Science.gov

Sample records for agglutinin-horseradish peroxidase wga-hrp

  1. Common fur and mystacial vibrissae parallel sensory pathways: /sup 14/C 2-deoxyglucose and WGA-HRP studies in the rat

    SciTech Connect

    Sharp, F.R.; Gonzalez, M.F.; Morgan, C.W.; Morton, M.T.; Sharp, J.W.

    1988-04-15

    Stimulation of mystacial vibrissae in rows A,B, and C increased (14C) 2-deoxyglucose (2DG) uptake in spinal trigeminal nucleus pars caudalis (Sp5c) mostly in ventral portions of laminae III-IV with less activation of II and V. Stimulation of common fur above the whiskers mainly activated lamina II, with less activation in deeper layers. The patterns of activation were compatible with an inverted head, onion skin Sp5c somatotopy. Wheatgerm Agglutinin-Horseradish Peroxidase (WGA-HRP) injections into common fur between mystacial vibrissae rows A-B and B-C led to anterograde transganglionic labeling only of Sp5c, mainly of lamina II with less label in layer V, and very sparse label in III and IV. WGA-HRP skin injections appear to primarily label small fibers, which along with larger fibers, were metabolically activated during common fur stimulation. Mystacial vibrissae stimulation increased 2DG uptake in ventral ipsilateral spinal trigeminal nuclei pars interpolaris (Sp5i) and oralis (Sp5o) and principal trigeminal sensory nucleus (Pr5). Common fur stimulation above the whiskers slightly increased 2DG uptake in ventral Sp5i, Sp5o, and possibly Pr5. The most dorsal aspect of the ventroposteromedial (VPM) nucleus of thalamus was activated contralateral to whisker stimulation. Stimulation of the common fur dorsal to the whiskers activated a region of dorsal VPM caudal to the VPM region activated during whisker stimulation. This is consistent with previous data showing that ventral whiskers and portions of the face are represented rostrally in VPM, and more dorsal whiskers and dorsal portions of the face are represented progressively more caudally in VPM. Mystacial vibrissae stimulation activated the contralateral primary sensory SI barrelfield cortex and a separate region in the second somatosensory SII cortex.

  2. A dopaminergic projection to the rat mammillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry

    NASA Technical Reports Server (NTRS)

    Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.

    1992-01-01

    The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.

  3. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat.

    PubMed

    Arbab, M A; Wiklund, L; Svendgaard, N A

    1986-11-01

    Peripheral sources of cerebral vascular innervation have been investigated with retrograde and anterograde neuronal tracing of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) in the rat. For retrograde identification of sources of innervation, WGA-HRP was applied to the exposed basilar artery through a fine slit in the overlying meninges, and sections of brain and peripheral ganglia were reacted with tetramethylbenzidine for detection of the tracer. A high density of tetramethylbenzidine reaction product was observed around the basilar artery and in the surrounding pial tissue, but the application sites were not completely selective since some tracer always had spread into the ventral brain stem. Retrogradely labelled cell bodies were identified in the superior cervical, stellate, first and second spinal, and trigeminal ganglia, i.e. these ganglia may represent origins of basilar artery innervation. In a second series of experiments, microinjections of WGA-HRP were placed into the indicated ganglia to obtain anterograde labelling of nerve fibres on whole-mounts of the cerebral vessels. Injections into trigeminal ganglia labelled nerve fibres on the ipsilateral half of the circle of Willis, as well as the contralateral anterior cerebral artery and the rostral part of the basilar artery. The first and second spinal ganglia projected to the vertebrobasilar arteries, while the ipsilateral part of the internal carotid (outside the circle of Willis) received fibres from the second spinal ganglion. Nerve fibres originating in trigeminal and spinal ganglia were organised in bundles, and between these a sparse plexus of thin single fibres appeared. Injection of WGA-HRP into superior cervical ganglion labelled a plexus of nerve fibres on the ipsilateral circle of Willis and the (rostral) basilar artery. These experiments demonstrated the origin and distribution of sympathetic and sensory innervation to major cerebral arteries in the rat.

  4. Non-motoneurons in the facial and motor trigeminal nuclei projecting to the cerebellar flocculus in the cat. A fluorescent double-labelling and WGA-HRP study.

    PubMed

    Røste, G K

    1989-01-01

    The cerebellar projection from the facial and motor trigeminal nuclei was studied in the cat by means of retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase and fluorescent tracers. The feline facial nucleus was cytoarchitectonically subdivided into ventromedial, ventrolateral, lateral, dorsal, intermediate and medial divisions (see Papez 1927), and the motor trigeminal nucleus into medial, ventral, intermediate, lateral and dorsal divisions. The neurons in the facial and motor trigeminal nuclei were classified as small (ovoid to round cells with a maximum diameter of the cell body of about 20 microns) or large (polygonal to round cells with maximum diameter of about 40 microns). After floccular injections of the wheat germ agglutinin-horseradish peroxidase complex, retrogradely labelled cells were found throughout the facial nucleus, but especially in its medial and dorsal divisions. In the motor trigeminal nucleus, labelled neurons were found only in the ventral, intermediate and lateral divisions. Cases with tracer deposition (implants or injections) in other parts of the cerebellar cortex or nuclei were all negative. All facial and motor trigeminal neurons labelled after floccular injections were smaller than the neurons labelled after injections in the facial mimic and masticatory muscles, and only single-labelled neurons were found following floccular injections of Fluoro-Gold and muscular injections of rhodamine-B-isothiocyanate in the same animals. These observations strongly suggest that the neurons in the facial and motor trigeminal nuclei which project to flocculus are of the non-motoneuron type. PMID:2470610

  5. The carotid sinus connections: a WGA-HRP study in the cat.

    PubMed

    Torrealba, F; Claps, A

    1988-07-01

    The neural connections of the carotid sinus were studied by administration of horseradish peroxidase or a lectin conjugate to the adventitia of the carotid sinus of cats. The carotid sinus afferents project exclusively to the nucleus of the tractus solitarius (NTS). Rostral to the obex the projection is mainly ipsilateral with a strong contralateral component caudal to the obex. The carotid sinus projects to several NTS territories that do not receive afferents from the carotid body chemoreceptors; they are: the dorsolateral, the lateral extension of the commissural, the caudal intermediate, the ventrolateral and the gelatinosus subnuclei. In addition the carotid sinus central representation includes territories occupied also by carotid body terminals: dorsal, interstitial, rostral intermediate, medial and the medial part of commissural subnuclei (see previous paper). Labeled cell bodies were found in the petrosal (216 +/- 37, mean +/- S.E.M.) nodose (825 +/- 434) and superior cervical ganglia (3583 +/- 1227) demonstrating the sympathetic efferent innervation of the carotid sinus and a dual sensory innervation via both the glossopharyngeal and vagus nerves. PMID:2458165

  6. Microwave and thermal interactions with oxidative hemolysis

    SciTech Connect

    Kiel, J.L.; Erwin, D.N.

    1984-01-01

    The influence of microwave radiation (2450 MHz, 3,333 pulses per second, duty factor of 0.02, and average specific absorption rate of 0.4 W/kg) on spontaneous hemolysis of human erythrocytes was examined. Cells were exposed to microwave radiation for 20 minutes at 37 degrees, 42 degrees, or 48 degrees C. Some of these cells were sensitized to oxidative damage by treatment with 1-chloro-2,4-dinitrobenzene (CDNB) and/or by coating with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) conjugate. Microwave radiation significantly decreased spontaneous hemolysis of untreated cells at 42 degrees C but had no effect at 37 degrees or 48 degrees C. Microwave exposure significantly enhanced a CDNB membrane stabilizing effect at 42 degrees C but had no effect at 37 or 48 degrees C. At 42 degrees C, microwave exposure increased hemolysis of WGA-HRP coated cells. Cells treated with both WGA-HRP and CDNB showed no change in fragility at 42 degrees C and increased fragility at 48 degrees C without a microwave effect. The microwave effects observed appear to involve perturbation of the thermal threshold for oxidative hyperthermic hemolysis.

  7. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.; Ralston, Diane Daly

    1988-01-01

    In four rhesus monkeys wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections were made in the mesencephalic tegmentum. In three cases with injections involving the red nucleus (RN), rubrospinal fibers descended mainly contralaterally to terminate in laminae V, VI and dorsal VII of the spinal cord and in the lateral motoneuronal cell groups at the level of the cervical and lumbosacral enlargements. In all four cases the area of the interstitial nucleus of Cajal (INC) was injected, which resulted in labeled interstitiospinal fibers in the medial part of the ipsilateral ventral funiculus of the spinal cord. The results indicate that there is no major qualitative difference between the mesencephalic (RN and INC) and motor cortical projections to the spinal cord.

  8. Macaque accessory optic system: II. Connections with the pretectum

    SciTech Connect

    Baleydier, C.; Magnin, M.; Cooper, H.M. )

    1990-12-08

    Connections of the accessory optic system (AOS) with the pretectum are described in the macaque monkey. Injections of tritiated amino acids in the pretectum demonstrate a major contralateral projection to the dorsal (DTN), lateral (LTN), and medial (MTN) terminal nuclei of the AOS and a sparser projection to the ipsilateral LTN. Injections of retrograde tracers, Fast Blue (FB), or wheat germ agglutinin horseradish peroxidase (WGA-HRP) plus nonconjugated horseradish peroxidase (HRP) in the LTN show that the pretectal-LTN projection originates from two nuclei. The main source of pretectal efferents to the LTN is from the pretectal olivary nucleus (OPN) and is entirely contralateral. This projection, which appears unique to primates, originates from the large multipolar cells of the OPN. In addition to this projection, the nucleus of the optic tract (NOT) projects to the ipsilateral LTN, as in nonprimates. Injection of WGA-HRP in the pretectum shows a reciprocal predominantely ipsilateral projection from the LTN to the pretectum. Retinas were observed after injection of FB in the LTN. The retinal ganglion cells projecting to the AOS are mainly distributed near the fovea and in the nasal region of the contralateral eye, suggesting a nasotemporal pattern of decussation. The demonstration of a direct connection between LTN and OPN forces to a reconsideration of the functional role of the AOS. Previous descriptions of luminance responsive cells in the LTN support a possible participation of this nucleus in the control of the pupillary light reflex.

  9. Sympathetic nerve fibers sprout into rat odontoblast layer, but not into dentinal tubules, in response to cavity preparation.

    PubMed

    Shimeno, Yoichi; Sugawara, Yumiko; Iikubo, Masahiro; Shoji, Noriaki; Sasano, Takashi

    2008-04-11

    This study was designed to determine if sympathetic nerve fibers exist in dentinal tubules in rat normal dental pulp, and if they sprout into the dentinal tubules in response to artificial cavity preparation in dentin. Sympathetic nerve fibers in rat molar dental pulp were labeled using an anterograde axonal transport technique involving injection of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the superior cervical ganglion (SCG). They were then observed using light and electron microscopes. In normal dental pulp (control), scattered WGA-HRP reaction products were observed in unmyelinated nerve endings in the odontoblast layer and subodontoblastic region. In injured pulp 3 weeks after cavity preparation, reaction products were about 1.8-times more plentiful in the above areas (versus control pulp). However, no labeled nerve fibers were observed in the dentinal tubules in either control or injured dental pulp. These results indicate that although sympathetic nerve fibers do indeed sprout in rat dental pulp in response to cavity preparation, they do not penetrate into the dentinal tubules in which postganglionic nerve endings derived from the SCG were not originally present.

  10. Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract nuclei.

    PubMed

    Bandler, R; Tork, I

    1987-02-10

    Wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections were made at the same sites within the midbrain periaqueductal grey region (PAG) of the cat at which microinjections of excitatory amino acids had previously elicited the set of autonomic and somatic reactions (i.e. pupil dilatation, piloerection, retraction of the ears, arching of the back, hissing, howling and growling) known as the 'defence reaction'. The WGA-HRP injections revealed that this PAG region has an extensive set of afferent and efferent connections with solitary tract nuclei (NTS). Within the NTS the majority of labelled neurons were distributed, in approximately equal numbers, in the ipsilateral medial solitary nucleus (SM) and the ipsilateral and the contralateral ventrolateral solitary nuclei (SVL). The densest anterograde labelling was found in the ipsilateral SM, with lighter anterograde labelling in the contralateral SM and bilaterally in the commissural solitary nucleus and SVL. The described connections between the defence region of the PAG and the NTS not only provide a new anatomical basis for cardiovascular and respiratory components of the reaction, but also add to the evidence that, in addition to the hypothalamus, the PAG is an important integrating center for the autonomic and somatic elements of the defence reaction. PMID:2436102

  11. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  12. Nanostructures for peroxidases

    PubMed Central

    Carmona-Ribeiro, Ana M.; Prieto, Tatiana; Nantes, Iseli L.

    2015-01-01

    Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese, and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design, and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting, and reusability. PMID:26389124

  13. Barley peroxidase isozymes

    NASA Astrophysics Data System (ADS)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per; Henriksen, Anette; Finnie, Christine; Svensson, Birte; Roepstorff, Peter

    2007-12-01

    Thirteen peroxidase spots on two-dimensional gels were identified by comprehensive proteome analysis of the barley seed. Mass spectrometry tracked multiple forms of three different peroxidase isozymes: barley seed peroxidase 1, barley seed-specific peroxidase BP1 and a not previously identified putative barley peroxidase. The presence of multiple spots for each of the isozymes reflected variations in post-translational glycosylation and protein truncation. Complete sequence coverage was achieved by using a series of proteases and chromatographic resins for sample preparation prior to mass spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination. In summary, a subset of three peroxidase isozymes was found to occur in the seed, whereas products of four other barley peroxidase genes were not detected. The present analysis documents the selective expression profiles and post-translational modifications of isozymes from a large plant gene family.

  14. Peroxidase(s) in Environment Protection

    PubMed Central

    Bansal, Neelam; Kanwar, Shamsher S.

    2013-01-01

    Industrial discharges of untreated effluents into water bodies and emissions into air have deteriorated the quality of water and air, respectively. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons (PAH), endocrine disruptive chemicals (EDC), pesticides, dioxins, polychlorinated biphenyls (PCB), industrial dyes, and other xenobiotics are among the most important pollutants. Peroxidases are enzymes that are able to transform a variety of compounds following a free radical mechanism, thereby yielding oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to loss of biological activity, reduction in the bioavailability, or the removal from aqueous phase, especially when the pollutant is found in water. The review describes the sources of peroxidases, the reactions catalyzed by them, and their applications in the management of pollutants in the environment. PMID:24453894

  15. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  16. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  17. Novel Applications of Peroxidase

    NASA Astrophysics Data System (ADS)

    Rob, Abdul; Ball, Andrew S.; Tuncer, Munir; Wilson, Michael T.

    1997-02-01

    The article entitled "Novel Biocatalysts Will Work Even Better for Industry" published recently in this Journal (1) was informative and interesting. However it touched only briefly on the application of peroxidase as catalyst. Here, we would like to mention in more detail the novel applications of peroxidase in agricultural, paper pulp, water treatment, pharmaceutical, and medical situations. Firstly, the peroxidase isolated from Phanerochaete chyrosporium has been shown to detoxify herbicides such as atrazine to less toxic compounds and would certainly find potential application in agriculture (2). Secondly, the peroxidase produced by Streptomyces thermoviolaceus may find application in the paper pulp industry as a delignifying agent (3). Thirdly, it has been shown that extracellular peroxidase produced by Streptomyces avermitilis can remove the intense color from paper-mill effluent obtained after semichemical alkaline pulping of wheat straw (4), and thus this enzyme might find application as a catalyst in water treatment plants. Fourthly, the heme-containing horseradish peroxidase enzyme has been exploited in several diagnostic applications in pharmaceutics and medicine, such as the detection of human immunodeficiency virus and cystic fibrosis (5-10). Finally, recent work from our laboratory has suggested that thermophilic nonheme peroxidase produced by Thermomonospora fusca BD25 may find medical use in the diagnosis of myocardial infarction (11, 12). Literature Cited 1. Wiseman, A. J. Chem. Educ. 1996, 73, 55-58. 2. Mougin, C. Appl. Environ. Microbiol. 1994, 60, 705-708. 3. McCarthy A. J.; Peace, W.; Broda, P. Appl. Microbiol. Technol. 1985, 23, 238-244. 4. Hernandez, M; Rodriguez J; Soliveri, J; Copa, J. L; Perez, M. I; Arias, M. E. Appl. Environ. Microbiol. 1994, 60, 3909-3913. 5. Hopfer, S. M.; Aslanzadeh, J. Ann. Clin. Lab. Sci. 1995, 25, 475-480. 6. Suzuki, K; Iman, M. J. Virol. Methods 1995, 55, 347-356. 7. Nielsen, K. J. Immunoassay 1995, 16, 183-197. 8

  18. Molecular Phylogeny of Heme Peroxidases

    NASA Astrophysics Data System (ADS)

    Zámocký, Marcel; Obinger, Christian

    All currently available gene sequences of heme peroxidases can be phylogenetically divided in two superfamilies and three families. In this chapter, the phylogenetics and genomic distribution of each group are presented. Within the peroxidase-cyclooxygenase superfamily, the main evolutionary direction developed peroxidatic heme proteins involved in the innate immune defense system and in biosynthesis of (iodinated) hormones. The peroxidase-catalase superfamily is widely spread mainly among bacteria, fungi, and plants, and particularly in Class I led to the evolution of bifunctional catalase-peroxidases. Its numerous fungal representatives of Class II are involved in carbon recycling via lignin degradation, whereas Class III secretory peroxidases from algae and plants are included in various forms of secondary metabolism. The family of di-heme peroxidases are predominantly bacteria-inducible enzymes; however, a few corresponding genes were also detected in archaeal genomes. Four subfamilies of dyp-type peroxidases capable of degradation of various xenobiotics are abundant mainly among bacteria and fungi. Heme-haloperoxidase genes are widely spread among sac and club fungi, but corresponding genes were recently found also among oomycetes. All described families herein represent heme peroxidases of broad diversity in structure and function. Our accumulating knowledge about the evolution of various enzymatic functions and physiological roles can be exploited in future directed evolution approaches for engineering peroxidase genes de novo for various demands.

