Science.gov

Sample records for agfep thermal control

  1. Analysis of Ag/FEP Thermal Control Blanket Performance From Multiple Satellites

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Normand, E.; Woll, S.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Materials performance data from operational spacecraft and spacecraft experiments has slowly accumulated over the years. Much of this data is obtained indirectly by analyzing temperature measurements telemetered to ground. Due to the Space Transportation System (STS) program, materials performance data has also been obtained by flying materials on satellites, or on the Space Shuttle itself, for limited periods of time, and then returning the materials to ground for post-flight examination. During the course of NASA contract NAS8-98213, the authors have extended the analysis of data reported for selected materials flown on a variety of spacecraft over the past 30 years. In this paper we discuss changes in two properties of silver- or aluminum-backed (metallized) FEP Teflon due to exposure to specific environmental factors on-orbit. First, the change in solar absorptance (alpha(sub s)) of metallized FEP Teflon as a function of particulate radiation will be discussed. Data providing the change in solar absorptance of metallized FEP as a function of days on orbit has been published for NTS-2 satellite, several NavStar Global Positioning Satellites (GPS), the SCATHA experiment, and the ML-101 satellite. The unique approach that we have taken is to calculate the absorbed radiation dose within the Ag/FEP for the various satellite orbits, and to plot the change in solar absorptance, alpha(sub s), as a function of the dose; the behavior agrees with the same data from laboratory tests. Second, the variation of the atomic oxygen induced material recession rate of metallized FEP will be discussed. Data from certain Space Shuttle flights, a Lockheed experiment [approximately 105 days in low Earth orbit (LEO)], and the Long Duration Exposure Facility allows the variation of the material recession rate of Ag/FEP to be estimated under conditions that include atomic oxygen exposure.

  2. The Effect of Simulated Lunar Dust on the Absorptivity, Emissivity, and Operating Temperature on AZ-93 and Ag/FEP Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Panko, Scott R.; Rogers, Kerry J.; Larkin, Elizabeth M. G.

    2008-01-01

    JSC-1AF lunar simulant has been applied to AZ-93 and AgFEP thermal control surfaces on aluminum or composite substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator and cooled in a 30 K coldbox. Thermal modeling was used to determine the absorptivity ( ) and emissivity ( ) of the thermal control surfaces in both their clean and dusted states. Then, a known amount of power was applied to the samples while in the coldbox and the steady state temperatures measured. It was found that even a submonolayer of simulated lunar dust can significantly degrade the performance of both white paint and second-surface mirror type thermal control surfaces under these conditions. Contrary to earlier studies, dust was found to affect as well as . Dust lowered the emissivity by as much as 16 percent in the case of AZ-93, and raised it by as much as 11 percent in the case of AgFEP. The degradation of thermal control surface by dust as measured by / rose linearly regardless of the thermal control coating or substrate, and extrapolated to degradation by a factor 3 at full coverage by dust. Submonolayer coatings of dust were found to not significantly change the steady state temperature at which a shadowed thermal control surface will radiate.

  3. Effects of the LDEF environment on the Ag/FEP thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Pippin, H. Gary

    1992-01-01

    This presentation was made by Francois Levadou at the NASA Langley Research Center LDEF materials workshop, November 19-22, 1991. It represents the results to date on the examination of silvered teflon thermal blankets primarily from the Ultra-heavy Cosmic Ray Experiment and also from the blanket from the Park Seed Company experiment. ESA/ESTEC and Boeing conducted a number of independent measurements on the blankets and in particular on the exposed fluorinated ethylene-propylene (FEP) layer of the blankets. Mass loss, thickness, and thickness profile measurements have been used by ESA, Boeing, and NASA LeRC to determine recession and average erosion yield under atomic oxygen exposure. Tensile strength and percent elongation to failure data, surface characterization by ESCA, and SEM images are presented. The Jet Propulsion Laboratory analysis of vacuum radiation effects is also presented. The results obtained by the laboratories mentioned and additional results from the Aerospace Corporation on samples provided by Boeing are quite similar and give confidence in the validity of the data.

  4. Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark

    2011-01-01

    Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.

  5. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1992-01-01

    Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.

  6. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  7. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their solar absorptivity and thermal emissivity values determined experimentally. The three simulants included JSC 1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that alpha/epsilon varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be significantly lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the moon will be strongly dependent on the and of the dust in the specific locality.

  8. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  9. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  10. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a submonolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3-4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 300 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 degrees to 35 degrees. Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  11. Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Journey, Khrissaundra; Christopher, Steven; Davis, Shanon

    2011-01-01

    Evaluation of brushing to remove lunar simulant dust from thermal control surfaces is described. First, strip brushes made with nylon, PTFE, or Thunderon (Nihon Sanmo Dyeing Company Ltd.) bristles were used to remove JSC-1AF dust from AZ93 thermal control paint or aluminized FEP (AlFEP) thermal control surface under ambient laboratory conditions. Nylon and PTFE bristles removed a promising amount of dust from AZ93, and nylon and Thunderon bristles from AlFEP. But when these were tested under simulated lunar conditions in the lunar dust adhesion bell jar (LDAB), they were not effective. In a third effort, seven brushes made up of three different materials, two different geometries, and different bristle lengths and thicknesses were tested under laboratory conditions against AZ93 and AlFEP. Two of these brushes, the Zephyr fiberglass fingerprint brush and the Escoda nylon fan brush, removed over 90 percent of the dust, and so were tested in the fourth effort in the LDAB. They also performed well under these conditions recovering 80 percent or more of the original thermal performance (solar absorptance/thermal emittance) of both AZ93 and AgFEP after 20 strokes, and 90 or more percent after 200 strokes

  12. Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Journey, Hhrissaundra; Christopher, Steven; Davis, Shanon

    2011-01-01

    Evaluation of brushing to remove lunar simulant dust from thermal control surfaces is described. First, strip brushes made with nylon, PTFE, or Thunderon bristles were used to remove JSC-1AF dust from AZ93 thermal control paint or aluminized FEP (AlFEP) thermal control surface under ambient laboratory conditions. Nylon and PTFE bristles removed a promising amount of dust from AZ93, and nylon and Thunderon bristles from AlFEP. But when these were tested under simulated lunar conditions in the lunar dust adhesion bell jar (LDAB), they were not effective. In a third effort, seven brushes made up of three different materials, two different geometries, and different bristle lengths and thicknesses were tested under laboratory conditions against AZ93 and AlFEP. Two of these brushes, the Zephyr fiberglass fingerprint brush and the Escoda nylon fan brush, removed over 90 percent of the dust, and so were tested in the fourth effort in the LDAB. They also performed well under these conditions recovering 80 percent or more of the original thermal performance (solar absorptance/thermal emittance) of both AZ93 and AgFEP after 20 strokes, and 90 or more percent after 200 strokes.

  13. Spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Guidance for the assessment and control of spacecraft temperatures is provided with emphasis on unmanned spacecraft in the space environment. The heat balance, elements of thermal design, and thermal control are discussed along with thermal testing, design criteria, and recommended practices.

  14. Hermes thermal control concept

    NASA Astrophysics Data System (ADS)

    Moscatelli, Antonio; Bottaccini, Massimiliano; Ferro, Claudio

    1991-12-01

    The Hermes Space Vehicle is made up of the reusable Hermes Spaceplane (HSP) itself and an expendable rear Hermes Resource Module (HRM). Both the HSP and HRM contain pressurized (habitable) compartments and unpressurized compartments. The complex configuration of the space vehicle and the mission profile require the adoption of a particularly flexible thermal control system which can satisfy the different requirements of the HSP and the HRM together with stringent safety and reliability requirements. All these aspects led to a thermal control design concept which uses active and passive means distributed through all compartments of the space vehicle. The ACTS (Active Thermal Control Section) is dedicated to the control of very high and concentrated thermal loads. It is based on a dual loop concept for heat collection (water and Freon R114 cooling loops), transportation and rejection through dedicated devicers. The PTCS (Passive Thermal Control Section) controls low heat fluxes spread on large surfaces. It relies on different concepts of insulation together with a system of temperature sensors and heaters, to control the thermal excursions of the space plane components and internal structural parts.

  15. Space thermal control development

    NASA Technical Reports Server (NTRS)

    Hoover, M. J.; Grodzka, P. G.; Oneill, M. J.

    1971-01-01

    The results of experimental investigations on a number of various phase change materials (PCMs) and PCMs in combination with metals and other materials are reported. The evaluations include the following PCM system performance characteristics: PCM and PCM/filler thermal diffusivities, the effects of long-term thermal cycling, PCM-container compatibility, and catalyst effectiveness and stability. Three PCMs demonstrated performance acceptable enough to be considered for use in prototype aluminum thermal control devices. These three PCMs are lithium nitrate trihydrate with zinc hydroxy nitrate catalyst, acetamide, and myristic acid. Of the fillers tested, aluminum honeycomb filler was found to offer the most increase in system thermal diffusivity.

  16. Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,

  17. Space tug thermal control

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1975-01-01

    The future development of full capability Space Tug will impose strict requirements upon the thermal design. While requiring a reliable and reusable design, Space Tug must be capable of steady-state and transient thermal operation during any given mission for mission durations of up to seven days and potentially longer periods of time. Maximum flexibility and adaptability of Space Tug to the mission model requires that the vehicle operate within attitude constraints throughout any specific mission. These requirements were translated into a preliminary design study for a geostationary deploy and retrieve mission definition for Space Tug to determine the thermal control design requirements. Results of the study are discussed with emphasis given to some of the unique avenues pursued during the study, as well as the recommended thermal design configuration.

  18. Thermal control system technology discipline

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  19. Spacecraft Thermal Control Coatings References

    NASA Technical Reports Server (NTRS)

    Kauder, Lonny

    2005-01-01

    The successful thermal design of spacecraft depends in part on a knowledge of the solar absorption and hemispherical emittance of the thermal control coatings used in and on the spacecraft. Goddard Space Flight Center has had since its beginning a group whose mission has been to provide thermal/optical properties data of thermal control coatings to thermal engineers. This handbook represents a summary of the data and knowledge accumulated over many years at GSFC.

  20. MEMS thermal switch for spacecraft thermal control

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew A.; Firebaugh, Samara L.; Edwards, Richard L.; Keeney, Allen C.; Osiander, Robert

    2004-01-01

    Small satellites with their low thermal capacitance are vulnerable to rapid temperature fluctuations. Therefore, thermal control becomes important, but the limitations on mass and electrical power require new approaches. Possible solutions to actively vary the heat rejection of the satellite in response to variations in the thermal load and environmental condition are the use of a variable emissivity coating (VEC), micro-machined shutters and louvers, or thermal switches. An elegant way the radiate heat is to switch the thermal contact between the emitting surface and the radiator electrostatically. This paper describes the design and fabrication of an active radiator for satellite thermal control based on such a micro electromechanical (MEMS) thermal switch. The switch operates by electrostatically moving a high emissivity surface layer in and out of contact with the radiator. The electromechanical model and material considerations for the thermal design of the MEMS device are discussed. The design utilizes a highly thermal conductive gold membrane supported by low-conductance SU-8 posts. The fabrication process is described. Measured actuation voltages were consistent with the electrostatic model, ranging from 8 to 25 volts.

  1. Analysis of Ag/FEP Control Blanket Performance from Multiple Satellites

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Normand, E.; Wol, S. L.

    2001-01-01

    Published data reporting the change in solar absorptance as a function of time on orbit for certain satellites has been re-examined. The optical property change of metallized FEP as a function of total particulate radiation dose received by specific satellites has been estimated. Results tend to follow a common trend and a design curve has been constructed to estimate solar absorptance change as a function of radiation dose for metallized FEP at any altitude. Effects due to apparent contamination on several of the satellites are addressed and taken into account in determining property changes. Data from LDEF, ML-101, NavStar 1-5, NTS-2, the SCATHA experiment, and SOLRAD 11 are used as the basis of the design curve. A similar comparison is made between published atomic oxygen recession data from numerous Space Shuttle flights, a LEO experiment flown by Lockheed, and LDEF results. Variation of atomic oxygen recession rate of FEP as a function of exposure conditions is determined.

  2. Contamination Control for Thermal Engineers

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  3. Remote control thermal actuator

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Harrigill, W. T.; Krsek, A.

    1969-01-01

    Thermal actuator makes precise changes in the position of one object with respect to another. Expansion of metal tubes located in the actuator changes the position of the mounting block. Capacitance probe measures the change in position of the block relative to the fixed target plate.

  4. Orion Passive Thermal Control Overview

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.

    2007-01-01

    An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing

  5. Orion Passive Thermal: Control Overview

    NASA Technical Reports Server (NTRS)

    Alvarez-Hermandez, Angel; Miller, Stephen W.

    2009-01-01

    A general overview of the NASA Orion Passive Thermal Control System (PTCS) is presented. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; and 3) Orion PTCS Overview.

  6. Thermal Control using Electrochromism

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna

    1998-01-01

    The applicability of a charge balanced electrochromic device to modulate the frequencies in the thermal infrared region is examined in this study. The device consisted of a transparent conductor, WO3 anode, PMMA/LiClO4 electrolyte, V2O5 cathode and transparent conductor. The supporting structure in the device is SnO2 coated glass and the edges are sealed with epoxy to reduce moisture absorption. The performance evaluation comprised of cyclic voltammetric measurements and determination of transmittance at various wavelengths. The device was subjected to anodic and cathodic polarization by sweeping the potential at a rate of 10 mV/sec from -0.8V to 1.8V. The current versus voltage profile indicated no reaction between -0.5 and +0.5 V. The device is colored green at 1.8V with a transmittance of 5% at a wavelength, lambda=900 nm and colorless at -0.8V with a transmittance of 74% at lambda=500 nm. The optical modulation is limited to 400-1500 nm and there is no activity in the thermal infrared. The switching time is 75 seconds for transmittance to decrease from 74% to 50%. The device yielded reproducible values for transmittance when cycled between colored and bleached states by application of 1.8V and -0.8V, respectively.

  7. Thermal Control Using Electrochromism

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna

    1998-01-01

    The applicability of a charge balanced electrochromic device to modulate the frequencies in the thermal infra red region is examined in this study. The device consisted of a transparent conductor, WO3 anode, PMMA/LiClO4, electrolyte, V2O5, cathode and transparent conductor. The supporting structure in the device is SnO2 coated glass and the edges are sealed with epoxy to reduce moisture absorption. The performance evaluation comprised of cyclic voltammetric measurements and determination of transmittance at various wavelengths. The device was subjected to anodic and cathodic polarization by sweeping the potential at a rate of 10 mV/sec from -0.8 V to 1.8 V. The current versus voltage profile indicated no reaction between -0.5 and +0.5 V. The device is colored green at 1.8 V with a transmittance of 5% at a wavelength, lambda = 900 nm and colorless at -0.8 V with a transmittance of 74% at X = 500 nm. The optical modulation is limited to 400-1500 nm and there is no activity in the thermal infrared. The switching time is 75 seconds for transmittance to decrease from 74% to 50%. The device yielded reproducible values for transmittance when cycled between colored and bleached states by application of 1.8 V and -0.8 V, respectively.

  8. Thermal Control Using Electrochromism

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna

    1999-01-01

    The applicability of a charge balanced electrochromic device to modulate the frequencies in the thermal infrared region is examined in this study. The device consisted of a transparent conductor, WO3, anode, PMMA/LiClO4 electrolyte, V2O5 cathode and transparent conductor. The supporting structure in the device is SnO2 coated glass and the edges are sealed with epoxy to reduce moisture absorption. The performance evaluation comprised of cyclic voltammetric measurements and determination of transmittance at various wavelengths. The device was subjected to anodic and cathodic polarization by sweeping the potential at a rate of 10 mV/sec from -0.8V to 1.8V. The current versus voltage profile indicated no reaction between -0.5 and +0.5 V. The device is colored green at 1.8 V with a transmittance of 5% at a wavelength, lambda = 900 nm and colorless at -0.8 V with a transmittance of 74% at lambda = 500 nm. The optical modulation is limited to 400-1500 nm and there is no activity in the thermal infrared. The switching time is a function of temperature and time for coloring reaction was slower than the bleaching reaction. The device yielded reproducible values for transmittance when cycled between colored and bleached states by application of 1.8V and -0.8V, respectively.

  9. Thermal Protection and Control

    NASA Technical Reports Server (NTRS)

    Greene, Effie E.

    2013-01-01

    During all phases of a spacecraft's mission, a Thermal Protection System (TPS) is needed to protect the vehicle and structure from extreme temperatures and heating. When designing TPS, low weight and cost while ensuring the protection of the vehicle is highly desired. There are two main types of TPS, ablative and reusable. The Apollo missions needed ablators due to the high heat loads from lunar reentry. However, when the desire for a reusable space vehicle emerged, the resultant_ Space Shuttle program propelled a push for the development of reusable TPS. With the growth of reqsable TPS, the need for ablators declined, triggering a drop off of the ablator industry. As a result, the expertise was not heavily maintained within NASA or the industry. When the Orion Program initiated a few years back, a need. for an ablator reemerged. Yet, due to of the lack of industry capability, redeveloping the ablator material took several years and came at a high cost. As NASA looks towards the future with both the Orion and Commercial Crew Programs, a need to preserve reusable, ablative, and other TPS technologies is essential. Research of the different TPS materials alongside their properties, capabilities, and manufacturing process was performed, and the benefits of the materials were analyzed alongside the future of TPS. Knowledge of the different technologies has the ability to help us know what expertise to maintain and ensure a lack in the industry does not occur again.

  10. Electromagnetically controlled multiferroic thermal diode

    NASA Astrophysics Data System (ADS)

    Chotorlishvili, L.; Etesami, S. R.; Berakdar, J.; Khomeriki, R.; Ren, Jie

    2015-10-01

    We propose an electromagnetically tunable thermal diode based on a two-phase multiferroic composite. Analytical and full numerical calculations for a prototypical heterojunction composed of iron on barium titanate in the tetragonal phase demonstrate a strong heat rectification effect that can be controlled externally by a moderate electric field. This finding is important for thermally based information processing and sensing and can also be integrated in (spin) electronic circuits for heat management and recycling.

  11. Membrane Based Thermal Control Development

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen

    1997-01-01

    The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.

  12. The Calipso Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  13. Variable anodic thermal control coating

    NASA Technical Reports Server (NTRS)

    Gilliland, C. S.; Duckett, J. (Inventor)

    1983-01-01

    A process for providing a thermal control solar stable surface coating for aluminum surfaces adapted to be exposed to solar radiation wherein selected values within the range of 0.10 to 0.72 thermal emittance (epsilon sub tau) and 0.2 to 0.4 solar absorptance (alpha subs) are reproducibly obtained by anodizing the surface area in a chromic acid solution for a selected period of time. The rate voltage and time, along with the parameters of initial epsilon sub tau and alpha subs, temperature of the chromic acid solution, acid concentration of the solution and the material anodized determines the final values of epsilon/tau sub and alpha sub S. 9 Claims, 5 Drawing Figures.

  14. Thermal Control Working Group report

    NASA Technical Reports Server (NTRS)

    Haslett, Robert; Mahefkey, E. Thomas

    1986-01-01

    The Thermal Control Working Group limited its evaluation to issues associated with Earth orbiting and planetary spacecraft with power levels up to 50 kW. It was concluded that the space station technology is a necessary precursor but does not meet S/C 2000 needs (life, high heat flux, long term cryogenics, and survivability). Additional basic and applied research are required (fluid/materials compatibility and two phase system modeling). Scaling, the key issue, must define accelerated life test criteria. The two phase systems require 0g to 1 g correlation. Additional ground test beds are required and combined space environment tests of materials.

  15. MEMS Louvers for Thermal Control

    NASA Technical Reports Server (NTRS)

    Champion, J. L.; Osiander, R.; Darrin, M. A. Garrison; Swanson, T. D.

    1998-01-01

    Mechanical louvers have frequently been used for spacecraft and instrument thermal control purposes. These devices typically consist of parallel or radial vanes, which can be opened or closed to vary the effective emissivity of the underlying surface. This project demonstrates the feasibility of using Micro-Electromechanical Systems (MEMS) technology to miniaturize louvers for such purposes. This concept offers the possibility of substituting the smaller, lighter weight, more rugged, and less costly MEMS devices for such mechanical louvers. In effect, a smart skin that self adjusts in response to environmental influences could be developed composed of arrays of thousands of miniaturized louvers. Several orders of magnitude size, weight, and volume decreases are potentially achieved using micro-electromechanical techniques. The use of this technology offers substantial benefits in spacecraft/instrument design, integration and testing, and flight operations. It will be particularly beneficial for the emerging smaller spacecraft and instruments of the future. In addition, this MEMS thermal louver technology can form the basis for related spacecraft instrument applications. The specific goal of this effort was to develop a preliminary MEMS device capable of modulating the effective emissivity of radiators on spacecraft. The concept pursued uses hinged panels, or louvers, in a manner such that heat emitted from the radiators is a function of louver angle. An electrostatic comb drive or other such actuator can control the louver position. The initial design calls for the louvers to be gold coated while the underlying surface is of high emissivity. Since, the base MEMS material, silicon, is transparent in the InfraRed (IR) spectrum, the device has a minimum emissivity when closed and a maximum emissivity when open. An initial set of polysilicon louver devices was designed at the Johns Hopkins Applied Physics Laboratory in conjunction with the Thermal Engineering Branch at

  16. Thermal control system corrosion study

    NASA Technical Reports Server (NTRS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-01-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  17. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  18. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  19. Weathering of Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.; Triolo, Jack J.

    2007-01-01

    Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliques upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel. This is a challenge, as new composite radiator panels are being considered as replacements for the aluminum panels used previously. Various thermal control paints, coatings, and appliques were applied to aluminum and isocyanate ester composite coupons and were exposed for 30 days at the Atmospheric Exposure Site of the Kennedy Space Center s Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected coupons were subsequently exposed to simulated solar wind and vacuum ultraviolet radiation to identify the effect of a simulated space environment on the as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints and coatings. The purpose of this paper is to present the results of the weathering testing and to summarize the durability of several thermal control paints, coatings, and appliques to weathering and postweathering environments.

  20. Thermal control structure and garment

    DOEpatents

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  1. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  2. Thermal Control Technologies for Complex Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    2004-01-01

    Thermal control is a generic need for all spacecraft. In response to ever more demanding science and exploration requirements, spacecraft are becoming ever more complex, and hence their thermal control systems must evolve. This paper briefly discusses the process of technology development, the state-of-the-art in thermal control, recent experiences with on-orbit two-phase systems, and the emerging thermal control technologies to meet these evolving needs. Some "lessons learned" based on experience with on-orbit systems are also presented.

  3. Long life reliability thermal control systems study

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Killen, R. E.

    1972-01-01

    The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.

  4. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  5. Space tug thermal control follow-on

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1975-01-01

    The Space Tug Thermal Control Follow-On program was conducted to further explore some of the thermal control concepts proposed for use in space tug in a breadboard test program. The objectives were to demonstrate the thermal control capabilities of a louver/battery configuration and a thermal conditioning panel/heat pipe radiator configuration. An additional objective was added to model the header pipe and radiator of the second test and correlate the analysis with the test results. These three objectives were achieved and are discussed within this report.

  6. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  7. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  8. Power Electronics Thermal Control (Presentation)

    SciTech Connect

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  9. Thermal Switch for Satellite Temperature Control

    NASA Technical Reports Server (NTRS)

    Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.

    1995-01-01

    An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.

  10. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  11. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  12. Computer controlled thermal fatigue test system

    SciTech Connect

    Schmale, D.T.; Jones, W.B.

    1986-01-01

    A servo-controlled hydraulic mechanical test system has been configured to conduct computer-controlled thermal fatigue tests. The system uses induction heating, a digital temperature controller, infrared pyrometry, forced air cooling, and quartz rod extensometry. In addition, a digital computer controls the tests and allows precise data analysis and interpretation.

  13. Realization of dynamic thermal emission control.

    PubMed

    Inoue, Takuya; De Zoysa, Menaka; Asano, Takashi; Noda, Susumu

    2014-10-01

    Thermal emission in the infrared range is important in various fields of research, including chemistry, medicine and atmospheric science. Recently, the possibility of controlling thermal emission based on wavelength-scale optical structures has been intensively investigated with a view towards a new generation of thermal emission devices. However, all demonstrations so far have involved the 'static' control of thermal emission; high-speed modulation of thermal emission has proved difficult to achieve because the intensity of thermal emission from an object is usually determined by its temperature, and the frequency of temperature modulation is limited to 10-100 Hz even when the thermal mass of the object is small. Here, we experimentally demonstrate the dynamic control of thermal emission via the control of emissivity (absorptivity), at a speed four orders of magnitude faster than is possible using the conventional temperature-modulation method. Our approach is based on the dynamic control of intersubband absorption in n-type quantum wells, which is enhanced by an optical resonant mode in a photonic crystal slab. The extraction of electrical carriers from the quantum wells leads to an immediate change in emissivity from 0.74 to 0.24 at the resonant wavelength while maintaining much lower emissivity at all other wavelengths. PMID:25064232

  14. Embedded spacecraft thermal control using ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Clements, Jared W.

    Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.

  15. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOEpatents

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  16. Variable emissivity laser thermal control system

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  17. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1992-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flown. The objective of the TCSE on the LDEF was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in the lab. The performance of the TCSE flight system on the LDEF was excellent.

  18. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  19. Optimal Feedback Control of Thermal Networks

    NASA Technical Reports Server (NTRS)

    Papalexandris, Miltiadis

    2003-01-01

    An improved approach to the mathematical modeling of feedback control of thermal networks has been devised. Heretofore software for feedback control of thermal networks has been developed by time-consuming trial-and-error methods that depend on engineers expertise. In contrast, the present approach is a systematic means of developing algorithms for feedback control that is optimal in the sense that it combines performance with low cost of implementation. An additional advantage of the present approach is that a thermal engineer need not be expert in control theory. Thermal networks are lumped-parameter approximations used to represent complex thermal systems. Thermal networks are closely related to electrical networks commonly represented by lumped-parameter circuit diagrams. Like such electrical circuits, thermal networks are mathematically modeled by systems of differential-algebraic equations (DAEs) that is, ordinary differential equations subject to a set of algebraic constraints. In the present approach, emphasis is placed on applications in which thermal networks are subject to constant disturbances and, therefore, integral control action is necessary to obtain steady-state responses. The mathematical development of the present approach begins with the derivation of optimal integral-control laws via minimization of an appropriate cost functional that involves augmented state vectors. Subsequently, classical variational arguments provide optimality conditions in the form of the Hamiltonian equations for the standard linear-quadratic-regulator (LQR) problem. These equations are reduced to an algebraic Riccati equation (ARE) with respect to the augmented state vector. The solution of the ARE leads to the direct computation of the optimal proportional- and integral-feedback control gains. In cases of very complex networks, large numbers of state variables make it difficult to implement optimal controllers in the manner described in the preceding paragraph.

  20. Variable anodic thermal control coating on aluminum

    NASA Technical Reports Server (NTRS)

    Duckett, R. J.; Gilliland, C. S.

    1983-01-01

    A variable thermal control coating (modified chromic acid anodizing) has been developed to meet the needs for the thermal control of spacecraft. This coating, with controlled variable ranges of 0.10 to 0.72 thermal emittance and 0.2 to 0.4 solar absorptance, allows the user to select any value of thermal emittance and solar absorptance within the range specified and obtain both values within + or - 0.02. Preliminary solar stability has shown less than 15 percent degradation over 2000 hours of vacuum solar exposure. The technique has been determined to be sensitive to the parameters of voltage, rate of voltage application, time, temperature, acid concentration, and material pretreatment.

  1. Control of Thermal Meat Processing

    NASA Astrophysics Data System (ADS)

    Griffis, Carl L.; Osaili, Tareq M.

    The recent growth of the market for ready-to-eat (RTE) meat and poultry products has led to serious concern over foodborne illnesses due to the presence of pathogens, particularly Salmonella spp, Listeria monocytogenes and Escherichia coli O157:H7 in meat and poultry products. Emphasis has been placed on thermal processing since heat treatment is still considered the primary means of eliminating foodborne pathogens from raw meat and poultry products (Juneja, Eblen, & Ransom, 2001). Inadequate time/temperature exposure during cooking is a contributing factor in food poisoning outbreaks. Optimal heat treatment is required not only to destroy pathogenic microorganisms in meat and poultry products but also to maintain desirable food quality and product yield.

  2. Electrostatic control of microstructure thermal conductivity

    NASA Astrophysics Data System (ADS)

    Supino, Ryan N.; Talghader, Joseph J.

    2001-03-01

    A technology for controlling the thermal conductivity of etch-released microstructures is proposed and demonstrated by placing test structures in and out of contact with their underlying substrate. By adjusting the duty cycle of a periodic actuation, the thermal conductivity can be adjusted linearly across a wide range. Experimental work with microfilaments in air has shown a continuous tuning range from approximately 1.7×10-4 W/K to 3.3×10-4 W/K. These numbers are limited by thermal conduction through air and thermal contact conductance, respectively. The fundamental tuning range is orders of magnitude wider, limited by radiation heat transfer and the thermal contact conductance of coated structures.

  3. Microfabricated Thermal Switches for Emittance Control

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew A.; Firebaugh, Samara L.; Edwards, Richard L.; Keeney, Allen C.; Osiander, Robert

    2004-02-01

    The trend to smaller satellites with limited resources in weight and power requires a new approach to thermal control to replace heaters with emittance-controlled radiators. There are a number of approaches to variable emittance radiators such as variable emittance coatings or louvers. This paper describes an actively controlled radiator based on a micro electromechanical (MEMS) thermal switch. The switch operates by electrostatically switching a high emittance membrane in and out of contact with the substrate. The radiator is covered with an array of large numbers of these switches, which allows an almost digital control of the apparent emittance of the radiator. The thermal and electromechanical design of the MEMS device is discussed. A proof-of-concept design has been fabricated and tested that uses a gold membrane suspended on polymer posts. In the open position, actuation voltages range from 8 to 25 volts; this was consistent with our electromechanical model for the devices.

  4. Advanced Thermal HPT Clearance Control

    NASA Technical Reports Server (NTRS)

    WojciechVoytek, Sak

    2006-01-01

    OBJECTIVE: Develop a fast acting HPT Active Clearance Control System to improve engine efficiency and reduce emissions CHALLENGE: Reduction of HPT blade clearance throughout engine operation System complexity, reliability and cost must remain comparable or surpass today s engines Reduced clearance may increase possibility of rubs

  5. Cell cytoskeletal conformation under reversible thermal control

    NASA Astrophysics Data System (ADS)

    Chang, Ting-Ya; Yang, Chung-Yao; Liao, Kai-Wei; Andrew Yeh, J.; Cheng, Chao-Min

    2013-12-01

    In order to assess the role of cytoskeletal structure in modulating cell surface topography during cell transformation, we investigated cytoskeletal organization of Madin-Darby canine kidney (MDCK) epithelial cells at different thermal gradients. Specifically, we examined actin polymerization as a function of temperature in a controlled thermal environment. After applying an increase in temperature of 5 °C, we observed fewer actin filaments in the network, as these molecular polymers depolymerized. Partial stress fibers of MDCK cells could be rearranged, but some of them were disrupted irreversibly after a second thermal treatment, and MDCK cells underwent apoptosis at higher temperatures as well.

  6. Thermal energy scavenger (flow control)

    SciTech Connect

    Hochstein, P.A.; Milton, H.W.; Pringle, W.L.

