for CWAs retained in the resin tubes were obtained in the range between 0.2pL and 100pL for sarin, soman, tabun, cyclohexylsarin, and sulfur mustard; and between 2pL and 100pL for VX and Russian VX. We also examined the stability of CWAs in Tenax(®) TA tubes purged with either dry or 50% relative humidity air under storage conditions at room temperature or 4°C. More than 80% sarin, soman, tabun, cyclohexylsarin, and sulfur mustard were recovered from the tubes within 2 weeks. In contrast, the recoveries of VX and Russian VX drastically reduced with storage time at room temperature, resulting in a drop to 10-30% after 2 weeks. Moreover, we examined the trapping efficiency of Tenax TA(®) adsorbent tubes for vaporized CWA samples (100mL) prepared in a 500mL gas sampling cylinder. In the concentration range of 0.2-2.5mg/m(3), >50% of sarin, soman, tabun, cyclohexylsarin, and HD were

  14. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    PubMed

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-07

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation.

  15. Covalent DNA-Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells.

    PubMed

    Groehler, Arnold; Villalta, Peter W; Campbell, Colin; Tretyakova, Natalia

    2016-02-15

    N,N-Bis-(2-chloroethyl)-phosphorodiamidic acid (phosphoramide mustard, PM) and N,N-bis-(2-chloroethyl)-amine (nornitrogen mustard, NOR) are the two biologically active metabolites of cyclophosphamide, a DNA alkylating drug commonly used to treat lymphomas, breast cancer, certain brain cancers, and autoimmune diseases. PM and NOR are reactive bis-electrophiles capable of cross-linking cellular biomolecules to form covalent DNA-DNA and DNA-protein cross-links (DPCs). In the present work, a mass spectrometry-based proteomics approach was employed to characterize PM- and NOR-mediated DNA-protein cross-linking in human cells. Following treatment of human fibrosarcoma cells (HT1080) with cytotoxic concentrations of PM, over 130 proteins were found to be covalently trapped to DNA, including those involved in transcriptional regulation, RNA splicing/processing, chromatin organization, and protein transport. HPLC-ESI(+)-MS/MS analysis of proteolytic digests of DPC-containing DNA from NOR-treated cells revealed a concentration-dependent formation of N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]amine (Cys-NOR-N7G) conjugates, confirming that it cross-links cysteine thiols of proteins to the N7 position of guanines in DNA. Cys-NOR-N7G adduct numbers were higher in NER-deficient xeroderma pigmentosum cells (XPA) as compared with repair proficient cells. Furthermore, both XPA and FANCD2 deficient cells were sensitized to PM treatment as compared to that of wild type cells, suggesting that Fanconi anemia and nucleotide excision repair pathways are involved in the removal of cyclophosphamide-induced DNA damage.

  16. Methyl Jasmonate Alleviates Cadmium-Induced Photosynthetic Damages through Increased S-Assimilation and Glutathione Production in Mustard

    PubMed Central

    Per, Tasir S.; Khan, Nafees A.; Masood, Asim; Fatma, Mehar

    2016-01-01

    The effect of methyl jasmonate (MeJA) in mitigation of 50 μM cadmium (Cd) toxicity on structure and function of photosynthetic apparatus in presence or absence of 1.0 mM SO42– was investigated in mustard (Brassica juncea L. cv. Ro Agro 4001) at 30 days after sowing. Plants exhibited increased oxidative stress, impaired photosynthetic function when grown with Cd, but MeJA in presence of sulfur (S) more prominently ameliorated Cd effects through increased S-assimilation and production of reduced glutathione (GSH) and promoted photosynthetic functions. The transmission electron microscopy showed that MeJA protected chloroplast structure against Cd-toxicity. The use of GSH biosynthetic inhibitor, buthionine sulfoximine (BSO) substantiated the findings that ameliorating effect of MeJA was through GSH production. MeJA could not alleviate Cd effects when BSO was used due to unavailability of GSH even with the input of S. The study shows that MeJA regulates S-assimilation and GSH production for protection of structure and function of photosynthetic apparatus in mustard plants under Cd stress. PMID:28066485

  17. Onion and weed response to mustard (Sinapis alba) seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control in organic onion production is often difficult and expensive, requiring numerous cultivations and extensive hand-weeding. Onion safety and weed control with mustard seed meal (MSM) derived from Sinapis alba was evaluated in greenhouse and field trials. MSM applied at 110, 220, and 440 g...

  18. 14. SOUTH PLANT MUSTARD FILLING BUILDING (BUILDING 728) AND WAREHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. SOUTH PLANT MUSTARD FILLING BUILDING (BUILDING 728) AND WAREHOUSE (BUILDING 729) FROM CHEMICAL STORAGE TANK. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  19. 87. EAST SECTION OF SOUTH PLANT, SHOWING MUSTARD FILLING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. EAST SECTION OF SOUTH PLANT, SHOWING MUSTARD FILLING BUILDING (BUILDING 728) AT LEFT AND INCINERATOR/PRECIPITATOR (BUILDING 724) AT CENTER, FROM CHEMICAL STORAGE TANK. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  20. Prospects for Classical Biological Control of Saharan Mustard (Brassica tournefortii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saharan mustard (Brassica tournefortii) is a winter annual plant that is native to the Mediterranean Basin and is becoming highly invasive in the Sonoran and Mojave Deserts and adjacent areas and has spread great distances along highways from its original infestation. It is becoming a serious probl...

  1. Mustard oil-induced cutaneous inflammation in the pig.

    PubMed

    Jancsó, G; Pierau, F K; Sann, H

    1993-05-01

    Recent findings indicate that chemical stimulation of the porcine skin with capsaicin evokes a flare response similar to that observed in man. The aim of the present study was to elucidate whether chemical stimulation of cutaneous capsaicin-sensitive nerve endings with mustard oil produces neurogenic inflammatory reactions in the pig. The application of mustard oil onto the abdominal skin of domestic pigs resulted in a pronounced flare response. After a previous intravenous injection of a solution of Evans blue, the skin area in contact with the irritant turned dark blue, indicating a marked extravasation of albumin. Quantitative estimation of the dye content of the skin supported this conclusion. The technique of vascular labelling revealed a delicate network of small subepidermal blood vessels in histological preparations after the application of mustard oil following a previous intravenous injection of colloidal silver. Labelled blood vessels were not noted outside the treated area. The present results show that mustard oil produces a strong cutaneous inflammatory response in the pig, and suggest that the porcine skin provides a valuable model for study of the significance of capsaicin-sensitive sensory nerves in vascular and other cutaneous reactions.

  2. Uses of lunar sulfur

    NASA Technical Reports Server (NTRS)

    Vaniman, D.; Pettit, D.; Heiken, G.

    1992-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource.

  3. Uses of lunar sulfur

    SciTech Connect

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  4. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items. For use in reentry decision-making

    SciTech Connect

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  5. Effects of native herbs and light on garlic mustard (Alliaria petiolata) invasion

    USGS Publications Warehouse

    Phillips-Mao, Laura; Larson, Diane L.; Jordan, Nicholas R.

    2014-01-01

    The degree to which invasive species drive or respond to environmental change has important implications for conservation and invasion management. Often characterized as a driver of change in North American woodlands, the invasive herb garlic mustard may instead respond to declines in native plant cover and diversity. We tested effects of native herb cover, richness, and light availability on garlic mustard invasion in a Minnesota oak woodland. We planted 50 garlic mustard seeds into plots previously planted with 0 to 10 native herb species. We measured garlic mustard seedling establishment, survival to rosette and adult stages, and average (per plant) and total (per plot) biomass and silique production. With the use of structural equation models, we analyzed direct, indirect, and net effects of native cover, richness, and light on successive garlic mustard life stages. Native plant cover had a significant negative effect on all life stages. Species richness had a significant positive effect on native cover, resulting in indirect negative effects on all garlic mustard stages, and net negative effects on adult numbers, total biomass, and silique production. Light had a strong negative effect on garlic mustard seedling establishment and a positive effect on native herb cover, resulting in significant negative net effects on garlic mustard rosette and adult numbers. However, light's net effect on total garlic mustard biomass and silique production was positive; reproductive output was high even in low-light/high-cover conditions. Combined effects of cover, richness, and light suggest that native herbs provide biotic resistance to invasion by responding to increased light availability and suppressing garlic mustard responses, although this resistance may be overwhelmed by high propagule pressure. Garlic mustard invasion may occur, in part, in response to native plant decline. Restoring native herbs and controlling garlic mustard seed production may effectively reduce

  6. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  7. Shrubby Reed-Mustard Habitat: Parent Material, Soil, and Landscape Characteristics

    NASA Astrophysics Data System (ADS)

    Kelly, L. S.; Boettinger, J. L.