  19. Haem iron-containing peroxidases.

    PubMed

    Isaac, I S; Dawson, J H

    1999-01-01

    Peroxidases are enzymes that utilize hydrogen peroxide to oxidize substrates. A histidine residue on the proximal side of the haem iron ligates most peroxidases. The various oxidation states and ligand complexes have been spectroscopically characterized. HRP-I is two oxidation states above ferric HRP. It contains an oxoferryl (= oxyferryl) iron with a pi-radical cation that resides on the haem. HRP-II is one oxidation state above ferric HRP and contains an oxoferryl iron. HRP-III is equivalent to the oxyferrous state. Only compounds I and II are part of the peroxidase reaction cycle. CCP-ES contains an oxoferryl iron but the radical cation resides on the Trp-191 residue and not on the haem. CPO is the only known peroxidase that is ligated by a cysteine residue rather than a histidine residue, on the proximal side of the haem iron. CPO is a more versatile enzyme, catalysing numerous types of reaction: peroxidase, catalase and halogenation reactions. The various CPO species are less stable than other peroxidase species and more elusive, thus needing further characterization. The roles of the amino acid residues on the proximal and distal sides of the haem need more investigation to further decipher their specific roles. Haem proteins, especially peroxidases, are structure-function-specific. PMID:10730188

  20. Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus.

    PubMed

    Sun, Wensi; May, Paul J

    2014-12-15

    The central pathways subserving the feline pupillary light reflex were examined by defining retinal input to the olivary pretectal nucleus (OPt), the midbrain projections of this nucleus, and the premotor neurons within it. Unilateral intravitreal wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) injections revealed differences in the pattern of retinal OPt termination on the two sides. Injections of WGA-HRP into OPt labeled terminals bilaterally in the anteromedian nucleus, and to a lesser extent in the supraoculomotor area, centrally projecting Edinger-Westphal nucleus, and nucleus of the posterior commissure. Labeled terminals, as well as retrogradely labeled multipolar cells, were present in the contralateral OPt, indicating a commissural pathway. Injections of WGA-HRP into the anteromedian nucleus labeled fusiform premotor neurons within the OPt, as well as multipolar cells in the nucleus of the posterior commissure. Connections between retinal terminals and the pretectal premotor neurons were characterized by combining vitreous chamber and anteromedian nucleus injections of WGA-HRP in the same animal. Fusiform-shaped, retrogradely labeled cells fell within the anterogradely labeled retinal terminal field in the OPt. Ultrastructural analysis revealed labeled retinal terminals containing clear spherical vesicles. They contacted labeled pretectal premotor neurons via asymmetric synaptic densities. These results provide an anatomical substrate for the pupillary light reflex in the cat. Pretectal premotor neurons receive direct retinal input via synapses suggestive of an excitatory drive, and project directly to nuclei containing preganglionic motoneurons. These projections are concentrated in the anteromedian nucleus, indicating its involvement in the pupillary light reflex.

  1. Oscillations in the peroxidase-oxidase reaction: a comparison of different peroxidases.

    PubMed

    Kummer, U; Valeur, K R; Baier, G; Wegmann, K; Olsen, L F

    1996-04-17

    The nonlinear behavior of the peroxidase-oxidase reaction was studied using structurally different peroxidases. For the first time sustained oscillations with peroxidases other than horseradish peroxidase in a single-enzyme system were observed. All peroxidases that showed significant oxidase activity were able to generate sustained oscillations. When adjusting the overall reaction rate, either of the two modifiers 2,4-dichlorophenol or Methylene blue could be omitted from the reaction. Due to the observation of different enzyme intermediates when using different peroxidases, we conclude that the mechanisms responsible for oscillatory kinetics may vary from one peroxidase to the other.

  2. Homology of Plant Peroxidases: AN IMMUNOCHEMICAL APPROACH.

    PubMed

    Conroy, J M; Borzelleca, D C; McDonell, L A

    1982-01-01

    Antisera specific for the basic peroxidase from horseradish (Amoracea rusticana) were used to examine homology among horseradish peroxidase isoenzymes and among basic peroxidases from root plants. The antisera cross-reacted with all tested isoperoxidases when measured by both agar diffusion and quantitative precipitin reactions. Precipitin analyses provided quantitative measurements of homology among these plant peroxidases. The basic radish (Raphanus sativus L. cv. Cherry Belle) peroxidase had a high degree of homology (73 to 81%) with the basic peroxidase from horseradish. Turnip (Brassica rapa L. cv. Purple White Top Globe) and carrot (Daucus carota L. cv. Danvers) basic peroxidases showed less cross-reaction (49 to 54% and 41 to 46%, respectively). However, the cross-reactions of antisera with basic peroxidases from different plants were greater than were those observed with acidic horseradish isoenzymes (30 to 35%). These experiments suggest that basic peroxidase isoenzymes are strongly conserved during evolution and may indicate that the basic peroxidases catalyze reactions involved in specialized cellular functions. Anticatalytic assays were poor indicators of homology. Even though homology among isoperoxidases was detected by other immunological methods, antibodies inhibited only the catalytic activity of the basic peroxidase from radish.

  3. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases.

    PubMed

    Kupriyanova, E V; Mamoshina, P O; Ezhova, T A

    2015-10-01

    Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.

  4. PeroxiBase: the peroxidase database.

    PubMed

    Passardi, Filippo; Theiler, Grégory; Zamocky, Marcel; Cosio, Claudia; Rouhier, Nicolas; Teixera, Felipe; Margis-Pinheiro, Marcia; Ioannidis, Vassilios; Penel, Claude; Falquet, Laurent; Dunand, Christophe

    2007-06-01

    Peroxidases (EC 1.11.1.x), which are encoded by small or large multigenic families, are involved in several important physiological and developmental processes. Analyzing their evolution and their distribution among various phyla could certainly help to elucidate the mystery of their extremely widespread and diversified presence in almost all living organisms. PeroxiBase was originally created for the exhaustive collection of class III peroxidase sequences from plants (Bakalovic, N., Passardi, F., et al., 2006. PeroxiBase: a class III plant peroxidase database. Phytochemistry 67, 534-539). The extension of the class III peroxidase database to all proteins capable to reduce peroxide molecules appears as a necessity. Our database contains haem and non-haem peroxidase sequences originated from annotated or not correctly annotated sequences deposited in the main repositories such as GenBank or UniProt KnowledgeBase. This new database will allow obtaining a global overview of the evolution the protein families and superfamilies capable of peroxidase reaction. In this rapidly growing field, there is a need for continual updates and corrections of the peroxidase protein sequences. Following the lack of unified nomenclature, we also introduced a unique abbreviation for each different family of peroxidases. This paper thus aims to report the evolution of the PeroxiBase database, which is freely accessible through a web server (http://peroxibase.isb-sib.ch). In addition to new categories of peroxidases, new specific tools have been created to facilitate query, classification and submission of peroxidase sequences.

  5. Engineering Ascorbate Peroxidase Activity Into Cytochrome C Peroxidase

    SciTech Connect

    Meharenna, Y.T.; Oertel, P.; Bhaskar, B.; Poulos, T.L.

    2009-05-26

    Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each others activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303--307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical arginine were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of {approx}12 min{sup -1}, indicating that the engineered ascorbate-binding loop can bind ascorbate.

  6. Catalase and glutathione peroxidase mimics

    PubMed Central

    Day, Brian J.

    2009-01-01

    Overproduction of the reactive oxygen species (ROS) superoxide (O2−) and hydrogen peroxide (H2O2) are increasingly implicated in human disease and aging. ROS are also being explored as important modulating agents in a number of cell signaling pathways. Earlier work has focused on development of small catalytic scavengers of O2−, commonly referred to as superoxide dismutase (SOD) mimetics. Many of these compounds also have substantial abilities to catalytically scavenge H2O2 and peroxynitrite (ONOO−). Peroxides have been increasingly shown to disrupt cell signaling cascades associated with excessive inflammation associated with a wide variety of human diseases. Early studies with enzymatic scavengers like SOD frequently reported little or no beneficial effect in biologic models unless SOD was combined with catalase or a peroxidase. Increasing attention has been devoted to developing catalase or peroxidase mimetics as a way to treat overt inflammation associated with the pathophysiology of many human disorders. This review will focus on recent development of catalytic scavengers of peroxides and their potential use as therapeutic agents for pulmonary, cardiovascular, neurodegenerative and inflammatory disorders. PMID:18948086

  7. Evidence for peroxidase activity in Caralluma umbellata.

    PubMed

    Achar, Raghu Ram; Venkatesh, B K; Sharanappa, P; Priya, B S; Swamy, S Nanjunda

    2014-08-01

    Vast applications of peroxidases create an increasing demand to characterize peroxidases from new sources with more applicability potential. The aim of the present study was to check the presence of peroxidase activity from Caralluma umbellata. This is the first report on the C. umbellata peroxidase (CUP). The presence of peroxidase was revealed by the histochemical analysis of the stem sections, zymographic studies, and in vitro peroxidase activity assay using various reducing substrates viz., 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), guaiacol, o-dianisidine, and ferulic acid. The band pattern in zymogram confirms that CUP has a molecular weight less than that of horseradish peroxidase (44 kDa). Comparative evaluation of peroxidase activity of CUP with respect to horseradish peroxidase (HRP) indicates that CUP catalyzes ABTS and ferulic acid in a similar pattern as HRP but with guaiacol, the extent of catalysis shown by CUP over HRP is high. The standard inhibitors sodium azide and sodium meta bisulphite inhibited CUP activity in a dose dependent manner.

  8. Screening Actinomycetes for Extracellular Peroxidase Activity

    PubMed Central

    Mercer, D. K.; Iqbal, M.; Miller, P.; McCarthy, A. J.

    1996-01-01

    A diverse collection of actinomycete strains were screened for production of extracellular peroxidase activity by adapting a chemiluminescence analysis system developed for horseradish peroxidase-based enzyme-linked immunosorbent assay. Extracellular peroxidase activity was found to be common but quantitatively variable, and this rapid and sensitive screening system permitted identification of a small group of high-producing strains. A range of spectrophotometric assays were compared for the measurement of peroxidase activity in concentrated culture supernatants of two selected thermophilic streptomycetes. Of these, the peroxide-dependent oxidation of 2,4-dichlorophenol was identified as the most robust and reproducible assay for quantitative studies. PMID:16535344

  9. Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidases.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2014-12-01

    Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase-catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase-catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.

  10. Peroxidase catalyzed polymerization of phenol

    SciTech Connect

    Vasudevan, P.T.; Li, L.O.

    1996-07-01

    The effect of horseradish peroxidase (HRP) and H{sub 2}O{sub 2} concentrations on the removal efficiency of phenol, defined as the percentage of phenol removed from solution as a function of time, has been investigated. When phenol and H{sub 2}O{sub 2} react with an approximately one-to-one stoichiometry, the phenol is almost completely precipitated within 10 min. The reaction is inhibited at higher concentrations of H{sub 2}O{sub 2}. The removal efficiency increases with an increase in the concentration of HRP, but an increase in the time of treatment cannot be used to offset the reduction in removal efficiency at low concentrations of the enzyme, because of inactivation of the enzyme. One molecule of HRP is needed to remove approximately 1100 molecules of phenol when the reaction is conducted at pH 8.0 and at ambient temperature. 9 refs., 5 figs.

  11. Independent evolution of four heme peroxidase superfamilies.

    PubMed

    Zámocký, Marcel; Hofbauer, Stefan; Schaffner, Irene; Gasselhuber, Bernhard; Nicolussi, Andrea; Soudi, Monika; Pirker, Katharina F; Furtmüller, Paul G; Obinger, Christian

    2015-05-15

    Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.

  12. (Characterization of lignin peroxidases from Phanerochaete)

    SciTech Connect

    Not Available

    1990-11-14

    Work has continued on characterizing the kinetics of lignin peroxidases and has now expanded to include the chemistry of Mn peroxidases. Progress in these two area in addition to the authors work on the molecular biology of lignin biodegradation is briefly described below. Copies of two reprints and one preprint which have resulted from the work are attached.

  13. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    PubMed

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases.

  14. Selenium, glutathione peroxidase and other selenoproteins

    SciTech Connect

    Wilhelmsen, E.C.

    1983-01-01

    Selenium, as essential trace element, has long been associated with protein. The essentiality of selenium is partially understood as glutathione peroxidase contains an essential selenocysteine. Glutathione peroxidase has been purified from many tissues including rat liver. An estimated molecular weight of 105,000 was obtained for glutathione peroxidase by comparison to standards. A subunit size of 26,000 was obtained by SDS-gel electrophoresis. Glutathione peroxidase is not the only selenoprotein in the rat. In seven rat tissues examined, there were many different subunit sizes and change groups representing between 9 and 23 selenoproteins. Selenocysteine in glutathione peroxidase accounts for ca. 36% of the selenium in the rat. The mode of synthesis of glutathione peroxidase and the other selenoproteins is not understood. Glutathione peroxidase is strongly and reversibly inhibited by mercaptocarboxylic acids and other mercaptans, including some used as slow-acting drugs for the symtomatic treatment of rheumatoid arthritis. The mechanism and chemistry of this inhibition is discussed. This inhibition may provide a link between selenium and arthritis.

  15. Soybean peroxidase as an industrial catalyst

    SciTech Connect

    Pokora, A.R.

    1995-12-01

    Peroxidases are a large class of enzymes which are very efficient at catalysing oxidation reactions. Horseradish peroxidase, the most abundant and commercially available peroxidase, has been utilized for many years in medical diagnostic test kits but has never been used successfully in an industrial application. One of the major drawbacks associated with the peroxidases cost and has been their lack of the thermal stability required in an industrial process. Recently, we isolated has been their lack of the peroxidase from soybean seed coats. Soybean seed coats are a commodity product available year round in very large volumes. The useful operational temperature for the soy peroxidase is 40{degrees}C higher than for horseradish peroxidase resulting in shorter reaction times and greater reactor efficiency. This process can be used to produce formaldehyde-free polyphenols as well as numerous phenolic dimers used in the manufacture of anti-oxidants, U-V absorbers, epoxies as well as other materials. The process to manufacture resins and dimers will be discussed.

  16. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  17. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?

    PubMed

    Dietz, Karl-Josef

    2016-01-01

    Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.