    1981-12-22

    A thermal energy scavenger assembly is described including a plurality of temperature-sensitive wires made of material which exhibits shape memory due to a thermoelastic, martensitic phase transformation. The wires are placed in tension between fixed and movable plates which are, in turn, supported by a pair of wheels which are rotatably supported by a housing for rotation about a central axis. A pair of upper and lower cams are fixed to the housing and cam followers react with the respective cams. Each cam transmits forces through a pair of hydraulic pistons. One of the pistons is connected to a movable plate to which one end of the wires are connected whereby a stress is applied to the wires to strain the wires during a first phase and whereby the cam responds to the unstraining of the wires during a second phase. A housing defines fluid compartments through which hot and cold fluid passes and flows radially through the wires whereby the wires become unstrained and shorten in length when subjected to the hot fluid for causing a reaction between the cam followers and the cams to effect rotation of the wheels about the central axis of the assembly, which rotation of the wheels is extracted through beveled gearing. The wires are grouped into a plurality of independent modules with each module having a movable plate, a fixed plate and the associated hydraulic pistons and cam follower. The hydraulic pistons and cam follower of a module are disposed at ends of the wires opposite from the ends of the wires at which the same components of the next adjacent modules are disposed so that the cam followers of alternate modules react with one of the cams and the remaining cam followers of the remaining modules react with the other cam. There is also including stress limiting means in the form of coil springs associated with alternate ends of the wires for limiting the stress or strain in the wires.

  7. Space stable thermal control coatings

    NASA Technical Reports Server (NTRS)

    Harada, Y.

    1976-01-01

    The MOX method, i.e., the use of zinc and titanium oxalate precursors, has the distinct advantages of simple and rapid processing, and of controlled pigment particle size. The chemical identify of TiOX was determined. The Zn/Ti ratio effect on the reflectance spectra and ultraviolet irradiation stability in vacuum for Zn2TiO4 was examined. Optimized processing parameters are considered for reproducibly obtaining a pigment of the most desirable optical properties and behavior.

  8. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  9. Space station thermal control surfaces. [space radiators

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.

    1979-01-01

    Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.

  10. MEMS device for spacecraft thermal control applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theordore D. (Inventor)

    2003-01-01

    A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.

  11. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  12. Atmospheric Cloud Physics Laboratory thermal control

    NASA Technical Reports Server (NTRS)

    Moses, J. L.; Fogal, G. L.; Scollon, T. R., Jr.

    1978-01-01

    The paper presents the development background and the present status of the Atmospheric Cloud Physics Laboratory (ACPL) thermal control capability. The ACPL, a Spacelab payload, is currently in the initial flight hardware development phase for a first flight scheduled in June 1981. The ACPL is intended as a facility for conducting a wide variety of cloud microphysics experimentation under zero gravity conditions. The cloud chambers, which are key elements of the ACPL, have stringent thermal requirements. Thus the expansion chamber inner walls must be uniform to within + or - 0.1 C during both steady-state and transient operation over a temperature range of +30 to -25 C. Design progression of the expansion chamber, from early in-house NASA-MSFC concepts (including test results of a prototype chamber) to a thermal control concept currently under development, is discussed.

  13. Thermal control materials in Mercury environment

    NASA Astrophysics Data System (ADS)

    Antonenko, J.

    2003-09-01

    Thermal control materials are under development concerning the BepiColombo mission to the planet Mercury. The vicinity to the sun creates extreme heat and radiation fluxes and, advanced materials are needed. A Multi-Layer Insulation has been developed able to withstand the high temperatures and particle fluxes. Upilex has been preferred to Kapton for the reflective screens of the MLI and Tissue Glass is used as a spacer. On sunlit surfaces a sun shield will be added to the MLI employing a ceramic fabric. Further developments for application on external surfaces are a Solar Reflector Coating and an Optical Surface Reflector. An Infrared Rejection Device will be applied within the entrance port of nadir pointing instruments and serve as a protective element to reflect or absorb the planetary infra-red radiation. This paper presents the current status in the development of the thermal insulation and the other thermal control materials. The materials selection and available test results are presented.

  14. Liquid-circulating garment controls thermal balance

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1977-01-01

    Experimental data and mathematical model of human thermoregulatory system have been used to investigate use of liquid-circulatory garment (LCG) to control thermal balance. Model proved useful as accurate simulator of such variables as sweat rate, skin temperature, core temperature, and radiative, evaporative, and LCG heat loss.

  15. Variable emissivity laser thermal control system

    DOEpatents

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  16. Selected results for LDEF thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    Several different thermal control coatings were analyzed as part of the Long Duration Exposure Facility (LDEF) Materials Special Investigation Group activity and as part of the Space Environment Effects on Spacecraft Materials Experiment M0003. A brief discussion of the results obtained for these materials is presented.

  17. Mars Science Laboratory thermal control architecture

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Pauken, Michael; Paris, Anthony; Novak, Keith; Prina, Mauro; Ramirez, Brenda; Bame, David

    2005-01-01

    The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being planned for launch in 2009. This paper will describe the basic architecture of the thermal control system, the challenges and the methods used to overcome them by the use of an innovative architecture to maximize the use of heritage from past projects while meeting the requirements for the design.

  18. Spacecraft active thermal control technology status

    NASA Technical Reports Server (NTRS)

    Ellis, W. E.

    1978-01-01

    Four advanced space radiator concepts that were pursued in an integrated effort to develop multi-mission-use and low cost heat rejection systems which can overcome the limitations of current radiator systems are briefly discussed and described. Also, in order to establish a firm background to compare the advanced space radiator concepts, the Orbiter active thermal control system is also briefly described.

  19. Thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.

  20. Thermal control of the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Skladany, J. T.; Seivold, A. L.

    1976-01-01

    The International Ultraviolet Explorer (IUE) is a large astronomical observatory scheduled to be placed in a three-axis stabilized synchronous orbit in the fourth quarter of 1977. The thermal control system consists of multilayer insulation, ammonia-filled grooved heat pipes, bimetallic actuated louvers, and assorted commandable heaters. The spacecraft must operate over a 135-deg solar aspect range and must be able to survive an 85-min.-zero power eclipse. It has a design lifetime of three years. To verify the thermal design, an Engineering Test Unit (ETU) was subjected to a thermal balance test in the Solar Environment Simulator (SES) at the Goddard Space Flight Center (GSFC). Heater skins were utilized to simulate four solar aspect angles, and various internal power settings were used to simulate different operational cases. Temperatures obtained corresponded within 5C of predicted values, thus verifying the thermal analytical model. In addition, two 85-min.-eclipse periods were successfully completed verifying that the thermal design of the IUE was adequate for this mission requirement.

  1. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  2. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  3. An atomic symmetry-controlled thermal switch

    PubMed Central

    Manzano, Daniel; Kyoseva, Elica

    2016-01-01

    We propose a simple diatomic system trapped inside an optical cavity to control the energy flow between two thermal baths. Through the action of the baths the system is driven to a non-equilibrium steady state. Using the Large Deviation theory we show that the number of photons flowing between the two baths is dramatically different depending on the symmetry of the atomic states. Here we present a deterministic scheme to prepare symmetric and antisymmetric atomic states with the use of external driving fields, thus implementing an atomic control switch for the energy flow. PMID:27503552

  4. An atomic symmetry-controlled thermal switch.

    PubMed

    Manzano, Daniel; Kyoseva, Elica

    2016-01-01

    We propose a simple diatomic system trapped inside an optical cavity to control the energy flow between two thermal baths. Through the action of the baths the system is driven to a non-equilibrium steady state. Using the Large Deviation theory we show that the number of photons flowing between the two baths is dramatically different depending on the symmetry of the atomic states. Here we present a deterministic scheme to prepare symmetric and antisymmetric atomic states with the use of external driving fields, thus implementing an atomic control switch for the energy flow. PMID:27503552

  5. An atomic symmetry-controlled thermal switch

    NASA Astrophysics Data System (ADS)

    Manzano, Daniel; Kyoseva, Elica

    2016-08-01

    We propose a simple diatomic system trapped inside an optical cavity to control the energy flow between two thermal baths. Through the action of the baths the system is driven to a non-equilibrium steady state. Using the Large Deviation theory we show that the number of photons flowing between the two baths is dramatically different depending on the symmetry of the atomic states. Here we present a deterministic scheme to prepare symmetric and antisymmetric atomic states with the use of external driving fields, thus implementing an atomic control switch for the energy flow.

  6. Orbital Thermal Control of the Mercury Capsule

    NASA Technical Reports Server (NTRS)

    Weston, Kenneth C.

    1960-01-01

    The approach to orbital thermal control of the Project Mercury capsule environment is relatively unsophisticated compared with that for many unmanned satellites. This is made possible by the relatively short orbital flight of about 4 1/2 hours and by the presence of the astronaut who is able to monitor the capsule systems and compensate for undesirable thermal conditions. The general external features of the Mercury configuration as it appears in the orbital phase of flight are shown. The conical afterbody is a double-wall structure. The inner wall serves as a pressure vessel for the manned compartment, and the outer wall, of shingle type construction, acts as a radiating shield during reentry. Surface treatment of the shingles calls for a stably oxidized surface to minimize reentry temperatures. The shingles are supported by insulated stringers attached to the inner skin. Areas between stringers are insulated by blankets of Thermoflex insulation. This insulation is especially effective at high altitude due to the reduction of its thermal conductivity with decreasing pressure. As a result of the design of the afterbody for the severe reentry conditions, the heat balance on the manned compartment indicates the necessity for moderate internal cooling to compensate for the heat generation due to human and electrical sources. This cooling is achieved by the controlled vaporization of water in the cabin and astronaut-suit heat exchangers.

  7. HCCI engine control by thermal management

    SciTech Connect

    Martinez-Frias, J; Aceves, S M; Flowers, D; Smith, J R; Dibble, R

    2000-05-11

    This work investigates a control system for HCCI engines, where thermal energy from exhaust gas recirculation (EGR) and compression work in the supercharger are either recycled or rejected as needed. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the restrictions of low NO{sub x} and peak cylinder pressure. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and RPM. For zero torque (idle), the optimizer determines operating conditions that result in minimum fuel consumption. The optimizer is also used for determining the maximum torque that can be obtained within the operating restrictions of NO{sub x} and peak cylinder pressure. The results show that a thermally controlled HCCI engine can successfully operate over a wide range of conditions at high efficiency and low emissions.

  8. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  9. Thermal battery for portable climate control

    SciTech Connect

    Narayanan, S; Li, XS; Yang, S; Kim, H; Umans, A; McKay, IS; Wang, EN

    2015-07-01

    Current technologies that provide climate control in the transportation sector are quite inefficient. In gasoline-powered vehicles, the use of air-conditioning is known to result in higher emissions of greenhouse gases and pollutants apart from decreasing the gas-mileage. On the other hand, for electric vehicles (EVs), a drain in the onboard electric battery due to the operation of heating and cooling system results in a substantial decrease in the driving range. As an alternative to the conventional climate control system, we are developing an adsorption-based thermal battery (ATB), which is capable of storing thermal energy, and delivering both heating and cooling on demand, while requiring minimal electric power supply. Analogous to an electrical battery, the ATB can be charged for reuse. Furthermore, it promises to be compact, lightweight, and deliver high performance, which is desirable for mobile applications. In this study, we describe the design and operation of the ATB-based climate control system. We present a general theoretical framework to determine the maximum achievable heating and cooling performance using the ATB. The framework is then applied to study the feasibility of ATB integration in EVs, wherein we analyze the use of NaX zeolite-water as the adsorbent-refrigerant pair. In order to deliver the necessary heating and cooling performance, exceeding 2.5 kW h thermal capacity for EVs, the analysis determines the optimal design and operating conditions. While the use of the ATB in EVs can potentially enhance its driving range, it can also be used for climate control in conventional gasoline vehicles, as well as residential and commercial buildings as a more efficient and environmentally-friendly alternative. (C) 2015 Elsevier Ltd. All rights reserved.

  10. Thermal insulator design for optimizing the efficiency of thermal flying height control sliders

    NASA Astrophysics Data System (ADS)

    Li, Hui; Yin, Chia-Ti; Talke, Frank E.

    2009-04-01

    This paper is concerned with the optimization of the location and size of thermal flying height control (TFC) elements in magnetic recording sliders. It investigated the performance of a so-called thermal insulator positioned adjacent to the heater to control the temperature distribution inside the slider. A parametric study of the thermal conductivity, thickness, and location of the thermal insulator was performed to improve the thermal actuation and thermal efficiency. Optimization of the dimensions and properties of a thermal insulator was found to achieve a substantial reduction in the flying height of the read/write elements. In addition, the magnitude of the thermal actuation was found to increase.

  11. Thermal control materials on EOIM-3

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Linton, Roger C.; Kamenetzky, Rachel R.; Vaughn, Jason A.

    1995-01-01

    Thermal control paints, anodized aluminum, and beta cloth samples were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). The thermal control paints flown on EOIM-3 include ceramic and polyurethane-based paints. Passively exposed samples are compared to actively heated samples and controlled exposure samples. Optical property measurements of absorptivity, emissivity, and spectrofluorescence are presented for each paint. Several variations of anodized aluminum, including chromic acid anodize, sulfuric acid anodize, and boric/sulfuric acid anodize were flown on the actively heated trays and the passive exposure trays. The post-flight optical properties are within tolerances for these materials. Also flown were two samples of yellow anodized aluminum. The yellow anodized aluminum samples darkened noticeably. Samples of aluminized and unaluminized beta cloth, a fiberglass woven mat impregnated with TFE Teflon, were flown with passive exposure to the space environment. Data from this part of the experiment is correlated to observations from LDEF and erosion of the Teflon thin film samples also flown on EOIM-3 and LDEF.

  12. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  13. Porcelain enamel passive thermal control coatings

    NASA Technical Reports Server (NTRS)

    Leggett, H.; King, H. M.

    1978-01-01

    This paper discusses the development and evaluation of a highly adherent, low solar absorptance, porcelain enamel thermal control coating applied to 6061 and 1100 aluminum for space vehicle use. The coating consists of a low index of refraction, transparent host frit and a high volume fraction of titania as rutile, crystallized in-situ, as the scattering medium. Solar absorptance is 0.21 at a coating thickness of 0.013 cm. Hemispherical emittance is 0.88. The change in solar absorptance is 0.03, as measured in-situ, after an exposure of 1000 equivalent sun hours in vacuum.

  14. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  15. Strain-controlled thermal conductivity in ferroic twinned films

    PubMed Central

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.

    2014-01-01

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices. PMID:25224749

  16. Advanced X-ray Astrophysics Facility thermal control

    NASA Technical Reports Server (NTRS)

    Fritz, C. G.

    1983-01-01

    A conceptual active/passive thermal control system design is presented for the Advanced X-ray Astrophysics Facility (AXAF), where the design variables considered in system optimization were vehicle orientation for environmental extremes, thermal coating properties, and insulation materials. Because power and weight are at a premium, the design was limited to one power module, resulting in a thermal control limit of 441 W of regulated power. The present study has determined that all thermal control objectives for AXAF's instruments can be met by the design considered. The thermal resistance schematics employed in this conceptual study are presented, together with simulated performance characteristics.

  17. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  18. Simulation of the Planck-HFI thermal control system

    NASA Astrophysics Data System (ADS)

    Leroy, Christophe; Maisonneuve, Mathieu; Piat, Michel; Trouilhet, Jean-François; Pearson, Dave; Camier, Christophe; Guibert, Simon

    2008-07-01

    The core of the High Frequency Instrument (HFI) on-board the Planck satellite consists of 52 bolometric detectors cooled at 0.1 Kelvin. In order to achieve such a low temperature, the HFI cryogenic architecture consists in several stages cooled using different active coolers. These generate weak thermal fluctuations on the HFI thermal stages. Without a dedicated thermal control system these fluctuations could produce unwanted systematic effects, altering the scientific data. The HFI thermal architecture allows to minimise these systematic effects, thanks to passive and active control systems described in this paper. The passive and active systems are used to damp the high and low frequency fluctuations respectively. The results of the simulation of these active and passive control systems are presented here. These simulations based on the use of thermal transfer functions for the thermal modelling can then be used for finding the optimal working point of the HFI PID active thermal control system.

  19. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  20. Methane Lunar Surface Thermal Control Test

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.

    2012-01-01

    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  1. Thermal analyses for quality control of plastics, ceramics, and explosives

    SciTech Connect

    Brown, C.R.; Garrod, M.J.; Whitaker, R.B.

    1990-01-01

    Thermal analyses are performed for production quality control (q.c.) and for surveillance at Mound on plastic, ceramic, explosive and pyrotechnic materials. For the weapons surveillance program, weapon components are disassembled after varying times in the field; thermal and other analyses are then performed on the component materials. The types of thermal analyses done include: differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermogravimetry (TG), thermomechanical analysis (TMA), and high temperature TG/DTA. 5 refs., 4 figs.

  2. Study of thermal control systems for orbiting power systems. Materials experiment carrier thermal control system study

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1980-01-01

    Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.

  3. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  4. Passive Thermal Control Challenges for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.

    2004-01-01

    This slide presentation reviews the importance of developing passive thermal control for the future exploration missions envisioned in President Bush's call for human exploration of the Moon and Mars. Included in the presentation is a review of the conditions that make the thermal control very challenging on the Moon and Mars. With the future miniaturization of electronics components, power density and the associated challenges of electronics heat dissipation will provide new challenges. There is a challenge for improvement in modeling and analysis of thermal control systems, and for improved facilities to support testing of thermal-vacuum systems.

  5. Control of thermal gradient using thermoelectric coolers for study of thermal effects

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gifford, J. A.; Zhao, G. J.; Kim, D. R.; Snider, C. N.; Vargas, N.; Chen, T. Y.

    2015-05-01

    Thermoelectric coolers based on the Peltier effect have been utilized to control temperature gradient to study thermal effects in both bulk and thin film samples. The temperature gradient is controlled by two coolers and the polarity of the thermal gradient can be reversed by reversing an electric driven voltage. With appropriate controlled thermal gradient using this technique, the Nernst and the Seebeck effects can be measured in both bulk and thin film samples free of spurious contributions. In an arbitrary direction of thermal gradient, the Seebeck and the Nernst components can be decomposed from the measured signal based on the symmetry of the effects in a magnetic field.

  6. MSFC Skylab thermal and environmental control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Hopson, G. D.; Littles, J. W.; Patterson, W. C.

    1974-01-01

    An evaluation of the performance of the Skylab thermal and environmental control system is presented. Actual performance is compared to design and functional requirements and anomalies and discrepancies and their resolution are discussed. The thermal and environmental control systems performed their intended role. Based on the experience gained in design, development and flight, recommendations are provided which may be beneficial to future system designs.

  7. Long life high reliability thermal control systems study data handbook

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Carpitella, M. J.

    1971-01-01

    The development of thermal control systems with high reliability and long service life is discussed. Various passive and semi-active thermal control systems which have been installed on space vehicles are described. The properties of the various coatings are presented in tabular form.

  8. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  9. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  10. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  11. Overview of the Altair Lunar Lander Thermal Control System Design

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.

  12. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  13. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  14. Photodetectors with passive thermal radiation control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; Dodson, Brian W.

    2001-10-02

    A new class of photodetectors which include means for passive shielding against undesired thermal radiation is disclosed. Such devices can substitute in applications currently requiring cooled optical sensors, such as IR detection and imaging. This description is included for purposes of searching, and is not intended to limit or otherwise influence the interpretation of the present invention.

  15. Thermal control system for SSF sensor/electronics

    NASA Technical Reports Server (NTRS)

    Akau, R. L.; Lee, D. E.

    1993-01-01

    A thermal control system was designed for the Space Station Freedom (SSF) sensor/electronics box (SSTACK). Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test.

  16. Thermal modeling, analysis and control of a space suit

    NASA Astrophysics Data System (ADS)

    Campbell, Anthony Bruce

    The thermal dynamics of two space suits, the Space Shuttle EMU and the MPLSS Advanced Space Suit, are considered as they relate to astronaut thermal comfort control. The activities documented in this dissertation cover three related areas, modeling, analysis, and control. A detailed dynamic lumped capacitance thermal model of the operational Space Shuttle EMU is used to analyze the thermal dynamics of the system with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The thermal dynamics and design of an Advanced Space Suit are next considered. A transient model of the MPLSS Advanced Space Suit design is developed and implemented using MATLAB/Simulink, to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space Suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed. The observations and insights about the thermal dynamics of a space suit are then applied to the automatic thermal comfort control of the MPLSS Advanced Space Suit. Automatic thermal comfort control for the Advanced Space Suit is investigated using three proposed strategies. These strategies use a transient thermal comfort definition based on body heat storage. The first strategy is measurement based using a proposed body heat storage estimation method to determine the astronaut's thermal state. The second strategy

  17. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  18. Control strategies in a thermal oil - Molten salt heat exchanger

    NASA Astrophysics Data System (ADS)

    Roca, Lidia; Bonilla, Javier; Rodríguez-García, Margarita M.; Palenzuela, Patricia; de la Calle, Alberto; Valenzuela, Loreto

    2016-05-01

    This paper presents a preliminary control scheme for a molten salt - thermal oil heat exchanger. This controller regulates the molten salt mass flow rate to reach and maintain the desired thermal oil temperature at the outlet of the heat exchanger. The controller architecture has been tested using an object-oriented heat exchanger model that has been validated with data from a molten salt testing facility located at CIEMAT-PSA. Different simulations are presented with three different goals: i) to analyze the controller response in the presence of disturbances, ii) to demonstrate the benefits of designing a setpoint generator and iii) to show the controller potential against electricity price variations.

  19. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  20. A thermal manikin with human thermoregulatory control: Implementation and validation

    NASA Astrophysics Data System (ADS)

    Foda, Ehab; Sirén, Kai

    2012-09-01

    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin `Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature ( t eq) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t eq from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t eq. The results showed that the t eq values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode.

  1. A thermal manikin with human thermoregulatory control: implementation and validation.

    PubMed

    Foda, Ehab; Sirén, Kai

    2012-09-01

    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin 'Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature (t(eq)) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t(eq) from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t(eq). The results showed that the t(eq) values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode. PMID:22083406

  2. Large Space Telescope support systems module thermal control

    NASA Technical Reports Server (NTRS)

    Chapter, J. J.

    1975-01-01

    In 1982, an unmanned three-meter class Cassegrainian telescopic system referred to as the Large Space Telescope (LST) will be placed in earth orbit by the Shuttle. The LST consists of a telescope system and surrounding support structure that is referred to as the support system module (SSM). This paper summarizes the thermal control subsystem for several candidate SSM designs. Major emphasis has been given to the LST/SSM design concept that includes a thermally isolated aft cylinder compartment that contains subsystem components. Requirements, interfaces and thermal math modeling methods are presented. Analysis results demonstrate that a cold-biased thermal design using electrical heaters is promising.

  3. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  4. On the control of structures by applied thermal gradients

    NASA Technical Reports Server (NTRS)

    Edberg, Don; Chen, JAY-C.

    1987-01-01

    Some preliminary results of research on control of flexible structures performed at the Jet Propulsion Laboratory are presented. It was shown that the thermoelectric device is a feasible actuator and may effectively be used to control structures, provided the structure has a relatively low thermal inertia. The control law only depends on the open-loop system natural frequency.

  5. Augmented thermal bus wih multiple thermoelectric devices individually controlled

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1994-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  6. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  7. Phase change thermal control materials, method and apparatus

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  8. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  9. ACIS Thermal Control and Observing Strategies

    NASA Astrophysics Data System (ADS)

    Adams-Wolk, Nancy; Plucinsky, P. P.; Alcroft, T. L.; Germain, G.

    2011-09-01

    Nearing its 13th observing cycle, the Chandra X-Ray Observatory continues to deliver excellent science to the High Energy community. The orbit of Chandra, and thermal conditions of the spacecraft and instruments have changed over time which has necessitated changes in observing strategies; particularly for the ACIS instrument. This poster focuses on expected changes to be implemented in Cycle 13 for observing with the ACIS instrument. We will focus on the thermal issues with ACIS, including warming of the PSMC, DEA, and Focal Plane. We discuss the causes of the warming of these components of ACIS based on past data, and how this warming can affect observations. Trending studies have strongly suggested changes to the future observing strategies for ACIS. We discuss these changes which include reducing the number of CCDs powered on for temperature sensitive observations, implementing an ACIS FP temperature model to predict temperatures, and the use of optional CCDs to reduce the number of CCDs during the planning of a particular week.

  10. ACIS Thermal Control and Observing Strategies

    NASA Astrophysics Data System (ADS)

    Adams-Wolk, Nancy; Aldcroft, T.; Plucinsky, P. P.; Germain, G.

    2011-05-01

    Nearing its 13th observing cycle, the Chandra X-Ray Observatory continues to deliver excellent science to the High Energy community. The orbit of Chandra, and thermal conditions of the spacecraft and instruments have changed over time which has necessitated changes in observing strategies; particularly for the ACIS instrument. This poster focuses on expected changes to be implemented in Cycle 13 for observing with the ACIS instrument. We will focus on the thermal issues with ACIS, including warming of the PSMC, DEA, and Focal Plane. We discuss the causes of the warming of these components of ACIS based on past data, and how this warming can affect observations. Trending studies have strongly suggested changes to the future observing strategies for ACIS. We discuss these changes which include reducing the number of CCDs powered on for temperature sensitive observations, implementing an ACIS FP temperature model to predict temperatures based on spacecraft pitch and pointing, and the use of optional CCDs to reduce the number of CCDs during the planning of a particular week.

  11. Analysis of Thermal Control Coatings on MISSE for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Kenny, Mike

    2007-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment. Engineers and scientists at the Marshall Space Flight Center have analyzed a number of these materials, including: Zinc oxide/potassium silicate coating, Zinc oxide/potassium silicate/silicone coating, Zinc orthotitanate/potassium silicate coating, Electrically conductive thermal control coatings and Various coatings for part marking, automated rendezvous and capture, and astronaut visual aids These and other material samples were exposed to the low Earth orbital environment of atormc oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. The effect of contamination from an active space station on the performance of white thermal control coatings is discussed.

  12. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage. PMID:25010206

  13. Space station thermal control surfaces. Volume 1: Interim report

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.

    1978-01-01

    The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.

  14. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    NASA Technical Reports Server (NTRS)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  15. Thermal control and heat storage by melting and freezing. Space thermal control development

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Hoover, M. J.

    1971-01-01

    Current results of an experimental study of increasing phase change material thermal diffusivity by means of solid fillers are reported. Aluminum honeycomb appears to offer the best improvement of any of the fillers investigated to date. Details of the experimental method developed in the present study for rapidly determining thermal diffusivities with a precision of about 10 percent are also reported. Further concepts regarding phase change material thermal diffusivity enhancement and of phase change material operation are discussed.

  16. Integrated control of thermally distorted large space antennas

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Huang, Jen-Kuang

    1991-01-01

    The objective is to develop a control system design method that (1) recognizes the time dependence of the thermal distortion due to orbital motion and (2) controls variables that are directly related to far field performance for earth pointing space antennas. The first objective is accomplished by expanding the distortion into principal components that are orthogonal in space and time. The approach for the second objective is to expand the far zone electric field in a Zernike-Bessel series. The method accommodates tapered feeds and arbitrary polarizations. Simulations are performed for a geosynchronous radiometer to determine the effectiveness of the control system under variations in solar geometry, structure materials and thermal properties.

  17. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1998-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.

  18. Thin film thermoelectric devices as thermal control coatings: A study

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Krupnick, A. C.

    1973-01-01

    Peltier effect, Thomson effect, and Seeback effect are utilized in design of thermal control coating that serves as versatile means for controlling heat absorbed and radiated by surface. Coatings may be useful in extreme temperature environment enclosures or as heat shields.

  19. Reusable Reentry Satellite (RRS): Thermal control trade study

    NASA Technical Reports Server (NTRS)

    Wallace, Clark

    1990-01-01

    The design and assessment work performed in defining the on-orbit Thermal Control Subsystem (TCS) requirements for the Reusable Reentry Satellite (RRS) is discussed. Specifically, it describes the hardware and design measures necessary for maintaining the Payload Module (PM) Environmental Control Life Support System (ECLSS) heat exchanger, the hydrazine propellant, and PM water supply within their required temperature limits.

  20. Statistical Design Model (SDM) of satellite thermal control subsystem

    NASA Astrophysics Data System (ADS)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  1. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  2. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  3. Processing of thermal insulation materials with controlled porosity

    SciTech Connect

    Lyckfeldt, O.; Liden, E.; Carlsson, R.

    1995-08-01

    Slip-cast cordierite-based materials with reduced thermal conductivity have been manufactured with controlled introduction of porosity. The porosity was obtained by addition of different kinds of fillers (hollow Al-silicate spheres, paraffin, polystyrene, carbon black or starch particles). The processing and the ultimate thermal and mechanical properties were evaluated. The results showed that additions of corn or potato starch gave the most favourable concept, considering the processing and porosity control. A homogeneous distribution of spherical pores with the sizes 5-25 or 15-40 {mu}m was obtained after sintering. Slip-cast cordierite with 37% porosity had a thermal conductivity of 1.7 W/mK (compared with 3.7 W/mK for fully dense cordierite), and a bending strength above 50 MPa. The porosity effect correlated very well to theoretical models by Maxwell and, hence, the thermal conductivity of the porous ceramic material could be predicted.

  4. Thermal gain shutter control. Final report, preliminary design phase

    SciTech Connect

    Kuzdrall, J.A.

    1983-10-01

    The Thermal Gain Sensor is an insulation control system for manual and motorized solar shutters. Unlike ordinary systems, control is based on the actual net thermal flow through the window, rather than a tenuous or indirect measure. The sensor continuously and directly tracks the conduction, convection, and radiation losses as well as the attenuated solar input. Although basically simple and inexpensive, the Thermal Gain Sensor (TGS) reacts to the thermal flow with near perfect accuracy. It operates with equal effectiveness in both summer and winter. The hardware consists of a sensor, a control box, and an optional power controller for motorized shutters. The first objective of the preliminary design phase was to determine if, with properly selected materials and dimensions, a practical sensor could accurately determine the real thermal gain threshold under the wide range of installations, geographic locations, and weather conditions. The second objective, having found the best possible sensor design, was to determine whether the level of performance attainable produced significantly more energy savings than competitive control systems, namely time and sunlight activated systems. Another objective of this phase was to assure that the product could be made for an acceptable cost. To this end, a schematic design, including conceptual drawings, was prepared. From this conceptual design, manufacturing cost estimates were made using industry accepted estimating procedures. Finally, it was required to determine whether there was public interest in the product. For this, a preliminary assessment of the market was made, based on unsolicited inquiries and local discussions.

  5. Review of End-of-Life Thermal Control Coating Performance

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Kline, Sara E.

    2008-01-01

    White thermal control coatings capable of long term performance are needed for Fission Surface Power (FSP) where heat from a nuclear reactor placed on the surface of the Moon must be rejected to the environment. The threats to thermal control coating durability on the lunar surface are electrons, protons, and ultraviolet radiation. The anticipated damage to the coating is a gradual darkening over time. The increase in solar absorptance would, in essence, add a cyclic heat load to the radiator. The greater the darkening, the greater the added heat load. The cyclic heat load could ultimately impart a cyclic influence on FSP system performance. No significant change in emittance is anticipated. Optical properties degradation data were found in the open literature for the Z-93 series of thermal control paints. Additional optical properties degradation data were found from the Lunar Orbiter V mission, the Optical Properties Monitor, and the Materials International Space Station Experiment. Anticipated end-of-life thermal control coating performance for a FSP installation is postulated. With the FSP installation located away from landing and launching areas, and out of line-of-sight, lunar dust from human activity may not be a threat. The benefits of investing in next generation thermal control paint chemistry are explored.

  6. Method for controlling corrosion in thermal vapor injection gases

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  7. Thermal control system for a spacecraft modular housing

    NASA Technical Reports Server (NTRS)

    Eby, R. J.; Powers, E. I. (Inventor)

    1973-01-01

    The development of a thermal control system for a spacecraft module is discussed. The wall structures are composed of superinsulation in some cases and of thermally conductive material in other cases. Heat pipes are installed to provide a path of heat transfer from the interior of the module to space. The design of the system makes it possible to maintain a relatively uniform temperature throughout the module with side variations of the amount of heat dissipated by the components within the module.

  8. Active Thermal Control Experiments for LISA Ground Verification Testing

    NASA Astrophysics Data System (ADS)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f < 1 mHz and which by extension is suitable for in-flight thermal control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  9. The current status of controlled thermal expansion superalloys

    NASA Astrophysics Data System (ADS)

    Wanner, E. A.; Deantonio, D. A.; Smith, D. F.; Smith, J. S.