    2012-12-01

    Shrubby reed-mustard (Glaucocarpum suffrutescens, a.k.a. Schoenocrambe suffrutescens, Glaucocarpum suffrutescens, or Hesperidanthus suffrutescens) is an endangered perennial shrub endemic to the southern Uinta Basin in northeast Utah. Only seven populations of shrubby reed-mustard have been identified. The arid area where the plant grows is rich in natural gas and oil deposits, as well as oil shale. Oil wells already dot the landscape, and there is significant concern that further development of these resources will threaten the continued existence of shrubby reed-mustard. Determination of the parent material, soil and landscape characteristics associated with shrubby reed-mustard habitat is imperative to facilitate conservation management. Shrubby reed-mustard grows where little else does and, based on field observations and remotely sensed spectral data, appears to occur in a particular type of strata. Our objective is to identify the physical and chemical characteristics of shrubby reed-mustard's environment. Site characteristics such as parent material and associated vegetation have been identified and documented. Soil properties such as water-soluble and total leachable elements, particle-size distribution, organic carbon, cation exchange capacity, total nitrogen, and available phosphorus and potassium are being determined. During the course of this investigation, soils within four shrubby reed-mustard habitat areas were sampled. Soils from non-shrubby reed-mustard areas adjacent to the four shrubby reed-mustard populations were also sampled. Soil samples were collected from a total of twenty-five shrubby reed-mustard soil pits and twenty-four non-shrubby reed-mustard soil pits. The soil horizons of each pedon were delineated, and samples were collected from each horizon. Field data indicate that shrubby reed-mustard occurs exclusively in shale-derived, shallow soils on bedrock-controlled uplands. Although there is some overlap of plant species on both types

  8. Protective effects of garlic sulfur compounds against DNA damage induced by direct- and indirect-acting genotoxic agents in HepG2 cells.

    PubMed

    Belloir, C; Singh, V; Daurat, C; Siess, M H; Le Bon, A M

    2006-06-01

    The aim of this study was to assess the antigenotoxic activity of several garlic organosulfur compounds (OSC) in the human hepatoma cell line HepG2, using comet assay. The OSC selected were allicin (DADSO), diallyl sulfide (DAS), diallyl disulfide (DADS), S-allyl cysteine (SAC) and allyl mercaptan (AM). To explore their potential mechanisms of action, two approaches were performed: (i) a pre-treatment protocol which allowed study of the possible modulation of drug metabolism enzymes by OSC before treatment of the cells with the genotoxic agent; (ii) a co-treatment protocol by which the ability of OSC to scavenge direct-acting compounds was assessed. Preliminary studies showed that, over the concentration range tested (5-100 microM), the studied OSC neither affected cell viability nor induced DNA damage by themselves. In the pre-treatment protocol, aflatoxin B1 genotoxicity was significantly reduced by all the OSC tested except AM. DADS was the most efficient OSC in reducing benzo(a)pyrene genotoxicity. SAC and AM significantly decreased DNA breaks in HepG2 cells treated with dimethylnitrosamine. Additionally, all the OSC studied were shown to decrease the genotoxicity of the direct-acting compounds, hydrogen peroxide and methyl methanesulfonate. This study demonstrated that garlic OSC displayed antigenotoxic activity in human metabolically competent cells.

  9. The development of immunoassays for detection of chemical warfare agents

    SciTech Connect

    Lenz, D.E.; Brimfield, A.A.; Cook, L.

    1996-10-01

    With the advent of enzyme linked immunoabsorbent assays (ELISA) and monoclonal antibodies in the last two decades, there has been considerable effort devoted to the development of antibodies to detect and quantify low molecular weight toxic substances in environmental or biological fluids. Polyclonal antibodies against paraoxon (the toxic metabolite of parathion) were capable of detecting paraoxon in body fluids at a level of 10{sup -9} M ({approximately}260 pg/mL) when used in a competitive inhibition enzyme immunoassay (CIEIA). Monoclonal antibodies developed against a structural analogue of the chemical warfare agent soman were capable of detection soman in buffer solutions at a level of 10{sup -6} M ({approximately}180 ng/mL). In addition these antibodies were found to be highly specific for soman even in the presence of its major hydrolysis product. Subsequent studies with antisoman monoclonal antibodies extended the level of sensitivity to {approximately}80 ng/mL. Furthermore these antibodies did not cross react with other chemical warfare nerve agents such as sarin or tabun. In all cases, the time for a confirmatory test was two hours or less. Immunoassays for T-2 micotoxins have also been reported with a minimal detection range of 2 pg/assay to 50 ng/assay for the polyclonal and monoclonal T-2 antibodies respectively. These reagents offer a sensitive, rapid and low cost approach to the diagnosis or detection of the presence of toxic chemical substances. More recent efforts have focussed on developing antibodies specific for sulfur mustard a highly reactive vesicating agent.

  10. Ge4+ doped TiO2 for stoichiometric degradation of warfare agents.

    PubMed

    Stengl, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2012-08-15

    Germanium doped TiO(2) was prepared by homogeneous hydrolysis of aqueous solutions of GeCl(4) and TiOSO(4) with urea. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, EDS analysis, specific surface area (BET) and porosity determination (BJH). Ge(4+) doping increases surface area and content of amorphous phase in prepared samples. These oxides were used in an experimental evaluation of their reactivity with chemical warfare agent, sulphur mustard, soman and agent VX. Ge(4+) doping worsens sulphur mustard degradation and improves soman and agent VX degradation. The best degree of removal (degradation), 100% of soman, 99% of agent VX and 95% of sulphur mustard, is achieved with sample with 2 wt.% of germanium.

  11. Competitive Interactions of Garlic Mustard (Alliaria petiolata) and Damesrocket (Hesperis matronalis)

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.; Adams, Jean V.

    2012-01-01

    Competitive interactions between native plants and nonnative, invasive plant species have been extensively studied; however, within degraded landscapes, the effect of interspecific interactions among invasive plants is less explored. We investigated a competitive interaction between two sympatric, invasive mustard species that have similar life history strategies and growth forms: garlic mustard and damesrocket. Greenhouse experiments using a full range of reciprocal density ratios were conducted to investigate interspecific competition. Garlic mustard had a negative effect on the final biomass, number of leaves, and relative growth rate in height of damesrocket. Survival of damesrocket was not negatively affected by interspecific competition with garlic mustard; however, garlic mustard showed higher mortality because of intraspecific competition. These results indicated that although garlic mustard has been observed to be the dominant species in this landscape, it may not completely outcompete damesrocket in all situations. Studies of invasive species in competition are important in degraded landscapes because this is the common situation in many natural areas.

  12. Properties of Sulfur Concrete.

    DTIC Science & Technology

    1979-07-06

    This report summarizes the state of the art of sulfur concrete . Sulfur concrete is created by mixing molten sulfur with aggregate and allowing the...and many organic compounds. It works well as a rapid runway repair material. Sulfur concrete also has unfavorable properties. It has poor durability

  13. Transfer of sulfur: from simple to diverse.

    PubMed

    Liu, Hui; Jiang, Xuefeng

    2013-11-01

    The introduction of sulfur atoms onto target molecules is an important area in organic synthesis, in particular in the synthesis of pharmaceutical compounds, and a wide variety of sulfuration agents have been developed for thionation reactions over the past few decades. In this Focus Review, we collect and summarize the C-S bond-formation reactions that have been used to construct C-S bonds in natural products and pharmaceutical compounds.