  18. Redesign of cytochrome c peroxidase into a manganese peroxidase: role of tryptophans in peroxidase activity.

    PubMed

    Gengenbach, A; Syn, S; Wang, X; Lu, Y

    1999-08-31

    Trp191Phe and Trp51Phe mutations have been introduced into an engineered cytochrome c peroxidase (CcP) containing a Mn(II)-binding site reported previously (MnCcP; see Yeung, B. K.-S., et al. (1997) Chem. Biol. 5, 215-221). The goal of the present study is to elucidate the role of tryptophans in peroxidase activity since CcP contains both Trp51 and Trp191 while manganese peroxidase (MnP) contains phenylalanine residues at the corresponding positions. The presence of Trp191 in CcP allows formation of a unique high-valent intermediate containing a ferryl oxo and tryptophan radical called compound I'. The absence of a tryptophan residue at this position in MnP is the main reason for the formation of an intermediate called compound I which contains a ferryl oxo and porphyrin pi-cation radical. In this study, we showed that introduction of the Trp191Phe mutation to MnCcP did not improve MnP activity (specific activity: MnCcP, 0.750 micromol min-1 mg-1; MnCcP(W191F), 0.560 micromol min-1 mg-1. k(cat)/K(m): MnCcP, 0.0517 s-1 mM-1; MnCcP(W191F), 0.0568 s-1 mM-1) despite the fact that introduction of the same mutation to WTCcP caused the formation of a transient compound I (decay rate, 60 s-1). However, introducing both the Trp191Phe and Trp51Phe mutations not only resulted in a longer lived compound I in WTCcP (decay rate, 18 s-1), but also significantly improved MnP activity in MnCcP (MnCcP(W51F, W191F): specific activity, 8.0 micromol min-1 mg-1; k(cat)/K(m), 0. 599 s-1 mM-1). The increase in activity can be attributed to the Trp51Phe mutation since MnCcP(W51F) showed significantly increased MnP activity relative to MnCcP (specific activity, 3.2 micromol min-1 mg-1; k(cat)/K(m), 0.325 s-1 mM-1). As with MnP, the activity of MnCcP(W51F, W191F) was found to increase with decreasing pH. Our results demonstrate that, while the Trp191Phe and Trp51Phe mutations both play important roles in stabilizing compound I, only the Trp51Phe mutation contributes significantly to

  19. Disulfide bonds and glycosylation in fungal peroxidases.

    PubMed

    Limongi, P; Kjalke, M; Vind, J; Tams, J W; Johansson, T; Welinder, K G

    1995-01-15

    Four conserved disulfide bonds and N-linked and O-linked glycans of extracellular fungal peroxidases have been identified from studies of a lignin and a manganese peroxidase from Trametes versicolor, and from Coprinus cinereus peroxidase (CIP) and recombinant C. cinereus peroxidase (rCIP) expressed in Aspergillus oryzae. The eight cysteine residues are linked 1-3, 2-7, 4-5 and 6-8, and are located differently from the four conserved disulfide bridges present in the homologous plant peroxidases. CIP and rCIP were identical in their glycosylation pattern, although the extent of glycan chain heterogeneity depended on the fermentation batch. CIP and rCIP have one N-linked glycan composed only of GlcNAc and Man at residue Asn142, and two O-linked glycans near the C-terminus. The major glycoform consists of single Man residues at Thr331 and at Ser338. T. versicolor lignin isoperoxidase TvLP10 contains a single N-linked glycan composed of (GlcNAc)2Man5 bound to Asn103, whereas (GlcNAc)2Man3 was found in T. versicolor manganese isoperoxidase TvMP2 at the same position. In addition, mass spectrometry of the C-terminal peptide of TvMP2 indicated the presence of five Man residues in O-linked glycans. No phosphate was found in these fungal peroxidases.

  20. Antigenic relationships between petunia peroxidase a and specific peroxidase isoenzymes in other Solanaceae.

    PubMed

    Hendriks, T; de Jong, A; Wijsman, H J; van Loon, L C

    1990-07-01

    A highly specific rabbit antiserum raised against peroxidase (PRXa) from petunia (Petunia hybrida) was used to investigate the antigenic relatedness of peroxidases in the Solanaceae. After SDS-PAGE of crude leaf extracts from a large number of species of this family, immunoblotting revealed that cross-reacting protein bands were present in all species tested. In order to determine whether these protein bands represent peroxidases, the peroxidase isoenzymes in thorn apple (Datura stramonium L.), tobacco (Nicotiana tabacum L.), sweet pepper (Capsicum annuum L.), potato (Solanum tuberosum L.), and tomato (Lycopersicon esculentum Mill.) were further analyzed. Immunoblots obtained after native PAGE revealed that the antiserum only recognized fast-moving peroxidase isoenzymes that are localized in the apoplast. Despite their serological relatedness, these peroxidases differed with respect to heat stability and apparent molecular weight. Differences in avidity for the petunia PRXa antiserum were suggested by immunoprecipitation with antibodies bound to protein A-Sepharose. The antiserum did not react with peroxidases from horseradish (Armoracea rusticana Gaertn., Mey and Scherb), turnip (Brassica napus L.), African marigold (Tagetes cresta L.), maize (Zea mays L.), and oats (Avena sativa L.). Apparently, the Solanaceae contain orthologous genes encoding the fast-moving anionic peroxidases homologous to petunia PRXa. PMID:24220819

  1. Antigenic relationships between petunia peroxidase a and specific peroxidase isoenzymes in other Solanaceae.

    PubMed

    Hendriks, T; de Jong, A; Wijsman, H J; van Loon, L C

    1990-07-01

    A highly specific rabbit antiserum raised against peroxidase (PRXa) from petunia (Petunia hybrida) was used to investigate the antigenic relatedness of peroxidases in the Solanaceae. After SDS-PAGE of crude leaf extracts from a large number of species of this family, immunoblotting revealed that cross-reacting protein bands were present in all species tested. In order to determine whether these protein bands represent peroxidases, the peroxidase isoenzymes in thorn apple (Datura stramonium L.), tobacco (Nicotiana tabacum L.), sweet pepper (Capsicum annuum L.), potato (Solanum tuberosum L.), and tomato (Lycopersicon esculentum Mill.) were further analyzed. Immunoblots obtained after native PAGE revealed that the antiserum only recognized fast-moving peroxidase isoenzymes that are localized in the apoplast. Despite their serological relatedness, these peroxidases differed with respect to heat stability and apparent molecular weight. Differences in avidity for the petunia PRXa antiserum were suggested by immunoprecipitation with antibodies bound to protein A-Sepharose. The antiserum did not react with peroxidases from horseradish (Armoracea rusticana Gaertn., Mey and Scherb), turnip (Brassica napus L.), African marigold (Tagetes cresta L.), maize (Zea mays L.), and oats (Avena sativa L.). Apparently, the Solanaceae contain orthologous genes encoding the fast-moving anionic peroxidases homologous to petunia PRXa.

  2. (Molecular characteristics of the lignin forming peroxidase)

    SciTech Connect

    Lagrimini, L.M.

    1990-01-01

    Since this manuscript was submitted we have conducted a more thorough physiological analysis of water relations in wild-type and peroxidase overproducing plants. These experiments include pressure bomb, plasmolysis, and membrane integrity analysis. We are also in the process of analyzing other phenotypes in peroxidase overproducer plants such as excessive browning of tissue, the rapid death of tissue in culture, and poor germination of seed. Transformed plants of Nicotiana tabacum and Nicotiana sylvestris were obtained which have peroxidase activity 3--7 fold lower than wild-type plants. This was done by introducing a chimeric gene composed of the CaMV 35S promoter and the 5' half of the tobacco anionic peroxidase cDNA in the antisense RNA configuration. A manuscript which describes this work is being written, and will be submitted for publication in January 1990. The anionic peroxidase gene has been cloned by hybridization to the cloned cDNA. The entire gene is contained on an 8.7kb fragment within a lambda phage clone. Several smaller DNA fragments have been subcloned, and some have been sequenced. One exon within the coding sequence has been sequenced, along with the partial sequence of two introns. Further sequencing is being carried-out to identify the promoter, which will be later joined to a reporter gene. 6 figs.

  3. Reinnervation by axon collaterals from single facial motoneurons to multiple muscle targets following axotomy in the adult guinea pig.

    PubMed

    Ito, M; Kudo, M

    1994-01-01

    To study the process of recovery from facial palsy experimentally, the location of cranial motoneurons supplying the posterior belly of the digastric muscle (PDG) and the extratemporal portion of the facial nerve trunk was examined in a double-labeling paradigm using two retrograde tracers in the adult guinea pig of which the facial nerve had been surgically injured. In different stages after the induced facial palsy had recovered functionally (4-13 weeks after the surgical operation), wheat germ-agglutinated horseradish peroxidase (WGA-HRP) was injected into the PDG and Fluoro-Ruby (FR) was applied to the proximal cut end of the extratemporal portion of the facial nerve trunk. Distribution of neurons retrogradely labeled with WGA-HRP and/or FR was plotted in the brainstem and compared with that of the controls. In the intact cases, HRP-labeled neurons were restrictedly seen in the accessory facial nucleus (Acs7), while FR-labeled neurons were found within the main facial nucleus (FMN). In the axotomized cases: (1) HRP-labeled neurons were seen diffusely in the Acs7 as well as in the FMN, where normal myotopical representation no longer seemed to be maintained. (2) FR-labeled neurons were also observed diffusely in the FMN and the Acs7. (3) A considerable number of neurons were doubly labeled with WGA-HRP and FR in both the Acs and the FMN in cases with shorter survival periods (4-7 weeks), but not in cases with longer survival periods (12-13 weeks). Thus, new findings show that connections are temporarily maintained by single, facial motoneurons with axon collaterals to multiple muscle targets in adult mammals.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Guaiacol peroxidase zymography for the undergraduate laboratory.

    PubMed

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity.

  5. Widespread occurrence of expressed fungal secretory peroxidases in forest soils.

    PubMed

    Kellner, Harald; Luis, Patricia; Pecyna, Marek J; Barbi, Florian; Kapturska, Danuta; Krüger, Dirk; Zak, Donald R; Marmeisse, Roland; Vandenbol, Micheline; Hofrichter, Martin

    2014-01-01

    Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase). Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp.), which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.

  6. Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils

    PubMed Central

    Kellner, Harald; Luis, Patricia; Pecyna, Marek J.; Barbi, Florian; Kapturska, Danuta; Krüger, Dirk; Zak, Donald R.; Marmeisse, Roland; Vandenbol, Micheline; Hofrichter, Martin

    2014-01-01

    Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase). Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp.), which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation. PMID:24763280

  7. Stability properties of an ancient plant peroxidase.

    PubMed

    Loughran, N B; O'Connell, M J; O'Connor, B; O'Fágáin, C

    2014-09-01

    Plant (Class III) peroxidases have numerous applications throughout biotechnology but their thermal and oxidative stabilities may limit their usefulness. Horseradish peroxidase isoenzyme C (HRPC) has good catalytic turnover and is moderately resistant to heat and to excess (oxidizing) concentrations of hydrogen peroxide. In contrast, HRP isoenzyme A2 (HRP A2) has better oxidative but poorer thermal stability, while soybean peroxidase (SBP) displays enhanced thermal stability. Intrigued by these variations amongst closely related enzymes, we previously used maximum likelihood methods (with application of Bayesian statistics) to infer an amino acid sequence consistent with their most recent common ancestor, the 'Grandparent' (GP). Here, we report the cloning and expression of active recombinant GP protein in Escherichia coli. GP's half-inactivation temperature was 45 °C, notably less than HRP C's, but its resistance to excess H2O2 was 2-fold greater. This resurrected GP protein enables a greater understanding of plant peroxidase evolution and serves as a test-bed to explore their ancestral properties.

  8. Bioconjugation of antibodies to horseradish peroxidase (hrp)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioconjugation of an antibody to an enzymatic reporter such as horseradish peroxidase (HRP) affords an effective mechanism by which immunoassay detection of a target antigen can be achieved. The use of heterobifunctional cross—linkers to covalently link antibodies to HRP provides a simple and c...

  9. Guaiacol Peroxidase Zymography for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M.; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically…

  10. Stability properties of an ancient plant peroxidase.

    PubMed

    Loughran, N B; O'Connell, M J; O'Connor, B; O'Fágáin, C

    2014-09-01

    Plant (Class III) peroxidases have numerous applications throughout biotechnology but their thermal and oxidative stabilities may limit their usefulness. Horseradish peroxidase isoenzyme C (HRPC) has good catalytic turnover and is moderately resistant to heat and to excess (oxidizing) concentrations of hydrogen peroxide. In contrast, HRP isoenzyme A2 (HRP A2) has better oxidative but poorer thermal stability, while soybean peroxidase (SBP) displays enhanced thermal stability. Intrigued by these variations amongst closely related enzymes, we previously used maximum likelihood methods (with application of Bayesian statistics) to infer an amino acid sequence consistent with their most recent common ancestor, the 'Grandparent' (GP). Here, we report the cloning and expression of active recombinant GP protein in Escherichia coli. GP's half-inactivation temperature was 45 °C, notably less than HRP C's, but its resistance to excess H2O2 was 2-fold greater. This resurrected GP protein enables a greater understanding of plant peroxidase evolution and serves as a test-bed to explore their ancestral properties. PMID:24919139

  11. Creation of a Thermally Tolerant Peroxidase.

    PubMed

    Watanabe, Y; Nakajima, H

    2016-01-01

    An artificial peroxidase with thermal tolerance and high catalytic activity has been successfully prepared by mutagenesis of an electron transfer protein, cytochrome c552 from Thermus thermophilus. The mutant enzymes were rationally designed based on the general peroxidase mechanism and spectroscopic analyses of an active intermediate formed in the catalytic reaction. Stopped flow UV-vis spectroscopy and EPR spectroscopy with a rapid freezing sample technique revealed that the initial double mutant, V49D/M69A, which was designed to reproduce the peroxidase mechanism, formed an active oxo-ferryl heme intermediate with a protein radical predominantly localized on Tyr45 during the catalytic reaction. The magnetic power saturation measurement obtained from EPR studies showed little interaction between the oxo-ferryl heme and the tyrosyl radical. Kinetics studies indicated that the isolated oxo-ferryl heme component in the active intermediate was a possible cause of heme degradation during the reaction with H2O2. Strong interaction between the oxo-ferryl heme and the radical was achieved by replacing Tyr45 with tryptophan (resulting in the Y45W/V49D/M69A mutant), which was similar to a tryptophanyl radical found in active intermediates of some catalase-peroxidases. Compared to the protein radical intermediates of V49D/M69A mutant, those of the Y45W/V49D/M69A mutant showed higher reactivity to an organic substrate than to H2O2. The Y45W/V49D/M69A mutant exhibited improved peroxidase activity and thermal tolerance. PMID:27586345

  12. Purification and some properties of peroxidase isozymes from pineapple stem.

    PubMed

    Sung, H Y; Yu, R H; Chang, C T

    1993-01-01

    The enzyme peroxidase is widely distributed among the higher plants. Isozymes of peroxidase are known to occur in a variety of tissues in a large number of plant species. In this study, peroxidase isozymes were purified from the extract of pineapple stem through successive steps of ammonium sulfate fractionation, CM-Sepharose CL-6B chromatographies and DEAE-Sepharose CL-6B chromatographies. By these steps, twelve isozymes of peroxidase were obtained. Some properties of the isozymes were studied and compared.

  13. [Characterization of lignin and Mn peroxidases from Phanerochaete chrysosporium

    SciTech Connect

    Not Available

    1992-01-01

    Lignin peroxidases were investigated with respect to enzyme kinetics and NMR spectroscopy of the heme domain. MN peroxidases were studied with respect to the role of oxalate in enzyme activity, the NMR spectroscopy of the heme domain. Gene expression of both lignin and MN peroxidases were examined as well as expression of site-directed mutants aimed at scale up production of these enzymes.

  14. Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase. A new family of fungal peroxidases.

    PubMed

    Baunsgaard, L; Dalbøge, H; Houen, G; Rasmussen, E M; Welinder, K G

    1993-04-01

    Sequence analysis and cDNA cloning of Coprinus peroxidase (CIP) were undertaken to expand the understanding of the relationships of structure, function and molecular genetics of the secretory heme peroxidases from fungi and plants. Amino acid sequencing of Coprinus macrorhizus peroxidase, and cDNA sequencing of Coprinus cinereus peroxidase showed that the mature proteins are identical in amino acid sequence, 343 residues in size and preceded by a 20-residue signal peptide. Their likely identity to peroxidase from Arthromyces ramosus is discussed. CIP has an 8-residue, glycine-rich N-terminal extension blocked with a pyroglutamate residue which is absent in other fungal peroxidases. The presence of pyroglutamate, formed by cyclization of glutamine, and the finding of a minor fraction of a variant form lacking the N-terminal residue, indicate that signal peptidase cleavage is followed by further enzymic processing. CIP is 40-45% identical in amino-acid sequence to 11 lignin peroxidases from four fungal species, and 42-43% identical to the two known Mn-peroxidases. Like these white-rot fungal peroxidases, CIP has an additional segment of approximately 40 residues at the C-terminus which is absent in plant peroxidases. Although CIP is much more similar to horseradish peroxidase (HRP C) in substrate specificity, specific activity and pH optimum than to white-rot fungal peroxidases, the sequences of CIP and HRP C showed only 18% identity. Hence, CIP qualifies as the first member of a new family of fungal peroxidases. The nine invariant residues present in all plant, fungal and bacterial heme peroxidases are also found in CIP. The present data support the hypothesis that only one chromosomal CIP gene exists. In contrast, a large number of secretory plant and fungal peroxidases are expressed from several peroxidase gene clusters. Analyses of three batches of CIP protein and of 49 CIP clones revealed the existence of only two highly similar alleles indicating less

  15. Revisiting the Non-Animal Peroxidase Superfamily.

    PubMed

    Lazzarotto, Fernanda; Turchetto-Zolet, Andreia Carina; Margis-Pinheiro, Márcia

    2015-12-01

    Peroxidases reduce peroxide through substrate oxidation in order to alleviate oxidative stress in aerobic organisms. Since the initial description of the non-animal peroxidase superfamily, great effort has been made to characterize this large and heterogeneous group of proteins. Next generation sequencing data have permitted an in-depth study of the molecular evolution of this superfamily and allowed us to perform a phylogenetic reconstruction. Through this analysis, we identified two additional class I members and, here, we discuss the similarities and differences among members of this class. Our results provide new insights into the organization of these antioxidant enzymes, allowing us to propose a new model for the emergence and evolution of this superfamily.

