Sample records for agglomeration regime maps

  1. The Self-energy Of Growing Aggregates: "Strength Regime"

    NASA Astrophysics Data System (ADS)

    Guimaraes, Ana H. F.; Spahn, F.; Seiss, M.; Brilliantov, N. V.

    2009-09-01

    The vivid appearance of the outer regions of Saturn's rings points to a balance of ongoing fragmentation and coagulation processes. This idea finds support especially in the F-ring, where collisional processes occur on an almost daily basis stirred by perturbations of the satellites Prometheus and Pandora, and in addition due the presence of putative moonlets. In order to quantify this balance in a kinetic theory we propose to calculate the resistivity of small agglomerates ("dynamic ephemeral bodies") against rupture due collisional processes and tidal pull. Earlies studies have shown that the resistivity of an aggregate is divided into two phases: "strength regime" and "gravitational regime". Early in their formation, small agglomerates are supported basically by their "glue" between the particles (adhesion) - "strength regime". For larger agglomerates the "gravitational regime" takes over provided their sizes to be bigger than a threshold in which the self-gravitational energy exceeds the adhesive binding energy, in this case the cluster's constituents are held together gravitationally. We calculated the self-energy caused by adhesion and gravity of ring's aggregates which has been considered as the threshold of impact energy or of tidal work to disrupt the agglomerate. Using a Ballistic Particle Cluster Aggregate Model (BPCA) we varied the densities of the aggregates and the size distribution of their constituents (1-10cm), calculated their self-energy and identified the transition between the "strength" to "gravitational regime". The transition between the regimes occurs at house-size aggregates (diameter of approximately 20m), a fact, that fits to the cut-off on the dense rings' main population (cm - 5m in size). Acknowledgments: A.H.F.G. thanks Dr. E. Vieira-Neto for the discussions, and also the DAAD and Uni-Potsdam for the financial support of this project.

  2. Growth and form of planetary seedlings: results from a microgravity aggregation experiment.

    PubMed

    Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H

    2000-09-18

    The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.

  3. Implementation of the EU environmental noise directive: lessons from the first phase of strategic noise mapping and action planning in Ireland.

    PubMed

    King, E A; Murphy, E; Rice, H J

    2011-03-01

    The first phase of noise mapping and action planning in Ireland, in accordance with EU Directive 2002/49/EC, is now complete. In total this included one agglomeration, one airport and approximately 600 km of major roads outside the agglomeration. These noise maps describe the level of noise exposure of approximately 1.25 million people. The first phase of noise mapping was dealt with by five noise mapping bodies while 26 action planning authorities were involved in the development of the associated action plans. The second phase of noise mapping, due to be completed in 2012, sees a reduction in the defined thresholds describing the required agglomerations, roads and railways that have to be mapped. This will have a significant impact on the extent of mapping required. In Ireland this will result in an increased number of local authorities being required to develop strategic noise maps for their area along with the further development of associated action plans. It is appropriate at this point to review the work process and results from the first phase of noise mapping in Ireland in order to establish areas that could be improved, throughout the noise mapping project. In this paper a review of the implementation procedures focussing on (dominant) road traffic noise is presented. It is identified that more standardisation is needed and this could be achieved by the establishment of a national expert steering group. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Chaotic bubbling and nonstagnant foams.

    PubMed

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  5. Composite propellant combustion with low aluminum agglomeration

    NASA Astrophysics Data System (ADS)

    Mullen, Jessica Christine

    Aluminum behavior---accumulation, agglomeration and ignition---is studied in a unique, wide-distribution, ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant formulation that results in low Al agglomeration, even at low pressures (1--30 atm). Variations in formulation---such as fine-AP/binder ratio, Al particle size, Al loading, coarse-AP size---are also examined. A fuel-rich, oxygenated binder matrix highly loaded with fine (2-mum) AP (FAP) at 75/25:FAP/binder (by mass) is found to have premixed flame conditions that produce minimal agglomeration (without ignition) of 15-mum Al. Coarse AP (CAP) is added to the system in the form of either particles (200 or 400 mum) or pressed-AP laminates (simulated CAP). In the 2-D laminate system the CAP/oxyfuel-matrix flame structure is seen to be similar to that previously described for non-aluminized laminates with split (diffusion) and merged (partially-premixed) flame regimes, depending on pressure and fuel-matrix thickness. Both laminate and particulate systems show that with CAP present, Al can agglomerate more extensively on CAP via lateral surface migration from fuel matrix to the CAP region. The particulate CAP system also shows that Al can accumulate/agglomerate via settling on CAP from above (in the direction of burning). Both systems, but more clearly the 2-D laminates, show that with CAP present, Al is ignited by the outer CAP/fuel-matrix canopy flames. Thus, a propellant formulation is proposed for reducing overall Al agglomeration through intrinsically reduced agglomeration in the fuel-matrix and a reduced number of CAP-particle agglomerates via higher FAP/CAP ratio.

  6. The Magnet Cove Rutile Company mine, Hot Spring County, Arkansas

    USGS Publications Warehouse

    Kinney, Douglas M.

    1949-01-01

    The Magnet Cove Rutile Company mine was mapped by the U.S. Geological Survey in November 1944. The pits are on the northern edge of Magnet Cove and have been excavated in the oxidized zone of highly weathered and altered volcanic agglomerate. The agglomerate is composed of altered mafic igneous rocks in a matrix of white to gray clay, a highly altered tuff. The agglomerate appears layered and is composed of tuffaceous clay material below and igneous blocks above. The agglomerate is cut by aplite and lamprophyre dikes. Alkalic syenite dikes crop out on the ridge north of the pits. At the present stage of mine development the rutile seems to be concentrated in a narrow zone beneath the igneous blocks of the agglomerate. Rutile, associated with calcite and pyrite, occurs as disseminated acicular crystals and discontinuous vein-like masses in the altered tuff. Thin veins of rutile locally penetrate the mafic igneous blocks of the agglomerate.

  7. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    PubMed

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  8. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    NASA Astrophysics Data System (ADS)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  9. The dynamics of milk droplet-droplet collisions

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol solutions experiments. While milk concentrates have complex chemical composition and rheology, glycerol solutions are Newtonian fluids and therefore easy to characterize. The collision morphologies of glycerol solutions and milk concentrates are similar, and the regime maps can be described by the same phenomenological model developed in this work. The regime of bouncing, however, was not observed for any of the milk concentrates.

  10. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less

  11. The Physics of Protoplanetary Dust Agglomerates. X. High-velocity Collisions between Small and Large Dust Agglomerates as a Growth Barrier

    NASA Astrophysics Data System (ADS)

    Schräpler, Rainer; Blum, Jürgen; Krijt, Sebastiaan; Raabe, Jan-Hendrik

    2018-01-01

    In a protoplanetary disk, dust aggregates in the μm to mm size range possess mean collision velocities of 10–60 m s‑1 with respect to dm- to m-sized bodies. We performed laboratory collision experiments to explore this parameter regime and found a size- and velocity-dependent threshold between erosion and growth. By using a local Monte Carlo coagulation calculation and along with a simple semi-analytical timescale approach, we show that erosion considerably limits particle growth in protoplanetary disks and leads to a steady-state dust-size distribution from μm- to dm-sized particles.

  12. Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Subhodeep; Guenther, Chris; Rogers, William A.

    The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to finemore » tune the operating conditions of a spouted bed to achieve the desired operating condition.« less

  13. Rule-based mapping of fire-adapted vegetation and fire regimes for the Monongahela National Forest

    Treesearch

    Melissa A. Thomas-Van Gundy; Gregory J. Nowacki; Thomas M. Schuler

    2007-01-01

    A rule-based approach was employed in GIS to map fire-adapted vegetation and fire regimes within the proclamation boundary of the Monongahela National Forest. Spatial analyses and maps were generated using ArcMap 9.1. The resulting fireadaptation scores were then categorized into standard fire regime groups. Fire regime group V (200+ yrs) was the most common, assigned...

  14. Mapping fire regimes from data you may already have: assessing LANDFIRE fire regime maps using local products

    Treesearch

    Melissa A. Thomas-Van Gundy

    2014-01-01

    LANDFIRE maps of fire regime groups are frequently used by land managers to help plan and execute prescribed burns for ecosystem restoration. Since LANDFIRE maps are generally applicable at coarse scales, questions often arise regarding their utility and accuracy. Here, the two recently published products from West Virginia, a rule-based and a witness tree-based model...

  15. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  16. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  17. Assessing ecological departure from reference conditions with the Fire Regime Condition Class (FRCC) Mapping Tool

    Treesearch

    Stephen W. Barrett; Thomas DeMeo; Jeffrey L. Jones; J.D. Zeiler; Lee C. Hutter

    2006-01-01

    Knowledge of ecological departure from a range of reference conditions provides a critical context for managing sustainable ecosystems. Fire Regime Condition Class (FRCC) is a qualitative measure characterizing possible departure from historical fire regimes. The FRCC Mapping Tool was developed as an ArcMap extension utilizing the protocol identified by the Interagency...

  18. Mechanical behavior of shock-wave consolidated nano and micron-sized aluminum/silicon carbide and aluminum/aluminum oxide two-phase systems characterized by light and electron metallography

    NASA Astrophysics Data System (ADS)

    Alba-Baena, Noe Gaudencio

    This dissertation reports the results of the exploratory study of two-phase systems consisting of 150 microm diameter aluminum powder mechanically mixed with 30 nm and 30 microm diameter SiC and Al2O3 powders (in volume fractions of 2, 4, and 21 percent). Powders were mechanically mixed and green compacted to ˜80% theorical density in a series of cylindrical fixtures (steel tubes). The compacted arrangements were explosively consolidated using ammonium nitrate-fuel oil (ANFO) to form stacks of two-phase systems. As result, successfully consolidated cylindrical monoliths of 50 mm (height) x 32 mm (in diameter) were obtained. By taking advantage of the use of SWC (shock wave consolidation) and WEDM (wire-electric discharge machining), the heterogeneous systems were machined in a highly efficiency rate. The sample cuts used for characterization and mechanical properties testing, require the use of less that 10cc of each monolith, in consequence there was preserved an average of 60% of the obtained system monoliths. Consolidated test cylinders of the pure Al and two-phase composites were characterized by optical metallography and TEM. The light micrographs for the five explosively consolidated regimes: aluminum powder, nano and micron-sized Al/Al2O3 systems, and the nano and micron-sized Al/SiC systems exhibit similar ductility in the aluminum grains. Low volume fraction systems exhibit small agglomerations at the grain boundaries for the Al/Al2O3 system and the Al/SiC system reveal a well distributed phase at the grain boundaries. Large and partially bonded agglomerations were observable in the nano-sized high volume fraction (21%) systems, while the micron-sized Al/ceramic systems exhibit homogeneous distribution along the aluminum phase grains. TEM images showed the shock-induced dislocation cell structure, which has partially recrystallized to form a nano grain structure in the consolidated aluminum powder. Furthermore, the SiC nano-agglomerates appeared to have been shock consolidated into a contiguous phase regime bonded to aluminum grains in the nano-sized Al/SiC systems. Mechanical properties were measured from the pure Al powder reference monoliths showing that the starting Al powder had a Vickers hardness of ˜24HV 25; in contrast to pure Al explosively consolidated reference cylinders that had a residual hardness of ˜43HV25. Average Rockwell hardnesses were also compared with room temperature stress-strain data measured for tensile specimens cut from the test cylinders. The results were compared with rule-of-mixtures formalisms applied to these novel two-phase systems. Correspondingly the Rockwell hardness for 21% SiC and Al2O3 mixtures in Al increased by ˜60%, from the Al reference (single-phase) monolith; while the elongation declined by ˜60%. The prominent Al intergranular-like fracture within the 21% (volume) SiC or Al2O3 phase regime was observed by SEM. At 21% (volume) SiC a distinct 2-phase Al/SiC regime was formed with fracture occurring prominently in the SiC consolidated phase. The fracture surface features are somewhat characteristic of the signature variation in the stress-strain diagrams. The aluminum ductile-dimple fracture characteristics, the failure around the SiC particles and particle agglomerates producing the discontinuous yield-like phenomenon and the poor mechanical behavior of the nano-sized Al/SiC systems are characteristic of the significantly different fracture features.

  19. MX Siting Investigation Geotechnical Evaluation Conterminous United States. Volume II. Intermediate Screening.

    DTIC Science & Technology

    1977-12-21

    sections of the CSP ( Thordarson and others, 1967; Figure 8). Interbedded materials consist of agglomerates, air-fall and ash-flow tuffs which are welded to...of Economic Geology, 1977, Land resource map of Texas: Bur. Econ. Geol., Univ. Texas, Austin, Texas. (in press). Thordarson , W., Young, R.A., and

  20. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deterministic chaos in an ytterbium-doped mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Mélo, Lucas B. A.; Palacios, Guillermo F. R.; Carelli, Pedro V.; Acioli, Lúcio H.; Rios Leite, José R.; de Miranda, Marcio H. G.

    2018-05-01

    We experimentally study the nonlinear dynamics of a femtosecond ytterbium doped mode-locked fiber laser. With the laser operating in the pulsed regime a route to chaos is presented, starting from stable mode-locking, period two, period four, chaos and period three regimes. Return maps and bifurcation diagrams were extracted from time series for each regime. The analysis of the time series with the laser operating in the quasi mode-locked regime presents deterministic chaos described by an unidimensional Rossler map. A positive Lyapunov exponent $\\lambda = 0.14$ confirms the deterministic chaos of the system. We suggest an explanation about the observed map by relating gain saturation and intra-cavity loss.

  2. Mapping relative fire regime condition class for the Western United States

    Treesearch

    James P. Menakis; Melanie Miller; Thomas Thompson

    2004-01-01

    In 1999, a coarse-scale map of Fire Regime Condition Classes (FRCC) was developed for the conterminous United States (US) to help address contemporary fire management issues and to quantify changes in fuels from historical conditions. This map and its associated data have been incorporated into national policies (National Fire Plan, Forest Health Initiative) and...

  3. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  4. Oscillating Adriatic temperature and salinity regimes mapped using the Self-Organizing Maps method

    NASA Astrophysics Data System (ADS)

    Matić, Frano; Kovač, Žarko; Vilibić, Ivica; Mihanović, Hrvoje; Morović, Mira; Grbec, Branka; Leder, Nenad; Džoić, Tomislav

    2017-01-01

    This paper aims to document salinity and temperature regimes in the middle and south Adriatic Sea by applying the Self-Organizing Maps (SOM) method to the available long-term temperature and salinity series. The data were collected on a seasonal basis between 1963 and 2011 in two dense water collecting depressions, Jabuka Pit and Southern Adriatic Pit, and over the Palagruža Sill. Seasonality was removed prior to the analyses. Salinity regimes have been found to oscillate rapidly between low-salinity and high-salinity SOM solutions, ascribed to the advection of Western and Eastern Mediterranean waters, respectively. Transient salinity regimes normally lasted less than a season, while temperature transient regimes lasted longer. Salinity regimes prolonged their duration after the major basin-wide event, the Eastern Mediterranean Transient, in the early 1990s. A qualitative relationship between high-salinity regimes and dense water formation and dynamics has been documented. The SOM-based analyses have a large capacity for classifying the oscillating ocean regimes in a basin, which, in the case of the Adriatic Sea, beside climate forcing, is an important driver of biogeochemical changes that impacts trophic relations, appearance and abundance of alien organisms, and fisheries, etc.

  5. Laser-induced periodic surface structures formation on mesoporous silicon from nanoparticles produced by picosecond and femtosecond laser shots

    NASA Astrophysics Data System (ADS)

    Talbi, Abderazek; Kaya-Boussougou, Sostaine; Sauldubois, Audrey; Stolz, Arnaud; Boulmer-Leborgne, Chantal; Semmar, Nadjib

    2017-07-01

    This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.

  6. Wind regimes and their relation to synoptic variables using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Berkovic, Sigalit

    2018-01-01

    This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.

  7. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Huang, Pengliang; Song, Shaoxian; Luo, Huihua; Zhang, Yi

    2018-06-01

    In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10-5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough.

  8. North Atlantic weather regimes: A synoptic study of phase space. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Orrhede, Anna Karin

    1990-01-01

    In the phase space of weather, low frequency variability (LFV) of the atmosphere can be captured in a large scale subspace, where a trajectory connects consecutive large scale weather maps, thus revealing flow changes and recurrences. Using this approach, Vautard applied the trajectory speed minimization method (Vautard and Legras) to atmospheric data. From 37 winters of 700 mb geopotential height anomalies over the North Atlantic and the adjacent land masses, four persistent and recurrent weather patterns, interpreted as weather regimes, were discernable: a blocking regime, a zonal regime, a Greenland anticyclone regime, and an Atlantic regime. These regimes are studied further in terms of maintenance and transitions. A regime survey unveils preferences regarding event durations and precursors for the onset or break of an event. The transition frequencies between regimes vary, and together with the transition times, suggest the existence of easier transition routes. These matters are more systematically studied using complete synoptic map sequences from a number of events.

  9. Transport, diffusion, and energy studies in the Arnold-Beltrami-Childress map

    NASA Astrophysics Data System (ADS)

    Das, Swetamber; Gupte, Neelima

    2017-09-01

    We study the transport and diffusion properties of passive inertial particles described by a six-dimensional dissipative bailout embedding map. The base map chosen for the study is the three-dimensional incompressible Arnold-Beltrami-Childress (ABC) map chosen as a representation of volume preserving flows. There are two distinct cases: the two-action and the one-action cases, depending on whether two or one of the parameters (A ,B ,C ) exceed 1. The embedded map dynamics is governed by two parameters (α ,γ ), which quantify the mass density ratio and dissipation, respectively. There are important differences between the aerosol (α <1 ) and the bubble (α >1 ) regimes. We have studied the diffusive behavior of the system and constructed the phase diagram in the parameter space by computing the diffusion exponents η . Three classes have been broadly classified—subdiffusive transport (η <1 ), normal diffusion (η ≈1 ), and superdiffusion (η >1 ) with η ≈2 referred to as the ballistic regime. Correlating the diffusive phase diagram with the phase diagram for dynamical regimes seen earlier, we find that the hyperchaotic bubble regime is largely correlated with normal and superdiffusive behavior. In contrast, in the aerosol regime, ballistic superdiffusion is seen in regions that largely show periodic dynamical behaviors, whereas subdiffusive behavior is seen in both periodic and chaotic regimes. The probability distributions of the diffusion exponents show power-law scaling for both aerosol and bubbles in the superdiffusive regimes. We further study the Poincáre recurrence times statistics of the system. Here, we find that recurrence time distributions show power law regimes due to the existence of partial barriers to transport in the phase space. Moreover, the plot of average particle kinetic energies versus the mass density ratio for the two-action case exhibits a devil's staircase-like structure for higher dissipation values. We explain these results and discuss their implications for realistic systems.

  10. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  11. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm.

    PubMed

    Johansen, Mathew P; Prentice, Emily; Cresswell, Tom; Howell, Nick

    2018-10-01

    The adsorption of radiocesium and radiostrontium onto a range of natural materials has been well quantified, but not for the new media of environmental plastics, which may have enhanced adsorption due to surface-weathering and development of biofilms. Microplastic samples were deployed in freshwater, estuarine and marine conditions, then characterised using infrared spectroscopy to document changes to the plastic surface (vs interior). Synchrotron elemental mapping data revealed surfaces that were well-covered by accumulation of reactive water solutes and sulphur, but, in contrast, had highly discrete coverage of elements such as Fe and Ti, indicating adhered mineral/clay-associated agglomerates that may increase overall adsorption capacity. Plastics that had been deployed for nearly five months adsorbed radionuclides in both freshwater and estuarine conditions with the highest K d for cesium (Cs) in freshwater (80 ml g -1 ) and lowest for strontium (Sr) in estuarine conditions (5 ml g -1 ). The degree of Cs and Sr adsorption onto plastics appears to be approximately 2-3 orders of magnitude lower than for sediment reference values. While lower than for sediments, adsorption occurred on all samples and may indicate a significant radionuclide reservoir, given that plastics are relatively buoyant and mobile in water regimes, and are increasing in global aquatic systems. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  12. Gden: An indicator for European noise maps comparison and to support action plans.

    PubMed

    Licitra, Gaetano; Ascari, Elena

    2014-06-01

    Ten years after the approval of the Environmental Noise Directive 2002/49/EC (END) a large experience have been acquired to develop noise maps and action plans: the Noise Observation and Information Service for Europe maintained by the European Environment Agency (EEA) on behalf of the European Commission contains all data delivered in accordance with the END by Members States within the first round of implementation of the END. This large database should be useful to evaluate the pollution of Europe and to guide policy makers to establish best practices. However, local procedures and national methods do not permit a direct comparison of data reported. A comparison within agglomerations in EU is here carried out in order to find suitable indicators to identify most polluted cities despite different methods used. Critical and quiet areas have been assessed in action plans, but national laws and requirements are various, as different indicators used for their identification. The analysis was performed on noise exposure classes distribution, grouping them together using Gden and Gnight indicators to offer a new tool for presenting noise maps of the cities to the public permitting their comparison and for drawing detailed action plans. Strong relationship between these indicators and highly annoyed and highly sleep-disturbed people percentages are obtained. Furthermore, a comparison between Gden and Qcity Noise Scoring for local hot spot identification is carried out for the agglomeration of Pisa, where different transportation noise sources are present. The final goal is to define faster methods for suitable indicators calculation in hot spot identifications. © 2013 Elsevier B.V. All rights reserved.

  13. Modeling multi-source flooding disaster and developing simulation framework in Delta

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cui, X.; Zhang, W.

    2016-12-01

    Most Delta regions of the world are densely populated and with advanced economies. However, due to impact of the multi-source flooding (upstream flood, rainstorm waterlogging, storm surge flood), the Delta regions is very vulnerable. The academic circles attach great importance to the multi-source flooding disaster in these areas. The Pearl River Delta urban agglomeration in south China is selected as the research area. Based on analysis of natural and environmental characteristics data of the Delta urban agglomeration(remote sensing data, land use data, topographic map, etc.), hydrological monitoring data, research of the uneven distribution and process of regional rainfall, the relationship between the underlying surface and the parameters of runoff, effect of flood storage pattern, we use an automatic or semi-automatic method for dividing spatial units to reflect the runoff characteristics in urban agglomeration, and develop an Multi-model Ensemble System in changing environment, including urban hydrologic model, parallel computational 1D&2D hydrodynamic model, storm surge forecast model and other professional models, the system will have the abilities like real-time setting a variety of boundary conditions, fast and real-time calculation, dynamic presentation of results, powerful statistical analysis function. The model could be optimized and improved by a variety of verification methods. This work was supported by the National Natural Science Foundation of China (41471427); Special Basic Research Key Fund for Central Public Scientific Research Institutes.

  14. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.

    PubMed

    Allahham, Ayman; Stewart, Peter J; Das, Shyamal C

    2013-11-30

    Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  16. Feathering effect detection and artifact agglomeration index-based video deinterlacing technique

    NASA Astrophysics Data System (ADS)

    Martins, André Luis; Rodrigues, Evandro Luis Linhari; de Paiva, Maria Stela Veludo

    2018-03-01

    Several video deinterlacing techniques have been developed, and each one presents a better performance in certain conditions. Occasionally, even the most modern deinterlacing techniques create frames with worse quality than primitive deinterlacing processes. This paper validates that the final image quality can be improved by combining different types of deinterlacing techniques. The proposed strategy is able to select between two types of deinterlaced frames and, if necessary, make the local correction of the defects. This decision is based on an artifact agglomeration index obtained from a feathering effect detection map. Starting from a deinterlaced frame produced by the "interfield average" method, the defective areas are identified, and, if deemed appropriate, these areas are replaced by pixels generated through the "edge-based line average" method. Test results have proven that the proposed technique is able to produce video frames with higher quality than applying a single deinterlacing technique through getting what is good from intra- and interfield methods.

  17. Fuel agglomerates and method of agglomeration

    DOEpatents

    Wen, Wu-Wey

    1986-01-01

    Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.

  18. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction error is lower than 5% for the four propellants tested. Results of this study are expected to provide better insight and enrich in the theoretical frame of aluminum agglomeration.

  19. FAST TRACK COMMUNICATION: Weyl law for fat fractals

    NASA Astrophysics Data System (ADS)

    Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos

    2010-10-01

    It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.

  20. Observations of two-phase flow patterns in a horizontal circular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, M.E.; Weinandy, J.J.; Christensen, R.N.

    1999-01-01

    Horizontal two-phase flow patterns were observed in a transparent circular channel (1.90 cm I.D.) using adiabatic mixtures of air and water. Visual identification of the flow regimes was supplemented with photographic data and the results were plotted on the flow regime map which has been proposed by Breber et al. for condensation applications. The results indicate general consistency between the observations and the predictions of the map, and, by providing data for different fluids and conditions from which the map was developed, support its general applicability.

  1. Preliminary map of temperature gradients in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffanti, M.; Nathenson, M.

    1980-09-01

    Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less

  2. Chemical-mechanical planarization of aluminum and copper interconnects with magnetic liners

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    2000-10-01

    Chemical Mechanical Planarization (CMP) has been employed to achieve Damascene patterning of aluminum and copper interconnects with unique magnetic liners. A one-step process was developed for each interconnect scheme, using a double-layered pad with mesh cells, pores, and perforations on a top hard layer. In a hydrogen peroxide-based slurry, aluminum CMP was a process of periodic removal and formation of a surface oxide layer. Cu CMP in the same slurry, however, was found to be a dissolution dominant process. In a potassium iodate-based slurry, copper removal was the result of two competing reactions: copper dissolution and a non-native surface layer formation. Guided by electrochemistry, slurries were developed to remove nickel in different regimes of the corrosion kinetics diagram. Nickel CMP in a ferric sulfate-based slurry resulted in periodic removal and formation of a passive surface layer. In a potassium permanganate-based slurry, nickel removal is a dissolution dominant process. Visible Al(Cu) surface damages obtained with copper-doped aluminum could be eliminated by understanding the interactions between the substrate, the pad, and the abrasive agglomerate. Increasing substrate hardness by annealing prior to CMP led to a surface finish free of visible scratches. A similar result was also obtained by preventing formation of abrasive agglomerates and minimizing their contact with the substrate.

  3. Computational modeling of soot nucleation

    NASA Astrophysics Data System (ADS)

    Chung, Seung-Hyun

    Recent studies indicate that soot is the second most significant driver of climate change---behind CO2, but ahead of methane---and increased levels of soot particles in the air are linked to health hazards such as heart disease and lung cancer. Within the soot formation process, soot nucleation is the least understood step, and current experimental findings are still limited. This thesis presents computational modeling studies of the major pathways of the soot nucleation process. In this study, two regimes of soot nucleation---chemical growth and physical agglomeration---were evaluated and the results demonstrated that combustion conditions determine the relative importance of these two routes. Also, the dimerization process of polycyclic aromatic hydrocarbons, which has been regarded as one of the most important physical agglomeration processes in soot formation, was carefully examined with a new method for obtaining the nucleation rate using molecular dynamics simulation. The results indicate that the role of pyrene dimerization, which is the commonly accepted model, is expected to be highly dependent on various flame temperature conditions and may not be a key step in the soot nucleation process. An additional pathway, coronene dimerization in this case, needed to be included to improve the match with experimental data. The results of this thesis provide insight on the soot nucleation process and can be utilized to improve current soot formation models.

  4. Mobility and settling rate of agglomerates of polydisperse nanoparticles.

    PubMed

    Spyrogianni, Anastasia; Karadima, Katerina S; Goudeli, Eirini; Mavrantzas, Vlasis G; Pratsinis, Sotiris E

    2018-02-14

    Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO 2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter d m and is compared with that from scaling laws for fractal-like agglomerates. The ratio d m /d g of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant d m and mean d p , the agglomerate settling rate, u s , increases with increasing PP geometric standard deviation σ p,g (polydispersity). A linear relationship between u s and agglomerate mass to d m ratio, m/d m , is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the u s of agglomerates consisting of polydisperse PPs is then derived, u s =1-ρ f ρ p g3πμmd m (ρ f is the density of the fluid, ρ p is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs underestimates u s by a fraction depending on σ p,g and agglomerate mass mobility exponent. Simulations are in excellent agreement with deposition rate measurements of fumed SiO 2 agglomerates in water.

  5. Mobility and settling rate of agglomerates of polydisperse nanoparticles

    NASA Astrophysics Data System (ADS)

    Spyrogianni, Anastasia; Karadima, Katerina S.; Goudeli, Eirini; Mavrantzas, Vlasis G.; Pratsinis, Sotiris E.

    2018-02-01

    Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter dm and is compared with that from scaling laws for fractal-like agglomerates. The ratio dm/dg of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant dm and mean dp, the agglomerate settling rate, us, increases with increasing PP geometric standard deviation σp,g (polydispersity). A linear relationship between us and agglomerate mass to dm ratio, m/dm, is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the us of agglomerates consisting of polydisperse PPs is then derived, us=(1/-{ρf/ρp})g 3 π μ m/dm (ρf is the density of the fluid, ρp is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs underestimates us by a fraction depending on σp,g and agglomerate mass mobility exponent. Simulations are in excellent agreement with deposition rate measurements of fumed SiO2 agglomerates in water.

  6. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    PubMed

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  8. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  9. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  10. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  11. Detecting spatial regimes in ecosystems

    USGS Publications Warehouse

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  12. Geosimulation of urban growth and demographic decline in the Ruhr: a case study for 2025 using the artificial intelligence of cells and agents

    NASA Astrophysics Data System (ADS)

    Rienow, Andreas; Stenger, Dirk

    2014-07-01

    The Ruhr is an "old acquaintance" in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.

  13. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  14. In-line agglomeration degree estimation in fluidized bed pellet coating processes using visual imaging.

    PubMed

    Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan

    2018-05-09

    Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds

    NASA Astrophysics Data System (ADS)

    de Martín, Lilian; van Ommen, J. Ruud

    2013-11-01

    The estimation of nanoparticle agglomerates' size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1-0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.

  16. Process and apparatus for coal hydrogenation

    DOEpatents

    Ruether, John A.

    1988-01-01

    In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.

  17. Bed material agglomeration during fluidized bed combustion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occurmore » in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).« less

  18. Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts.

    PubMed

    Riera-Franco de Sarabia, E; Elvira-Segura, L; González-Gómez, I; Rodríguez-Maroto, J J; Muñoz-Bueno, R; Dorronsoro-Areal, J L

    2003-06-01

    Removing very fine particles in the 0.01-1 micro m range generated in diesel combustion is important for air pollution abatement because of the impact such particles have on the environment. By forming larger particles, acoustic agglomeration of submicron particles is presented as a promising process for enhancing the efficiency of the current filtration systems for particle removal. Nevertheless, some authors have pointed out that acoustic agglomeration is much more efficient for larger particles than for smaller particles. This paper studies the effect of humidity on the acoustic agglomeration of diesel exhausts particles in the nanometer size range at 21 kHz. For the agglomeration tests, the experimental facility basically consists of a pilot scale plant with a diesel engine, an ultrasonic agglomeration chamber a dilution system, a nozzle atomizer, and an aerosol sampling and measuring station. The effect of the ultrasonic treatment, generated by a linear array of four high-power stepped-plate transducers on fumes at flow rates of 900 Nm(3)/h, was a small reduction in the number concentration of particles at the outlet of the chamber. However, the presence of humidity raised the agglomeration rate by decreasing the number particle concentration by up to 56%. A numerical study of the agglomeration process as a linear combination of the orthokinetic and hydrodynamic agglomeration coefficients resulting from mutual radiation pressure also found that acoustic agglomeration was enhanced by humidity. Both results confirm the benefit of using high-power ultrasound together with humidity to enhance the agglomeration of particles much smaller than 1 micro m.

  19. Method for providing improved solid fuels from agglomerated subbituminous coal

    DOEpatents

    Janiak, Jerzy S.; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.

    1989-01-01

    A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.

  20. Urban amplification of the global warming in Moscow megacity

    NASA Astrophysics Data System (ADS)

    Kislov, Alexander; Konstantinov, Pavel; Varentsov, Mikhail; Samsonov, Timofey; Gorlach, Irina; Trusilova, Kristina

    2015-04-01

    Climate changes in the large cities are very important and requires better understanding. The focus of this paper is climate change of the Moscow megacity. Its urban features strongly influence the atmospheric boundary layer above the Moscow agglomeration area and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available meteorological observations within the Moscow urban area and surrounding territory allow us to assess the natural climate variations and human-induced climate warming separately. To obtain more precisely viewing on the UHI structure we have included into the analysis the satellite data (Meteosat-10), providing temperature and humidity profiles with high resolution. To investigate the mechanism of the urban amplification we realized the regional climate model COSMO-CLM+TEB. Apart from detailed climate research the model runs will be planned for climate projecting of Moscow agglomeration area. Climate change differences between urban and rural areas are determined by changes of the shape of the UHI and their relationships with changes of building height and density. Therefore, the urban module of COSMO-CLM+TEB model is fed by information from special GIS database contenting both geometric characteristics of the urban canyons and other characteristics of the urban surface. The sources of information were maps belonging to the OpenStreetMap, and digital elevation models SRTM90 and ASTER GDEM v.2 as well. The multiscale GIS database allows us to generate such kind of information with different spatial resolution (200, 500 and 1000 meters).