    1991-03-01

    Controlled thermal expansion superalloys, used primarily in aerospace applications at temperatures up to 649°C, provide coefficients of thermal expansion approximately 40 percent less than those of conventional superalloys. Since their first introduction in the early 1970s, continued progress has increased the capability of these materials. Various alterations in alloying elements were found to have a profound effect on the properties of the materials; ongoing work is aimed at extending the progress.

  10. Space tug thermal control. [design criteria and specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.

  11. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  12. Performances of the Planck-HFI cryogenic thermal control system

    NASA Astrophysics Data System (ADS)

    Leroy, Christophe; Arondel, Antoine; Bernard, Jean-Philippe; Carfantan, Hervé; Dumesnil, Cydalise; Fourmond, Jean-Jacques; Guyot, Guy; Lamarre, Jean-Michel; Pajot, François; Piat, Michel; Puget, Jean-Loup; Trouilhet, Jean-Francois; Varesi, Sylvain

    2006-06-01

    The core of the High Frequency Instrument (HFI) on-board the Planck satellite consists of 52 bolometric detectors cooled at 0.1 Kelvin. In order to achieve such a low temperature, the HFI cryogenic architecture consists in several stages cooled using different active coolers. These generate weak thermal fluctuations on the HFI thermal stages. Without a dedicated thermal control system these fluctuations could produce unwanted systematic effects, altering the scientific data. The HFI thermal architecture allows to minimise these systematic effects, thanks to passive and active control systems described in this paper. The passive and active systems are used to damp the high and low frequency fluctuations respectively. The last results regarding the tests of the HFI passive and active thermal control systems are presented here. The thermal transfer functions measurement between active coolers and HFI cryogenic stages will be presented first. Then the stability of the temperatures obtained on the various cryogenic stages with PID regulations systems will be checked through analysis of their power spectrum density.

  13. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2011-01-01

    The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

  14. Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.

  15. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link

    NASA Technical Reports Server (NTRS)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete

    2012-01-01

    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  16. Optimal control of thermally coupled Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Scroggs, Jeffrey S.; Tran, Hien T.

    1994-01-01

    The optimal boundary temperature control of the stationary thermally coupled incompressible Navier-Stokes equation is considered. Well-posedness and existence of the optimal control and a necessary optimality condition are obtained. Optimization algorithms based on the augmented Lagrangian method with second order update are discussed. A test example motivated by control of transport process in the high pressure vapor transport (HVPT) reactor is presented to demonstrate the applicability of our theoretical results and proposed algorithm.

  17. THERMAL CONTROL MODEL OF A MARINER JUPITER SATURN SPACECRAFT

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A thermal control model of a Mariner Jupiter saturn spacecraft was encapsulated in the Kennedy Space Center Spacecraft Assembly and Encapsulation Building 1 (SAEF-1) today. Here the shroud is being moved to a position above the thermal control model. Tests of the ground cooling unit that will be used to air-condition the Mariner Jupiter saturn spacecraft at the launch pad will be conducted in SAEF-1. Following the tests, the thermal control model will be returned to the Jet Propulsion Laboratory, Pasadena, Calif. The first of two Mariner Jupiter Saturn spacecraft will be launched atop a Titan Centaur booster from Complex 41, Cape Canaveral, in August 1977. The second launch is scheduled in September 1977.

  18. A Knowledge Database on Thermal Control in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Hirasawa, Shigeki; Satoh, Isao

    A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.

  19. Preliminary micrometeoroid and debris effects on LDEF thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha K.; Atkinson, Dale R.; See, Thomas H.; Horz, Friedrich

    1991-01-01

    Thermal control surfaces on the Long Duration Exposure Facility (LDEF) were exposed to 5.75 years of low-Earth orbit environments. Since LDEF was gravity gradient stabilized and directionally stable, the effects of each of the environments can be distinguished via changes in material responses to hypervelocity impacts. The extent of these effects are being visually and microscopically characterized using thermal control surfaces archived at Johnson Space Center in order to determine the the relationship between environment exposure and resulting ring sizes, delamination areas, and penetration diameters. The characterization of these affected areas will provide spacecraft system designers with the information they require to determine degradation of thermal control systems during satellite lifetimes.

  20. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  1. Conjugating binary systems for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Grodzka, Philomena G.; Dean, William G.; Sisk, Lori A.; Karu, Zain S.

    1989-01-01

    The materials search was directed to liquid pairs which can form hydrogen bonds of just the right strength, i.e., strong enough to give a high heat of mixing, but weak enough to enable phase change to occur. The cursory studies performed in the area of additive effects indicate that Conjugating Binary (CB) performance can probably be fine-tuned by this means. The Fluid Loop Test Systems (FLTS) tests of candidate CBs indicate that the systems Triethylamine (TEA)/water and propionaldehyde/water show close to the ideal, reversible behavior, at least initially. The Quick Screening Tests QSTs and FLTS tests, however, both suffer from rather severe static due either to inadequate stirring or temperature control. Thus it is not possible to adequately evaluate less than ideal CB performers. Less than ideal performers, it should be noted, may have features that make them better practical CBs than ideal performers. Improvement of the evaluation instrumentation is thus indicated.

  2. LSST primary/tertiary mirror thermal control system

    NASA Astrophysics Data System (ADS)

    Neill, Douglas R.

    2010-07-01

    The Large Synoptic Survey Telescope (LSST) primary/tertiary monolithic mirror will be fabricated as a single cast borosilicate substrate that requires an extensive thermal control system. The relatively large coefficient of thermal expansion (CTE) of borosilicate glass requires the thermal system maintain differences throughout the mirror to below 0.1C. The thermal control system is also required to take full advantage of the relatively thin glass sections for good tracking of ambient temperatures. A modified version of the thermal control system utilized on the Magellan telescope primary mirror will provide adequate cooling. This type of system supplies coolant to multiple on-board blowers in the mirror cell. Each blower contains a fan and a heat exchanger supplying conditioned and mildly pressurized air to the mirror cell. The mirror cell then acts as an air plenum which distributes the air through individual nozzles to each honeycomb cell of the mirror. Unlike previous systems, each LSST blower assembly will incorporate individual air temperature and air flow control systems. Since air can be more accurately heated than cooled, the air will be initially slightly overcooled and then reheated electrically to match the ambient air temperature. Based on thermal sensors in the mirror, the optimum cooling air flow rate to balance mirror thermal distortion and mirror seeing will be determined and enforced by the variable speed fans on the blower assemblies. To further equalize the cooling throughout the mirror, the coolant flow system has also been designed to provide inherently equal coolant flow to each blower assembly.

  3. LDEF thermal control coatings post-flight analysis

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Young, Philip R.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique flight opportunity for conducting experiments in space and return of these experiments to Earth for laboratory evaluation. The results of one of these experiments, S0010, Exposure of Spacecraft Coatings, in which selected spacecraft thermal control coatings were exposed to the low-Earth orbital (LEO) environment on LDEF are reported. The objective of the experiment is to evaluate the response of thermal control coatings to LEO exposure, which includes atomic oxygen, ultraviolet and particulate radiation, meteoroid and debris, vacuum, and temperature cycling.

  4. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  5. Thermal Control Technology Developments for a Venus Lander

    NASA Astrophysics Data System (ADS)

    Pauken, Mike; Emis, Nick; van Luvender, Marissa; Polk, Jay; Del Castillo, Linda

    2010-01-01

    The thermal control system for a Venus Lander is critical to mission success and the harsh operating environment presents significant thermal design and implementation challenges. A successful thermal architecture draws heavily from previous missions to the Venus surface such as Pioneer Venus and the Soviet Venera Landers. Future Venus missions will require more advanced thermal control strategies to allow greater science return than previous missions and will need to operate for more than one or two hours as previous missions have done. This paper describes a Venus Lander thermal architecture including the technology development of a phase change material system for absorbing the heat generated within the Lander itself and an insulation system for resisting the heat penetrating the Lander from the Venus environment. The phase change energy storage system uses lithium nitrate that can absorb twice the amount of energy per unit mass in comparison to paraffin based systems. The insulation system uses a porous silica material capable of handling a high temperature and high pressure gas environment while maintaining low thermal conductivity.

  6. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  7. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    PubMed Central

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-01-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640

  8. Controllable thermal rectification realized in binary phase change composites.

    PubMed

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-01-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640

  9. A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Pauken, Mike; Birur, Gaj

    2004-01-01

    Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.

  10. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  11. Effective control of photomask surface chemical residuals through thermal treatment

    NASA Astrophysics Data System (ADS)

    Kang, Han-Byul; Kim, Jong-Min; Kim, Yong-Dae; Cho, Hyun-Joon; Choi, Sang-Soo

    2005-05-01

    We investigated the control of residual ions on the mask surface and the phase/transmission change rate by using thermal treatment after a conventional cleaning process. We hypothesized that the remaining sulfuric ions on the mask surface could combine with other ions and produce compounds during the thermal treatment. These compounds are easily removed by a hot D.I water rinse. Our study shows that the amount of remaining sulfuric ions is 250ng/mask when the mask has been thermally treated. The amount of sulfuric ions is substantially reduced compared to the results of other cleaning processes. Additionally we have found that the thermal treatment can be reduced varying the phase/trans value according to the cleaning cycle and the variation was stable even with a higher concentration of SC-1 solution.

  12. TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.

    2010-01-01

    The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.

  13. MSFC Analysis of Thermal Control Materials on MISSE

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    2006-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment, including coatings, anodizes, and multi-layer insulation materials. Engineers and scientists at the Marshall Space Flight Center have analyzed a number of these materials, including: Zinc oxide/potassium silicate coating, Zinc orthotitanate/potassium silicate coating, Sulfuric acid anodized aluminum, Various coatings for part marking, automated rendezvous and capture, and astronaut visual aids, FEP Teflon with silver/Inconel backing, and Beta cloth with and without aluminization. These and other material samples were exposed to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. The effect of contamination from an active space station on the performance of white thermal control coatings is discussed.

  14. P91-1 ARGOS spacecraft thermal control

    NASA Astrophysics Data System (ADS)

    Sadunas, Jonas; Baginski, Ben; McCarthy, Daniel

    1993-07-01

    The P91-1, or ARGOS, is a Department of Defense funded (DOD) Space Test Program (STP) satellite managed by the Space and Missile Systems Center Space and Small Launch Vehicle Programs Office (SMC/CUL). Rockwell International Space Systems Division is the space vehicle prime contractor. The P91-1 mission is to fly a suite of eight experiments in a 450 nautical mile sun-synchronous orbit dedicated to three dimensional UV imaging of the ionosphere, X-ray source mapping, navigation, space debris characterization, performance characterization of high temperature super conductivity RF devices, and on orbit demonstration of an electrical propulsion system. The primary purpose of this paper is to acquaint the thermal control community, and potential future follow on mission users, with the thermal control characteristics of the spacecraft, experiment/SV thermal integration aspects, and test verification plans.

  15. Simulation of cross-talk between thermal track positioning control and thermal flying height controla)

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Shengnan; Cui, Fuhao; Huang, Jie; Wu, Shijing

    2014-05-01

    In this study, a coupling analysis of thermal-structural simulation and air-bearing simulation has been performed to investigate the cross-talk effects between thermal track positioning control (TPC) and thermal flying height control (TFC) on the static flying attitude of a TPC-TFC slider. Simulation results show that the TPC heating induced head protrusion towards disk is comparable to the head actuation stroke along the cross-track direction. By optimizing the distance of TPC heater to air bearing surface, and the distance of TPC heater to the slider center line, it can obtain a large TPC actuation stroke and a small head protrusion towards disk. Moreover, it is found that the TPC heating will cause large protrusion of the side edge of trailing pad and change the flying characteristics significantly. A trade-off performance between cross-talk effects and TPC actuation stroke along cross-track direction is needed.

  16. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  17. Variable Emittance Electrochromic Devices for Satellite Thermal Control

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C.

    2007-01-01

    An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.

  18. Space Station Freedom central thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Olsson, Eric

    1990-01-01

    Viewgraphs on Space Station Freedom central thermal control system (CTCS) evolution are presented. Topics covered include: (1) growth requirements and basic features of research and development and transportation nodes; (2) identifying the principal CTCS hooks and scars at assembly complete to accommodate growth; and (3) describing the general provisions for growth and identifying pertinent design issues.

  19. Experimental controlled-NOT gate simulation with thermal light

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Tamma, Vincenzo; Shih, Yanhua

    2016-07-01

    We report a recent experimental simulation of a controlled-NOT gate operation based on polarization correlation measurements of thermal fields in photon-number fluctuations. The interference between pairs of correlated paths at the very heart of these experiments has the potential for the simulation of correlations between a larger number of qubits.

  20. Development of Silane Hydrolysate Binder for Thermal-Control Coatings

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1983-01-01

    Technical report describes theoretical and experimental development of methyltriethoxysilane (MTES) hydrolysate binder for white, titanium dioxidepigmented thermal-control coatings often needed on satellites. New coating is tougher and more abrasion-resistant than conventional coating, S-13G, which comprises zinc oxide in hydroxyl-therminated dimethylsiloxane binder.

  1. Experimental controlled-NOT gate simulation with thermal light

    PubMed Central

    Peng, Tao; Tamma, Vincenzo; Shih, Yanhua

    2016-01-01

    We report a recent experimental simulation of a controlled-NOT gate operation based on polarization correlation measurements of thermal fields in photon-number fluctuations. The interference between pairs of correlated paths at the very heart of these experiments has the potential for the simulation of correlations between a larger number of qubits. PMID:27439330

  2. Closing The Fromm Control Loop On The Infrared Thermal Imager

    NASA Astrophysics Data System (ADS)

    Kaplan, Herbert

    1988-11-01

    Substituting infrared thermal sensors for conventional thermocouples to measure the temperature of a product, or a point in a process, often provides the industrial user with distinct advantages such as freedom from contact with the product and better speed of response. The major disadvantage has always been higher sensor cost. Now that costs of ir sensors have come down, the non-contact approach is becoming more of a valid alternative, and the instrument or process control engineer often weighs the relative advantages of the two approaches before making a decision. With the advent of "smart" thermal scanning systems, however, it is becoming possible to rapidly measure and control several, many or all points on a product surface remotely and without contact, a capability without precedent, and not feasible with conventional contact sensors. This paper will trace the evolution of infrared noncontact temperature measurement, its development as a process control tool and the introduction of IR line scanners and imagers as industrial control sensors. Several applications of modern closed-loop control systems based on infrared sensors, scanners and imagers will be reviewed. 1. INTRODUCTION Temperature and thermal behavior of materials and fabricated parts in process are most critical factors in the manufacturing process. For this reason temperature is by far the most measured quantity in industrial process monitoring and control. Conventional methods of temperature measurement using thermometers and thermocouples are commonly used for the majority of monitoring and control applications. Non-contact temperature measurement using infrared sensors has become an increasingly desirable alternative over conventional methods as ir sensors have become less expensive, more reliable and electrically interchangeable with conventional thermistors and thermocouples. Now, with the introduction of innovative computer hardware and software, full image thermal control of products and

  3. Thermally controlled comb generation and soliton modelocking in microresonators

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Jang, Jae K.; Luke, Kevin; Ji, Xingchen; Miller, Steven A.; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L.

    2016-06-01

    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  4. Skylab D024 thermal control coatings and polymeric films experiment

    NASA Technical Reports Server (NTRS)

    Lehn, William L.; Hurley, Charles J.

    1992-01-01

    The Skylab D024 Thermal Control Coatings and Polymeric Films Experiment was designed to determine the effects of the external Skylab space environment on the performance and properties of a wide variety of selected thermal control coatings and polymeric films. Three duplicate sets of thermal control coatings and polymeric films were exposed to the Skylab space environment for varying periods of time during the mission. The specimens were retrieved by the astronauts during extravehicular activities (EVA) and placed in hermetically sealed return containers, recovered, and returned to the Wright Laboratory/Materials Laboratory/WPAFB, Ohio for analysis and evaluation. Postflight analysis of the three sets of recovered thermal control coatings indicated that measured changes in specimen thermo-optical properties were due to a combination of excessive contamination and solar degradation of the contaminant layer. The degree of degradation experienced over-rode, obscured, and compromised the measurement of the degradation of the substrate coatings themselves. Results of the analysis of the effects of exposure on the polymeric films and the contamination observed are also presented. The D024 results were used in the design of the LDEF M0003-5 Thermal Control Materials Experiment. The results are presented here to call to the attention of the many other LDEF experimenters the wealth of directly related, low earth orbit, space environmental exposure data that is available from the ten or more separate experiments that were conducted during the Skylab mission. Results of these experiments offer data on the results of low altitude space exposure on materials recovered from space with exposure longer than typical STS experiments for comparison with the LDEF results.

  5. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment

    NASA Astrophysics Data System (ADS)

    Fei, T.; Skidmore, A.; Liu, Y.

    2012-07-01

    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  6. An evaluation of Orbital Workshop passive thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Daniels, D. J.; Kawano, P. I.; Sieker, W. D.; Walters, D. E.; Witherspoon, G. F.; Grunditz, D. W.

    1974-01-01

    The optical properties of selected Orbital Workshop thermal control surfaces are discussed from the time of their installation through the end of the Skylab missions. The surfaces considered are the goldized Kapton tape on the habitation area sidewall, the S-13G white paint on the Workshop aft skirt, and the multilayer insulation system on the forward dome of the habitation area. A quantitative assessment of the effects of exposure to the ascent and orbital environments is made including the effects of rocket exhaust plume contamination. Although optical property degradation of the external surfaces was noted, satisfactory thermal performance was maintained throughout the Skylab missions.

  7. Symmetry Switching of Negative Thermal Expansion by Chemical Control.

    PubMed

    Senn, Mark S; Murray, Claire A; Luo, Xuan; Wang, Lihai; Huang, Fei-Ting; Cheong, Sang-Wook; Bombardi, Alessandro; Ablitt, Chris; Mostofi, Arash A; Bristowe, Nicholas C

    2016-05-01

    The layered perovskite Ca3-xSrxMn2O7 is shown to exhibit a switching from a material exhibiting uniaxial negative to positive thermal expansion as a function of x. The switching is shown to be related to two closely competing phases with different symmetries. The negative thermal expansion (NTE) effect is maximized when the solid solution is tuned closest to this region of phase space but is switched off suddenly on passing though the transition. Our results show for the first time that, by understanding the symmetry of the competing phases alone, one may achieve unprecedented chemical control of this unusual property. PMID:26927232

  8. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  9. Using geophysical techniques to control in situ thermal remediation

    SciTech Connect

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M.; Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K.; Hunter, R.

    1994-01-22

    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors.

  10. Thermal gain shutter control. Preliminary design phase. Final report

    SciTech Connect

    Kuzdrall, J.A.

    1983-10-01

    The Thermal Gain Sensor is an insulation control system for manual and motorized solar shutters. Unlike ordinary systems, control is based on the actual net thermal flow through the window, rather than a tenuous or indirect measure. The sensor continuously and directly tracks the conduction, convection, and radiation losses as well as the attenuated solar input. The hardware consists of a sensor, a control box, and an optional power controller for motorized shutters. The purpose of the preliminary design phase, the first of a four phase product development program, is to assure that there are no technical, cost, or acceptance barriers to the potential product. Accordingly, the first objective of this phase was to determine if, with properly selected materials and dimensions, a practical sensor could accurately determine the real thermal gain threshold under the wide range of installations, geographic locations, and weather conditions. The second objective, having found the best possible sensor design, was to determine whether the level of performance attainable produced significantly more energy savings than competitive control systems, namely time and sunlight activated systems. Another objective of this phase was to assure that the product could be made for an acceptable cost. To this end, a schematic design, including conceptual drawings, was prepared. From this conceptual design, manufacturing cost estimates were made using industry accepted estimating procedures. Finally, it was required to determine whether there was public interest in the product. For this, a preliminary assessment of the market was made, based on unsolicited inquiries and local discussions.

  11. Development of a thermal control coating for space suits

    NASA Technical Reports Server (NTRS)

    Squire, Bernadette; Webbon, Bruce

    1987-01-01

    Past space suits and the current Shuttle suit, which are constructed primarily from fabric, use the Integrated Thermal and Micrometeoroid Garment, which insulates the astronaut from his environment. The new generation of hard suits affords designers the opportunity to incorporate thermal control into the suit structure. Environmental influence on the suit temperature and heat flux can then be minimized with a high reflectance coating. Candidate coatings have been identified and ranked on the basis of thermophysical properties; wear, corrosion and atomic oxygen degradation resistance; and coating process and cost. Laboratory determination of properties, thermal cycling and wear resistance tests are underway to identify the optimum coating. A computer model is being developed to evaluate various environmental configurations. Preliminary results are presented here.

  12. Development of cryogenic thermal control heat pipes. [of stainless steels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.

  13. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    PubMed

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-01

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials. PMID:25864730

  14. Space tug thermal control equipment thermal requirements, characteristics, and constraints catalogue: Users guide. [spacecraft thermal control components

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1974-01-01

    This manual details the input instructions to the data bank, and explanation of the program and its output. The data bank was developed in satisfaction of two of the study tasks, the equipment thermal requirement catalog and the equipment characteristics and constraints catalog. The data bank contains 109 components within space tug avionics system. Other systems were not included in the data bank due to the available information, however, with some program modification, other systems could be incorporated into the data bank program. The data bank was developed and checked out and is compatible with the Univac 1108, and the CDC 6500 operating systems. The data contained in the data bank is general in content with emphasis on the component thermal design. The data is applicable to any spacecraft program where the components contained in the data bank can be applied in satisfaction of the system and subsystem requirements.

  15. Laboratory electron exposure of TSS-1 thermal control coating

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.

    1995-01-01

    RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.

  16. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1982-09-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements are outlined. Activities are described in four program areas: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels); (2) optical switching materials (e.g., electrochromic, photochromic); (3) selective transmitters; and (4) daylight enhancement techniques.

  17. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1983-11-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program are outlined, the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements. Activities in four program areas are described: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels) (2) optical switching materials (e.g., electrochromic, photochromic) (3) selective transmitters and (4) daylight enhancement techniques.

  18. Tank Pressure Control Experiment/thermal Phenomena (TPCE/TP)

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Knoll, R. H.

    1992-01-01

    The 'Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP)' is a reflight of the tank pressure control experiment (TPCE), flown on STS-43 in a standard Get-Away Special (GAS) container in August 1991. The TPCE obtained extensive video and digital data of the jet induced mixing process in a partially filled tank in low gravity environments. It also provided limited data on the thermal processes involved. The primary objective of the reflight of TPCE is to investigate experimentally the phenomena of liquid superheating and pool nucleate boiling at very low heat fluxes in a long duration low gravity environment. The findings of this experiment will be of direct relevance to space based subcritical cryogenic fluid system design and operation. Experiment hardware and results from the first TPCE are described in outline and graphic form.

  19. Sliding Mode Control of a Thermal Mixing Process

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  20. Study of balloon and thermal control material degradation aboard LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas

    1991-01-01

    The initial results of analysis performed on a number of polymeric materials which were exposed aboard the Long Duration Exposure Facility (LDEF) are discussed. These materials include two typical high altitude balloon films (a polyester and a polyethylene) and silver-backed Teflon from thermal control blanket samples. The techniques used for characterizing changes in mechanical properties, chemical structure and surface morphology include Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy, and dynamic mechanical analysis.

  1. The current status of controlled thermal expansion superalloys

    SciTech Connect

    Wanner, E.A.; Deantonio, D.A.; Smith, D.F.; Smith, J.S. Inco Alloys International, Inc., Huntington, WV )

    1991-03-01

    Controlled-thermal-expansion superalloys being developed for aerospace applications are briefly surveyed. Consideration is given to precipitation-strengthened (PS) alloys containing Nb, Ti, and Al and their susceptibilty to oxidation and oxygen embrittlement; PS alloys containing Nb and Ti (development and physical metallurgy); PS alloys containing Nb, Ti, and Si; and processing sensitivities in Alloy 909. Graphs, micrographs, and tables of numerical data are provided. 24 refs.

  2. Thermally controlled photocatalytic coalescence of functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Cohen, Moshik; Zalevsky, Zeev; Pocoví-Martínez, Salvador; Shahmoon, Asaf; Pérez-Prieto, Julia

    2014-05-01

    The selective synthesis of gold nanoparticles of any desired size is of great interest. Benzophenone in THF has proved to act as an efficient photocatalyst for the growth of thiolate-capped nanoparticles in the presence and in the absence of gold salts. Consequently, we explored the effect of applying thermal energy to control these processes. These studies have provided key information for the effective growth of gold nanoparticles tailored to specific applications.

  3. Evaluation of hand applied naled thermal fog for Wyeomyia control.

    PubMed

    Curtis, G A; Carlson, D B

    1990-09-01

    Tests on the effect of hand applied naled thermal fog, both as a single treatment on one day/week and a single treatment on 3 successive days, did not control Wyeomyia vanduzeei and Wy. mitchellii. Five-min landing/biting counts in a native oak/palm woodland demonstrated that single applications produced an average landing rate decrease of 13%. Treatments 3 days in succession did not suppress the landing rate. PMID:1977876

  4. Analysis, testing, and operation of the MAGI thermal control system

    SciTech Connect

    Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P.

    2014-01-29

    The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the optical assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument’s cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.

  5. Analysis, testing, and operation of the MAGI thermal control system

    NASA Astrophysics Data System (ADS)

    Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P.

    2014-01-01

    The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the optical assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument's cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.

  6. Heating rate controller for thermally stimulated conductivity and thermoluminescence measurements.

    NASA Technical Reports Server (NTRS)

    Manning, E. G.; Littlejohn, M. A.; Oakley, E. M.; Hutchby , J. A.

    1972-01-01

    A temperature controller is described which enables the temperature of a sample mounted on a cold finger to be varied linearly with time. Heating rates between 0.5 and 10 K/min can be achieved for temperatures between 90 and 300 K. Provision for terminating the sample heating at any temperature between these extremes is available. The temperature can be held at the terminating temperature or be reduced to the starting temperature in a matter of minutes. The controller has been used for thermally stimulated conductivity measurements and should be useful for thermoluminescence measurements as well.

  7. Thermally controlled comb generation and soliton modelocking in microresonators.

    PubMed

    Joshi, Chaitanya; Jang, Jae K; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-06-01

    We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy. PMID:27244415

  8. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    NASA Technical Reports Server (NTRS)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  9. MSFC Skylab Apollo Telescope Mount thermal control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Hueter, U.

    1974-01-01

    The Skylab Saturn Workshop Assembly was designed to expand the knowledge of manned earth orbital operations and accomplish a multitude of scientific experiments. The Apollo Telescope Mount (ATM), a module of the Skylab Saturn Workshop Assembly, was the first manned solar observatory to successfully observe, monitor, and record the structure and behavior of the sun outside the earth's atmosphere. The ATM contained eight solar telescopes that recorded solar phenomena in X-ray, ultraviolet, white light, and hydrogen alpha regions of the electromagnetic spectrum. In addition, the ATM contained the Saturn Workshop Assembly's pointing and attitude control system, a data and communication system, and a solar array/rechargeable battery power system. This document presents the overall ATM thermal design philosophy, premission and mission support activity, and the mission thermal evaluation. Emphasis is placed on premission planning and orbital performance with particular attention on problems encountered during the mission. ATM thermal performance was satisfactory throughout the mission. Although several anomalies occurred, no failure was directly attributable to a deficiency in the thermal design.

  10. Evaluation of active thermal control options for Space Station

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Gruszczynski, M. J.; Owen, J. W.

    1986-01-01

    An analysis of various Space Station (MSS) active thermal control systems options under consideration because of their potential low weight, efficiency and reliability is reported. The study addressed ordinary and diode-action body mounted radiators, thermal storage, the area and pumping power requirements for single-phase cooling of cold plates, and single-phase and two-phase active cooling loops. The base configuration considered was a core MSS formed by four habitable modules on which are mounted heat pipe radiators articulated to be always edge-on to the sun. A simulation was performed which accounted for the available heat sinks, several thermal loads and the heat rejection capability. No benefits were found with diode-action radiators if the solar absorption is 0.1 or less, although diode-action heat pipes will maintain a higher level of performance in the presence of coating degradation. Thermal storage becomes important only with radiator coating degradation. Water can be up to three times as efficient as Freon as a heat transfer medium. Finally, single-phase cooling offers a lower system mass than two-phase cooling if varying temperature heat loads can be accommodated.

  11. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  12. Thermal Control of the Balloon-Borne HEROES Telescope

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian

    2013-01-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) telescope is scheduled to fly on a high altitude balloon from Fort Sumner, New Mexico in the Fall of 2013. Once it reaches an altitude of 40km it will observe the Sun, Crab Nebula, and other astrophysical objects in the hard X-Ray spectrum (20-75keV) for around 28 hours. The HEROES project is a joint effort between Marshall and Goddard Space Flight Centers (MSFC and GSFC), and will utilize the High Energy Replicated Optics (HERO) telescope, which last flew in 2011 in Australia. The addition of new systems will allow the telescope to view the Sun, and monitor the mechanical alignment of the structure during flight. This paper will give an overview of the telescope, and then provide a description of the thermal control method used on HEROES. The thermal control is done through a passive cold-bias design. Detailed thermal analyses were performed in order to prove the design. This will be discussed along with the results of the analyses. HEROES is funded by the NASA Hands-On Project Experience (HOPE) Training Opportunity. The HOPE opportunity provides early career employees within NASA hands on experience with a yearlong flight project. HOPE was awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.

  13. Study of Thermal Control Systems for orbiting power systems

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1981-01-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  14. Innovative Multi-Environment, Multimode Thermal Control System

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.; Hasan, Mohammad H.

    2007-01-01

    Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phasechange cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system. The architecture also allows flexibility in partitioning of components between the various Constellation modules to take advantage of operational requirements in various modes consistent with the mission needs. Preliminary design calculations using R-134 as working fluid show the concept to be feasible to meet the heat rejection requirements that are representative of the Crew Exploration Vehicle and Lunar Access Module for nominal cases. More detailed analyses to establish performance under various modes and environmental conditions are underway.

  15. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  16. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  17. MISSE Thermal Control Materials with Comparison to Previous Flight Experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Pippin, H. Gary; Frey, George

    2008-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment (MISSE), including inorganic coatings, anodized aluminum, and multi-layer insulation materials. These and other material samples were exposed to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was limited for some samples. Materials flown on MISSE-1 and MISSE-2 were exposed to the space environment for nearly four years. Materials flown on MISSE-3, MISSE-4, and MISSE-5 were exposed to the space environment for one year. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. Effects of short duration versus long duration exposure on ISS are explored, as well as comparable data from previous flight experiments, such as the Passive Optical Sample Assembly (POSA), Optical Properties Monitor (OPM), and Long Duration Exposure Facility (LDEF).

  18. Space tug thermal control equipment thermal requirements, characteristics and constraints catalogue

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1974-01-01

    The Space Tug Thermal Control Study contained two tasks associated with the cataloging of equipment thermal requirements, physical characteristics and constraints. In satisfaction of these tasks a Data Bank program was developed to provide a means of standardizing the method of cataloging while using the computer to handle the data and format the data into the desired catalogues. During the course of the study 109 components were catalogued and included in the Data Bank. A standardized method was selected for describing each component. Each subsystem of the Avionics System is described on a subsystem header page which describes the types of components included within the subsystem, the quantity requirements, target weights, target power and relative comments. The individual components listed within each subsystem are not necessarily a complete list of candidate items but do represent several of the presently available components for consideration in a Tug application.

  19. Long Duration Life Test of Propylene Glycol Water Based Thermal Fluid Within Thermal Control Loop

    NASA Technical Reports Server (NTRS)

    Le, Hung; Hill, Charles; Stephan, Ryan A.