  16. Conversion of aminonitrotoluenes by fungal manganese peroxidase.

    PubMed

    Scheibner, K; Hofrichter, M

    1998-01-01

    Preparations of extracellular manganese peroxidase from the white-rot fungus Nematoloma frowardii and the litter decaying fungus Stropharia rugosoannulata converted rapidly the main intermediates of the explosive 2,4,-trinitrotoluene--the aminonitrotoluenes. In a cell-free system, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and 2,6-diamino-4-nitrotoluene were degraded without formation of identifiable metabolites. Radioactive experiments using a complex mixture of uniform ring-labeled 14C-TNT reduction products demonstrated the partial direct mineralization of these compounds by manganese peroxidase. The extent of aminonitrotoluene conversion as well as the release of 14CO2 from TNT reduction products were considerably enhanced in the presence of thiols like reduced glutathione or the amino acid L-cystein, which probably act as secondary mediators.

  17. Cytochrome bd Displays Significant Quinol Peroxidase Activity

    PubMed Central

    Al-Attar, Sinan; Yu, Yuanjie; Pinkse, Martijn; Hoeser, Jo; Friedrich, Thorsten; Bald, Dirk; de Vries, Simon

    2016-01-01

    Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme. PMID:27279363

  18. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase.

    PubMed

    Battistuzzi, Gianantonio; Bellei, Marzia; Vlasits, Jutta; Banerjee, Srijib; Furtmüller, Paul G; Sola, Marco; Obinger, Christian

    2010-02-01

    Eosinophil peroxidase (EPO) and lactoperoxidase (LPO) are important constituents of the innate immune system of mammals. These heme enzymes belong to the peroxidase-cyclooxygenase superfamily and catalyze the oxidation of thiocyanate, bromide and nitrite to hypothiocyanate, hypobromous acid and nitrogen dioxide that are toxic for invading pathogens. In order to gain a better understanding of the observed differences in substrate specificity and oxidation capacity in relation to heme and protein structure, a comprehensive spectro-electrochemical investigation was performed. The reduction potential (E degrees ') of the Fe(III)/Fe(II) couple of EPO and LPO was determined to be -126mV and -176mV, respectively (25 degrees C, pH 7.0). Variable temperature experiments show that EPO and LPO feature different reduction thermodynamics. In particular, reduction of ferric EPO is enthalpically and entropically disfavored, whereas in LPO the entropic term, which selectively stabilizes the oxidized form, prevails on the enthalpic term that favors reduction of Fe(III). The data are discussed with respect to the architecture of the heme cavity and the substrate channel. Comparison with published data for myeloperoxidase demonstrates the effect of heme to protein linkages and heme distortion on the redox chemistry of mammalian peroxidases and in consequence on the enzymatic properties of these physiologically important oxidoreductases.

  19. Directed evolution of a fungal peroxidase.

    PubMed

    Cherry, J R; Lamsa, M H; Schneider, P; Vind, J; Svendsen, A; Jones, A; Pedersen, A H

    1999-04-01

    The Coprinus cinereus (CiP) heme peroxidase was subjected to multiple rounds of directed evolution in an effort to produce a mutant suitable for use as a dye-transfer inhibitor in laundry detergent. The wild-type peroxidase is rapidly inactivated under laundry conditions due to the high pH (10.5), high temperature (50 degrees C), and high peroxide concentration (5-10 mM). Peroxidase mutants were initially generated using two parallel approaches: site-directed mutagenesis based on structure-function considerations, and error-prone PCR to create random mutations. Mutants were expressed in Saccharomyces cerevisiae and screened for improved stability by measuring residual activity after incubation under conditions mimicking those in a washing machine. Manually combining mutations from the site-directed and random approaches led to a mutant with 110 times the thermal stability and 2.8 times the oxidative stability of wild-type CiP. In the final two rounds, mutants were randomly recombined by using the efficient yeast homologous recombination system to shuffle point mutations among a large number of parents. This in vivo shuffling led to the most dramatic improvements in oxidative stability, yielding a mutant with 174 times the thermal stability and 100 times the oxidative stability of wild-type CiP.

  20. Biochemical and pathological studies on peroxidases -an updated review.

    PubMed

    Khan, Amjad A; Rahmani, Arshad H; Aldebasi, Yousef H; Aly, Salah M

    2014-09-01

    Peroxidases represent a family of isoenzymes actively involved in oxidizing reactive oxygen species, innate immunity, hormone biosynthesis and pathogenesis of several diseases. Different types of peroxidases have organ, tissues, cellular and sub-cellular level of specificities in their function. Different diseases lead to varied expressions of peroxidases based on several mechanisms proposed. Several researches are going on to understand its deficiency, over-expression and malfunction in relation with different diseases. Some common diseases of mankind like cancer, cardiovascular diseases and diabetes directly or indirectly involve the role of peroxidases. So the status of peroxidase levels may also function as a marker of different diseases. Although many types of diseases in human beings have a strong correlation with tissue specific peroxidases, the clear role of these oxido-reductases is not yet fully understood. Here we are focusing on the role of peroxidases in relations with different diseases occurring due to oxidative stress.

  1. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  2. Specificity of an HPETE peroxidase from rat PMN

    SciTech Connect

    Skoog, M.T.; Nichols, J.S.; Harrison, B.L.; Wiseman, J.S.

    1988-09-01

    The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-(14C)HPETE is generated from (14C)arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-(14C)HETE produced is of much lower specific activity than the (14C)arachidonic acid. This indicates that the 5-(14C)HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.

  3. Innervation of propatagial musculature in a flying squirrel, Glaucomys volans (Rodentia, Sciuridae).

    PubMed

    Chickering, J G; Sokoloff, A J

    1996-01-01

    The propatagium of gliding and flying mammals is of both functional and phylogenetic interest. The innervation of the propatagial muscle, platysma II, was studied with the axonal tracer wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) in a flying squirrel, Glaucomys volans. Injections of WGA-HRP into the proximal third of platysma II labeled motoneurons in the lateral part of the medial subdivision of the ipsilateral facial nucleus and in the ipsilateral ventral horn of the brachial enlargement. Injections into distal regions of platysma II labeled motoneurons in the ipsilateral ventral horn of spinal segments C5-C8 but not in the facial nucleus. Injections along the whole length of the muscle labeled afferent axons in the ipsilateral dorsal horn of spinal segments C4-T1. These results demonstrate a mixed facial and spinal motor innervation of propatagial musculature in the flying squirrel and indicate that this pattern of mixed innervation is more widespread among flying and gliding mammals than previously reported. Mixed facial and cervical propatagial innervation, independently derived in different flying and gliding mammals, may represent a common solution in the design of the propatagium. These findings complicate the use of propatagial muscle innervation patterns for the establishment of phylogenetic relationships among flying and gliding mammals. PMID:8834780

  4. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier

    PubMed Central

    Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao

    2016-01-01

    Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI. PMID:27180729

  5. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier.

    PubMed

    Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao

    2016-01-01

    Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI. PMID:27180729

  6. A PI 4. 6 peroxidase that specifically crosslinks extensin precursors

    SciTech Connect

    Upham, B.L; Alizadeh, H.; Ryan, K.J.; Lamport, D.T.A. )

    1991-05-01

    The primary cell wall is a microcomposite of cellulose, pectin, hemicellulose and protein. The warp-weft model of the primary cell wall hypothesize that extensin monomers are intermolecularly crosslinked orthogonal to the cellulose microfibril thus mechanically coupling the major load-bearing polymer: cellulose. Media of tomato cell cultures contains heat labile, peroxide dependent crosslinking activity, as determined by the rate of decrease in monomer concentration analyzed via Superose-6. Isoelectric focusing of tomato cell culture media indicated crosslinking was predominantly in the acidic peroxidase fraction (pI4.6). This peroxidase was partially purified by ultracentrifugation, DEAE-Trisacryl and HPLC-DEAE chromatography techniques resulting in a 90 fold purification and 45% yield. A second acidic peroxidase eluted from the HPLC-DEAE column had 25% of the crosslinking activity of the pI 4.6 peroxidase. Purified basic peroxidase had only 0.7% of the activity of the pI 4.6 peroxidase. The specific activity of the pI 4.6 peroxidase was 5,473 mg extensin crosslinked/min/mg peroxidase. The pI 4.6 peroxidase crosslinked the following extensins: tomato I and II, carrot, Ginkgo II and did not crosslink Ginkgo I, Douglas Fir, Maize, Asparagus I and II, and sugarbeet extensins as well as bovine serum albumin. Comparison of motifs common to extensins that are crosslinked by the pI 4.6 peroxidase may help identify the crosslink domain(s) of extension.

  7. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    PubMed

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  8. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms.

    PubMed

    Xu, Jian Z; Zhang, Jun L; Hu, Kai H; Zhang, Wei G

    2013-05-01

    Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity.

  9. Horseradish peroxidase catalyzed hydroxylations: mechanistic studies.

    PubMed

    Dordick, J S; Klibanov, A M; Marletta, M A

    1986-05-20

    The hydroxylation of phenol to hydroquinone and catechol in the presence of dihydroxyfumaric acid and oxygen catalyzed by horseradish peroxidase was studied under conditions where the product yield was high and the side reactions were minimal. The reaction is partially uncoupled with a molar ratio of dihydroxyfumaric acid consumed to hydroxylated products of 12:1. Hydrogen peroxide does not participate in the reaction as evidenced by the lack of effect of catalase and by the direct addition of hydrogen peroxide. Conversely, superoxide and hydroxyl radicals are involved as their scavengers are potent inhibitors. Experiments were all consistent with the involvement of compound III (oxygenated ferrous complex) of peroxidase in the reaction. Compound III is stable in the presence of phenol alone but decomposes rapidly in the presence of both phenol and dihydroxyfumaric acid with the concomitant formation of product. Therefore, phenol and dihydroxyfumaric acid must be present with compound III in order for the hydroxylation reaction to occur. A mechanism consistent with the experimental results is proposed. PMID:3718931

  10. Roles of apoplastic peroxidases in plant response to wounding.

    PubMed

    Minibayeva, Farida; Beckett, Richard Peter; Kranner, Ilse

    2015-04-01

    Apoplastic class III peroxidases (EC 1.11.1.7) play key roles in the response of plants to pathogen infection and abiotic stresses, including wounding. Wounding is a common stress for plants that can be caused by insect or animal grazing or trampling, or result from agricultural practices. Typically, mechanical damage to a plant immediately induces a rapid release and activation of apoplastic peroxidases, and an oxidative burst of reactive oxygen species (ROS), followed by the upregulation of peroxidase genes. We discuss how plants control the expression of peroxidases genes upon wounding, and also the sparse information on peroxidase-mediated signal transduction pathways. Evidence reviewed here suggests that in many plants production of the ROS that comprise the initial oxidative burst results from a complex interplay of peroxidases with other apoplastic enzymes. Later responses following wounding include various forms of tissue healing, for example through peroxidase-dependent suberinization, or cell death. Limited data suggest that ROS-mediated death signalling during the wound response may involve the peroxidase network, together with other redox molecules. In conclusion, the ability of peroxidases to both generate and scavenge ROS plays a key role in the involvement of these enigmatic enzymes in plant stress tolerance.

  11. Peroxidase-induced wilting in transgenic tobacco plants

    SciTech Connect

    Lagrimini, L.M.; Bradford, S. ); Rothstein, S. )

    1990-01-01

    Peroxidases are a family of isoenzymes found in all higher plants. However, little is known concerning their role in growth, development or response to stress. Plant peroxidases are heme-containing monomeric glycoproteins that utilize either H{sub 2}O{sub 2} or O{sub 2} to oxidize a wide variety of molecules. To obtain more information on possible in planta functions of peroxidases, the authors have used a cDNA clone for the primary isoenzyme form of peroxidase to synthesize high levels of this enzyme in transgenic plants. They were able to obtain Nicotiana tabacum and N. sylvestris transformed plants with peroxidase activity that is 10-fold higher than in wild-type plants by introducing a chimeric gene composed of the cauliflower mosaic virus 35S promoter and the tobacco anionic peroxidase cDNA. The elevated peroxidase activity was a result of increased levels of two anionic peroxidases in N. tabacum, which apparently differ in post-translational modification. Transformed plants of both species have the unique phenotype of chronic severe wilting through loss of turgor in leaves, which was initiated a the time of flowering. The peroxidase-induced wilting was shown not to be an effect of diminished water uptake through the roots, decreased conductance of water through the xylem, or increased water loss through the leaf surface of stomata. Possible explanations for the loss of turgor, and the significance of these types of experiments in studying isoenzyme families, are discussed.

  12. Purification of peroxidase isoenzymes from turnip roots.

    PubMed

    Hamed, R R; Maharem, T M; Abel Fatah, M M; Ataya, F S

    1998-08-01

    Simple reproducible procedures for purification of the main soluble (S) and ionically bound (IB) cationic peroxidase isoenzymes from turnip roots were established. The procedures included ammonium sulfate precipitation of the isoenzymes, chromatographic separation of the main isoenzymes using cellulose phosphate columns and purification to homogeneity by hydrophobic interaction chromatography on phenyl Sepharose columns. The specific activity of the phenyl Sepharose purified S and IB isoenzymes were 2760 and 896 units/mg protein with 140 and 4.8 fold increase over the crude extract and 38 and 13% recovery. The pH maxima and K(m) for phenol and H2O2 of purified S and IB were determined. PMID:9720311

  13. Accelerating peroxidase mimicking nanozymes using DNA

    NASA Astrophysics Data System (ADS)

    Liu, Biwu; Liu, Juewen

    2015-08-01

    DNA-capped iron oxide nanoparticles are nearly 10-fold more active as a peroxidase mimic for TMB oxidation than naked nanoparticles. To understand the mechanism, the effect of DNA length and sequence is systematically studied, and other types of polymers are also compared. This rate enhancement is more obvious with longer DNA and, in particular, poly-cytosine. Among the various polymer coatings tested, DNA offers the highest rate enhancement. A similar acceleration is also observed for nanoceria. On the other hand, when the positively charged TMB substrate is replaced by the negatively charged ABTS, DNA inhibits oxidation. Therefore, the negatively charged phosphate backbone and bases of DNA can increase TMB binding by the iron oxide nanoparticles, thus facilitating the oxidation reaction in the presence of hydrogen peroxide.DNA-capped iron oxide nanoparticles are nearly 10-fold more active as a peroxidase mimic for TMB oxidation than naked nanoparticles. To understand the mechanism, the effect of DNA length and sequence is systematically studied, and other types of polymers are also compared. This rate enhancement is more obvious with longer DNA and, in particular, poly-cytosine. Among the various polymer coatings tested, DNA offers the highest rate enhancement. A similar acceleration is also observed for nanoceria. On the other hand, when the positively charged TMB substrate is replaced by the negatively charged ABTS, DNA inhibits oxidation. Therefore, the negatively charged phosphate backbone and bases of DNA can increase TMB binding by the iron oxide nanoparticles, thus facilitating the oxidation reaction in the presence of hydrogen peroxide. Electronic supplementary information (ESI) available: Methods, TEM, UV-vis and DLS data. See DOI: 10.1039/c5nr04176g

  14. ATP-enhanced peroxidase-like activity of gold nanoparticles.

    PubMed

    Shah, Juhi; Purohit, Rahul; Singh, Ragini; Karakoti, Ajay Singh; Singh, Sanjay

    2015-10-15

    Gold nanoparticles (AuNPs) are known to possess intrinsic biological peroxidase-like activity that has applications in development of numerous biosensors. The reactivity of the Au atoms at the surface of AuNPs is critical to the performance of such biosensors, yet little is known about the effect of biomolecules and ions on the peroxidase-like activity. In this work, the effect of ATP and other biologically relevant molecules and ions over peroxidase-like activity of AuNPs are described. Contrary to the expectation that nanoparticles exposed to biomolecules may lose the catalytic property, ATP and ADP addition enhanced the peroxidase-like activity of AuNPs. The catalytic activity was unaltered by the addition of free phosphate, sulphate and carbonate anions however, addition of ascorbic acid to the reaction mixture diminished the intrinsic peroxidase-like activity of AuNPs, even in the presence of ATP and ADP. In contrast to AuNPs, ATP did not synergize and improve the peroxidase activity of the natural peroxidase enzyme, horseradish peroxidase.