  1. Powder agglomeration in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  2. Detecting spatial regimes in ecosystems

    EPA Science Inventory

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...

  3. Detecting spatial regimes in ecosystems | Science Inventory ...

    EPA Pesticide Factsheets

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning

  4. The retention of dust in protoplanetary disks: Evidence from agglomeratic olivine chondrules from the outer Solar System

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Waitukaitis, Scott R.; Davidson, Jemma; McCoy, Timothy J.; Connolly, Harold C.; Lauretta, Dante S.

    2018-02-01

    By investigating the in situ chemical and O-isotope compositions of olivine in lightly sintered dust agglomerates from the early Solar System, we constrain their origins and the retention of dust in the protoplanetary disk. The grain sizes of silicates in these agglomeratic olivine (AO) chondrules indicate that the grain sizes of chondrule precursors in the Renazzo-like carbonaceous (CR) chondrites ranged from <1 to 80 μm. We infer this grain size range to be equivalent to the size range for dust in the early Solar System. AO chondrules may contain, but are not solely composed of, recycled fragments of earlier formed chondrules. They also contain 16O-rich olivine related to amoeboid olivine aggregates and represent the best record of chondrule-precursor materials. AO chondrules contain one or more large grains, sometimes similar to FeO-poor (type I) and/or FeO-rich (type II) chondrules, while others contain a type II chondrule core. These morphologies are consistent with particle agglomeration by electrostatic charging of grains during collision, a process that may explain solid agglomeration in the protoplanetary disk in the micrometer size regime. The petrographic, isotopic, and chemical compositions of AO chondrules are consistent with chondrule formation by large-scale shocks, bow shocks, and current sheets. The petrographic, isotopic, and chemical similarities between AO chondrules in CR chondrites and chondrule-like objects from comet 81P/Wild 2 indicate that comets contain AO chondrules. We infer that these AO chondrules likely formed in the inner Solar System and migrated to the comet forming region at least 3 Ma after the formation of the first Solar System solids. Observations made in this study imply that the protoplanetary disk retained a dusty disk at least ∼3.7 Ma after the formation of the first Solar System solids, longer than half of the dusty accretion disks observed around other stars.

  5. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    NASA Astrophysics Data System (ADS)

    Jux, Maximilian; Finke, Benedikt; Mahrholz, Thorsten; Sinapius, Michael; Kwade, Arno; Schilde, Carsten

    2017-04-01

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138-354 nm during dispersion. The size effect on the Young's modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample's strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138-354 nm and a particle mass fraction of 10 wt%.

  6. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  7. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  8. High concentration agglomerate dynamics at high temperatures.

    PubMed

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  9. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  10. Microbial effects on colloidal agglomeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared tomore » sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.« less

  11. Method for recovering light hydrocarbons from coal agglomerates

    DOEpatents

    Huettenhain, Horst; Benz, August D.; Getsoian, John

    1991-01-01

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  12. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for most element compositions for all the carbon inclusions. The rough, spherical, strip shape and flake shape carbon-inclusions are believed to be derived from the degradation products of the binder or oxidizer, while the fiber silk is possibly the combustion product of fiber inside the heat insulation layer of the propellants. Images of products at different pressures reveal high pressure reduces the degree of agglomeration. The chemical compositions, size range and content of all the observed structures are given in this paper. Results of our study are expected to provide better insight in the working process of solid rocket motor.

  13. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.

    PubMed

    Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng

    2009-11-01

    The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.

  14. Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations

    PubMed Central

    Teo, Yik-Ying; Sim, Xueling; Ong, Rick T.H.; Tan, Adrian K.S.; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S.; Ku, Chee-Seng; Lee, Edmund J.D.; Seielstad, Mark; Chia, Kee-Seng

    2009-01-01

    The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser. PMID:19700652

  15. Film thickness for different regimes of fluid-film lubrication. [elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Mathematical formulas are presented which express the dimensionless minimum film thickness for the four lubrication regimes found in elliptical contacts: isoviscous-rigid regime; piezoviscous-rigid regime; isoviscous-elastic regime; and piezoviscous-elastic regime. The relative importance of pressure on elastic distortion and lubricant viscosity is the factor that distinguishes these regimes for a given conjunction geometry. In addition, these equations were used to develop maps of the lubrication regimes by plotting film thickness contours on a log-log grid of the dimensionless viscosity and elasticity parameters for three values of the ellipticity parameter. These results present a complete theoretical film thickness parameter solution for elliptical constants in the four lubrication regimes. The results are particularly useful in initial investigations of many practical lubrication problems involving elliptical conjunctions.

  16. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less

  17. Fragmentation and bond strength of airborne diesel soot agglomerates

    PubMed Central

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  18. Modeling of Particle Agglomeration in Nanofluids

    NASA Astrophysics Data System (ADS)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (<100nm in diameter) in dispersion mediums. They are of great interest in industrial applications as heat transfer fluids owing to their enhanced thermal conductivities. Stability of nanofluids is a major problem hindering their industrial application. Agglomeration and then sedimentation are some reasons, which drastically decrease the shelf life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  19. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials

    PubMed Central

    Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong

    2013-01-01

    This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317

  20. Problems of Research, Projects and Mechanisms for Their Implementation in Chelyabinsk City Agglomeration

    NASA Astrophysics Data System (ADS)

    Bolshakov, V. V.

    2017-11-01

    The article analyzes the research and design methods of urban agglomerations in the context of the Chelyabinsk agglomeration from the point of view of correctness, objectivity and consistency of the results obtained. The completed and approved project of the Chelyabinsk agglomeration is analysed to provide architectural and planning solutions for sustainable social and economic development according to the theories that have been formed to date. The possibility of effectuation and implementation of the approved project of the Chelyabinsk agglomeration taking in account existing specific natural, historical and socio-economic factors characteristic for the territory under consideration is examined. The authors draw the conclusions the project of the Chelyabinsk agglomeration has been developed in line with the town-planning solutions that do not reflect modern approaches based on the competitive advantages of territories and do not form a space providing transition to a modernized and innovative economy. Specific town-planning decisions have a weak justification and an undeveloped methodology for pre-project analysis and methodology for designing urban agglomerations because of absence of a full study of the phenomenon of urban agglomeration and processes occurring in it today. It is necessary to continue research in the field of development of the Chelyabinsk agglomeration with the use of a logical and objective methodology to analyze the territory and design which can lead to the formation of an urban-planning information model that reflects all the system processes and allows for predicting project solutions.

  1. Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment.

    PubMed

    Krause, Maya; Blum, Jürgen

    2004-07-09

    In a second microgravity experiment on the formation of dust agglomerates by Brownian motion-induced collisions we find that the agglomerates have fractal dimensions as low as 1.4. Because of much better data, we are now able to derive the diffusion constant of the agglomerates as a function of mass, to show that a power law with an exponent of 1.7 describes the temporal evolution of the mean agglomerate mass very well and to prove that the collision cross section is proportional to the geometrical cross section. In addition to that we derived the universal mass-distribution function of the agglomerates.

  2. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  3. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics

    DOE PAGES

    Pant, Lalit M.; Weber, Adam Z.

    2017-04-14

    A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.

  4. Film thickness for different regimes of fluid-film lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Film thickness equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic lubrication of low-elastic-modulus materials (soft EHL), or isoviscous-elastic; and elastohydrodynamic lubrication of high-elastic-modulus materials (hard EHL), or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The results are presented as a map of the lubrication regimes, with film thickness contours on a log-log grid of the viscosity and elasticity for three values of the ellipticity parameter.

  5. Experimental study of acoustic agglomeration and fragmentation on coal-fired ash

    NASA Astrophysics Data System (ADS)

    Shen, Guoqing; Huang, Xiaoyu; He, Chunlong; Zhang, Shiping; An, Liansuo; Wang, Liang; Chen, Yanqiao; Li, Yongsheng

    2018-02-01

    As the major part of air pollution, inhalable particles, especially fine particles are doing great harm to human body due to smaller particle size and absorption of hazardous components. However, the removal efficiency of current particles filtering devices is low. Acoustic agglomeration is considered as a very effective pretreatment technique for removing particles. Fine particles collide, agglomerate and grow up in the sound field and the fine particles can be removed by conventional particles devices easily. In this paper, the agglomeration and fragmentation of 3 different kinds of particles with different size distributions are studied experimentally in the sound field. It is found that there exists an optimal frequency at 1200 Hz for different particles. The agglomeration efficiency of inhalable particles increases with SPL increasing for the unimodal particles with particle diameter less than 10 μm. For the bimodal particles, the optimal SPLs are 115 and 120 dB with the agglomeration efficiencies of 25% and 55%. A considerable effectiveness of agglomeration could only be obtained in a narrow SPL range and it decreases significantly over the range for the particles fragmentation.

  6. Gas-Liquid Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; Motil, Brian J.; McCready, Mark J.; Kamotani, Yasuhiro

    2004-01-01

    Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).

  7. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  8. Method and apparatus for in-situ detection and isolation of aircraft engine faults

    NASA Technical Reports Server (NTRS)

    Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)

    2007-01-01

    A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.

  9. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  10. Critical behavior of two-dimensional vesicles in the deflated regime

    NASA Technical Reports Server (NTRS)

    Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio

    1991-01-01

    The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.

  11. Modeling of particle agglomeration in nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, K. Hari; Neti, S.; Oztekin, A.

    2015-03-07

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less

  12. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    NASA Astrophysics Data System (ADS)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  13. Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, N. E.

    2017-03-22

    Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.

  14. A New, Large-scale Map of Interstellar Reddening Derived from H I Emission

    NASA Astrophysics Data System (ADS)

    Lenz, Daniel; Hensley, Brandon S.; Doré, Olivier

    2017-09-01

    We present a new map of interstellar reddening, covering the 39% of the sky with low H I column densities ({N}{{H}{{I}}}< 4× {10}20 cm-2 or E(B-V)≈ 45 mmag) at 16\\buildrel{ \\prime}\\over{.} 1 resolution, based on all-sky observations of Galactic H I emission by the HI4PI Survey. In this low-column-density regime, we derive a characteristic value of {N}{{H}{{I}}}/E(B-V)=8.8 × {10}21 {{cm}}2 {{mag}}-1 for gas with | {v}{LSR}| < 90 km s-1 and find no significant reddening associated with gas at higher velocities. We compare our H I-based reddening map with the Schlegel et al. (SFD) reddening map and find them consistent to within a scatter of ≃ 5 mmag. Further, the differences between our map and the SFD map are in excellent agreement with the low-resolution (4\\buildrel{\\circ}\\over{.} 5) corrections to the SFD map derived by Peek and Graves based on observed reddening toward passive galaxies. We therefore argue that our H I-based map provides the most accurate interstellar reddening estimates in the low-column-density regime to date. Our reddening map is made publicly available at doi.org/10.7910/DVN/AFJNWJ.

  15. The directed self-assembly for the surface patterning by electron beam II

    NASA Astrophysics Data System (ADS)

    Nakagawa, Sachiko T.

    2015-03-01

    When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.

  16. Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed

    EPA Science Inventory

    Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...

  17. Satellite-Based Tropospheric NO2 Column Trends in the Last 10 Years Over Mexican Urban Areas Measured by the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Rivera, C. I.; Stremme, W.; Grutter, M.

    2015-12-01

    Population density and economic activities in urban agglomerations have drastically increased in many cities in Mexico during the last decade. Several factors are responsible for increased urbanization such as a shift of people from rural to urban areas while looking for better education, services and job opportunities as well as the natural growth of the urban areas themselves. Urbanization can create great social, economic and environmental pressures and changes which can easily be observed in most urban agglomerations in the world. In this study, we have focused on analyzing tropospheric NO2 (nitrogen dioxide) column trends over Mexican urban areas that have a population of at least one million inhabitants according to the latest 2010 population census. Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 conducted by the space-borne Ozone Monitoring Instrument (OMI) on board the Aura satellite between 2005 and 2014 have been used for this analysis. This dataset has allowed us to obtain a satellite-based 10-year tropospheric NO2 column trend over the most populated Mexican cities which include the dominating metropolitan area of Mexico City with more than twenty million inhabitants as well as ten other Mexican cities with a population ranging between one to five million inhabitants with a wide range of activities (commercial, agricultural or heavily industrialized) as well as two important border crossings. Distribution maps of tropospheric NO2 columns above the studied urban agglomerations were reconstructed from the analyzed OMI dataset, allowing to identify areas of interest due to clear NO2 enhancements inside these urban regions.

  18. Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites.

    PubMed

    Alian, A R; Meguid, S A

    2017-02-08

    Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.

  19. Successfully use agglomeration for size enlargement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, W.

    1996-04-01

    The processing of fine and ultrafine particles by size enlargement finds an ever increasing application. At the same time, undesirable agglomeration such as buildup, caking, bridging, and uncontrolled aggregation of fine particles can occur during processing and handling of these particulate solids. This article will provide a survey of the phenomena of agglomeration and discuss the unit operation of size enlargement by agglomeration. This article is also an invitation, particularly to young engineers, to become interested in agglomeration. Considering that mechanical process technologies are requiring more energy every year than any other group of consumers and efficiencies are typically inmore » the single digits or teens at best, considerable rewards can be expected from the development of scientifically modified, more energy-efficient methods and equipment.« less

  20. Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.

    2011-01-01

    This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.

  1. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  2. Urban Planning Problems of Agglomerations

    NASA Astrophysics Data System (ADS)

    Olenkov, V. D.; Tazeev, N. T.

    2017-11-01

    The article explores the state of the air basin of the Chelyabinsk agglomeration and gives the examples of solutions for the pollution problems from the point of view of city planning. The main features and structure of the modern urban agglomerations are considered, the methods for determining their boundaries are studied and the main problems are identified. The study of the boundaries and territorial structure of the Chelyabinsk urban agglomeration is conducted, and a general description of the territory is given. The data on the change in the volume of pollutant emissions into the atmosphere and the index of atmospheric pollution for the period 2003-2015 are given basing on the annual comprehensive reports regarding the state of the environment. The review of the world experience of city-planning actions on the decision of ecological problems is carried out. The most suitable ways for the ecological problems solving in the Chelyabinsk agglomeration are considered. The authors give recommendations for the ecological situation improving in the territory of the Chelyabinsk agglomeration.

  3. Morphological characterization of diesel soot agglomerates based on the Beer-Lambert law

    NASA Astrophysics Data System (ADS)

    Lapuerta, Magín; Martos, Francisco J.; José Expósito, Juan

    2013-03-01

    A new method is proposed for the determination of the number of primary particles composing soot agglomerates emitted from diesel engines as well as their individual fractal dimension. The method is based on the Beer-Lambert law and it is applied to micro-photographs taken in high resolution transmission electron microscopy. Differences in the grey levels of the images lead to a more accurate estimation of the geometry of the agglomerate (in this case radius of gyration) than other methods based exclusively on the planar projections of the agglomerates. The method was validated by applying it to different images of the same agglomerate observed from different angles of incidence, and proving that the effect of the angle of incidence is minor, contrary to other methods. Finally, the comparisons with other methods showed that the size, number of primary particles and fractal dimension (the latter depending on the particle size) are usually underestimated when only planar projections of the agglomerates are considered.

  4. Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes

    NASA Astrophysics Data System (ADS)

    Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan

    2013-01-01

    Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

  5. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  6. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  7. The use of witness trees as pyro-indicators for mapping past fire conditions

    Treesearch

    Melissa A. Thomas-Van Gundy; Gregory J. Nowacki

    2013-01-01

    Understanding and mapping presettlement fire regimes is vitally important for ecosystem restoration, helping ensure the proper placement of fire back into ecosystems that formerly burned. Witness trees can support this endeavor by serving as pyro-indicators of the past. We mapped fire-adapted traits across a landscape by categorizing trees into two classes, pyrophiles...

  8. Rock geochemistry in the Mahd adh Dhahab district, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Worl, R.G.; Doebrich, J.L.; Allen, M.S.; Afifi, A.M.; Ebens, R.J.

    1987-01-01

    Anomalous values of gold, silver, lead, and to a lesser extent copper and zinc in surface rock samples clearly delineated the northern mineralized zone in the upper agglomerate, and an east-vein area and west-vein area of the southern mineralized zone in the lower agglomerate. A third geochemically anomalous area occurs farther to the west in the lower agglomerate, suggesting that mineralization may have extended at least to this area along the lower agglomerate-lower tuff contact, and possibly even further to the west.

  9. Search for the contamination source of butyltin compounds in wine: agglomerated cork stoppers.

    PubMed

    Jiang, Gui-Bin; Liu, Ji-Yan; Zhou, Qun-Fang

    2004-08-15

    A possible butyltin contamination source in wine was studied in this paper. Agglomerated cork stoppers, which were produced in Portugal, Spain, and Italy, used in wine bottles were examined. The domestic cork products, cork granules, and mucus used for cork products were also analyzed. The levels of mono- and dibutyltin compounds in corks were found in the range from <0.0024 to 3.3 and from <0.0029 to 6.7 microg of Sn/g, respectively. A low level of tributyltin contamination was also found in 2 of 31 tested samples. The presence of butyltin compounds in agglomerated cork stoppers was confirmed by GC-MS. Experimental results indicated that all overseas agglomerated cork stoppers studied contained mono- and/or dibutyltins. Butyltins were not detected in cork granules, mucus, most of the natural cork stoppers, and domestic agglomerated cork products. The concentrations of mono- and dibutyltins increased with the time in a 30-day experiment, showing that butyltin compounds can leach from agglomerated cork to the wine. When the butyltin concentrations in wine samples were compared with their levels in the corresponding agglomerated cork stoppers, a correlation was found. The potential harm of such food contamination was evaluated by the toxic research of butyltin compounds using Daphnia sp. as the experimental model.

  10. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    PubMed

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.

    2007-07-01

    This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.

  12. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.

    PubMed

    Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T

    2015-01-01

    The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.

  13. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less

  14. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less

  15. Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape.

    PubMed

    Queiroz, Cibele; Meacham, Megan; Richter, Kristina; Norström, Albert V; Andersson, Erik; Norberg, Jon; Peterson, Garry

    2015-01-01

    Ecosystem services (ES) is a valuable concept to be used in the planning and management of social-ecological landscapes. However, the understanding of the determinant factors affecting the interaction between services in the form of synergies or trade-offs is still limited. We assessed the production of 16 ES across 62 municipalities in the Norrström drainage basin in Sweden. We combined GIS data with publically available information for quantifying and mapping the distribution of services. Additionally, we calculated the diversity of ES for each municipality and used correlations and k-means clustering analyses to assess the existence of ES bundles. We found five distinct types of bundles of ES spatially agglomerated in the landscape that could be explained by regional social and ecological gradients. Human-dominated landscapes were highly multifunctional in our study area and urban densely populated areas were hotspots of cultural services.

  16. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.

  17. From environmental noise abatement to soundscape creation through strategic noise mapping in medium urban agglomerations in South Europe.

    PubMed

    Vogiatzis, Konstantinos; Remy, Nicolas

    2014-06-01

    In the framework of the European Directive 2002-49-EU, the medium sized cities of Volos and Larissa in central Greece recently completed (2012) their strategic noise maps and relevant action plans that define the main strategies to reduce noise exposure of residents and introduce and preserve "quite zones". For the first time in this framework, it has been decided to introduce, as well, a general study for five specific urban districts covering not only the measurement and modeling of environmental noise levels but also qualitative surveys on the sound perception by the residents and several analyses of the urban and architectural tissue. The districts (respectively four in Volos and one in Larissa with the two of them in the center of both agglomerations) were chosen as representatives of urban situations due to their proximity to transportation infrastructures (main road network, industrial harbor facilities and both regional and intercity train network) and also because they represent different urban typologies (residential district, downtown area with or without shops, more or less densely populated neighborhood, etc.…). Sociological surveys on sound and noise perception have been implemented on some 15% of the residents per district using opened questionnaires. Soundscape analysis was also conducted through qualitative criteria. A cross-analysis of these data explains in detail the physical reasons for the existence of sound qualities that contribute to the identity of each distinct neighborhood. This paper, in a strategic plan level, has introduced valuable recommendations in order not only to preserve the sound quality on the existing sites but also to authorize developers and decision makers (mayors, architects, town planners) to evolve them positively over time. © 2013 Elsevier B.V. All rights reserved.

  18. Comments on ;Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new Cadomian arc magmatism in the Hormuz Formationˮ by N. S. Faramarzi, S. Amini, A. K. Schmitt, J. Hassanzadeh, G. Borg, K. McKeegan, S. M. H. Razavi, S. M. Mortazavi, Lithos, Sep. 2015, V.236-237, P.203-211: A missing link of Ediacaran A-type rhyolitic volcanism associated with glaciogenic banded iron salt formation (BISF)

    NASA Astrophysics Data System (ADS)

    Atapour, Habibeh; Aftabi, Alijan

    2017-07-01

    A critical overview on the petrogeochemistry of Hormuz Island highlights that the Ediacaran Hormuz Complex includes synchronous felsic submarine volcanism associated with diamictite and dropstone-bearing banded iron salt (anhydrite, halite, sylvite) formation (BISF) that formed 558-541 Ma in the Late Neoproterozoic. Our field observations disagree with Faramarzi et al. (2015) on the geological map of the Hormuz Island, in particular on the occurrence of the ferruginous agglomerates in the Hormuz Island, thus the geological data do not provide a robust geological mapping. The agglomerates are commonly related to the strombolian peralkaline basaltic eruptions rather than the submarine felsic volcanism. Based on the tectonogeochemical diagrams extracted from the geochemical data of the authors, the Hormuz rhyolites show an affinity to the A-type or A2-type submarine riftogenic and or intra-plate rhyolites of Eby (1992). However, the authors admitted two sides of the debate and proposed an extensional back arc or rift-related magmatic activity as well as continental arc margin setting. The rhyolites are also similar to the Ediacaran Arabian-Nubian A-type alkaline rhyolites that formed by intra-plate rifting during the Pan-African orogen in the proto-Tethys shallow grabens of the Gondwana supercontinent. The most exceptional feature of the Hormuz rhyolites is related to their co-occurrence with the Ediacaran salt rocks, glaciogenic diamictites and jaspillitic banded iron formations, which have never ever been reported previously.

  19. New results in gravity dependent two-phase flow regime mapping

    NASA Astrophysics Data System (ADS)

    Kurwitz, Cable; Best, Frederick

    2002-01-01

    Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .

  20. Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1978-01-01

    The film-parameter equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic of low-elastic-modulus materials, or isoviscous-elastic; and elastohydrodynamic, or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The film-parameter equations for the respective regimes come from earlier theoretical studies by the authors on elastohydrodynamic and hydrodynamic lubrication of elliptical conjunctions. These equations are restated and the results are presented as a map of the lubrication regimes, with film-thickness contours on a log-log grid of the viscosity and elasticity parameters for five values of the ellipticity parameter. The results present a complete theoretical film-parameter solution for elliptical contacts in the four lubrication regimes.

  1. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  2. Electrical and thermal properties of Ca and Ni doped barium ferrite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    Ca and Ni doped M type Barium ferrite of the composition ((Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19) were prepared by the traditional sol gel auto combustion method using citric acid as a fuel. Microstructural analyses were carried out with the help of XRD and SEM. XRD analysis is the evidence of nanometer regime along with crystalline planes of hexagonal structure. It also confirms the hexagonal structure of barium ferrite even with the doping of Ca and Ni. SEM analysis is the signature of the spherical shape and surface morphology of agglomerated form of nano-powders of doped samples. The thermal properties of samples were carried out with the help of TGA. That shows the variation of weight loss of the prepared sample with the temperature.

  3. Nickel ferrite aerogels with monodisperse nanoscale building blocks--the importance of processing temperature and atmosphere.

    PubMed

    Pettigrew, Katherine A; Long, Jeffrey W; Carpenter, Everett E; Baker, Colin C; Lytle, Justin C; Chervin, Christopher N; Logan, Michael S; Stroud, Rhonda M; Rolison, Debra R

    2008-04-01

    Using two-step (air/argon) thermal processing, sol-gel-derived nickel-iron oxide aerogels are transformed into monodisperse, networked nanocrystalline magnetic oxides of NiFe(2)O(4) with particle diameters that can be ripened with increasing temperature under argon to 4.6, 6.4, and 8.8 nm. Processing in air alone yields poorly crystalline materials; heating in argon alone leads to single phase, but diversiform, polydisperse NiFe(2)O(4), which hampers interpretation of the magnetic properties of the nanoarchitectures. The two-step method yields an improved model system to study magnetic effects as a function of size on the nanoscale while maintaining the particles within the size regime of single domain magnets, as networked building blocks, not agglomerates, and without stabilizing ligands capping the surface.

  4. Direct observation of two-step crystallization in nanoparticle superlattice formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the additionmore » of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.« less

  5. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  6. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  7. Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.

  8. Landsat-Derived, Time-Series Remote Sensing Analysis of Fire Regime, Microclimate, and Urbanization's Influence on Biodiversity in the Santa Monica Mountain Coastal Range

    NASA Astrophysics Data System (ADS)

    Ma, J.; Dmochowski, J. E.

    2016-12-01

    Southern California's Santa Monica Mountain coastal range hosts chaparral and coastal sage scrub ecosystems with distinct, local variations in their fire regime, microclimate, and proximity to urbanization. The high biodiversity combined with ongoing human impact make monitoring the ecological and land cover changes crucial. Due to their extensive, continuous temporal coverage and high spatial resolution, Landsat data are well suited to this purpose. Landsat-derived time-series NDVI data and classification maps have been compiled to identify regions most sensitive to change in order to determine the effects of fire regime, geography, and urbanization on vegetative changes; and assess the encroachment of non-native grasses. Spatial analysis of the classification maps identified the factors more conducive to land-cover changes as native shrubs were replaced with non-native grasses. Understanding the dynamics that govern semi-arid resilience, overall greening, and fire regime is important to predicting and managing large scale ecosystem changes as pressures from global climate change and urbanization intensify.

  9. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    PubMed

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Cost-effectiveness of conservation payment schemes for species with different range sizes.

    PubMed

    Drechsler, Martin; Smith, Henrik G; Sturm, Astrid; Wätzold, Frank

    2016-08-01

    Payments to compensate landowners for carrying out costly land-use measures that benefit endangered biodiversity have become an important policy instrument. When designing such payments, it is important to take into account that spatially connected habitats are more valuable for many species than isolated ones. One way to incentivize provision of connected habitats is to offer landowners an agglomeration bonus, that is, a bonus on top of payments they are receiving to conserve land if the land is spatially connected. Researchers have compared the cost-effectiveness of the agglomeration bonus with 2 alternatives: an all-or-nothing, agglomeration payment, where landowners receive a payment only if the conserved land parcels have a certain level of spatial connectivity, and a spatially homogeneous payment, where landowners receive a payment for conserved land parcels irrespective of their location. Their results show the agglomeration bonus is rarely the most cost-effective option, and when it is, it is only slightly better than one of the alternatives. This suggests that the agglomeration bonus should not be given priority as a policy design option. However, this finding is based on consideration of only 1 species. We examined whether the same applied to 2 species, one for which the homogeneous payment is best and the other for which the agglomeration payment is most cost-effective. We modified a published conceptual model so that we were able to assess the cost-effectiveness of payment schemes for 2 species and applied it to a grassland bird and a grassland butterfly in Germany that require the same habitat but have different spatial-connectivity needs. When conserving both species, the agglomeration bonus was more cost-effective than the agglomeration and the homogeneous payment; thus, we showed that as a policy the agglomeration bonus is a useful conservation-payment option. © 2016 Society for Conservation Biology.

  11. Standard map in magnetized relativistic systems: fixed points and regular acceleration.

    PubMed

    de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B

    2010-08-01

    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.

  12. Electrostatic formation of liquid marbles and agglomerates

    NASA Astrophysics Data System (ADS)

    Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.

    2013-07-01

    We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.

  13. Experiment Investigation of the Influencing Factors on Bed Agglomeration During Fluidized-Bed Gasification of Biomass Fuels

    NASA Astrophysics Data System (ADS)

    Chen, Y. Q.; Chen, H. P.; Yang, H. P.; Wang, X. H.; Zhang, S. H.

    With the depleting of fossil fuel and environmental polluting increasing, the utilization of biomass resources caught increasing concern. Biomass gasification in fluidized bed, as one promising technology, developed quickly. However, serious agglomeration was displayed as biomass ash reacted with bed material (silica sand) at higher temperature. It hindered the wide utilization of CFB gasifier. The objective ofthis work is to investigate the agglomeration behavior between biomass ash and silica sand, and catch the inherent mechanism. Firstly, the influence of ash compounds on the agglomeration behavior was analyzed with biomass ash and synthesis ash compounds addition in fixed bed as ash sample mixed with bed material evenly before every trial. The reaction temperature was set 850°C that is the operated temperature for many fluidized bed gasificated biomass fuels. Then the influence of reaction time was analyzed. The characteristics of the agglomerated silica sand particles were analyzed by the XRD. Finally, it was simulated with HSC computer mode based on thermodynamic equilibrium. It was observed that when the ratio of the biomass ash to the silica sand was above 0.2, the agglomeration was observed. With the increase of the reaction time, more silica sand particles agglomerated with the biomass ash. There are two kinds of silicate eutecticum investigated by the XRD. It is of great significance for the running ofCFB biomass gasifier and the development ofbiomass utilization technology.

  14. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    PubMed

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (<100μm). Second, five polymethacrylate latexes were powdered by spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.

    2017-06-01

    We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.

  16. Method of separating and de-watering fine particles

    DOEpatents

    Yoon, Roe-Hoan

    2016-12-13

    A process for cleaning and dewatering hydrophobic particulate materials is presented. The process is performed in two steps: 1) agglomeration of the hydrophobic particles in a first hydrophobic liquid/aqueous mixture; followed by 2) dispersion of the agglomerates in a second hydrophobic liquid to release the water trapped within the agglomerates along with the entrained hydrophilic particles.

  17. Overpopulated, Underdeveloped Urban Agglomerations: Tomorrow’s Unstable Operating Environment

    DTIC Science & Technology

    2012-05-08

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE Overpopulated , Underdeveloped Urban Agglomerations: Tomorrow’s 5a. CONTRACT NUMBER...ABSTRACT This paper asserts that a unique future operational environment is developing: overpopulated , underdeveloped urban agglomerations. A...proposed definition for this operating environment is (or would be) an overpopulated urban area which is located within a developing or underdeveloped

  18. Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution

    NASA Astrophysics Data System (ADS)

    Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo

    2016-05-01

    We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00496b

  19. Degradation Mechanisms in Solid-Oxide Fuel and Electrolyzer Cells: Analytical Description of Nickel Agglomeration in a Ni /Y S Z Electrode

    NASA Astrophysics Data System (ADS)

    Kröll, L.; de Haart, L. G. J.; Vinke, I.; Eichel, R.-A.

    2017-04-01

    The microstructural evolution of a porous electrode consisting of a metal-ceramic matrix, consisting of nickel and yttria-stabilized zirconia (Y S Z ), is one of the main degradation mechanisms in a solid-oxide cell (SOC), in either fuel cell or electrolyzer mode. In that respect, the agglomeration of nickel particles in a SOC electrode leads to a decrease in the electronic conductivity as well as in the active catalytic area for the oxidation-reduction reaction of the fuel-water steam. An analytical model of the agglomeration behavior of a Ni /Y S Z electrode is proposed that allows for a quantitative description of the nickel agglomeration. The accuracy of the model is validated in terms of a comparison with experimental degradation measurements. The model is based on contact probabilities of nickel clusters in a porous network of nickel and Y S Z , derived from an algorithm of the agglomeration process. The iterative algorithm is converted into an analytical function, which involves structural parameters of the electrode, such as the porosity and the nickel content. Furthermore, to describe the agglomeration mechanism, the influence of the steam content and the flux rate are taken into account via reactions on the nickel surface. In the next step, the developed agglomeration model is combined with the mechanism of the Ostwald ripening. The calculated grain-size growth is compared to measurements at different temperatures and under low flux rates and low steam content, as well as under high flux rates and high steam content. The results confirm the necessity of connecting the two mechanisms and clarify the circumstances in which the single processes occur and how they contribute to the total agglomeration of the particles in the electrode.

  20. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    NASA Astrophysics Data System (ADS)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  1. Mapping landscape fire frequency for fire regime condition class

    Treesearch

    Dale A. Hamilton; Wendel J. Hann

    2015-01-01

    Fire Regime Condition Class (FRCC) is a departure index that compares the current amounts of the different vegetation succession classes, fire frequency, and fire severity to historic reference conditions. FRCC assessments have been widely used for evaluating ecosystem status in many areas of the U.S. in reports such as land use plans, fire management plans, project...

  2. Correlation between triple phase boundary and the microstructure of Solid Oxide Fuel Cell anodes: The role of composition, porosity and Ni densification

    NASA Astrophysics Data System (ADS)

    Lu, Xuekun; Heenan, Thomas M. M.; Bailey, Josh J.; Li, Tao; Li, Kang; Brett, Daniel J. L.; Shearing, Paul R.