  14. Early indicators of survival following exposure to mustard gas: Protective role of 25(OH)D.

    PubMed

    Das, Lopa M; Binko, Amy M; Traylor, Zachary P; Duesler, Lori R; Dynda, Scott M; Debanne, Sara; Lu, Kurt Q

    2016-04-25

    The use of sulfur mustard (SM) as a chemical weapon for warfare has once again assumed center stage, endangering civilian and the military safety. SM causes rapid local skin vesication and late-onset systemic toxicity. Most studies on SM rely on obtaining tissue and blood for characterizing burn pathogenesis and assessment of systemic pathology, respectively. However the present study focuses on developing a non-invasive method to predict mortality from high dose skin SM exposure. We demonstrate that exposure to SM leads to a dose dependent increase in wound area size on the dorsal surface of mice that is accompanied by a progressive loss in body weight loss, blood cytopenia, bone marrow destruction, and death. Thus our model utilizes local skin destruction and systemic outcome measures as variables to predict mortality in a novel skin-based model of tissue injury. Based on our recent work using vitamin D (25(OH)D) as an intervention to treat toxicity from SM-related compounds, we explored the use of 25(OH)D in mitigating the toxic effects of SM. Here we show that 25(OH)D offers protection against SM and is the first known demonstration of an intervention that prevents SM-induced mortality. Furthermore, 25(OH)D represents a safe, novel, and readily translatable potential countermeasure following mass toxic exposure.

  15. Effect of temperature on the desorption and decomposition of mustard from activated carbon

    SciTech Connect

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.; Buettner, L.C.; Wagner, G.W.

    1999-12-07

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of known amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.

  16. GERD related micro-aspiration in chronic mustard-induced pulmonary disorder

    PubMed Central

    Aliannejad, Rasoul; Hashemi-Bajgani, Seyed-Mehdi; Karbasi, Asharaf; Jafari, Mahvash; Aslani, Jafar; Salehi, Maryam; Ghanei, Mostafa

    2012-01-01

    Background and Aim: Bronchiolitis obliterans (BO) is the main pulmonary involvement resulting from sulfur mustard (SM) gas exposure that was used against Iranian civilians and military forces during the Iran-Iraq war. The present study aimed to investigate the prevalence of gastro-esophageal reflux (GER) and gastric micro-aspiration in SM gas injured patients with chronic pulmonary diseases and recurrent episodes of exacerbations. Materials and Methods: This cross-sectional study was done at Baqiyatallah University of Medical Sciences, Tehran, Iran. Gastric micro-aspiration and GER were assessed in the enrolled patients by assessing bile acids, pepsin and trypsin in their bronchoalveolar lavage fluid. Results: Our result showed that bile acids were found to be high in 21.4% patients, and low in 53.6% of patients. Only in 16% patients, no bile was detected in the BALF. Trypsin and pepsin were detected in BAL fluid of all patients. Conclusion: Most of BO patients after exposure to SM suffer GER, while none the etiologic factors of GER in post lung transplant BO are present. It would be hypothesized that GER per se could be considered as an aggregative factor for exacerbations in patients. Further studies will provide more advances to better understanding of pathophysiological mechanism regarding GER and BO and treatment. PMID:23798946

  17. Sensory evaluation of dry-fermented sausage containing ground deodorized yellow mustard.

    PubMed

    Li, Shuliu; Aliani, Michel; Holley, Richard A

    2013-10-01

    Ground deodorized yellow mustard is used as a binder and meat protein substitute in cooked processed meat products. Recent studies have shown that it has the potential to be used in uncooked processed meat products because of its natural antimicrobial properties. In the present study, ground deodorized yellow mustard was added to uncooked dry-fermented sausage during manufacture at 1% to 4% (w/w) and analyzed for its effects on starter cultures, physico-chemical properties, and consumer acceptability. Mustard had a nondose-dependent inhibitory effect on the Staphylococcus starter culture, had no effect on water activity or instrumental texture, and tended to accelerate sausage pH reduction. At 3% and 4% mustard, consumer scores on all sensory attributes as well as overall acceptability were significantly lower. The appearance and color of 3% and 4% mustard-treated sausages were liked slightly, whereas flavor, texture, and overall acceptability scores were reduced. The control without mustard and 1% mustard-treated sausages had similar sensory properties and were the most acceptable, while 2% mustard-treated sausages were given "like moderately" and "like slightly" descriptors. Sensory results mean that at concentrations necessary for mandated regulatory control of Escherichia coli O157:H7 in dry sausages, mustard may have a negative effect on consumer acceptance.

  18. Sulfur metabolism in phototrophic sulfur bacteria.

    PubMed

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2009-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.

  19. Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity.

    PubMed

    Su, Tsann-Long; Lin, Yi-Wen; Chou, Ting-Chao; Zhang, Xiuguo; Bacherikov, Valeriy A; Chen, Ching-Huang; Liu, Leroy F; Tsai, Tsong-Jen

    2006-06-15

    A series of 9-anilinoacridine and acridine derivatives bearing an alkylating N-mustard residue at C4 of the acridine chromophore were synthesized. The N-mustard pharmacophore was linked to the C4 of the acridine ring with an O-ethyl (O-C(2)), O-propyl (O-C(3)), or O-butyl (O-C(4)) spacer. It revealed that all newly synthesized compounds were very potent cytotoxic agents against human leukemia and various solid tumors in vitro. These agents did not exhibit cross-resistance against vinblastine-resistant (CCRF-CEM/VBL) or taxol-resistant (CCRF-CEM/taxol) cells. It also showed that these agents were DNA cross-linking agents rather than topoisomerase II inhibitors. Of these agents, compounds 27a and 27c were shown to have potent antitumor activity in nude mice bearing the human breast carcinoma MX-1 xenograft. The therapeutic efficacies of these two agents are comparable to that of taxol.

  20. Occurrence and possible sources of arsenic in seafloor sediments surrounding sea-disposed munitions and chemical agents near O´ahu, Hawai´i

    NASA Astrophysics Data System (ADS)

    Tomlinson, Michael S.; De Carlo, Eric Heinen

    2016-06-01

    The Department of Defense disposed of conventional and chemical munitions as well as bulk containers of chemical agents in US coastal waters including those surrounding the State of Hawai´i. The Hawai´i Undersea Military Munitions Assessment has been collecting biota, water, and sediment samples from two disposal areas south of the island of O´ahu in waters 500 to 600 m deep known to have received both conventional munitions and chemical agents (specifically sulfur mustard). Unlike a number of other sea-disposed munitions investigations which used grabs or corers lowered from surface vessels, we used manned submersibles to collect the samples. Using this approach, we were able to visually identify the munitions and precisely locate our samples in relation to the munitions on the seafloor. This paper focuses on the occurrence and possible sources of arsenic found in the sediments surrounding the disposed military munitions and chemical agents. Using nonparametric multivariate statistical techniques, we looked for patterns in the chemical data obtained from these sediment samples in order to determine the possible sources of the arsenic found in these sediments. The results of the ordination technique nonmetric multidimensional scaling indicate that the arsenic is associated with terrestrial sources and not munitions. This was not altogether surprising given that: (1) the chemical agents disposed of in this area supposedly did not contain arsenic, and (2) the disposal areas studied were under terrestrial influence or served as dredge spoil disposal sites. The sediment arsenic concentrations during this investigation ranged from <1.3 to 40 mg/kg-dry weight with the lower concentrations typically found around control sites and munitions (not located in dredge disposal areas) and the higher values found at dredge disposal sites (with or without munitions). During the course of our investigation we did, however, discover that mercury appears to be loosely associated

  1. Investigating Prevalence and Pattern of Long-term Cardiovascular Disorders in Sulphur Mustard-exposed Victims and Determining Proper Biomarkers for Early Defining, Monitoring and Analysis of Patients' Feedback on Therapy.