  15. PeroxiBase: a class III plant peroxidase database.

    PubMed

    Bakalovic, Nenad; Passardi, Filippo; Ioannidis, Vassilios; Cosio, Claudia; Penel, Claude; Falquet, Laurent; Dunand, Christophe

    2006-03-01

    Class III plant peroxidases (EC 1.11.1.7), which are encoded by multigenic families in land plants, are involved in several important physiological and developmental processes. Their varied functions are not yet clearly determined, but their characterization will certainly lead to a better understanding of plant growth, differentiation and interaction with the environment, and hence to many exciting applications. Since there is currently no central database for plant peroxidase sequences and many plant sequences are not deposited in the EMBL/GenBank/DDBJ repository or the UniProt KnowledgeBase, this prevents researchers from easily accessing all peroxidase sequences. Furthermore, gene expression data are poorly covered and annotations are inconsistent. In this rapidly moving field, there is a need for continual updating and correction of the peroxidase superfamily in plants. Moreover, consolidating information about peroxidases will allow for comparison of peroxidases between species and thus significantly help making correlations of function, structure or phylogeny. We report a new database (PeroxiBase) accessible through a web server with specific tools dedicated to facilitate query, classification and submission of peroxidase sequences. Recent developments in the field of plant peroxidase are also mentioned.

  16. Effects of microwaves (900 MHz) on peroxidase systems: A comparison between lactoperoxidase and horseradish peroxidase.

    PubMed

    Barteri, Mario; De Carolis, Roberta; Marinelli, Fiorenzo; Tomassetti, Goliardo; Montemiglio, Linda Celeste

    2016-01-01

    This work shows the effects of exposure to an electromagnetic field at 900 MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry. PMID:25577980

  17. Effects of microwaves (900 MHz) on peroxidase systems: A comparison between lactoperoxidase and horseradish peroxidase.

    PubMed

    Barteri, Mario; De Carolis, Roberta; Marinelli, Fiorenzo; Tomassetti, Goliardo; Montemiglio, Linda Celeste

    2016-01-01

    This work shows the effects of exposure to an electromagnetic field at 900 MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry.

  18. The Quantum Mixed-Spin Heme State of Barley Peroxidase: A Paradigm for Class III Peroxidases

    SciTech Connect

    Howes, B.D.; Ma, J.; Marzocchi, M.P.; Schiodt, C.B.; Shelnutt, J.A.; Smulevich, G.; Welinder, K.G.; Zhang, J.

    1999-03-23

    Electronic absorption and resonance Raman (RR) spectra of the ferric form of barley grain peroxidase (BP 1) at various pH values both at room temperature and 20 K are . reported, together with EPR spectra at 10 K. The ferrous forms and the ferric complex with fluoride have also been studied. A quantum mechanically mixed-spin (QS) state has been identified. The QS heme species co-exists with 6- and 5-cHS heroes; the relative populations of these three spin states are found to be dependent on pH and temperature. However, the QS species remains in all cases the dominant heme spin species. Barley peroxidase appears to be further characterized by a splitting of the two vinyl stretching modes, indicating that the vinyl groups are differently conjugated with the porphyrin. An analysis of the presently available spectroscopic data for proteins from all three peroxidase classes suggests that the simultaneous occurrence of the QS heme state as well as the splitting of the two vinyl stretching modes is confined to class III enzymes. The former point is discussed in terms of the possible influences of heme deformations on heme spin state. It is found that moderate saddling alone is probably not enough to cause the QS state, although some saddling maybe necessary for the QS state.

  19. The quantum mixed-spin heme state of barley peroxidase: A paradigm for class III peroxidases.

    PubMed Central

    Howes, B D; Schiodt, C B; Welinder, K G; Marzocchi, M P; Ma, J G; Zhang, J; Shelnutt, J A; Smulevich, G

    1999-01-01

    Electronic absorption and resonance Raman (RR) spectra of the ferric form of barley grain peroxidase (BP 1) at various pH values, at both room temperature and 20 K, are reported, together with electron paramagnetic resonance spectra at 10 K. The ferrous forms and the ferric complex with fluoride have also been studied. A quantum mechanically mixed-spin (QS) state has been identified. The QS heme species coexists with 6- and 5-cHS hemes; the relative populations of these three spin states are found to be dependent on pH and temperature. However, the QS species remains in all cases the dominant heme spin species. Barley peroxidase appears to be further characterized by a splitting of the two vinyl stretching modes, indicating that the vinyl groups are differently conjugated with the porphyrin. An analysis of the currently available spectroscopic data for proteins from all three peroxidase classes suggests that the simultaneous occurrence of the QS heme state as well as the splitting of the two vinyl stretching modes is confined to class III enzymes. The former point is discussed in terms of the possible influences of heme deformations on heme spin state. It is found that moderate saddling alone is probably not enough to cause the QS state, although some saddling may be necessary for the QS state. PMID:10388773

  20. Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field

    NASA Astrophysics Data System (ADS)

    Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael

    Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are

  1. Oxidation of indole-3-acetic acid by peroxidase: involvement of reduced peroxidase and compound III with superoxide as a product.

    PubMed

    Smith, A M; Morrison, W L; Milham, P J

    1982-08-31

    Kinetic and spectral data establish that peroxidase may oxidize indole-3-acetic acid by either of two pathways depending on the enzyme/substrate ratio. When relatively low enzyme/substrate ratios are employed, the oxidation proceeds through a reduced peroxidase in equilibrium compound III shuttle. Conversely, peroxidase operates through the conventionally accepted pathway involving native enzyme and compounds I and II only when high enzyme/substrate ratios are used. Compound III, a specific oxidase, constitutes the dominant steady-state form of peroxidase when the reduced peroxidase in equilibrium compound III shuttle is operational. Activation of this shuttle also produces a flux of superoxide anion radical at the expense of molecular oxygen. Thus, important biological consequences may follow activation of this shuttle under physiological conditions.

  2. Molecular characterization of the lignin-forming peroxidase: Role in growth, development and response to stress

    SciTech Connect

    Lagrimini, L.M.

    1993-01-01

    This laboratory has continued its comprehensive study of the structure and function of plant peroxidases and their genes. Specifically, we are characterizing the anionic peroxidase of tobacco. During the past year we have completed the nucleotide sequence of the tobacco anionic peroxidase gene, joined the anionic peroxidase promoter to [Beta]-glucuronidase and demonstrated expression in transformed plants, measured lignin, auxin, and ethylene levels in transgenic tobacco plants over-expressing the anionic peroxidase, developed chimeric peroxidase genes to over-or under-express the anionic peroxidase in tissue specific manner in transgenic plants, and over-expressed the tobacco anionic peroxidase in transgenic tomato and sweetgum plants.

  3. The molecular characterization of the lignin-forming peroxidase

    SciTech Connect

    Lagrimini, L.M.

    1992-01-01

    This laboratory is committed to understanding the function of plant peroxidases via a multi-disciplinary approach. We have chosen the lignin-forming peroxidase from tobacco as the first isoenzyme to be subjected to this comprehensive approach. The goals which were set out upon the initiation of this project were as follows: (1) utilize a cDNA clone to the tobacco anionic peroxidase to generate transgenic plants which either over-produced this isoenzyme or specifically under-produced this isoenzyme via antisense RNA, (2) describe any phenotypic changes resulting from altered peroxidase expression, (3) perform morphological, physiological, and biochemical analysis of the above mentioned plants to help in determining the in planta function for this enzyme, and (4) clone and characterize the gene for the tobacco anionic peroxidase. A summary of progress thus far which includes both published and unpublished work will be presented in three sections: generation and characterization of transgenic plants, description of phenotypes, and biochemical and physiological analysis of peroxidase function, and cloning and characterization of the tobacco anionic peroxidase gene.

  4. Purification and characterization of peroxidase from papaya (Carica papaya) fruit.

    PubMed

    Pandey, Veda P; Singh, Swati; Singh, Rupinder; Dwivedi, Upendra N

    2012-05-01

    Ripening of papaya fruit was found to be characterized with a decrease in peroxidase activity and its transcript. This peroxidase was purified to homogeneity through successive steps of ammonium sulfate fractionation, ion exchange and molecular exclusion chromatography. The peroxidase was purified 30.22-folds with overall recovery of 44.37% and specific activity of 68.59. Purified peroxidase was found to be a heterotrimer of ~240 kDa, containing two subunits each of 85 and one of 70 kDa. Purified enzyme exhibited pH and temperature optima of 7.0 and 40 °C, respectively. K(m) values for substrates o-dianicidin, guaiacol and ascorbic acid were found to be 0.125, 0.8 and 5.2 mM, respectively. K(m) for H(2)O(2) was found to be 0.25 mM. Salicylic acid was found to activate peroxidase up to 50 μM concentration, beyond which it acted as inhibitor. Ca(2+) and Mg(2+) activated peroxidase while sodium azide, SDS, and Triton X-100 were found to inhibit peroxidase.

  5. Purification and characterization of windmill palm tree (Trachycarpus fortunei) peroxidase.

    PubMed

    Caramyshev, Alexei V; Firsova, Yuliya N; Slastya, Evgen A; Tagaev, Andrei A; Potapenko, Nataly V; Lobakova, Elena S; Pletjushkina, Olga Yu; Sakharov, Ivan Yu

    2006-12-27

    High peroxidase activity was demonstrated to be present in the leaf of several species of cold-resistant palms. Histochemical studies of the leaf of windmill palm tree (Trachycarpus fortunei) showed the peroxidase activity to be localized in hypoderma, epidermis, cell walls, and conducting bundles. However, chlorophyll-containing mesophyll cells had no peroxidase at all. The leaf windmill palm tree peroxidase (WPTP) was purified to homogeneity and had a specific activity of 6230 units/mg, RZ = 3.0, a molecular mass of 50 kDa, and an isoelectric point of pI 3.5. The electronic spectrum of WPTP with a Soret band at 403 nm was typical of plant peroxidases. The N-terminal amino acid sequence of WPTP was determined. The substrate specificity of WPTP was distinct from that of other palm peroxidases, and the best substrate for WPTP was 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid). The palm peroxidase showed an unusually high stability at elevated temperatures and high concentrations of guanidine.

  6. Characterization of lignin and Mn peroxidases from Phanerochaete chrysosporium

    SciTech Connect

    Not Available

    1991-01-01

    Long-term objectives are to elucidate the role and mechanism of the various isozymes in lignin biodegradation. Work is described on electrochemical studies on lignin and Mn peroxidases. This study was performed to investigate the structural aspects which confer the lignin and Mn peroxidases with their high reactivity. The experimentally determined redox potential of the Fe{sup 3+}/Fe{sup 2+} couple for the lignin peroxidase isozymes H1, H2, H8 and H10 are very similar, near-130 mV. The redox potential for the Mn peroxidase isozymes H3 and H4 are similar to each other ({minus}88 mV and {minus}95 mV, respectively) and are more positive than the lignin peroxidases. The higher redox potential for the Fe{sup 3+}/Fe{sup 2+} couple is consistent with the heme active site of these fungal peroxidases being more electron deficient. To investigate the accessibility of the heme active site to the substrate which is oxidized (veratryl alcohol and Mn (II)), we investigated whether these substrates had any affect on the redox potential of the heme. The E{sub m7} value for lignin and Mn peroxidases are not affected by their respective substrates, veratryl alcohol and Mn (II). These results suggest that substrates do not directly interact with the ferric heme-iron as axial ligands. This is consistent with the present model for peroxidase catalysis. Suicide inhibitor (1) and nmr studies (2) indicate that the heme-iron of horseradish peroxidase (HRP) is not fully accessible to bulky substrates occur at the periphery of the heme.

  7. Redundancy among manganese peroxidases in Pleurotus ostreatus.

    PubMed

    Salame, Tomer M; Knop, Doriv; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2013-04-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn(2+) amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn(2+)-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn(2+)-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn(2+)-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn(2+)-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members. PMID:23377936

  8. Peroxidase gene expression during tomato fruit ripening

    SciTech Connect

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-04-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A)/sup +/ RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L-/sup 35/S-methionine. The /sup 35/S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues.

  9. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    SciTech Connect

    Lagrimini, L.M.

    1990-12-31

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  10. Cell wall bound anionic peroxidases from asparagus byproducts.

    PubMed

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  11. Poria weirii as a Possible Commercial Source of Peroxidase

    PubMed Central

    Koenigs, J. W.

    1972-01-01

    Poria weirii produced peroxidase in yields amounting to 35% of those obtained from the same weight of horseradish roots. The three isozymes detected were distinct from those of horseradish. PMID:5018622

  12. Improved operational stability of peroxidases by coimmobilization with glucose oxidase.

    PubMed

    van de Velde, F; Lourenço, N D; Bakker, M; van Rantwijk, F; Sheldon, R A

    2000-08-01

    The operational stability of peroxidases was considerably enhanced by generating hydrogen peroxide in situ from glucose and oxygen. For example, the total turnover number of microperoxidase-11 in the oxidation of thioanisole was increased sevenfold compared with that obtained with continuous addition of H(2)O(2). Coimmobilization of peroxidases with glucose oxidase into polyurethane foams afforded heterogeneous biocatalysts in which the hydrogen peroxide is formed inside the polymeric matrix from glucose and oxygen. The total turnover number of chloroperoxidase in the oxidation of thioanisole and cis-2-heptene was increased to new maxima of 250. 10(3) and 10. 10(3), respectively, upon coimmobilization with glucose oxidase. Soybean peroxidase, which normally shows only classical peroxidase activity, was transformed into an oxygen-transfer catalyst when coimmobilized with glucose oxidase. The combination catalyst mediated the enantioselective oxidation of thioanisole [50% ee (S)] with 210 catalyst turnovers. PMID:10861408

  13. CYTOCHEMICAL LOCALIZATION OF ENDOGENOUS PEROXIDASE IN THYROID FOLLICULAR CELLS

    PubMed Central

    Strum, Judy M.; Karnovsky, Morris J.

    1970-01-01

    Endogenous peroxidase activity in rat thyroid follicular cells is demonstrated cytochemically. Following perfusion fixation of the thyroid gland, small blocks of tissue are incubated in a medium containing substrate for peroxidase, before being postfixed in osmium tetroxide, and processed for electron microscopy. Peroxidase activity is found in thyroid follicular cells in the following sites: (a) the perinuclear cisternae, (b) the cisternae of the endoplasmic reticulum, (c) the inner few lamellae of the Golgi complex, (d) within vesicles, particularly those found apically, and (e) associated with the external surfaces of the microvilli that project apically from the cell into the colloid. In keeping with the radioautographic evidence of others and the postulated role of thyroid peroxidase in iodination, it is suggested that the microvillous apical cell border is the major site where iodination occurs. However, that apical vesicles also play a role in iodination cannot be excluded. The in vitro effect of cyanide, aminotriazole, and thiourea is also discussed. PMID:4190069

  14. Stimuli-responsive peroxidase mimicking at a smart graphene interface.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Quan, Xie

    2012-07-18

    A synergistic graphene-based catalyst was engineered by the in situ growth of "naked" Au-nanoparticles (NPs) on graphene sheets. The catalyst exhibits excellent switchable peroxidase-like activity in response to specific DNA. PMID:22673613

  15. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    SciTech Connect

    Lagrimini, L.M.

    1990-01-01

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  16. Grafting of Functional Molecules: Insights into Peroxidase-Derived Materials

    NASA Astrophysics Data System (ADS)

    Nyanhongo, Gibson S.; Prasetyo, Endry Nugroho; Kudanga, Tukayi; Guebitz, Georg

    An insight into the progress made in applying heme peroxidases in grafting processes, starting from the production of simple resins to more complex polymers, is presented. The refinement of the different reaction conditions (solvents, concentrations of the reactants) and careful study of the reaction mechanisms have been instrumental in advancing enzymatic grafting processes. A number of processes described here show how peroxidase mediated catalysis could provide a new strategy as an alternative to conventional energy intensive procedures mediated by chemical catalysts.

  17. Roles of horseradish peroxidase in response to terbium stress.

    PubMed

    Zhang, Xuanbo; Wang, Lihong; Zhou, Qing

    2014-10-01

    The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb(3+)) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb(3+) treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb(3+), these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb(3+) stress. These roles were closely related to the dose of Tb(3+), duration of stress, and growth stages of horseradish.