    2017-10-01

    This study aims to correlate the active triple phase boundaries (TPBs) to the variation of as-prepared anode microstructures and Ni densifications based on the reconstructed 3D volume of an SOFC anode, providing a point of comparison with theoretical studies that reveal the relationship of TPBs and the material microstructure using randomly packed spheres models. The TPB degradation mechanisms are explained using a particle network model. The results indicate that in low porosity regime, the TPBs sharply increase with the porosity until the percolation threshold (10%); at intermediate porosity (10%-25%), a balance of surface area between three phases is more critical than that of volume fraction to reach the optimal TPB density; in the high porosity regime (>25%), the TPBs start to drop due to the shrinkage and detachment of Ni/YSZ interfaces. The TPB density is inversely proportional to the degree of Ni densification as long as the Ni content is above the percolation threshold (35%) and can be improved by 70% within 7% change of porosity provided that the over-densification is mitigated. This has implications for the design of SOFC microstructures as well for electrode durability, where Ni agglomeration is known to deleteriously impact long-term operation.

  3. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  4. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  5. Process and apparatus for coal hydrogenation

    DOEpatents

    Ruether, John A.; Simpson, Theodore B.

    1991-01-01

    In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.

  6. In Situ Observations of Agglomeration of Non-metallic Inclusions at Steel/Ar and Steel/Slag Interfaces by High-Temperature Confocal Laser Scanning Microscope: A Review

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Dogan, Neslihan; Coley, Kenneth S.

    2018-05-01

    The agglomeration behavior of non-metallic inclusions in the steelmaking process is important for controlling the cleanliness of the steel. In this work, the observation of agglomeration behaviors of inclusions at steel/Ar and steel/slag interfaces using a high-temperature confocal laser scanning microscope (HT-CLSM) is summarized. This HT-CLSM technique has been applied to observe phase transformation during solidification and heat treatment and the engulfment and pushing behavior of inclusions in front of the solidified interface. In the current work, the inclusion agglomeration behavior at steel/Ar and steel/slag interfaces is summarized and discussed. Subsequently, the development of the theoretical work investigating inclusion agglomeration at steel/Ar and steel/slag interfaces including the initial capillary force model and Kralchevsky-Paunov model is described. Finally, the Kralchevsky-Paunov model is applied to investigating nitride inclusion agglomeration at high-manganese steel/Ar interfaces. This work aims to give a critical review of the application of HT-CLSM in secondary refining as well as a better control of inclusion elimination for clean steel production.

  7. Influences of Different Components on Agglomeration Behavior of MoS2 During Oxidation Roasting Process in Air

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Zhang, Guo-Hua; Wang, Jing-Song; Chou, Kuo-Chih

    2016-08-01

    An agglomeration of the furnace charge always takes place during the oxidation roasting process of molybdenite concentrate (with the main component of MoS2) in multiple hearth furnaces, which greatly affects the production process and furnace service life. In the present work, a preliminary study about the influence of various components on the agglomeration phenomenon of pure MoS2 have been carried out. The results show that reaction temperature, impurity content, and air flow rate have significant effects on the agglomeration extent. Meanwhile, the impurity type added into the pure MoS2 plays a crucial role. It was found that CaO and MgO have a stronger sulfur-fixing effect and that the desulphurization of the roasted product was uncompleted. It was also concluded that the agglomeration is due to the formation of low-melting-point eutectics, including that between MoO3 and impurities and that between MoO3 and Mo4O11. It is suggested that decreasing the impurities contents, especially K, Cu, Pb, and Fe, is an effective method for reducing the extent of agglomeration.

  8. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  9. Theranostic potential of gold nanoparticle-protein agglomerates

    NASA Astrophysics Data System (ADS)

    Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun

    2015-11-01

    Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as `self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here.

  10. Modified unified kinetic scheme for all flow regimes.

    PubMed

    Liu, Sha; Zhong, Chengwen

    2012-06-01

    A modified unified kinetic scheme for the prediction of fluid flow behaviors in all flow regimes is described. The time evolution of macrovariables at the cell interface is calculated with the idea that both free transport and collision mechanisms should be considered. The time evolution of macrovariables is obtained through the conservation constraints. The time evolution of local Maxwellian distribution is obtained directly through the one-to-one mapping from the evolution of macrovariables. These improvements provide more physical realities in flow behaviors and more accurate numerical results in all flow regimes especially in the complex transition flow regime. In addition, the improvement steps introduce no extra computational complexity.

  11. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less

  12. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.

    PubMed

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka

    2017-06-26

    Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.

  13. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    NASA Astrophysics Data System (ADS)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied. Each particle class undergoes distinct transformations of mineral matter at fluidized bed operating temperatures, as determined by using high temperature X-ray diffraction, thermo-mechanical analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). For the incorporation of a particle size distribution, bottom ash from an operating plant was divided into four size intervals and the system granular temperatures and dynamic bed height were computed using MFIX, a CFD simulation software. The kinetic theory of granular flow was used to obtain a distribution of binary collision frequencies for the entire particle size distribution. With this distribution of collision frequencies, which is computed based on hydrodynamics and granular physics of the poly-disperse system, as the particles grow, defluidize and decrease in number, the collision frequency also decreases. Under the conditions studied, the growth rate in the latter half of the run decreased to almost 1/5th the initial rate, with this decrease in collision frequency. This interdependent effect of chemistry and physics-based parameters, at the particle-level, was used to predict the agglomerate growth probabilities of Pittsburgh No. 8, Illinois No. 6 and Skidmore anthracite coals in this study, to illustrate the utility of the modeling methodology. The study also showed that agglomerate growth probability significantly increased above 15 to 20 wt. % slag. It was limited by ash chemistry at levels below this amount. Ash agglomerates were generated in a laboratory-scale fluidized bed combustor at Penn State to support the proposed agglomerate growth mechanism. This study also attempted to gain a mechanistic understanding of agglomerate growth with particle-level initiation occurring at the relatively low operating temperatures of about 950 °C, found in some fluidized beds. The results of this study indicated that, for the materials examined, agglomerate growth in fluidized bed combustors and gasifiers is initiated at the particle-level by low-melting components rich in iron- and calcium-based minerals. Although the bulk ash chemical composition does not indicate potential for agglomeration, study of particle-level heterogeneities revealed that agglomeration can begin at lower temperatures than the fluidized bed operating temperatures of 850 °C. After initiation at the particle-level, more slag is observed to form from alumino-silicate components at about 50 to 100 °C higher temperatures caused by changes in the system, and agglomerate growth propagates in the bed. A post-mortem study of ash agglomerates using SEM-EDX helped to identify stages of agglomerate growth. Additionally, the modeling methodology developed was used to simulate agglomerate growth in a laboratory-scale fluidized bed combustor firing palm shells (biomass), reported in the literature. A comparison of the defluidization time obtained by simulations to the experimental values reported in the case-study was made for the different operating conditions studied. This indicated that although the simulation results were comparable to those reported in the case study, modifications such as inclusion of heat transfer calculations to determine particle temperature resulting from carbon conversion would improve the predictive capabilities. (Abstract shortened by ProQuest.).

  14. Chapter 7 - Mapping potential vegetation type for the LANDFIRE Prototype Project

    Treesearch

    Tracey S. Frescino; Matthew G. Rollins

    2006-01-01

    Mapped potential vegetation functioned as a key component in the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). Disturbance regimes, vegetation response and succession, and wildland fuel dynamics across landscapes are controlled by patterns of the environmental factors (biophysical settings) that entrain the...

  15. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shearmore » flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.« less

  16. Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol-Gel versus Pechini Syntheses.

    PubMed

    Chen, Wen-Fan; Mofarah, Sajjad S; Hanaor, Dorian Amir Henry; Koshy, Pramod; Chen, Hsin-Kai; Jiang, Yue; Sorrell, Charles Christopher

    2018-06-18

    Ce/Cr codoped TiO 2 nanoparticles were synthesized using sol-gel and Pechini methods with heat treatment at 400 °C for 4 h. A conventional sol-gel process produced well-crystallized anatase, while Pechini synthesis yielded less-ordered mixed-phase anatase + rutile; this suggests that the latter method enhances Ce solubility and increases chemical homogeneity but destabilizes the TiO 2 lattice. Greater structural disruption from the decomposition of the Pechini precursor formed more open agglomerated morphologies, while the lower levels of structural disruption from pyrolysis of the dried sol-gel precursor resulted in denser agglomerates of lower surface areas. Codoping and associated destabilization of the lattice reduced the binding energies in both powders. Cr 4+ formation in sol-gel powders and Cr 6+ formation in Pechini powders suggest that these valence changes derive from synergistic electron exchange from intervalence and/or multivalence charge transfer. Since Ce is too large to allow either substitutional or interstitial solid solubility, the concept of integrated solubility is introduced, in which the Ti site and an adjacent interstice are occupied by the large Ce ion. The photocatalytic performance data show that codoping was detrimental owing to the effects of reduced crystallinity from lattice destabilization and surface area. Two regimes of mechanistic behavior are seen, which are attributed to the unsaturated solid solutions at lower codopant levels and supersaturated solid solutions at higher levels. The present work demonstrates that the Pechini method offers a processing technique that is superior to sol-gel because the former facilitates solid solubility and consequent chemical homogeneity.

  17. Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting.

    PubMed

    Abbarchi, Marco; Naffouti, Meher; Vial, Benjamin; Benkouider, Abdelmalek; Lermusiaux, Laurent; Favre, Luc; Ronda, Antoine; Bidault, Sébastien; Berbezier, Isabelle; Bonod, Nicolas

    2014-11-25

    Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy. Homogeneous scattering responses and improved spatial ordering of the Si-based resonators are observed when dewetting is assisted by electron beam lithography. Finally, exploiting different thermal agglomeration regimes, we highlight the versatility of this technique, which, when assisted by focused ion beam nanopatterning, produces monocrystalline nanocrystals with ad hoc size, position, and organization in complex multimers.

  18. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  19. Research approach and first results on agglomerate compaction in protoplanetary dust simulation in the Cloud Manipulation System

    NASA Astrophysics Data System (ADS)

    Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo

    2016-07-01

    Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.

  20. High thermally stable Ni /Ag(Al) alloy contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.; Bor, H. Y.; Liu, C. Y.

    2007-01-01

    Ag agglomeration was found to occur at Ni /Ag to p-GaN contacts after annealing at 500°C. This Ag agglomeration led to the poor thermal stability showed by the Ni /Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10at.% Al by e-gun deposition, the Ni /Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  1. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  2. High thermally stable Ni/Ag(Al) alloy contacts on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.

    2007-01-08

    Ag agglomeration was found to occur at Ni/Ag to p-GaN contacts after annealing at 500 degree sign C. This Ag agglomeration led to the poor thermal stability showed by the Ni/Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10 at. % Al by e-gun deposition, the Ni/Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  3. Production of high-resolution forest-ecosite maps based on model predictions of soil moisture and nutrient regimes over a large forested area.

    PubMed

    Yang, Qi; Meng, Fan-Rui; Bourque, Charles P-A; Zhao, Zhengyong

    2017-09-08

    Forest ecosite reflects the local site conditions that are meaningful to forest productivity as well as basic ecological functions. Field assessments of vegetation and soil types are often used to identify forest ecosites. However, the production of high-resolution ecosite maps for large areas from interpolating field data is difficult because of high spatial variation and associated costs and time requirements. Indices of soil moisture and nutrient regimes (i.e., SMR and SNR) introduced in this study reflect the combined effects of biogeochemical and topographic factors on forest growth. The objective of this research is to present a method for creating high-resolution forest ecosite maps based on computer-generated predictions of SMR and SNR for an area in Atlantic Canada covering about 4.3 × 10 6 hectares (ha) of forestland. Field data from 1,507 forest ecosystem classification plots were used to assess the accuracy of the ecosite maps produced. Using model predictions of SMR and SNR alone, ecosite maps were 61 and 59% correct in identifying 10 Acadian- and Maritime-Boreal-region ecosite types, respectively. This method provides an operational framework for the production of high-resolution maps of forest ecosites over large areas without the need for data from expensive, supplementary field surveys.

  4. Agglomeration of nano- and microplastic particles in seawater by autochthonous and de novo-produced sources of exopolymeric substances.

    PubMed

    Summers, Stephen; Henry, Theodore; Gutierrez, Tony

    2018-05-01

    Microplastics (<5 mm) have often been studied under in-vitro conditions where plastics have been investigated in isolation. However, in the natural environment microplastics readily form agglomerates conferring the particles with properties different to their pristine counterparts. Here, we examined the interaction of exopolymers with polystyrene nanoplastics and microplastics. Formation of plastic agglomerates was examined using simulated sea surface conditions. Flow cytometry coupled with microscopy revealed that nano- and microplastic particle spheres form agglomerates in seawater with a mucilagenous material and an associated microbial community. To characterise this material, differential staining methods revealed it to be glycoprotein in composition. Exposing increasing concentrations of a marine bacterial glycoprotein EPS to nano- or microplastics revealed that these types of polymers contribute to the formation and abundance of plastic agglomerates. This work highlights the importance of EPS on the fate of plastic and future research should take this into account when evaluating the impact of plastics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    NASA Astrophysics Data System (ADS)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  6. Agglomeration of dust in convective clouds initialized by nuclear bursts

    NASA Astrophysics Data System (ADS)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  7. Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols

    PubMed Central

    El-Gendy, Nashwa; Pornputtapitak, Warangkana; Berkland, Cory

    2015-01-01

    Particle engineering strategies remain at the forefront of aerosol research for localized treatment of lung diseases and represent an alternative for systemic drug therapy. With the hastily growing popularity and complexity of inhalation therapy, there is a rising demand for tailor-made inhalable drug particles capable of affording the most proficient delivery to the lungs and the most advantageous therapeutic outcomes. To address this formulation demand, nanoparticle agglomeration was used to develop aerosols of the asthma therapeutics, fluticasone or albuterol. In addition, a combination aerosol was formed by drying agglomerates of fluticasone nanoparticles in the presence of albuterol in solution. Powders of the single drug nanoparticle agglomerates or of the combined therapeutics possessed desirable aerodynamic properties for inhalation. Powders were efficiently aerosolized (~75% deposition determined by cascade impaction) with high fine particle fraction and rapid dissolution. Nanoparticle agglomeration offers a unique approach to obtain high performance aerosols from combinations of asthma therapeutics. PMID:21964203

  8. Predicting the Agglomeration of Cohesive Particles in a Gas-Solid Flow and its Effect on the Solids Flow

    NASA Astrophysics Data System (ADS)

    Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine

    2017-11-01

    In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.

  9. Role of Solvents in Improvement of Dissolution Rate of Drugs: Crystal Habit and Crystal Agglomeration

    PubMed Central

    Maghsoodi, Maryam

    2015-01-01

    Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214

  10. Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression.

    PubMed

    Albert, Elise; Gricourt, Justine; Bertin, Nadia; Bonnefoi, Julien; Pateyron, Stéphanie; Tamby, Jean-Philippe; Bitton, Frédérique; Causse, Mathilde

    2016-02-01

    In tomato, genotype by watering interaction resulted from genotype re-ranking more than scale changes. Interactive QTLs according to watering regime were detected. Differentially expressed genes were identified in some intervals. As a result of climate change, drought will increasingly limit crop production in the future. Studying genotype by watering regime interactions is necessary to improve plant adaptation to low water availability. In cultivated tomato (Solanum lycopersicum L.), extensively grown in dry areas, well-mastered water deficits can stimulate metabolite production, increasing plant defenses and concentration of compounds involved in fruit quality, at the same time. However, few tomato Quantitative Trait Loci (QTLs) and genes involved in response to drought are identified or only in wild species. In this study, we phenotyped a population of 119 recombinant inbred lines derived from a cross between a cherry tomato and a large fruit tomato, grown in greenhouse under two watering regimes, in two locations. A large genetic variability was measured for 19 plant and fruit traits, under the two watering treatments. Highly significant genotype by watering regime interactions were detected and resulted from re-ranking more than scale changes. The population was genotyped for 679 SNP markers to develop a genetic map. In total, 56 QTLs were identified among which 11 were interactive between watering regimes. These later mainly exhibited antagonist effects according to watering treatment. Variation in gene expression in leaves of parental accessions revealed 2259 differentially expressed genes, among which candidate genes presenting sequence polymorphisms were identified under two main interactive QTLs. Our results provide knowledge about the genetic control of genotype by watering regime interactions in cultivated tomato and the possible use of deficit irrigation to improve tomato quality.

  11. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.

    PubMed

    Piccapietra, Flavio; Sigg, Laura; Behra, Renata

    2012-01-17

    To gain important information on fate, mobility, and bioavailability of silver nanoparticles (AgNP) in aquatic systems, the influence of pH, ionic strength, and humic substances on the stability of carbonate-coated AgNP (average diameter 29 nm) was systematically investigated in 10 mM carbonate and 10 mM MOPS buffer, and in filtered natural freshwater. Changes in the physicochemical properties of AgNP were measured using nanoparticle tracking analysis, dynamic light scattering, and ultraviolet-visible spectroscopy. According to the pH-dependent carbonate speciation, below pH 4 the negatively charged surface of AgNP became positive and increased agglomeration was observed. Electrolyte concentrations above 2 mM Ca(2+) and 100 mM Na(+) enhanced AgNP agglomeration in the synthetic media. In the considered concentration range of humic substances, no relevant changes in the AgNP agglomeration state were measured. Agglomeration of AgNP exposed in filtered natural freshwater was observed to be primarily controlled by the electrolyte type and concentration. Moreover, agglomerated AgNP were still detected after 7 days of exposure. Consequently, slow sedimentation and high mobility of agglomerated AgNP could be expected under the considered natural conditions. A critical evaluation of the different methods used is presented as well.

  12. Flotation of oil-agglomerated coal for ash and pyrite removal -- Simultaneous grinding and agglomeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, S.; Perkson, A.; Trass, O.

    1996-12-31

    Oil agglomeration is an excellent technique for the beneficiation of fine coal. For separation of the spherical agglomerates by screening, a high level of oil must be used, however. When the subsequent separation is done by flotation, this disadvantage is eliminated. Better pyrite removal is also possible. In this paper, such a fine coal beneficiation process, also called hydrophobic flocculation-flotation (HFF), is described. It features low non-polar oil consumption, intensive mechanical energy input, and smaller agglomerates or looser flocs. This process can be simplified by grinding the coal in water with small amounts of oil added. The excess grinding energymore » is then used for agglomerating the coal. The Prince coal from Nova Scotia contained 13.3% ash and 3.3% total sulfur, 1.4% pyritic. After four stages of flotation, ash and pyrite removal were 93% and 66% respectively, with 87% combustibles recovery. The parameters affecting the HFF process, such as particle size, dosage of non-polar oil, pH value of the slurry and duration of agitation, were investigated. Simultaneous grinding and agglomeration (SGA) utilizing the Szego Mill was also explored at the very low oil levels used. The intensive agitation/preconditioning step prior to flotation was eliminated. When the other parameters established from the sequential process were used with the SGA process, virtually identical beneficiation results were obtained, but with slightly lower combustibles recovery. While further testing is required to properly optimize the SGA process conditions, significant equipment simplification and energy savings are possible.« less

  13. Investigation of a 2-step agglomeration process performed in a rotary processor using polyethylene glycol solutions as the primary binder liquid.

    PubMed

    Kristensen, Jakob

    2006-10-27

    The purpose of this research was to investigate the use of polyethylene glycol (PEG) solutions as the primary binder liquid in a 2-step agglomeration process performed in a rotary processor and characterize the resulting granules and their tableting characteristics. This was done by granulation of binary mixtures of microcrystalline cellulose (MCC) and either lactose, calcium phosphate, acetaminophen, or theophylline, in a 1:3 ratio, using a 50% (wt/wt) aqueous solution of PEG and water as the binder liquid. Formulations containing lactose were agglomerated using 5 different amounts of the PEG binder solution, giving rise to a PEG content in the range of 6% to 43% (wt/wt). The process outcome was characterized according to adhesion, yield, and water requirement, and the prepared granules were characterized according to size, size distribution, and flow properties as well as tableting properties. The agglomeration of all mixtures resulted in high yields of free-flowing agglomerates and gave rise to good reproducibility of the investigated agglomerate characteristics. The process allowed for the incorporation of 42.5% (wt/wt) PEG, which is higher than the percentage of PEG reported for other equipment. Tablets of sufficient strength could be prepared with all investigated excipients using 20% wt/wt PEG; higher PEG contents gave rise to adhesion and prolonged disintegration. In conclusion, agglomeration in a torque-controlled rotary processor using solutions of PEG as the primary binder liquid was found to be a robust process, suitable for the incorporation of high contents of PEG and/or drug compounds.

  14. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO{sub 2} Aggregates and Loosely Bound Agglomerates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whizin, Akbar D.; Colwell, Joshua E.; Blum, Jürgen, E-mail: Akbar.Whizin@ucf.edu

    2017-02-10

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO{sub 2} dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficientsmore » of restitution and fragmentation thresholds near 1 m s{sup −1} for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s{sup −1}, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s{sup −1}. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.« less

  15. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less

  16. High energy near- and far-field ptychographic tomography at the ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter

    2017-09-01

    In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.

  17. Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond

    PubMed Central

    Gupta, Sanju; Evans, Brendan; Henson, Alex; Carrizosa, Sara B.

    2017-01-01

    Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD). Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate), SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm) and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants) and biomedical (bio-labeling, biosensing, bioimaging, theranostic) applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level), carrier density and mapping electrochemical (re)activity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds), inner core (sp3–bonded C)/outer shell (sp2–bonded C) structure, and surface functionality. Moreover, the surface electronic states give rise to midgap states which serve as electron donors (or acceptors) depending upon the bonding (or antibonding). These are important as electroanalytical platforms for various electrocatalytic processes. PMID:29125547

  18. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  19. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  20. Study on spatial-temporal change of Changsha-Zhuzhou-Xiangtan urban agglomeration based on DMSP / OLS night light data

    NASA Astrophysics Data System (ADS)

    Li, Mao; Li, Lel-in

    2018-03-01

    For the sake of curbing the spreading of Changsha-Zhuzhou-Xiangtan urban agglomeration and spatial disorder in the process of urbanization development on the regional bearing capacity of land resources and ecological environment and assisting to plan the integration process of ChangZhuTan,this paper uses the DMSP/OLS night light data of Chang ZhuTan in 1992 to 2013 to invert the urbanization process index of ChangZhuTan urban agglomeration. Based on the two scales of time and space, this paper analyzes the average index of lights, the speed of urban expansion and urban compactness index et al and studies the temporal and spatial characteristics of ChangZhuTan urban agglomeration in this period.

  1. Development of the fine-particle agglomerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, P.; Balasic, P.

    1999-07-01

    This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less

  2. A topographic feature taxonomy for a U.S. national topographic mapping ontology

    USGS Publications Warehouse

    Varanka, Dalia E.

    2013-01-01

    Using legacy feature lists from the U.S. National Topographic Mapping Program of the twentieth century, a taxonomy of features is presented for purposes of developing a national topographic feature ontology for geographic mapping and analysis. After reviewing published taxonomic classifications, six basic classes are suggested; terrain, surface water, ecological regimes, built-up areas, divisions, and events. Aspects of ontology development are suggested as the taxonomy is described.

  3. In situ Zn/ZnO mapping elucidating for "shape change" of zinc electrode

    NASA Astrophysics Data System (ADS)

    Nakata, Akiyoshi; Arai, Hajime; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2018-04-01

    For the use of the zinc anode in secondary batteries, it is necessary to solve the "shape change" deterioration issue in that zinc species agglomerate in the center of the electrode to fade the available capacity. The local chemical compositions of the zinc electrodes during "shape change" were precisely analyzed using the synchrotron X-ray diffraction mapping analysis of practical zinc-nickel cells in a non-destructive manner. The in situ Zn/ZnO mapping shows that metallic Zn deposition chiefly occurs in the periphery of ZnO while ZnO are left in the center of electrode like a hill on charging. On discharging, the ZnO hill grows to the perpendicular direction on the electrode while metallic zinc is oxidized and dissolved. These findings allow us to propose a mechanism for the shape change; thus dissolved zincate species are decomposed on the ZnO hill during discharging to be accumulated in the center of the electrode. It is suggested that suppressing zincate dissolution and non-uniform zinc deposition slow the growth rate of the ZnO hill to enhance the cyclability of zinc-based secondary batteries.

  4. Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.

    Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).

  5. PM2.5, Population Exposure and Economic Effects in Urban Agglomerations of China Using Ground-Based Monitoring Data

    PubMed Central

    Shen, Yonglin

    2017-01-01

    This paper adopts the PM2.5 concentration data obtained from 1497 station-based monitoring sites, population and gross domestic product (GDP) census data, revealing population exposure and economic effects of PM2.5 in four typical urban agglomerations of China, i.e., Beijing-Tianjin-Hebei (BTH), the Yangtze River delta (YRD), the Pearl River delta (PRD), and Chengdu-Chongqing (CC). The Cokriging interpolation method was used to estimate the PM2.5 concentration from station-level to grid-level. Next, an evaluation was conducted mainly at the grid-level with a cell size of 1 × 1 km, assisted by the urban agglomeration scale. Criteria including the population-weighted mean, the cumulative percent distribution and the correlation coefficient were applied in our evaluation. The results showed that the spatial pattern of population exposure in BTH was consistent with that of PM2.5 concentration, as well as changes in elevation. The topography was also an important factor in the accumulation of PM2.5 in CC. Moreover, the most polluted urban agglomeration based on the population-weighted mean was BTH, while the least was PRD. In terms of the cumulative percent distribution, only 0.51% of the population who lived in the four urban agglomerations, and 2.33% of the GDP that was produced in the four urban agglomerations, were associated with an annual PM2.5 concentration smaller than the Chinese National Ambient Air Quality Standard of 35 µg/m3. This indicates that the majority of people live in the high air polluted areas, and economic development contributes to air pollution. Our results are supported by the high correlation between population exposure and the corresponding GDP in each urban agglomeration. PMID:28671643

  6. Use of mesophilic and thermophilic bacteria for the improvement of copper extraction from a low-grade ore

    NASA Astrophysics Data System (ADS)

    Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.

    2011-04-01

    Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.

  7. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    PubMed

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  8. Pulsating flow past a tube bundle

    NASA Astrophysics Data System (ADS)

    Molochnikov, V. M.; Mikheev, N. I.; Vazeev, T. A.; Paereliy, A. A.

    2017-11-01

    Visualization of the pulsating cross-flow past the in-line and staggered tube bundles has been performed. The frequency and amplitude of forced flow pulsations and the tube pitch in the bundle varied in the experiments. The main attention was focused on the flow pattern in the near wake of the third-row tube. The most indicative regimes of flow past a tube in a bundle have been revealed depending on forced flow unsteadiness parameters. The obtained data have been generalized in the flow maps in the space of dimensionless frequency (Strouhal number, St) and relative pulsation amplitude, β, individually for the in-line and staggered tube arrangement. Three most indicative regimes of pulsating flow past the tubes in a bundle have been singled out in each flow map.

  9. CO2 and Er:YAG laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2013-01-01

    Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.

  10. Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  11. Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  12. Utilizing inventory information to calibrate a landscape simulation model

    Treesearch

    Steven R. Shifley; Frank R., III Thompson; David R. Larsen; David J. Mladenoff; Eric J. Gustafson

    2000-01-01

    LANDIS is a spatially explicit model that uses mapped landscape conditions as a starting point and projects the patterns in forest vegetation that will result from alternative harvest practices, alternative fire regimes, and wind events. LANDIS was originally developed for Lake States forests, but it is capable of handling the input, output, bookkeeping, and mapping...

  13. Foreword

    Treesearch

    Robert E. Keane

    2011-01-01

    In the mid 1980s I was asked to create a fire regime map of the Selway-Bitterroot Wilderness Area for the Bitterroot National Forest fire management staff. The well known fire historian Steve Barrett had already completed most of the work by synthesizing all available fire history results by forest habitat type, so I figured it would be easy to create a map of habitat...

  14. Mapping of hydropedologic spatial patterns in a steep headwater catchment

    Treesearch

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; John P. Gannon

    2015-01-01

    A hydropedologic approach can be used to describe soil units affected by distinct hydrologic regimes. We used field observations of soil morphology and geospatial information technology to map the distribution of five hydropedologic soil units across a 42-ha forested headwater catchment. Soils were described and characterized at 172 locations within Watershed 3, the...

  15. Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Velichko, Elena; Nepomnyashchaya, Elina; Dudina, Alina; Pleshakov, Ivan; Aksenov, Evgenii

    2018-04-01

    In this article the interaction between ionically stabilized magnetic nanoparticles and blood serum albumin proteins in liquid medium are discussed. Some distributions of nanoparticles' agglomerate sizes in solutions of albumin molecules, magnetic nanoparticles and their mixtures both under the influence of magnetic field and free from it are presented. It is shown that magnetic nanoparticles interact with albumin molecules, forming agglomerates. It is also shown that at the influence of magnetic field sizes of agglomerates increase proportionally to the magnetic field density.

  16. Potential vorticity regimes over East Asia during winter

    NASA Astrophysics Data System (ADS)

    Huang, Wenyu; Chen, Ruyan; Wang, Bin; Wright, Jonathon S.; Yang, Zifan; Ma, Wenqian

    2017-02-01

    Nine potential vorticity (PV) regimes over East Asia are identified by applying a Self-Organizing Map and Hierarchical Ascendant Classification regime analysis to the daily PV reanalysis fields on the 300 K isentropic surface for December-March 1948-2014. According to the surface temperature anomalies over East Asia, these nine regimes are further classified into three classes, i.e., cold class (three regimes), warm class (four regimes), and neutral class (two regimes). The PV-based East Asian winter monsoon index (EAWMI) is used to study the relationship between PV distributions and the temperature anomalies. The magnitude of cold (warm) anomalies over the land areas of East Asia increases (decreases) quasi-linearly with the EAWMI. Regression analysis reveals that cold temperature anomalies preferentially occur when the EAWMI exceeds a threshold at ˜0.2 PVU (where 1 PVU ≡ 10-6 m2 K kg-1 s-1). PV inversion uncovers the mechanisms behind the relationships between the PV regimes and surface temperature anomalies and reveals that cold (warm) PV regimes are associated with significant warming (cooling) in the upper troposphere and lower stratosphere. On average, cold regimes have longer durations than warm regimes. Interclass transition probabilities are much higher for paths from warm/neutral regimes to cold regimes than for paths from cold regimes to warm/neutral regimes. Besides, intraclass transitions are rare within the warm or neutral regimes. The PV regime analysis provides insight into the causes of severe cold spells over East Asia, with blocking circulation patterns identified as the primary factor in initiating and maintaining these cold spells.

  17. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition in olfactory mucosa on particle size implies that the occupation deposition of welding fume manganese can be expected to vary with welding method. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale?

    PubMed

    Sorokin, Vladislav V; Belyaeva, Inna A; Shamonin, Mikhail; Kramarenko, Elena Yu

    2017-06-01

    The dynamic shear modulus of magnetoactive elastomers containing 70 and 80 mass % of carbonyl iron microparticles is measured as a function of strain amplitude via dynamic torsion oscillations in various magnetic fields. The results are presented in terms of the mechanical energy density and considered in the framework of the conventional Kraus model. The form exponent of the Kraus model is further related to a physical model of Huber et al. [Huber et al., J. Phys.: Condens. Matter 8, 409 (1996)10.1088/0953-8984/8/29/003] that uses a realistic representation for the cluster network possessing fractal structure. Two mechanical loading regimes are identified. At small strain amplitudes the exponent β of the Kraus model changes in an externally applied magnetic field due to rearrangement of ferromagnetic-filler particles, while at large strain amplitudes, the exponent β seems to be independent of the magnetic field. The critical mechanical energy characterizing the transition between these two regimes grows with the increasing magnetic field. Similarities between agglomeration and deagglomeration of magnetic filler under simultaneously applied magnetic field and mechanical shear and the concept of jamming transition are discussed. It is proposed that the magnetic field should be considered as an additional parameter to the jamming phase diagram of rubbers filled with magnetic particles.

  19. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  20. Algorithm and Software for Calculating Optimal Regimes of the Process Water Supply System at the Kalininskaya NPP{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval@mail.ru; Kochetkov, A. V.; Glazova, E. G.

    An algorithm and software for calculating the optimal operating regimes of the process water supply system at the Kalininskaya NPP are described. The parameters of the optimal regimes are determined for time varying meteorological conditions and condensation loads of the NPP. The optimal flow of the cooling water in the turbines is determined computationally; a regime map with the data on the optimal water consumption distribution between the coolers and displaying the regimes with an admissible heat load on the natural cooling lakes is composed. Optimizing the cooling system for a 4000-MW NPP will make it possible to conserve atmore » least 155,000 MW · h of electricity per year. The procedure developed can be used to optimize the process water supply systems of nuclear and thermal power plants.« less

  1. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  2. A comparison of dispersing media for various engineered carbon nanoparticles.