    PubMed

    Darvishi, Behrad; Panahi, Yunes; Ghanei, Mostafa; Farahmand, Leila

    2017-02-01

    Among the most readily existing chemical warfare agents, sulphur mustard (SM), also known as mustard gas, is the most commonly used agent owing to its ease of synthesis and stockpiling. Unprotected exposure mostly results in debilitation rather than lethal injuries, leaving an exposed victim incapacitated for days to even months. Although acute toxicity of sulphur mustard has been fairly established, the long-term post-exposure effects either chronic or short-term but significant are still evolving. A total of 30,000 Iranian victims of the Iran-Iraq imposed war have now - after 30 years - formed the key population demonstrating long-term effects from sulphur mustard exposure. Recent studies have shown that the prevalence of several long-term cardiovascular disorders (CVDs) has significantly increased among SM-exposed victims including coronary artery disorders (CAD), coronary artery ectasia (CAE), congestive heart failure (CHF) and myocardium abnormalities. The more important point is the lack of a determinant biomarker for early screening, recognizing, treating, monitoring and estimating exposed victims' response to applied therapy. Additionally, unidentified risk factors significantly decrease the chance of a successful therapy and result in undesired failure of a comprehensive therapeutic strategy. In this MiniReview, we examined the literature in detail to evaluate relevant reports considering long-term cardiovascular complications of SM, detecting possible risk factors and determining possible preventing events.

  2. Absorption and degradation of metalaxyl in mustard plant (Brassica juncea).

    PubMed

    Mehta, N; Saharan, G S; Kathpal, T S

    1997-07-01

    Absorption and degradation of metalaxyl were studied in mustard (Brassica juncea) plants after application as a seed dresser, a foliar spray, and a combination of both under subtropical conditions in India. Results indicated that absorption of metalaxyl increased up to 30 days when it was applied as a seed dresser; thereafter, it started declining and was not detectable after 60 days of sowing. The maximum residues (average, 9.03 ppm) of metalaxyl were found after 1 day of spraying. The dissipation of metalaxyl after initial deposits on mustard plants was almost complete after 15 days of spraying. The safe waiting period of metalaxyl was calculated to be 62 and 8 days for seed dresser and foliar application, respectively. The seeds raised through treatments under study were completely free from any detectable amount of metalaxyl residues.

  3. Microbial responses to mustard gas dumped in the Baltic Sea.

    PubMed

    Medvedeva, Nadezda; Polyak, Yulia; Kankaanpää, Harri; Zaytseva, Tatyana

    2009-08-01

    Microbiological studies were carried out on chemical weapon dump sites in the Baltic Sea. The effect of mustard gas hydrolysis products (MGHPs) on marine microbiota and the ability of microorganisms to degrade MGHPs were studied. Many stations at the dump sites demonstrated reduced microbial diversity, and increased growth of species able to use mustard gas hydrolysis products as sole source of carbon. Significant amounts of MGHP-degrading bacteria were revealed in the near-bottom water. The MGHP-degrading microorganisms identified as Achromobacter sp., Pseudomonas sp., and Arthrobacter sp. were isolated. These microorganisms were capable of utilizing the major product of hydrolysis, thiodiglycol, as the sole source of carbon and energy. The bacteria were capable of metabolizing MGHPs at a low temperature. The metabolic pathway for thiodiglycol degradation was proposed. The results suggest the potential for MGHPs biodegradation by naturally occurring populations of near-bottom-water and sediment microorganisms.

  4. Late Hematologic Complications of Mustard Gas

    DTIC Science & Technology

    2001-09-01

    700 male controls were selected from Isfahanian men referring to the Isfahan Thalassemia Prevention and Research Center for roitine premarriage check...ups and thalassemia carrier screening. None had experienced contact with any chemical warfare agents. Blood Tests: Blood samples of both groups were

  5. Chronic health effects of sulphur mustard exposure with special reference to Iranian veterans

    PubMed Central

    Balali-Mood, M; Mousavi, SH; Balali-Mood, B

    2008-01-01

    The widespread use of sulphur mustard (SM) as an incapacitating chemical warfare agent in the past century has proved its long-lasting toxic effects. It may also be used as a chemical terrorist agent. Therefore, all health professionals should have sufficient knowledge and be prepared for any such chemical attack. SM exerts direct toxic effects on the eyes, skin, and respiratory tissue, with subsequent systemic action on the nervous, immunological, haematological, digestive, and reproductive systems. SM is an alkylating agent that affects DNA synthesis, and, thus, delayed complications have been seen since the First World War. Cases of malignancies in the target organs, particularly in haematopoietic, respiratory, and digestive systems, have been reported. Important delayed respiratory complications include chronic bronchitis, bronchiectasis, frequent bronchopneumonia, and pulmonary fibrosis, all of which tend to deteriorate with time. Severe dry skin, delayed keratitis, and reduction of natural killer cells with subsequent increased risk of infections and malignancies are also among the most distressing long-term consequences of SM intoxication. However, despite a lot of research over the past decades on Iranian veterans, there are still major gaps in the SM literature. Immunological and neurological dysfunction, as well as the relationship between SM exposure and mutagenicity, carcinogenicity, and teratogenicity are important fields that require further studies, particularly on Iranian veterans with chronic health effects of SM poisoning. There is also a paucity of information on the medical management of acute and delayed toxic effects of SM poisoning—a subject that greatly challenges health care specialists. PMID:22460216

  6. Systemic venous atrium stimulation in transvenous pacing after mustard procedure

    PubMed Central

    Puntrello, Calogero; Lucà, Fabiana; Rubino, Gaspare; Rao, Carmelo Massimiliano; Gelsomino, Sandro

    2014-01-01

    We present the case of a young woman corrected with a Mustard procedure undergoing successful transvenous double chamber pacemaker implantation with the atrial lead placed in the systemic venous channel. The case presented demonstrates that, when the systemic venous atrium is separate from the left atrial appendage, the lead can be easily and safely placed in the systemic venous left atrium gaining satisfactory sensing and pacing thresholds despite consisting partially of pericardial tissue. PMID:25276305

  7. Effect of LED lamping on the chlorophylls of leaf mustard

    NASA Astrophysics Data System (ADS)

    Wu, Shiqiang; Zhu, Liang; Zhao, Fuli; Yang, Bowen; Chen, Zuxin; Cai, Ruhai; Chen, Jiansheng

    The absorption coefficients of chloroplast of leaf mustard were measured by a spectrophotometer. The leaves were collected from seven treatments with different lighting. The chlorophyll content was calculated following Arnon equation. LEDs for filling the light source can increase the conduction of plants. Compared with other treatments, Chlorophyll in the leaves got an higher concentration under the lamping of red LEDS to blue LEDS for 7:1 .