  18. Iron deficiency differently affects peroxidase isoforms in sunflower.

    PubMed

    Ranieri, A; Castagna, A; Baldan, B; Soldatini, G F

    2001-01-01

    The response of both specific (ascorbate peroxidase, APX) and unspecific (POD) peroxidases and H(2)O(2) content of sunflower plants (Helianthus annuus L. cv. Hor) grown hydroponically with (C) or without (-Fe) iron in the nutrient solution were analysed to verify whether iron deficiency led to cell oxidative status. In -Fe leaves a significant increase of H(2)O(2) content was detected, a result confirmed by electron microscopy analysis. As regards extracellular peroxidases, while APX activity significantly decreased, no change was observed in either soluble guaiacol or syringaldazine-dependent POD activity following iron starvation. Moreover, guaiacol-dependent POD activity was found to decrease in both ionically and covalently-cell-wall bound fractions, while syringaldazine-POD activity decreased only in the covalently-bound fraction. At the intracellular level both guaiacol-POD and APX activities underwent a significant decrease. The overall reduction of peroxidase activity was confirmed by the electrophoretic separation of POD isoforms and, at the extracellular level, by cytochemical localization of peroxidases by diaminobenzidine staining. The electrophoretic separation, besides quantitative differences, also revealed quantitative changes, particularly evident for ionically and covalently-bound fractions. Therefore, in sunflower plants, iron deficiency seems to affect the different peroxidase isoenzymes to different extents and to induce a secondary oxidative stress, as indicated by the increased levels of H(2)O(2). However, owing to the almost completely lack of catalytic iron capable of triggering the Fenton reaction, iron-deficient sunflower plants are probably still sufficiently protected against oxidative stress.

  19. Serine incorporation into the selenocysteine moiety of glutathione peroxidase

    SciTech Connect

    Sunde, R.A.; Evenson, J.K.

    1987-01-15

    The selenium in mammalian glutathione peroxidase is present as a selenocysteine ((Se)Cys) moiety incorporated into the peptide backbone 41-47 residues from the N-terminal end. To study the origin of the skeleton of the (Se)Cys moiety, we perfused isolated rat liver with /sup 14/C- or /sup 3/H-labeled amino acids for 4 h, purified the GSH peroxidase, derivatized the (Se)Cys in GSH peroxidase to carboxymethylselenocysteine ((Se)Cys(Cm)), and determined the amino acid specific activity. Perfusion with (/sup 14/C)cystine resulted in (/sup 14/C)cystine incorporation into GSH peroxidase without labeling (Se)Cys(Cm), indicating that cysteine is not a direct precursor for (Se)Cys. (/sup 14/C)Serine perfusion labeled serine, glycine (the serine hydroxymethyltransferase product), and (Se)Cys(Cm) in purified GSH peroxidase, whereas (3-3H)serine perfusion only labeled serine and (Se)Cys(Cm), thus demonstrating that the (Se)Cys in GSH peroxidase is derived from serine. The similar specific activities of serine and (Se)Cys(Cm) strongly suggest that the precursor pool of serine used for (Se) Cys synthesis is the same or similar to the serine pool used for acylation of seryl-tRNAs.

  20. Mouse Splenic Peroxidase and Its Role in Bactericidal Activity 1

    PubMed Central

    Strauss, R. R.; Paul, B. B.; Jacobs, A. A.; Sbarra, A. J.

    1972-01-01

    Spleen cell suspensions from AKR and CD-1 mice contain peroxidase activity as determined by guaiacol oxidation. This activity is found predominately in the 20,000 × g pellet fraction of spleen cell homogenates. In the presence of H2O2 and chloride ion at acidic pH, splenic peroxidase mediates the oxidation of d- or l-alanine to CO2, NH3, and acetaldehyde. The same reaction mixture without added amino acid can kill both gram-positive and gram-negative bacteria. The conditions for both reactions are similar. Both have an absolute requirement for H2O2 and chloride ion, neither is active at neutral or alkaline pH, and both are inhibited by the sulfonic amino acid taurine. In these aspects, splenic peroxidase is qualitatively similar in its activity to myeloperoxidase (MPO) from polymorphonuclear leukocytes. It is quantitatively different from MPO in that the latter is more potent on a per guaiacol unit basis with respect to both amino acid oxidation and bactericidal activity. Still another quantitative difference is that splenic peroxidase requires 0.1 m NaCl for activity, whereas MPO functions with as little as 0.005 m NaCl. Splenic peroxidase and MPO both appear to differ qualitatively from horseradish peroxidase in that the latter enzyme does not mediate amino acid oxidation. PMID:4632463

  1. Peroxidase-catalyzed color removal from bleach plant effluent.

    PubMed

    Paice, M G; Jurasek, L

    1984-05-01

    Effluent from the caustic extraction stage of a bleach plant is highly colored due to the presence of dissolved products from lignin chlorination and oxidation. Color removal from the effluent by hydrogen peroxide at neutral pH was catalyzed by addition of horseradish peroxidase. The catalysis with peroxidase (20 mg/L) was observed over a wide range of peroxide concentrations (0.1mM-500mM), but the largest effect was between 1mM and 100mM. The pH optimum for catalysis was around 5.0, while the basal rate of noncatalyzed peroxide color removal simply increased with pH within the range tested (3-10). Peroxidase catalysis at pH 7.6 reached a maximum at 40 degrees C in 4 h assays with 10mM peroxide, and disappeared above 60 degrees C. Compared with mycelial color removal by Coriolus versicolor, the rate of color removal by peroxide plus peroxidase was initially faster (first 4 h), but the extent of color removal after 48 h was higher with the fungal treatment. Further addition of peroxidase to the enzyme-treated effluent did not produce additional catalysis. Thus, the peroxide/peroxidase system did not fully represent the metabolic route used by the fungus.

  2. NMR studies of recombinant Coprinus peroxidase and three site-directed mutants. Implications for peroxidase substrate binding.

    PubMed

    Veitch, N C; Tams, J W; Vind, J; Dalbøge, H; Welinder, K G

    1994-06-15

    Proton nuclear magnetic resonance spectroscopy has been used to characterise and compare wild-type fungal and recombinant Coprinus cinereus peroxidase (CIP) and three mutants in which Gly156 and/or Asn157 was replaced by Phe. Analysis of one- and two-dimensional NMR spectra of recombinant CIP was undertaken for comparison with the fungal enzyme and in order to establish a meaningful basis for solution studies of CIP mutants. Proton resonance assignments of haem and haem-linked residues obtained for the cyanide-ligated form of recombinant CIP revealed a high degree of spectral similarity with those of lignin and manganese-dependent peroxidases and extend previously reported NMR data for fungal CIP. The three mutants examined by NMR spectroscopy comprised site-specific substitutions made to a region of the structure believed to form part of the peroxidase haem group access channel for substrate and ligand molecules. Proton resonances of the aromatic side-chains of Phe156 and Phe157 were found to have similar spectral characteristics to those of two phenylalanine residues known to be involved in the binding of aromatic donor molecules to the plant peroxidase, horseradish peroxidase isoenzyme C. The results are discussed in the context of complementary reactivity studies on the mutants in order to develop a more detailed understanding of aromatic donor molecule binding to fungal and plant peroxidases.

  3. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite.

    PubMed

    Wang, T S; Shu, Y F; Liu, Y C; Jan, K Y; Huang, H

    1997-09-01

    The X-ray hypersensitive Chinese hamster ovary (CHO) cells, xrs-5, are also more sensitive to sodium arsenite in terms of cell growth and micronucleus induction than CHO-K1 cells. Since reactive oxygen species are suggested to be involved in arsenic toxicity, we have measured antioxidant mechanisms in xrs-5 as well as CHO-K1 cells. There were no apparent differences in the activities of superoxide dismutase, glutathione S-transferase, glutathione reductase, and the levels of glutathione between xrs-5 and CHO-K1 cells. However, the activities of glutathione peroxidase and catalase were 5.4- and 5.8-fold lower, respectively, in xrs-5 cells. The addition of catalase or glutathione peroxidase to cultures reduced the arsenite-induced micronuclei in xrs-5 cells. Whereas, simultaneous treatment with mercaptosuccinate, an inhibitor of glutathione peroxidase, and 3-aminotriazole, an inhibitor of catalase, synergistically increased the arsenite-induced micronuclei. These results suggest that both catalase and glutathione peroxidase are involved in defense against arsenite genotoxicity. The xrs-6 cells, another line of x-ray hypersensitive CHO cells, which had 1.6-fold higher catalase activity and 2.5-fold higher glutathione peroxidase activity than xrs-5 cells, were also more sensitive than CHO-K1 cells but were less sensitive than xrs-5 cells to cell growth inhibition of arsenite. Moreover, a 1.6-fold increase of glutathione peroxidase activity by selenite adaptation effectively removed the arsenite-induced micronuclei in CHO-K1 cells. These results suggest that glutathione peroxidase is more important than catalase in defending against arsenite toxicity. Our results also suggest that increasing the intracellular antioxidant level may have preventive or therapeutic effects in arsenic poisoning.

  4. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis.

    PubMed

    Herrero, Joaquín; Esteban-Carrasco, Alberto; Zapata, José Miguel

    2013-06-01

    Monolignol polymerization into lignin is catalyzed by peroxidases or laccases. Recently, a Zinnia elegans peroxidase (ZePrx) that is considered responsible for monolignol polymerization in this plant has been molecularly and functionally characterized. Nevertheless, Arabidopsis thaliana has become an alternative model plant for studies of lignification, filling the gaps that may occur with Z. elegans. The arabidopsis genome offers the possibility of performing bioinformatic analyses and data mining that are not yet feasible with other plant species, in order to obtain preliminary evidence on the role of genes and proteins. In our search for arabidopsis homologs to the ZePrx, we performed an exhaustive in silico characterization of everything from the protein to the transcript of Arabidopsis thaliana peroxidases (AtPrxs) homologous to ZePrx, with the aim of identifying one or more peroxidases that may be involved in monolignol polymerization. Nine peroxidases (AtPrx 4, 5, 52, 68, 67, 36, 14, 49 and 72) with an E-value greater than 1e-80 with ZePrx were selected for this study. The results demonstrate that a high level of 1D, 2D and 3D homology between these AtPrxs and ZePrx are not always accompanied by the presence of the same electrostatic and mRNA properties that indicate a peroxidase is involved in lignin biosynthesis. In summary, we can confirm that the peroxidases involved in lignification are among AtPrx 4, 52, 49 and 72. Their structural and mRNA features indicate that exert their action in the cell wall similar to ZePrx.

  5. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in tissues of Balb/C mice

    SciTech Connect

    Spallholz, J.E.; Roveri, A.; Yan, L.; Boylan, L.M.; Kang, C.R.; Ursini, F. Univ. of Padua )

    1991-03-11

    The two selenium (Se) enzymes glutathione peroxidase (GPx) and phospholipid hydroperoxide glutathione peroxide (PHGPx) were assayed in tissues and organ homogenates of female Balb/C mice fed torula yeast diets containing 0.008, 0.2 and 1.0 ug/g Se as selenite for nine months. GPx activity was detected in all tissues and organs whereas PHGPx activity was not detectable in lung, large intestine, eye or thymus tissue. GPx activity nearly always exceeded PHGPx activity when tissues or organs contained both enzymes irrespective of dietary Se treatment. GPx activity in tissues was generally more susceptible to the dietary Se deficiency than was PHGPx activity when expressed as a percentage of the activity found in tissues and organs of mice fed supplemented Se diets. This limited study suggests that dietary Se may be more valued in supporting PHGPx activity than GPx activity in the course of a protracted dietary Se deficiency.

  6. Cantaloupe melon peroxidase: characterization and effects of additives on activity.

    PubMed

    Lamikanra, O; Watson, M A

    2000-06-01

    Peroxidase in cantaloupe melon (Cucumis melo L. var. reticulatus Naud.), a fruit commonly fresh cut processed, was characterized to determine reaction pathway, optimal conditions for activity and effect of some additives on enzymatic action. Mn2+, CaCl2, NaNO2 and kinetin had partial inhibitory effects on enzyme activity. Activity was effectively inhibited by compounds capable of chelating peroxidase heme iron such as diethyldithiocarbamate and tiron, but unaffected by EDTA. Free radical scavenger, superoxide dismutase, also had no effect on reaction velocity. Enzymatic action was consistent with that of ascorbate peroxidase based on the relatively higher affinity for ascorbate over guaiacol. Optimum activity temperature was 50-55 degrees C. The enzyme was stable at temperatures below 40 degrees C and at 50 degrees C for up to 10 min. Over 90% of total activity was lost at 80 degrees C within 5 min. Broad pH optima, 5.5-7.5 at 50 degrees C and 6-7 at 30 degrees C, were obtained. Peroxidase activity in cantaloupe was higher than those in strawberry (Fragaria ananassa Duch.) and lettuce (Lactuca sativa L.), suggesting a relatively high oxidative stress in fresh cut cantaloupe. The potential use of ascorbate as an additive in fresh cut cantaloupe melon was demonstrated by its ability to preserve color in minimally processed fruits for 25 days at 4 degrees C, possibly as a result of an enhanced antioxidative action of the ascorbate-peroxidase complex and trace metal ion cofactors.

  7. Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences.

    PubMed

    Tejero, Jesús; Kapralov, Alexandr A; Baumgartner, Matthew P; Sparacino-Watkins, Courtney E; Anthonymutu, Tamil S; Vlasova, Irina I; Camacho, Carlos J; Gladwin, Mark T; Bayir, Hülya; Kagan, Valerian E

    2016-05-01

    Cytoglobin (Cygb) is a hexa-coordinated hemoprotein with yet to be defined physiological functions. The iron coordination and spin state of the Cygb heme group are sensitive to oxidation of two cysteine residues (Cys38/Cys83) and/or the binding of free fatty acids. However, the roles of redox vs lipid regulators of Cygb's structural rearrangements in the context of the protein peroxidase competence are not known. Searching for physiologically relevant lipid regulators of Cygb, here we report that anionic phospholipids, particularly phosphatidylinositolphosphates, affect structural organization of the protein and modulate its iron state and peroxidase activity both conjointly and/or independently of cysteine oxidation. Thus, different anionic lipids can operate in cysteine-dependent and cysteine-independent ways as inducers of the peroxidase activity. We establish that Cygb's peroxidase activity can be utilized for the catalysis of peroxidation of anionic phospholipids (including phosphatidylinositolphosphates) yielding mono-oxygenated molecular species. Combined with the computational simulations we propose a bipartite lipid binding model that rationalizes the modes of interactions with phospholipids, the effects on structural re-arrangements and the peroxidase activity of the hemoprotein.

  8. Peroxidase extraction from jicama skin peels for phenol removal

    NASA Astrophysics Data System (ADS)

    Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.

    2016-06-01

    Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.

  9. Peroxidases from cell suspension cultures of Brassica napus.

    PubMed

    Agostini, E; de Forchetti, S M; Tigier, H A

    2000-08-01

    Cell suspension cultures of Brassica napus were obtained under different hormonal conditions, using 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin as growth regulators. They were analyzed as a culture system for peroxidase production in vitro to avoid many of the problems that affect the production from field-grown roots. Total peroxidase specific activities reached a maximum at the end of exponential growth phase of the cultures. Cultures obtained with 4 mg/l of 2,4-D an without kinetin or with 1 mg/l of 2,4-D and the same amount of kinetin produced twice the total activity of root extracts and, in addition, they released peroxidases to the culture medium, which would be advantageous for the commercial production of the enzyme. Peroxidase patterns, obtained by isoelectric focusing of cell extracts and of culture medium of cell suspension cultures, differed from those of root crude extracts from field-grown plants with additional bands of higher isoelectric points. These cultures showed interesting properties and could be considered an alternative source of peroxidases for commercial production and/or to be applied as a model for physiological research. PMID:10979611

  10. Purification, crystallization, and characterization of peroxidase from Coprinus cinereus.

    PubMed

    Morita, Y; Yamashita, H; Mikami, B; Iwamoto, H; Aibara, S; Terada, M; Minami, J

    1988-04-01

    Peroxidase (donor: H2O2 oxidoreductase [EC 1.11.1.7]) was purified from a culture broth of an inkcap Basidiomycete, Coprinus cinereus S.F. Gray. A single component containing a low amount of carbohydrate was isolated by affinity chromatography on concanavalin A-Sepharose and crystallized from ammonium sulfate solution. The enzyme is an acidic protein (pI 3.5) and consists of a single polypeptide chain having the molecular weight of 41,600 daltons. The enzyme contains one protohemin per molecule and exhibits the characteristic absorption, circular dichroism, and magnetic circular dichroism spectra of a heme-protein. The Coprinus peroxidase forms two characteristic intermediate compounds, I and II, and the rate constants for hydrogen peroxide and guaiacol had similar values to those for higher plant peroxidases. The ferric enzyme formed a cyanide compound with a dissociation constant similar to those for higher plant enzyme, but the dissociation constant of the ferrous enzyme-cyanide was large. The chemical composition of Coprinus peroxidase showed 381 amino acid residues, 1 glucosamine, 3 true sugars, 3 calcium, and 1 non-heme iron other than 1 protohemin. The secondary structure of the fungal enzyme was very similar to that of horseradish peroxidase.