    PubMed

    Buford, Mary C; Hamilton, Raymond F; Holian, Andrij

    2007-07-27

    With the increased manufacture and use of carbon nanoparticles (CNP) there has been increasing concern about the potential toxicity of fugitive CNP in the workplace and ambient environment. To address this matter a number of investigators have conducted in vitro and in vivo toxicity assessments. However, a variety of different approaches for suspension of these particles (culture media, Tween 80, dimethyl sulfoxide, phosphate-buffered saline, fetal calf serum, and others), and different sources of materials have generated potentially conflicting outcomes. The quality of the dispersion of nanoparticles is very dependent on the medium used to suspend them, and this then will most likely affect the biological outcomes. In this work, the distributions of different CNP (sources and types) have been characterized in various media. Furthermore, the outcome of instilling the different agglomerates, or size distributions, was examined in mouse lungs after one and seven days. Our results demonstrated that CNP suspended in serum produced particle suspensions with the fewest large agglomerates, and the most uniform distribution in mouse lungs. In addition, no apparent clearance of instilled CNP took place from lungs even after seven days. This work demonstrates that CNP agglomerates are present in all dispersing vehicles to some degree. The vehicle that contains some protein, lipid or protein/lipid component disperses the CNP best, producing fewer large CNP agglomerates. In contrast, vehicles absent of lipid and protein produce the largest CNP agglomerates. The source of the CNP is also a factor in the degree of particle agglomeration within the same vehicle.

  3. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  4. Particle agglomeration and fuel decomposition in burning slurry droplets

    NASA Astrophysics Data System (ADS)

    Choudhury, P. Roy; Gerstein, Melvin

    In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.

  5. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.

    PubMed

    Tantra, Ratna; Tompkins, Jordan; Quincey, Paul

    2010-01-01

    This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion.

  6. Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten-starch separation.

    PubMed

    Frederix, Sofie A; Van Hoeymissen, Klaartje E; Courtin, Christophe M; Delcour, Jan A

    2004-12-29

    Water-extractable arabinoxylan (WE-AX) of variable molecular weight (MW) and water-unextractable arabinoxylan (WU-AX) were added to wheat flour to study their effect on gluten agglomeration in a dough and batter gluten-starch separation process with recovery of gluten from the batter with a set of vibrating sieves (400, 250, and 125 microm). Low MW WE-AX had almost no impact on the distribution of the gluten on the different sieves. High MW WE-AX decreased yields of the largest (400 microm sieve) gluten aggregates, more than their medium MW counterparts, indicating the importance of AX MW for their effect on gluten interactions. Correlations between the total level of gluten protein recovered on the three sieves and the batter extract viscosity as well as between the proportion of gluten protein recovered on the 400 microm sieve to that on the three sieves and the batter extract viscosity pointed to the importance of viscosity as an indicator for gluten agglomeration, as did the fact that another viscosity increasing plant polysaccharide (guar gum) also negatively influenced gluten agglomeration. However, the obtained data cannot rule out that AX and guar gum also exert steric effects on gluten agglomeration. WU-AX, present as discrete cell wall fragments, had a negative impact on the level of large gluten aggregates. Taken together, the results show that both native WE-AX and WU-AX detrimentally impact gluten agglomeration.

  7. Hydrological regions in monsoon Asia

    NASA Astrophysics Data System (ADS)

    Kondoh, Akihiko; Budi Harto, Agung; Eleonora, Runtunuwu; Kojiri, Toshiharu

    2004-11-01

    Monsoon Asia is characterized by its diversity of natural and social environments. These environments range from humid tropics to arid regions and there exist associated various hydrological phenomena. This paper attempts to characterize the hydrological regions of monsoon Asia based on the water budget calculated using grid-based global datasets. A map of hydrological regions is created by ranking the value of water surplus and deficit. A humid zone with large water surplus extending from Southeast Asia to the Japanese archipelago, rapid transition from humid to arid environments in eastern China, and an arid region surrounded by a humid region in continental Southeast Asia are the most remarkable features in monsoon Asia. The map reveals that an essential characteristic of monsoon Asia is the proximity of the arid and humid environments. Many water problems and water management practices in a region can be easily understood by plotting them on a map. The boundaries of several large river basins are superimposed on the map, and examined for the water budget and flow regimes. The results are found to explain the regional characteristics of the seasonal runoff regimes satisfactorily. The importance of using a spatial framework for the comparative hydrological study in Monsoon Asia is highlighted.

  8. Two-stage agglomeration of fine-grained herbal nettle waste

    NASA Astrophysics Data System (ADS)

    Obidziński, Sławomir; Joka, Magdalena; Fijoł, Olga

    2017-10-01

    This paper compares the densification work necessary for the pressure agglomeration of fine-grained dusty nettle waste, with the densification work involved in two-stage agglomeration of the same material. In the first stage, the material was pre-densified through coating with a binder material in the form of a 5% potato starch solution, and then subjected to pressure agglomeration. A number of tests were conducted to determine the effect of the moisture content in the nettle waste (15, 18 and 21%), as well as the process temperature (50, 70, 90°C) on the values of densification work and the density of the obtained pellets. For pre-densified pellets from a mixture of nettle waste and a starch solution, the conducted tests determined the effect of pellet particle size (1, 2, and 3 mm) and the process temperature (50, 70, 90°C) on the same values. On the basis of the tests, we concluded that the introduction of a binder material and the use of two-stage agglomeration in nettle waste densification resulted in increased densification work (as compared to the densification of nettle waste alone) and increased pellet density.

  9. Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure.

    PubMed

    Long, Wu-Jian; Li, Hao-Dao; Fang, Chang-Le; Xing, Feng

    2018-01-09

    The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate-ether (PCE) mixed with GO-cement or cement mixed with GO-PCE. The experimental results showed that the yield stress and plastic viscosity increased with the uniformly dispersed GO when compared to those of re-agglomerated GO cement paste. Moreover, the 3-day compressive and flexural strengths of uniformly dispersed GO paste were 8% and 27%, respectively, higher than those of re-agglomerated GO pastes. The results of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses demonstrated that uniformly dispersed GO more effectively promotes the formation of hydration products in hardened cement paste. Furthermore, a porosity analysis using mercury intrusion porosimetry revealed that the homogeneous dispersion of GO can better inhibit the formation of large-size pores and optimize the pore size distribution at 3 and 7 days than the re-agglomerated GO.

  10. Wear Mechanism Maps for Magnesium Alloy AM60 and Composite AM60-9% (Al2O3)f

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Muhammad Zafar

    The purpose of this work was to study the tribological behaviour of squeeze cast Mg alloy AM60 and its composite AM60-9% (Al2O3) f. Dry sliding wear tests were performed on specimens of these materials using a block-on-ring tribometer which was equipped with a COF and temperature measurement system. Wear, COF and temperature maps were constructed to illustrate the effect of temperature and COF on the wear behaviour of the Mg alloy and it's composite. Four wear regimes namely low, mild, transient and severe wear were identified. The transition from mild to severe wear regime was found to be dependent on the bulk temperature of the specimen. Oxidational wear prevailed in low and mild wear whereas plastic deformation induced wear and melt wear controlled the wear rates in transient and severe wear regimes, respectively. This study shows that the incorporation of Al2O3 fibres in AM60 alloy improved the wear resistance of the resulting composite by delaying the transition from mild to severe wear.

  11. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    DOE PAGES

    Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; ...

    2015-09-18

    In this paper, we describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T C) and density of states over large surface areas with size up to mm 2. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that canmore » be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. Finally, the point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.« less

  12. Leukocyte Agglomeration Reaction in Diagnosis of Allergy Reactions from Antibiotics,

    DTIC Science & Technology

    tested in a clinic on 80 patients with serious allergic anamnesis . The results of the studies indicate that the leukocyte agglomeration reaction is a highly sensitive immunological indicator of hypersensitivity to antibiotics.

  13. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    NASA Astrophysics Data System (ADS)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  14. A pocket model for aluminum agglomeration in composite propellants

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.

    1981-01-01

    This paper presents a model for the purpose of estimating the fraction of aluminum powder that will form agglomerates at the surface of deflagrating composite propellants. The basic idea is that the fraction agglomerated depends upon the amount of aluminum that melts within effective binder pocket volumes framed by oxidizer particles. The effective pocket depends upon the ability of ammonium perchlorate modals to encapsulate the aluminum and provide a local temperature sufficient to ignite the aluminum. Model results are discussed in the light of data showing effects of propellant formulation variables and pressure.

  15. A three dimensional Dirichlet-to-Neumann map for surface waves over topography

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Andrade, David

    2016-11-01

    We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.

  16. Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; Alcatel Thales III-V Lab, Campus de Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau; Carras, M.

    2014-09-29

    External optical feedback is studied experimentally in mid-infrared quantum cascade lasers. These structures exhibit a dynamical response close to that observed in interband lasers, with threshold reduction and optical power enhancement when increasing the feedback ratio. The study of the optical spectrum proves that the laser undergoes five distinct regimes depending on the phase and amplitude of the reinjected field. These regimes are mapped in the plane of external cavity length and feedback strength, revealing unstable behavior only for a very narrow range of operation, making quantum cascade lasers much more stable than their interband counterparts.

  17. Dynamics of a developing economy with a remote region: Agglomeration, trade integration and trade patterns

    NASA Astrophysics Data System (ADS)

    Commendatore, Pasquale; Kubin, Ingrid; Sushko, Iryna

    2018-05-01

    We consider a three-region developing economy with poor transport infrastructures. Two models are related to different stages of development: in the first all regions are autarkic; in the second two of the regions begin to integrate with the third region still not accessible to trade. The properties of the two models are studied also considering the interplay between industry location and trade patterns. Dynamics of these models are described by two-dimensional piecewise smooth maps, characterized by multistability and complex bifurcation structure of the parameter space. We obtain analytical results related to stability of various fixed points and illustrate several bifurcation structures by means of two-dimensional bifurcation diagrams and basins of coexisting attractors.

  18. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

    PubMed Central

    Atif, Rasheed

    2016-01-01

    Summary One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG) and carbon nanotubes (CNTs) tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites. PMID:27826492

  19. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    NASA Astrophysics Data System (ADS)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land-use and land-cover changes in the periods analyzed, it was determined that between years 1984 and 2006 most of the burned area remained pre-fire cover type (above 80% of the area). However, in areas that experienced change, the most important transitions were recorded in wooded areas, especially conifers, which became shrubs or sparsely vegetated areas, followed by non-irrigated crops, which were replaced by grasslands or industrial areas, and sparse vegetation which changed to shrubs. Finally, the analysis of land-use changes over burned areas situated shrubland as the most favored type of cover, either as a result of a vegetative degradation process after intense burning of wooded areas, especially conifers, or as stage of natural increase in areas previously covered by sparsely vegetation.

  20. Initial Results from the New Stress Map of Texas Project

    NASA Astrophysics Data System (ADS)

    Lund Snee, J. E.; Zoback, M. D.

    2015-12-01

    Modern techniques for characterizing tectonic stress orientation and relative magnitude have been successfully used for more than 35 years. Nevertheless, large areas of North America lack high spatial resolution maps of stress orientation, magnitude, and faulting regime. In Texas, for example, <30 A-C-quality stress orientations are currently registered on the World Stress Map and only 7 of these points also describe the stress regime. Stress data are foundational elements of attempts to characterize tectonic driving forces, understand hazards associated with induced seismicity, and optimize production of oil, gas, and geothermal resources. This year, we launched the Texas Stress Map project to characterize tectonic stress patterns at higher spatial resolution across Texas and nearby areas. Following a successful effort just completed in Oklahoma, we will evaluate borehole breakouts, drilling-induced tensile fractures, shear wave anisotropy, and earthquake data. The principal data source will be FMI (fullbore formation microimager), UBI (ultrasonic borehole imager), cross-dipole sonic, density, and caliper logs provided by private industry. Earthquake moment tensor solutions from the U.S. Geological Survey, Saint Louis University and other sources will also be used. Our initial focus is on the Permian Basin and Barnett Shale petroleum plays due to the availability of data, but we will expand our analysis across the state as the project progresses. In addition, we hope to eventually apply the higher spatial resolution data coverage to understanding tectonic and geodynamic characteristics of the southwestern United States and northeastern Mexico. Here we present early results from our work to constrain stress orientations and faulting regime in and near Texas, and we also provide a roadmap for the ongoing research.

  1. Quantification of soil mapping by digital analysis of LANDSAT data. [Clinton County, Indiana

    NASA Technical Reports Server (NTRS)

    Kirschner, F. R.; Kaminsky, S. A.; Hinzel, E. J.; Sinclair, H. R.; Weismiller, R. A.

    1977-01-01

    Soil survey mapping units are designed such that the dominant soil represents the major proportion of the unit. At times, soil mapping delineations do not adequately represent conditions as stated in the mapping unit descriptions. Digital analysis of LANDSAT multispectral scanner (MSS) data provides a means of accurately describing and quantifying soil mapping unit composition. Digital analysis of LANDSAT MSS data collected on 9 June 1973 was used to prepare a spectral soil map for a 430-hectare area in Clinton County, Indiana. Fifteen spectral classes were defined, representing 12 soil and 3 vegetation classes. The 12 soil classes were grouped into 4 moisture regimes based upon their spectral responses; the 3 vegetation classes were grouped into one all-inclusive class.

  2. A comparison of dispersing media for various engineered carbon nanoparticles

    PubMed Central

    Buford, Mary C; Hamilton, Raymond F; Holian, Andrij

    2007-01-01

    Background With the increased manufacture and use of carbon nanoparticles (CNP) there has been increasing concern about the potential toxicity of fugitive CNP in the workplace and ambient environment. To address this matter a number of investigators have conducted in vitro and in vivo toxicity assessments. However, a variety of different approaches for suspension of these particles (culture media, Tween 80, dimethyl sulfoxide, phosphate-buffered saline, fetal calf serum, and others), and different sources of materials have generated potentially conflicting outcomes. The quality of the dispersion of nanoparticles is very dependent on the medium used to suspend them, and this then will most likely affect the biological outcomes. Results In this work, the distributions of different CNP (sources and types) have been characterized in various media. Furthermore, the outcome of instilling the different agglomerates, or size distributions, was examined in mouse lungs after one and seven days. Our results demonstrated that CNP suspended in serum produced particle suspensions with the fewest large agglomerates, and the most uniform distribution in mouse lungs. In addition, no apparent clearance of instilled CNP took place from lungs even after seven days. Conclusion This work demonstrates that CNP agglomerates are present in all dispersing vehicles to some degree. The vehicle that contains some protein, lipid or protein/lipid component disperses the CNP best, producing fewer large CNP agglomerates. In contrast, vehicles absent of lipid and protein produce the largest CNP agglomerates. The source of the CNP is also a factor in the degree of particle agglomeration within the same vehicle. PMID:17655771

  3. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.

    PubMed

    Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J

    2017-12-20

    One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.

  4. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration.

    PubMed

    York, J Dalton; Firoozabadi, Abbas

    2008-01-24

    Natural gas is projected to be the premium fuel of the 21st century because of availability, as well as economical and environmental considerations. Natural gas is coproduced with water from the subsurface forming gas hydrates. Hydrate formation may result in shutdown of onshore and offshore operations. Industry practice has been usage of alcohols--which have undesirable environmental impacts--to affect bulk-phase properties and inhibit hydrate formation. An alternative to alcohols is changing the surface properties through usage of polymers and surfactants, effective at 0.5-3 wt % of coproduced water. One group of low-dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are anti-agglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, reported work on hydrate anti-agglomeration is very limited. In this paper, our focus is on the use of two vastly different surfactants as anti-agglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. We examine the effectiveness of a quaternary ammonium salt (i.e., quat). Visual observation measurements show that a small concentration of the quat (0.01%) can prevent agglomeration. However, a quat is not a green chemical and therefore may be undesirable. We show that a rhamnolipid biosurfactant can be effective to a concentration of 0.05 wt %. One difference between the two surfactants is the stability of the water-in-oil emulsions created. The biosurfactant forms a less stable emulsion, which makes it very desirable for hydrate application.

  5. Paleoclimatic insights from mapping the global distribution of non-glacial cryogenic landforms in sub-humid montane environments.

    NASA Astrophysics Data System (ADS)

    Slee, Adrian; Shulmeister, James

    2015-04-01

    Much of the 'periglacial' literature is based on landforms and observations from either high mountains or continental environments dominated by strong winter cooling and/or permafrost conditions. Cryogenic conditions occur in many other settings and some of the most widespread are montane landscapes in mid- to low latitudes. In Australia observations of 'periglacial' landforms have traditionally been limited to higher elevation regions of the Australian Alps and central Tasmania. However, the distribution of relict cryogenic landforms is much wider and extends well into sub-tropical latitudes along the eastern highlands of Australia. Here we map the distribution of relict block deposits (block streams and block fields) of known cryogenic origin so as to delineate the limits of 'periglacial' climatic conditions during cold phases in the Late Quaternary. The mapping is based on image analyses supported by extensive and intensive ground truthing. Three distinct regimes are recognised - a high elevation winter wet regime (Mt Kosciuszko style); a temperate maritime westerly regime (Tasmania style) and, unexpectedly, an east coast (sub-tropical) regime (New England style). We utilise bio-climatic modelling to derive modern climate parameters from the distribution of the block deposits so as to map regions affected by cryogenic conditions in late Quaternary cold periods. We assumed that relative changes in mean cooling and precipitation would be shared by other mid-latitude climate locales worldwide and predicted the likely distribution of block deposits in these areas. A literature review confirms the presence of 'periglacial' style block deposits in the predicted regions, including part of the Iberian Peninsula, the Atlas and Drakensburg Mountains of Africa, the Mediterranean island of Sardinia, the higher volcanoes of Mexico and parts of China, all of which have mean annual precipitation similar to the New England area. However, we also note that many of these areas have winter wet (Mediterranean) climates and when seasonality of precipitation is included, winter dry New England becomes an anomaly. We conclude that in addition to significant cooling, winter moisture balance was more positive, in northern New South Wales during cooler climate periods.

  6. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. Conclusion Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity. PMID:21126342

  7. Petrological Mapping of the Crater Boguslawsky

    NASA Astrophysics Data System (ADS)

    Wöhler, C.; Evdokimova, N. A.; Feoktistova, E. A.; Grumpe, A.; Kapoor, K.; Berezhnoy, A. A.; Shevchenko, V. V.

    2015-10-01

    An analysis of orbital spectral data of the crater Boguslawsky, the intended target region of the Russian Luna-Glob mission, is performed. We have constructed a high- resolution DEM of the crater Boguslawsky, based on which the temperature regime on the surface is investigated. The depth of the OH absorption feature is analysed.The content of the main elements is estimated, and a petrologic map is constructed accordingly.

  8. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  9. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface

    PubMed Central

    Bliem, Roland; van der Hoeven, Jessi E. S.; Hulva, Jan; Pavelec, Jiri; Gamba, Oscar; de Jongh, Petra E.; Schmid, Michael; Blaha, Peter; Diebold, Ulrike; Parkinson, Gareth S.

    2016-01-01

    Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase. PMID:27457953

  10. A cohesive granular material with tunable elasticity

    PubMed Central

    Hemmerle, Arnaud; Schröter, Matthias; Goehring, Lucas

    2016-01-01

    By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media. PMID:27774988

  11. A cohesive granular material with tunable elasticity.

    PubMed

    Hemmerle, Arnaud; Schröter, Matthias; Goehring, Lucas

    2016-10-24

    By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media.

  12. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  13. Quantitative characterization of nanoparticle agglomeration within biological media

    NASA Astrophysics Data System (ADS)

    Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy

    2012-07-01

    Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.

  14. Examining the effects of urban agglomeration polders on flood events in Qinhuai River basin, China with HEC-HMS model.

    PubMed

    Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu

    2017-05-01

    The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.

  15. Comparison of the agglomeration behavior of thin metallic films on SiO2

    NASA Astrophysics Data System (ADS)

    Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.

    2005-07-01

    The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.

  16. A complex network approach for nanoparticle agglomeration analysis in nanoscale images

    NASA Astrophysics Data System (ADS)

    Machado, Bruno Brandoli; Scabini, Leonardo Felipe; Margarido Orue, Jonatan Patrick; de Arruda, Mauro Santos; Goncalves, Diogo Nunes; Goncalves, Wesley Nunes; Moreira, Raphaell; Rodrigues-Jr, Jose F.

    2017-02-01

    Complex networks have been widely used in science and technology because of their ability to represent several systems. One of these systems is found in Biochemistry, in which the synthesis of new nanoparticles is a hot topic. However, the interpretation of experimental results in the search of new nanoparticles poses several challenges. This is due to the characteristics of nanoparticle images and due to their multiple intricate properties; one property of recurrent interest is the agglomeration of particles. Addressing this issue, this paper introduces an approach that uses complex networks to detect and describe nanoparticle agglomerates so to foster easier and more insightful analyses. In this approach, each detected particle in an image corresponds to a vertice and the distances between the particles define a criterion for creating edges. Edges are created if the distance is smaller than a radius of interest. Once this network is set, we calculate several discrete measures able to reveal the most outstanding agglomerates in a nanoparticle image. Experimental results using images of scanning tunneling microscopy (STM) of gold nanoparticles demonstrated the effectiveness of the proposed approach over several samples, as reflected by the separability between particles in three usual settings. The results also demonstrated efficacy for both convex and non-convex agglomerates.

  17. Optimal two-stage dynamic treatment regimes from a classification perspective with censored survival data.

    PubMed

    Hager, Rebecca; Tsiatis, Anastasios A; Davidian, Marie

    2018-05-18

    Clinicians often make multiple treatment decisions at key points over the course of a patient's disease. A dynamic treatment regime is a sequence of decision rules, each mapping a patient's observed history to the set of available, feasible treatment options at each decision point, and thus formalizes this process. An optimal regime is one leading to the most beneficial outcome on average if used to select treatment for the patient population. We propose a method for estimation of an optimal regime involving two decision points when the outcome of interest is a censored survival time, which is based on maximizing a locally efficient, doubly robust, augmented inverse probability weighted estimator for average outcome over a class of regimes. By casting this optimization as a classification problem, we exploit well-studied classification techniques such as support vector machines to characterize the class of regimes and facilitate implementation via a backward iterative algorithm. Simulation studies of performance and application of the method to data from a sequential, multiple assignment randomized clinical trial in acute leukemia are presented. © 2018, The International Biometric Society.

  18. Statistical significance test for transition matrices of atmospheric Markov chains

    NASA Technical Reports Server (NTRS)

    Vautard, Robert; Mo, Kingtse C.; Ghil, Michael

    1990-01-01

    Low-frequency variability of large-scale atmospheric dynamics can be represented schematically by a Markov chain of multiple flow regimes. This Markov chain contains useful information for the long-range forecaster, provided that the statistical significance of the associated transition matrix can be reliably tested. Monte Carlo simulation yields a very reliable significance test for the elements of this matrix. The results of this test agree with previously used empirical formulae when each cluster of maps identified as a distinct flow regime is sufficiently large and when they all contain a comparable number of maps. Monte Carlo simulation provides a more reliable way to test the statistical significance of transitions to and from small clusters. It can determine the most likely transitions, as well as the most unlikely ones, with a prescribed level of statistical significance.

  19. A subharmonic dynamical bifurcation during in vitro epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, Jose L.; Khosravani, Houman

    2004-06-01

    Epileptic seizures are considered to result from a sudden change in the synchronization of firing neurons in brain neural networks. We have used an in vitro model of status epilepticus (SE) to characterize dynamical regimes underlying the observed seizure-like activity. Time intervals between spikes or bursts were used as the variable to construct first-return interpeak or interburst interval plots, for studying neuronal population activity during the transition to seizure, as well as within seizures. Return maps constructed for a brief epoch before seizures were used for approximating the local system dynamics during that time window. Analysis of the first-return maps suggests that intermittency is a dynamical regime underlying the observed epileptic activity. This type of analysis may be useful for understanding the collective dynamics of neuronal populations in the normal and pathological brain.

  20. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  1. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime.

    PubMed

    Palacino-González, Elisa; Gelin, Maxim F; Domcke, Wolfgang

    2017-12-13

    We present a theoretical description of double-pump femtosecond single-molecule signals with fluorescence detection. We simulate these signals in the weak-field regime for a model mimicking a chromophore with a Franck-Condon-active vibrational mode. We establish several signatures of these signals which are characteristic for the weak-field regime. The signatures include the quenching of vibrational beatings by electronic dephasing and a pronounced tilt of the phase-time profiles in the two-dimensional (2D) maps. We study how environment-induced slow modulations of the electronic dephasing and relevant chromophore parameters (electronic energy, orientation, vibrational frequency and relative shift of the potential energy surfaces) affect the signals.

  2. Two-phase flow regimes in a horizontal microchannel with the height of 50 μm and width of 10 mm

    NASA Astrophysics Data System (ADS)

    Fina, V. P.; Ronshin, F. V.

    2017-11-01

    Two-phase flows of distilled deionized nanofiltered water and nitrogen gas in a microchannel with a height of 50 μm and a width of 10 mm have been investigated experimentally. The schlieren method has been used to determine main features of the two-phase flow in the microchannel. This method allows detecting the liquid film on the lower and upper walls of the microchannel as well as droplets of various shapes and sizes or vertical liquid bridges. Two-phase flow regimes have been observed, and their boundaries precisely determined using post-processing of the recordings. The following flow regimes have been distinguished: bubble, churn, jet, stratified and annular. Comparison of regime maps for channels of different widths has been carried out, and this parameter showed to have a significant impact on the boundaries between the regimes in microchannels of a height of less than 100 μm.

  3. Friction-Stir Welding - Heavy Inclusions in Bi-metallic welds of Al 2219/2195

    NASA Technical Reports Server (NTRS)

    Rietz, Ward W., Jr.

    2008-01-01

    Heavy Inclusions (HI) were detected for the first time by radiographic examination in aluminum alloy 2219forging/2195plate (advancing/retreating side) Friction Sir Welds (FSW) for the Space Shuttle External Tank (ET) Program. Radiographic HI indications appear as either small (approx.0.005"-0.025") individual particles or clusters of small particles. Initial work was performed to verify that the HI was not foreign material or caused by FSW pin tool debris. That and subsequent elemental analysis determined that the HI were large agglomerations of Al2Cu (theta phase), which is the strengthening precipitate in Al2219. A literature search on that subject determined that the agglomeration of phase has also been found in Al2219 bead on plate FSW [Ref. 1]. Since this was detected in ET space flight hardware, an investigative study of the effect of agglomerated theta phase particles in FSW Al2219f/2195p was performed. Numerous panels of various lengths were welded per ET weld procedures and radiographically inspected to determine if any HI was detected. Areas that had HI were sampled for room temperature and cyclic cryogenic (-423F) tensile testing and determined no significant adverse affect on mechanical properties when compared to test specimens without HI and historical data. Fracture surface examination using the Scanning Electron Microscope (SEM) revealed smaller phase agglomerations undetectable by radiographic inspection dispersed throughout the Al2219f/2195p FSW. This indicates that phase agglomeration is inherent to the Al2219f/2195p FSW process and only rarely creates agglomerations large enough to be detected by radiography. HI has not been observed in FSW of plate to plate material for either Al2219 or AL2195.

  4. Bed material agglomeration during fluidized bed combustion. Technical progress report, 1 July, 1993--30 September, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    Agglomerates formed in laboratory coal combustion tests were analyzed to determine the chemical and mineral reactions which lead to the cohesion of bed particles. Combustion tests were conducted at 75, 90, 100, and 120% theoretical air values. The test at 75% theoretical air resulted in the formation of bed agglomerates within 30 minutes. Agglomerates which formed at the lower theoretical air values were compared to unagglomerated bed samples by X-ray diffraction analyses. Polished thin sections of the agglomerates were made for optical and scanning electron microscopy. The results of these analyses indicate there were, in a broad sense, two typesmore » of mineralogic reactions which lead to the cohesion of bed particles in the agglomerates. One mechanism of cohesion resulted from the melting of bed particles to form a viscous material which bridged other bed particles. Based on the chemical composition of the glass (which resulted from the melt), this material was probably derived from aluminosilicate minerals in the sand bed or from clays within the coal. Because of the high iron content in these glasses (4 to 5 wt%), it is likely that iron pyrites in the coal were involved in fluxing reactions. In addition, MgO appears to be relatively high in the glasses. It is suspected that Ca-Mg carbonates (dolomite) from the bed sand are also involved in mineralogic reactions with the aluminosilicate melt. The second type of mineralogic reaction appears to be a reaction involving calcium and magnesium with other bed particles and with the aluminosilicate melt to form new mineral phases. Although the composition of these phases is somewhat variable, some resemble single-chain silicates or pyroxenes.« less

  5. About the relevance of waviness, agglomeration, and strain on the electrical behavior of polymer composites filled with carbon nanotubes evaluated by a Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto

    2018-01-01

    In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.

  6. Size-segregated urban aerosol characterization by electron microscopy and dynamic light scattering and influence of sample preparation

    NASA Astrophysics Data System (ADS)

    Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav

    2018-04-01

    Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (<0.17 μm) PM fractions were collected by high volume cascade impactor in Prague city center. Particles were examined using electron microscopy and their elemental composition was determined by energy dispersive X-ray spectroscopy. Larger or smaller particles, not corresponding to the impaction cut points, were found in all fractions, as they occur in agglomerates and are impacted according to their aerodynamic diameter. Elemental composition of particles in size-segregated fractions varied significantly. Ns-soot occurred in all size fractions. Metallic nanospheres were found in accumulation fractions, but not in ultrafine fraction where ns-soot, carbonaceous particles, and inorganic salts were identified. Dynamic light scattering was used to measure particle size distribution in water and in cell culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.

  7. De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in Commercial Inhalation Products.

    PubMed

    Leung, Sharon Shui Yee; Tang, Patricia; Zhou, Qi Tony; Tong, Zhenbo; Leung, Cassandra; Decharaksa, Janwit; Yang, Runyu; Chan, Hak-Kim

    2015-11-01

    The US pharmacopeia (USP) and Alberta throats were recently reported to cause further de-agglomeration of carrier-free powders emitted from some dry powder inhalers (DPIs). This study assessed if they have similar influences on commercially available carrier-based DPIs. A straight tube, a USP throat, and an Alberta throat (non-coated and coated) were used for cascade impaction testing. Aerosol fine particle fraction (FPF ≤ 5 μm) was computed to evaluate throat-induced de-agglomeration. Computational fluid dynamics are employed to simulate airflow patterns and particle trajectories inside the USP and Alberta throats. For all tested products, no significant differences in the in vitro aerosol performance were observed between the USP throat and the straight tube. Using fine lactose carriers (<10 μm), Symbicort(®) and Oxis(™) showed minimal impaction inside the Alberta throat and resulted in similar FPF among all induction ports. For products using coarse lactose carriers (>10 μm), impaction frequency and energy inside the Alberta throat were significant. Further de-agglomeration was noted inside the non-coated Alberta throat for Seretide(®) and Spiriva(®), but agglomerates emitted from Relenza(®), Ventolin(®), and Foradil(®) did not further break up into smaller fractions. The coated Alberta throat considerably reduced the FPF values of these products due to the high throat retention, but they generally agreed better with the in vivo data. In conclusion, depending on the powder formulation (including carrier particle size), the inhaler, and the induction port, further de-agglomeration could happen ex-inhaler and create differences in the in vitro measurements.

  8. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    PubMed Central

    Pérez-Nicolás, María; Alvarez, José Ignacio

    2017-01-01

    Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917

  9. The useful potential of using existing data to uniquely identify predictable wind events and regimes, part 1

    NASA Technical Reports Server (NTRS)

    Trettel, D. W.; Aquino, J. T.; Piazza, T. R.; Taylor, L. E.; Trask, D. C.

    1982-01-01

    Correlations between standard meteorological data and wind power generation potential were developed. Combined with appropriate wind forecasts, these correlations can be useful to load dispatchers to supplement conventional energy sources. Hourly wind data were analyzed for four sites, each exhibiting a unique physiography. These sites are Amarillo, Texas; Ludington, Michigan; Montauk Point, New York; and San Gorgonio, California. Synoptic weather maps and tables are presented to illustrate various wind 'regimes' at these sites.

  10. Growth properties of protoplanetary dust in a long-term microgravity experiment

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Kothe, Stefan; Weidling, Rene; Heisselmann, Daniel; Blum, Juergen

    2014-11-01

    In the very first steps of the formation of a new planetary system, dust agglomerates and grows inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. As part of a series of microgravity experiments aiming at the investigation of the transitions between sticking, bouncing and fragmentation of colliding dust aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was designed, built and operated both at the drop tower in Bremen (August 2011) and on the REXUS 12 suborbital rocket (March 2012). The SPACE experiment allowed for the observation of collisions between aggregates of sizes of a few 100 µm that were composed of SiO2, a commonly used protoplanetary dust analog material. At velocities below 10 cm/s, clusters composed of a high number of aggregates (more than 10^4) formed and grew to sizes of up to 5 mm. The analysis of these collisions delivered valuable input to a current dust collision model, which maps the outcome of collisions depending on the aggregate sizes and their relative velocities. The sticking probability of sub-mm-sized dust aggregates could directly be measured during the suborbital rocket flight, over a velocity range covering the transition between the sticking and bouncing regimes. In addition, the evolution of clusters formed from sub-mm-sized aggregates during the different experiments could be observed and some of their intrinsic properties derived. The measured characteristics were the cluster fractal dimensions, the tensile strength of their outer aggregate layer and the effective surface energy of their constituents. Threshold energies for cluster restructuring and fragmentation could also be determined. All these cluster properties are important input parameters for molecular dynamics or numerical simulations investigating the behavior of macroscopic clusters (>1 mm in size) in protoplanetary disks.

  11. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  12. Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates.