  8. Keratinocyte Spray Technology for the Improved Healing of Cutaneous Sulfur Mustard Injuries

    DTIC Science & Technology

    2009-07-01

    material was detected in the granuloma . Therefore, unequivocal identification of the origin of cellular material within the granulomas cannot be...the neo- epidermis. Granulomas found around each of the wound areas are consistent with local irritation. (See Appendix 2 -Table 7 and Appendix 4...epidermal cells marking with polyclonal human involucrin antibody. Dermal granulomas contain cornified cells, staining with ’human’ involucrin antibody

  9. Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin

    DTIC Science & Technology

    2000-01-01

    S. Proin- flammatory cytokines and their corresponding receptor proteins in eccrine sweat glands in normal and cutaneous leishmaniasis human skin...phosphoribosyltransferase (HPRT) was constructed using the PCR MIMIC Construction Kit (Clontech) ac- cording to the manufacturer’s instructions with the composite primers

  10. Cytokine Regulation by MAPK Activated Kinase 2 in Keratinocytes Exposed to Sulfur Mustard

    DTIC Science & Technology

    2013-07-10

    per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information...mRNA levels by destabilizing transcripts via mechanisms that involve exosome recruitment and increased exonuclease activity (Anderson, 2008

  11. Pretreatment of Human Epidermal Keratinocytes with D,L-Sulforaphane Protects Against Sulfur Mustard Cytotoxicity

    DTIC Science & Technology

    2006-01-01

    phenazine methosulfate (PMS), by dehydrogenase enzymes, were purchased from Promega (Madison, WI). D,L-sulfora- phane (DLS), 5-sulfosalicylic acid (SSA), and...Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 2006

  12. New Methods for Evaluating Skin Injury from Sulfur Mustard in the Hairless Guinea Pig

    DTIC Science & Technology

    1993-05-13

    response curve for HD vapor doses of 2 to 4 min. This current study confirms that observation. ERYTHEMA RE’L.EC TANCE COLOR METER 0 MMI - 3 M I 5 M 1 7...essentially the same for the 5, 7, and 9 min doses. Previous work with the HGP demonstrated that the degree of erythema increased with a linear dose

  13. Characterization of the Sulfur Mustard Vapor Induced Cutaneous Lesions on Hairless Guinea Pigs

    DTIC Science & Technology

    1992-01-01

    necrosis. All markers exhibited a linear dose - response curve with parallel slopes. The more extensive cellular damage occurred at longer exposure...models including humans. The linear dose - response curve for microblister forma- tion correlated highly with available historical data for fluid...linear dose - response curve with parallel slopes. The more extensive cellular damage occurred at longer exposure times. We have observed in the

  14. Structural, Morphological, and Functional Correlates of Corneal Endothelial Toxicity Following Corneal Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2013-10-01

    cells of regular shape and size, with interdigitated borders, apical microvilli, and infrequent cilia (Fig. 4A). Within 24 hours of exposure, all...Fig. 4B). Most CECs exhibited atypical apical membrane morphologies and lacked cell-to-cell interdigitations (Figs. 4B, 4C). In regions of CEC...endothelial monolayer with frequent microvilli and interdigitations at regions of cell–cell contact. (B–D) Characteristic morphologies observed 1 day after SM

  15. Analysis of Keratin Filament Assembly/Disassembly and Structure Following Modification by Sulfur Mustard Analogs

    DTIC Science & Technology

    2005-07-01

    final report DAMD 17-02-1-0664 25 A) AT:• B)I;:" • • *" > l . . .4 Control I10 mM CEES C) 10 mM MEC Figure 3. Treatment of keratin monomers with SM...kSlW41817146M - k 2 0 3 k l l 7 ~ 8 I_ k 81 9 8 1 7 16 M -5H178 Figue 10 EP spetra rommixtuesinludngk 17 sin John ~ ~ ~ ~ ~ ~ ~ ~~lk F8esPDfnl7eor1AM...70210643 - I PM.30-kI- l -ý’ k63 sfs33 22 -kI -3 I spftl32:Vk418M 3II’m8 V k315 r ka�I1Spin "V34’ IC -kL2-3,151pm 23-ý 18-WO - kV4,I-spin, 327k "ýl2M-k

  16. Sulfur Mustard Induces Apoptosis in Lung Epithelial Cells via a Caspase Amplification Loop

    DTIC Science & Technology

    2010-01-01

    absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9, 1046–1056. Dabrowska, M.I., Becks , L.L., Lelli Jr., J.L., Levee, M.G...Breton, P., Bren- ner, C., Boisvieux- Ulrich , E., Marano, F., 2006. Inhibition of caspase-dependent mitochondrial permeability transition protects airway

  17. Comparative Morphology of Sulfur Mustard Effects in the Hairless Guinea Pig and a Human Skin Equivalent

    DTIC Science & Technology

    1993-01-01

    intercellular spaces, disruption of desmosomal attachments, nuclear pyknosis, perinuclear blebbing and repositioning of cytoplasmic tonofilaments to a...intercellular spaces, disruption of desmosomal attachments, nuclear pyknosis, perinuclear blebbing and repositioning of I| cytoplasmic tonofilaments to a...of desmosomal mal junction have been morphologically characterized. attachment. However, primary or secondary effects on specific mor- pho-biochemical

  18. The Role of NAD+ Depletion in the Mechanisms of Sulfur Mustard-Induced Metabolic Injury

    DTIC Science & Technology

    2008-01-01

    depleting effects of SM in cultured cells (3-9), human skin explants (10), and in vivo in the hairless guinea pig (11). In our laboratory, we have...utilization by HEK. Interestingly, in later experiments on human skin cultures, Mol et al. (10) showed that niacinamide protected against both NAO...interest (basal epidermal cells of the skin ). As such, they provide a better approx- imation of the ill I’il’o system and a more relevant basis for the

  19. N-Acetylcysteine as a Provisional, Commercial Off-The Shelf (COTS) Chemoprotectant Against Sulfur Mustard

    DTIC Science & Technology

    2003-01-01

    development plans schedule a licensed HD prophylaxis in the FYI 0-19 range. Animal and tissue studies have suggested efficacy for NAC as a chemoprotectant...demonstrated the ability of NAC to significantly decrease lung damage from HD and a HD simulant. Tissue culture studies indicated that NAC may also...demonstrated general chemoprotective properties of NAC , the safety of NAC administration, the lack of a licensure requirement, and the data supporting

  20. Pretreatment of Isolated Human Peripheral Blood Lymphocytes with L- Oxothiazolidine 4-Carboxylate Reduces Sulfur Mustard Cytotoxicity

    DTIC Science & Technology

    1993-05-13

    levels in PBL were increased by pretreatment with N- acetyl -L- cysteine ( NAC ) and appeared to have some partial efficacy against HD (Gross et al., 1993...1989). Increasing glutathione concentrations within lymphocytes by using N- acetyl cysteine appears to have a beneficial effect in protecting cells...also used as an intra- cellular delivery system for cysteine and appears to be more effective than N- acetyl -L- cysteine against acetaminophen poisoning

  1. A Large-Scale Quantitative Proteomic Approach To Identifying Sulfur Mustard-Induced Protein Phosphorylation Cascades

    DTIC Science & Technology

    2009-07-31

    with immobilized metal affinity chromatography to study the large-scale protein phosphorylation changes resulting from SM exposure in a human...medium, resulting in isotopically “light” and “ heavy ” cell populations, respectively. Protein samples collected from control (light-labeled) and...experimental ( heavy -labeled) cells can then be mixed in equal ratios, digested with trypsin, and analyzed by high-resolution mass spectrometry. The

  2. A Large-Scale Quantitative Proteomic Approach to Identifying Sulfur Mustard-Induced Protein Phosphorylation Cascades

    DTIC Science & Technology

    2010-01-01

    SILAC method employs 12C14N- and 13C15N-labeled amino acids added directly to the culture medium, resulting in isotopically “light” and “ heavy ” cell...populations, respectively. Protein samples collected from control (light-labeled) and experimental ( heavy -labeled) cells can then be mixed in equal...ratios, digested with trypsin, and analyzed by high-resolution mass spectrometry. The corresponding light and heavy peptides from the same protein will

  3. Macrolide Antibiotics Improve Phagocytic Capacity and Reduce Inflammation In Sulfur Mustard-Exposed Monocytes

    DTIC Science & Technology

    2008-12-01

    improving SM inhalation injuries. In this study, the effects of four FDA- approved macrolide antibiotics, i.e., azithromycin , clarithromycin , erythromycin...from Sigma (St. Louis, MO). Azithromycin and clarithromycin were kindly provided by William Ellis of the Department of Chemical Information, WRAIR...0.001). Treatment with 10 µM of azithromycin , clarithromycin , erythromycin, or roxithromycin increased phagocytotic cells to 64.5%, 63.4%, 62.0