  11. Horseradish peroxidase: a modern view of a classic enzyme.

    PubMed

    Veitch, Nigel C

    2004-02-01

    Horseradish peroxidase is an important heme-containing enzyme that has been studied for more than a century. In recent years new information has become available on the three-dimensional structure of the enzyme and its catalytic intermediates, mechanisms of catalysis and the function of specific amino acid residues. Site-directed mutagenesis and directed evolution techniques are now used routinely to investigate the structure and function of horseradish peroxidase and offer the opportunity to develop engineered enzymes for practical applications in natural product and fine chemicals synthesis, medical diagnostics and bioremediation. A combination of horseradish peroxidase and indole-3-acetic acid or its derivatives is currently being evaluated as an agent for use in targeted cancer therapies. Physiological roles traditionally associated with the enzyme that include indole-3-acetic acid metabolism, cross-linking of biological polymers and lignification are becoming better understood at the molecular level, but the involvement of specific horseradish peroxidase isoenzymes in these processes is not yet clearly defined. Progress in this area should result from the identification of the entire peroxidase gene family of Arabidopsis thaliana, which has now been completed. PMID:14751298

  12. Vanadate as an inhibitor of plant and mammalian peroxidases.

    PubMed

    Serra, M A; Sabbioni, E; Marchesini, A; Pintar, A; Valoti, M

    Vanadate ions are shown to inhibit horseradish, squash, and rat intestinal peroxidases by following the reaction spectrophotometrically in a wide range of vanadate concentrations. I50 in phosphate buffer were 43, 9.4, and 535 microM, respectively. No inhibitory effect was found on cow milk lactoperoxidase and beef liver catalase. Gel filtration of peroxidases in the presence of vanadate, as carried out by radioactive 48V for horseradish peroxidases (either in aerobic or anoxic conditions) and neutron activation analysis (NAA) for squash peroxidase, demonstrated a binding of vanadium to these enzymes in stoichiometric amounts. Electron paramagnetic resonance spectra of the eluted peaks for the former peroxidase indicated that vanadium is in the +5 oxidation state, but an equilibrium between V (V) and V (IV) in the assay conditions cannot be discarded. Although the inhibitory mechanism remains obscure, some hypotheses are considered. The potential implications that the inhibitory effect of vanadium might have on plant and animal metabolism are also discussed. PMID:2484422

  13. Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus

    SciTech Connect

    Mliki, A.; Zimmermann, W. )

    1992-03-01

    Peroxidases play an important role in the oxidation of a large number of aromatic compounds, including recalcitrant substances. An intracellular peroxidase (EC 1.11.1.7) from Streptomyces cyaneus was purified to homogeneity. The enzyme had a molecular weight of 185,000 and was composed of two subunits of equal size. It had an isoelectric point of 6.1. The enzyme had a peroxidase activity toward o-dianisidine with a K{sub m} of 17.8 {mu}M and a pH optimum of 5.0. It also showed catalase activity with a K{sub m} of 2.07 mM H{sub 2}O{sub 2} and a pH optimum of 8.0. The purified enzyme did not catalyze C{alpha}-C{beta} bond cleavage of 1,3-dihydroxy-2-(2-methoxyphenoxy)-1-(4-ethoxy-3-methoxyphenyl) propane, a nonphenolic dimeric lignin model compound. The spectrum of te peroxidase showed a soret band at 405 nm, which disappeared after reduction with sodium dithionite, indicating that the enzyme is a hemoprotein. Testing the effects of various inhibitors on the enzyme activity showed that it is a bifunctional enzyme having catalase and peroxidase activities.

  14. Optimization of extracellular fungal peroxidase production by 2 Coprinus species.

    PubMed

    Ikehata, Keisuke; Pickard, Michael A; Buchanan, Ian D; Smith, Daniel W

    2004-12-01

    Optimum culture conditions for the batch production of extracellular peroxidase by Coprinus cinereus UAMH 4103 and Coprinus sp. UAMH 10067 were explored using 2 statistical experimental designs, including 2-level, 7-factor fractional factorial design and 2-factor central composite design. Of the 7 factors examined in the screening study, the concentrations of carbon (glucose) and nitrogen (peptone or casitone) sources showed significant effects on the peroxidase production by Coprinus sp. UAMH 10067. The optimum glucose and peptone concentrations were determined as 2.7% and 0.8% for Coprinus sp. UAMH 10067, and 2.9% and 1.4% for C. cinereus UAMH 4103, respectively. Under the optimized culture condition the maximum peroxidase activity achieved in this study was 34.5 U x mL(-1) for Coprinus sp. UAMH 10067 and 68.0 U x mL(-1) for C. cinereus UAMH 4103, more than 2-fold higher than the results of previous studies.

  15. Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem-apoprotein interactions

    PubMed Central

    Henriksen, Anette; Mirza, Osman; Indiani, Chiara; Teilum, Kaare; Smulevich, Giulietta; Welinder, Karen G.; Gajhede, Michael

    2001-01-01

    Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could be of functional importance. SBP has one of the most solvent accessible δ-meso haem edge (the site of electron transfer from reducing substrates to the enzymatic intermediates compound I and II) so far described for a plant peroxidase and structural alignment suggests that the volume of Ile74 is a factor that influences the solvent accessibility of this important site. A contact between haem C8 vinyl and the sulphur atom of Met37 is observed in the SBP structure. This interaction might affect the stability of the haem group by stabilisation/delocalisation of the porphyrin π-cation of compound I. PMID:11266599

  16. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene

    SciTech Connect

    Diaz-De-Leon, F.; Klotz, K.L.; Lagrimini, L.M. )

    1993-03-01

    Peroxidases have been implicated in numerous physiological processes including lignification (Grisebach, 1981), wound-healing (Espelie et al., 1986), phenol oxidation (Lagrimini, 1991), pathogen defense (Ye et al., 1990), and the regulation of cell elongation through the formation of interchain covalent bonds between various cell wall polymers (Fry, 1986; Goldberg et al., 1986; Bradley et al., 1992). However, a complete description of peroxidase action in vivo is not available because of the vast number of potential substrates and the existence of multiple isoenzymes. The tobacco anionic peroxidase is one of the better-characterized isoenzymes. This enzyme has been shown to oxidize a number of significant plant secondary compounds in vitro including cinnamyl alcohols, phenolic acids, and indole-3-acetic acid (Maeder, 1980; Lagrimini, 1991). A cDNA encoding the enzyme has been obtained, and this enzyme was shown to be expressed at the highest levels in lignifying tissues (xylem and tracheary elements) and also in epidermal tissue (Lagrimini et al., 1987). It was shown at this time that there were four distinct copies of the anionic peroxidase gene in tobacco (Nicotiana tabacum). A tobacco genomic DNA library was constructed in the [lambda]-phase EMBL3, from which two unique peroxidase genes were sequenced. One of these clones, [lambda]POD1, was designated as a pseudogene when the exonic sequences were found to differ from the cDNA sequences by 1%, and several frame shifts in the coding sequences indicated a dysfunctional gene (the authors' unpublished results). The other clone, [lambda]POD3, described in this manuscript, was designated as the functional tobacco anionic peroxidase gene because of 100% homology with the cDNA. Significant structural elements include an AS-2 box indicated in shoot-specific expression (Lam and Chua, 1989), a TATA box, and two intervening sequences. 10 refs., 1 tab.

  17. Properties of a cationic peroxidase from Citrus jambhiri cv. Adalia.

    PubMed

    Mohamed, Saleh A; El-Badry, Mohamed O; Drees, Ehab A; Fahmy, Afaf S

    2008-08-01

    The major pool of peroxidase activity is present in the peel of some Egyptian citrus species and cultivars compared to the juice and pulp. Citrus jambhiri cv. Adalia had the highest peroxidase activity among the examined species. Four anionic and one cationic peroxidase isoenzymes from C. jambhiri were detected using the purification procedure including ammonium sulfate precipitation, chromatography on diethylaminoethanol-cellulose, carboxymethyl-cellulose, and Sephacryl S-200 columns. Cationic peroxidase POII is proved to be pure, and its molecular weight was 56 kDa. A study of substrate specificity identified the physiological role of POII, which catalyzed the oxidation of some phenolic substrates in the order of o-phenylenediamine > guaiacol > o-dianisidine > pyrogallol > catechol. The kinetic parameters (K (m), V (max), and V (max)/K (m)) of POII for hydrolysis toward H2O2 and electron donor substrates were studied. The enzyme had pH and temperature optima at 5.5 and 40 degrees C, respectively. POII was stable at 10-40 degrees C and unstable above 50 degrees C. The thermal inactivation profile of POII is biphasic and characterized by a rapid decline in activity on exposure to heat. The most of POII activity (70-80%) was lost at 50, 60, and 70 degrees C after 15, 10, and 5 min of incubation, respectively. Most of the examined metal ions had a very slight effect on POII except of Li+, Zn2+, and Hg2+, which had partial inhibitory effects. In the present study, the instability of peroxidase above 50 degrees C makes the high temperature short time treatment very efficient for the inactivation of peel peroxidase contaminated in orange juice to avoid the formation of off-flavors. PMID:18633734

  18. Improved avidin-biotin-peroxidase complex (ABC) staining.

    PubMed

    Cattoretti, G; Berti, E; Schiró, R; D'Amato, L; Valeggio, C; Rilke, F

    1988-02-01

    A considerable intensification of the avidin-biotin-peroxidase complex staining system (ABC) was obtained by sequentially overlaying the sections to be immunostained with an avidin-rich and a biotin-rich complex. Each sequential addition contributed to the deposition of horseradish peroxidase on the immunostained site and allowed the subsequent binding of a complementary complex. With this technique a higher dilution of the antisera could be used and minute amounts of antigen masked by the fixative could be demonstrated on paraffin sections.

  19. Suicide inactivation of peroxidase from Chamaerops excelsa palm tree leaves.

    PubMed

    Cuadrado, Nazaret Hidalgo; Zhadan, Galina G; Roig, Manuel G; Shnyrov, Valery L

    2011-12-01

    The concentration and time-dependences and the mechanism of the inactivation of Chamaerops excelsa peroxidase (CEP) by hydrogen peroxide were studied kinetically with four co-substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, o-dianisidine and o-phenylenediamine). The turnover number (r) of H(2)O(2) required to complete the inactivation of the enzyme varied for the different substrates, the enzyme most resistant to inactivation (r=4844) with ABTS being the most useful substrate for biotechnological applications, opening a new avenue of enquiry with this peroxidase.

  20. [Purification and characterization of peroxidase from Phellinus igniarius (author's transl)].

    PubMed

    Krüger, G; Pfeil, E

    1976-08-01

    A Peroxidase (EC 1.11.1.7) of the basidiomycet Phellinus igniarius was derived from mycel and a medium containing glucose and extract of yeast by using various methods of preparation. The enzyme resists extreme conditions (pH, temperature salt concentration). Its optimum pH for activities is in the acid range. Two isoenzymes were found. The molecular weight, isoelectric point, Michaelis-Menten constant, indolacetic acid oxidase activity and spectral and analytical properties of this peroxidase were determined. It is assumed that the enzyme has an intracellular as well as an extracellular field of activity. PMID:962469

  1. Glutathione peroxidase and iron-thiol dependent lipid peroxidation.

    PubMed

    Punekar, N S; Lardy, H A

    1989-12-01

    Role of glutathione peroxidase in iron-thiol-mediated lipid peroxidation was examined. The enzyme was unable to prevent peroxidation of extracted rat liver microsomal lipids. In contrast, when arachidonic acid was the substrate, glutathione peroxidase did decrease the formation of thiobarbituric acid-reactive material. Superoxide dismutase produced a consistent but partial inhibition of peroxidation and catalase was without effect. Our results suggest that iron-thiol-dependent lipid peroxidation cannot be completely blocked by protective enzymes that are effective in other systems. PMID:2635868

  2. Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei.

    PubMed

    Paré, D; Smith, Y; Parent, A; Steriade, M

    1988-04-01

    We combined the retrograde transport of wheat germ agglutinin conjugated with horseradish peroxidase with choline acetyltransferase immunohistochemistry to study the projections of cholinergic and non-cholinergic neurons of the upper brainstem core to rostral and caudal intralaminar thalamic nuclei, reticular thalamic complex and zona incerta in the cat. After wheat germ agglutinin-horseradish peroxidase injections in the rostral pole of the reticular thalamic nucleus, the distribution and amount of retrogradely labeled brainstem neurons were similar to those found after tracer injection in thalamic relay nuclei (see preceding paper). After wheat germ agglutinin-horseradish peroxidase injections in the caudal intralaminar centrum medianum-parafascicular complex, rostral intralaminar central lateral-paracentral wing, and zona incerta, the numbers of retrogradely labeled brainstem neurons were more than three times higher than those found after injections in thalamic relay nuclei. The larger numbers of horseradish peroxidase-positive brainstem reticular neurons after tracer injections in intralaminar or zona incerta injections results from a more substantial proportion of labeled neurons in the central tegmental field at rostral midbrain (perirubral) levels and in the ventromedial part of the pontine reticular formation, ipsi- and contralaterally to the injection site. Of all retrogradely labeled neurons in the caudal midbrain core at the level of the cholinergic peribrachial area and laterodorsal tegmental nucleus, 45-50% were also choline acetyltransferase-positive after the injections into central lateral-paracentral and reticular nuclei, while only 25% were also choline acetyltransferase-positive after the injection into the centrum medianum-parafascicular complex. These findings are discussed in the light of physiological evidence of brainstem cholinergic mechanisms involved in the blockade of synchronized oscillations and in activation processes of

  3. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Leukocyte peroxidase test. 864.7675 Section 864.7675 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675...

  4. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Leukocyte peroxidase test. 864.7675 Section 864.7675 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675...

  5. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leukocyte peroxidase test. 864.7675 Section 864.7675 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675...

  6. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leukocyte peroxidase test. 864.7675 Section 864.7675 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675...

  7. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte peroxidase test. 864.7675 Section 864.7675 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675...

  8. Mechanism of reaction of chlorite with mammalian heme peroxidases.

    PubMed

    Jakopitsch, Christa; Pirker, Katharina F; Flemmig, Jörg; Hofbauer, Stefan; Schlorke, Denise; Furtmüller, Paul G; Arnhold, Jürgen; Obinger, Christian

    2014-06-01

    This study demonstrates that heme peroxidases from different superfamilies react differently with chlorite. In contrast to plant peroxidases, like horseradish peroxidase (HRP), the mammalian counterparts myeloperoxidase (MPO) and lactoperoxidase (LPO) are rapidly and irreversibly inactivated by chlorite in the micromolar concentration range. Chlorite acts as efficient one-electron donor for Compound I and Compound II of MPO and LPO and reacts with the corresponding ferric resting states in a biphasic manner. The first (rapid) phase is shown to correspond to the formation of a MPO-chlorite high-spin complex, whereas during the second (slower) phase degradation of the prosthetic group was observed. Cyanide, chloride and hydrogen peroxide can block or delay heme bleaching. In contrast to HRP, the MPO/chlorite system does not mediate chlorination of target molecules. Irreversible inactivation is shown to include heme degradation, iron release and decrease in thermal stability. Differences between mammalian peroxidases and HRP are discussed with respect to differences in active site architecture and heme modification.