    PubMed

    Sizova, Elena; Miroshnikov, Sergey; Yausheva, Elena; Polyakova, Valentina

    2015-01-01

    The research was performed on male Wistar rats based on assumptions that new microelement preparations containing metal nanoparticles and their agglomerates had potential. Morphological and functional changes in tissues in the injection site and dynamics of chemical element metabolism (25 indicators) in body were assessed after repeated intramuscular injections (total, 7) with preparation containing agglomerate of iron nanoparticles. As a result, iron depot was formed in myosymplasts of injection sites. The quantity of muscle fibers having positive Perls' stain increased with increasing number of injections. However, the concentration of the most chemical elements and iron significantly decreased in the whole skeletal muscle system (injection sites are not included). Consequently, it increased up to the control level after the sixth and the seventh injections. Among the studied organs (liver, kidneys, and spleen), Caspase-3 expression was revealed only in spleen. The expression had a direct dependence on the number of injections. Processes of iron elimination from preparation containing nanoparticles and their agglomerates had different intensity.

  13. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    NASA Astrophysics Data System (ADS)

    Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.

    2016-07-01

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  14. Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse.

    PubMed

    Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian

    2015-10-01

    Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Linear and nonlinear response of a rotating tokamak plasma to a resonant error-field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-09-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of constant-ψ, resistive-magnetohydrodynamical theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived and their domains of validity mapped out in parameter space.

  16. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott

    2006-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.

  17. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.

  18. High volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerard M [Oak Ridge, TN

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  19. Methods for high volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerald M [Oak Ridge, TN

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  20. Universities' Entrepreneurial Performance: The Role of Agglomeration Economies

    ERIC Educational Resources Information Center

    Chen, Ping Penny

    2011-01-01

    In spite of the extensive research on universities' entrepreneurship, whether research strength fosters or dampens their entrepreneurial performance remains controversial. Much research claims an influential role of research universities in regional economy, however, little has been said about what a part that the agglomeration economies may play…

  1. How Does the Concentration of Determinants Affect Industrial Innovation Performance? - An Empirical Analysis of 23 Chinese Industrial Sectors.

    PubMed

    Huang, Shansong; Bai, Yang; Tan, Qingmei

    2017-01-01

    The agglomeration of innovation determinants has a significant influence on the innovation performance of industries and enterprises. Such an effect has received less attention in empirical research studies. This study involves a survey of the agglomeration effect of two important innovation determinants, R&D investment and R&D personnel, and its influence on innovation performance from the perspective of the industrial level. We analysed the agglomeration features based on the panel data of 23 Chinese industrial sectors from 2001~2013. An interpretation model is proposed to examine the agglomeration effect on innovation performance for 4 industrial groups: state-owned enterprises, individual enterprises, foreign-owned enterprises and enterprises as a whole. We found two main results. First, the agglomeration of determinants has a clear positive effect on the innovation performance of all 4 groups but affects individual enterprises more significantly, followed by state-owned and foreign-owned enterprises. Second, the state-owned enterprises show a much higher concentration of R&D investment and R&D personnel than other groups. However, the induced innovation efficiency in the state-owned enterprises is worse than in the individual enterprises. The advantage of resources and capital does not translate into corresponding innovation output. The privately owned small and medium-sized enterprises (SMEs) show a high capability of technological innovation and mercerization but have limited innovation resources.

  2. How Does the Concentration of Determinants Affect Industrial Innovation Performance? – An Empirical Analysis of 23 Chinese Industrial Sectors

    PubMed Central

    Huang, Shansong; Bai, Yang; Tan, Qingmei

    2017-01-01

    The agglomeration of innovation determinants has a significant influence on the innovation performance of industries and enterprises. Such an effect has received less attention in empirical research studies. This study involves a survey of the agglomeration effect of two important innovation determinants, R&D investment and R&D personnel, and its influence on innovation performance from the perspective of the industrial level. We analysed the agglomeration features based on the panel data of 23 Chinese industrial sectors from 2001~2013. An interpretation model is proposed to examine the agglomeration effect on innovation performance for 4 industrial groups: state-owned enterprises, individual enterprises, foreign-owned enterprises and enterprises as a whole. We found two main results. First, the agglomeration of determinants has a clear positive effect on the innovation performance of all 4 groups but affects individual enterprises more significantly, followed by state-owned and foreign-owned enterprises. Second, the state-owned enterprises show a much higher concentration of R&D investment and R&D personnel than other groups. However, the induced innovation efficiency in the state-owned enterprises is worse than in the individual enterprises. The advantage of resources and capital does not translate into corresponding innovation output. The privately owned small and medium-sized enterprises (SMEs) show a high capability of technological innovation and mercerization but have limited innovation resources. PMID:28099452

  3. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    NASA Astrophysics Data System (ADS)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  4. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.

    PubMed

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-02-05

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Colloidal properties and stability of aqueous suspensions of few-layer graphene: Importance of graphene concentration

    PubMed Central

    Su, Yu; Yang, Guoqing; Lu, Kun; Petersen, Elijah J.; Mao, Liang

    2017-01-01

    Understanding the colloidal stability of graphene is essential for predicting its transport and ecological risks in aquatic environments. We investigated the agglomeration of 14C-labeled few-layer graphene (FLG) at concentrations spanning nearly four orders of magnitude (2 μg/L to 10 mg/L) using dynamic light scattering and sedimentation measurements. FLG agglomerates formed rapidly in deionized water at concentrations > 3 mg/L. From 1 mg/L to 3 mg/L, salt-induced agglomeration was decreased with dilution of FLG suspensions; the critical coagulation concentration of the more concentrated suspension (3 mg/L) was significantly lower than the dilute suspension (1 mg/L) in the presence of NaCl (1.6 mmol/L and 10 mmol/L, respectively). In contrast, FLG underwent slow agglomeration and settling at concentrations ≤ 0.1 mg/L in NaCl solutions and ambient waters with low ionic strength (< 10 mmol/L). Although salt-induced agglomeration led to 67 % reduction in number of small FLG (25 nm to 50 nm) according to atomic force microscopy characterization, transition from concentrated to dilute suspension retarded the removal of the small FLG. Additionally, the small FLG exhibited greater bioaccumulation in zebrafish embryo and stronger chorion penetration ability than larger ones. These findings suggest that FLG at more environmentally relevant concentration is relatively stable and may have implications for exposure of small FLG to ecological receptors. PMID:27720543

  6. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.

    PubMed

    Maghsoodi, Maryam; Nokhodchi, Ali

    2016-12-01

    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  7. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  8. Bedform movement recorded by sequential single-beam surveys in tidal rivers

    USGS Publications Warehouse

    Dinehart, R.L.

    2002-01-01

    A portable system for bedform-mapping was evaluated in the delta of the lower Sacramento and San Joaquin Rivers, California, from 1998 to 2000. Bedform profiles were surveyed with a two-person crew using an array of four single-beam transducers on boats about 6 m in length. Methods for processing the bedform profiles into maps with geographic coordinates were developed for spreadsheet programs and surface-contouring software. Straight reaches were surveyed every few days or weeks to determine locations of sand deposition, net transport directions, flow thresholds for bedform regimes, and bedform-transport rates. In one channel of unidirectional flow, the portable system was used to record changes in bedform regime through minor fluctuations of low discharge, and through high discharges near channel capacity. In another channel with reversing flows from tides, the portable system recorded directions of net bedload-transport that would be undetectable by standard bedload sampling alone.

  9. Predictive Multiple Model Switching Control with the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2000-01-01

    A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.

  10. California State Waters Map Series: Drakes Bay and vicinity, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.

  11. Mapping the Drivers of Climate Change Vulnerability for Australia’s Threatened Species

    PubMed Central

    Lee, Jasmine R.; Maggini, Ramona; Taylor, Martin F. J.; Fuller, Richard A.

    2015-01-01

    Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species. PMID:26017785

  12. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  13. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOEpatents

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  14. Heterogeneous UO2 fuel irradiated up to a high burn-up: Investigation of the HBS and of fission product releases

    NASA Astrophysics Data System (ADS)

    Noirot, J.; Lamontagne, J.; Nakae, N.; Kitagawa, T.; Kosaka, Y.; Tverberg, T.

    2013-11-01

    A UO2 fuel with a heterogeneous distribution of 235U was irradiated up to a high burn-up in the Halden Boiling Water Reactor (HBWR). The last 100 days of irradiation were performed with an increased level of linear power. The effect of the heterogeneous fissile isotope distribution on the formation of the HBS was studied free of the possible influence of Pu which exists in heterogeneous MOX fuels. The HBS formed in 235U-rich agglomerates and its main characteristics were very similar to those of the HBS formed in Pu-rich agglomerates of heterogeneous MOX fuels. The maximum local contents of Nd and Xe before HBS formation were studied in this fuel. In addition to a Pu effect that promotes the HBS phenomenon, comparison with previous results for heterogeneous MOX fuels showed that the local fission product concentration was not the only parameter that has to be taken into consideration. It appears that the local actinide depletion by fission and/or the energy locally deposited through electronic interactions in the fission fragment recoils also have an effect on the HBS formation threshold. Moreover, a major release of fission gases from the peripheral 235U-rich agglomerates of HBS bubbles and a Cs radial movement are also evidenced in this heterogeneous UO2. Cs deposits on the peripheral grain boundaries, including the HBS grain boundaries, are considered to reveal the release paths. SUP>235U-rich agglomerates, SUP>235U-poor areas, an intermediate phase with intermediate 235U concentrations. Short fuel rods were fabricated with these pellets. The main characteristics of these fuel rods are shown in Table 1.These rods were irradiated to high burn-ups in the IFA-609/626 of the HBWR and then one was irradiated in the IFA-702 for 100 days. Fig. 2 shows the irradiation history of this fuel. The final average burn-up of the rod was 69 GWd/tU. Due to the flux differences along the rod, however, the average burn-up of the cross section examined was 63 GWd/tU. This fuel experienced high linear powers during the first year of irradiation, but at the end of the IFA-609/626 period, the average linear power of the rod was around 12 kW/m. In the IFA-702, the power was gradually increased over 7 days from 12 kW/m to 22.5 kW/m before it was decreased again to reach ˜19 kW/m at the end of the 100 days forming this part of the irradiation. A LEICA (DM RXA2) optical microscope. A shielded electronic microprobe (EPMA) SX-100R by CAMECA. A shielded scanning electron microscope (SEM): the Philips XL30. Image acquisitions were performed using the ADDA "SIS" system with the AnalySIS software for image analysis. A shielded secondary ion mass spectrometer (SIMS): the CAMECA IMS 6f was capable of analysing the same samples as the SEM and EPMA [16-22]. In the central part of the pellet for all three phases, Xe precipitated into bubbles with very little Xe remaining outside the bubbles. Some Xe-filled bubbles were detected under the surface in this area. They appear as bright spots. Around mid-radius on the periphery of the 235U-poor areas and in the intermediate phase, Xe was depleted on the periphery of the grains. This depletion was not associated with Xe-filled bubbles that would be detected under the polished surface. Moreover, no large intergranular open bubbles were visible. Therefore, this missing gas must have been released. In the 235U-rich agglomerates all over the section, Xe precipitated into bubbles with very little Xe remaining outside the bubbles. The Xe quantitative analyses through 235U-rich agglomerates on the pellet periphery (Fig. 9) confirmed the low quantity of Xe remaining outside the bubbles. This Xe content was around 0.1 wt%. Fig. 10 shows the Xe and Nd EPMA quantitative measurements along a radius of the cross section. In this figure and in Fig. 9, the weight percentage scales were set so that the two profiles would be almost identical without Xe release or precipitation. Along the Xe axis, the Nd profile can be considered as the local Xe production. Fig. 10 shows that the Xe measurement all through the central part is low except for a few points corresponding to unopened but close to the polished surface and detected by EPMA. These points correspond to the bright spots detected in the central part in Fig. 8. High concentrations were detected locally all over the radius on the Nd profile. They correspond to the 235U-rich agglomerates or their surroundings. Outside the central part, these high Nd concentrations correspond to low Xe concentrations, consistent with the maps in Fig. 8 and the detailed analyses across large 235U-rich agglomerates (Fig. 9).Fig. 11 shows a set of Xe (wt%) and (145Nd + 146Nd)/heavy metal radial profiles both acquired by SIMS. Three profiles are show for each set: one in the 235U-rich agglomerates, one in the 235U-poor areas and one in the intermediate phase. The three phases are not homogeneous themselves. This induces differences between (145Nd + 146Nd)/HM SIMS measurement points of a given phase. The (145Nd + 146Nd)/HM results are a reference for the Xe measurements, giving an estimation of the relative Xe local production. The (145Nd + 146Nd)/HM was high in the 235U-rich agglomerates, lower in the intermediate phase and even lower in the 235U-poor areas. Differences similar to those obtained herein between the phases would have been found in the Xe measurements if no release had occurred in any of those phases. The Xe (wt%) results show that this is not the case. The Xe measurements were quite similar in the intermediate phase and in the 235U-poor areas; they would have been higher in the intermediate phase if no release had occurred. The Xe measurements in the 235U-rich agglomerates were very low and lower than in the two other phases. For the 235U-rich agglomerates, there was a very big difference, across the entire radius, between the Xe measured and the Xe local production.In the SIMS Xe measurements, local depth profiles show peaks on a base line [19]. The base line corresponds to the solid solution Xe and to the nano-bubbles. The peaks correspond to Xe in larger bubbles opened by ion beam fuel sputtering. The SIMS total values correspond to the Xe outside these bubbles plus the Xe trapped in these bubbles.Fig. 12 shows the total Xe SIMS results (already shown in Fig. 11) together with the base line measurements for each measurement point and in separate graphs for each phase. The Xe EPMA quantitative measurements used as a background for these three graphs are the same as those in Fig. 10 and are the same for the three graphs, without any phase distinction. The SIMS Xe relative measurements were calibrated through a correspondence between the SIMS base line results and the EPMA measurements [20]. As expected, the SIMS base line profile was consistent with the EPMA all along the profile for each corresponding phase. For example, the SIMS base line in the 235U-rich agglomerates corresponds to the low EPMA measurement points of the Xe in this zone, i.e. the points of the EPMA profile in the 235U-rich agglomerates. By way of comparison between the Xe and the Nd measurements (the latter being rescaled to be representative of the creation level of Xe), Fig. 11 made it possible to identify two main parts on the Xe SIMS radius: The central part 0R to ˜0.5R: In the intermediate phase and the 235U-poor areas, the SIMS total was used to identify this part as a release area. The average fraction of gas measured in the bubbles (the ratio between the gas in the bubbles and the total measurement) was between 60% and 90%. The Xe content outside the bubbles was very low. In the 235U-rich agglomerates, the SIMS total represents only a small fraction of the produced Xe, which means that a large fraction of the Xe is released or not detected by SIMS due to the large size of some agglomerate bubbles compared with the volume of the crater analysed. sim;0.5R to ˜1R: The 235U-poor areas are not release areas. The fraction of gas in bubbles measured in these areas remained low, ˜5%. The intermediate phase is a release area with moderate release. The average fraction of gas measured in the bubbles was around 20%. In the 235U-rich agglomerates, the Xe SIMS total was very low. This part is a release area. Sharp transitions between initial microstructure and the HBS, often inside one grain. Increase in the resulting grain size with increasing distance from the pellet periphery. The grain sizes are in fact consistent with the MOX measurements [2]. Increase in the bubble size with the increasing distance from the pellet periphery, consistent with the MOX measurements. Smaller bubbles tend to be found in the peripheral part of the 235U-rich agglomerates rather than in their central part. Sharp transition, around 0.5R, between the peripheral area where the conventional form of HBS forms in the 235U-rich agglomerates and the central part where much larger bubbles form and where the grain size is also clearly larger. Xe concentration of 0.1 wt% outside the bubbles in the HBS areas is consistent with the [2] MOX measurements at equivalent local burn-ups. The heterogeneous MOX fuels examinations have firmly established that the HBS can extend outside the Pu-rich agglomerates due to the implantation of fission products around these agglomerates. Similarly, it has been shown that the small Pu-rich agglomerates can remain with the initial microstructure even if there is a similar actual local burn-up, a large rate of fission products being implanted outside the agglomerates themselves so that the local fission product concentration remains low.In this 235U heterogeneous UO2, the Xe and Nd concentration levels reached at the HBS formation limit ranged between 0.8 wt% and 1.1 wt% for Xe and between 0.63 wt% and 0.83 wt% for Nd. These ranges are similar to what was reported in [23] for the UO2 rim. These limits are, however, slightly higher than those found for Pu-rich agglomerates in heterogeneous MOX fuels in [2] or in [24]. Nonetheless, they are clearly lower than the concentrations reached without HBS in the special Pu-poor spots in [2]. In these spots, UO2 particles in heterogeneous MOX were really close or even surrounded by Pu-rich areas. As a result, their fission product content, due to recoil, was almost the same as that in the surrounding Pu-rich agglomerates themselves despite a very low actual local burn-up. In these special UO2 spots in MOX fuel, 1.4 wt% was reached for Xe and no HBS formed.If these high Xe concentrations without HBS in the special spots in [2] were made possible by the very low Pu local concentration only, very high Xe concentrations should have been common around the heterogeneous UO2 fuel 235U-rich agglomerates, since the Pu level was low everywhere in this fuel. This is not what was observed.Even if this effect due to a high fission product level reached without the formation of a HBS (as reported in [2] for heterogeneous MOX fuels in the special spots) is partially due to the very low local Pu level, it does not seem to be the only reason. It also seems to be partly due to the very low level of actual fissions occurring there. Between a rich agglomerate and such a highly implanted area there is: The same local fission product build-up and associated damage (due to cascades from the nuclei interactions during the last part of the fission fragment recoil). A large difference in the actinide isotope depletion to the extent that a difference in chemical composition exists between the two. A difference in the electronic excitation level at the beginning of the fission fragment recoil, higher in Pu agglomerates and in 235U-rich agglomerates than in the low fissile content areas, even surrounded by rich areas. The last two points may have an effect on the formation of a HBS though this paper cannot say which one is the most significant.The highest levels reached for Xe and Nd without HBS in the 235U heterogeneous fuel are very likely to correspond to places where the initial 235U content was particularly low but where fission recoil led to these high levels. The maximum concentrations of fission products reached before the formation of a HBS in the 235U heterogeneous fuel are lower than for the heterogeneous MOX special Pu-poor spots. This is most certainly due to the local 235U initial concentration in the 235U-poor areas which is nonetheless high when compared with the initial Pu concentrations in the Pu-poor areas in the MOX fuel. Consequently, there are more fission reactions there in the heterogeneous UO2 fuel than in the MOX fuel.This fission and/or fission spike effect has in fact little impact on the overall fuel behaviour, be it homogeneous or heterogeneous, but it has to be taken into account in the separate-effect experiments where unirradiated UO2 is submitted to ion irradiation to simulate the irradiation effects [9,25-30]. The depletion of the actinide isotopes cannot be simulated in these experiments. The IFA-702 re-irradiation, with the high power during the last period of the irradiation most certainly having played a role. The other major difference between this fuel was irradiated under BWR conditions, whereas those used in [2] were all PWR fuels. The images of the IFA-702 heterogeneous UO2 fuel on the periphery show that an internal zirconia layer was formed during the irradiation, which is a sign of gap closure under hot conditions, though a thin gap was still measured at room temperature. Therefore, the stress field in the pellet of this fuel must have been significantly different from that of the fuel used in [2]. The resulting release is all the more interesting since the release path is more or less revealed by the Cs deposits. This Cs is released from the hot central part of the pellet and is not only in the fuel-cladding gap and along the obvious radial cracks, but also in: All the grain boundaries around those radial cracks. The HBS 235U-rich agglomerates around those radial cracks. Like for Xe, the general trend for Cs was a release from the 235U peripheral agglomerates. The higher Cs measurement in the 235U-rich agglomerates close to the radial cracks results from both this release and the deposition of the Cs released from the hot central part.This singular release of Xe from the HBS bubbles of the 235U-rich agglomerates on the fuel periphery is all the more surprising that the Pu-rich agglomerates of the MIMAS MOX fuel irradiated under the same conditions [15] retained their fission gases in these areas. We found no definitive reason for that difference. the fission product implantation level has an effect. the local Pu content has also an effect. the actual local burn-up has an effect. This effect may be linked to fission through the local depletion of the fissile isotopes which changes the local chemical composition, as well as to the higher energy deposited there by electronic interactions at the beginning of the fission fragment recoils when compared with implanted areas with a low actual burn-up. Moreover, the major release of fission gases from the peripheral 235U-rich agglomerate HBS bubbles was evidenced in this heterogeneous UO2 fuel.The radial movement of Cs from the central part of the pellet towards its periphery was shown. This involved a deposition at the grain boundaries, including the HBS ones, around the radial cracks in the periphery. This showed the intergranular paths existing for the release of fission gases and Cs all through the fuel periphery. Grain Equivalent Circular Diameter (ECD) for which half of the surface is made of smaller grains and half of larger grains

  15. GABE: A Cloud Brokerage System for Service Selection, Accountability and Enforcement

    ERIC Educational Resources Information Center

    Sundareswaran, Smitha

    2014-01-01

    Much like its meteorological counterpart, "Cloud Computing" is an amorphous agglomeration of entities. It is amorphous in that the exact layout of the servers, the load balancers and their functions are neither known nor fixed. Its an agglomerate in that multiple service providers and vendors often coordinate to form a multitenant system…

  16. The relationship between cellulose nanocrystal dispersion and strength

    Treesearch

    Yizheng Cao; Pablo Zavattieri; Jeffrey Youngblood; Robert Moon; Jason Weiss

    2016-01-01

    This paper studies the agglomeration of cellulose nanocrystals (CNCs) and uses ultrasonication to disperse CNCs in cement pastes in an attempt to improve strength. Rheological measurements show that when the concentration of CNCs exceeds 1.35% by volume in deionized water, agglomerates start to develop. This experimental finding is comparable to the value obtained from...

  17. Scanning Electron Microscope Studies on Aggregation Characteristics of Alumina Nanofluids

    DTIC Science & Technology

    2013-08-01

    acoustic cavitation refers to the formation, growth and implosive collapse of bubbles in a liquid due to ultrasound that passes through the liquid...1 2.0 THEORY: ACOUSTIC CAVITATION AND AGGLOMERATION...be achieved to maximize the overall thermal conductivity of the nanofluid. 2.0 THEORY: ACOUSTIC CAVITATION AND AGGLOMERATION The phenomenon of

  18. [Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].

    PubMed

    Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi

    2017-06-18

    With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.

  19. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Assessment of Morphological and Functional Changes in Organs of Rats after Intramuscular Introduction of Iron Nanoparticles and Their Agglomerates

    PubMed Central

    Sizova, Elena; Miroshnikov, Sergey; Yausheva, Elena; Polyakova, Valentina

    2015-01-01

    The research was performed on male Wistar rats based on assumptions that new microelement preparations containing metal nanoparticles and their agglomerates had potential. Morphological and functional changes in tissues in the injection site and dynamics of chemical element metabolism (25 indicators) in body were assessed after repeated intramuscular injections (total, 7) with preparation containing agglomerate of iron nanoparticles. As a result, iron depot was formed in myosymplasts of injection sites. The quantity of muscle fibers having positive Perls' stain increased with increasing number of injections. However, the concentration of the most chemical elements and iron significantly decreased in the whole skeletal muscle system (injection sites are not included). Consequently, it increased up to the control level after the sixth and the seventh injections. Among the studied organs (liver, kidneys, and spleen), Caspase-3 expression was revealed only in spleen. The expression had a direct dependence on the number of injections. Processes of iron elimination from preparation containing nanoparticles and their agglomerates had different intensity. PMID:25789310

  1. Nifedipine Nanoparticle Agglomeration as a Dry Powder Aerosol Formulation Strategy

    PubMed Central

    Plumley, Carl; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory

    2009-01-01

    Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1–5 µm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension. PMID:19015016

  2. Study on GIS Visualization in Evaluation of the Human Living Environment in Shenyang-Dalian Urban Agglomeration

    PubMed Central

    Hou, Kang; Zhou, Jieting; Li, Xuxiang; Ge, Shengbin

    2016-01-01

    Analysis of human living environmental quality of Shenyang-Dalian urban agglomerations has important theoretical and practical significance in rapid development region. A lot of investigations have been carried for Shenyang-Dalian urban agglomerations, including 38 counties. Based on the carrying capacity of resources, natural and socioeconomic environmental factors and regional changes of human living environmental evaluation are analyzed with the application of geographic information systems (GIS) software. By using principal component analysis (PCA) model and natural breaks classification (NBC) method, the evaluation results are divided into five categories. The results show that the human living environmental evaluation (HLEE) indexes of Dalian, Shenyang, and Liaoyang are higher than other counties. Among these counties, the human living environmental evaluation (HLEE) indexes of coastal counties are significantly higher than inland counties. The range of the human living environmental evaluation index in most of the study area is at III, IV, and V levels, accounting for 80.01%. Based on these results, it could illustrate the human living environment is in relatively suitable condition in Shenyang-Dalian urban agglomeration. PMID:27200212

  3. Diapycnal Advection by Double Diffusion and Turbulence in the Ocean

    DTIC Science & Technology

    1999-09-01

    quadrant of the map. To evaluate the significance of the finger-regime results, we have implemented a simple statistical test. The dissipation ratio...accepted in nearly all of quadrants I, III and IV of the finger-favorable regime. However, the data in quadrant II (Rp ɚ,Ri> 1) strongly supports the...region of parameter space ( quadrant II, (Rp ɚ,Ri> 1)). 44 1.01 R R R P p p 1.1 1.5 2.5 5 10 30 1001.01 1.1 1.5 2.5 5 10 30

  4. Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors.

    PubMed

    Van Vlack, C; Hughes, S

    2007-04-20

    Ultrashort pulse light-matter interactions in a semiconductor are investigated within the regime of resonant optical rectification. Using pulse envelope areas of around 1.5-3.5 pi, a single-shot dependence on carrier-envelope-offset phase (CEP) is demonstrated for 5 fs pulse durations. A characteristic phase map is predicted for several different frequency regimes using parameters for thin-film GaAs. We subsequently suggest a possible technique to extract the CEP, in both sign and amplitude, using a solid state detector.

  5. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  6. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  7. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  8. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehmat, A.; Khinkis, M.

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated withmore » ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.« less

  9. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    PubMed

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Using Clustering to Establish Climate Regimes from PCM Output

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert; Arnold, James E. (Technical Monitor); Hoffman, Forrest; Hargrove, W. W.; Erickson, D.

    2002-01-01

    A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and time. Any single spot on the globe will exist in one of these climate regimes at any single point in time. By incrementing time, that same spot will trace out a trajectory or orbit between and among these climate regimes (or atmospheric states) in phase (or state) space. When a geographic region enters a state it never previously visited, a climatic change is said to have occurred. Tracing out the entire trajectory of a single spot on the globe yields a 'manifold' in state space representing the shape of its predicted climate occupancy. This sort of analysis enables a researcher to more easily grasp the multivariate behavior of the climate system.

  11. Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    NASA Technical Reports Server (NTRS)

    Liaw, Paul; Chen, Yen-Sen

    1995-01-01

    A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of the RSRM geometry.

  12. Development of an electrochemical process for production of nano-copper oxides: Agglomeration kinetics modeling.

    PubMed

    Shahcheraghi, Seyed Hadi; Schaffie, Mahin; Ranjbar, Mohammad

    2018-06-01

    The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate voltage (≈ 5 V) at 25 °C, in the presence of N 2 gas, the simultaneous anode dissolution and nano-copper oxides formation (≈ 24 nm) can be occurred, rapidly (less than 45 min). Then, the effect of N 2 gas and free radicals generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N 2 , an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to -1.14 V, and formation of copper nanoparticles. While, in the presence of ultrasonic and N 2 , the CuO nanoparticles were formed due to presence of H 2 O 2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size don't change due to prevention of agglomerates diffusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of impurities. In this work, we described a novel aerosol model that has been developed to simulate particle encapsulation in flames. The model will ultimately be coupled to a one-dimensional spherical flame code and compared to results from microgravity flame experiments.

  14. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.

    PubMed

    Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle

    2015-08-18

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region.

  16. Influence de la taille de depart, de l'etat d'agglomeration et de la dose de nanoparticules de dioxyde de titane (TiO2) inhalees sur la reponse pulmonaire chez le rat

    NASA Astrophysics Data System (ADS)

    Noel, Alexandra

    It is estimated that by 2014 more than 10 million jobs related to the nanotechnology field will be created worldwide. It is therefore important to investigate the possible health effects caused by nanoparticles (NP). Due to their small size, NP (< 100 nm) can coagulate quickly, which promotes their entry into the body in the form of agglomerates. However, few studies have evaluated their pulmonary toxicity, considering the physicochemical properties of NP, as well as the size of the agglomerates formed in the aerosols. The objective of this study is to evaluate the influence of the agglomeration state of three different primary particle sizes (5, 10-30 and 50 nm) of titanium dioxide (TiO2) NP on the pulmonary toxicity of male rats (F344) exposed to aerosols at 2, 7 or 20 mg/m3 for 6 hours. In an inhalation chamber, six groups of rats (n = 6 per group) were acutely exposed by nose-only inhalation to aerosols with a 5-nm primary particle size, produced in the form of small agglomerates (< 100 nm) (SA) or large agglomerates (> 100 nm) (LA) at 2, 7 and 20 mg/m3. Similarly, four other groups of rats were exposed to aerosols at 20 mg/m 3 with a primary particle size of 10-30 and 50 nm. The different aerosols were generated by nebulization of suspensions or by dry dispersion. For each mass concentration, one group of control rats (n = 6 per group) was exposed to compressed air under the same conditions. The size, shape, structure and agglomeration state of NP in both the bulk powders and the generated aerosols were characterized by transmission electron microscopy and using an electrical low pressure impactor. Mass concentrations were determined by gravimetric measurements. The animals were sacrificed 16 hours after the end of exposure, and analysis of the bronchoalveolar lavage fluids was used to measure markers of inflammatory (total and differential cell counts, as well as various cytokines: IL-1alpha, IL-6, MIP-1alpha, MCP-1 and TNF-alpha), cytotoxicity (lactate dehydrogenase (LDH), alkaline phosphatase and total protein concentration) and oxidative stress (heme oxygenase-1, glutathione and 8-isoprostane) effects. Lung sections were also analyzed for histopathology. The influence of the agglomeration state of TiO2 NP (5 nm) could not be determined at 2 mg/m3. For mass concentrations of 7 and 20 mg/m3, our results showed that an acute inflammatory response (increase in the number of neutrophils) was induced following exposure to LA aerosols. In addition to this response, exposure to SA aerosols resulted in a significant increase in 8-isoprostane and LDH. At 20 mg/m3, the cytotoxic effects were greater after exposure to the 5-nm NP in the SA aerosol. Given the significant work done to generate and characterize aerosols, this study showed that TiO2 NP use different mechanisms to induce their pulmonary toxicity as a function of their primary particle size and their agglomeration state.

  17. Spatial Statistical Network Models for Stream and River Temperature in the Chesapeake Bay Watershed, USA

    EPA Science Inventory

    Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...

  18. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis.

    PubMed

    Camacho, Ana María; Veganzones, Mariano; Claver, Juan; Martín, Francisco; Sevilla, Lorenzo; Sebastián, Miguel Ángel

    2016-09-01

    Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE) simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS₂ grease, silicone oil, and copper paste) to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs). The results show that for small reductions ( r h < 20%), the conventional RCT can be applied because the tribological conditions remain similar. For large reductions ( r h > 20%), it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered.

  19. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis

    PubMed Central

    Camacho, Ana María; Veganzones, Mariano; Claver, Juan; Martín, Francisco; Sevilla, Lorenzo; Sebastián, Miguel Ángel

    2016-01-01

    Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE) simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS2 grease, silicone oil, and copper paste) to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs). The results show that for small reductions (rh < 20%), the conventional RCT can be applied because the tribological conditions remain similar. For large reductions (rh > 20%), it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered. PMID:28773868

  20. Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-10-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.

  1. Electronic Maxwell demon in the coherent strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp

    2018-05-01

    We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.

  2. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  3. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  4. Long Life Na/NiCl2 Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1996-01-01

    The premature capacity failure of Na/NiCl2 secondary cells due to agglomeration of nickel particles on the surface of the NiCl2 cathode is prevented by addition of a minor amount such as 10 percent by weight of a transition metal such as Co, Fe or Mn to the cathode. The chlorides of the transition metals have lower potentials than nickel chloride and chlorinate during charge. A uniform dispersion of the transition metals in the cathodes prevents agglomeration of nickel, maintains morphology of the electrode, maintains the electrochemical area of the electrode and thus maintains capacity of the electrode. The additives do not effect sintering. The addition of sulfur to the liquid catholyte is expected to further reduce agglomeration of nickel in the cathode.

  5. Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties

    PubMed Central

    Chi, Eric C.; Lange, Kenneth

    2014-01-01

    Estimation of a covariance matrix or its inverse plays a central role in many statistical methods. For these methods to work reliably, estimated matrices must not only be invertible but also well-conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions towards the sample covariance matrix as the number of samples grows relative to the number of covariates. The utility of the MAP estimator is demonstrated in two standard applications – discriminant analysis and EM clustering – in this sampling regime. PMID:25143662

  6. Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László

    2016-04-01

    Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.

  7. Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles.