  4. Metabolic Activation of Sulfur Mustard Leads to Oxygen Free Radical Formation

    DTIC Science & Technology

    2012-01-01

    supported by density functional theory calculations and frontier molecular orbital analysis . Published by Elsevier Inc.Toxic organic compounds such as... analysis of the data using density func- tional theory and frontier molecular orbital analysis [13] reinforced the feasibility of a redox cycling mechanism... hypodermic needle and placed in the freeze-drying bottle. The vacuum over the buffer was increased slowly until bubbling ceased. At that point, the vacuum was

  5. Sulfur Mustard (SM) Lesions in Organ-Cultured Human Skin: Markers of Injury and Inflammatory Mediators

    DTIC Science & Technology

    1988-03-01

    second, but more cumbersome, way to assess injury to human skin explants is the interference with the incorporation of [14C]leucine by the epidermal cells ...assayed for markers of cell death and early inflammatory media- tors. Lactic dehydrogenase (LDE), angiotensin-converting enzyme (ACE), trypsin-like and...markers for injury produced by SM. ACE is a marker for endo- thelial damage. Lysosomal enzymes participate in cell autolysis. We did, however, find one

  6. The Cytoskeleton & ATP in Sulfur Mustard-Mediated Injury to Endothelial Cells & Keratinocytes.

    DTIC Science & Technology

    1996-12-01

    perinuclear bands, which were not observed in necrotic cells. Pretreatment with 50 mM N-acetyl- L -cysteine (NAC), a sulfhydryl donor and antioxidant (16... L bromocresol green). The absorbance, which was proportional to albumin content, was measured at 628 nm on a spectrophotometer. Data were expressed...Washington Headquarters Services, Directorate or Information Oierations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, A 22202-4302, and to

  7. Sulfur Mustard (SM) Lesions in Organ-Cultured Human Skin: Markers of Injury and Inflammatory Mediators

    DTIC Science & Technology

    1990-04-16

    plasminogen activator (PA), and. usually, prosta- gadnE 2 (PGE 2 ), compared to Culture fluids frcu control explants&t (continued next page) 20... activator deoxyribonuclease and ribonuclease angiotensin converting enzyme hydroxyproline Interleukin 1 ohmotaxins for macrophages and granulocytes...not to 1.0% 3M), sometimea showed separation of the epidermis and inorteased collagenase activity (L.e, hydroxyproline rele>ae). Thus, it seems likely

  8. Pathogenesis of Acute and Delayed Corneal Lesions After Ocular Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2012-03-01

    pumps (Alzet, Cupertino, CA) primed to deliver 10 mL/h of buprenorphine HCl (0.3 mg/mL) for 7 days were implanted subdermally between the scapulae . After...debris were also observed within extracellular gaps. Necrotic basal cells overlay the fragmented basement membrane, whereas desmosome-rich wing and

  9. Analysis for Plasma Protein Biomarkers Following an Accidental Human Exposure to Sulfur Mustard

    DTIC Science & Technology

    2008-01-01

    be described in brief here. Within 2 h of the munition’s destruction, one of the individuals (a 35-year- old male) noticed a tingling sensation on one...arm and then showered. The next morning (approximately 14 h after the liquid contact), he had developed painful areas of the hand with noticeable...including the lack of pain during the chemical exposure, the time sequence of the development of blisters, and the "string of pearls" pattern of the blisters

  10. Monitoring Sulfur Mustard Exposure by the GC-MS Analysis of Thiodiglycol Cleaved from Blood Proteins

    DTIC Science & Technology

    2003-11-18

    skin protein.5 Similar to skin keratin both albumin and globin contain free carboxylic acid groups from aspartic acid and glutamic acid that can be...acid groups associated with aspartic acid and glutamic acid in albumin that can react with SM to form ester linkages, it was reasonable to expect a

  11. A novel sulfur mustard (HD) vapor inhalation exposure system for accurate inhaled dose delivery

    PubMed Central

    Perry, Mark R.; Benson, Eric M.; Kohne, Jonathon W.; Plahovinsak, Jennifer L.; Babin, Michael C.; Platoff, Gennady E.; Yeung, David T.

    2014-01-01

    Introduction A custom designed HD exposure system was used to deliver controlled inhaled doses to an animal model through an endotracheal tube. Methods Target HD vapor challenges were generated by a temperature controlled bubbler/aerosol trap, while concentration was monitored near real-time by gas chromatography. Animal breathing parameters were monitored real-time by an in-line pneumotach, pressure transducer, and Buxco pulmonary analysis computer/software. For each exposure, the challenge atmosphere was allowed to stabilize at the desired concentration while the anesthetized animal was provided humidity controlled clean air. Once the target concentration was achieved and stable, a portion of the challenge atmosphere was drawn past the endotracheal tube, where the animal inhaled the exposure ad libitum. During the exposure, HD vapor concentration and animal weight were used to calculate the needed inhaled volume to achieve the target inhaled dose (μg/kg). The exposures were halted when the inhaled volume was achieved. Results The exposure system successfully controlled HD concentrations from 22.2 to 278 mg/m3 and accurately delivered inhaled doses between 49.3 and 1120 μg/kg with actual administered doses being within 4% of the target level. Discussion This exposure system administers specific HD inhaled doses to evaluate physiological effects and for evaluation of potential medical countermeasure treatments. PMID:25291290

  12. Implications of Protein Alkyation and Proteolysis on Vesication Caused by Sulfur Mustard

    DTIC Science & Technology

    1999-10-01

    150 mM NaCI, 3 mM EDTA and 0.1% nonidet - P40 (NP40), pH 7.4) and then for 10 min at 4 °C with an ice-cold high salt buffer (10 mM Tris-base, 150 mM...kDa kilodalton KGM keratinocyte growth medium MMP matrix metalloproteinase MT-i MMP membrane type-i matrix metalloproteinase -58- NP40 nonidet - P40

  13. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    PubMed

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  14. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  15. Verification, Dosimetry and Biomonitoring of Mustard Gas Exposure via Immunochemical Detection of Mustard Gas Adducts to DNA and Proteins

    DTIC Science & Technology

    1991-12-01

    of supernatants of hybridomas fox specific antibody activity . Mono- and di-adducts at the N7-position of guanosine-5-phosphate were svthesized for use...antibody activity could be developed and optimized, in which single-stranded calf-thymus DNA exposed to 10 pM mustard gas was used as coating...Figure 11: Chemical shift isuignments and coupling constants for the hydrogen (400 MHz:. a) and carbon atoms (100.6 MHz; b) of t4-(2

  16. Suppression of bacterial blight on mustard greens with host plant resistance and Acibenzolar-S-Methyl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...

  17. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  18. The Sulfur Cycle

    ERIC Educational Resources Information Center

    Kellogg, W. W.; And Others

    1972-01-01

    A model estimating the contributions of sulfur compounds by natural and human activities, and the rate of removal of sulfur from the atmosphere, is based on a review of the existing literature. Areas requiring additional research are identified. (AL)