    2010-01-01

    Evaluations of thermal properties and resistance to microbial growth concluded that 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture was desirable for use as a fluid within a vehicle s thermal control loop. However, previous testing with a commercial mixture of PG and water containing phosphate corrosion inhibitors resulted in corrosion of aluminum within the test system and instability of the test fluid. This paper describes a follow-on long duration testing and analysis of 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture with inorganic corrosion inhibitors used in place of phosphates. The test evaluates the long-term fluid stability and resistance to microbial and chemical changes

  20. Thermal Control of the Scientific Instrument Package in the Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Hawks, K. H.

    1972-01-01

    The general thermal control system philosophy was to utilize passive control where feasible and to utilize active methods only where required for more accurate thermal control of the SIP components with narrow temperature tolerances. A thermal model of the SIP and a concept for cooling the SIP cameras are presented. The model and cooling concept have established a rationale for determining a Phase A baseline for SIP thermal control.

  1. Controlled Rejuvenation of Amorphous Metals with Thermal Processing

    PubMed Central

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-01-01

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr55Al10Ni5Cu30 bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1Tg, followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing. PMID:26010470

  2. Controlling the thermally induced focal shift in laser processing heads

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Abt, Felix; Blázquez-Sánchez, David; Austerschulte, Armin; Hafner, Margit; Liebig, Thomas; von Strobl-Albeg, Philipp; Weber, Rudolf; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2012-03-01

    A system being able to in situ measure and control not simply the distance between the workpiece and the focusing optics, but the true focal position on the workpiece including the thermally induced focal shift in a laser processing head is presented. In order to achieve this, a bundle of astigmatic measurement beams is used following the same optical path as the welding beam. A camera and a software algorithm allow to keep the focal position constant within a range of 4 mm and with a resolution between 150 μm and 500 μm.

  3. Energy storage and thermal control system design status

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.

  4. Grumman evaluates Space Station thermal control and power systems

    SciTech Connect

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  5. Results of the examination of LDEF polyurethane thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1994-01-01

    This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.

  6. Induction plasma calcining of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.

    1971-01-01

    Induction plasma heating techniques were studied for calcining zinc orthotitanate particles for use in thermal control coatings. Previous studies indicated that the optimum calcining temperature is between 1400 and 1750 C. An intermediate temperature (1670 C) was chosen as a reference point for running a temperature series at the reference point and 220 C on both sides. The effect of varying chamber temperature on the reflectance spectra, before and after vacuum UV irradiation, is presented. The correlation between Zn2Ti04 paramagnetic resonance activity and its susceptibility to vacuum UV damage is discussed.

  7. Thermal control of a solar sail. [for Halley's Comet rendezvous

    NASA Technical Reports Server (NTRS)

    Stimpson, L. D.; Greenfield, M. L.; Jaworski, W.; Wolf, F.

    1978-01-01

    Thermal control concepts for the square and the heliogyro solar sail designs under consideration for a Halley's Comet rendezvous mission are presented. The mission, involving a 1982 launch, navigation to a 0.25-AU cranking orbit about the sun in order to develop a retrograde orbit, and rendezvous with the comet in 1986, would subject surfaces of the sail vehicle to solar constant values ranging from 16 to 0.1. A highly reflective coating to produce propulsive force is needed for one surface of the sail, while the other surface requires a highly emittive coating. The problem of maintaining the sail wrinkle-free is discussed.

  8. Environmental charging tests of spacecraft thermal control louvers

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Schmidt, F. W.; Blech, R. A.

    1976-01-01

    The environmental charging of spacecraft surfaces program consists, in part, of experimental evaluation of material response to the environmental charged particle flux. A flight type spacecraft thermal control louver assembly has been tested in an electron flux. The louver blade surface potential, the louver assembly currents, and the relatively high number of discharges observed in the electron environment are self-consistent results. The unexpected result of this testing was the flutter observed when the louvers were closed. The flutter is about 1 to 2 Hz in frequency and is probably electrostatically induced.

  9. Modelling of photo-thermal control of biological cellular oscillators

    PubMed Central

    Assanov, Gani S.; Zhanabaev, Zeinulla Zh.; Govorov, Alexander O.; Neiman, Alexander B.

    2015-01-01

    We study the transient dynamics of biological oscillators subjected to brief heat pulses. A prospective well-defined experimental system for thermal control of oscillators is the peripheral electroreceptors in paddlefish. Epithelial cells in these receptors show spontaneous voltage oscillations which are known to be temperature sensitive. We use a computational model to predict the effect of brief thermal pulses in this system. In our model thermal stimulation is realized through the light excitation of gold nanoparticles delivered in close proximity to epithelial cells and generating heat due to plasmon resonance. We use an ensemble of modified Morris-Lecar systems to model oscillatory epithelial cells. First, we validate that the model quantitatively reproduces the dynamics of epithelial oscillations in paddlefish electroreceptors, including responses to static and slow temperature changes. Second, we use the model to predict transient responses to short heat pulses generated by the light actuated gold nanoparticles. The model predicts that the epithelial oscillators can be partially synchronized by brief 5 – 15 ms light stimuli resulting in a large-amplitude oscillations of the mean field potential. PMID:25685293

  10. A thermal control surface for the Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin A. J.; Carton, James G.; Norman, Andrew; McCaul, Terry; Twomey, Barry; Stanton, Kenneth T.

    2015-12-01

    A high-absorptivity/high-emissivity (flat absorber) bone char-based thermal control surface known as SolarBlack has been developed for use on rigid and flexible metallic substrates, including titanium, aluminium, copper, stainless steel, Inconel and magnesium alloys. This work describes the thermo-optical properties, stability, and qualification of this surface for use on the European Space Agency's Solar Orbiter mission. SolarBlack is deposited using a proprietry coating technique known as CoBlast and currently stands as the baseline coating for the spacecraft's front surface heat-shield, which is composed of 50 μm titanium foils (1.3×0.3 m) that have been constructed to cover the 3.1×2.4 m2 shield. The heat shield makes use of the material's highly stable ratio of solar absorptance to near-normal thermal emissivity (αs/εN) as well as its low electrical resistivity to regulate both temperature and electrostatic dissipation in service. SolarBlack also currently stands as the baseline surface for the High-gain and Medium-gain antennae as well as a number of other components on the spacecraft. The thermo-optical stability of SolarBlack was determined using the STAR Facility space environment simulator in ESTEC., Material characterisation was carried out using: SEM, UV/Vis/NIR spectrometry, and IR emissometry. The coating performance was verified on the Structural Thermal Model using ESA's Large Space Simulator.

  11. Control-structure-thermal interactions in analysis of lunar telescopes

    NASA Astrophysics Data System (ADS)

    Thompson, Roger C.

    1992-12-01

    The lunar telescope project was an excellent model for the CSTI study because a telescope is a very sensitive instrument, and thermal expansion or mechanical vibration of the mirror assemblies will rapidly degrade the resolution of the device. Consequently, the interactions are strongly coupled. The lunar surface experiences very large temperature variations that range from approximately -180 C to over 100 C. Although the optical assemblies of the telescopes will be well insulated, the temperature of the mirrors will inevitably fluctuate in a similar cycle, but of much smaller magnitude. In order to obtain images of high quality and clarity, allowable thermal deformations of any point on a mirror must be less than 1 micron. Initial estimates indicate that this corresponds to a temperature variation of much less than 1 deg through the thickness of the mirror. Therefore, a lunar telescope design will most probably include active thermal control, a means of controlling the shape of the mirrors, or a combination of both systems. Historically, the design of a complex vehicle was primarily a sequential process in which the basic structure was defined without concurrent detailed analyses or other subsystems. The basic configuration was then passed to the different teams responsible for each subsystem, and their task was to produce a workable solution without requiring major alterations to any principal components or subsystems. Consequently, the final design of the vehicle was not always the most efficient, owing to the fact that each subsystem design was partially constrained by the previous work. This procedure was necessary at the time because the analysis process was extremely time-consuming and had to be started over with each significant alteration of the vehicle. With recent advances in the power and capacity of small computers, and the parallel development of powerful software in structural, thermal, and control system analysis, it is now possible to produce very

  12. Control-structure-thermal interactions in analysis of lunar telescopes

    NASA Technical Reports Server (NTRS)

    Thompson, Roger C.

    1992-01-01

    The lunar telescope project was an excellent model for the CSTI study because a telescope is a very sensitive instrument, and thermal expansion or mechanical vibration of the mirror assemblies will rapidly degrade the resolution of the device. Consequently, the interactions are strongly coupled. The lunar surface experiences very large temperature variations that range from approximately -180 C to over 100 C. Although the optical assemblies of the telescopes will be well insulated, the temperature of the mirrors will inevitably fluctuate in a similar cycle, but of much smaller magnitude. In order to obtain images of high quality and clarity, allowable thermal deformations of any point on a mirror must be less than 1 micron. Initial estimates indicate that this corresponds to a temperature variation of much less than 1 deg through the thickness of the mirror. Therefore, a lunar telescope design will most probably include active thermal control, a means of controlling the shape of the mirrors, or a combination of both systems. Historically, the design of a complex vehicle was primarily a sequential process in which the basic structure was defined without concurrent detailed analyses or other subsystems. The basic configuration was then passed to the different teams responsible for each subsystem, and their task was to produce a workable solution without requiring major alterations to any principal components or subsystems. Consequently, the final design of the vehicle was not always the most efficient, owing to the fact that each subsystem design was partially constrained by the previous work. This procedure was necessary at the time because the analysis process was extremely time-consuming and had to be started over with each significant alteration of the vehicle. With recent advances in the power and capacity of small computers, and the parallel development of powerful software in structural, thermal, and control system analysis, it is now possible to produce very

  13. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  14. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  15. Development and Experimental Evaluation of Passive Fuel Cell Thermal Control

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.

    2014-01-01

    To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates

  16. Thermal control surfaces experiment (SOO69) flight systems performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The thermal control surfaces experiment (TCSE) was the most complex hardware system aboard the Long Duration Exposure Facility (LDEF). The TCSE system consists of a scanning spectroreflectometer that measured test samples mounted on a rotatable carousel assembly. A microprocessor based data system controlled all aspects of TCSE system operation. Power was provided by four primary batteries. Flight measurement and housekeeping data were stored on a tape recorder for postflight analysis. The TCSE is a microcosm of complex electro-optical payloads being developed by NASA, DoD, and the aerospace community. The TCSE provides valuable data on the performance of these systems in space. The TCSE flight system and its excellent performance on the LDEF mission are described. A few operational anomalies were encountered and are discussed. Initial post-flight tests show that the TCSE system remains functional although some degradation in the optical measurements were observed. The results of these tests are also presented.

  17. Electrical and thermal control of magnetic exchange interactions.

    PubMed

    Fransson, Jonas; Ren, Jie; Zhu, Jian-Xin

    2014-12-19

    We investigate the far-from-equilibrium nature of magnetic anisotropy and exchange interactions between molecular magnets embedded in a tunnel junction. By mapping to an effective spin model, these magnetic interactions can be divided into three types: isotropic Heisenberg, anisotropic Ising, and anisotropic Dzyaloshinski-Moriya contributions, which are attributed to the background nonequilibrium electronic structures. We further demonstrate that both the magnetic self- and exchange interactions can be controlled either electrically by gating and tuning the voltage bias, or thermally by adjusting the temperature bias. We show that the Heisenberg and Ising interactions scale linearly, while the Dzyaloshinski-Moriya interaction scales quadratically, with the molecule-lead coupling strength. The interactions scale linearly with the effective spin polarizations of the leads and the molecular coherence. Our results pave a way for smart control of magnetic exchange interactions at atomic and molecular levels. PMID:25554904

  18. A controlled atmosphere tube furnace was designed for thermal CVD

    NASA Astrophysics Data System (ADS)

    Rashid, M.; Bhatti, J. A.; Hussain, F.; Imran, M.; Khawaja, I. U.; Chaudhary, K. A.; Ahmad, S. A.

    2013-06-01

    High quality materials were used for the fabrication of hi-tech tube furnace. The furnace was especially suitable for thermal Chemical Vapor Deposition (CVD). High density alumina tube was used for the fabrication of furnace. The tube furnace was found to have three different temperature zones with maximum temperature at central zone was found to be 650°C. The flexible heating tape with capacity of 760°C was wrapped on the tube. To minimize the heat losses, asbestos and glass wool were used on heating tape. The temperature of the tube furnace was controlled by a digital temperature controller had accuracy of ±1°C. Methanol was taken as the representative of hydrocarbon sources, to give thin film of carbon. The a-C: H structure was investigated by conventional techniques using optical microscopy, FT-IR and SEM.

  19. Conceptual design of a lunar base thermal control system

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.

    1992-01-01

    Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.

  20. Economic dispatch control for large scale thermal power systems

    SciTech Connect

    Not Available

    1986-01-01

    A realistic model for economic dispatch control (EDC) which is valid for large scale thermal power system is described. This model properly accounts for the nonlinearities of the generation cost-curves introduced by the operation constraints of thermal units. The methodology of this model computes the optimal readjustments of generation schedules such that their total generation output meets the system demand, including the Area Control Error (ACE). The objective function to be minimized is the instantaneous operating cost of a power system subjected to several equality and inequality constraints, which represent the performance characteristics and operation limitations of the various units in the system as well as the active power loss in the transmission network. The generation cost curves and the active losses are represented using one of two models. The first model includes the exact piecewise linear curve formulation and the well known loss formula, while the second one considers a second order polynomial approximation of the generation cost curves and assumes that the active network losses are independent on the generation configuration and have constant percentage value from the total system demand. Each of these models has its merits to EDC strategies. 10 references, 7 figures, 3 tables.

  1. Black coatings for stray light and thermal control applications

    NASA Astrophysics Data System (ADS)

    Moldosanov, Kamil A.; Kashirin, Victor A.; Skrynnikov, Alexander M.; Anisimova, Irina A.; Anisimov, Vladimir P.; Kobtsov, Gennady A.

    2001-11-01

    This report deals with comparison of the total hemispherical reflectances (THR), emissivities, and solar radiation absorption factors of coatings designed to reduce a stray light background and provide the thermal control both in space-based instruments and in land-based equipment. The THR measurement results are presented that have been carried out at 10 values of wavelengths within visible, near- ultraviolet, and near-infrared ranges (400 to 927 nm). The coatings being compared are as follows: chemically oxidized copper, coating on the basis of Al-N system, black-chromium coating, black bituminous paint, commercial black enamel used in solar converters, and plasmatron sputtered nichrome and constantan alloys. The chemically oxidized copper has been chosen as a material possessing high solar radiation absorption factor and low emissivity. Black-chromium coating is a widespread material for thermal control in space instruments. The black bituminous paint has been chosen as a possible cheap alternative solar absorber. Commercial black enamel served as a standard conventional coating used in some inexpensive solar converters. Nichrome and constantan have been also selected for investigations as the alloys having high specific resistivities, which promised that intensive electron scattering in skin layers of these alloys could take place, i.e., intensive transfer of energy and momentum received from the light wave to the lattice.

  2. Thermal and mechanical controls on magma supply and volcanic deformation

    NASA Astrophysics Data System (ADS)

    Hickey, James; Gottsmann, Jo; Nakamichi, Haruhisa; Iguchi, Masato

    2016-04-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rock. Geodetic models aimed at constraining source processes consequently require the implementation of realistic mechanical and thermal rock properties. However, most generic models ignore this requirement and employ oversimplified mechanical assumptions without regard for thermal effects. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that despite on-going eruptions magma is accumulating faster than it can be ejected, and the current uplift is approaching the level inferred prior to the 1914 Plinian eruption. Our results from inverse and forward numerical models are consistent with petrological constraints and highlight how the location, volume, and rate of magma supply, 0.014 km3/yr, are thermomechanically controlled. Magma storage conditions coincide with estimates for the caldera-forming reservoir ˜29,000 years ago, and the inferred magma supply rate indicates a ˜130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  3. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  4. Analysis of Retrieved Hubble Space Telescope Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon FEP, the outer-layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the emissivity of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the de-radiation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong, evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP.

  5. Control of Several Emissions during Olive Pomace Thermal Degradation

    PubMed Central

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-01-01

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor. PMID:25314298

  6. Control of several emissions during olive pomace thermal degradation.

    PubMed

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-01-01

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25-750 °C and a heating rate of 20 °C·min⁻¹. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor. PMID:25314298

  7. Radiation Induced Degradation of White Thermal Control Paint

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Zwiener, J. M.; Wertz, G. E.; Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, M. M.; Meshishnek, M. J.

    1999-01-01

    This paper details a comparison analysis of the zinc-oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 yr in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent Sun hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.

  8. Radiation Induced Degradation of White Thermal Control Paint

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Zwiener, J. M.; Wertz, G. E.; Vaughn, J. A.; Kamenetzky, R. R.; Finckenor, M. M.; Meshishnek, M. J.

    1998-01-01

    This paper details a comparison analysis of the Zinc Oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuum reflectance technique. The dose applied to the paints was approximately equivalent to 5 years in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuum reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectanc6 recovery after an additional 190 Equivalent Sun Hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.

  9. Radiation Induced Degradation of White Thermal Control Paint

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Zwiener, J. M.; Wertz, G. E.; Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, M. M.; Meshishnek, M. J.

    1998-01-01

    This paper details a comparison analysis of the zinc-oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 yr in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent Sun hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.

  10. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  11. Thermal control systems for low temperature Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Wright, J. P.; Trucks, H.

    1976-01-01

    Greater sensitivity and longer life for future space sensor systems place more stringent demands on cooling system technology. Results are presented for a study designed to determine and evaluate low-temperature thermal control system concepts for various cooling categories in the range 3-200 K and to generate hardware development plans for undeveloped viable system concepts. The study considered Shuttle launched payloads in the 1980-1991 time frame, with 1-5 yr of life. Cooling concepts are categorized as open-cycle (expendable), closed-cycle (mechanical), solid-state, and radiative. Particular attention is given to the concepts of multistage heat pipe radiator, diode heat pipe radiator, and radiator guarded cryostat. Results are given for parametric analyses of the Vuilleumier refrigerator, the rotary reciprocating refrigerator, the solid hydrogen refrigerator, the solid hydrogen/multistage radiator hybrid cooler, and the magneto-Peltier hybrid cooler.

  12. Formulation of electrically conductive thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Shai, M. C.

    1978-01-01

    The development and formulation of electrically conductive thermal control coating was undertaken for use on the International Sun Earth Explorer spacecraft. The primary effort was to develop a coating with a bulk resistivity of less than 100,000 ohm/sqm, an optical absorptance of approximately 0.55, and a normal emittance of 0.90. The required stability in space called for a bulk resistivity of less than 100,000 ohm/sq m, an absorptance of less than 0.67, and a normal emittance of 0.90 after exposure to approximately 4 x 10 to the 16th proton/sq cm of solar-wind particles and 5300 equivalent sun-hours. These exposures represent 2 years of ISEE flight conditions. Both the unsuccessful formulation efforts and the successful use of oxide pigments fired at 1448 K are described. Problems relative to the reactivity of specific coating vehicles exposed to high humidity are discussed.

  13. Hybrid Thermal Control Testing of a Cryogenic Propellant Tank

    NASA Technical Reports Server (NTRS)

    Plachta, David W.

    1999-01-01

    This report presents the experimental results of a hybrid thermal control system, one that integrates a passive system (multi-layer insulation) with an active system (a mechanical cyrocooler) applied to cryogenic propellant storage. These experiments were performed on a 1.39 m diameter spherical propellant tank filled with LH2 while installed in an evacuated chamber. The tank heat transfer to the cryocooler was accomplished with a condenser installed in the ullage of the tank and mated to the second stage of the cooler, and by conduction, through copper leaves mated to the first stage of the cooler. The first hybrid system test was performed with both the condenser and the leaves, a configuration that had excess capacity to remove the heat entering the tank; the second test was performed with only the condenser, with a capacity closely matched to the tank heating rate. In both of these tests, the goal of zero boil-off was achieved.

  14. Compact vehicle drive module having improved thermal control

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  16. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.

  17. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures

    SciTech Connect

    Sun, Ruixue; Chen, Kezheng; Liao, Zhongmiao; Meng, Nan

    2013-03-15

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed of one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.

  18. A Thermal Expert System (TEXSYS) development overview - AI-based control of a Space Station prototype thermal bus

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hack, E. C.

    1990-01-01

    A knowledge-based control system for real-time control and fault detection, isolation and recovery (FDIR) of a prototype two-phase Space Station Freedom external thermal control system (TCS) is discussed in this paper. The Thermal Expert System (TEXSYS) has been demonstrated in recent tests to be capable of both fault anticipation and detection and real-time control of the thermal bus. Performance requirements were achieved by using a symbolic control approach, layering model-based expert system software on a conventional numerical data acquisition and control system. The model-based capabilities of TEXSYS were shown to be advantageous during software development and testing. One representative example is given from on-line TCS tests of TEXSYS. The integration and testing of TEXSYS with a live TCS testbed provides some insight on the use of formal software design, development and documentation methodologies to qualify knowledge-based systems for on-line or flight applications.

  19. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  20. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  1. Securing robust control in systems for closed-loop control of inertial thermal power facilities

    NASA Astrophysics Data System (ADS)

    Kovrigo, Yu. M.; Bagan, T. G.; Bunke, A. S.

    2014-03-01

    We consider two approaches to achieving the necessary stability margin in systems for closed-loop control of inertial thermal power facilities under the conditions of a variable operating mode of process equipment. Structural solutions for these systems are proposed, and tuning procedures are given. Transients in the synthesized systems are simulated, and the control quality indicators are calculated and compared. Application of the proposed procedures makes it possible to obtain a sufficient stability margin with preserving highquality performance of the closed-loop control systems.

  2. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  3. Self-regulating heater application to Shuttle/Centaur hydrazine fuel line thermal control

    NASA Technical Reports Server (NTRS)

    Unkrich, David B.

    1987-01-01

    The Shuttle/Centaur high energy upper stage vehicle thermal environments were more severe than previous Centaur vehicle thermal environments, creating need for a new hydrazine fuel line thermal control technique. Constant power heaters did not satisfy power dissipation requirements, because the power required to maintain fuel line thermal control during cold conditions exceeded the maximum power allowable during hot conditions. Therefore, a Raychem Thermolimit self-regulating heater was selected for this application, and was attached to the hydrazine fuel line with Kapton and aluminum foil tapes. Fuel line/heater thermal modeling and subsequent thermal vacuum chamber testing simulated heater thermal performance during all worst-case Shuttle/Centaur thermal environmental conditions. Fuel line temperatures were maintained between the 4C to 71C limits during all analytical and test cases. Finally, the thermal model predictions were correlated with the test data, thereby ensuring that the model would provide satisfactory predictions for future missions and/or vehicles.

  4. International Space Station power module thermal control system hydraulic performance

    SciTech Connect

    Goldberg, V.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  5. Improved coke ovens thermal control at Italsider Taranto Works

    SciTech Connect

    Palumbo, L.; Castelli, M.; Gibellieri, E., De Franco, F.; Santis, L.

    1981-01-01

    The right determination of the flue temperatures shifting, according to coke ovens working cycle, has been carried out at Italsider Taranto Works with the cooperation of Centro Sperimentale Metallurgico by using an original method of elaboration and comparison of temperature data collected according to the usual ways by the operators. The results are immediately used for the appropriate control interventions. This technique, after the first experimental application, has been gradually extended to all eleven batteries for a total amount of 485 ovens and it is being used since more than four years. The data are processed out by a 1100 UNIVAC computer to which the access is possible through a remote terminal located in the cokeplant offices. In this way it has been possible to improve the batteries thermal state control with the result of improving considerably the temperatures uniformity both in the transverse and longitudinal axis of the ovens. These positive results had good effects on the stabilization of coke quality, on energy savings and on improvements of working conditions in the coke ovens area. 5 figures, 4 tables.

  6. Thermoelectric control of shape memory alloy microactuators: a thermal model

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Chaillet, Nicolas; Lexcellent, Christian; Bourjault, Alain

    1999-06-01

    Microtechnologies and microsystems engineering use new active materials. These materials are interesting to realize microactuators and microsensors. In this category of materials, Shape Memory Alloys (SMA) are good candidates for microactuation. SMA wires, or thin plates, can be used as active material in microfingers. These microstructures are able to provide very important forces, but have low dynamic response, especially for cooling, in confined environment. The control of the SMA phase transformations, and then the mechanical power generation, is made by the temperature. The Joule effect is an easy and efficiency way to heat the SMA wires, but cooling is not so easy. The dynamic response of the actuator depends on cooling capabilities. The thermal convection and conduction are the traditional ways to cool the SMA, but have limitations for microsystems. We are looking for a reversible way of heating and cooling SMA microactuators, based on the thermoelectric effects. Using Peltier effect, a positive or a negative electrical courant is able to pump or produce heat, in the SMA actuator. A physical model based on thermal exchanges between a Nickel/Titanium (NiTi) SMA, and Bismuth/Telluride (Te3Bi2) thermoelectric material has been developed. For simulation, we use a numerical resolution of our model, with finite elements, which takes into account the Peltier effect, the Joule effect, the convection, the conduction and the phase transformation of the SMA. We have also developed the corresponding experimental system, with two thermoelectric junctions, where the SMA actuator is one of the element of each junction. In this paper, the physical model and its numerical resolution are given, the experimental system used to validate the model is described, and experimental results are shown.

  7. Thermal control system and method for a passive solar storage wall

    SciTech Connect

    Ortega, J.K.E.

    1981-07-10

    A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  8. Fluorescence measurements of the thermal control experiments coatings on LDEF S0069 and A0114

    NASA Technical Reports Server (NTRS)

    Zwiener, J. M.; Mell, R. J.; Peters, P. N.; Gregory, J. C.; Wilkes, D. R.; Miller, E. R.

    1993-01-01

    Fluorescence measurements were made on the thermal control coatings from the Long Duration Experiment Facility (LDEF) S0069, Thermal Control Surfaces Experiment (TCSE); and the A0114, Interaction of Atomic Oxygen with Material Surfaces in Low Earth orbit. Fluorescence was observed in two types of thermal control coatings and is attributed to pigments or binders. In addition, fluorescence measurement on the silver Teflon from the front cover of TCSE led to confirmation of damage (cracking) to the metal layers during application.

  9. Robust Thermal Control of Propulsion Lines for Space Missions

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    2011-01-01

    A document discusses an approach to insulating propulsion lines for spacecraft. In spacecraft that have propulsion lines that are located externally with open bus architecture, the lines are typically insulated by Multi Layer Insulation (MLI) blankets. MLI on propulsion lines tends to have large and somewhat random variances in its heat loss properties (effective emittance) from one location to the next, which makes it an un-robust approach to control propulsion line temperatures. The approach described here consists of a clamshell design in which the inner surface of the shell is coated with low-emissivity aluminized Kapton tape, and the outer surface is covered with black tape. This clamshell completely encloses the propulsion line. The line itself is covered with its heater, which in turn, is covered completely with black tape. This approach would be low in heater power needs because even though the outer surface of the prop line (and its heater) is covered with black tape as well as the outer surface of the clamshell, the inner surface of the clamshell is covered with low-emissivity aluminized Kapton tape. Hence, the heat loss from the line will be small and comparable to the MLI based one. In terms of contamination changing the radiative properties of surfaces, since the clamshell s inner surface is always protected during handling and is only installed after all the work on the prop line has been completed, the controlling surface, which is the clamshell s inner surface, is always in pristine condition. This proposed design allows for a much more deterministic and predictable design using a very simple and implementable approach for thermal control. It also uses low heater power and is robust to handling and contamination during and after implementation.

  10. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  11. Regenerable thermal control and carbon dioxide control techniques for use in advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Copeland, R. J.; Nebbon, B. W.

    1972-01-01

    The most promising closed CO2 control concept identified by this study is the solid pellet, Mg(OH2)2 system. Two promising approaches to closed thermal control were identified. The AHS system uses modular fusible heat sinks, with a contingency evaporative mode, to allow maximum EVA mobility. The AHS/refrigerator top-off subsystem requires an umbilical to minimize expendables, but less EVA time is used to operate the system, since there is no requirement to change modules. Both of these subsystems are thought to be practical solutions to the problem of providing closed heat rejection for an EVA system.

  12. Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana

    2005-01-01

    This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.

  13. Thermal and biological treatments to control psychrotrophic pathogens.

    PubMed

    Sheldon, B W; Schuman, J D

    1996-09-01

    Over the past decade, advances in egg processing technologies have permitted commercial production of ultrapasteurized liquid whole egg (LWE) products with a shelf-life of greater than 10 wk at 4 C. The inactivation and control of psychrotrophic pathogens such as Listeria monocytogenes and Aeromonas hydrophila in extended shelf-life LWE and conventionally pasteurized egg products is an ongoing food safety concern. This manuscript reports on the common features of these two psychrotrophic pathogens, their incidence in egg products, and their survival, growth potential, and heat resistance in liquid egg. Furthermore, this manuscript reports in detail on the results of two specific studies conducted in our laboratory whose objectives were: 1) to determine the heat resistance (D-values) of A. hydrophila in LWE using a low-volume immersed sealed glass capillary tube (ISCT) procedure; 2) to assess the impact of methodology (i.e., ISCT procedure vs a conventional capped test tube procedure) on the apparent thermal resistance of A. hydrophila; and 3) to report on the use of the bacteriocin nisin to restrict the survival of L. monocytogenes in ultrapasteurized LWE stored at refrigeration temperatures. PMID:8878273

  14. UKIRT Upgrades Program: control of the telescope thermal environment

    NASA Astrophysics Data System (ADS)

    Cavedoni, Charles P.; Hawarden, Timothy G.; Chuter, Timothy C.; Look, I. A.

    1997-03-01

    The control of the telescope thermal environment at the 3.8-m United Kingdom Infrared Telescope (UKIRT) is based on the requirements that dome seeing should not degrade the image quality by more than 0.05 arcsec (FWHM) and that mirror seeing should be reduced to negligible proportions. After quantifying steady state and transient heat flow around and through the building, we set out on a program to meet these requirements. Major telescope enclosure upgrades to address dome seeing include natural dome ventilation with 16 apertures in the base of the dome and for near still-air nights, forced-air ventilation via the plant room exhaust system. To address mirror seeing, we are in the process of installing a day-time mirror cooling system that can drive and/or keep the primary mirror between 0 degrees Celsius and 2.5 degrees Celsius colder than the predicted night-time local dome air temperature. Nevertheless, during the night, if the primary mirror is warmer than the local dome air, a flushing system is available to blow away warm convective air cells as they form. This paper describes design considerations of the natural dome ventilation system (DVS), the hardware of the primary mirror cooling and flushing system and the performance of the mirror flushing system on a dummy mirror segment.

  15. Control of Thermal Convection in Layered Fluids Using Magnetic fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.

  16. Auxiliary Payload Power System thermal control. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Nagel, R. G.

    1976-01-01

    The Auxiliary Payload Power System (APPS) provides supplementary power and cooling to Space Processing Application (SPA) experiments to be mounted in the APPS and the Spacelab in the Shuttle Payload Bay. SPA experiment operations are planned for early Shuttle flights. This paper presents thermal control study results for preliminary analysis and design definition of the APPS. A 100/sq m, three-wing, pumped-fluid, deployable radiator with separate APPS equipment and SPA experiments coolant loops was selected as the baseline. The system is capable of rejecting the heat (approximately 26 kw) associated with the production and consumption of approximately 16 kw of electrical power produced by the APPS fuel cells for a worst case radiator orientation. For the most favorable orientation, the heat rejection and power capability approach 38 and 24 kw, respectively. Alternate approaches were evaluated, such as heat pipes for the radiator and alternate fluids for the coolant loops. Emphasis was placed on using Shuttle developed hardware: coolant pumps, heat exchangers, fluids, and radiator technology.

  17. Space station freedom resource nodes internal thermal control system

    NASA Technical Reports Server (NTRS)

    Merhoff, Paul; Dellinger, Brent; Taggert, Shawn; Cornwell, John

    1993-01-01

    This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2. A SINDA/FLUINT math model of the ITCS is described, and results of analyses for an MTC and a PMC case are shown and discussed.