    PubMed

    Dmuchowski, W; Bytnerowicz, A

    1995-01-01

    Maps of the distribution of environmental pollution by sulfur (S), zinc (Zn), cadmium (Cd), lead (Pb), copper (Cu), and arsenic (As) for the territory of Poland and the Warsaw (Warszawa) district were developed on the basis of chemical analysis of Scots pine (Pinus sylvestris L.) needles collected from randomly selected sampling points during 1983-1985. The maps show deposition zones for the studied elements and can help in identification of sources and directions of air pollution dispersion. This study indicated that vegetation in Poland is greatly endangered by sulfur dioxide (SO(2)) and other sulfurous air pollutants, whereas Zn, Cd, Pb, and As do not pose an immediate threat to vegetation in most of the country's territory. However, in the urban-industrial agglomeration of Katowice-Cracow, very high pollution with Z, Cd, Pb and As could limit growth and development of some sensitive plant species. Higher than normal levels of As in some areas of Poland (Upper Silesia, Glogow-Lubin Copper Region, and areas close to the Russian border near Braniewo) might affect the health of humans and animals. Results of this study indicated that Poland's environment was not contaminated with Cu.

  8. The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain

    PubMed Central

    Kubo-Irie, Miyoko; Yokoyama, Masaaki; Shinkai, Yusuke; Niki, Rikio; Takeda, Ken; Irie, Masaru

    2016-01-01

    This study aimed to examine the transfer of nanoparticles within a terrestrial food chain. Oviposited eggs of the swallowtail butterfly (Atrophaneura alcinous) were hatched on the leaves of the host plant (Aristolochia debilis), and the root stock and root hairs were submerged in a suspension of 10 μg/ml titanium dioxide nanoparticles (TiO2-NPs) in a 100 ml bottle. The presence of TiO2-NPs in the veins of the leaves was confirmed by X-ray analytical microscopy (X-ray AM). The hatched 1st instar larvae fed on the leaves to moult into 2nd instar larvae. Small agglomerates of TiO2-NPs less than 150 nm in diameter were identified in the vascular tissue of the exposed plant, the midgut and the excreta of the larvae by transmission electron microscopy. The image of Ti elemental mapping by X-ray AM was analysed with the quantitative spatial information mapping (QSIM) technique. The results demonstrated that TiO2-NPs were transferred from the plant to the larvae and they were disseminated throughout the environment via larval excreta. PMID:27030539

  9. Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Abdullah, U.; Yaacob, I.; Ali, Y.

    2016-04-01

    Currently, carbon nanotube (CNT) is attracting much interest as fibrous materials for reinforcing aluminum matrix composites due to unique properties, such as high strength, elastic modulus, flexibility and high aspect ratios. However, the quality of the dispersion is the major concerning factor which determines the homogeneity of the enhanced mechanical and tribological properties of the composite. This work study and characterized carbon nanotube dispersion in ballmilled CNT-aluminum mixed powders with four different formulations such as 1, 1.5, 2 and 2.5 wt% CNT under high energy planetary ball milling operations. The ball milling was performed for two hours at constant milling speed of 250 rpm under controlled atmosphere. The characterization is performed using FESEM and EDX analyzer for mapping, elemental and line analysis. The experimental results showed homogeneous dispersion of CNTs in aluminum matrix. The composite mixture showed similar pattern from mapping, elemental and line analysis. Identification of only two peaks proved that controlled atmosphere during milling prevented the formation of inter metallic compounds such as aluminum carbide in the composite mixture. Therefore, this CNT-A1 composite powder mixture can be used for new nano-composite development without any agglomeration problem.

  10. A technique for the determination of Louisiana marsh salinity zone from vegetation mapped by multispectral scanner data: A comparison of satellite and aircraft data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1977-01-01

    Vegetation in selected study areas on the Louisiana coast was mapped using low altitude aircraft and satellite (LANDSAT) multispectral scanner data. Fresh, brackish, and saline marshes were then determined from the remotely sensed presence of dominant indicator plant associations. Such vegetational classifications were achieved from data processed through a standard pattern recognition computer program. The marsh salinity zone maps from the aircraft and satellite data compared favorably within the broad salinity regimes. The salinity zone boundaries determined by remote sensing compared favorably with those interpolated from line-transect field observations from an earlier year.

  11. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    USGS Publications Warehouse

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from amore » single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.« less

  13. Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization

    NASA Astrophysics Data System (ADS)

    Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V.

    2008-05-01

    Carbon nanotubes (CNTs) were synthesized from CO 2 dissolved in molten salts using the novel electrolytic method developed by the authors. The electrolysis were carried out under current and potential controls. To establish the actual current and potential ranges, the electroreduction of carbon dioxide dissolved in the halide melts under an excess pressure up to 15 bar was studied by cyclic voltammetry on glassy-carbon (GC) electrode at a temperature of 550 °C. The electrochemical-chemical-electrochemical mechanism of CO 2 electroreduction was offered for explanation of the obtained results. The structure, morphology, and electronic properties of the CNTs obtained were studied using SEM, TEM, X-ray and electron diffraction analysis, Raman and ESR spectroscopy. It was found that the majority of the CNTs are multi-walled (MWCNTs), have curved form, and most often agglomerate into bundles. Almost all CNTs are filled partly with electrolyte salt. Except MWCNTs the cathode product contains carbon nanofibers, nanographite, and amorphous carbon. The dependences of CNT's yield, their diameter, and structure peculiarities against the electrolysis regimes were established.

  14. Rain use efficiency across a precipitation gradient on the Tibetan Plateau

    USDA-ARS?s Scientific Manuscript database

    Rain use efficiency (RUE), commonly described as the ratio of aboveground net primary production (ANPP) to mean annual precipitation (MAP), is a critical indicator for predicting potential responses of grassland ecosystems to changing precipitation regimes. However, current understanding on patterns...

  15. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    PubMed

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-04-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  17. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    PubMed

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

    PubMed Central

    2012-01-01

    The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application. PMID:22333487

  19. Process for removing pyritic sulfur from bituminous coals

    DOEpatents

    Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  20. Do Universities Generate Agglomeration Spillovers? Evidence from Endowment Value Shocks. NBER Working Paper No. 15299

    ERIC Educational Resources Information Center

    Kantor, Shawn; Whalley, Alexander

    2009-01-01

    In this paper we quantify the extent and magnitude of agglomeration spillovers from a formal institution whose sole mission is the creation and dissemination of knowledge--the research university. We use the fact that universities follow a fixed endowment spending policy based on the market value of their endowments to identify the causal effect…

  1. Efficient solid rocket propulsion for access to space

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.

    2010-06-01

    Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.

  2. Do we still need cities? Evidence on rates of innovation from count data models of metropolitan statistical area patents.

    PubMed

    Sedgley, Norman; Elmslie, Bruce

    2011-01-01

    Evidence of the importance of urban agglomeration and the offsetting effects of congestion are provided in a number of studies of productivity and wages. Little attention has been paid to this evidence in the economic growth literature, where the recent focus is on technological change. We extend the idea of agglomeration and congestion effects to the area of innovation by empirically looking for a nonlinear link between population density and patent activity. A panel data set consisting of observations on 302 USA metropolitan statistical areas (MSAs) over a 10-year period from 1990 to 1999 is utilized. Following the patent and R&D literature, models that account for the discreet nature of the dependent variable are employed. Strong evidence is found that agglomeration and congestion are important in explaining the vast differences in patent rates across US cities. The most important reason cities continue to exist, given the dramatic drop in transportation costs for physical goods over the last century, is probably related to the forces of agglomeration as they apply to knowledge spillovers. Therefore, the empirical investigation proposed here is an important part of understanding the viability of urban areas in the future.

  3. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  4. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    NASA Astrophysics Data System (ADS)

    Djenadic, Ruzica; Winterer, Markus

    2017-02-01

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  5. Further observations on OCOM MOX fuel: microstructure in the vicinity of the pellet rim and fuel — cladding interaction

    NASA Astrophysics Data System (ADS)

    Walker, C. T.; Goll, W.; Matsumura, T.

    1997-06-01

    The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.

  6. Stability of dry coated solid dosage forms.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2009-01-01

    The dry coating process was evaluated in terms of storage stability investigating drug release and agglomeration tendency of the different coated oral dosage forms; hydroxypropyl methylcellulose acetate succinate (HPMCAS) was used with triethylcitrate (TEC) as plasticizer and acetylated monoglyceride (Myvacet) as wetting agent. Talc or colloidal silicon dioxide (Aerosil) was used as anti-tacking agents. In contrast to coating formulations consisting of HPMCAS and Myvacet all formulations containing TEC showed enteric resistance and no agglomeration tendency after preparation. After storage at 10% RH +/- 5% enteric resistance is increased slightly. This increase is more pronounced at 60% RH +/- 5%. The formulations without anti-tacking agents showed higher drug releases after 12 and 24 months due to the damage of the film's integrity during sample preparation caused by the high tackiness of the film. Tackiness is not affected by storing if samples are stored at low relative humidity. At high relative humidity tackiness increases upon storage especially for formulations without anti-tacking agents. The sieving results of the agglomeration measurements after storage can be confirmed by ring shear measurements performed immediately after preparation and approved to be a tool, which is able to predict the agglomeration during storage.

  7. Assessing sufficiency of thermal riverscapes for resilient ...

    EPA Pesticide Factsheets

    Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific locations and features within stream networks hypothesized to provide disproportionately high-value functional resilience to salmon populations. These include relatively small-scale features such as thermal refuges, and larger-scale features such as entire watersheds or aquifers that support thermal regimes buffered from local climatic conditions. Quantifying the value of both small and large scale thermal features to salmon populations has been challenged by both the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We will describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in large rivers, as well as a population modeling approach for assessing large-scale climate refugia for salmon in the Pacific Northwest. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec

  8. Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain

    PubMed Central

    Basak, Soubir; Brogan, David; Dietrich, Hans; Ritter, Rogers; Dacey, Ralph G; Biswas, Pratim

    2009-01-01

    A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient. PMID:19421367

  9. KISS: Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Yang, J. C.; Scott, J. H.; Sivithanu, Y.

    2001-01-01

    The objective of this study is to understand the process of gas phase agglomeration leading to superagglomerates and a gel-like structure for microgravity (0-g) silane and acetylene flames. Ultimately one would apply this understanding to predicting flame conditions that could lead to the gas phase production of an aero-gel. The approach is to burn acetylene and silane and to analyze the evolution of the soot and silica agglomerates. Acetylene is chosen because it has one of the highest soot volume fractions and there is evidence of super agglomerates being formed in laminar acetylene flames. Silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke.

  10. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  11. Operation regimes of a dielectric laser accelerator

    NASA Astrophysics Data System (ADS)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  12. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings with different levels of non-molten particles in the coating microstructure; from 25 to 50%. The presence of non-molten and molten phases in the coating microstructure, results in an unique mechanical behavior. The nanostructured coatings present a bimodal distribution with respect to the mechanical properties; each mode has origin from one of the phases. The phases were carefully mapped via scanning electron microscopy and microhardness measurements. These results enabled us to create a model for mechanical properties prediction. This finding is considered one of the most important achievements of this work.

  13. X-ray reciprocal space mapping of dislocation-mediated strain relaxation during InGaAs/GaAs(001) epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takuo; Ohshita, Yoshio; Kamiya, Itaru

    2011-12-01

    Dislocation-mediated strain relaxation during lattice-mismatched InGaAs/GaAs(001) heteroepitaxy was studied through in situ x-ray reciprocal space mapping (in situ RSM). At the synchrotron radiation facility SPring-8, a hybrid system of molecular beam epitaxy and x-ray diffractometry with a two-dimensional detector enabled us to perform in situ RSM at high-speed and high-resolution. Using this experimental setup, four results in terms of film properties were simultaneously extracted as functions of film thickness. These were the lattice constants, the diffraction broadenings along in-plane and out-of-plane directions, and the diffuse scattering. Based on correlations among these results, the strain relaxation processes were classified into fourmore » thickness ranges with different dislocation behavior. In addition, the existence of transition regimes between the thickness ranges was identified. Finally, the dominant dislocation behavior corresponding to each of the four thickness ranges and transition regimes was noted.« less

  14. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size.

    PubMed

    Pauluhn, Jürgen

    2009-05-01

    Inhaled polydisperse micronsized agglomerated particulates composed of nanosized primary particles may exert their pulmonary toxicity in either form, depending on whether these tightly associated structures are disintegrated within the biological system or not. This hypothesis was tested in a rat bioassay using two calcined aluminum oxyhydroxides (AlOOH) consisting of primary particles in the range of 10-40 nm. Male Wistar rats were nose-only exposed to 0.4, 3, and 28 mg/m(3) in two 4-week (6 h/day, 5 days/week) inhalation studies followed by a 3-month postexposure period. The respective mass median aerodynamic diameter (MMAD) of agglomerated particles in inhalation chambers was 1.7 and 0.6 mum. At serial sacrifices, pulmonary toxicity was characterized by bronchoalveolar lavage (BAL) and histopathology. The retention kinetics of aluminum (Al) was determined in lung tissue, BAL cells, and selected extrapulmonary organs, including lung-associated lymph nodes (LALNs). Significant changes in BAL, lung, and LALN weights occurred at 28 mg/m(3). Histopathology revealed alveolar macrophages with enlarged and foamy appearance, increased epithelial cells, inflammatory cells, and focal septal thickening. The determination of aluminum in lung tissue shows that the cumulative lung dose was higher following exposure to AlOOH-40 nm/MMAD-0.6 mum than to AlOOH-10 nm/MMAD-1.7 mum, despite identical exposure concentrations. The associated pulmonary inflammatory response appears to be principally dependent on the agglomerated rather than primary particle size. Despite high lung burdens, conclusively increased extrapulmonary organ burdens did not occur at any exposure concentration and postexposure time point. Particle-induced pulmonary inflammation was restricted to cumulative doses exceeding approximately 1 mg AlOOH/g lung following 4-week exposure at 28 mg/m(3). It is concluded that the pulmonary toxicity of nanosized, agglomerated AlOOH particles appears to be determined by the size of agglomerated rather than primary particles, whereas the clearance half-time of particles appears to increase with decreased primary particle size. However, in regard to toxicokinetics, this outcome is highly contingent upon the total lung burden and especially whether overloading or non-overloading conditions were attained or not. In order to reliably demonstrate retention-related different characteristics in toxicity and fate of poorly soluble (nano)particles postexposure periods of at least 3 months appear to be indispensible.

  15. Microgravity Superagglomerates Produced By Silane And Acetylene

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman (Technical Monitor); Bundy, Matthew; Mulholland, George W.; Manzello, Samuel; Yang, Jiann; Scott, John Henry; Sivathanu, Yudaya

    2003-01-01

    The size of the agglomerates produced in the upper portion of a flame is important for a variety of applications. Soot particle size and density effect the amount of radiative heat transfer from a fire to its surroundings. Particle size determines the lifetime of smoke in a building or in the atmosphere, and exposure hazard for smoke inhaled and deposited in the lungs. The visibility through a smoke layer and dectectability of the smoke are also greatly affected by agglomerate size. Currently there is limited understanding of soot growth with an overall dimension of 10 m and larger. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed raining out from large fires. Unlike hydrocarbon fuels, silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke. There are two very desirable properties of silica aero-gels that are important for both space and earth based applications. The first important property is its inertness to most oxidizing and reducing atmospheres. Therefore, silica aero-gels make excellent fire ablatives and can be used in very demanding applications. The second important property is that silica aero-gels are expected to have very high porosity (greater than 0.999), making them lightweight and ideal for aerospace applications. The added benefit of the high porosity is that they can be used as extremely efficient filters for many earth based applications as well. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame was found by Sorensen et al. [1]. An interconnecting web of super-agglomerates was observed to span the width of the soot plume in the region just above the flame tip and described as a gel state. It was observed that this gel state immediately breaks up into agglomerates as larges as 100 m due to buoyancy induced turbulence. Large soot agglomerates were observed in microgravity butane jet diffusion flames by Ito et al.[2]. Several other works to date have studied the effect of flame structure on soot volume fraction and agglomeration size in a microgravity environment.[3-4]. In microgravity the absence of buoyant convective flows increases the residence time in the flame and causes a broadening of the high temperature region in the flame. Both of these factors play a significant role in gas phase radiation and soot formation

  16. Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback

    NASA Astrophysics Data System (ADS)

    Panozzo, M.; Quintero-Quiroz, C.; Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.

    2017-11-01

    Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse (CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized by the standard deviation, the skewness, and the kurtosis) allows to distinguish among noise, LFFs and CC, and to quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal analysis of the inter-dropout time intervals consistently identifies the three regimes occurring in the same parameter regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang-Kobayashi model are in good qualitative agreement with the observations.

  17. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature.

    PubMed

    Grela, Jacek; Majumdar, Satya N; Schehr, Grégory

    2017-09-29

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1d harmonic trap of frequency ω at finite temperature T. Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N, using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N, we identify (i) a quantum regime, for T∼ℏω, where quantum fluctuations dominate and (ii) a thermal regime, for T∼Nℏω, governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  18. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Grela, Jacek; Majumdar, Satya N.; Schehr, Grégory

    2017-09-01

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1 d harmonic trap of frequency ω at finite temperature T . Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N , using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N , we identify (i) a quantum regime, for T ˜ℏω , where quantum fluctuations dominate and (ii) a thermal regime, for T ˜N ℏω , governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  19. Why Does the Spatial Agglomeration of Firms Benefit Workers? Examining the Role of Organizational Diversity in U.S. Industries and Labor Markets

    ERIC Educational Resources Information Center

    Fullerton, Andrew S.; Villemez, Wayne J.

    2011-01-01

    Several recent studies across the social sciences show that the spatial agglomeration of employment in a local labor market benefits both firms and workers in terms of better firm performance and higher wages. Drawing from the organizational ecology perspective, we argue that workers receive higher wages in large industrial clusters and urban…

  20. Size and weight graded multi-ply laminar electrodes

    DOEpatents

    Liu, Chia-Tsun; Demczyk, Brian G.; Rittko, Irvin R.

    1984-01-01

    An electrode is made comprising a porous backing sheet, and attached thereto a catalytically active layer having an electrolyte permeable side and a backing layer contacting side, where the active layer comprises a homogeneous mixture of active hydrophobic and hydrophilic agglomerates with catalyst disposed equally throughout the active layer, and where the agglomerate size increases from the electrolyte permeable side to the backing sheet contacting side.

  1. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature environment of a flame is excellent for producing high-purity simple compounds, ultrafine metals and non-oxide ceramic powders are inherently reactive in the presence of oxygen and/or moisture. Thus, the handling of these powders after synthesis poses a challenging problem. Impurities acquired during handling of nanoparticles have plagued the advancement of nanostructured materials technology.

  2. Appendix D: Use of wave scenarios to assess potential submerged oil mat (SOM) formation along the coast of Florida and Alabama

    USGS Publications Warehouse

    Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.

    2013-01-01

    During the Deepwater Horizon oil spill, oil in the surf zone mixed with sediment in the surf zone to form heavier-than-water sediment oil agglomerates of various size, ranging from small (cm-scale) pieces (surface residual balls, SRBs) to large mats (100-m scale, surface residue mats, SR mats). Once SR mats formed in the nearshore or in the intertidal zone, they may have become buried by sand moving onshore or alongshore. To assist in locating possible sites of buried oil, wave scenarios previously developed by the U.S. Geological Survey (USGS) were used to determine the depths at which surface oil had the potential to mix with suspended sediment. For sediment to mix with floating oil and form an agglomerate of sufficient density to sink to the seafloor, either the water must be very shallow (e.g., within the swash zone) or sediment must be suspended to the water surface in sufficient concentrations to create a denser-than-sea water agglomerate. The focus of this study is to analyze suspended sediment mixing with surface oil in depths beyond the swash zone, in order to define the seaward limit of mat formation. A theoretical investigation of sediment dynamics in the nearshore zone revealed that non-breaking waves do not suspend enough sediment to the surface to form sinking sand/oil agglomerates. For this study, it was assumed that the cross-shore distribution of potential agglomerate formation is associated with the primary breaker line, and the presence of plunging breakers, over the time frame of oiling. The potential locations of submerged oil mats (SOMs) are sites where (1) possible agglomerate formation occurred, where (2) sediment accreted post-oiling and buried the SOM, and where (3) the bathymetry has not subsequently eroded to re-expose any mat that may have formed at that site. To facilitate identification of these locations, the range of water level variation over the time frame of oiling was also prescribed, which combined with the wave-breaking depth analysis and pre-oiling bathymetry would identify the potential geographic locations of SOMs.

  3. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560

  4. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.

    PubMed

    Ku, Bon Ki; Evans, Douglas E

    2012-04-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.

  5. Holographic interferometry imaging monitoring of photodynamic (PDT) reactions in gelatin biophantom

    NASA Astrophysics Data System (ADS)

    Davidenko, N.; Mahdi, H.; Zheng, X.; Davidenko, I.; Pavlov, V.; Kuranda, N.; Chuprina, N.; Studzinsky, S.; Pandya, A.; Karia, H.; Tajouri, S.; Dervenis, M.; Gergely, C.; Douplik, A.

    2018-01-01

    Heat and photochemical reactions with human hemoglobin and photosensitizer were monitored by holography interference method in gelatin phantom. The method has successfully facilitated monitoring the reactions as a highresolution refraction index mapping in real time video regime. Methylene Blue was exploited as a photosensitizer.

  6. Directional climate change and potential reversal of desertification in arid and semiarid ecosystems

    USDA-ARS?s Scientific Manuscript database

    Our objective was to determine if long-term increases in precipitation can maintain grasslands susceptible to desertification, and initiate a reversal of historic regime shifts on desertified shrublands. Long-term trends in desertification were documented using vegetation maps beginning in 1858. The...

  7. Alternating Field Electronanofluidization

    NASA Astrophysics Data System (ADS)

    Espin, M. J.; Valverde, J. M.; Quintanilla, M. A. S.; Castellanos, A.

    2009-06-01

    The use of fluidized beds to remove submicron particles from gases has been investigated since 1949. High efficiency removal was achieved in the 1970's by imposing an electric field on a fluidized bed of semi-insulating granules that were able to collect the charged pollutant entrained in the fluidizing gas. In spite of their extended use nowadays, the collection efficiency of electrofluidized beds (EFB) is still hindered by gas bypassing associated to gas bubbling and the consequent requirement of too high gas flow and pressure drop. In this paper we report on the electromechanical behavior of an EFB of insulating nanoparticles. When fluidized by gas, these nanoparticles form extremely porous light agglomerates of size of the order of hundreds of microns that allow for a highly expanded nonbubbling fluidized state at reduced gas flow. It is found that fluidization uniformity and bed expansion are additionally enhanced by an imposed AC electric field for field oscillation frequencies of several tens of hertzs and field strengths of the order of 1 kV/cm. For oscillation frequencies of the order of hertzs, or smaller, bed expansion is hindered due to electrophoretic deposition of the agglomerates onto the vessel walls, whereas for oscillation frequencies of the order of kilohertzs, or larger, electrophoresis is nullified and bed expansion is not affected. According to a proposed model, the size of nanoparticle agglomerates stems from the balance between shear, which depends on field strength, and van der Waals forces. The optimum field strength for enhancing bed expansion produces an electric force on the agglomerates similar to their weight force, while the oscillation velocity of the agglomerates is similar to the gas velocity.

  8. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less

  9. Linking meteorological drivers of spring-summer drought regimes to agricultural drought risk in China

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wright, J. S.; Yu, C.; Huang, W. Y.

    2017-12-01

    As a drought prone country, China has experienced frequent severe droughts in recent decades. Drought frequency and severity are projected to increase in China under climate change. An understanding of the physical processes that contribute to extreme droughts is essential for seasonal forecasting, but the dominant physical mechanisms responsible for droughts in most parts of China are still unclear. Moreover, despite numerous studies on droughts in China, there are few clear connections between the meteorological and climatological drivers of extreme droughts and the associated agricultural consequences. This knowledge gap limits the capacity for decision-making support in drought management. The objectives of this study are (1) to identify robust spring-summer drought regimes over China, (2) to investigate the physical mechanisms associated with each regime, and (3) to better clarify connections between meteorological drought regimes and agricultural drought risk. First, we identify six drought regimes over China by applying an area-weighted k-means clustering technique to spatial patterns of spring-summer Standardized Precipitation Index (SPI) obtained from the ten-member ERA-20CM ensemble for 1900-2010. Second, we project these drought regimes onto agricultural drought risk maps for the three major cereal crops (rice, maize, and wheat) in China. Taking into account historical harvest areas for these crops, we then evaluate the potential impact of each drought regime on agricultural production. Third, the physical mechanisms and meteorological context behind each drought regimes are investigated based on monthly outputs from ERA20CM. We analyze the preceding and concurrent atmospheric circulation anomalies associated with each regime, and propose mechanistic explanations for drought development. This work provides a new perspective on diagnosing the physical mechanisms behind seasonal droughts, and lays a foundation for improving seasonal drought prediction and water management practices in China.

  10. On the definition of dominant force regimes for flow boiling heat transfer by using single mini-tubes

    NASA Astrophysics Data System (ADS)

    Baba, Soumei; Sawada, Kenichiro; Kubota, Chisato; Kawanami, Osamu; Asano, Hitoshi; Inoue, Koichi; Ohta, Haruhiko

    Recent increase in the size of space platforms requires the management of larger amount of waste heat under high heat flux conditions and the transportation of it along a long distance to the radiator. Flow boiling applied to the thermal management system in space attracts much attention as promising means to realize high-performance heat transfer and transport because of large latent heat of vaporization. In microgravity two-phase flow phenomena are quite different from those under 1-g condition because buoyancy effects are significantly reduced and surface tension becomes dominant. By the similar reason, flow boiling characteristics in mini channels are not the same as those in channels of normal sizes. In the present stage, however, the boundary between the regimes of body force dominated and of surface tension dominated is not clear. The design of space thermal devices, operated under the conditions where no effect of gravity is expected, will improve the reliability of their ground tests, provided that the boundaries of dominant force regimes are clarified quantitatively in advance. In flow boiling in mini channels or in parallel channels, back flow could be occurred because of rapid growth of bubbles in a confined space, resulting flow rate fluctuation. Flow boiling heat transfer characteristics in mini channels can be changed considerably by the existence of inlet flow rate fluctuation. It is important to pay attention to experimental accuracy and to use a single circular mini-tube to compare heat transfer characteristics with those of normal size tubes. In the present paper, effects of tube orientations, i.e. vertical upward flow, vertical downward flow and horizontal flow, on flow boiling heat transfer characteristics is investigated for FC72 flowing in single mini-tubes with inner diameters of 0.13 and 0.51 mm to establish a reliable dominant force regime map. If the regime map is described by using dimensionless groups of Bond, Weber and Froude numbers, the boundary of dominant forces of inertia and body force is examined by using the mini-tube of the larger diameter at constant Bond number Bo = 0.51, and the boundary of inertia and surface tension by using the mini-tube of smaller diameter at Bo = 0.033. The influence of inertia is varied by the change of vapor quality, i.e. ratio of vapor mass flow rate to the total, under constant mass velocities, where the velocity of liquid-vapor mixtures is increased with increasing vapor quality. For the tube diameter of 0.51 mm, under low inertia conditions at Froude number Fr < 5, heat transfer coefficients were influenced by the tube orientation, while the heat transfer coefficients were almost independent of the orientation for Fr > 5. The results indicated that the boundary between the body force dominated and the inertia force dominated regimes was given by Froude number as Fr ˜ 5. On the other hand, for tube diameter of 0.13 mm, almost no effect of tube = orientation was observed for all combinations of mass velocity and vapor quality, and heat transfer coefficients were independent of vapor quality under low inertia conditions at Weber number We < 5, and vice versa. The results implied the boundary between the surface tension dominated and the inertia force dominated regimes was represented by We ˜ 5. = In addition, by the reflection of both results on the two-dimensional regime map, the boundary between the surface tension dominated and the body force dominated regimes was approx-imately evaluated as Bo ˜ 0.25 from the crossing point of two boundary lines. This value = located in the range of 0.033 < Bo < 0.51 is consistent with the boundaries between the sur-face tension dominated and the body force dominated regimes classified for the smaller and larger mini-tubes, respectively, under low inertia conditions.

  11. Performance analysis and dynamic modeling of a single-spool turbojet engine

    NASA Astrophysics Data System (ADS)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  12. Surface-to-volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging

    PubMed Central

    Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S; Kim, Sungheon Gene

    2015-01-01

    Purpose To disentangle the free diffusivity (D0) and cellular membrane restrictions, via their surface-to-volume ratio (S/V), using the frequency-dependence of the diffusion coefficient D(ω), measured in brain tumors in the short diffusion-time regime using oscillating gradients (OGSE). Methods In vivo and ex vivo OGSE experiments were performed on mice bearing the GL261 murine glioma model (n=10) to identify the relevant time/frequency (t/ω) domain where D(ω) linearly decreases with ω−1/2. Parametric maps (S/V, D0) are compared to conventional DWI metrics. The impact of frequency range and temperature (20°C vs. 37°C) on S/V and D0 is investigated ex vivo. Results The validity of the short diffusion-time regime is demonstrated in vivo and ex vivo. Ex vivo measurements confirm that the purely geometric restrictions embodied in S/V are independent from temperature and frequency range, while the temperature dependence of the free diffusivity D0 is similar to that of pure water. Conclusion Our results suggest that D(ω) in the short diffusion-time regime can be used to uncouple the purely geometric restriction effect, such as S/V, from the intrinsic medium diffusivity properties, and provides a non-empirical and objective way to interpret frequency/time-dependent diffusion changes in tumors in terms of objective biophysical tissue parameters. PMID:26207354

  13. The mapping of marsh vegetation using aircraft multispectral scanner data. [in Louisiana

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1975-01-01

    A test was conducted to determine if salinity regimes in coastal marshland could be mapped and monitored by the identification and classification of marsh vegetative species from aircraft multispectral scanner data. The data was acquired at 6.1 km (20,000 ft.) on October 2, 1974, over a test area in the coastal marshland of southern Louisiana including fresh, intermediate, brackish, and saline zones. The data was classified by vegetational species using a supervised, spectral pattern recognition procedure. Accuracies of training sites ranged from 67% to 96%. Marsh zones based on free soil water salinity were determined from the species classification to demonstrate a practical use for mapping marsh vegetation.

  14. Study of the effects of Shockwaves on Nano fluids

    NASA Astrophysics Data System (ADS)

    Shreekhar; Akhil, Mohan; Ram, Sai; Gopaiah, Venkata; Koundinya, Sandeep; Nagaraja, S. R.

    2018-02-01

    Nanofluids are fluids with nanoparticles dispersed in them. Due to the presence of Nano particles, these fluids exhibit unique properties that can used in various applications such as heat exchangers and in medical fields. However, due to agglomeration, the size of these particle increases, reducing their efficiency. In order to break the agglomeration, we are passing shockwaves in the fluid. Shockwaves theoretically carry energy which can be used to break the agglomerating particles. In this paper, silver nanoparticles were synthesized using silver nitrate. Tri sodium citrate was used as the reducing agent. Shock waves were passed to the fluid containing silver Nano particles. The changes in the Nano fluid was measured by a UV-Vis Spectrophotometer. With each shock passed, the fluid’s absorbance and wavelength peak was measured and compared with Nano fluid without shock.

  15. Methamphetamine-associated psychosis: a new health challenge in Iran

    PubMed Central

    2013-01-01

    The rapidly growing popularity of methamphetamine use in Iran has posed a new health challenge to the Iranian health sector. Methamphetamine-associated psychosis (MAP) has been frequently reported in Iran in recent years. Although methamphetamine use and MAP are considerable health problems in Iran but there is still a need to conduct epidemiological studies on the prevalence of MAP and its health-related problems. The present paper emphasizes that health policy makers should consider the immediate needs of drug users, their families and the community to be informed about the detrimental health effects associated with MAP. Although MAP could be managed by prescribing benzodiazepines and psychiatric medications but the most effective regime for stabilizing patients with MAP still needs to be studied in Iran. Constant collaborations among psychiatric services and outpatient psychotherapeutic services should be established to successfully manage MAP in Iran. Iranian clinicians especially emergency medicine specialists should be informed about the differences between the two forms of transient and recurrent MAP in order to implement appropriate pharmacological therapies to manage MAP. It is hoped that special training courses are designed and implemented by health policy makers to inform clinicians, health providers and especially emergency medicine specialists to effectively deal with MAP. PMID:23577655

  16. 4 years of PM10 pollution in Poland - observations and modelling

    NASA Astrophysics Data System (ADS)

    Durka, Pawel; Struzewska, Joanna; Kaminski, Jacek W.

    2017-04-01

    Poor air quality is a health issue in Poland, especially during winter. In central and northern part of the country, the primary source is low-level domestic emissions. In larger cities and agglomerations traffic emissions are also an issue. Quantification of the contribution of transboundary pollution sources is still an open issue. Analyses of 60 episodes for the period 2013-2016 with high PM10 concentrations were carried out under a contract from the Chief Inspectorate of Environmental Protection in Poland. Analyses of synoptic conditions and calculation of back trajectories were undertaken. A tropospheric chemistry model GEM-AQ was run at 10km resolution to calculate contributions from surface, line and point sources. We will present trajectories for different types of episodes, maps with contributions for specific emission sources and transboundary pollution. Also, mean distribution of PM10 concentrations during episodes will be shown.