  19. Activity of quinone alkylating agents in quinone-resistant cells.

    PubMed

    Begleiter, A; Leith, M K

    1990-05-15

    The role of the quinone group in the antitumor activity of quinone alkylating agents, such as mitomycin C and 2,5-diaziridinyl-3,5-bis(carboethoxyamino)-1,4-benzoquinone, is still uncertain. The quinone group may contribute to antitumor activity by inducing DNA strand breaks through the formation of free radicals and/or by influencing the alkylating activity of the quinone alkylators. The cytotoxic activity and DNA damage produced by the model quinone alkylating agents, benzoquinone mustard and benzoquinone dimustard, were compared in L5178Y murine lymphoblasts sensitive and resistant to the model quinone antitumor agent, hydrolyzed benzoquinone mustard. The resistant cell lines, L5178Y/HBM2 and L5178Y/HBM10, have increased concentrations of glutathione and elevated catalase, superoxide dismutase, glutathione S-transferase, and DT-diaphorase activity. L5178Y/HBM2 and L5178Y/HBM10 cells were 7.4- and 8.5-fold less sensitive to benzoquinone mustard and 1.7- and 4.3-fold less sensitive to benzoquinone dimustard, respectively, compared with sensitive cells, but showed no resistance to the non-quinone alkylating agent, aniline mustard. The formation of DNA double strand breaks by benzoquinone mustard was reduced by 2- and 8-fold in L5178Y/HBM2 and L5178Y/HBM10 cells, respectively, while double strand break formation by benzoquinone dimustard was reduced only in the L5178Y/HBM10 cells. The number of DNA-DNA cross-links produced by benzoquinone mustard was 3- and 6-fold lower, and the number produced by benzoquinone dimustard was 35% and 2-fold lower in L5178Y/HBM2 and L5178Y/HBM10 cells, respectively, compared with L5178Y parental cells. In contrast, cross-linking by aniline mustard was unchanged in sensitive and resistant cells. Dicoumarol, an inhibitor of DT-diaphorase, increased the cytotoxic activity of both benzoquinone mustard and benzoquinone dimustard in L5178Y/HBM10 cells. This study provides evidence that elevated DT-diaphorase activity in the resistant cells

  20. DNA damage in internal organs after cutaneous exposure to sulphur mustard.

    PubMed

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien; Bérard, Izabel; Douki, Thierry

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target.

  1. Attenuation of Nitrogen Mustard-Induced Pulmonary Injury and Fibrosis by Anti-Tumor Necrosis Factor-α Antibody.

    PubMed

    Malaviya, Rama; Sunil, Vasanthi R; Venosa, Alessandro; Verissimo, Vivianne L; Cervelli, Jessica A; Vayas, Kinal N; Hall, LeRoy; Laskin, Jeffrey D; Laskin, Debra L

    2015-11-01

    Nitrogen mustard (NM) is a bifunctional alkylating agent that causes acute injury to the lung that progresses to fibrosis. This is accompanied by a prominent infiltration of macrophages into the lung and upregulation of proinflammatory/profibrotic cytokines including tumor necrosis factor (TNF)α. In these studies, we analyzed the ability of anti-TNFα antibody to mitigate NM-induced lung injury, inflammation, and fibrosis. Treatment of rats with anti-TNFα antibody (15 mg/kg, iv, every 9 days) beginning 30 min after intratracheal administration of NM (0.125 mg/kg) reduced progressive histopathologic alterations in the lung including perivascular and peribronchial edema, macrophage/monocyte infiltration, interstitial thickening, bronchiolization of alveolar walls, fibrin deposition, emphysema, and fibrosis. NM-induced damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage (BAL) protein and cell content, was also reduced by anti-TNFα antibody, along with expression of the oxidative stress marker, heme oxygenase-1. Whereas the accumulation of proinflammatory/cytotoxic M1 macrophages in the lung in response to NM was suppressed by anti-TNFα antibody, anti-inflammatory/profibrotic M2 macrophages were increased or unchanged. Treatment of rats with anti-TNFα antibody also reduced NM-induced increases in expression of the profibrotic mediator, transforming growth factor-β. This was associated with a reduction in NM-induced collagen deposition in the lung. These data suggest that inhibiting TNFα may represent an efficacious approach to mitigating lung injury induced by mustards.

  2. Consumer acceptability and sensory profile of cooked broccoli with mustard seeds added to improve chemoprotective properties.

    PubMed

    Ghawi, Sameer Khalil; Shen, Yuchi; Niranjan, Keshavan; Methven, Lisa

    2014-09-01

    Broccoli, a rich source of glucosinolates, is a commonly consumed vegetable of the Brassica family. Hydrolysis products of glucosinolates, isothiocyanates, have been associated with health benefits and contribute to the flavor of Brassica. However, boiling broccoli causes the myrosinase enzyme needed for hydrolysis to denature. In order to ensure hydrolysis, broccoli must either be mildly cooked or active sources of myrosinase, such as mustard seed powder, can be added postcooking. In this study, samples of broccoli were prepared in 6 different ways; standard boiling, standard boiling followed by the addition of mustard seeds, sous vide cooking at low temperature (70 °C) and sous vide cooking at higher temperature (100 °C) and sous vide cooking at higher temperature followed by the addition of mustard seeds at 2 different concentrations. The majority of consumers disliked the mildly cooked broccoli samples (70 °C, 12 min, sous vide) which had a hard and stringy texture. The highest mean consumer liking was for standard boiled samples (100 °C, 7 min). Addition of 1% mustard seed powder developed sensory attributes, such as pungency, burning sensation, mustard odor, and flavor. One cluster of consumers (32%) found mustard seeds to be a good complement to cooked broccoli; however, the majority disliked the mustard-derived sensory attributes. Where the mustard seeds were partially processed, doubling the addition to 2% led to only the same level of mustard and pungent flavors as 1% unprocessed seeds, and mean consumer liking remained unaltered. This suggests that optimization of the addition level of partially processed mustard seeds may be a route to enhance bioactivity of cooked broccoli without compromising consumer acceptability.

  3. Translation of Toxicity Data into CW Agent Toxicity Estimates

    DTIC Science & Technology

    2003-07-01

    dosage defined by vapor concentration (C) multiplied by exposure time (T) CTXX -- Lethal or Effective Concentration-Time to XX% exposed Dependence of...kg, young healthy adult males Agents addressed: GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), VX and HD (mustard) Routes of exposure ...use with CW agent exposure scenarios involving healthy adult males Evidence exists that in some mammalian species (ex. rodents) that a significant

  4. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants.

    PubMed

    Dong, Jing; Hu, Jufang; Chi, Yingnan; Lin, Zhengguo; Zou, Bo; Yang, Song; Hill, Craig L; Hu, Changwen

    2017-03-21

    A novel double-anion complex, H13 [(CH3 )4 N]12 [PNb12 O40 (V(V) O)2 ⋅(V(IV)4 O12 )2 ]⋅22 H2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H2 O2 with a turnover frequency (TOF) of 16 000 h(-1) . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed.

  5. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  6. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  7. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  8. Sulfur tolerant anode materials

    SciTech Connect

    Not Available

    1988-02-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  9. Mid-wave infrared hyperspectral imaging of unknown chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Clewes, Rhea J.; Howle, Chris R.; Guicheteau, Jason; Emge, Darren; Ruxton, Keith; Robertson, Gordon; Miller, William; Malcolm, Graeme; Maker, Gareth T.

    2013-05-01

    The ability of a stand-off chemical detector to distinguish two different chemical warfare agents is demonstrated in this paper. Using Negative Contrast Imaging, based upon IR absorption spectroscopy, we were able to detect 1 μl of VX, sulfur mustard and water on a subset of representative surfaces. These experiments were performed at a range of 1.3 metres and an angle of 45° to the surface. The technique employed utilises a Q-switched intracavity MgO:PPLN crystal that generated 1.4 - 1.8 μm (shortwave) and 2.6 - 3.6 μm (midwave) infrared radiation (SWIR and MWIR, respectively). The MgO:PPLN crystal has a fanned grating design which, via translation through a 1064 nm pump beam, enables tuning through the SWIR and MWIR wavelength ranges. The SWIR and MWIR beams are guided across a scene via a pair of raster scanned mirrors allowing detection of absorption features within these spectral regions. This investigation exploited MWIR signatures, as they provided sufficient molecular information to distinguish between toxic and benign chemicals in these proof-of-concept experiments.