  18. Thermal control for the ground simulation of a space IR sensor system

    NASA Technical Reports Server (NTRS)

    Lee, E.; Warren, A.; Gasser, G.; Tierney, M.

    1990-01-01

    Active and passive thermal controls for simulations of a space IR sensor system operating in cryogenic temperatures were designed, built, and tested from a component level to a system level. The test results from component tests and integrated system tests have compared very well with theoretical predictions, and thus verify component and integrated thermal math models. These verified models can be modified for use to predict flight systems thermal performance. Thermal vacuum simulations and demonstrations of a space IR system consisted of a target and background scene generator, telescope mirrors supported by a graphite-epoxy metering structure, and an IR sensor. These components are required to operate at cryogenic temperature levels. Each component has its unique thermal control needs. Descriptions are presented of thermal control systems for the test article from component design level to integrated system level along with discussions of component and integrated demonstration tests, and correlation of test data with thermal finite difference models.

  19. Reasoning about fault diagnosis for the space station common module thermal control system

    NASA Technical Reports Server (NTRS)

    Vachtsevanos, G.; Hexmoor, H.; Purves, B.

    1988-01-01

    The proposed common module thermal control system for the Space Station is designed to integrate thermal distribution and thermal control functions in order to transport heat and provide environmental temperature control through the common module. When the thermal system is operating in an off-normal state, due to component faults, an intelligent controller is called upon to diagnose the fault type, identify the fault location and determine the appropriate control action required to isolate the faulty component. A methodology is introduced for fault diagnosis based upon a combination of signal redundancy techniques and fuzzy logic. An expert system utilizes parity space representation and analytic redundancy to derive fault symptoms, the aggregate of which is assessed by a multivalued rule based system. A subscale laboratory model of the thermal control system designed is used as the testbed for the study.

  20. Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1998-01-01

    Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.

  1. On the control of flexible structures by applied thermal gradients

    NASA Technical Reports Server (NTRS)

    Edberg, D. L.

    1987-01-01

    Thermal, elastic, and feedback analyses are applied to the case of a beam with a distributed thermal actuator. The actuator is capable of producing a thermal gradient across the section of the beam. One candidate for such an actuator uses the Peltier effect, which appears in certain semiconductors. These devices act as heat pumps when a voltage is applied, causing a temperature gradient. It is shown that the thermal gradients can induce deflection in the beam. If the thermal gradients are applied in the proper sense to a vibrating beam, it is possible to increase the vibration damping exhibited by the structure. Experimental results are given for a cantilever beam, whose first vibrational mode damping ratio was increased from 0.81 to 7.4 percent with a simple lead compensation.

  2. Control of flexible structures by applied thermal gradients

    NASA Technical Reports Server (NTRS)

    Edberg, Donald L.

    1987-01-01

    Thermal, elastic, and feedback analyses are applied to the case of a beam with a distributed thermal actuator. The actuator is capable of producing a thermal gradient across the section of the beam. One candidate for such an actuator uses the Peltier effect, which appears in certain semiconductors. These devices act as heat pumps when a voltage is applied, causing a temperature gradient. It is shown that the thermal gradients can induce deflection in the beam. If the thermal gradients are applied in the proper sense to a vibrating beam, it is possible to increase the vibration damping exhibited by the structure. Experimental results are given for a cantilever beam, whose first vibrational mode damping ratio was increased from 0.81 to 7.4 percent with simple lead compensation.

  3. Spacecraft charging control by thermal, field emission with lanthanum-hexaboride emitters

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermal, field emitters of lanthanum (or perhaps cerium) hexaboride (LaB6) with temperature variability up to about 1500K are suggested for spacecraft charging control. Such emitters operate at much lower voltages with considerably more control and add plasma-diagnostic versatility. These gains should outweigh the additional complexity of providing heat for the LaB6 thermal, field emitter.

  4. Active control of primary mirror of an orbiting telescope with thermal excitation

    NASA Technical Reports Server (NTRS)

    Hill, J. L.; Youngblood, J. N.

    1973-01-01

    The results of a study of the feasibility of an active method of surface error control using thermal elements are presented. It is shown that the control effort of the thermal elements is sufficient for the purpose, and that such benefits as low cost, low weight, and high reliability may be achieved in conjunction with a significant reduction in the mirror surface error figure.

  5. Space Station Freedom Central Thermal Control System Evolution

    NASA Technical Reports Server (NTRS)

    Bullock, Richard; Olsson, Eric

    1990-01-01

    The objective of the evolution study is to review the proposed growth scenarios for Space Station Freedom and identify the major CTCS hardware scars and software hooks required to facilitate planned growth and technology obsolescence. The Station's two leading evolutionary configurations are: (1) the Research and Development node, where the fundamental mission is scientific research and commercial endeavors, and (2) the Transportation node, where the emphasis is on supporting Lunar and Mars human exploration. These two nodes evolve from the from the assembly complete configuration by the addition of manned modules, pocket labs, resource nodes, attached payloads, customer servicing facility, and an upper and lower keel and boom truss structure. In the case of the R & D node, the role of the dual keel will be to support external payloads for scientific research. In the case of the Transportation node, the keel will support the Lunar (LTV) and Mars (MTV) transportation vehicle service facilities In addition to external payloads. The transverse boom is extended outboard of the alpha gimbal to accommodate the new solar dynamic arrays for power generation, which will supplement the photovoltaic system. The design, development, deployment, and operation of SSF will take place over a 30 year time period and new Innovations and maturation in technologies can be expected. Evolutionary planning must include the obsolescence and insertion of the new technologies over the life of the program, and the technology growth issues must be addressed in parallel with the development of the baseline thermal control system. Technologies that mature and are available within the next 10 years are best suited for evolutionary consideration as the growth phase begins in the year 2000. To increase TCS capability to accommodate growth using baseline technology would require some penalty in mass, volume, EVA time, manifesting, and operational support. To be cost effective the capabilities of

  6. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  7. Precise thermal control test demonstration on simulated space telescope main ring

    NASA Technical Reports Server (NTRS)

    Bettini, R. G.; Wegrich, R. D.

    1983-01-01

    A simulated section of the main ring of the Space Telescope, (ST) the part that holds the primary mirror, was manufactured and tested for thermal stability characteristics in a complex structural assembly. The other telescope subassemblies are also mounted on the main ring, which is constructed of a titanium alloy. The entire ring is wrapped in heater elements around the outside diameter to reduce the external temperature gradient effects by two orders of magnitude. A thermal vacuum test was performed using a stainless steel alloy tailored to represent the titanium ring's thermal characteristics. The tests examined the thermal performance and controllability of the test ring, the effects of a 24-hr slew manuever that produced worst-case environment changes, hot and cold simulation of predicted ST orbital thermal environments, and the effects of heater failure. Pointing and thermal control features were verified, but a heater failure on the 'on' side was found to quickly lead to exceeding the thermal design limits.

  8. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments

  9. Ultrasound therapy applicators for controlled thermal modification of tissue

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.

    2011-03-01

    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high

  10. Development of an emulation-simulation thermal control model for space station application

    NASA Technical Reports Server (NTRS)

    Hartley, James G.; Colwell, Gene T.

    1986-01-01

    The orbiting space station being developed by NASA will have many thermal sources and sinks as well as requirements for the transport of thermal energy through large distances. The station is also expected to evolve over twenty or more years from an initial design. As the station evolves, thermal management will become more difficult. Thus, analysis techniques to evaluate the effects of changing various thermal loads and the methods utilized to control temperature distributions in the station are essential. Analysis techniques, including a user-friendly computer program, were developed which should prove useful to thermal designers and system analysts working on the space station. The program uses a data base and user input to compute costs, sizes, and power requirements for individual components and complete systems. User input consists of selecting mission parameters, selecting thermal acquisition configurations, transport systems and distances, and thermal rejection configurations. The capabilities of the program may be expanded by including additional thermal models as subroutines.

  11. Plasma calcining of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.

    1972-01-01

    Method utilizes an RF excited plasma to surface deactivate thermally stable powders at high temperatures. Utilization of this plasma heat treatment at high temperatures can be carried out without grain growth, calcination, or agglomeration.

  12. Multi Purpose Crew Vehicle Active Thermal Control and Environmental Control and Life Support Development Status

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard A.; Boehm, Paul; Cross, Cynthia D.; Rains, George Edward

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in September of 2014. The development of the Orion Active Thermal Control (ATCS) and Environmental Control and Life Support (ECLS) System, focused on the integrating the components into the EFT1 vehicle and preparing them for launch. Work also has started on preliminary design reviews for the manned vehicle. Additional development work is underway to keep the remaining component progressing towards implementation on the flight tests of EM1 in 2017 and of EM2 in 2020. This paper covers the Orion ECLS development from April 2013 to April 2014

  13. Plasma effects on the passive external thermal control coating of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  14. Chapter 9: MEMS Applications in Spacecraft Thermal Control and Chapter 13: Handling and Contamination Control Considerations for Critical Space Applications

    NASA Technical Reports Server (NTRS)

    Osiander, Robert; Darin, Ann; Chen, Philip

    2004-01-01

    Thermal control systems (TCS) are an integral part of all spacecraft and instruments. To operate properly all spacecraft components must be maintained within a specified temperature band, which in some instances can be quite tight (less than 1 degree C). Traditionally this is accomplished by "passive" designs, but with modem spacecraft and instruments it is increasingly necessary to use active thermal control technologies. Microelectromechanical System (MEMS) can be useful in developing an active TCS, and may be especially useful for small spacecraft. As the MEMS knowledge matures, the applications of MEMS in spacecraft thermal control emerges as a viable technology for thermal engineers. Potential applications include specialized thermal control coatings, thermal switches, and specialized filters for instruments. Although MEMS technology demonstrates benefits, it also poses challenges for thermal en,oineers due to the lack of in-flight MEMS data. As a consequence, in order to design a MEMS thermal control device and receive the full advantage, it is important to understand the potential impact of the space environment on MEMS devices and the design/operational constraints imposed in their use. An entire chapter is devoted to handling and contamination controls for Micro Electro Mechanical Systems (MEMS) in space applications due to the importance of the topic area to final mission success. Handling and contamination control is discussed relative to the full life cycle from the very basic wafer level processing up through on orbit deployment. MEMS packaging will drive the need to tailor the Handling and Contamination Control Plan in order to assure adequacy of the overall program on a program by program basis. Plan elements are discussed at length to assist the user in preparing and implementing effective plans for both handling and contamination control to prevent deleterious effects.

  15. Active structural control for damping augmentation and compensation of thermal distortion

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1992-01-01

    A large space-based Focus Mission Interferometer is used as a testbed for the NASA Controls and Structures Interaction Program. Impedance-based adaptive structural control and control of thermal disturbances are demonstrated using an end-to-end simulation of the system's optical performance. Attention is also given to integrated optical/structural modeling and a hierarchical, layered control strategy.

  16. Temperature control of thermal radiation from composite bodies

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  17. Low-Cost Radiator for Fission Power Thermal Control

    NASA Technical Reports Server (NTRS)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  18. Thermal stability of hydrocarbons in nature - Limits, evidence, characteristics, and possible controls

    NASA Astrophysics Data System (ADS)

    Price, Leigh C.

    1993-07-01

    Accepted petroleum-geochemical paradigms place rigid limits on hydrocarbon (HC) thermal stability: C(15+) HCs begin thermal cracking at R(0) values of 0.9 and are completely thermally destroyed by R(0) = 1.35 percent; C2-C4 HC gases are thermally destroyed by R(0) = 2.0 percent; and methane is thermally destroyed by R(0) = 4.0 percent. The fact that observed data is so far removed from predicted behavior may be due to: a lack of recognition of some important possible controlling parameters of organic matter metamorphism and too much imporance given to other assumed controlling parameters; and assigning HC distribution patterns in petroleum basins to HC thermal cracking when such patterns may be due to other causes.

  19. Preliminary investigations into UHCRE thermal control materials (A0178)

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Froggatt, Mike; Rott, Martin; Schneider, Eberhard

    1992-01-01

    An overview of the initial work that was done in the ESTEC Materials and Processes Division to evaluate the effect of space environment on the thermal blankets of the Ultra-Heavy Cosmic Ray Nuclei Experiments (UHCRE) is presented. The topics covered include: (1) a preliminary survey of the perforations of the two-thirds of the thermal blanket returned to ESTEC; (2) thermo-optical properties and thickness recessions of three samples cut from each of the third center parts of the 16 thermal blankets were measured and effects of environments (sun illumination and atomic oxygen fluences); (3) contamination was analyzed on trays, external blanket and internal aluminized Kapton foil by IR technique and scanning electron microscopy SEM/EDX examination; (4) the pattern of contamination on the Al Kapton foils was observed, sketched, and related to atomic oxygen flow; and (5) the Long Duration Exposure Facility (LDEF) yaw angle misorientation was evaluated from the contaminated areas visible on some of the trays. In addition, impacts of micrometeoroids and space debris were experimentally simulated on spare flight thermal blankets. Relations between penetration/perforation hole characteristics and projectile parameters were established.

  20. Experimental research on thermoelectric cooler for imager camera thermal control

    NASA Astrophysics Data System (ADS)

    Hu, Bing-ting; Kang, Ao-feng; Fu, Xin; Jiang, Shi-chen; Dong, Yao-hai

    2013-09-01

    Conventional passive thermal design failed to satisfy CCD's temperature requirement on a geostationary earth orbit satellite Imager camera because of the high power and low working temperature, leading to utilization of thermoelectric cooler (TEC) for heat dissipation. TEC was used in conjunction with the external radiator in the CCDs' thermal design. In order to maintain the CCDs at low working temperature, experimental research on the performance of thermoelectric cooler was necessary and the results could be the guide for the application of TEC in different conditions. The experimental system to evaluate the performance of TEC was designed and built, consisting of TEC, heat pipe, TEC mounting plate, radiator and heater. A series of TEC performance tests were conducted for domestic and oversea TECs in thermal vacuum environment. The effects of TEC's mounting, input power and heat load on the temperature difference of TEC's cold and hot face were explored. Results demonstrated that the temperature difference of TEC's cold and hot face was slightly increased when TEC's operating voltage reached 80% of rating voltage, which caused the temperature rise of TEC's hot face. It recommended TEC to operate at low voltage. Based on experiment results, thermal analysis indicated that the temperature difference of TEC's cold and hot face could satisfy the temperature requirement and still had surplus.

  1. Spin-state control of thermal and photochemical Bergman cyclization.

    PubMed

    Boerner, Leigh J K; Pink, Maren; Park, Hyunsoo; LeSueur, Amanda; Zaleski, Jeffrey M

    2013-03-14

    Thermal Bergman cyclization of Pt(II) dialkynylporphyrins reveals a marked reduction in the cyclization temperature relative to the free base and Zn(II) derivatives. In contrast, photogenerated (3)ππ* population produces no detectable Bergman photocyclization, suggesting that the photoreactivities of the related free base and Zn(II) derivatives occurs via the (1)ππ* state. PMID:23388700

  2. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  3. Rescue Shuttle Flight Re-Entry: Controlling Astronaut Thermal Exposure

    NASA Technical Reports Server (NTRS)

    Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Polk, J. D.; Son, Chang; Bue, Grant

    2008-01-01

    A rescue mission for the STS-125 Hubble Telescope Repair Mission requires reentry from space with 11 crew members aboard, exceeding past cabin thermal load experience and risking crew thermal stress potentially causing cognitive performance and physiological decrements. The space shuttle crew cabin air revitalization system (ARS) was designed to support a nominal crew complement of 4 to 7 crew and 10 persons in emergencies, all in a shirt-sleeve environment. Subsequent to the addition of full pressure suits with individual cooling units, the ARS cannot maintain a stable temperature in the crew cabin during reentry thermal loads. Bulk cabin thermal models, used for rescue mission planning and analysis of crew cabin air, were unable to accurately represent crew workstation values of air flow, carbon dioxide, and heat content for the middeck. Crew temperature models suggested significantly elevated core temperatures. Planning for an STS-400 potential rescue of seven stranded crew utilized computational fluid dynamics (CFD) models to demonstrate inhomogeneous cabin thermal properties and improve analysis compared to bulk models. In the absence of monitoring of crew temperature, heart rate, metabolic rate and incomplete engineering data on the performance of the integrated cooling garment/cooling unit (ICG/CU) at cabin temperatures above 75 degrees F, related systems & models were reevaluated and tests conducted with humans in the loop. Changes to the cabin ventilation, ICU placement, crew reentry suit-donning procedures, Orbiter Program wave-off policy and post-landing power down and crew extraction were adopted. A second CFD and core temperature model incorporated the proposed changes and confirmed satisfactory cabin temperature, improved air distribution, and estimated core temperatures within safe limits. CONCLUSIONS: These changes in equipment, in-flight and post-landing procedures, and policy were implemented for the STS-400 rescue shuttle & will be implemented in

  4. Development of an emulation-simulation thermal control model for space station application

    NASA Technical Reports Server (NTRS)

    Hartley, James G.; Colwell, Gene T.

    1988-01-01

    The goal of this program is to develop an improved capability for comparing various techniques for thermal management in the space station. The work involves three major tasks: Develop a Technology Options Data Base (Task 1); Complete Development of a Space Station Thermal Control Technology Assessment Program (Task 2); and Develop and Evaluate Emulation Models (Task 3).

  5. High-Emittance, Low-Absorbance Thermal-Control Coating

    NASA Technical Reports Server (NTRS)

    Le, Huong G.; Obrien, Dudley L.

    1993-01-01

    Modified process for anodizing 5657 aluminum alloy results in Al2O3 surfaces with infrared emissivities as great as 0.92 and solar absorptivities as small as 0.2. Coating enables fabrication of radiators requiring less surface, and hence less weight: radiators with coating weigh approximately 7 percent less than thermally equivalent radiators made with older anodizing processes. Coating applied easily and economically, and retains all of desirable properties of standard anodized coatings.

  6. Thermal Vacuum Testing of a Small Loop Heat Pipe with a PTFE Wick for Spacecraft Thermal Control

    NASA Astrophysics Data System (ADS)

    Nagano, Hosei; Nishikawara, Masahito; Fukuyoshi, Fuyuko; Nagai, Hiroki; Ogawa, Hiroyuki

    A loop heat pipe (LHP) is a two-phase heat transfer device that utilizes the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in fine porous wicks to circulate the fluid. LHPs have been gaining increased acceptance for spacecraft missions, and recently, small LHPs on the order of a few hundred watts have been investigated for this purpose. In this study, a 100W class small LHP with a polytetrafluoroethylene wick as the primary wick was designed and fabricated for thermal vacuum testing. The LHP has a thermoelectric converter (TEC) to control the loop operating temperature. The thermal vacuum test was conducted to evaluate the LHP's thermal performance under a space-simulated environment such as ultra-high-vacuum, and black body radiation, except for a gravitational effect. The loop showed large thermal hysteresis before and after the large and small head loads. The TEC was able to control the loop operating temperature with a small amount of electrical power.

  7. A very low thermal EMF computer-controlled scanner

    NASA Astrophysics Data System (ADS)

    Chayramy, R.; Solve, S.

    2013-02-01

    A very low thermal electromotive force (EMF) scanner was designed in our laboratory five years ago. The device was developed to automatically calibrate up to 12 Zener-based voltage standards by comparison to a programmable Josephson voltage standard, but can be used in any set-up that requires automation to set electrical contacts with a repeatability of the thermal EMFs at the nanovolt level. This paper explains how this device achieves robustness of metrological characteristics even after several thousand connections since its first installation. One scanner position shows a voltage offset of 60 nV with a standard deviation of 7 nV while the remaining 11 show offset values between -15 nV and +25 nV with an associated Type A uncertainty varying from 2 to 7 nV. Herein, we present the results of a series of measurements on all channels. Sub-nanovolt residual thermal short EMF variations are demonstrated using Allan variance statistical analysis.

  8. Near-field radiative thermal control with graphene covered on different materials

    NASA Astrophysics Data System (ADS)

    Wang, Ao; Zheng, Zhiheng; Xuan, Yimin

    2016-09-01

    Based on the structure of double-layer parallel plates, this paper demonstrates that thermal radiation in near field is greatly enhanced due to near-field effects, exceeding Planck‧s blackbody radiation law. To study the effect of graphene on thermal radiation in near field, the authors add graphene layer into the structure and analyze the ability of graphene to control near-field thermal radiation with different materials. The result indicates that the graphene layer effectively suppresses the near-field thermal radiation between metal plates or polar-dielectric plates, having good ability of thermal insulation. But for doped-silicon plates, depending on the specific models, graphene has different control abilities, suppressing or enhancing, and the control abilities mainly depend on the material graphene is attached to. The authors also summarize some common rules about the different abilities of graphene to control the near-field thermal radiation. In consideration of the thickness of 0.34 nm of monolayer graphene, this paper points out that graphene plays a very important role in controlling the near-field thermal radiation.

  9. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  10. Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.

    1992-01-01

    The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.

  11. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  12. Development of an Emulation-simulation Thermal Control Model for Space Station Application

    NASA Technical Reports Server (NTRS)

    Colwell, G. T.; Hartley, J. G.

    1986-01-01

    Analysis techniques to evaluate the effects of changing thermal loads and the methods utilized to control temperature distributions in the orbital space station are essential. Analysis techniques including a user-friendly computer program, were developed which should prove useful in thermal design and system analysis of the the space station. The program uses a data base and user input to compute costs, sizes, and power requirements for individual components and complete systems. User input consists of selecting mission parameters, selecting thermal acquisition configurations, transport systems and distances, and thermal rejection configurations.

  13. TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed

    NASA Technical Reports Server (NTRS)

    Bull, John

    1990-01-01

    The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.

  14. Development of space stable thermal control coatings for use on large space vehicles

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.

    1972-01-01

    A reserach project to develop space stable thermal control coatings for large surfaces is discussed. Four major tasks are considered: (1) pigment development, (2) binder development, (3) environmental effects evaluations, and (4) general coatings investigations.

  15. Space shuttle environmental and thermal control/life support system study

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1973-01-01

    The study of the space shuttle environmental and thermal control/life support system is summarized. Design approaches, system descriptions, maintenance requirements, testing requirements, instrumentation, and ground support equipment requirements are discussed.

  16. Interior and exterior ballistics coupled optimization with constraints of attitude control and mechanical-thermal conditions

    NASA Astrophysics Data System (ADS)

    Liang, Xin-xin; Zhang, Nai-min; Zhang, Yan

    2016-07-01

    For solid launch vehicle performance promotion, a modeling method of interior and exterior ballistics associated optimization with constraints of attitude control and mechanical-thermal condition is proposed. Firstly, the interior and external ballistic models of the solid launch vehicle are established, and the attitude control model of the high wind area and the stage of the separation is presented, and the load calculation model of the drag reduction device is presented, and thermal condition calculation model of flight is presented. Secondly, the optimization model is established to optimize the range, which has internal and external ballistic design parameters as variables selected by sensitivity analysis, and has attitude control and mechanical-thermal conditions as constraints. Finally, the method is applied to the optimal design of a three stage solid launch vehicle simulation with differential evolution algorithm. Simulation results are shown that range capability is improved by 10.8%, and both attitude control and mechanical-thermal conditions are satisfied.

  17. Modeling Focused Ultrasound Exposure for the Optimal Control of Thermal Dose Distribution

    PubMed Central

    Sassaroli, E.; Li, K. C. P.; O'Neill, B. E.

    2012-01-01

    Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments. PMID:22593669

  18. A thermal control system for long-term survival of scientific instruments on lunar surface

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Iijima, Y.; Sakatani, N.; Otake, H.; Tanaka, S.

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  19. A thermal control system for long-term survival of scientific instruments on lunar surface.

    PubMed

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system. PMID:24689621

  20. A thermal control system for long-term survival of scientific instruments on lunar surface

    SciTech Connect

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  1. Fabrication and Testing of a Passive Re-Deployable Radiator for Autonomous Thermal Control

    NASA Astrophysics Data System (ADS)

    Nagano, Hosei; Matsumoto, Kan; Ohnishi, Akira; Higuchi, Ken; Nagasaka, Yuji

    2007-01-01

    This paper presents the development of a lightweight 100W-class re-deployable radiator with environment-adaptive functions. This radiator, reversible thermal panel (RTP), which consists of flexible high thermal conductive graphite sheets and a single crystal shape memory alloy as a passive reversible actuator, changes its function from a radiator to a solar absorber by deploying/stowing the reversible fin upon changes in the heat dissipation and thermal environment. A deployment/stowing test in atmospheric condition and a thermal vacuum test were conducted. The fin deployment angle could be changed from 0 deg to 140 deg with the change of the RTP temperature from -40 C to +40 C in the deployment/stowing test using a constant temperature chamber. Autonomous thermal control function was demonstrated in the thermal vacuum test although the fin could not be entirely stowed under cold condition.

  2. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  3. Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  4. Thermal control system and method for a passive solar storage wall

    DOEpatents

    Ortega, Joseph K. E.

    1984-01-01

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  5. Thermal control of power supplies with electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.

  6. Automatic thermal control switches. [for use in Space Shuttle borne Get Away Special container

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1982-01-01

    Two automatic, flexible connection thermal control switches have been designed and tested in a thermal vacuum facility and in the Get Away Special (GAS) container flown on the third Shuttle flight. The switches are complementary in that one switch passes heat when the plate on which it is mounted exceeds some selected temperature and the other switch will pass heat only when the mounting plate temperature is below the selected value. Both switches are driven and controlled by phase-change capsule motors and require no other power source or thermal sensors.

  7. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    NASA Technical Reports Server (NTRS)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  8. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  9. Diagnostics and Control in the Thermal Spray Process

    SciTech Connect

    Fincke, James Russell; Swank, William David; Bewley, Randy Lee; Haggard, Delon C; Gevelber, M.; Wroblewski, D.

    2001-12-01

    The plasma-spray process features complex plasma-particle interactions that can result in process variations that limit process repeatability and coating performance. This paper reports our work on the development of real-time diagnostics and control for the plasma spray process. The strategy is to directly monitor and control those degrees of freedom of the process that are observable, controllable and affect resulting coating properties. This includes monitoring of particle velocity and temperature as well as the shape and trajectory of the spray pattern. Diagnostics that have been developed specifically for this purpose are described along with the demonstration of a closed loop process controller based on these measurements.

  10. Mercury emissions control technologies for mixed waste thermal treatment

    SciTech Connect

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.; Roberts, D.; Broderick, T.

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  11. Design and evaluation of automatic control for human/liquid cooling garment thermal interaction

    NASA Astrophysics Data System (ADS)

    Nyberg, Karen Lujean

    An automatic control system was designed and developed to control the thermal comfort of an astronaut wearing a liquid cooling garment (LCG). Experimental trials were run with test subjects performing arm cranking exercise in an environmental chamber. The thermal control algorithm incorporates the use of carbon dioxide production as a measure of metabolic rate to initiate the control response and mean body temperature, as a function of ear canal and skin temperatures, to provide feedback of the human thermal state to the controller. Nine test subjects each completed three, ninety-minute tests in three different environmental temperatures. Subjective comfort levels were obtained from the subjects throughout each test. Evaluation of subjective comfort level and quantitative energy storage indicates good performance of the controller in maintaining thermal neutrality for the subject over a wide range of environmental and transient metabolic states. The Wissler human thermoregulation model was utilized in the control design process and was used to further analyze the experimental results following testing. Subsequent application of the model allowed evaluation of additional protocols for which the LCG thermal controller may be used in the future.

  12. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler

    NASA Technical Reports Server (NTRS)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg

    2011-01-01

    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  13. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig

    2014-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.

  14. MMOD Protection and Degradation Effects for Thermal Control Systems

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2014-01-01

    Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.

  15. Controlling the Thermal Environment of the Co-ordinated Classroom.

    ERIC Educational Resources Information Center

    Harmon, Darell Boyd

    The classroom environment is a working surround in which children, through participating in organized experiences, can grow and develop in an optimum manner. Classroom design requires organization of principles of environmental control in order to assure efficient and successful performance. This control cannot be left to chance. In considering…

  16. Advances in thermal control and performance of the MMT M1 mirror

    NASA Astrophysics Data System (ADS)

    Gibson, J. D.; Williams, G. G.; Callahan, S.; Comisso, B.; Ortiz, R.; Williams, J. T.

    2010-07-01

    Strategies for thermal control of the 6.5-meter diameter borosilicate honeycomb primary (M1) mirror at the MMT Observatory have included: 1) direct control of ventilation system chiller setpoints by the telescope operator, 2) semiautomated control of chiller setpoints, using a fixed offset from the ambient temperature, and 3) most recently, an automated temperature controller for conditioned air. Details of this automated controller, including the integration of multiple chillers, heat exchangers, and temperature/dew point sensors, are presented here. Constraints and sanity checks for thermal control are also discussed, including: 1) mirror and hardware safety, 2) aluminum coating preservation, and 3) optimization of M1 thermal conditions for science acquisition by minimizing both air-to-glass temperature differences, which cause mirror seeing, and internal glass temperature gradients, which cause wavefront errors. Consideration is given to special operating conditions, such as high dew and frost points. Precise temperature control of conditioned ventilation air as delivered to the M1 mirror cell is also discussed. The performance of the new automated controller is assessed and compared to previous control strategies. Finally, suggestions are made for further refinement of the M1 mirror thermal control system and related algorithms.

  17. Analysis of heart rate control to assess thermal sensitivity responses in Brazilian toads.

    PubMed

    Natali, J E S; Santos, B T; Rodrigues, V H; Chauí-Berlinck, J G

    2015-01-01

    In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C. PMID:25493382

  18. Analysis of heart rate control to assess thermal sensitivity responses in Brazilian toads.

    PubMed

    Natali, J E S; Santos, B T; Rodrigues, V H; Chauí-Berlinck, J G

    2014-10-24

    In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C. PMID:25351239

  19. Analysis of heart rate control to assess thermal sensitivity responses in Brazilian toads

    PubMed Central

    Natali, J.E.S.; Santos, B.T.; Rodrigues, V.H.; Chauí-Berlinck, J.G.

    2014-01-01

    In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C. PMID:25493382

  20. Control of surface thermal scratch of strip in tandem cold rolling

    NASA Astrophysics Data System (ADS)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  1. Thermally driven piston assembly and position control therefor

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald L. (Inventor); Bryant, Robert G. (Inventor)

    2010-01-01

    A thermally driven piston assembly's housing has (i) a first material slidingly fitted therein, and (ii) at least one plug of a second material slidingly fitted therein and abutting the first material. The first material is one (e.g., a liquid crystal elastomer) that undergoes a stiffness change and/or a dimensional change when subjected to a temperature change in the temperature range of interest. When subjected to the temperature change while in the housing, the first material is restricted to changing dimensionally along a single dimension. The second material retains its shape and size throughout the temperature range of interest. As a result, the plug moves in the housing in correspondence with the dimensional change of the first material or the plug's movement is damped by the stiffness change of the first material.

  2. Performance of a flight qualified, thermoelectrically temperature controlled QCM sensor with power supply, thermal controller and signal processor

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.

    1980-01-01

    A thermoelectrically temperature controlled quartz crystal microbalance (QCM) system was developed for the measurement of ion thrustor generated mercury contamination on spacecraft. Meaningful flux rate measurements dictated an accurately held sensing crystal temperature despite spacecraft surface temperature variations from -35 C to +60 C over the flight temperature range. An electronic control unit was developed with magentic amplifier transformer secondary power supply, thermal control electronics, crystal temperature analog conditioning and a multiplexed 16 bit frequency encoder.

  3. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  4. Characteristics of the infant thermal environment in the control population of a case-control study of SIDS.