  17. Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014

    NASA Astrophysics Data System (ADS)

    Xu, M.; Cao, C. X.; Guo, H. F.

    2017-09-01

    Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.

  18. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  19. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  20. Experimental Evaluation of a Carbon Slurry Droplet Combustion Model

    DTIC Science & Technology

    1981-12-14

    the increased mass and energy transport due to the flow percolating through the open porous structure of the carbon agglomerate. Two separate models...catalysts. Transport-rate enhancement factors were also employed in the carbon-agglomerate reaction analysis to account for the increased mass and energy ...D Effective binary diffusivity Ei Activation energy h Heat transfer coefficient H2 Diatomic hydrogen H20 Water i Enthalpy if Enthalpy of formation

  1. Gas-diffusion microextraction coupled with spectrophotometry for the determination of formaldehyde in cork agglomerates.

    PubMed

    Brandão, Pedro F; Ramos, Rui M; Valente, Inês M; Almeida, Paulo J; Carro, Antonia M; Lorenzo, Rosa A; Rodrigues, José A

    2017-04-01

    In this work, a simple methodology was developed for the extraction and determination of free formaldehyde content in cork agglomerate samples. For the first time, gas-diffusion microextraction was used for the extraction of volatile formaldehyde directly from samples, with simultaneous derivatization with acetylacetone (Hantzsch reaction). The absorbance of the coloured solution was read in a spectrophotometer at 412 nm. Different extraction parameters were studied and optimized (extraction temperature, sample mass, volume of acceptor solution, extraction time and concentration of derivatization reagent) by means of an asymmetric screening. The developed methodology proved to be a reliable tool for the determination of formaldehyde in cork agglomerates with the following suitable method features: low LOD (0.14 mg kg -1 ) and LOQ (0.47 mg kg -1 ), r 2  = 0.9994, and intraday and interday precision of 3.5 and 4.9%, respectively. The developed methodology was applied to the determination of formaldehyde in different cork agglomerate samples, and contents between 1.9 and 9.4 mg kg -1 were found. Furthermore, formaldehyde was also determined by the standard method EN 717-3 for comparison purposes; no significant differences between the results of both methods were observed. Graphical abstract Representation of the GDME system and its main components.

  2. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

    PubMed

    Froelich, Daniel R; Mullendore, Daniel L; Jensen, Kåre H; Ross-Elliott, Tim J; Anstead, James A; Thompson, Gary A; Pélissier, Hélène C; Knoblauch, Michael

    2011-12-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

  3. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    NASA Technical Reports Server (NTRS)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  4. Kinetics of Polymer-Fullerene Phase Separation during Solvent Annealing Studied by Table-Top X-ray Scattering.

    PubMed

    Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva

    2017-03-08

    Solvent annealing is an efficient way of phase separation in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of phase separation is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. Phase separation is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for phase separation at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.

  5. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  6. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan

    2012-11-01

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.

  7. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes.

    PubMed

    Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan

    2012-11-09

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.

  8. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes

    PubMed Central

    2012-01-01

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide. PMID:23140103

  9. Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Manoylov, Anton; Lebon, Bruno; Djambazov, Georgi; Pericleous, Koulis

    2017-11-01

    The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters' breakup by cavitation.

  10. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation[W

    PubMed Central

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre H.; Ross-Elliott, Tim J.; Anstead, James A.; Thompson, Gary A.; Pélissier, Hélène C.; Knoblauch, Michael

    2011-01-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)–yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed. PMID:22198148

  11. Improving alpine-region spectral unmixing with optimal-fit snow endmembers

    NASA Technical Reports Server (NTRS)

    Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff

    1995-01-01

    Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.

  12. Mapping aspen in the Interior West

    Treesearch

    Charles E. Werstak

    2012-01-01

    Quaking aspen (Populus tremuloides Michx.) is a critical species that supports wildlife and livestock, watershed function, the forest products industry, landscape diversity, and recreation opportunities in the Interior West (Bartos and Campbell 1998). Studies have indicated that changes in fire regimes, an increase in herbivore presence in young aspen stands, and...

  13. Martian deltas: Morphology and distribution

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Scott, D. H.

    1993-01-01

    Recent detailed mapping has revealed numerous examples of Martian deltas. The location and morphology of these deltas are described. Factors that contribute to delta morphology are river regime, coastal processes, structural stability, and climate. The largest delta systems on Mars are located near the mouths of Maja, Maumee, Vedra, Ma'adim, Kasei, and Brazos Valles. There are also several smaller-scale deltas emplaced near channel mouths situated in Ismenius Lacus, Memnonia, and Arabia. Delta morphology was used to reconstruct type, quantity, and sediment load size transported by the debouching channel systems. Methods initially developed for terrestrial systems were used to gain information on the relationships between Martian delta morphology, river regime, and coastal processes.

  14. Power- or frequency-driven hysteresis for continuous-wave optically injected distributed-feedback semiconductor lasers.

    PubMed

    Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud

    2009-05-25

    Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.

  15. Dynamical regimes due to technological change in a microeconomical model of production

    NASA Astrophysics Data System (ADS)

    Hamacher, K.

    2012-09-01

    We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers—modeling an effective feedback mechanism of the market. An important property—the time horizon of production planning—is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function—thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.

  16. Dynamical regimes due to technological change in a microeconomical model of production.

    PubMed

    Hamacher, K

    2012-09-01

    We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers-modeling an effective feedback mechanism of the market. An important property-the time horizon of production planning-is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function-thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.

  17. Steric stabilization of nonaqueous silicon slips. I - Control of particle agglomeration and packing. II - Pressure casting of powder compacts

    NASA Technical Reports Server (NTRS)

    Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.

    1990-01-01

    The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.

  18. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  19. On the Morphology of a Growing City: A Heuristic Experiment Merging Static Economics with Dynamic Geography.

    PubMed

    Delloye, Justin; Peeters, Dominique; Thomas, Isabelle

    2015-01-01

    In this paper, we aim at exploring how individual location decisions affect the shape of a growing city and, more precisely, how they may add up to a configuration that diverges from equilibrium configurations formulated ex-ante. To do so, we provide a two-sector city model merging a static equilibrium analysis with agent-based simulations. Results show that under strong agglomeration effects, urban development is monotonic and ends up with circular, monocentric long-term configurations. For low agglomeration effects however, elongated and multicentric urban configurations may emerge. The occurrence and underlying dynamics of these configurations are also discussed regarding commuting costs and the distance-decay of agglomeration economies between firms. To sum up, our paper warns urban planning policy makers against the difference that may stand between appropriate long-term perspectives, represented here by analytic equilibrium configurations, and short-term urban configurations, simulated here by a multi-agent system.

  20. How much drinking water can be saved by using rainwater harvesting on a large urban area? application to Paris agglomeration.

    PubMed

    Belmeziti, Ali; Coutard, Olivier; de Gouvello, Bernard

    2014-01-01

    This paper is based on a prospective scenario of development of rainwater harvesting (RWH) on a given large urban area (such as metropolitan area or region). In such a perspective, a new method is proposed to quantify the related potential of potable water savings (PPWS) indicator on this type of area by adapting the reference model usually used on the building level. The method is based on four setting-up principles: gathering (definition of buildings-types and municipalities-types), progressing (use of an intermediate level), increasing (choice of an upper estimation) and prioritizing (ranking the stakes of RWH). Its application to the Paris agglomeration shows that is possible to save up to 11% of the total current potable water through the use of RWH. It also shows that the residential sector offers the most important part because it holds two-thirds of the agglomeration PPWS.

  1. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Zamani, M. H.

    2018-06-01

    The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.

  2. Method and system for producing metallic iron nuggets

    DOEpatents

    Iwasaki, Iwao; Kiesel, Richard F.; Englund, David J; Hendrickson, Dave

    2012-12-18

    A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  3. Production of iron from metallurgical waste

    DOEpatents

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  4. Dust recycling technology in Kimitsu Works

    NASA Astrophysics Data System (ADS)

    Oda, Hiroshi; Ibaraki, Tetsuharu

    Dust recycling technology by the rotary hearth furnace has been applied at Nippon Steel‧s Kimitsu Works since 2000. The dust and sludge with iron oxide and carbon are agglomerated into shaped articles and the iron oxide is reduced in a high temperature atmosphere. Zinc and other impurities in the dust and sludge are expelled and exhausted into off gas. The DRI pellets made from the dust and sludge have 70% metallization and are strong enough for being recycled to the blast furnaces. No.1 plant, which was constructed in May 2000 and has an agglomeration method of pelletizing, recycles mainly dry dusts. No.2 plant, which was constructed in December 2002 and has an agglomeration method of extrusion, recycles mainly sludge. The combination of the two plants is a solution for recycling various kinds of dusts and sludge emitted in a large scale steel works as Kimitsu Works

  5. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  6. Size control of Au NPs supported by pH operation

    NASA Astrophysics Data System (ADS)

    Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi

    2017-07-01

    Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.

  7. Asphaltene dispersants as demulsification aids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manek, M.B.

    1995-11-01

    Destabilization of petroleum asphaltenes may cause a multitude of problems in crude oil recovery and production. One major problem is their agglomeration at the water-oil interface of crude oil emulsions. Once agglomeration occurs, destabilized asphaltenes can form a thick pad in the dehydration equipment, which significantly reduces the demulsification rate. Certain polymeric dispersants increase asphaltene solubilization in hydrocarbon media, and when used in conjunction with emulsion breakers, facilitate the demulsification process. Two case studies are presented that demonstrate how asphaltene dispersants can efficiently inhibit pad formation and help reduce demulsifier dosage. Criteria for dispersant application and selection are discussed, whichmore » include the application of a novel laboratory technique to assess asphaltene stabilization in the crude oil. The technique monitors asphaltene agglomeration while undergoing titration with an incompatible solvent (precipitant). The method was used to evaluate stabilization of asphaltenes in the crude oil and to screen asphaltene dispersants.« less

  8. Research on the Spatial-Temporal Distribution Pattern of the Network Attention of Fog and Haze in China

    NASA Astrophysics Data System (ADS)

    Weng, Lingyan; Han, Xugao

    2018-01-01

    Understanding the spatial-temporal distribution pattern of fog and haze is the base to deal with them by adjusting measures to local conditions. Taking 31 provinces in China mainland as the research areas, this paper collected data from Baidu index on the network attention of fog and haze in relevant areas from 2011 to 2016, and conducted an analysis of their spatial-temporal distribution pattern by using autocorrelation analysis. The results show that the network attention of fog and haze has an overall spatial distribution pattern of “higher in the eastern and central, lower in the western China”. There are regional differences in different provinces in terms of network attention. Network attention of fog and haze indicates an obvious geographical agglomeration phenomenon, which is a gradual enlargement of the agglomeration area of higher value with a slight shrinking of those lower value agglomeration areas.

  9. Variation of Temperature and Precipitation in Urban Agglomeration and Prevention Suggestion of Waterlogging in Middle and Lower Reaches of Yangtze River

    NASA Astrophysics Data System (ADS)

    Na, Liu; Youjie, Jin; Jiaqi, Dai

    2018-03-01

    The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.

  10. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  11. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less

  12. Gravitons as Embroidery on the Weave

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Rovelli, Carlo

    We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.

  13. Petroleum hydrogeology of the Great Hungarian Plain, Eastern Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Almasi, Istvan

    The results of a regional scale hydrogeological investigation conducted in the Great Hungarian Plain, Eastern Pannonian Basin, for the purposes of petroleum exploration are presented. Two regional aquitards and three regional aquifers were determined in the poorly-to-well consolidated clastic basin fill of the Neogene-Quaternary age and the indurated basement of the Pre-Neogene age. The fluid-potential field was mapped using measured values of stabilised water level and pore-pressure. Two regional fluid flow regimes were recognised: an upper gravity-driven flow regime, and a lower overpressured regime, where super-hydrostatic pore pressures of 1--35 MPa are encountered. The transition between the two flow regimes does not correlate with any particular hydrostratigraphic boundary or elevation range. Apparently, its position and nature are controlled by the morphology of the rigid basement, and locally by the permeability contrasts within the overlying hydrostratigraphic units. Local hydrostratigraphic breaches and conduit faults facilitate hydraulic communication across the regional aquitards. The basin is hydraulically continuous. The mapped groundwater flow directions do not match the predictions of compactional flow models. At two gas-fields, up to 10 MPa overpressures are probably caused by buoyancy forces. Transient overpressures can not be maintained over geologic time in the basin, due to the rock's low hydraulic resistance. Regional tectonic compressive stress, probably with a Recent increase in intensity, offers a new and plausible explanation for the distribution pattern of overpressures in the Great Hungarian Plain. Gravity-driven groundwater flow plays a determinant role in petroleum migration and entrapment. Compactional flow models can explain the present-day position of several known petroleum accumulations within the overpressured regime. However, most accumulations are also associated with particular fluid-potential anomaly-patterns of the actual flow field, which also suggest the possibility of petroleum remigration toward the graben centres and upward. The geothermal characteristics show that pure conduction is the dominant regional heat transfer mechanism within the entire basin. The encountered advective thermal anomalies correlate well with fluid potential anomalies observed in both fluid flow regimes, as well as with certain petroleum accumulations. Toth's (1980) hydraulic theory of petroleum migration was found applicable in a deforming Neogene sedimentary basin, the Great Hungarian Plain.* *This dissertation includes a CD that is compound (contains both a paper copy and a CD as part of the dissertation). The CD requires the following applications: Adobe Acrobat, Microsoft Office.

  14. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    NASA Astrophysics Data System (ADS)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a steady value. The model enables formulation of the quantitative relationship between the macroscopic flow features of liquid metal and the change of size of dispersed oxide clusters, during HSP. It predicted the variation in size of the dispersed phased with operational parameters (including the geometry and, particularly, the speed of the rotor), which is of direct use to experimentalists optimising the design of the HSP device and its implementation.

  15. USE OF LIDAR TO MAP STREAM MORPHOLOGY AND MONITOR CHANGES DUE TO URBANIZATION OF A SMALL SUBURBAN WATERSHED

    EPA Science Inventory

    Urbanization has been associated with changes in stream flow regime, morphology, and water
    quality of rural watersheds being developed. Most studies of the effect of urbanization on stream morphology have been done post hoc -after development has occurred -and involve the ext...

  16. Pilot Tests of Satellite Snowcover/Runoff Forecasting Systems. [Arizona, Sierra Nevada Mountains (Ca), Colorado, Rocky Mountains (North America)

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1978-01-01

    Major snow zones of the western U.S. were selected to test the capability of satellite systems for mapping snowcover in various snow, cloud, climatic, and vegetation regimes. Different satellite snowcover analysis methods used in each area are described along with results.

  17. Planning in the Face of Uncertainty: Habitat Mapping that Supports Social-Ecological Networks and Resilient Estuaries

    EPA Science Inventory

    Estuaries are located at the nexus of fresh and salt water, making them inherently dynamic. However, many land uses have reduced the natural capacity of estuaries and their floodplains to absorb changes in sea-level, precipitation regimes, and storminess. Land use planning that r...

  18. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  19. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  20. Effective time-independent analysis for quantum kicked systems.

    PubMed

    Bandyopadhyay, Jayendra N; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  1. Effective time-independent analysis for quantum kicked systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  2. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  3. Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent

    NASA Astrophysics Data System (ADS)

    Gärtner, R. S.; Witkamp, G. J.

    2002-04-01

    Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.

  4. The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water (Paris, France).

    PubMed

    da Rocha, Alice; Sivry, Yann; Gelabert, Alexandre; Beji, Zyed; Benedetti, Marc F; Menguy, Nicolas; Brayner, Roberta

    2015-05-01

    This study aims to characterize nanoparticles with different compositions and structures as well as seeing their evolutions over time in a natural environment such as Seine river water (Paris, France). Face centered cubic (fcc) and hexagonal (hcp) CdS as well as hexagonal (hcp) ZnO nanoparticles were synthesized by the Polyol method. CdS nanoparticles (i) cfc structure: are agglomerated, present 100 nm length with heterogeneous diameter and 10 m2 g(-1) specific surface area (S(g)) from Brunauer Emett and Teller (BET) measurements; (ii) hcp structure: 20 nm and S(g) = 67 m2 g(-1). ZnO hcp nanoparticles presents 50 nm length and 15 nm diameter and S(g) = 54 m2 g(-1). These results are in agreement with X-ray diffraction (XRD), and small angle X-ray scattering (SAXs). After 48 h interaction with Seine river water, cryo-TEM analysis showed that ZnO nanoparticles form spherical agglomerates with 300 nm diameter; CdS nanoparticles (fcc) are agglomerated presenting large diameters (> 500 nm); and CdS nanoparticles (hcp) are not agglomerated and present the same characteristics of the starting material. After 168h of contact with Seine river water, CdS (fcc) presents only 14% of dissolution, CdS (hcp) presents both 60% dissolution and 30% reprecipitation in a cadmium carbonate form and finally almost 90% of ZnO nanoparticles are dissolved.

  5. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    PubMed

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    PubMed

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  7. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

    PubMed Central

    2016-01-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  8. Programmed temperature gasification study. Final report, October 1, 1979-November 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spoon, M.J.; Gardner, M.P.; Starkovich, J.A.

    An experimental, modeling and conceptual engineering analysis study has been performed to assess the feasibility of TRW's Programmed Temperature Gasification (PTG) concept for carbonizing caking coals without severe agglomeration. The concept involves control of carbonizing heating rate to maintain metaplast concentration at a level equal to or slightly below that which causes agglomeration. The experimental studies required the contruction of a novel programmed temperature, elevated pressure, hot stage video microscope for observation of coal particle changes during heating. This system was used to develop a minimum-time heating schedule capable of carbonizing the coal at elevated pressures in the presence ofmore » hydrogen without severe agglomeration. Isothermal fixed heating rate data for a series of coals were subsequently used to calibrate and verify the mathematical model for the PTG process. These results showed good correlation between experimental data and mathematical predictions. Commercial application of the PTG concept to batch, moving bed and fluid bed processing schemes was then evaluated. Based on the calibrated model programmed temperature gasification of the coal without severe agglomeration could be carried out on a commercial batch reaction in 4 to 12 minutes. The next step in development of the PTG concept for commercial application would require testing on a bench scale (3-inch diameter) gasifier coupled with a full commercial assessment to determine size and cost of various gasification units.« less

  9. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    NASA Astrophysics Data System (ADS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  10. Factors Ruling the Uptake of Silica Nanoparticles by Mesenchymal Stem Cells: Agglomeration Versus Dispersions, Absence Versus Presence of Serum Proteins.

    PubMed

    Catalano, Federico; Accomasso, Lisa; Alberto, Gabriele; Gallina, Clara; Raimondo, Stefania; Geuna, Stefano; Giachino, Claudia; Martra, Gianmario

    2015-06-24

    The results of a systematic investigation of the role of serum proteins on the interaction of silica nanoparticles (NP) doped in their bulk with fluorescent molecules (IRIS Dots, 50 nm in size), with human mesenchymal stem cells (hMSCs) are reported. The suspension of IRIS Dots in bare Dulbecco-modified Eagle's medium results in the formation of large agglomerates (≈1.5 μm, by dynamic light scattering), which become progressively smaller, down to ≈300 nm in size, by progressively increasing the fetal bovine serum (FBS) content of the solutions along the series 1.0%, 2.5%, 6.0%, and 10.0% v/v. Such difference in NP dispersion is maintained in the external cellular microenvironment, as observed by confocal microscopy and transmission electron microscopy. As a consequence of the limited diffusion of proteins in the inter-NP spaces, the surface of NP agglomerates is coated by a protein corona independently of the agglomerate size/FBS concentration conditions (ζ-potential and UV circular dichroism measurements). The protein corona appears not to be particularly relevant for the uptake of IRIS Dots by hMSCs, whereas the main role in determining the internalization rate is played by the absence/presence of serum proteins in the extracellular media. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture

    PubMed Central

    Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.

    2018-01-01

    To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829

  12. Construction of adhesion maps for contacts between a sphere and a half-space: Considering size effects of the sphere.

    PubMed

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Yang, Weixu

    2015-11-15

    Previous adhesion maps, such as the JG (Johnson-Greenwood) and YCG (Yao-Ciavarella-Gao) maps, are used to guide the selection of Bradley, DMT, M-D, JKR and Hertz models. However, when the size of the contact sphere decreases to the small scale, the applicability of JG and YCG maps is limited because the assumptions regarding the contact region profile, interaction between contact bodies and sphere shape in the classical models constituting these two maps are no longer valid. To avoid this limitation, in this paper, a new numerical model considering size effects of the sphere is established first and then introduced into the new adhesion maps together with the YGG (Yao-Guduru-Gao) model and Hertz model. Regimes of these models in the new map under a certain sphere radius are demarcated by the criteria related to the relative force differences and the ratio of contact radius to sphere radius. In addition, the approaches at pull-off, jump-in and jump-out for different Tabor parameters and sphere radii are provided in the new maps. Finally, to make the new maps more feasible, the numerical results of approaches, force and contact radius involved in the maps are formularized by using the piecewise fitting. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

    PubMed Central

    Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge

    2013-01-01

    Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271

  14. Examining the NZESM Cloud representation with Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Schuddeboom, Alex; McDonald, Adrian; Parsons, Simon; Morgenstern, Olaf; Harvey, Mike

    2017-04-01

    Several different cloud regimes are identified from MODIS satellite data and the representation of these regimes within the New Zealand Earth System Model (NZESM) is examined. For the development of our cloud classification we utilize a neural network algorithm known as self organizing maps (SOMs) on MODIS cloud top pressure - cloud optical thickness joint histograms. To evaluate the representation of the cloud within NZESM, the frequency and geographical distribution of the regimes is compared between the NZESM and satellite data. This approach has the advantage of not only identifying differences, but also potentially giving additional information about the discrepancy such as in which regions or phases of cloud the differences are most prominent. To allow for a more direct comparison between datasets, the COSP satellite simulation software is applied to NZESM output. COSP works by simulating the observational processes linked to a satellite, within the GCM, so that data can be generated in a way that shares the particular observational bias of specific satellites. By taking the COSP joint histograms and comparing them to our existing classifications we can easily search for discrepancies between the observational data and the simulations without having to be cautious of biases introduced by the satellite. Preliminary results, based on data for 2008, show a significant decrease in overall cloud fraction in the NZESM compared to the MODIS satellite data. To better understand the nature of this discrepancy, the cloud fraction related to different cloud heights and phases were also analysed.

  15. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface using the Clausius-Clapeyron equation. The model was developed on a mass basis instead of a molar basis to be consistent with general conservation equations. It was found that vapor diffusion is not only driven by a gradient of the molar fraction but also a gradient of the mixture molecular weight at the diffusion layer.

  16. Wave-function description of conductance mapping for a quantum Hall electron interferometer

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Szafran, B.

    2014-04-01

    Scanning gate microscopy of quantum point contacts (QPC) in the integer quantum Hall regime is considered in terms of the scattering wave functions with a finite-difference implementation of the quantum transmitting boundary approach. Conductance (G) maps for a clean QPC as well as for a system including an antidot within the QPC constriction are evaluated. The steplike locally flat G maps for clean QPCs turn into circular resonances that are reentrant in an external magnetic field when the antidot is introduced to the constriction. The current circulation around the antidot and the spacing of the resonances at the magnetic field scale react to the probe approaching the QPC. The calculated G maps with a rigid but soft antidot potential reproduce the features detected recently in the electron interferometer [F. Martins et al., Sci. Rep. 3, 1416 (2013), 10.1038/srep01416].

  17. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    NASA Astrophysics Data System (ADS)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  18. Exploring the dusty star-formation in the early Universe using intensity mapping

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    2018-05-01

    In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.

  19. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Ninell P.; Hurst, Gregory B.; Wang, Wei; Foster, Carmen M.; Nallathamby, Prakash D.; Retterer, Scott T.

    2013-06-01

    The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33280b

  20. California State Waters Map Series: offshore of San Francisco, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    Circulation over the continental shelf in the Offshore of San Francisco map area is dominated by the southward-flowing California Current, an eastern limb of the North Pacific Gyre that flows from Oregon to Baja California. At its midpoint offshore of central California, the California Current transports subarctic surface waters southeastward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. Ocean temperatures offshore of central California have increased over the past 50 years, driving an ecosystem shift from the productive subarctic regime towards a depopulated subtropical environment.

  1. Geometrical optics and optimal transport.

    PubMed

    Rubinstein, Jacob; Wolansky, Gershon

    2017-10-01

    The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.

  2. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions.

    PubMed

    Cupi, Denisa; Hartmann, Nanna B; Baun, Anders

    2016-05-01

    In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acoustic agglomeration of fine particles based on a high intensity acoustical resonator

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Zeng, Xinwu; Tian, Zhangfu

    2015-10-01

    Acoustic agglomeration (AA) is considered to be a promising method for reducing the air pollution caused by fine aerosol particles. Removal efficiency and energy consuming are primary parameters and generally have a conflict with each other for the industry applications. It was proved that removal efficiency is increased with sound intensity and optimal frequency is presented for certain polydisperse aerosol. As a result, a high efficiency and low energy cost removal system was constructed using acoustical resonance. High intensity standing wave is generated by a tube system with abrupt section driven by four loudspeakers. Numerical model of the tube system was built base on the finite element method, and the resonance condition and SPL increase were confirmd. Extensive tests were carried out to investigate the acoustic field in the agglomeration chamber. Removal efficiency of fine particles was tested by the comparison of filter paper mass and particle size distribution at different operating conditions including sound pressure level (SPL), and frequency. The experimental study has demonstrated that agglomeration increases with sound pressure level. Sound pressure level in the agglomeration chamber is between 145 dB and 165 dB from 500 Hz to 2 kHz. The resonance frequency can be predicted with the quarter tube theory. Sound pressure level gain of more than 10 dB is gained at resonance frequency. With the help of high intensity sound waves, fine particles are reduced greatly, and the AA effect is enhanced at high SPL condition. The optimal frequency is 1.1kHz for aerosol generated by coal ash. In the resonace tube, higher resonance frequencies are not the integral multiplies of the first one. As a result, Strong nonlinearity is avoided by the dissonant characteristic and shock wave is not found in the testing results. The mechanism and testing system can be used effectively in industrial processes in the future.

  4. The AIROPA software package: milestones for testing general relativity in the strong gravity regime with AO

    NASA Astrophysics Data System (ADS)

    Witzel, Gunther; Lu, Jessica R.; Ghez, Andrea M.; Martinez, Gregory D.; Fitzgerald, Michael P.; Britton, Matthew; Sitarski, Breann N.; Do, Tuan; Campbell, Randall D.; Service, Maxwell; Matthews, Keith; Morris, Mark R.; Becklin, E. E.; Wizinowich, Peter L.; Ragland, Sam; Doppmann, Greg; Neyman, Chris; Lyke, James; Kassis, Marc; Rizzi, Luca; Lilley, Scott; Rampy, Rachel

    2016-07-01

    General relativity can be tested in the strong gravity regime by monitoring stars orbiting the supermassive black hole at the Galactic Center with adaptive optics. However, the limiting source of uncertainty is the spatial PSF variability due to atmospheric anisoplanatism and instrumental aberrations. The Galactic Center Group at UCLA has completed a project developing algorithms to predict PSF variability for Keck AO images. We have created a new software package (AIROPA), based on modified versions of StarFinder and Arroyo, that takes atmospheric turbulence profiles, instrumental aberration maps, and images as inputs and delivers improved photometry and astrometry on crowded fields. This software package will be made publicly available soon.

  5. Multifunctional Carbon Nanotube-Based Sensors for Damage Detection and Self Healing in Structural Composites

    DTIC Science & Technology

    2010-10-29

    established based on the concept of equipotential surface . The effect of nanotube length on the critical charge level is plotted in Fig. 17. Fig...walled carbon nanotubes was used to develop composites with agglomerated regions of nanotubes at the fiber surface [3]. An image of the nanotube...coating on the surface of two E-glass fibers is shown in Fig. 5. Fig. 5. (a) Carbon nanotube agglomerates on the surface of glass fibers in the

  6. Coal recovery process

    DOEpatents

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  7. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  8. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  9. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller (10 nm). This set of data indicates that SW plasmas represent a promising parametric tool not only to achieve nanopowders with tailored properties for applications, but also for fundamental studies of nanodusty plasmas at atmospheric-pressure.

  10. Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps.

    PubMed

    Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang

    2011-06-28

    The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.

  11. [An object-oriented remote sensing image segmentation approach based on edge detection].

    PubMed

    Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi

    2010-06-01

    Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.

  12. GIS and the Analytic Hierarchy Process for Regional Landfill Site Selection in Transitional Countries: A Case Study From Serbia

    NASA Astrophysics Data System (ADS)

    Zelenović Vasiljević, Tamara; Srdjević, Zorica; Bajčetić, Ratko; Vojinović Miloradov, Mirjana

    2012-02-01

    The Serbian National Waste Management Strategy for the Period 2010-2019, harmonized with the European Union Directives, mandates new and very strict requirements for landfill sites. To enable analysis of a number of required qualitative and quantitative factors for landfill site selection, the traditional method of site selection must be replaced with a new approach. The combination of GIS and the Analytic Hierarchy Process (AHP) was selected to solve this complex problem. The Srem region in northern Serbia, being one of the most environmentally sensitive areas, was chosen as a case study. Seventeen factors selected as criteria/sub-criteria were recognized as most important, divided into geo-natural, environmental, social and techno-economic factors, and were evaluated by experts from different fields using an AHP extension in Arc GIS. Weighted spatial layers were combined into a landfill suitability map which was then overlapped with four restriction maps, resulting in a final suitability map. According to the results, 82.65% of the territory of Srem is unsuitable for regional landfill siting. The most suitable areas cover 9.14%, suitable areas 5.24%, while areas with low and very low suitability cover 2.21 and 0.76% of the territory, respectively. Based on these findings, five sites close to two large urban agglomerations were suggested as possible locations for a regional landfill site in Srem. However, the final decision will require further field investigation, a public acceptance survey, and consideration of ownership status and price of the land.

  13. Mapping Russia: Geographic and Cultural Diversity.

    ERIC Educational Resources Information Center

    Khachikian, Arthur

    For people living in the 20th century, Russia has been associated with images of communism, the Bolshevik Revolution, totalitarian regimes and leaders, and the fears and stereotypes of the Cold War era. The dissolution of the Soviet Union, the end of the Cold War, and the liberal revolutions of the 1980s-1990s have provided an opportunity to…

  14. A global index for mapping the exposure of water resources to wildfire

    Treesearch

    Francois-Nicolas Robinne; Carol Miller; Marc-Andre Parisien; Monica B. Emelko; Kevin D. Bladon; Uldis Silins; Mike Flannigan

    2016-01-01

    Wildfires are keystone components of natural disturbance regimes that maintain ecosystem structure and functions, such as the hydrological cycle, in many parts of the world. Consequently, critical surface freshwater resources can be exposed to post-fire effects disrupting their quantity, quality and regularity. Although well studied at the local scale, the potential...

  15. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  16. Oriented nanofibers embedded in a polymer matrix

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  17. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  18. Industry in motion: using smart phones to explore the spatial network of the garment industry in New York City.

    PubMed

    Williams, Sarah; Currid-Halkett, Elizabeth

    2014-01-01

    Industrial agglomerations have long been thought to offer economic and social benefits to firms and people that are only captured by location within their specified geographies. Using the case study of New York City's garment industry along with data acquired from cell phones and social media, this study set out to understand the discrete activities underpinning the economic dynamics of an industrial agglomeration. Over a two week period, data was collected by employing the geolocative capabilities of Foursquare, a social media application, to record every movement of fashion workers employed at fashion design firms located both inside and outside the geographical boundaries of New York City's Garment District. This unique method of studying worker activity exposed the day-to-day dynamics of an industrial district with a precision thus far undocumented in literature. Our work suggests that having access to the cluster provides almost the same agglomeration economies as residing within its borders.

  19. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 1: Modeling with Method of Characteristics.

    PubMed

    Porru, Marcella; Özkan, Leyla

    2017-05-24

    This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators.

  20. Consolidation of Partially Stabilized ZrO2 in the Presence of a Noncontacting Electric Field

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; van Benthem, Klaus

    2015-05-01

    Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C , an electric field strength of 500 V /cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.

  1. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  2. A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Z. M.; Wang, B.

    2018-06-01

    Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.