  10. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    SciTech Connect

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P. M.; Kleimeyer, J.; Rowland, Brad

    2003-08-01

    Quantitative, moderately high resolution (0.1 cm-1) infrared spectra have been acquired for a number of nitrogen broadened (1 atm N2) vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, Nitrogen Mustard (HN3), Sulfur Mustard (HD), and Lewisite (L). The spectra are acquired using a heated, flow-through White Cell1 of 5.6 meter optical path length. Each reported spectrum represents a statistical fit to Beer’s law, which allows for a rigorous calculation of uncertainty in the absorption coefficients. As part of an ongoing collaboration with the National Institute of Standards and Technology (NIST), cross-laboratory validation is a critical aspect of this work. In order to identify possible errors in the Dugway flow-through system, quantitative spectra of isopropyl alcohol from both NIST and Pacific Northwest National Laboratory (PNNL) are compared to similar data taken at Dugway proving Grounds (DPG).

  11. Quantitative infrared spectra of vapor phase chemical agents

    NASA Astrophysics Data System (ADS)

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, Pamela M.; Kleimeyer, James; Rowland, Brad

    2003-08-01

    Quantitative, high resolution (0.1 cm-1) infrared spectra have been acquired for a number of pressure broadened (101.3 KPa N2), vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, nitrogen mustard (HN3), sulfur mustard (HD) and Lewisite (L). The spectra are acquired using a heated, flow-through White cell of 5.6 m optical path length. Each reported spectrum represents a statistical fit to Beer's law, which allows for a rigorous calculation of uncertainty in the absorption coefficients. As part of an ongoing collaboration with the National Institute of Standards and Technology (NIST), cross-laboratory validation is a critical aspect of this work. In order to identify possible errors in the Dugway flow-through system, quantitative spectra of isopropyl alcohol from both NIST and Pacific Northwest National Laboratory (PNNL) are compared to similar data taken at the Dugway Proving Ground (DPG).

  12. Verification, Dosimetry and Biomonitoring of Mustard Gas Exposure via Immunochemical Detection of Mustard Gas Adducts to DNA and Proteins.

    DTIC Science & Technology

    1990-09-01

    thrombocytes and lipids was removed, and the lymphocytes forming a broad band half-way down and the granulocytes banding just above the erythrocytes...on ice. The amount of WBC was counted in a counting-chamber by light microscopy . The cells were irradiated with 0 or 4 Gy 60 Co gamma rays...antibodies against ss- ct-DNA treated with mustard gas were counted by light- microscopy and diluted in HAT-medium to a concentration of 50, 10 and 5

  13. Verification, Dosimetry, and Biomonitoring of Mustard Gas Exposure via Immunochemical Detection of Mustard Gas Adducts to DNA and Proteins

    DTIC Science & Technology

    1993-07-01

    specificity 4- for DNA adducts of mustard gas. With this serum a method for the screening of supernatants of hybridomas for specific antibody activity ...11: Chemical shift assignments and coupling constants for tl-e 1’tdrogen (400 MHz; a) and carbon atoms (100.6 MHz; b) of N7-(2’-hydroxyethylthioethyl...subsequent hydrolysis. 113 Figure 14: Chemical shift assignments and coupling constants for the hydrogen (400 MHz; a) and carbon atoms (100.6 Miz; b) of di-(2

  14. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds.

    PubMed

    Okunade, Olukayode Adediran; Ghawi, Sameer Khalil; Methven, Lisa; Niranjan, Keshavan

    2015-11-15

    This study investigates the effects of temperature and pressure on inactivation of myrosinase extracted from black, brown and yellow mustard seeds. Brown mustard had higher myrosinase activity (2.75 un/mL) than black (1.50 un/mL) and yellow mustard (0.63 un/mL). The extent of enzyme inactivation increased with pressure (600-800 MPa) and temperature (30-70° C) for all the mustard seeds. However, at combinations of lower pressures (200-400 MPa) and high temperatures (60-80 °C), there was less inactivation. For example, application of 300 MPa and 70 °C for 10 min retained 20%, 80% and 65% activity in yellow, black and brown mustard, respectively, whereas the corresponding activity retentions when applying only heat (70° C, 10 min) were 0%, 59% and 35%. Thus, application of moderate pressures (200-400 MPa) can potentially be used to retain myrosinase activity needed for subsequent glucosinolate hydrolysis.

  15. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  16. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress.

    PubMed

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A

    2015-01-01

    Ascorbate (AsA)-glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants.

  17. In-vitro fermentation characteristics and methane reduction potential of mustard cake (Brassica juncea L.)

    PubMed Central

    Durge, S. M.; Tripathi, M. K.; Dutta, N.

    2016-01-01

    Aim: To assess the effect of mustard cake (Brassica juncea L.) levels in concentrate mixtures and in composite feed mixtures (CFMs) on in-vitro fermentation characteristics and methane production. Materials and Methods: Five concentrate mixtures were prepared with containing 30% oil cake, where linseed cake was replaced by mustard cake at the rate of 0%, 7.5%, 15.0%, 22.5%, and 30% in concentrate mixture. Mustard cake contained glucosinolate 72.58 µmol/g oil free dry matter (DM) and contents in diet were 0, 5.4, 10.9, 16.3, and 21.8 µmol/g of concentrate mixture, respectively. Concentrate mixture containing 15.0% mustard cake was found to produced minimum methane which was then used for the preparation of CFM containing 0%, 25%, 50%, and 75% levels with gram straw. Result: Increased levels of mustard cake in concentrate mixtures had a linear decrease (p<0.05) in the total gas production, and the 15% inclusion showed lowest methane concentration (quadratic, p<0.01). The degradability of DM and organic matter (OM) of concentrate mixtures did not change, however, pH and NH3-N concentrations of the fermentation medium showed linear (p<0.05) reductions with increased mustard cake levels. Increased levels of 15% mustard cake containing concentrate mixture in CFMs exhibited a trend (p=0.052) of increased gas production, whereas methane concentration in total gas, methane produced and degradability of DM and OM were also displayed a linear increase (p<0.05). However, the pH, NH3-N, and total volatile fatty acid levels decreased linearly (p<0.05) with increased levels of concentrate in CFMs. Conclusion: Reduction in methane production was evidenced with the inclusion of mustard cake in concentrate mixture at 15% level, and the CFMs with 25% concentrate, which contained 15% mustard cake, exhibited an improved fermentation and reduced methane production. PMID:27847426

  18. Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field.

    PubMed

    Jahangir, M M R; Minet, E P; Johnston, P; Premrov, A; Coxon, C E; Hackett, R; Richards, K G

    2014-05-01

    Over-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N+N2-N) mole fractions were measured in situ with a push-pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 μg kg(-1) d(-1), respectively. Estimated N2O-N/(N2O-N+N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L(-1)) than no cover crop (0.90 mg L(-1)) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances.

  19. Eruptive cherry angiomas associated with vitiligo: provoked by topical nitrogen mustard?

    PubMed

    Ma, Hui-Jun; Zhao, Guang; Shi, Fei; Wang, Yi-Xia

    2006-12-01

    We report a 27-year-old man who had suffered with vitiligo for 7 years and with eruptive cherry angiomas within or around the repigmented vitiliginous skin for 2 years. After continual therapy for vitiligo with topical nitrogen mustard in a concentration of 0.001% for 5 years, multiple cherry angiomas erupted within or around the repigmented vitiliginous plaques. The discontinue therapy with nitrogen mustard stopped the appearance of new cherry angiomas. The presence of eruptive cherry angiomas was evident and was confirmed by histopathology. We suggest that the chronic chemical stimuli caused by topical nitrogen mustard might result in the formation of eruptive cherry angiomas.

  20. Bilateral chylothorax complicating Mustard repair of transposition of the great vessels.

    PubMed

    Copeland, J G; Shaut, C

    1982-10-01

    Less than 60 cases of bilateral chylothorax have been previously reported, and only two of these involve complicated Mustard procedures. We describe herein a patient in whom severe bilateral chylothorax developed three weeks after Mustard repair of D transposition. Complete reversal of this condition was obtained with revision of the constricted interatrial baffle and ligation of the thoracic duct. This cases is compared clinically with previously reported instances of chylothorax, and the role of played by obstruction of the superior vena cava after a Mustard procedure for transposition of the great vessels is emphasized.