    PubMed

    Ponsonby, A L; Dwyer, T; Cochrane, J A; Gibbons, L E; Jones, M E

    1992-01-01

    This report examines the thermal environment during last sleep of a control population to investigate how the thermal environment of the infant's bedroom varies by season, external temperature and by certain maternal and infant characteristics. Two age-matched control infants were chosen for each case, one of which was also matched on birthweight. The home visits were not pre-arranged and were matched on climatic conditions, time of year and time period of day for the index case. The initial response rate for controls (n = 108) was 86%. Although there was a large amount of variation in the infant thermal environment, thermal insulation correlated with room temperature (r = -0.44, P = 0.0001) and external temperature (r = -0.30, P = 0.002). The thermal environment of the infant, as defined by excess thermal insulation for room temperature, did not vary by indoor or outdoor temperature, but higher average values were observed in teenage mothers (mean difference = 2.7 tog [95% Cl = 0.3, 5.2]), infants who slept in an adult bed (mean difference = 2.6 tog [-0.1, 5.4]) and infants with an illness (mean difference = 0.8 tog [-0.3, 1.9]). There was a tendency for the thermal environment of infants to be higher and more variable during winter, supporting previous hypotheses that paradoxical overheating may occur in some infants during winter. Further work is required to provide a set of recommendations on the optimal thermal conditions for post-neonatal infants. PMID:1524881

  5. Degradation of thermal control materials under a simulated radiative space environment

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Sridhara, N.

    2012-11-01

    A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite

  6. Thermal Control Using Liquid-Metal Bridge Switches

    NASA Technical Reports Server (NTRS)

    Hirsa, Amir H.; Olles, Joseph; Tilger, Christopher

    2013-01-01

    A short term effort (3-months) was undertaken to demonstrate the feasibility of a novel method to locally control the heat transfer rate and demonstrate the potential to achieve a turndown ratio of approximately 10:1. The technology had to be demonstrated to be at a TRL of 2-3, with a plan to advance it to a TRL 5-6. Here, we show that the concept recently developed in our laboratory, namely the pinned-contact, double droplet switch made by overfilling a hole drilled in a suitable substrate can be implemented with a low-melting temperature metal. When toggled near a second substrate, a liquid bridge can be reversibly connected or disconnected, on demand. We have shown experimentally that liquid-metal bridge switches can be made from gallium with a suitable choice of substrate materials, activation strategies, and control techniques. Individual as well as arrays of gallium bridge switches were shown to be feasible and can be robustly controlled. The very short response time of the bridge connection and disconnection (on the order of 1 millisecond) provides for utility in a wide range of applications. The liquid bridge switches may be controlled actively or passively. We have shown through computations and analysis that liquid bridge switches provide locally large turndown ratios (on the order of 103:1), so a relatively sparse packing of them would be needed to obtain the desired turndown ratio of 10:1. For the laboratory demonstrations, pressure activation was utilized. Simple designs for a passive control strategy are presented which are highly attractive for several reasons, including i) large turndown ratio, ii) no solid-moving parts, and iii) stable operation. Finally, we note that passive systems do not require any electronics for their control. This along with the relatively small molecular weight of candidate materials for the system, makes for a robust design outside of Earth?s magnetic field, where spacecraft are subject to significant radiation bombardment.

  7. Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Mohrmann, Jacob Steven

    2007-10-01

    Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8

  8. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  9. Control of an affinity purification procedure using a thermal biosensor.

    PubMed

    Flygare, L; Larsson, P O; Danielsson, B

    1990-10-01

    Lactate dehydrogenase (LDH) was recovered from a solution by affinity binding to an N(6)-(6-aminohexyl)-AMP-Sepharose gel. An enzyme thermistor unit was employed to continously measure the activity of the unbound LDH. The enzyme activity signal from the enzyme thermistor was used in a PID controller to regulate the addition of AMP-Sepharose gel to the LDH solution. In another type of experiment, a desktop computer was utilized to control the addition of the adsorbent. Both systems worked satisfactorily, and enabled a rapid and accurate assessment of correct addition of adsorbent. PMID:18597264

  10. Space Station external thermal control system design and operational overview

    NASA Technical Reports Server (NTRS)

    Raetz, John; Dominick, Jeff

    1992-01-01

    The driving design requirements and resulting design characteristics for a two-phase ammonia system of the Space Shuttle are reviewed with particular attention given to operational and station assembly issues related to system activation and steady-state operation. Design is described at an overall system level and an orbit replaceable unit level. It is concluded that a system flow network must be designed and ammonia pressures must be controlled to acquire waste heat efficiently from all contributing heat sources at a controlled temperature.

  11. Controllable rectification of the axial expansion in the thermally driven artificial muscle

    NASA Astrophysics Data System (ADS)

    Yue, Donghua; Zhang, Xingyi; Yong, Huadong; Zhou, Jun; Zhou, You-He

    2015-09-01

    At present, the concept of artificial muscle twisted by polymers or fibers has become a hot issue in the field of intelligent material research according to its distinguishing advantages, e.g., high energy density, large-stroke, non-hysteresis, and inexpensive. The axial thermal expansion coefficient is an important parameter which can affect its demanding applications. In this letter, a device with high accuracy capacitive sensor is constructed to measure the axial thermal expansion coefficient of the twisted carbon fibers and yarns of Kevlar, and a theoretical model based on the thermal elasticity and the geometrical features of the twisted structure are also presented to predict the axial expansion coefficient. It is found that the calculated results take good agreements with the experimental data. According to the present experiment and analyses, a method to control the axial thermal expansion coefficient of artificial muscle is proposed. Moreover, the mechanism of this kind of thermally driven artificial muscle is discussed.

  12. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  13. Development of porcelain enamel passive thermal control coatings

    NASA Technical Reports Server (NTRS)

    Levin, H.; Lent, W. E.; Buettner, D. H.

    1973-01-01

    A white porcelain enamel coating was developed for application to high temperature metallic alloy substrates on spacecraft. The coating consists of an optically opacifying zirconia pigment, a lithia-zirconia-silica frit, and an inorganic pigment dispersant. The coating is fired at 1000 to 1150 C to form the enamel. The coating has a solar absorptance of 0.22 and a total normal emittance of 0.82 for a 0.017 cm thick coating. The coating exhibits excellent adhesion, cleanability, and integrity and is thermal shock resistant to 900 C. Capability to coat large panels has been demonstrated by successful coating of 30 cm x 30 cm Hastelloy X alloy panels. Preliminary development of low temperature enamels for application to aluminum and titanium alloy substrates was initiated. It was determined that both leaded and leadless frits were feasible when applied with appropriate mill fluxes. Indications were that opacification could be achieved at firing temperatures below 540 C for extended periods of time.

  14. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  15. Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc

    1997-01-01

    This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.

  16. Emittance characterization of thermal control paints, coatings and surfaces using a calorimetric technique

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1994-01-01

    Thermal control surfaces are used in every spacecraft thermal management system to dissipate heat through radiant heat transfer. This paper describes the thermal performance of several thermal control paints, coatings, and surfaces, as characterized by a calorimetric vacuum emissometer. The emissometer is designed to measure the functional emittance of a surface based on heat transfer from an underlying substrate to the surface and from the surface or near surface to a surrounding cold wall. Emittance measurements were made between 200 and 350 K. Polished aluminum, used here as a standard, was found to have a total hemispherical emittance of 0.06, as expected. A velvet black paint, also used here as a standard, was found to have an emittance of 0.94 at room temperature. Other surfaces of interest included a polyurethane-based black paint designated Z-306, a highly polished 316L stainless steel, and an atomic oxygen beam-textured carbon-carbon composite.

  17. The design, effectiveness and construction of passive-thermal-control roofing shingles

    NASA Astrophysics Data System (ADS)

    Wolf, L., Jr.

    1982-09-01

    The concept of a passive thermal control roofing shingle, which is a shingle that reflects the summer sun and absorbs the winter sun, is discussed. It is indicated that it is possible to design shingles for particular latitudes and styles of roof which absorb nearly all of the winter solar energy and reflect nearly all of the summer solar energy. Calculations of the energy savings and cost effectiveness of the passive thermal control roofing shingle indicate that it is most cost effective on all south facing pitched roofs regardless of heating fuel type, and on flat or east or west facing roofs that are heated with costly fuels such as electricity or heating oil. The shingle is most effective on poorly insulated structures. The feasibility of using the passive thermal control roofing shingle in conjunction with a heat pump to pump heat absorbed by the shingle into a well insulated structure is demonstrated. Construction of a variety of models of the passive thermal control roofing shingle illustrate numerous alternate methods of manufacture. A profile extruded, plastic, glazed shingle appears to be the most promising approach. Use of a glazed shingle can increase the effectiveness of the passive thermal control roofing shingle by reducing convective heat losses.

  18. Evaluation of Low-Earth-Orbit Environmental Effects on International Space Station Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.

    1998-01-01

    Many spacecraft thermal control coatings in low Earth orbit (LEO) can be affected by solar ultraviolet radiation and atomic oxygen. Ultraviolet radiation can darken some polymers and oxides commonly used in thermal control materials. Atomic oxygen can erode polymer materials, but it may reverse the ultraviolet-darkening effect on oxides. Maintaining the desired solar absorptance for thermal control coatings is important to assure the proper operating temperature of the spacecraft. Thermal control coatings to be used on the International Space Station (ISS) were evaluated for their performance after exposure in the NASA Lewis Research Center's Atomic Oxygen-Vacuum Ultraviolet Exposure (AO-VUV) facility. This facility simulated the LEO environments of solar vacuum ultraviolet (VUV) radiation (wavelength range, 115 to 200 nanometers (nm)) and VUV combined with atomic oxygen. Solar absorptance was measured in vacuo to eliminate the "bleaching" effects of ambient oxygen on VUV-induced degradation. The objective of these experiments was to determine solar absorptance increases of various thermal control materials due to exposure to simulated LEO conditions similar to those expected for ISS. Work was done in support of ISS efforts at the requests of Boeing Space and Defense Systems and Lockheed Martin Vought Systems.

  19. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain. PMID:22317152

  20. Thermal research of infrared sight thermoelectric cooler control circuit under temperature environment

    NASA Astrophysics Data System (ADS)

    Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang

    2010-10-01

    Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.

  1. Release and control of hydrogen sulfide during sludge thermal drying

    SciTech Connect

    Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan

    2015-04-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.

  2. Computer control of a scanning electron microscope for digital image processing of thermal-wave images

    NASA Technical Reports Server (NTRS)

    Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.

    1987-01-01

    Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.

  3. STS-1 environmental control and life support system. Consumables and thermal analysis

    NASA Technical Reports Server (NTRS)

    Steines, G.

    1980-01-01

    The Environmental Control and Life Support Systems (ECLSS)/thermal systems analysis for the Space Transportation System 1 Flight (STS-1) was performed using the shuttle environmental consumables usage requirements evaluation (SECURE) computer program. This program employs a nodal technique utilizing the Fortran Environmental Analysis Routines (FEAR). The output parameters evaluated were consumable quantities, fluid temperatures, heat transfer and rejection, and cabin atmospheric pressure. Analysis of these indicated that adequate margins exist for the nonpropulsive consumables and related thermal environment.

  4. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  5. Temperature control in thermal microactuators with applications to in-situ nanomechanical testing

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan; Zhu, Yong

    2013-01-01

    Thermal microactuators are used in many micro/nano-technologies. To circumvent undesired heating of the end effector, heat sink beams are co-fabricated with the thermal actuator and connected to the substrate. This paper reports a combined experimental and modeling study on the effect of such heat sink beams. Temperature distribution is measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results show that heat sink beams are effective in controlling the temperature of the thermal actuator. Insights on how to achieve both low temperature and large actuator displacement for in-situ mechanical testing of nanoscale specimens are provided.

  6. Analysis and Design of Phase Change Thermal Control for Light Emitting Diode (LED) Spacesuit Helmet Lights

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Nguyen, Hiep X.; Keller, John R.

    2010-01-01

    LED Helmet Extravehicular Activity Helmet Interchangeable Portable (LEHIP) lights for the Extravehicular Mobility Unit (EMU) have been built and tested and are currently being used on the International Space Station. A design is presented of the passive thermal control system consisting of a chamber filled with aluminum foam and wax. A thermal math model of LEHIP was built and correlated by test to show that the thermal design maintains electronic components within hot and cold limits for a 7 hour spacewalk in the most extreme EVA average environments, and do not pose a hazard to the crew or to components of the EMU.

  7. Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling.

    PubMed

    Epp, E; Ponnampalam, N; McMullin, J N; Decorby, R G

    2009-09-28

    We describe the thermal tuning of air-core Bragg waveguides, fabricated by controlled formation of delamination buckles within a multilayer stack of chalcogenide glass and polymer. The upper cladding mirror is a flexible membrane comprising high thermal expansion materials, enabling large tuning of the air-core dimensions for small changes in temperature. Measurements on the temperature dependence of feature heights showed good agreement with theoretical predictions. We applied this mechanism to the thermal tuning of modal cutoff conditions in waveguides with a tapered core profile. Due to the omnidirectional nature of the cladding mirrors, these tapers can be viewed as waveguide-coupled, tunable Fabry-Perot filters. PMID:19907522

  8. NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control

    NASA Astrophysics Data System (ADS)

    1992-09-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. On 21-25 Sept. 1992, leading experts from academia, government laboratories, and industry met at Cambridge University, England to discuss laboratory studies and industrial implementation of non-thermal plasmas for the abatement of hazardous gaseous wastes. Papers presented at the workshop are included.

  9. Pressure control and analysis report: Hydrogen Thermal Test Article (HTTA)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Tasks accomplished during the HTTA Program study period included: (1) performance of a literature review to provide system guidelines; (2) development of analytical procedures needed to predict system performance; (3) design and analysis of the HTTA pressurization system considering (a) future utilization of results in the design of a spacecraft maneuvering system propellant package, (b) ease of control and operation, (c) system safety, and (d) hardware cost; and (4) making conclusions and recommendations for systems design.

  10. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions

    PubMed Central

    Dyachenko, P. N.; Molesky, S.; Petrov, A. Yu; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M.

    2016-01-01

    Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C. PMID:27263653

  11. An integrated model of the Space Station Freedom active thermal control system

    NASA Technical Reports Server (NTRS)

    Tandler, John J.; Bilardo, Vincent J., Jr.

    1989-01-01

    A flexible, generic model of the Space Station Freedom active thermal control system has been developed which is designed to analyze dynamic interactions of the major subsystems of the ATCS. Models are described for the components of the central thermal bus, the radiator external thermal environment, and the internal thermal control system. Two programs are described which facilitate the development of the integrated ATCS model. The first, SIMRAD, simplifies an external thermal environment model given a desired level of accuracy in integrated model performance. The model reduction technique is shown to reduce model execution time significantly while maintaining the desired accuracy. The second, GENFLU, generates SINDA/FLUINT input code for the evaporator and load interface models and automates the integration of load submodels. The component submodels and integration techniques were used to create an integrated model of the thermal control system for an early assembly flight configuration. The results demonstrate the utility of the integrated model in studying dynamic interactions of the ATCS subsystems.

  12. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions.

    PubMed

    Dyachenko, P N; Molesky, S; Petrov, A Yu; Störmer, M; Krekeler, T; Lang, S; Ritter, M; Jacob, Z; Eich, M

    2016-01-01

    Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C. PMID:27263653

  13. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions

    NASA Astrophysics Data System (ADS)

    Dyachenko, P. N.; Molesky, S.; Petrov, A. Yu; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M.

    2016-06-01

    Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C.

  14. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  15. Decoupled thermal control for space station furnace facility using sliding mode techniques

    NASA Astrophysics Data System (ADS)

    Jackson, Mark E.; Shtessel, Yuri B.

    1996-03-01

    The Space Station Furnace Facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The Thermal Control System (TCS) is defined as one of the core systems and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The paper formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operate in the local sliding modes, resulting in control system invariance to interaction disturbances. The desired de-coupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities and variations of the pump pressure supplied to the controlled subsystems.

  16. Miniature Heat Transport System for Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  17. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.

  18. Preparation of pigments for space-stable thermal control coatings

    NASA Technical Reports Server (NTRS)

    Campbell, W. B.; Smith, R. G.

    1972-01-01

    The identification and control of vapor phase reaction kinetics to produce pigments by homogeneous nucleation were achieved. A vapor phase apparatus was designed, fabricated, and calibrated through 1800 C. Vapor phase reactions were analyzed, calculations made, and powders of alumina, rutile, zinc orthotitanate (in a mixed phase), calcium tungstate, and lanthana were produced by homogeneous nucleation. Electron microscopy shows uniform particle morphology and size, and supports anticipated advantages of vapor-phase homogeneous nucleation; namely, purity, freedom from defects, and uniform particle sizing without grinding.

  19. Minimizing Thermal Deformation of Aerostatic Spindle System by Temperature Control of Supply Air

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hayato; Matsumura, Shimpei; Hashizume, Hitoshi; Shinno, Hidenori

    Aerostatic spindle systems have been widely used in many machine tools due to their low heat generation and high-speed capability. To meet industrial demands for higher accuracy and higher productivity, such spindle systems have recently become important as the kernel component in an ultraprecision machine tool. In this study, therefore, thermal deformation control for aerostatic spindle systems has been proposed considering heat balance in an objective spindle bearing system. In the proposed method, the temperature of supply air is controlled by monitoring that of exhaust air to minimize the thermal deformation of the spindle. The performance of the thermal deformation control system developed has been evaluated through a series of actual experiments.

  20. An Improved Formulation for Calorimetric Emittance Testing of Spacecraft Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Kauder, Lonny R.

    2008-01-01

    Spacecraft often really heavily on passive thermal control to maintain operating temperature. An important parameter in the spacecraft heat balance equation is the emittance of thermal control coatings as a function of coating temperature. One method for determining the emittance of spacecraft thermal control from elevated temperature to cryogenic temperatures relies on a calorimetric technique. The fundamental equation governing this test method can be found in numerous places in the literature and although it generally provides reasonable results, its formulation is based on a conceptual flaw that only becomes apparent when the sample temperature approaches the wall temperature during testing. This paper investigates the cause for this error and develops the correct formulation for calorimetric emittance testing. Experimental data will also be presented that illustrates the difference between the two formulations and the resulting difference in the calculated emittance.

  1. The performance of thermal control coatings on LDEF and implications to future spacecraft

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  2. A dynamic solar-electric power/thermal control system for spacecraft.

    NASA Technical Reports Server (NTRS)

    Davis, B. K.

    1972-01-01

    This paper describes a solar-electric power and active thermal control system for spacecraft with solar energy to electricity conversion efficiency of more than 20%. Briefly, the solar heat energy is absorbed by flat plate collectors yielding above 70% of the energy incident for conversion by an organic condensing cycle. The cycle operates between 132 and 6.67 deg C. The working fluid is F-114 which flows through a solar collector to absorb heat, then through a regenerator and into the radiator where it is condensed to a liquid. The cold liquid flows through two paths, one providing regenerator cooling, the other providing spacecraft thermal control. The system total weight is about 170kg/kW of electrical energy produced. The dynamic system replaces batteries by a thermal capacitor for eclipse period energy storage, thereby eliminating many battery charging and control problems as well as improving efficiency and weight characteristics of the system.

  3. The continuing materials analysis of the thermal control surfaces experiment (S0069)

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Zwiener, James M.; Mell, Richard J.

    1993-01-01

    The long term effects of the natural and induced space environment on spacecraft surfaces are critically important to future spacecraft - including Space Station Freedom. The damaging constituents of this environment include thermal vacuum, solar ultraviolet radiation, atomic oxygen, particulate radiation, and the spacecraft induced environment. The behavior of materials and coatings in the space environment continues to be a limiting technology for spacecraft and experiments. The Thermal Control Surfaces Experiment (TCSE) was flown on the National Aeronautics and Space Administration (NASA) Long Duration Exposure Facility (LDEF) to study these environmental effects on surfaces-particularly on thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive pre- and post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE is the first space experiment to directly measure the total hemispherical reflectance of thermal control surfaces in the same way they are routinely measured in the laboratory. The trend analyses of selected coatings performed as part of the continuing post-flight analysis of the TCSE are described. A brief description of the TCSE and its mission on LDEF are presented. There are several publications available that describe the TCSE, it's mission on LDEF, and initial results in greater detail. These are listed in the TCSE Bibliography.

  4. Thermal control of shape memory alloy artificial anal sphincters for complete implantation

    NASA Astrophysics Data System (ADS)

    Luo, Yun; Okuyama, Takeshi; Takagi, Toshiyuki; Kamiyama, Takamichi; Nishi, Kotaro; Yambe, Tomoyuki

    2005-02-01

    This paper presents an approach for the thermal control of an artificial anal sphincter using shape memory alloys. An artificial anal sphincter has been proposed by the authors to resolve problems of severe fecal incontinence in patients. The basic design of the artificial sphincter consists of two all-round shape memory alloy plates as the main functional parts, and heaters that are attached to the SMA plates for generating the thermal cycles required for the phase transformation accompanied shape changes of the plates. The SMA artificial sphincter could be fitted around intestines, performing an occlusion function at body temperature and a release function upon heating. Thermal compatibility of such prostheses is most important and is critical for practical use. Since a temperature rise of approximately 20 °C from body temperature is needed to activate a complete transformation of SMA plates, an earlier model of ours allowed only a short period of heating, resulting in incomplete evacuation. In this work, a thermal control approach using a temperature-responsive reed switch has been incorporated into the device to prevent the SMA plates from overheating. Then, with thermal insulation the artificial anal sphincter is expected to allow a long enough opening period for fecal continence; without any thermal impact to the surrounding tissues that would be in contact with the artificial sphincter. Thermal control was confirmed in both in vitro and in vivo experiments, suggesting the effectiveness of the present approach. The modified SMA artificial anal sphincter has been implanted into animal models for chronic experiments of up to 4 weeks, and has exhibited good performance by maintaining occlusion and release functions. At autopsy, no anomaly due to thermal impact was found on the surfaces of intestines that had been in contact with the artificial anal sphincter.

  5. Coatings in space environment. [for satellite thermal control

    NASA Technical Reports Server (NTRS)

    Triolo, J. J.; Heaney, J. B.; Hass, G.

    1978-01-01

    The behavior in space environment of evaporated Al uncoated and coated with reactively deposited silicon oxide (SiOx), electron beam evaporated SiO2 and Al2O3, and Al and Ag coated with double layers of Al2O3 + SiOx is compared with metallized Teflon and Kapton, anodized Al (Alzak), and white paints. Flight data from three calorimetric experiments and one reflectometer flown in different orbital environments are compared with laboratory test data. The results demonstrate that evaporated thin films are extremely versatile and stable coatings for space applications. Through the use of control samples studied in different laboratory tests and monitored for up to 12,000 hours of solar exposure in different orbits, a classification of orbital severity and an estimate of laboratory simulation accuracy is obtained.

  6. Photo-controllable thermal diffusivity and thermal conductivity driven by the orientation change of nematic liquid crystal with azo-dendrimers

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Takezoe, Hideo; Haba, Osamu; Yonetake, Koichiro; Morikawa, Junko

    2015-11-01

    We measured the temperature dependences of anisotropic thermal properties, i.e., thermal diffusivity, thermal effusivity, thermal conductivity, and heat capacity per unit volume, of a nematogen 4'-n-pentyloxybiphenyl-4-carbonitrile (5OCB) containing a small amount (0.02 wt. %) of dendritic azobenzene derivatives (azo-dendrimer), using a temperature wave method. The azo-dendrimers spontaneously adsorb on cell surfaces and act as a command surface, i.e., photo-induced planar/homeotropic alignment by ultraviolet/visible light illumination. By using this effect, we demonstrated thermal property changes except for the heat capacity by almost two times within a few tens of seconds. The phenomenon can be applied to a sheet with photo-controllable thermal diffusivity or thermal conductivity.

  7. Fluorescence of thermal control coatings on S0069 and A0114

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Mell, Richard J.; Peters, Palmer N.; Wilkes, Donald R.; Miller, Edgar R.; Gregory, John C.

    1992-01-01

    Many of the thermal control surfaces exposed to the space environment during the 5.8 year LDEF mission experienced changes in fluorescence. All of the thermal control coatings flown on LDEF experiments S0069 and A0114 were characterized for fluorescence under ambient conditions. Some of the black coatings, having protective overcoats, appear bright yellow under ultraviolet exposure. Urethane based coatings exhibited emission spectra shifts toward longer wavelengths in the visible range. Zinc oxide pigment based coatings experienced a quenching of fluorescence, while zinc orthotitanate pigment based and other ceramic type coatings had no measurable fluorescence.

  8. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  9. Automatic control of human thermal comfort with a liquid-cooled garment

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1977-01-01

    Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.

  10. Phase 1 engineering and technical data report for the thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.

  11. Quality control of thermal sprayed coatings with an optoelectric sensor

    SciTech Connect

    Rothe, H.; Brandt, O.; Kasper, A.

    1995-12-31

    This paper reports on the development of a fully optoelectronic optical sensor that has been used for investigations concerning quality control of the high velocity oxygen fuel (HVOF) flame spraying process. The authors focused on the following parameters: WoC with Co, CoCr, Ni at T < 500 C, and Cr{sub 3}C{sub 2} with Ni-Cr, Ni at T < 900 C. Until recently, there was no non-destructive testing (NDT) approach for flame spraying available, which is a major drawback for many critical applications, like in the aerospace industry. For instance, while cooling down after spraying, cracks in the coatings may occur caused by strain. Furthermore, edges may cause similar damage to the coating. The idea was to provide the flame spraying industry with a measurement technology that is applicable in the workshop, has a contactless principle of operation and is fast compared to the commonly used metallography or scanning electron microscopy. The approach is designed for use close to the process, i.e. coating morphology was not the focus of the investigations. On the contrary, they tried to extract quality related information from surface microtopography which can be obtained in a non-destructive and affordable manner. Main points covered in this paper are theoretical considerations, the operational principles and construction of the sensor head, and quantitative metrology of surface damage such as variations in rms-roughness and cracks.

  12. Thermally assisted electric field control of magnetism in flexible multiferroic heterostructures

    PubMed Central

    Liu, Yiwei; Zhan, Qingfeng; Dai, Guohong; Zhang, Xiaoshan; Wang, Baomin; Liu, Gang; Zuo, Zhenghu; Rong, Xin; Yang, Huali; Zhu, Xiaojian; Xie, Yali; Chen, Bin; Li, Run-Wei

    2014-01-01

    Thermal and electrical control of magnetic anisotropy were investigated in flexible Fe81Ga19 (FeGa)/Polyvinylidene fluoride (PVDF) multiferroic heterostructures. Due to the large anisotropic thermal deformation of PVDF (α1 = −13 × 10−6 K−1 and α2 = −145 × 10−6 K−1), the in-plane uniaxial magnetic anisotropy (UMA) of FeGa can be reoriented 90° by changing the temperature across 295 K where the films are magnetically isotropic. Thus, the magnetization of FeGa can be reversed by the thermal cycling between 280 and 320 K under a constant magnetic field lower than coercivity. Moreover, under the assistance of thermal deformation with slightly heating the samples to the critical temperature, the electric field of ± 267 kV cm−1 can well align the UMA along the two orthogonal directions. The new route of combining thermal and electrical control of magnetic properties realized in PVDF-based flexible multiferroic materials shows good prospects in application of flexible thermal spintronic devices and flexible microwave magnetic materials. PMID:25370605

  13. Development of an emulation-simulation thermal control model for space station application

    NASA Technical Reports Server (NTRS)

    Hartley, James G.; Colwell, Gene T.

    1987-01-01

    An improved capability for comparing various techniques for thermal management in the Space Station was developed. Current planning for the orbiting space station calls for a dual keel configuration. The thermal control system (TCS) for the space is composed of a central TCS and internal thermal control systems for the modules, as well as service facilities and attached payloads. The internal TCS may be attacted to the central TCS through a thermal bus. The central TCS is composed of a main transport system which collects waste thermal energy from each of the modules and transports it through coolant lines to the main rejection system. The waste heat loads in the modules arise from electrical and electronic equipment as well as metabolic loads in the manned modules. Several candidate technologies are being considered for acquiring the waste heat loads, for transporting the thermal energy between the acquisition and rejection systems, and for rejecting the waste heat to space. The analysis techniques described were developed for use in evaluating reliability, weights, costs, volumes, and power requirements for configurations using different candidates and different mission parameters.

  14. Thermal Assessment of Swift BAT Instrument Thermal Control System in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2005-01-01

    THE BAT is the primary instrument on the Swift spacecraft. The Swift mission is part of the National Aeronautics and Space Administration (NASA) Medium-Size Explorer (MIDEX) Program, and is managed by Goddard Space Flight Center (GSFC). It is designed to detect gamma ray burst over a broad region of the sky in a low Earth orbit of 600-km altitude and quickly align the telescopes on the spacecraft to the gamma ray source. It was successfully launched into orbit on November 20, 2004. The Swift mission is a first of its kind of multi-wavelength transient observatory for gamma ray burst astronomy. Its mission life is 2 years. The inclination is 22 deg maximum. The spacecraft bus voltage to the instruments is in the 24 V to 35 V range. The instruments will be turned off when the voltage is below 27 V. The BAT is mounted to the optical bench through five titanium flexures. The BAT has been developed at GSFC. Its telescope assembly consists of 256 Detector Modules (DMs) in the Detector Array. There are 16 Detector Array Blocks. Each Block holds 16 DMs, 3 Block Voltage Regulator (BVR) units and 3 Block Command & Data Handling (BCDH) units. The power dissipation of each Block has been measured to be 13 W. Therefore the total power dissipation of the 16 Blocks is 208 W. The DAP is 1.3 m (4.3 ft) x 1 m (3.3 ft), accommodates all the 16 Blocks. It also provides the mounting surface and the positional stability for the Blocks. The DMs are located at the top (+X side) of the DAP and is enclosed by graded-Z shields on the sides and a coded mask at the top. The BVRs and BCDHs are located at the bottom (-X side) of the DAP. Eight Blocks are located at the front (-Z side or radiator side) of the DAP, and eight are located at the rear (+Z side) of the DAP. The DMs and top of DAP are insulated with a 7-layer multi-layer insulation (MLI). There is a 5.08 cm (2 in) x 5.08 cm (2 in) MLI cutout over each Block heater controller so that heat radiates from the heater controller to the mask

  15. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  16. Geometrical layout of a Mars balloon and precalculation of the thermal control system

    NASA Astrophysics Data System (ADS)

    Brockhagen, D.; Hallmann, W.; Reinartz, M.

    1990-10-01

    A solar-balloon (SB) system was geometrically optimized using published data on the ambient conditions on Mars, yielding, as a result, a design of a one-body SB system with an integrated hermetically sealed helium lifting balloon. The SB shape is similar to a Cassinian curve. The maximum diameter is 93.6 m, and maximum height is 122.3 m. Kapton with golden, black, and transparent surface coatings was selected as the balloon's envelope material. Fifty four percent of the total volume is occupied by CO2. The thermal control problem is investigated using a thermal node model with 24 isothermal nodes, with eight of the nodes for He gas, and four for CO2. Calculations are performed for both cases of thermal balance: the steady-state thermal process and the unsteady state process.

  17. Durability of thermal control and environmental protective materials for the SSRMS in simulated LEO environment

    NASA Astrophysics Data System (ADS)

    Chang, S. K.

    1993-06-01

    Nine thermal control and environmental protection materials, selected on the basis of their space pedigree, thermal vacuum stability, and thermo-optical properties, were tested to determine their suitability for the Space Station Remote Manipulator System (SSRMS). The ground based testing was carried out to simulate the effects of atomic oxygen and thermal cycling in the Low Earth Orbit (LEO) environment. These factors are deemed most likely to cause degradation to the selected materials. With the exception of the urethane based coatings, the materials tested demonstrate sufficient resistance to atomic oxygen. The detrimental effect of thermal cycling on the adhesion of the silicate based coatings to aluminum substrate was found to depend on the pigment. A separate experiment on Beta-Cloth showed that its thermo-optical properties remained substantially unchanged as the Teflon coating was progressively removed in a plasma asher.