  3. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  4. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 1: Modeling with Method of Characteristics

    PubMed Central

    2017-01-01

    This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators. PMID:28603342

  5. Industry in Motion: Using Smart Phones to Explore the Spatial Network of the Garment Industry in New York City

    PubMed Central

    Williams, Sarah; Currid-Halkett, Elizabeth

    2014-01-01

    Industrial agglomerations have long been thought to offer economic and social benefits to firms and people that are only captured by location within their specified geographies. Using the case study of New York City’s garment industry along with data acquired from cell phones and social media, this study set out to understand the discrete activities underpinning the economic dynamics of an industrial agglomeration. Over a two week period, data was collected by employing the geo-locative capabilities of Foursquare, a social media application, to record every movement of fashion workers employed at fashion design firms located both inside and outside the geographical boundaries of New York City’s Garment District. This unique method of studying worker activity exposed the day-to-day dynamics of an industrial district with a precision thus far undocumented in literature. Our work suggests that having access to the cluster provides almost the same agglomeration economies as residing within its borders. PMID:24505256

  6. Weakly-agglomerated nanocrystalline (ZrO 2) 0.9(Yb 2O 3) 0.1 powders hydrothermally synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Gianfranco; Mascolo, Giuseppe; Mascolo, Maria Cristina; Pagliuca, Concetta

    2006-09-01

    Nanocrystalline ytterbia (10 mol%)-doped cubic zirconia powders were synthesized by hydrothermal treatment of either an amorphous co-precipitate of hydrated ytterbia-zirconia or of zirconia xerogel in mixture with crystalline Yb 2O 3. The treatments were performed at 110 °C in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3 + KOH) mineralizer and for different reaction times. The reaction times for the full crystallization of cubic-YbSZ-based products were determined for both the employed precursors and for each mineralizer solution. The various fully crystallized products were characterized in their degree of agglomeration and sintered at 1500 °C for 2 h. The best performance on sintering was achieved with the less agglomerated powder synthesized from the mechanical mixture and in the presence of the diluted solution of the mineralizer. The resulting density was the highest achieved with materials having the same composition.

  7. Flue Dust Agglomeration in the Secondary Lead Industry

    NASA Astrophysics Data System (ADS)

    Schwitzgebel, Klaus

    1981-01-01

    A secondary lead smelter produces several tons of bag-house dust a day. Appropriate handling of this dust is mandatory to meet the proposed OSHA and EPA workroom and ambient standards. Dust agglomeration proved a successful approach. Dusts with a high concentration of PbCl2, or compounds containing PbCl2 can be agglomerated at much lower temperatures than samples with low PbCl2 concentrations. The chlorine sources are polyvinyl chloride (PVC) battery plate separators. Since PVC is used in Europe to a much greater extent than in the U.S., the composition of feedstock must be considered in equipment selection at U.S. secondary smelters. The vapor pressure characteristics of PbCl2 favor its evaporation at blast furnace temperatures. Condensation occurs in the gas cooling system. Recycling of baghouse dust leads to a buildup of PbCl2 in the smelter. Its removal from the system is eventually necessary through leaching, if charges with a high PVC content are processed.

  8. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    PubMed

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  9. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    NASA Astrophysics Data System (ADS)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  10. On the Morphology of a Growing City: A Heuristic Experiment Merging Static Economics with Dynamic Geography

    PubMed Central

    Delloye, Justin; Peeters, Dominique; Thomas, Isabelle

    2015-01-01

    In this paper, we aim at exploring how individual location decisions affect the shape of a growing city and, more precisely, how they may add up to a configuration that diverges from equilibrium configurations formulated ex-ante. To do so, we provide a two-sector city model merging a static equilibrium analysis with agent-based simulations. Results show that under strong agglomeration effects, urban development is monotonic and ends up with circular, monocentric long-term configurations. For low agglomeration effects however, elongated and multicentric urban configurations may emerge. The occurrence and underlying dynamics of these configurations are also discussed regarding commuting costs and the distance-decay of agglomeration economies between firms. To sum up, our paper warns urban planning policy makers against the difference that may stand between appropriate long-term perspectives, represented here by analytic equilibrium configurations, and short-term urban configurations, simulated here by a multi-agent system. PMID:26308858

  11. Bimodality and regime behavior in atmosphere-ocean interactions during the recent climate change

    NASA Astrophysics Data System (ADS)

    Fallah, Bijan; Sodoudi, Sahar

    2015-06-01

    Maximum covariance analysis (MCA) and isometric feature mapping (Isomap) are applied to investigate the spatio-temporal atmosphere-ocean interactions otherwise hidden in observational data for the period of 1979-2010. Despite an established long-term surface warming trend for the whole northern hemisphere, sea surface temperatures (SST) in the East Pacific have remained relatively constant for the period of 2001-2010. Our analysis reveals that SST anomaly probability density function of the leading two Isomap components is bimodal. We conclude that Isomap shows the existence of two distinct regimes in surface ocean temperature, resembling the break and active phases of rainfall over equatorial land areas. These regimes occurred within two separated time windows during the past three decades. Strengthening of trade winds over Pacific was coincident with the cold phase of east equatorial Pacific. This pattern was reversed during the warm phase of east equatorial Pacific. The El Niño event of 1997/1998 happened within the transition mode between these two regimes and may be a trigger for the SST changes in the Pacific. Furthermore, we suggest that Isomap, compared with MCA, provides more information about the behavior and predictability of the inter-seasonal atmosphere-ocean interactions.

  12. Mass and Moment of Inertia Govern the Transition in the Dynamics and Wakes of Freely Rising and Falling Cylinders

    NASA Astrophysics Data System (ADS)

    Mathai, Varghese; Zhu, Xiaojue; Sun, Chao; Lohse, Detlef

    2017-08-01

    In this Letter, we study the motion and wake patterns of freely rising and falling cylinders in quiescent fluid. We show that the amplitude of oscillation and the overall system dynamics are intricately linked to two parameters: the particle's mass density relative to the fluid m*≡ρp/ρf and its relative moment of inertia I*≡Ip/If. This supersedes the current understanding that a critical mass density (m*≈0.54 ) alone triggers the sudden onset of vigorous vibrations. Using over 144 combinations of m* and I*, we comprehensively map out the parameter space covering very heavy (m*>10 ) to very buoyant (m*<0.1 ) particles. The entire data collapse into two scaling regimes demarcated by a transitional Strouhal number Stt≈0.17 . Stt separates a mass-dominated regime from a regime dominated by the particle's moment of inertia. A shift from one regime to the other also marks a gradual transition in the wake-shedding pattern: from the classical two-single (2 S ) vortex mode to a two-pair (2 P ) vortex mode. Thus, autorotation can have a significant influence on the trajectories and wakes of freely rising isotropic bodies.

  13. Effect of particle moment of inertia on the dynamics and wakes of freely rising cylinders

    NASA Astrophysics Data System (ADS)

    Mathai, Varghese; Zhu, Xiaojue; Sun, Chao; Lohse, Detlef

    2017-11-01

    We perform a numerical study on the two-dimensional motions and wakes of freely rising and falling circular cylinders in quiescent fluid. We show that the amplitude of oscillation and the overall system-dynamics are intricately linked to two parameters: the particle's mass-density relative to the fluid m* ≡ρp /ρf , and its relative moment-of-inertia I* ≡Ip /If . Using over 144 combinations of m* and I*, we comprehensively map out the parameter space covering very heavy (m* > 10) to very buoyant (m* < 0.1) particles at fixed Galileo number (Ga = 500). The entire data collapses into two scaling regimes demarcated by a transitional Strouhal number, Stt 0.17 . Stt separates a mass-dominated regime from a regime dominated by the particle's moment of inertia. A shift from one regime to the other also marks a gradual transition in the wake-shedding pattern: from the classical 2 S (2-Single) vortex mode to a 2 P (2-Pairs) mode of wake vortices. Thus, autorotation, triggered by moment of inertia reduction, can significantly enhance the translational oscillations of freely rising isotropic bodies.

  14. Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Schmidt, Thomas L.; Esposito, Massimiliano

    2018-05-01

    We establish a theoretical method which goes beyond the weak-coupling and Markovian approximations while remaining intuitive, using a quantum master equation in a larger Hilbert space. The method is applicable to all impurity Hamiltonians tunnel coupled to one (or multiple) baths of free fermions. The accuracy of the method is in principle not limited by the system-bath coupling strength, but rather by the shape of the spectral density and it is especially suited to study situations far away from the wide-band limit. In analogy to the bosonic case, we call it the fermionic reaction coordinate mapping. As an application, we consider a thermoelectric device made of two Coulomb-coupled quantum dots. We pay particular attention to the regime where this device operates as an autonomous Maxwell demon shoveling electrons against the voltage bias thanks to information. Contrary to previous studies, we do not rely on a Markovian weak-coupling description. Our numerical findings reveal that in the regime of strong coupling and non-Markovianity, the Maxwell demon is often doomed to disappear except in a narrow parameter regime of small power output.

  15. Development of a simulation of the surficial groundwater system for the CONUS

    NASA Astrophysics Data System (ADS)

    Zell, W.; Sanford, W. E.

    2016-12-01

    Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.

  16. Tropospheric Ozone Pollution Transport Traced from the TOMS (Total Ozone Mapping Spectrometer) Instrument During the Nashville-1999 Campaign

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.

  17. Dynamic Regimes of El Niño Southern Oscillation and Influenza Pandemic Timing

    PubMed Central

    Oluwole, Olusegun Steven Ayodele

    2017-01-01

    El Niño southern oscillation (ENSO) dynamics has been shown to drive seasonal influenza dynamics. Severe seasonal influenza epidemics and the 2009–2010 pandemic were coincident with chaotic regime of ENSO dynamics. ENSO dynamics from 1876 to 2016 were characterized to determine if influenza pandemics are coupled to chaotic regimes. Time-varying spectra of southern oscillation index (SOI) and sea surface temperature (SST) were compared. SOI and SST were decomposed to components using the algorithm of noise-assisted multivariate empirical mode decomposition. The components were Hilbert transformed to generate instantaneous amplitudes and phases. The trajectories and attractors of components were characterized in polar coordinates and state space. Influenza pandemics were mapped to dynamic regimes of SOI and SST joint recurrence of annual components. State space geometry of El Niños lagged by influenza pandemics were characterized and compared with other El Niños. Timescales of SOI and SST components ranged from sub-annual to multidecadal. The trajectories of SOI and SST components and the joint recurrence of annual components were dissipative toward chaotic attractors. Periodic, quasi-periodic, and chaotic regimes were present in the recurrence of trajectories, but chaos–chaos transitions dominated. Influenza pandemics occurred during chaotic regimes of significantly low transitivity dimension (p < 0.0001). El Niños lagged by influenza pandemics had distinct state space geometry (p < 0.0001). Chaotic dynamics explains the aperiodic timing, and varying duration and strength of El Niños. Coupling of all influenza pandemics of the past 140 years to chaotic regimes of low transitivity indicate that ENSO dynamics drives influenza pandemic dynamics. Forecasts models from ENSO dynamics should compliment surveillance for novel influenza viruses. PMID:29218303

  18. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    PubMed

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  19. Post-Plasma SiOx Coatings of Metal and Metal Oxide Nanoparticles for Enhanced Thermal Stability and Tunable Photoactivity Applications

    PubMed Central

    Post, Patrick; Jidenko, Nicolas; Weber, Alfred P.; Borra, Jean-Pascal

    2016-01-01

    The plasma-based aerosol process developed for the direct coating of particles in gases with silicon oxide in a continuous chemical vapor deposition (CVD) process is presented. It is shown that non-thermal plasma filaments induced in a dielectric barrier discharge (DBD) at atmospheric pressure trigger post-DBD gas phase reactions. DBD operating conditions are first scanned to produce ozone and dinitrogen pentoxide. In the selected conditions, these plasma species react with gaseous tetraethyl orthosilicate (TEOS) precursor downstream of the DBD. The gaseous intermediates then condense on the surface of nanoparticles and self-reactions lead to homogeneous solid SiOx coatings, with thickness from nanometer to micrometer. This confirms the interest of post-DBD injection of the organo-silicon precursor to achieve stable production of actives species with subsequent controlled thickness of SiOx coatings. SiOx coatings of spherical and agglomerated metal and metal oxide nanoparticles (Pt, CuO, TiO2) are achieved. In the selected DBD operating conditions, the thickness of homogeneous nanometer sized coatings of spherical nanoparticles depends on the reaction duration and on the precursor concentration. For agglomerates, operating conditions can be tuned to cover preferentially the interparticle contact zones between primary particles, shifting the sintering of platinum agglomerates to much higher temperatures than the usual sintering temperature. Potential applications for enhanced thermal stability and tunable photoactivity of coated agglomerates are presented. PMID:28335219

  20. The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Khattabi, Areen M.; Alqdeimat, Diala A.

    2018-02-01

    One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

  1. Mineralogy and textures of riebeckitic asbestos (crocidolite): The role of single versus agglomerated fibres in toxicological experiments.

    PubMed

    Yao, Seydou; Iezzi, Gianluca; Della Ventura, Giancarlo; Bellatreccia, Fabio; Petibois, Cyril; Marcelli, Augusto; Nazzari, Manuela; Lazzarin, Francesco; Di Gioacchino, Mario; Petrarca, Claudia

    2017-10-15

    Asbestos may cause adverse effects, but relationship between mineralogy and texture of fibres versus toxicity is still lacking. Toxicological studies can be interpreted and compared only if quantitative features of fibres are determined. Here, riebeckitic ("crocidolite") amphibole fibres were analysed by XRPD, FTIR, SEM-EDS and EMP-WDS; only crystals with stochiometry A□B Na 2 C (Fe 2+ 2.5 Mg 0.5 ) C Fe 3+ 2 T Si 8 O 22 W (OH) 2 are present in the starting material used for the experiments. Fibres deposited from solutions of 0.1, 1, 10, 25, 50, 75 and 100mg/L were counted by image analysis using SEM images. At 0.1 and 1mg/L the fibres are well separated, whereas between 1 and 10mg/L they start to agglomerate. In-vitro tests performed on fibres deposited at the same mg/L concentrations show that the toxic potential follows a curvilinear increasing trend with a decreasing rate. Since the range of sizes of single fibres and their mineralogy are constant, this decreasing rate can be only attributed to the increasing amount of agglomerated fibres. Hence, single versus agglomerated fibre population is a factor that cannot be neglected in defining the final adverse effects of asbestos. The analytical protocol proposed here is valuable for any aero-dispersed dust, in polluted environments, as well as in the interpretation of experimental studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory

    PubMed Central

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  3. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations.

    PubMed

    Sun, Xiaowei; Cheng, Shuiyuan; Lang, Jianlei; Ren, Zhenhai; Sun, Chao

    2018-06-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. A classification technology method for priority control of atmospheric emission sources was introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale, respectively. The results demonstrated that the emission sources in the Hefei-centered urban agglomerations contributed the biggest on the mean PM 2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM 2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In generally, emission sources in cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study can give an understanding of Chinese emissions and provide a valuable preference to policy makers for finding effective mitigation measures and control strategies for reducing national and regional air pollution in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  5. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments.

    PubMed

    Knapp, Alan K; Hoover, David L; Wilcox, Kevin R; Avolio, Meghan L; Koerner, Sally E; La Pierre, Kimberly J; Loik, Michael E; Luo, Yiqi; Sala, Osvaldo E; Smith, Melinda D

    2015-02-03

    Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long-term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences. © 2015 John Wiley & Sons Ltd.

  6. Relating Regime Structure to Probability Distribution and Preferred Structure of Small Errors in a Large Atmospheric GCM

    NASA Astrophysics Data System (ADS)

    Straus, D. M.

    2007-12-01

    The probability distribution (pdf) of errors is followed in identical twin studies using the COLA T63 AGCM, integrated with observed SST for 15 recent winters. 30 integrations per winter (for 15 winters) are available with initial errors that are extremely small. The evolution of the pdf is tested for multi-modality, and the results interpreted in terms of clusters / regimes found in: (a) the set of 15x30 integrations mentioned, and (b) a larger ensemble of 55x15 integrations made with the same GCM using the same SSTs. The mapping of pdf evolution and clusters is also carried out for each winter separately, using the clusters found in the 55-member ensemble for the same winter alone. This technique yields information on the change in regimes caused by different boundary forcing (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). Analysis of the growing errors in terms of baroclinic and barotropic components allows for interpretation of the corresponding instabilities.

  7. Dynamics of Two Point Vortices in an External Compressible Shear Flow

    NASA Astrophysics Data System (ADS)

    Vetchanin, Evgeny V.; Mamaev, Ivan S.

    2017-12-01

    This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the "reversible pitch-fork" bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.

  8. The Meandering Margin of the Meteorological Moist Tropics

    NASA Astrophysics Data System (ADS)

    Mapes, Brian E.; Chung, Eui Seok; Hannah, Walter M.; Masunaga, Hirohiko; Wimmers, Anthony J.; Velden, Christopher S.

    2018-01-01

    Bimodally distributed column water vapor (CWV) indicates a well-defined moist regime in the Tropics, above a margin value near 48 kg m-2 in current climate (about 80% of column saturation). Maps reveal this margin as a meandering, sinuous synoptic contour bounding broad plateaus of the moist regime. Within these plateaus, convective storms of distinctly smaller convective and mesoscales occur sporadically. Satellite data composites across the poleward most margin reveal its sharpness, despite the crude averaging: precipitation doubles within 100 km, marked by both enhancement and deepening of cloudiness. Transported patches and filaments of the moist regime cause consequential precipitation events within and beyond the Tropics. Distinguishing synoptic flows that cross the margin from flows that move the margin is made possible by a novel satellite-based Lagrangian CWV tendency estimate. Climate models do not reliably reproduce the observed bimodal distribution, so studying the moist mode's maintenance processes and the margin-zone air mass transformations, guided by the Lagrangian tendency product, might importantly constrain model moist process treatments.

  9. Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew

    2005-01-01

    Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) for which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities from National Lightning Detection Network (NLDN) data. The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at the two organizations provided this data and supporting software for the work performed by the AMU. The densities were first stratified by flow regime, then by time in 1-, 3-, 6-, 12-, and 24-hour increments while maintaining the 2.5 km x 2.5 km grid resolution. A CG frequency of occurrence was calculated for each stratification and grid box by counting the number of days with lightning and dividing by the total number of days in the data set. New CG strike densities were calculated for each stratification and grid box by summing the strike number values over all warm seasons, then normalized by dividing the summed values by the number of lightning days. This makes the densities conditional on whether lightning occurred. The frequency climatology values will be used by forecasters as proxy inputs for lightning prObability, while the density climatology values will be used for CG amount. In addition to the benefits outlined above, these climatologies will provide improved temporal and spatial resolution, expansion of the lightning threat area to include adjacent coastal waters, and potential to extend the forecast to include the day-2 period. This presentation will describe the lightning threat index map, discuss the work done to create the maps initialized with climatological guidance, and show examples of the climatological CG lightning densities and frequencies of occurren based on flow regime.

  10. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    NASA Astrophysics Data System (ADS)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.

  11. L-Mapping Solar Energetic Particles from LEO to High Altitudes at High Latitudes

    NASA Astrophysics Data System (ADS)

    Young, S. L.; Wilson, G.

    2017-12-01

    The current solar energetic particle (SEP) hazard specification is focused on geosynchronous orbit with some capability at LEO, but there is no specification for the large region between these orbital regimes. The L-mapping technique, which attempts to fill this capability gap, assumes that there is a simple relationship between magnetic L-shells and SEP penetration boundaries that can be exploited. A previous study compared POES observations that had been mapped to the Van Allen Probes with local observations. It found that more than 90% of the mapped and local fluxes were within a factor of four of each other; this is thought to be sucient for operational purposes. One concern with the previous study was the limited number of SEP events that have occurred during the Van Allen Probes mission. The current study examines the L-mapping method's accuracy at higher latitudes. Observations from a satellite that was launched into a HEO orbit with a 63° inclination before the peak of solar cycle 24 are compared to L-mapped POES observations. The larger number of events provides better statistics and the 63° orbit inclination allows us to examine the difference between mapping from POES to the magnetic equator, as in the previous study, and mapping from POES to higher latitudes.

  12. Stress Map 2.0: Updating the Stress Map of the Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Mallyon, D.; Schmitt, D. R.; Currie, C. A.; Gu, Y. J.; Heidbach, O.

    2015-12-01

    The greatest horizontal compression in much of the Western Canada Sedimentary Basin appears to uniformly trend NE-SW. Beyond this, major gaps remain in our knowledge of stress magnitudes and even faulting regimes. This lack of quantitative information impedes a proper understanding of seismic events that appear to be linked to hydraulic fracturing stimulations. Apart from this immediate concern, such seismicity could impact long term green-house gas sequestration and geothermal energy development. As part of the Helmholtz-Alberta geothermal collaboration, we are developing a program to update this crustal stress state information. The program consists of more immediate studies related to conventional analysis of borehole image logs, core fractures, and transient pressure records as can be made available. Data sets analyzed to date include logs to 3.5 km depth from areas experiencing induced seismicity, from 2.5 km depth within the Precambrian craton in NE Alberta, and to 400 m depth within a large carbonate platform. All these data largely confirm the NE-SW stress directions. In some cases, the configurations of drilling induced tensile fractures and borehole breakouts allow the faulting regime to be constrained. The addition of new seismometers to the region is also allowing for the refinement of earthquake focal mechanisms. Finally, a dramatic contrast in lithosphere thickness, composition and geothermal gradient exists at the contact between the Cordillera and the North American craton; therefore, lithosphere-scale numerical models are also being developed to quantify the relative contribution of geodynamic processes, such as mantle flow and contact geometry, to the observed stress regime within the basin.

  13. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration

    NASA Astrophysics Data System (ADS)

    Vojtková, H.

    2017-10-01

    Microorganisms cause changes in the building stone, which reduce its usable life and reliability. Microalgae make important parts of the biodegradation consortia of microorganisms on the surface of building materials. Via their metabolites, microalgae affect the stability of mineral components and thus lead to the material destruction. The aim of the paper was to identify aerophytic microalgae on the surface of engineering structures in the Ostrava agglomeration, and to describe the basic interactions between such microorganisms and the building materials, which may lead to the destruction of the materials.

  14. Removing micron size particles from coal liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, B.R.; Westmoreland, P.R.

    This paper reports results of an investigation which was undertaken in order to improve purification of liquid fuels obtained by coal liquefaction processes. It is shown that settling and filtration rates increased substantially after agglomeration. And, ground coal was found to be an economical substitute for diatomaceous earth in filtration. The effects of certain solvents on the agglomerating tendencies of solids in the unfiltered oil (UFO) from the SRC and COED processes were determined by oil immersion microscopy. The significant results obtained by these experiments are listed. Economic advantages are presented. 13 references.

  15. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  16. Smog episodes in the Lodz agglomeration in the years 2014-17

    NASA Astrophysics Data System (ADS)

    Wielgosiński, Grzegorz; Czerwińska, Justyna; Namiecińska, Olga; Cichowicz, Robert

    2018-01-01

    In recent years, in the winter season we are alarmed about the poor air quality in Poland and significantly exceeded permissible concentrations of certain pollutants, especially PM10 and PM2.5, which are a result of so-called low emissions. The authors analyze smog episodes in the Lodz agglomeration by comparing the recorded values of selected pollutant concentrations at monitoring stations of the Regional Inspectorate for Environmental Protection in Lodz with the meteorological conditions prevailing at this time. The analysis covers data from the years 2014-2017.

  17. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.

    PubMed

    Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  18. X-Ray-Based Imaging for Characterizing Heterogeneous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    George, Michael G.

    Characterization of gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells informs modeling studies and the manufacturers of next generation fuel cell materials. Identifying the physical properties related to the primary functions of the modern GDL (thermal, electrical, and mass transport) is necessary for understanding the impact of GDL design choices. X-ray micro-computed tomographic reconstructions of GDLs were studied to isolate GDL surface morphologies. Surface roughness was measured for a wide variety of samples and a sensitivity study highlighted the scale-dependence of surface roughness measurements. Furthermore, a spatially resolved distribution map of polytetrafluoroethylene (PTFE) in the microporous layer (MPL), critical for water management and mass transport, was identified and the existence of PTFE agglomerations was highlighted. Finally, the impact of accelerated degradation on GDL wettability and water transport increases in liquid water accumulation and oxygen mass transport resistance were quantified as a result of accelerated GDL degradation.

  19. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    PubMed

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessore, Nicolas; Metcalf, R. Benton; Winther, Hans A.

    A number of alternatives to general relativity exhibit gravitational screening in the non-linear regime of structure formation. We describe a set of algorithms that can produce weak lensing maps of large scale structure in such theories and can be used to generate mock surveys for cosmological analysis. By analysing a few basic statistics we indicate how these alternatives can be distinguished from general relativity with future weak lensing surveys.

  1. Mapping pyrophilic percentages across the northeastern United States using witness trees, with focus on four national forests

    Treesearch

    Melissa A. Thomas-Van Gundy; Gregory J. Nowacki; Charles V. Cogbill

    2015-01-01

    Witness trees provide information fundamental for restoration ecology, often serving as baselines for forest composition and structure. Furthermore, when categorized by fire relations, witness trees can shed light on past disturbance regimes. Kriging was applied to witness-tree point data to form a contiguous surface of pyrophilic percentage for four national forests...

  2. Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems

    Treesearch

    Andrew D. Bailey; Robert Mickler; Cecil Frost

    2007-01-01

    Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...

  3. Southeast Asian Space Programs: Motives, Cooperation, and Competition

    DTIC Science & Technology

    2014-09-01

    LEO low Earth orbit MTCR Missile Technology Control Regime NAMRIA National Mapping and Resource Information Authority NASA National Aeronautics and...Technology’s role 27 Leo Marx and Merritt Roe Smith, “Introduction,” in Does Technology Drive History: The...Dilemma of Technological Determinism, ed. Merritt Roe Smith and Leo Marx (Cambridge, MA: The MIT Press, 1994), xii. 28 Donald MacKenzie and Judy

  4. Reserve design for uncertain responses of coral reefs to climate change.

    PubMed

    Mumby, Peter J; Elliott, Ian A; Eakin, C Mark; Skirving, William; Paris, Claire B; Edwards, Helen J; Enríquez, Susana; Iglesias-Prieto, Roberto; Cherubin, Laurent M; Stevens, Jamie R

    2011-02-01

    Rising sea temperatures cause mass coral bleaching and threaten reefs worldwide. We show how maps of variations in thermal stress can be used to help manage reefs for climate change. We map proxies of chronic and acute thermal stress and develop evidence-based hypotheses for the future response of corals to each stress regime. We then incorporate spatially realistic predictions of larval connectivity among reefs of the Bahamas and apply novel reserve design algorithms to create reserve networks for a changing climate. We show that scales of larval dispersal are large enough to connect reefs from desirable thermal stress regimes into a reserve network. Critically, we find that reserve designs differ according to the anticipated scope for phenotypic and genetic adaptation in corals, which remains uncertain. Attempts to provide a complete reserve design that hedged against different evolutionary outcomes achieved limited success, which emphasises the importance of considering the scope for adaptation explicitly. Nonetheless, 15% of reserve locations were selected under all evolutionary scenarios, making them a high priority for early designation. Our approach allows new insights into coral holobiont adaptation to be integrated directly into an adaptive approach to management. © 2010 Blackwell Publishing Ltd/CNRS.

  5. Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy.

    PubMed

    Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind

    2013-04-05

    The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.

  6. Raman technology for future planetary missions

    NASA Astrophysics Data System (ADS)

    Thiele, Hans; Hofer, Stefan; Stuffler, Timo; Glier, Markus; Popp, Jürgen; Sqalli, Omar; Wuttig, Andreas; Riesenberg, Rainer

    2017-11-01

    Scientific experiments on mineral and biological samples with Raman excitation below 300nm show a wealth of scientific information. The fluorescence, which typically decreases signal quality in the visual or near infrared wavelength regime can be avoided with deep ultraviolet excitation. This wavelength regime is therefore regarded as highly attractive for a compact high performance Raman spectrometer for in-situ planetary research. Main objective of the MIRAS II breadboard activity presented here (MIRAS: Mineral Investigation with Raman Spectroscopy) is to evaluate, design and build a compact fiber coupled deep-UV Raman system breadboard. Additionally, the Raman system is combined with an innovative scanning microscope system to allow effective auto-focusing and autonomous orientation on the sample surface for high precise positioning or high resolution Raman mapping.

  7. Trends of rainfall regime in Peninsular Malaysia during northeast and southwest monsoons

    NASA Astrophysics Data System (ADS)

    Chooi Tan, Kok

    2018-04-01

    The trends of rainfall regime in Peninsular Malaysia is mainly affected by the seasonal monsoon. The aim of this study is to investigate the impact of northeast and southwest monsoons on the monthly rainfall patterns over Badenoch Estate, Kedah. In addition, the synoptic maps of wind vector also being developed to identify the wind pattern over Peninsular Malaysia from 2007 – 2016. On the other hand, the archived daily rainfall data is acquired from Malaysian Meteorological Department. The temporal and trends of the monthly and annual rainfall over the study area have been analysed from 2007 to 2016. Overall, the average annual precipitation over the study area from 2007 to 2016 recorded by rain gauge is 2562.35 mm per year.

  8. Ulam method and fractal Weyl law for Perron-Frobenius operators

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Shepelyansky, D. L.

    2010-06-01

    We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.

  9. Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Hamins, A.; Sivathanu, Y.

    1999-01-01

    The evolution of smoke in a laminar diffusion flame involves several steps. The first step is particle inception/nucleation in the high-temperature fuel-rich region of the flame followed by surface growth and coagulation/coalescence of the small particles. As the primary spheres grow in size and lose hydrogen, the colliding particles no longer coalesce but retain their identity as a cluster of primary spheres, termed an agglomerate. Finally, in the upper portion of the flame, the particles enter an oxidizing environment which may lead to partial or complete burnout of the agglomerates. Currently there is no quantitative model for describing the growth of smoke agglomerates up to superagglomerates with an overall dimension of 10 microns and greater. Such particles are produced during the burning of acetylene and fuels containing benzene rings such as toluene and polystyrene. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed "raining" out from large fires. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame has been recently reported. Acetylene was chosen as the fuel since the particulate loading in acetylene/air diffusion flames is very high. Photographs were obtained by Sorensen using a microsecond xenon lamp of the "stream" of soot just above the flame. For low flow rates of acetylene, only submicrometer soot clusters are produced and they give rise to the homogeneous appearance of the soot stream. When the flow rate is increased to 1.7 cu cm/s, soot clusters up to 10 microns are formed and they are responsible for the graininess and at a flow rate of 3.4 cu cm/s, a web of interconnected clusters as large as the width of the flame is seen. This interconnecting web of superagglomerates is described as a gel state by Sorensen et al (1998). This is the first observation of a gel for a gas phase system. It was observed that this gel state immediately breaks up into agglomerates due to buoyancy induced turbulence and gravitational sedimentation.

  10. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies

    NASA Astrophysics Data System (ADS)

    Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret

    2014-08-01

    The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior that strongly depended on the surrounding conditions. Agglomeration of ZnO particles in physiological media is a complex function of particle coating, used dispersants and serum proteins if supplemented. The present study gives a clear guideline how to prepare and handle suspensions with ZnO for in vitro testing and allows the correlation between the chemical-physical particles behavior with findings from toxicological tests.

  11. Agglomeration of Non-metallic Inclusions at Steel/Ar Interface: In- Situ Observation Experiments and Model Validation

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Dogan, Neslihan; Coley, Kenneth S.

    2017-10-01

    Better understanding of agglomeration behavior of nonmetallic inclusions in the steelmaking process is important to control the cleanliness of the steel. In this work, a revision on the Paunov simplified model has been made according to the original Kralchevsky-Paunov model. Thus, this model has been applied to quantitatively calculate the attractive capillary force on inclusions agglomerating at the liquid steel/gas interface. Moreover, the agglomeration behavior of Al2O3 inclusions at a low carbon steel/Ar interface has been observed in situ by high-temperature confocal laser scanning microscopy (CLSM). The velocity and acceleration of inclusions and attractive forces between Al2O3 inclusions of various sizes were calculated based on the CLSM video. The results calculated using the revised model offered a reasonable fit with the present experimental data for different inclusion sizes. Moreover, a quantitative comparison was made between calculations using the equivalent radius of a circle and those using the effective radius. It was found that the calculated capillary force using equivalent radius offered a better fit with the present experimental data because of the inclusion characteristics. Comparing these results with other studies in the literature allowed the authors to conclude that when applied in capillary force calculations, the equivalent radius is more suitable for inclusions with large size and irregular shape, and the effective radius is more appropriate for inclusions with small size or a large shape factor. Using this model, the effect of inclusion size on attractive capillary force has been investigated, demonstrating that larger inclusions are more strongly attracted.

  12. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    NASA Astrophysics Data System (ADS)

    Valenti, Laura E.; Giacomelli, Carla E.

    2017-05-01

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  13. Emission Inventory Development and Application Based On an Atmospheric Emission Source Priority Control Classification Technology Method, a Case Study in the Middle Reaches of Yangtze River Urban Agglomerations, China

    NASA Astrophysics Data System (ADS)

    Sun, X.; Cheng, S.

    2017-12-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was the first time to be developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. The emission inventory was proved to be acceptable owing to the atmospheric modeling verification. A classification technology method for atmospheric pollution source priority control was the first time to be introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale. MICAPS (Meteorological Information comprehensive Analysis and Processing System) was applied for the regional meteorological condition and sensitivity analysis. The results demonstrated that the emission sources in the Hefei-center Urban Agglomerations contributed biggest on the mean PM2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In addition, the cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study provide a valuable preference for policy makers to develop effective air pollution control strategies.

  14. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.

    PubMed

    Lau, Michael; Young, Paul M; Traini, Daniela

    2017-08-01

    The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.

  15. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  16. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    PubMed Central

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942

  17. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  18. Method for producing ceramic particles and agglomerates

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  19. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE PAGES

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...

    2017-08-30

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  20. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-06-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

Top