  18. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  19. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    NASA Astrophysics Data System (ADS)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  20. Investigation of thermal distortion and control of spacecraft based on shape memory materials

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Du, Xingwen; Tan, Huifeng

    2009-07-01

    Gossamer space structures are relatively large, flimsy, and lightweight. As a result, they are more easily affected or distortion by space thermal environments compared to other space structures. This study examines the structural integrity of a Five-Meter Ka-Band Inflatable/Self-Rigidizable Reflect Antenna under space thermal environments. To maintain the required accuracy of the reflector under orbital temperature changes, the Gossamer space structures will utilize an active control system, consisting of boundary control actuators and an electrostatic figure control system with a real time closed loop feedback. An experimental system is established to verify the control mechanism with photogrammetric measurement technique and Bragg fiber grating (FBG) sensor technique. The shape control experiments are finished by measuring and analyzing small amplitude distortion of Five-Meter Ka-Band Inflatable/Self-Rigidizable Reflect Antenna based on the active components made of shape memory alloy (SMA) and shape memory polymer composite (SMPC) material. Then, simulations are finished by NASTRAN finite element software with active effect which is considered to be deformation applied on the analytical model. The amplitude of distortion is obtained by the simulations. Both the experimental and numerical solution show that the amplitude of accuracy are developed which proves the feasibility of shape control using shape memory materials and this investigation explores the feasibility of utilizing an active cable based control system of shape memory materials to reduce global distortion due to thermal loading. It is found that through proper assemble of cable lengths and attachment points, significant thermal distortion reduction is achieved. Specifically, radial distortion due to on-orbit thermal loading .

  1. An Ultrasound Based System for Navigation and Therapy Control of Thermal Tumour Therapies

    NASA Astrophysics Data System (ADS)

    Lemor, R. M.; Tretbar, S. H.; Hewener, H. J.; Guenther, C.; Schwarzenbarth, K.; Ritz, J.-P.; Lehmann, K.

    Interstitial thermal therapies such as laser induced interstitial thermal therapy (LITT) and radio frequency induced interstitial thermal therapy (RFITT) are widely used in treatment of focal lesions of tumors and metastasis. For improving the results and the safety of these therapies it is necessary to optimize the precise heat applicator placement and to control the energy deposition into the tissue. In this paper we present a dedicated system for navigation and therapy control of thermal ablation therapies for liver applications based on ultrasound technology. The navigation scenario offers the possibility to use single or multiple applicators and allows on line three-dimensional puncturing guidance inside and outside the imaging plane of the transducer. Using attenuation changes as an ultrasound parameter for defining the thermal ablation zone the therapy process can be controlled and monitored. Differential attenuation data are derived by using a coded excitation scheme for acquiring multi band attenuation images, which are reconstructed into 3d volume data. The volume data sets are then coregistered with and compared to pretreatment data. A strong increase in attenuation change correlates with tissue coagulation

  2. System Level Analysis of a Water PCM HX Integrated into Orion's Thermal Control System

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Hansen, Scott; Seth, Rubik; Ungar, Eugene

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system in a 100km Lunar orbit. The study verified of the thermal model by using a wax PCM and analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option for any case. Additionally, it was found that the radiator area would have to be increased by at least 40% in order to support a viable water-based PCM HX.

  3. Degradation of Hubble Space Telescope Metallized Teflon(trademark) FEP Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Yoshikawa, Yukio; Castro, J. David; Triolo, Jack J.; Peters, Wanda C.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon Fluorinated Ethylene Propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) have degraded over the seven years the telescope has been in orbit. Astronaut observations and photographic documentation from the Second Servicing Mission revealed severe cracks of the multi-layer insulation (MLI) blanket outer layer in many locations around the telescope, particularly on solar facing surfaces. Two samples, the outer Teflon FEP MLI layer and radiator surfaces, were characterized post- mission through exhaustive mechanical, thermal, chemical, and optical testing. The observed damage to the thermal control materials, the sample retrieval and handling, and the significant changes to the radiator surfaces of HST will be discussed. Each of these issues is addressed with respect to current and future mission requirements.

  4. Electrically conductive, black thermal control coatings for spacecraft application. I - Silicate matrix formulation

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.; Odonnell, T. P.; Hribar, V. F.

    1986-01-01

    The formulation of the graphite silicate paints MH-11 and MH-11Z, which will serve as electrically conductive, heat-resistant thermal control coatings for the Galileo spacecraft's 400 Newton engine plume shield, 10 Newton thruster plume shields, and external shunt radiators, is described, and performance results for these paints are reported. The MH-11 is produced by combining a certain grade of graphite powder with a silicate base to produce a black, inorganic, electrically conductive, room temperature cure thermal control paint having high temperature capability. Zinc oxide is added to the MH-11 formulation to produce the blister resistant painta MH-11Z. The mechanical, chemical, thermal, optical, and radiation characteristics of the coatings are reported. The formulation, mixing, application, and surface preparation of the substrates are described, and a method of determining the electrical resistance of the coatings is demonstrated.

  5. A wide-band fiber optic frequency distribution system employing thermally controlled phase compensation

    NASA Technical Reports Server (NTRS)

    Johnson, Dean; Calhoun, Malcolm; Sydnor, Richard; Lutes, George

    1993-01-01

    An active wide-band fiber optic frequency distribution system employing a thermally controlled phase compensator to stabilize phase variations induced by environmental temperature changes is described. The distribution system utilizes bidirectional dual wavelength transmission to provide optical feedback of induced phase variations of 100 MHz signals propagating along the distribution cable. The phase compensation considered differs from earlier narrow-band phase compensation designs in that it uses a thermally controlled fiber delay coil rather than a VCO or phase modulation to compensate for induced phase variations. Two advantages of the wide-band system over earlier designs are (1) that it provides phase compensation for all transmitted frequencies, and (2) the compensation is applied after the optical interface rather than electronically ahead of it as in earlier schemes. Experimental results on the first prototype shows that the thermal stabilizer reduces phase variations and Allan deviation by a factor of forty over an equivalent uncompensated fiber optic distribution system.

  6. Design of a heat pipe governed thermal control system for the Solar Electric Propulsion Stage /SEPS/

    NASA Technical Reports Server (NTRS)

    Ruttner, L. E.; Wright, J. P.

    1975-01-01

    A 2200-w capacity spacecraft heat rejection system designed for the SEPS and utilizing heat pipe radiator panels has been investigated. The total thermal control system consists of two radiator panels connected to the heat source by variable conductance heat pipes (VCHP's). The system was designed to operate in the 223 to 333 temperature range. The radiators have an emittance of 0.88 at their operational temperature and a fin efficiency of approximately 80 percent. The radiators are thermally isolated from the SEPS and environment by multilayer insulation and thermal shields. Butane was selected as the working fluid for the VCHP because of its low freezing point (135), which is necessary to prevent diffusion freezeout of the liquid during the cold outbond missions. Helium was selected for the control gas. This paper describes the VCHP system, discusses the system design parameters and presents the results of the analyses.

  7. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

    1993-01-01

    One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

  8. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  9. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect

    Gregor P. Henze; Moncef Krarti

    2003-12-17

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building model

  10. Overview of Altair's Thermal Control System and the Associated Technology Development Efforts

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2009-01-01

    Abstract In early 2004, President Bush announced a bold vision for space exploration. One of the goals included in this vision is a return to the moon by 2020. In response to this vision, NASA established the Constellation Program, which includes several project offices. One of the Constellation projects is Altair, which is the next generation Lunar Lander. The future Altair missions are very different than the Lunar missions accomplished during the Apollo era. As such, there are several project risks and design challenges that have never before been addressed. Due to the unique thermal environment associated with this mission, many of these risks and design challenges are associated with the vehicle's thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The current paper will summarize the Altair mission profile, the operational phases, and the thermal design challenges unique to this particular vehicle. The paper will also describe the technology development efforts being performed to mitigate the risks and design challenges. The technology development project is performing a rigorous development effort that includes thermal control system fluids, evaporators, heat exchangers, and Lunar surface radiators. Constellation Program, there are several project offices. One of these projects includes the development of NASA's new lunar lander vehicle. The overall mission architecture for this vehicle, Altair, is very similar to Apollo's architecture. This paper will provide the reader with an overview of the Altair vehicle. In addition, Altair's thermal control system, including the functionality and the hardware, will be discussed. The paper will also describe the technology

  11. Use of anomolous thermal imaging effects for multi-mode systems control during crystal growth

    NASA Technical Reports Server (NTRS)

    Wargo, Michael J.

    1989-01-01

    Real time image processing techniques, combined with multitasking computational capabilities are used to establish thermal imaging as a multimode sensor for systems control during crystal growth. Whereas certain regions of the high temperature scene are presently unusable for quantitative determination of temperature, the anomalous information thus obtained is found to serve as a potentially low noise source of other important systems control output. Using this approach, the light emission/reflection characteristics of the crystal, meniscus and melt system are used to infer the crystal diameter and a linear regression algorithm is employed to determine the local diameter trend. This data is utilized as input for closed loop control of crystal shape. No performance penalty in thermal imaging speed is paid for this added functionality. Approach to secondary (diameter) sensor design and systems control structure is discussed. Preliminary experimental results are presented.

  12. In-flight testing of the space shuttle orbiter thermal control system

    NASA Technical Reports Server (NTRS)

    Taylor, J. T.

    1985-01-01

    In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented.

  13. Development of space-stable thermal control coatings for use on large space vehicles

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Harada, Y.

    1976-01-01

    The potential of zinc orthotitanate as a pigment for spacecraft thermal control was demonstrated. The properties and performance of pigments prepared by solid state, coprecipitation, and mixed oxalate methods were compared. Environmental tests and subsequent spectral analysis were given primary emphasis.

  14. The role of non-thermal factors in the control of skin blood flow during exercise.

    PubMed

    Nielsen, B

    1986-01-01

    Arguments in favor of the importance of non-thermal factors in the control of skin circulation are presented. Such factors include exercise, posture, water and electrolyte balance, state of training, and acclimatization. The first three factors probably elicit their effects via high- and low-pressure baroreceptors, while the mechanisms involved for the remainder are unknown. PMID:3529655

  15. MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Shakkottai, P.; Sur, T. W.

    2000-01-01

    The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.

  16. Spray characterization of thermal fogging equipment typically used in vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generation of insecticide laden fogs provides an effective method for controlling flying insects. One of the critical factors affecting the effectiveness of a thermal fogging application is the generation of droplets that will remain aloft in the fogging cloud and moves into the area where the ...

  17. Solar-energy conversion system provides electrical power and thermal control for life-support systems

    NASA Technical Reports Server (NTRS)

    Davis, B. K.

    1974-01-01

    System utilizes Freon cycle and includes boiler turbogenerator with heat exchanger, regenerator and thermal-control heat exchangers, low-pressure and boiler-feed pumps, and condenser. Exchanger may be of interest to engineers and scientists investigating new energy sources.

  18. Space shuttle environmental and thermal control life support system computer program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A computer program for the design and operation of the space shuttle environmental and thermal control life support system is presented. The subjects discussed are: (1) basic optimization program, (2) off design performance, (3) radiator/evaporator expendable usage, (4) component weights, and (5) computer program operating procedures.

  19. Life support and internal thermal control system design for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  20. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  1. Overview of the Altair Lunar Lander Thermal Control System Design and the Impacts of Global Access

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA s Constellation Program (CxP) was developed to successfully return humans to the Lunar surface prior to 2020. The CxP included several different project offices including Altair, which was planned to be the next generation Lunar Lander. The Altair missions were architected to be quite different than the Lunar missions accomplished during the Apollo era. These differences resulted in a significantly dissimilar Thermal Control System (TCS) design. The current paper will summarize the Altair mission architecture and the various operational phases associated with the planned mission. In addition, the derived thermal requirements and the TCS designed to meet these unique and challenging thermal requirements will be presented. During the past year, the design team has focused on developing a vehicle architecture capable of accessing the entire Lunar surface. Due to the widely varying Lunar thermal environment, this global access requirement resulted in major changes to the thermal control system architecture. These changes, and the rationale behind the changes, will be detailed throughout the current paper.

  2. Overview of the Altair Lunar Lander Thermal Control System Design and the Impacts of Global Access

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2011-01-01

    NASA's Constellation Program (CxP) was developed to successfully return humans to the Lunar surface prior to 2020. The CxP included several different project offices including Altair, which was planned to be the next generation Lunar Lander. The Altair missions were architected to be quite different than the Lunar missions accomplished during the Apollo era. These differences resulted in a significantly dissimilar Thermal Control System (TCS) design. The current paper will summarize the Altair mission architecture and the various operational phases associated with the planned mission. In addition, the derived thermal requirements and the TCS designed to meet these unique and challenging thermal requirements will be presented. During the past year, the design team has focused on developing a vehicle architecture capable of accessing the entire Lunar surface. Due to the widely varying Lunar thermal environment, this global access requirement resulted in major changes to the thermal control system architecture. These changes, and the rationale behind the changes, will be detailed throughout the current paper.

  3. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  4. Modeling and temperature regulation of a thermally coupled reactor system via internal model control strategy

    SciTech Connect

    Lee, S.Y.; Coronella, C.J.; Bhadkamkar, A.S.; Seader, J.D.

    1993-12-01

    A two-stage, thermally coupled fluidized-bed reactor system has been developed for energy-efficient conversion of tar-sand bitumen to synthetic crude oil. Modeling and temperature control of a system are addressed in this study. A process model and transfer function are determined by a transient response technique and the reactor temperature are controlled by PI controllers with tuning settings determined by an internal model control (IMC) strategy. Using the IMC tuning method, sufficiently good control performance was experimentally observed without lengthy on-line tuning. It is shown that IMC strategy provides a means to directly use process knowledge to make a control decision. Although this control method allows for fine tuning by adjusting a single tuning parameter, it is not easy to determine the optimal value of this tuning parameter, which must be specified by the user. A novel method is presented to evaluate that parameter, which must be specified by the user. A novel method is presented to evaluate that parameter in this study. It was selected based on the magnitude of elements on the off-diagonal of the relative gain array to account for the effect of thermal coupling on control performance. It is shown that this method provides stable and fast control of reactor temperatures. By successfully decoupling the system, a simple method of extending the IMC tuning technique to multiinput/multioutput systems is obtained.

  5. Catheter-Based Ultrasound for 3D Control of Thermal Therapy

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Chen, Xin; Wootton, Jeffery; Juang, Titania; Nau, Will H.; Kinsey, Adam; Hsu, I.-Chow; Rieke, Viola; Pauly, Kim Butts; Sommer, Graham; Bouley, Donna

    2009-04-01

    Catheter-based ultrasound applicators have been investigated for delivering hyperthermia and thermal ablation for the treatment of cancer and benign diseases. Technology includes an intrauterine applicator integrated with an HDR ring applicator, interstitial applicators for hyperthermia delivery during brachytherapy, interstitial applicators for tumor ablation, and transurethral devices for conformal prostate ablation. Arrays of multiple sectored tubular transducers have been fabricated for interstitial and intrauterine hyperthermia applicators. High-power interstitial versions have been evaluated for percutaneous implantation with directional or dynamic angular control of thermal ablation. Transurethral applicators include curvilinear transducers with rotational sweeping of narrow heating patterns, and multi-sectored tubular devices capable of dynamic angular control without applicator movement. Performance was evaluated in phantom, excised tissue, in vivo experiments in canine prostate under MR temperature monitoring, clinical hyperthermia, and 3D-biothermal simulations with patient anatomy. Interstitial and intrauterine devices can tailor hyperthermia to large treatment volumes, with multisectored control useful to limit exposure to rectum and bladder. Curvilinear transurethral devices with sequential rotation produce target conforming coagulation zones that can cover either the whole gland or defined focal regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the prostate without applicator manipulation. High-power interstitial implants with directional devices can be used to effectively ablate defined target regions while avoiding sensitive tissues. MR temperature monitoring can effectively define the extent of thermal damage and provided a means for real-time control of the applicators. In summary, these catheter-based ultrasound devices allow for dynamic control of heating profiles

  6. Discrete-mode automatic generation control of a two-area reheat thermal system with new area control error

    SciTech Connect

    Kothari, M.L.; Nanda, J.; Kothari, D.P.; Das, D.

    1989-05-01

    This paper deals with discrete-mode automatic generation control of an interconnected reheat thermal system considering a new area control error (ACEN) based on tie-power deviation, frequency deviation, time error and inadvertent interchange. Optimum integral and proportional integral controllers using the concept of stability margin and ISE technique have been obtained with conventional ACE and new ACE, and their dynamic performances compared for a step load perturbation. Results reveal that regulator based on the new ACE concept always guarantees zero steady state time error and inadvertent interchange unlike in the case of a controller based on conventional ACE. The settling time for tie-power and frequency deviations is however, somewhat more with the controller based on new ACE.

  7. Mission Performance of the GLAS Thermal Control System - 7 Years In Orbit

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.

    2010-01-01

    ICESat (Ice, Cloud and land Elevation Satellite) was launched in 2003 carrying a single science instrument - the Geoscience Laser Altimeter System (GLAS). Its primary mission was to measure polar ice thickness. The GLAS thermal control architecture utilized propylene Loop Heat Pipe (LHP) technology to provide selectable and stable temperature control for the lasers and other electronics over a widely varying mission thermal environment. To minimize expected degradation of the radiators, Optical Solar Reflectors (OSRs) were used for both LHP radiators to minimize degradation caused by UV exposure in the various spacecraft attitudes necessary throughout the mission. Developed as a Class C mission, with selective redundancy, the thermal architecture was single st ring, except for temperature sensors used for heater control during normal operations. Although originally planned for continuous laser operations over the nominal three year science mission, laser anomalies limited operations to discrete measurement campaigns repeated throughout the year. For trending of the science data, these periods were selected to occur at approximately the same time each year, which resulted in operations during similar attitudes and beta angles. Despite the laser life issues, the LHPs have operated nearly continuously over this time, being non-operational for only brief periods. Using mission telemetry, this paper looks at the performance of the thermal subsystem during these periods and provides an assessment of radiator degradation over the mission lifetime.

  8. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  9. Further Analysis of Thermal Control Coatings on MISSE for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Mike; McNulty, Robert; Finckenor, Miria

    2009-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment. Engineers and scientists at the Marshall Space Flight Center have analyzed a number of these materials, including Z93P zinc oxide/potassium silicate coating, YB-71P zinc orthotitanate/potassium silicate coating, NZOT, which is a low-cost alternative to YB-71P, several electrically conductive/static dissipative thermal control coatings, as well as black coatings for part marking and automated rendezvous and capture. These were exposed to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Results from the one-year exposure of MISSE-3 and MISSE-4 are compared to the four-year exposure of MISSE-1 and MISSE-2. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. The effect of contamination from an active space station on the performance of white thermal control coatings is discussed.

  10. System Level Analysis of a Water PCM HX Integrated Into Orion's Thermal Control System Abstract

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Hansen, Scott; Ungar, Eugene; Sheth, Rubik

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable water-based PCM HX.

  11. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  12. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy.

  13. Directional region control of the thermal fractal diffusion of a space body

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Sun, Jie; Liu, Shu-Tang

    2015-05-01

    We present a directional region control (DRC) model of thermal diffusion fractal growth with active heat diffusion in three-dimensional space. This model can be applied to predict the space body heat fractal growth and study its directional region control. When the nonlinear interference term and the inner heat source term are generalized functions, the relationship between the particle aggregation probability and the interference terms can be obtained using the norm theory. We can then predict the aggregation form of particles in different regions. When the nonlinear interference terms in the model are expressed as a trigonometric function and its composite function, our simulations show that the DRC method of thermal fractal diffusion is effective and has reference value for the directional control of actual fractal growth systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61273088, 61473173, and 61473174).

  14. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    PubMed Central

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  15. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration.

    PubMed

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3-dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  16. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use

    NASA Astrophysics Data System (ADS)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly ( P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  17. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    PubMed

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg(-1)), specific cost (0.75 R$ kg(-1)), weight gain (7.3 kg), daily weight gain (0.21 kg day(-1)), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg(-1); 1.03 R$ kg(-1); 5.2 kg; 0.15 kg day(-1), and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat. PMID:26712531

  18. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use

    NASA Astrophysics Data System (ADS)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2015-12-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  19. Advanced thermal control for french-german direct broadcasting satellites TDF1/TVSAT

    NASA Astrophysics Data System (ADS)

    Giovagnoli, F.

    The joint French-German programme of direct broadcasting is comprised of two distinct phases, i.e. 1. the development of the preoperational spacecraft (D3, F3), with 3 active channels out of 5 installed; 2. the production of operational satellites (D5, F5) with 5 channels active, each of them redundant. Aerospatiale is in charge among others of the Thermal Control of the Spacecraft. This paper deals with: thermal concept, analyses and tests programme. The developed platforms should also permit an easy adaptation to various payloads characterized by higher electrical power levels. The high power levels involved imply advanced thermal control for both Main Body and Antenna Module. The thermal control concept must have the following capabilities: • to transfer the concentrated, high power dissipations involved toward outer space, • to maintain in shadow phase (no emission) the correct temperatures with low or zero heating power, • to ensure, in transfer orbit phase (maximum duration about 300 h), satisfactory temperatures with reduced electrical power (satellite 3-axis stabilized, solar generator partially deployed), • to allow extremely non-symmetrical functionings. To solve these various problems, so far never simultaneously encountered on existing satellites, the following devices are used: • various heat pipe networks (D3/F3; 88 heat pipes, total length approx. 118 m), • large quantity of Optical Solar Reflectors (silica mirror, area approx. 6.3 m 2), • lightweight superinsulations, • various types of heaters, • Thermal Control Electronic (TCE) to switch ON/OFF heaters and monitor thermistors.

  20. PICARD payload thermal control system and general impact of the space environment on astronomical observations

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.; Hochedez, J.-F.

    2013-05-01

    PICARD is a spacecraft dedicated to the simultaneous measurement of the absolute total and spectral solar irradiance, the diameter, the solar shape, and to probing the Sun's interior by the helioseismology method. The mission has two scientific objectives, which are the study of the origin of the solar variability, and the study of the relations between the Sun and the Earth's climate. The spacecraft was successfully launched, on June 15, 2010 on a DNEPR-1 launcher. PICARD spacecraft uses the MYRIADE family platform, developed by CNES to use as much as possible common equipment units. This platform was designed for a total mass of about 130 kg at launch. This paper focuses on the design and testing of the TCS (Thermal Control System) and in-orbit performance of the payload, which mainly consists in two absolute radiometers measuring the total solar irradiance, a photometer measuring the spectral solar irradiance, a bolometer, and an imaging telescope to determine the solar diameter and asphericity. Thermal control of the payload is fundamental. The telescope of the PICARD mission is the most critical instrument. To provide a stable measurement of the solar diameter over three years duration of mission, telescope mechanical stability has to be excellent intrinsically, and thermally controlled. Current and future space telescope missions require ever-more dimensionally stable structures. The main scientific performance related difficulty was to ensure the thermal stability of the instruments. Space is a harsh environment for optics with many physical interactions leading to potentially severe degradation of optical performance. Thermal control surfaces, and payload optics are exposed to space environmental effects including contamination, atomic oxygen, ultraviolet radiation, and vacuum temperature cycling. Environmental effects on the performance of the payload will be discussed. Telescopes are placed on spacecraft to avoid the effects of the Earth atmosphere on

  1. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids.

    PubMed

    Wang, Baodui; Wang, Baogang; Wei, Pengfei; Wang, Xiaobo; Lou, Wenjing

    2012-01-21

    The effect of nanoparticle size (4~44 nm) on the thermal conductivities of heat transfer oils has been systematically examined using iron oxide nanoparticles. Such Fe(3)O(4) nanoparticles were synthesized by a simple one-pot pyrolysis method. The size (16~44 nm), shape and assembly patterns of monodisperse Fe(3)O(4) nanoparticles were modulated by only controlling the amount of Fe(acac)(3). After the as-prepared Fe(3)O(4) NPs were dispersed in heat transfer oils, the prepared magnetic nanofluids exhibit higher thermal conductivity than heat transfer oils, and the enhanced values increase with a decrease in particle size. In addition, the viscosities of all nanofliuids are remarkably lower than that of the base fluid, which has been found for the first time in the nanofluid field. The promising features offer potential application in thermal energy engineering. PMID:22086086

  2. Spin-phonon interactions to control the thermal transport in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Du, S.; Stanek, C. R.; Lashley, J. C.; Liu, X.-Y.; Schulze, R. K.; Smith, J. L.; Safarik, D. J.; Byler, D. D.; McClellan, K. J.; Uberuaga, B. P.; Scott, B. L.; Andersson, D. A.

    2015-03-01

    Despite more than sixty years of intense research of uranium dioxide, a thorough understanding is lacking for the microscopic processes that control its transport and thermodynamic properties. In particular, it is not clear how different degrees of freedom and quasiparticle excitations interact and what is the relationship to the thermal behavior. We report our new experimental and theoretical studies on oriented and well characterized single crystals of uranium dioxide. Our results indicate that strong spin-phonon coupling and resonant scattering are important for understanding the general thermal behavior, and also explains the observed anisotropy in thermal conductivity by coupling to the applied temperature gradient and breaking cubic symmetry. We will discuss implications of these results.

  3. International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned

    NASA Technical Reports Server (NTRS)

    Iovine, John

    2011-01-01

    The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.

  4. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  5. Thermal monitoring, measurement, and control system for a Volatile Condensable Materials (VCM) test apparatus

    NASA Technical Reports Server (NTRS)

    Ives, R. E.

    1982-01-01

    A thermal monitoring and control concept is described for a volatile condensable materials (VCM) test apparatus where electric resistance heaters are employed. The technique is computer based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadrac power controllers. System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones. Overall control tolerance proves to be better than + or - 0.5 C from room ambient temperature to 150 C. Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at 125 + or - 0.2 C over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.

  6. Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James

    2010-01-01

    This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.

  7. A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing.

    PubMed

    Singh, Anika; Pratap Singh, Anubhav; Ramaswamy, Hosahalli S

    2016-06-01

    This work introduces the concept of a controlled agitation thermal process to reduce quality damage in liquid-particulate products during agitation thermal processing. Reciprocating agitation thermal processing (RA-TP) was used as the agitation thermal process. In order to reduce the impact of agitation, a new concept of "stopping agitations after sufficient development of cold-spot temperature" was proposed. Green beans were processed in No. 2 (307×409) cans filled with liquids of various consistency (0% to 2% CMC) at various frequencies (1 to 3 Hz) of RA-TP using a full-factorial design and heat penetration results were collected. Corresponding operator's process time to impart a 10-min process lethality (Fo ) and agitation time (AT) were calculated using heat penetration results. Accordingly, products were processed again by stopping agitations as per 3 agitation regimes, namely; full time agitation, equilibration time agitation, and partial time agitation. Processed products were photographed and tested for visual quality, color, texture, breakage of green beans, turbidity, and percentage of insoluble solids in can liquid. Results showed that stopping agitations after sufficient development of cold-spot temperatures is an effective way of reducing product damages caused by agitation (for example, breakage of beans and its leaching into liquid). Agitations till one-log temperature difference gave best color, texture and visual product quality for low-viscosity liquid-particulate mixture and extended agitations till equilibration time was best for high-viscosity products. Thus, it was shown that a controlled agitation thermal process is more effective in obtaining high product quality as compared to a regular agitation thermal process. PMID:27096606

  8. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  9. The x-ray telescope eROSITA: qualification of the thermal control system

    NASA Astrophysics Data System (ADS)

    Fürmetz, Maria; Eder, Josef; Pfeffermann, Elmar; Predehl, Peter

    2014-07-01

    eROSITA is the core instrument on the Spektrum-Röntgen-Gamma (SRG) mission, scheduled for launch in 2016. The main tasks of the thermal control system are heating of the mirror modules, cooling of the camera electronics, cooling of the CCD detectors and temperature control of the telescope structure in general. Special attention is paid to the camera cooling, since it is the most critical one. The complex assembly with the sevenfold symmetry of the eROSITA telescope requires an innovative design. Large distances and a very low operating temperature (-90°C to -100°C) place high demands on the cooling chain. In total, three different types of low-temperature ethane heat pipes are used to transport the heat from the cameras to two radiators outside the telescope structure. Extreme environmental temperature gradients with the Sun on the one side and the cold space on the other present a real challenge not only to the camera cooling systems, but to the overall thermal control. A thermal model of the complete telescope was used to predict the thermal behavior of the telescope and its subsystems. Through various tests, this model could be improved step by step. The most complex test was the space simulation test of the eROSITA qualification model in January 2013 at the IABG facilities in Ottobrunn, Germany. About 50 heaters, a liquid-nitrogen-cooled chamber and a Sun simulator provided realistic mission conditions. Approximately 200 temperature sensors monitored the relevant temperatures during the test. The results were predominantly within the predicted intervals and therefore not only verified the complete concept but also enabled a further refining of the thermal model. This, in turn, allows for reliable predictions of the thermal behavior during the mission. Some deviations required minor changes in the final design which were implemented and re-qualified in a separate test of the thermal control system flight model in March 2014 in the PANTER test facility of MPE

  10. Model-based planning and real-time predictive control for laser-induced thermal therapy

    PubMed Central

    Feng, Yusheng; Fuentes, David

    2014-01-01

    In this article, the major idea and mathematical aspects of model-based planning and real-time predictive control for laser-induced thermal therapy (LITT) are presented. In particular, a computational framework and its major components developed by authors in recent years are reviewed. The framework provides the backbone for not only treatment planning but also real-time surgical monitoring and control with a focus on MR thermometry enabled predictive control and applications to image-guided LITT, or MRgLITT. Although this computational framework is designed for LITT in treating prostate cancer, it is further applicable to other thermal therapies in focal lesions induced by radio-frequency (RF), microwave and high-intensity-focused ultrasound (HIFU). Moreover, the model-based dynamic closed-loop predictive control algorithms in the framework, facilitated by the coupling of mathematical modelling and computer simulation with real-time imaging feedback, has great potential to enable a novel methodology in thermal medicine. Such technology could dramatically increase treatment efficacy and reduce morbidity. PMID:22098360

  11. Precision control of thermal transport in cryogenic single-crystal silicon devices

    NASA Astrophysics Data System (ADS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5-10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  12. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  13. Precision control of thermal transport in cryogenic single-crystal silicon devices

    SciTech Connect

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-28

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5–10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  14. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    NASA Astrophysics Data System (ADS)

    Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.

    2002-08-01

    Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. heat Flux levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive heat flux levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel heat sinks to representative high heat flux problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel heat sink has been fabricated, and another is in process and will be performance tested. The heat sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.

  15. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    NASA Technical Reports Server (NTRS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  16. Automated control and monitoring of thermal processing using high temperature, short time pasteurization.

    PubMed

    Schlesser, J E; Armstrong, D J; Cinar, A; Ramanauskas, P; Negiz, A

    1997-10-01

    High temperature, short time pasteurization was used to evaluate a computer-based system for controlling the pasteurization process, acquiring data, and monitoring records. Software was used for the control of hot water temperature, flow rate through the centrifugal timing pump, and diversion of under-processed product. Three types of control strategies were conducted: single loop, cascade, and multivariable. The single loop control strategy showed the most rapid responses to temperature changes, but the temperature response curve was slowest to return to its set point. The cascade control strategy showed slower recoveries to temperature changes, but the temperature response curve was smoother. The multivariable control strategy responded slightly faster than the cascade control strategy, and the temperature response curve was slightly smoother than the cascade control strategy. The multivariable control strategy was able to control the flow diversion valve by the use of a lethality controller. The data acquisition system, used to monitor the data obtained from the high temperature, short-time pasteurization system, was within +/- 0.1 degree C of the temperature recorded by the safety thermal limit recorder. Reliability was determined by examining the changes in the position of the flow diversion valve to identify process deviations and by comparing the changes to the event marker on circular charts. The data acquisition system was an effective alternative for monitoring the completeness of data. PMID:9361200

  17. Controlled etching of hexagonal ZnO architectures in an alcohol thermal process

    SciTech Connect

    Wu, Junshu; Xue, Dongfeng

    2010-03-15

    An alcohol thermal technique was applied to the controlled growth of hexagonal ZnO architectures via selective chemical etching. ZnO microdisks were produced first under mild alcohol thermal conditions in presence of formamide. Due to a higher surface energy/atomic density of Zn{sup 2+} {l_brace}0 0 0 1{r_brace} than that of the other faces, hexagonal ZnO microring was obtained by selectively etching positive polar surface of disk-like precursor with a high density of planar defects at the center. The selective etching of ZnO is related to its crystallographic characteristics of surface polarity and chemical activities, which opens a new opportunity for the shape-controlled synthesis of wurtzite-structured materials.

  18. Thermal Control Materials on MISSE-5 with Comparison to Earlier Flight Data

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Zwiener, James M.; Pippin, Gary

    2007-01-01

    A variety of thermal control materials were flown on the Materials on International Space Station Experiment (MISSE)-5. Several types of beta cloth, as used in multi-layer insulation blankets, were flown, including samples from the same batch as used on the International Space Station. Two candidate sunshade materials for the James Webb Space Telescope were also exposed on MISSE-5. The white thermal control coating AZ93 was applied to Kapton instead of aluminum; this sample maintained good solar absorptance and did not indicate any significant level of contamination to the MISSE-5 experiment. Marker coatings maintained their color. Thermo-optical properties are discussed, along with comparable data from MISSE-2 and the Passive Optical Sample Assembly (POSA) - I experiments.

  19. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H.; Ghalei, Behnam; Al-Muhtaseb, Shaheen A.; Terentjev, Eugene M.; Cheetham, Anthony K.; Sivaniah, Easan

    2014-09-01

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  20. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    NASA Astrophysics Data System (ADS)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  1. Increasing refiner production by using motor thermal capacity for protection and control

    SciTech Connect

    Grainger, L.G.; McDonald, M.C.

    1997-05-01

    Industrial motors are typically controlled and operated by closely monitoring the stator winding temperatures and limiting the phase currents within the motor manufacturer`s full-load ampacity rating. A different approach to motor operation and control was implemented at the Blue Ridge Lumber medium density fiberboard (MDF) plant at Whitecourt, Alta., Canada. The capacity control of the refiner is based on using the remaining thermal capacity of the motor as the primary control parameter. In this installation, a 4,000-hp totally enclosed water air cooled (TEWAC) squirrel-cage induction motor is continuously operating above the manufacturer`s rated full-load current, but is being controlled by maintaining thermal capacity at 50%. Temporary current loadings well above this are permitted for up to several minutes to accommodate variations in the wood feed stock to the refiner. This was implemented by installing a modern motor protection relay, communication with a programmable logic controller (PLC) system, and the development of operator interface displays to provide plant operators with the necessary information to monitor the motor parameters. Factors which needed to be considered were the electrical power system limitations, the motor cooling effectiveness, and mechanical limitations imposed by the refiner shaft design.

  2. LDEF (Flight), S0069 : Thermal Control Surfaces Experiment, Tray A09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), S0069 : Thermal Control Surfaces Experiment, Tray A09 EL-1994-00660 The flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The paint dots on clamp blocks located at the centers of the upper and left tray flanges have changed from their original white color to an off-white. Brown discolorations are visible on the experiment trays left and lower flanges. The Thermal Control Surfaces Experiment (TCSE) is completely self-contained in a twelve (12) inch deep LDEF experiment tray and consist of the power and data systems, a carousel, a pre-programmed controller and the sample materials. The experiment structure is fabricated from aluminum alloys and assembled using non-magnetic stainless steel fasteners. The photograph shows the carousel sample mounting plate rotated into the open position and a thermal shroud that covers the experiment structure and the power and data system components. The aluminum sample mounting plate accommodates twenty five (25) active samples mounted in calorimeters to thermally isolate the samples from the mounting plate, twenty-four (24) passive samples and three (3) radiometers. The thermal shroud, an aluminum alloy sheet material that is thermally isolated from the experiment structure, has an inside surface coated with black thermal paint and an outside (exposed) surface covered with two (2) mil silver TEFLON®, applied to the aluminum with Y966 acrylic adhesive. The most obvious change is the color of the 2 mil silver TEFLON® surface on the shroud. The original silver mirror-like surface now appears white with copious amounts of a brown discoloration in a distinct pattern. The upper and lower triangular sections of the shroud have many irregular shaped black discolorations and an areas where the adhesive appears to have failed. Changes in color have occurred in both the active and passive samples. Note the top four active coating samples located on

  3. LDEF (Postflight), S0069 : Thermal Control Surfaces Experiment, Tray A09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S0069 : Thermal Control Surfaces Experiment, Tray A09 EL-1994-00144 The postflight photograph was taken in the SAEF II at KSC prior to experiment removal from the LDEF. The originally white paint dot on clamp blocks appear to have changed slightly to an off-white color. The experiment trays upper and left flanges appear to have a light tan discoloration. The Thermal Control Surfaces Experiment (TCSE) is completely self-contained in a twelve (12) inch deep LDEF experiment tray and consist of the power and data systems, a carousel, a pre-programmed controller and the sample materials. The experiment structure is fabricated from aluminum alloys and assembled using non-magnetic stainless steel fasteners. The photograph shows the carousel sample mounting plate rotated into the open position and a thermal shroud that covers the experiment structure and the power and data system components. The aluminum sample mounting plate accommodates twenty-five (25) active samples mounted in calorimeters to thermally isolate the samples from the mounting plate, twenty-four (24) passive samples and three (3) radiometers. The thermal shroud, an aluminum alloy sheet material that is thermally isolated from the experiment structure, has an inside surface coated with black thermal paint and an outside (exposed) surface covered with two (2) mil silver TEFLON®, bonded to the aluminum with Y966 adhesive. The most obvious change is the color of the 2 mil silver TEFLON® surface on the shroud. The original silver mirror-like surface now appears white with copious amounts of a brown discoloration in a distinct pattern. The upper and lower triangular sections of the shroud have many irregular shaped black discolorations and an areas where the adhesive appears to have failed. Changes in color have occurred in both the active and passive samples. Note the top four active coating samples located on the outer radii, two of the first three, originally white, now appear brown and

  4. Tunable organization of cellulose nanocrystals for controlled thermal and optical response

    NASA Astrophysics Data System (ADS)

    Diaz A., Jairo A.

    The biorenewable nature of cellulose nanocrystals (CNCs) has opened up new opportunities for cost-effective, sustainable materials design. By taking advantage of their distinctive structural properties and self-assembly, promising applications have started to nurture the fields of flexible electronics, biomaterials, and nanocomposites. CNCs exhibit two fundamental characteristics: rod-like morphology (5-20 nm wide, 50-500 nm long), and lyotropic behavior (i.e., liquid crystalline mesophases formed in solvents), which offer unique opportunities for structural control and fine tuning of thermal and optical properties based on a proper understanding of their individual behavior and interactions at different length scales. In the present work, we attempt to provide an integral description of the influence of single crystals in the thermal and optical response exhibited by nanostructured films. Our approach involved the connection of experimental evidence with predictions of molecular dynamics (MD) simulations. In order to assess the effect of CNC orientation in the bulk response, we produced cellulose nanostructured films under two different mechanisms, namely, self-organization and shear orientation. Self-organized nanostructured films exhibited the typical iridescent optical reflection generated by chiral nematic organization. Shear oriented films disrupted the cholesteric organization, generating highly aligned structures with high optical transparency. The resultant CNC organization present in all nanostructured films was estimated by a second order statistical orientational distribution based on two- dimensional XRD signals. A new method to determine the coefficient of thermal expansion (CTE) in a contact-free fashion was developed to properly characterize the thermal expansion of thin soft films by excluding other thermally activated phenomena. The method can be readily extended to other soft materials to accurately measure thermal strains in a non

  5. Gold nanoshell/polysaccharide nanofilm for controlled laser-assisted tissue thermal ablation.

    PubMed

    Redolfi Riva, Eugenio; Desii, Andrea; Sinibaldi, Edoardo; Ciofani, Gianni; Piazza, Vincenzo; Mazzolai, Barbara; Mattoli, Virgilio

    2014-06-24

    We report on the fabrication and characterization of a freestanding ultrathin, mucoadhesive gold nanoshell/polysaccharide multilayer nanocomposite (thermonanofilm, TNF), that can be used for controlled photothermal ablation of tissues through irradiation with near-infrared radiation (NIR) laser. The aim of this work is to provide a new strategy to precisely control particle concentration during photothermalization of cancerous lesions, since unpredictable and aspecific biodistributions still remains the central issue of inorganic nanoparticle-assisted photothermal ablation. Gold nanoshell encapsulation in polysaccharide matrix is achieved by drop casting deposition method combined with spin-assisted layer-by-layer (LbL) assembly. Submicrometric thickness of films ensures tissue adhesion. Basic laser-induced heating functionality has been demonstrated by in vitro TNF-mediated thermal ablation of human neuroblastoma cancer cells, evidenced by irreversible damage to cell membranes and nuclei. Ex vivo localized vaporization and carbonization of animal muscular tissue is also demonstrated by applying TNF onto tissue surface. Thermal distribution in the tissue reaches a steady state in a few seconds, with significant increases in temperature (ΔT > 50) occurring across an 1 mm span, ensuring control of local photothermalization and providing more safety and predictability with respect to traditional laser surgery. A steady-state model of tissue thermalization mediated by TNFs is also introduced, predicting the temperature distribution being known the absorbance of TNFs, the laser power, and the tissue thermal conductivity, thus providing useful guidelines in the development of TNFs. Thermonanofilms can find applications for local photothermal treatment of cancerous lesions and wherever high precision and control of heat treatment is required. PMID:24797875

  6. Properties of conductive coatings for thermal control mirrors and solar cell covers

    NASA Technical Reports Server (NTRS)

    Joslin, D. E.; Kan, H. K. A.

    1975-01-01

    Conductive transparent coatings applied to the dielectric surfaces of a spacecraft offer the possibility of distributing charge uniformly over the entire spacecraft surface. Optical and electrical measurements of such a coating as a function of temperature are described. These results are used in considering the impact of a conductive coating on the absorptance of thermal control mirrors and on the transmittance of solar cell cover glass, which can be improved by the application of an antireflection coating.

  7. In-step Two-phase Flow (TPF) Thermal Control Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.

  8. Advanced Thermal Status Control of Crews in EVA and Escape Suits

    NASA Astrophysics Data System (ADS)

    Koscheyev, V. S.; Coca, A.; Leon, G. R.

    Over the course of the manned space program, there has been an accumulation of experience on methods to control the thermal status of astronauts in open space. However, there remains a significant need for a simple method to monitor the astronaut's level of heat exchange during EVA, particularly in an emergency period, or during crew escape. The liquid cooling/warming tubing system that covers the body surface creates considerable complexity for evaluating the body's overall thermal response. Moreover, the methods used to monitor core temperature (Tc) are problematic in regard to their invasiveness and accuracy. NASA is currently attempting to develop a unified methodology for protection during EVA and crew escape that would necessarily include the control of astronaut thermal status. The findings from our research program have significant implications for solving this still-vexing problem. Our experimental paradigm centers on the assessment of thermodynamic processes with subjects donned in a specially designed symmetrically divided multi-compartment liquid cooling/warming garment consisting of 16 zones, 8 on each side of the body (hands, forearms, shoulders, torso, head, thighs, calves and feet). This garment configuration enables the study of heat exchange under nonuniform temperatures on the body surface by systematically varying the proportions of nonuniform temperatures (warm/cold) in different experimental conditions. Tc was assessed by rectal (Tr), esophageal (Tes), and ear canal temperature (Tec). Skin temperature (Tsk) was measured by a total of 26 sensors placed symmetrically on the left and right sides of the body, the main magistral vessels (carotid, brachial, femoral), and local vessel networks. We paid particular attention to the thermal status of the fingers by measuring blood perfusion, temperature (Tfing), heat flux, and thermal/comfort perception. The monitoring of Tfing and heat flux in different experimental conditions was highly informative

  9. CO2 Insulation for Thermal Control of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Karlmann, Paul; Anderson, Kevin; Novak, Keith

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is sending a large (>850 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars in 2011. The rover's primary power source is a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) that generates roughly 2000 W of heat, which is converted to approximately 110 W of electrical power for use by the rover electronics, science instruments, and mechanism-actuators. The large rover size and extreme thermal environments (cold and hot) for which the rover is designed for led to a sophisticated thermal control system to keep it within allowable temperature limits. The pre-existing Martian atmosphere of low thermal conductivity CO2 gas (8 Torr) is used to thermally protect the rover and its components from the extremely cold Martian environment (temperatures as low as -130 deg C). Conventional vacuum based insulation like Multi Layer Insulation (MLI) is not effective in a gaseous atmosphere, so engineered gaps between the warm rover internal components and the cold rover external structure were employed to implement this thermal isolation. Large gaps would lead to more thermal isolation, but would also require more of the precious volume available within the rover. Therefore, a balance of the degree of thermal isolation achieved vs. the volume of rover utilized is required to reach an acceptable design. The temperature differences between the controlled components and the rover structure vary from location to location so each gap has to be evaluated on a case-by-case basis to arrive at an optimal thickness. For every configuration and temperature difference, there is a critical thickness below which the heat transfer mechanism is dominated by simple gaseous thermal conduction. For larger gaps, the mechanism is dominated by natural convection. In general, convection leads to a poorer level of thermal isolation as compared to conduction. All these considerations play important roles in the

  10. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  11. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  12. Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    NASA Technical Reports Server (NTRS)

    Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.

    1995-01-01

    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.

  13. Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    SciTech Connect

    Murphy, T.J.; David, K.E.; Babel, H.W.

    1995-02-01

    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.

  14. Thermal Control System Development to Support the Crew Exploration Vehicle and Lunar Surface Access Module

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Westheimer, David

    2006-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has recently evaluated all of the agency s technology development work and identified key areas that must be addressed to aid in the successful development of a Crew Exploration Vehicle (CEV) and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  15. A novel thermal treatment modality for controlling breast tumor growth and progression.

    PubMed

    Xie, Yifan; Liu, Ping; Xu, Lisa X

    2012-01-01

    The new concept of keeping primary tumor under control in situ to suppress distant foci sheds light on the novel treatment of metastatic tumor. Hyperthermia is considered as one of the means for controlling tumor growth. In this study, a novel thermal modality was built to introduce hyperthermia effect on tumor to suppress its growth and progression using 4T1 murine mammary carcinoma, a common animal model of metastatic breast cancer. A mildly raised temperature (i.e.39°C) was imposed on the skin surface of the implanted tumor using a thermal heating pad. Periodic heating (12 hours per day) was carried out for 3 days, 7 days, 14 days, and 21 days, respectively. The tumor growth rate was found significantly decreased in comparison to the control without hyperthermia. Biological evidences associated with tumor angiogenesis and metastasis were examined using histological analyses. Accordingly, the effect of mild hyperthermia on immune cell infiltration into tumors was also investigated. It was demonstrated that a delayed tumor growth and malignancy progression was achieved by mediating tumor cell apoptosis, vascular injury, degrading metastasis potential and as well as inhibiting the immunosuppressive cell myeloid derived suppressor cells (MDSCs) recruitment. Further mechanistic studies will be performed to explore the quantitative relationship between tumor progression and thermal dose in the near future. PMID:23367225

  16. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  17. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    SciTech Connect

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-30

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  18. Testing of a controller for a hybrid capillary pumped loop thermal control system

    NASA Technical Reports Server (NTRS)

    Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave

    1989-01-01

    A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.

  19. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  20. Planning horizon for a predictive optimal controller for thermal energy storage systems

    SciTech Connect

    Krarti, M.; Henze, G.P.; Bell, D.

    1999-07-01

    This paper presents the results of a detailed simulation analysis to determine the planning horizon for a predictive optimal controller for thermal energy storage (TES) systems. The objective of the simulation analysis is to determine the sensitivity of the performance of a TES optimal controller and the planning horizon length to different design parameters, including: chiller capacity, cooling plant model, storage system capacity, and load profile. The analysis is performed using two commercial buildings: a 20-floor office building in Wisconsin, and a hotel in California.

  1. Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Jin; Lyu, Seung Chul; Cho, Young Rae; Lee, Jin Ho; Cho, Kyoung Ik

    2001-06-01

    The diameter and the growth rate of vertically aligned carbon nanotubes (CNTs) are controlled by modulating the size of catalytic particles using thermal chemical vapor deposition (CVD). The size of iron catalytic particles deposited on silicon oxide substrate is varied in a controlled manner by adjusting the condition of ammonia pretreatment. We found an inverse relation between the diameter and growth rate of carbon nanotubes. As the diameter increases, the compartment layers of bamboo-shaped carbon nanotubes appear more frequently, which is suitably explained by the base growth mechanism.

  2. Numerical modeling and passive thermal control of external lighting systems for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Buck, Gregory A.; Li, Weiming; Tong, Timothy W.

    1993-01-01

    Consideration is given to three generic families of luminaries with lamp power ranging from 11 to 150 watts. A concept of an equivalent radiation node boundary temperature was used to impose worst hot and cold environments, and transient finite difference models were developed to study the effects of geometry and optical properties of thermal control coatings. Minimum and maximum transient temperatures were computed at the critical location during 90 minute orbit and were compared with allowable limits. Results show that with the proper choice of optical properties, the luminaries can be passively controlled to within acceptable limits.

  3. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple

  4. Recent results from Long Duration Exposure Facility materials testing

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Dursch, Harry W.

    1995-01-01

    The overall goals of the Long Duration Exposure Facility (LDEF) investigations, established by the Materials Special Investigation Group (MSIG) prior to LDEF retrieval, are to provide useful engineering data to people designing and building spacecraft, and secondarily, to obtain data of potential interest to materials researchers. The specific objectives are to support predictions of materials lifetimes under the various low earth orbit (LEO) environments to determine how long the material will physically survive; to estimate the engineering performance lifetimes of these same materials under specific LEO exposures; to identify materials and processes by which given materials degrade; and to provide insights into development of new, more inherently LEO environmentally resistant materials. To achieve the established objectives, two criteria were established to select which materials had the highest priorities for analyses. The first criteria was to examine materials which are still being used on new spacecraft. The second priority was to examine materials with multiple exposure locations on LDEF, because this provided the opportunity to develop predictions on how a material will behave as the exposure environment varies. The goals as defined led to the identification of silverized Teflon (Ag/FEP), chromic acid anodized aluminum, and certain thermal control paints used on LDEF as the material types of highest priority for examination. Ag/FEP was chosen because of an excellent a/e ratio (extremely low), and extensive flight history. Also influencing the decision was the fact that the Hubble Space Telescope uses Ag/FEP as its primary passive thermal control system (and was launched shortly after LDEF retrieval) and that a number of other spacecraft are using or considering this material for use. The various forms of Ag/FEP were used on virtually every side of the LDEF except the earth end. The potential uses of this material, and the location distribution and therefore

  5. Thermal control system of the Exoplanet Characterisation Observatory Payload: design and predictions

    NASA Astrophysics Data System (ADS)

    Morgante, G.; Terenzi, L.; Eccleston, P.; Bradshaw, T.; Crook, M.; Linder, M.; Hunt, T.; Winter, B.; Focardi, M.; Malaguti, G.; Micela, G.; Pace, E.; Tinetti, G.

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to investigate exoplanetary atmospheres by undertaking spectroscopy of transiting planets in a wide spectral region from the visible to the mid-InfraRed (IR). The high sensitivity and the long exposures required by the mission need an extremely stable thermo-mechanical platform. The instrument is passively cooled down to approximately 40 K, together with the telescope assembly, by a V-Groove based design that exploits the L2 orbit favourable thermal conditions. The visible and short-IR wavelength detectors are maintained at the operating temperature of 40 K by a dedicated radiator coupled to the cold space. The mid-IR channels, require a lower operating temperature and are cooled by an active refrigerator: a 28 K Neon Joule-Thomson (JT) cold end, fed by a mechanical compressor. Temperature stability is one of the challenging issues of the whole architecture: periodical perturbations must be controlled before they reach the sensitive units of the instrument. An efficient thermal control system is required: the design is based on a combination of passive and active solutions. In this paper we describe the thermal architecture of the payload with the main cryo-chain stages and their temperature control systems. The requirements that drive the design and the trade-offs needed to enable the EChO exciting science in a technically feasible payload design are discussed. Thermal modelling results and preliminary performance predictions in terms of steady state and transient conditions are also reported. This paper is presented on behalf of the EChO Consortium.

  6. Evaluation and Selection of Replacement Thermal Control Materials for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; McClendon, Mark W.; Dever, Joyce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon(Registered Trademark) FEP thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. A Failure Review Board was established to investigate the damage to the MLI and identify a replacement material. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were selected and exposed to ten-year HST-equivalent doses of simulated orbital environments. Samples of the candidates were exposed sequentially to low and high energy electrons and protons, atomic oxygen, x-ray radiation, ultraviolet radiation and thermal cycling. Following the exposures, the mechanical integrity and optical properties of the candidates were investigated using Optical Microscopy, Scanning Electron Microscopy (SEM), and a Laboratory Portable Spectroreflectometer (LPSR). Based on the results of these simulations and analyses, the FRB selected a replacement material and two alternates that showed the highest likelihood of providing the requisite thermal properties and surviving for ten years in orbit.q

  7. Ground-Based Testing of Replacement Thermal Control Materials for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; McClendon, Mark W.; deGroh, Kim K.; Banks, Bruce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon FEP thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. A Failure Review Board was established to investigate the damage to the MLI and identify a replacement material. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain mechanical integrity for at least ten years. Ten candidate materials were selected and exposed to ten-year HST-equivalent doses of simulated orbital environments. Samples of the candidates were exposed sequentially to low and high energy electrons and protons, atomic oxygen, x-ray radiation, ultraviolet radiation and thermal cycling. Following the exposures, the mechanical integrity and optical properties of the candidates were investigated using Optical Microscopy, Scanning Electron Microscopy (SEM), a Laboratory Portable Spectroreflectometer (LPSR) and a Lambda 9 Spectroreflectometer. Based on the results of these simulations and analyses, the Failure Review Board selected a replacement material and two alternates that showed the highest likelihood of providing the requisite thermal properties and surviving for ten years in orbit.

  8. Distinguishing among major controls on the apparent thermal and barometric structure of metamorphic belts

    SciTech Connect

    Day, H.W.

    1985-01-01

    The apparent thermal and barometric structures of metamorphosed terrains are expressed in the map patterns of isograds and bathograds. Geographic variation in the apparent P,T of peak metamorphism may be the result of: (1) differences in the amount of tectonic thickening (2) variation in the thermal properties of the lithosphere or (3) differential uplift across the mountain belt. Oversimplified tectonic models of a burial and uplift event, combined with simple physical models for the conductive transfer of heat, have normally been used. The results suggest that the relative roles of the three large scale controls on metamorphism may be distinguished. In mountain belts having variable tectonic thickening, apparent isotherms and isobars of peak metamorphism are parallel. Geographic variation in either thermal properties or uplift history, by contrast, leads to patterns of intersecting apparent isobars and isotherms (e.g.. the New England Appalachians). In terrains that experienced rapid and differential uplift, the most rapidly uplifted portions show the shortest cooling times, the least discordance between apparent mineral ages, and the lowest pressures at peak metamorphism and no necessary correlation between metamorphic grade and cooling time (e.g.. the Alps). In contrast, in terrains with large variations in either thermal parameters or tectonic thickening, long cooling times are directly associated with the highest metamorphic temperatures and the least discordance between apparent mineral ages (e.g.. the Scottish Highlands).

  9. Investigation of phase-change coatings for variable thermal control of spacecraft

    NASA Technical Reports Server (NTRS)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  10. Novel developments in rapid thermal processing (RTP) temperature measurement and control

    NASA Astrophysics Data System (ADS)

    Adams, B. E.; Hunter, A. M.

    2013-09-01

    Since the development of integrated circuits in the 1960's, the semiconductor industry has continued to see the reduction of transistor size in accordance with Moore's law. Rapid thermal processing (RTP) has been an enabling technology for the continued evolution of these ultra-small devices. As thermal budgets have progressively dropped, equipment manufacturers have greatly increased the thermal ramp rates and reduced temperatures for many key processes. Lamp heated technology has developed sub-second dwell times and laser based systems have reduced processing time to milliseconds and shorter. This paper will highlight the key development in RTP temperature measurement and control for two distinct applications. The first is the development of temperature measurements of laser heated substrates. The work will discuss the unique challenges and requirements in this rapidly expanding processing space. These challenges arise from the very high background radiation from the laser sources, the extremely short dwell times, and the high processing temperatures. The second area under discussion is a solution to very low temperature silicon processes-primarily driven by Ni and NiPt silicides that have constrained thermal budgets, thus requiring high ramp rates and short dwell times, but in temperatures below the fundamental limits of standard radiation pyrometry. In particular, this work describes a novel system capable of measuring temperature down to room temperature in a state of the art RTP system.

  11. Evaluation of selected thermal control coatings for long-life space structures

    NASA Technical Reports Server (NTRS)

    Teichman, Louis A.; Slemp, Wayne S.; Witte, William G., Jr.

    1992-01-01

    Graphite-reinforced resin matrix composites are being considered for spacecraft structural applications because of their light weight, high stiffness, and lower thermal expansion. Thin protective coatings with stable optical properties and the proper ratio of solar absorption (alpha sub s) to thermal emittance (epsilon) minimize orbital thermal extremes and protect these materials against space environment degradation. Sputtered coatings applied directly to graphite/epoxy composite surfaces and anodized coatings applied to thin aluminum foil were studied for use both as an atomic oxygen barrier and as thermal control coatings. Additional effort was made to develop nickel-based coatings which could be applied directly to composites. These coating systems were selected because their inherent tenacity made them potentially more reliable than commercial white paints for long-life space missions. Results indicate that anodized aluminum foil coatings are suitable for tubular and flat composite structures on large platforms in low Earth orbit. Anodized foil provides protection against some elements of the natural space environment (atomic oxygen, ultraviolet, and particulate radiation) and offers a broad range of tailored alpha sub s/epsilon. The foil is readily available and can be produced in large quantities, while the anodizing process is a routine commercial technique.

  12. Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia

    NASA Astrophysics Data System (ADS)

    Tananaev, Nikita I.

    2016-01-01

    Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.

  13. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  14. Performance of thermal control tape in the protection of composite materials

    NASA Technical Reports Server (NTRS)

    Kamenetzky, Rachel R.; Whitaker, Ann F.

    1992-01-01

    The selection of materials for construction of long duration mission spacecraft has presented many challenges to the aerospace design community. After nearly six years in low earth orbit, NASA's Long duration Exposure Facility (LDEF), retrieved in January of 1990, has provided valuable information on both the nature of the space environment as well as the effects of the space environment on potential spacecraft materials. Composites, long a favorite of the design community because of a high strength-to-weight ratio, were flown in various configurations on LDEF in order to evaluate the effects of radiation, atomic oxygen, vacuum, micrometeoroid debris, and thermal variation on their performance. Fiberglass composite samples covered with an aluminum thermal control tape were flown as part of the flight experiment A0171, the Solar Array Materials Passive LDEF Experiment (SAMPLE). Visual observations and test results indicate that the thermal control tape suffered little degradation from the space exposure and proved to be a reliable source of protection from atomic oxygen erosion and UV radiation for the underlying composite material.

  15. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  16. Shuttle active thermal control system development testing. Volume 1: Overall summary

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1974-01-01

    A summary is given of a series of thermal vacuum tests designed to support the development of the orbiter active thermal control system (ATCS) and included testing of a wide heat load range modular radiator system (MRS) configured to the March 1973 orbiter baseline system, a candidate weight reducing radiator/water cooling system, and a smaller radiator system with a high performance radiator coating. The tests verified the performance of the baseline system and obtained detailed design information for application of a wide heat load range modular radiator system to the orbiter. The two candidate ATCS weight reducing designs have undergone extensive concept verification testing and their system operating characteristics have been determined in sufficient detail for application to the orbiter. Design information has been obtained for an integrated radiator/water cooling system that provides for vehicle heat rejection as well as water management of the excess fuel cell water. Processing techniques have been developed and verified for the application of a high performance thermal control coating to large radiator areas subjected to a temperature range of -280 F to +160 F.

  17. Thermal control of the spin pumping damping in ferromagnetic/normal metal interfaces

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2014-03-01

    A model is presented for the control of the magnetic relaxation in a ferromagnetic insulator (FMI) in contact with a normal metal (NM) under a thermal gradient applied across the thickness of the bilayer. We show that the thermal gradient modifies the spin pumping damping created by the contact of the NM with the FMI. This results from the bulk magnon spin current generated through the longitudinal spin Seebeck effect that superimposes to the spin pumping current at the FMI/NM interface, changing the FMI magnetic damping. The results of the model explain the experimental data on the control of the magnetic relaxation by thermal gradients measured by the linewidth of the ferromagnetic resonance absorption and by the attenuation of spin-wave packets propagating along a film of single-crystal yttrium iron garnet covered by a very thin platinum layer. Depending on the sign of the gradient, the relaxation rate can be increased or decreased, leading in the latter case to an apparent amplification.

  18. The thermal control of the new solar telescope at Big Bear Observatory

    NASA Astrophysics Data System (ADS)

    Verdoni, Angelo P.; Denker, Carsten

    2006-06-01

    We present the basic design of the THermal Control System (THCS) for the 1.6-meter New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO), California. The NST is an off-axis Gregorian telescope with an equatorial mount and an open support structure. Since the telescope optics is exposed to the air, it is imperative to control the local/dome seeing, i.e., temperature fluctuations along the exposed optical path have to be minimized. To accomplish this, a THCS is implemented to monitor the dome environment and interact with the louver system of the dome to optimize instrument performance. In addition, an air knife is used to minimize mirror seeing. All system components have to communicate with the Telescope Control System (TCS), a hierarchical system of computers linking the various aspects of the entire telescope system, e.g., the active mirror control, adaptive optics, dome and telescope tracking, weather station, etc. We will provide an initial thermal model of the dome environment and first measurements taken in the recently replaced BBSO dome.

  19. Thermal control by artificial vision during hf soldering of metallic tubes

    NASA Astrophysics Data System (ADS)

    Renier, Eric; Suzeau, P.; Truchetet, Frederic

    1997-04-01

    Many welding processes have been successively developed, used, and then left aside in favor of more recent ones. The current processes are welding by induction, at high or medium frequency, and welding by conduction. The procedure used during the application described herein is the high frequency soldering by induction which allows high production speed, contactless heating, and regularity and good quality of the weld, and therefore a significant advantage: the economy of electrical energy. The speed limit of the soldering is principally imposed by a good drive of the metal sheet in the profiling machine. Presently, the regulation or control parameters measured during the process are, either the voltage at the output of the H.F. power generator or the temperature measured with a bicolor pyrometer situated above the melted borders. The use of temperature as the control parameters, allows to stabilize faster the process. We propose herein a new method and approach which consists in controlling the temperature during the process with a thermal image acquisition system. Our system is composed of a CCD sensor, an acquisition card, an association of optic filters in order to capture some thermographic images. Then, applying and developing some low and high level image processings, we extract some spatial and thermal parameters which allow us to control in real time and with a low cost the welding process.

  20. Structure and method for controlling the thermal emissivity of a radiating object

    DOEpatents

    DeSteese, John G.; Antoniak, Zenen I.; White, Michael; Peters, Timothy J.

    2004-03-30

    A structure and method for changing or controlling the thermal emissivity of the surface of an object in situ, and thus, changing or controlling the radiative heat transfer between the object and its environment in situ, is disclosed. Changing or controlling the degree of blackbody behavior of the object is accomplished by changing or controlling certain physical characteristics of a cavity structure on the surface of the object. The cavity structure, defining a plurality of cavities, may be formed by selectively removing material(s) from the surface, selectively adding a material(s) to the surface, or adding an engineered article(s) to the surface to form a new radiative surface. The physical characteristics of the cavity structure that are changed or controlled include cavity area aspect ratio, cavity longitudinal axis orientation, and combinations thereof. Controlling the cavity area aspect ratio may be by controlling the size of the cavity surface area, the size of the cavity aperture area, or a combination thereof. The cavity structure may contain a gas, liquid, or solid that further enhances radiative heat transfer control and/or improves other properties of the object while in service.