  9. Interference of peptone and tyrosine with the lignin peroxidase assay.

    PubMed Central

    ten Have, R; Hartmans, S; Field, J A

    1997-01-01

    The N-unregulated white rot fungus Bjerkandera sp. strain BOS55 was cultured in 1 liter of peptone-yeast extract medium to produce lignin peroxidase (LiP). During the LiP assay, the oxidation of veratryl alcohol to veratraldehyde was inhibited due to tyrosine present in the peptone and the yeast extract. PMID:9251220

  10. Towards uncovering the roles of switchgrass peroxidases in plant processes

    PubMed Central

    Saathoff, Aaron J.; Donze, Teresa; Palmer, Nathan A.; Bradshaw, Jeff; Heng-Moss, Tiffany; Twigg, Paul; Tobias, Christian M.; Lagrimini, Mark; Sarath, Gautam

    2013-01-01

    Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses, such as the partially annotated genome for switchgrass (Panicum virgatum L.), and some related diploid species. In its current version, the switchgrass genome contains 65,878 gene models arising from the A and B genomes of this tetraploid grass. The availability of these gene sequences provides a framework to exploit transcriptomic data obtained from next-generation sequencing platforms to address questions of biological importance. One such question pertains to discovery of genes and proteins important for biotic and abiotic stress responses, and how these components might affect biomass quality and stress response in plants engineered for a specific end purpose. It can be expected that production of switchgrass on marginal lands will expose plants to diverse stresses, including herbivory by insects. Class III plant peroxidases have been implicated in many developmental responses such as lignification and in the adaptive responses of plants to insect feeding. Here, we have analyzed the class III peroxidases encoded by the switchgrass genome, and have mined available transcriptomic datasets to develop a first understanding of the expression profiles of the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification and plant defense responses to hemipterans. PMID:23802005

  11. Structural and spectroscopic characterisation of a heme peroxidase from sorghum.

    PubMed

    Nnamchi, Chukwudi I; Parkin, Gary; Efimov, Igor; Basran, Jaswir; Kwon, Hanna; Svistunenko, Dimitri A; Agirre, Jon; Okolo, Bartholomew N; Moneke, Anene; Nwanguma, Bennett C; Moody, Peter C E; Raven, Emma L

    2016-03-01

    A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV-visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A Fe(III)/Fe(II) reduction potential of -266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na(+) ion) and proximal (assigned as a Ca(2+)) sides of the heme, which is consistent with the Ca(2+)-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.

  12. Removal of phenolic compounds from wastewaters using soybean peroxidase

    SciTech Connect

    Wright, H.; Nicell, J.A.

    1996-11-01

    Toxic and odiferous phenolic compounds are present in wastewaters generated by a variety of industries including petroleum refining, plastics, resins, textiles, and iron and steel manufacturing among others. Due to its commercial availability in purified form, its useful presence in raw plant material, and its proven ability to remove a variety of phenolic contaminants from wastewaters over a wide range of pH and temperature, horseradish peroxidase (HRP) appears to be the peroxidase enzyme of choice in enzymatic wastewater treatment studies. Problems with HRP catalyzed phenol removal, however, include the formation of toxic soluble reaction by-products, the cost of the enzyme, and costs associated with disposal of the phenolic precipitate generated. Enzyme costs are incurred because the enzyme is inactivated during the phenol removal process by various side reactions. While recent work has shown that enzyme inactivation can be reduced using chemical additives, the problem of enzyme cost could be circumvented by using a less expensive source of enzyme. In 1991, the seed coat of the soybean was identified as a very rich source of peroxidase enzyme. Since the seed coat of the soybean is a waste product of the soybean food industry, soybean peroxidase (SBP) has the potential of being a cost effective alternative to HRP in wastewater treatment. In this study, SBP is characterized in terms of its catalytic activity, its stability, and its ability to promote removal of phenolic compounds from synthetic wastewaters. Results obtained are discussed and compared to similar investigations using HRP.

  13. Immobilization of peroxidase on SPEU film via radiation grafting

    NASA Astrophysics Data System (ADS)

    Hongfei, Ha; Guanghui, Wang; Jilan, Wu

    The acrylic acid or acrylamide were grafted via radiation onto segmented polyetherurethane (SPEU) film which is a kind of biocompatible material. Then the Horse radish peroxidase was immobilized on the grafted SPEU film through chemical binding. Some quantitative relationships between the percent graft and the activity, amount of immobilized enzyme were given. The properties and application of obtained biomaterial was studied as well.

  14. Removal of chlorophenols from wastewater by immobilized horseradish peroxidase

    SciTech Connect

    Tatsumi, Kenji; Wada, Shinji; Ichikawa, Hiroyasu

    1996-07-05

    Immobilization of horseradish peroxidase on magnetite and removal of chlorophenols using immobilized enzyme were investigated. Immobilization by physical adsorption on magnetite was much more effective than that by the crosslinking method, and the enzyme was found to be immobilized at 100% of retained activity. In addition, it was discovered that horseradish peroxidase was selectively adsorbed on magnetite, and the immobilization resulted in a 20-fold purification rate for crude enzyme. When immobilized peroxidase was used to treat a solution containing various chlorophenols, p-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, and pentachlorophenol, each chlorophenol was almost 100% removed, and also the removal of total organic carbon (TOC) and adsorbable organic halogen (AOX) reached more than 90%, respectively. However, in the case of soluble peroxidase, complete removal of each chlorophenol could not be attained, and in particular, the removal of 2,4,5-trichlorophenol was the lowest, with a removal rate of only 36%.

  15. Phenol removal by peroxidases extracted from Chinese cabbage root

    SciTech Connect

    Rhee, H.I.; Jeong, Y.H.

    1995-12-31

    More than four million tons of Chinese cabbages are produced in Korea. Most of them are used as raw materials for Kimchi, but root parts of them are discarded as agricultural wastes. A trial for the application of agricultural waste to industrial waste water treatment was made as an effort to the efficient use of natural resources and to reduce water pollution problem simultaneously. Peroxidases of both solid and liquid phases were obtained from Chinese cabbage roots by using commercial juicer. The differences in peroxidase activity among the various cultivars of Chinese cabbages in Korea were little and electrophoretic patterns of various peroxidases will be discussed. The optimum pH and temperature for enzyme activity will be discussed also. Since peroxidases are distributed into 66% in liquid (juice) and 34% in solid phase (pulp), enzymes from both phases were applied to investigate the enzymatic removal of phenol from waste water. After phenol solution at 150 ppm being reacted with liquid phase enzyme (1,800 unit/1) for 3 hours in a batch stirred reactor, 96% of phenol could be removed through polymerization and precipitation. Also, phenol could be removed from initial 120 ppm to final 5 ppm by applying solid phase enzyme in an air lift reactor (600 unit/1). Almost equivalent efficiencies of phenol removal were observed between two systems, even though only one third of the enzymes in batch stirred reactor was applied in air lift reactor. The possible reason for this phenomenon is because peroxidases exist as immobilized forms in solid phase.

  16. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana.

    PubMed

    Welinder, Karen G; Justesen, Annemarie F; Kjaersgård, Inger V H; Jensen, Rikke B; Rasmussen, Søren K; Jespersen, Hans M; Duroux, Laurent

    2002-12-01

    Understanding peroxidase function in plants is complicated by the lack of substrate specificity, the high number of genes, their diversity in structure and our limited knowledge of peroxidase gene transcription and translation. In the present study we sequenced expressed sequence tags (ESTs) encoding novel heme-containing class III peroxidases from Arabidopsis thaliana and annotated 73 full-length genes identified in the genome. In total, transcripts of 58 of these genes have now been observed. The expression of individual peroxidase genes was assessed in organ-specific EST libraries and compared to the expression of 33 peroxidase genes which we analyzed in whole plants 3, 6, 15, 35 and 59 days after sowing. Expression was assessed in root, rosette leaf, stem, cauline leaf, flower bud and cell culture tissues using the gene-specific and highly sensitive reverse transcriptase-polymerase chain reaction (RT-PCR). We predicted that 71 genes could yield stable proteins folded similarly to horseradish peroxidase (HRP). The putative mature peroxidases derived from these genes showed 28-94% amino acid sequence identity and were all targeted to the endoplasmic reticulum by N-terminal signal peptides. In 20 peroxidases these signal peptides were followed by various N-terminal extensions of unknown function which are not present in HRP. Ten peroxidases showed a C-terminal extension indicating vacuolar targeting. We found that the majority of peroxidase genes were expressed in root. In total, class III peroxidases accounted for an impressive 2.2% of root ESTs. Rather few peroxidases showed organ specificity. Most importantly, genes expressed constitutively in all organs and genes with a preference for root represented structurally diverse peroxidases (< 70% sequence identity). Furthermore, genes appearing in tandem showed distinct expression profiles. The alignment of 73 Arabidopsis peroxidase sequences provides an easy access to the identification of orthologous peroxidases

  17. [Characterization of lignin and Mn peroxidases from Phanerochaete chrysosporium]. Progress report

    SciTech Connect

    Not Available

    1992-12-31

    Lignin peroxidases were investigated with respect to enzyme kinetics and NMR spectroscopy of the heme domain. MN peroxidases were studied with respect to the role of oxalate in enzyme activity, the NMR spectroscopy of the heme domain. Gene expression of both lignin and MN peroxidases were examined as well as expression of site-directed mutants aimed at scale up production of these enzymes.

  18. Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subvermispora*

    PubMed Central

    Fernández-Fueyo, Elena; Ruiz-Dueñas, Francisco J.; Miki, Yuta; Martínez, María Jesús; Hammel, Kenneth E.; Martínez, Angel T.

    2012-01-01

    The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora. PMID:22437835

  19. The central localization of the vagus nerve in the ferret (Mustela putorius furo) and the mink (Mustela vison).

    PubMed

    Ranson, R N; Butler, P J; Taylor, E W

    1993-05-01

    The location of vagal preganglionic neurones (VPN) has been determined in nine ferrets (Mustela putorius furo) and seven mink (M. vison) using neuronal tract-tracing techniques employing horseradish peroxidase (HRP) and wheat-germ agglutinin conjugated HRP (WGA-HRP) mixtures injected into the nodose ganglion of the vagus nerve. Labelled VPN were located ipsilaterally in the dorsal motor nucleus of the vagus (DmnX), nucleus ambiguus (nA), and reticular formation (rf) of the medulla oblongata. In four of the ferrets, labelled VPN were also identified in the nucleus dorsomedialis (ndm) and the nucleus of the spinal accessory nerve (nspa). In a single mink a few labelled cells were observed in the ndm but no labelled VPN were found in the nspa. Labelling of afferent components of the vagus nerve was seen in two ferrets and two mink with the best labelling obtained following an injection of an HRP/WGA-HRP mixture into the nodose ganglion. Labelled afferents were observed to cross the ipsilateral spinal trigeminal tract (SpV) before entering the tractus solitarius (TS) in regions separate from the motor axons which exit the medulla in separate fasicles. Sensory terminal fields were identified bilaterally in the nucleus of the tractus solitarius (nTS) in both species and bilaterally in the area postrema (ap) of the ferret; however, the contralateral labelling was sparse in comparison to the densely labelled ipsilateral nTS/ap. Maximal terminal labelling was seen in regions just rostral and caudal to obex in both species.

  20. Purification of turnip peroxidase and its kinetic properties.

    PubMed

    Singh, Naresh; Gade, W N; Singh, Jai

    2002-02-01

    Peroxidase from turnip roots was purified using metal affinity chromatography up to a specific activity of 337 units/mg protein with 3.02 RZ and 63.5% recovery. After purification, the enzyme showed 2-3 bands on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the purified enzyme was found to be 37-39 kD with matrix assisted laser desorption ionization mass spectrometer (MALDI-MS). The enzyme showed maximum activity in phosphate buffer, pH 6.0, and lowest activity in borate buffer at the same pH. The Km of the enzyme was found to be 7.07 x 104 mM. Turnip peroxidase also contains an iron moiety which is found to be about 0.28%. The enzyme showed 50% inhibition of its specific activity with ethylene diamine tetraacetic acid (EDTA). PMID:11934076

  1. Molecular Dynamics Simulations of Lignin Peroxidase in Solution

    PubMed Central

    Francesca Gerini, M.; Roccatano, Danilo; Baciocchi, Enrico; Nola, Alfredo Di

    2003-01-01

    The dynamical and structural properties of lignin peroxidase and its Trp171Ala mutant have been investigated in aqueous solution using molecular dynamics (MD) simulations. In both cases, the enzyme retained its overall backbone structure and all its noncovalent interactions in the course of the MD simulations. Very interestingly, the analysis of the MD trajectories showed the presence of large fluctuations in correspondence of the residues forming the heme access channel; these movements enlarge the opening and facilitate the access of substrates to the enzyme active site. Moreover, steered molecular dynamics docking simulations have shown that lignin peroxidase natural substrate (veratryl alcohol) can easily approach the heme edge through the access channel. PMID:12770894

  2. Proteomic identification of a basic peroxidase stabilized within acetylated polymannan polysaccharide of Aloe barbadensis.

    PubMed

    Vittori, Natale; Martín, Mercedes; Sabater, Bartolomé

    2012-01-01

    Acetylated polymannan polysaccharide (ApmP) isolated from Aloe barbadensis Miller contains a stable peroxidase that was solubilized to investigate its biochemical, electrophoretic, immunological, and proteomic properties. In the electrophoretic band corresponding to the solubilized peroxidase, proteomic analysis detected seven tryptic peptides that matched homologous peptides covering one third of the ATP22a peroxidase of Arabidopsis thaliana. All the characteristics tested indicated that the activity stabilized within the ApmP pertains to the basic secretory peroxidase family, which includes members that have several biotechnological uses. Hence ApmP might yield a widely used peroxidase in stabilized form.

  3. Polyphenol oxidase and peroxidase in fruits and vegetables.

    PubMed

    Vámos-Vigyázó, L

    1981-01-01

    Polyphenol oxidases and peroxidases are among the most studied enzymes in fruits and vegetables. Owing to the deleterious effects of discoloration and off-flavor formation induced by their actions, these enzymes have not ceased to be a matter of concern to food technologists, while their versatility as catalyst and their diversity as protein present a challenge to the biochemist. This article gives an account on the present state of knowledge in this field. The occurrence of polyphenol oxidases and peroxidases in food and food raw materials, and their role and importance in food processing are briefly outlined. Results of biochemical research including catalytic properties, substrate specificity, susceptibility towards pH and temperature, action of inhibitors, isolation, purification, and characteristics of the enzymes are given, with special emphasis on recent achievements based on high resolution separation and isoenzyme techniques. Finally, the behavior of polyphenol oxidase and peroxidase in selected major groups of fruits and vegetables is discussed. Some contradictions found in the literature are pointed out and some questions that have not been given the necessary attention by researchers so far are mentioned.

  4. Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing.

    PubMed

    Maroneze, Camila Marchetti; Dos Santos, Glauco P; de Moraes, Vitoria B; da Costa, Luiz P; Kubota, Lauro Tatsuo

    2016-03-15

    A hybrid platform based on ionic liquid-based alkoxysilane functionalized mesoporous silica was applied for the synthesis of supported Pt nanoparticles with peroxidase-like catalytic activity. The positively charged groups (imidazolium) chemically bonded to the surface provide dual-functionality as ion-exchangers to the hybrid material, firstly used for the in situ synthesis of the highly dispersed Pt nanostructures and, secondly, for the immobilization of biological species aiming biosensing purposes. The peroxidase-like catalytic activity of the SiO2/Imi/Pt material was evaluated towards the H2O2-mediated oxidation of a chromogenic peroxidase substrate (TMB), allowing the colorimetric detection of H2O2. Finally, to further explore the practical application of this nanomaterial-based artificial system, glucose oxidase (GOx) was immobilized on the catalytic porous platform and a bioassay for the colorimetric determination of glucose was successfully conducted as a model system. The enzyme-like catalytic properties of the SiO2/Imi/Pt as well as its ability to immobilize and keep active biological entities on the porous structure indicate that this hybrid porous platform is potentially useful for the development of biosensing devices. PMID:26499871

  5. Mechanistic study of a diazo dye degradation by Soybean Peroxidase

    PubMed Central

    2013-01-01

    Background Enzyme based remediation of wastewater is emerging as a novel, efficient and environmentally-friendlier approach. However, studies showing detailed mechanisms of enzyme mediated degradation of organic pollutants are not widely published. Results The present report describes a detailed study on the use of Soybean Peroxidase to efficiently degrade Trypan Blue, a diazo dye. In addition to examining various parameters that can affect the dye degradation ability of the enzyme, such as enzyme and H2O2 concentration, reaction pH and temperature, we carried out a detailed mechanistic study of Trypan Blue degradation. HPLC-DAD and LC-MS/MS studies were carried out to confirm dye degradation and analyze the intermediate metabolites and develop a detailed mechanistic dye degradation pathway. Conclusion We report that Soybean peroxidase causes Trypan Blue degradation via symmetrical azo bond cleavage and subsequent radical-initiated ring opening of the metabolites. Interestingly, our results also show that no high molecular weight polymers were produced during the peroxidase-H2O2 mediated degradation of the phenolic Trypan Blue. PMID:23711110

  6. Relative binding affinities of monolignols to horseradish peroxidase

    DOE PAGES

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less

  7. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.

    PubMed

    Sangha, Amandeep K; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-08-11

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic -OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic -OH group instead interacting with Pro139. Since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate. PMID:27447548

  8. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes.

    PubMed

    Passardi, Filippo; Bakalovic, Nenad; Teixeira, Felipe Karam; Margis-Pinheiro, Marcia; Penel, Claude; Dunand, Christophe

    2007-05-01

    Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. Class II peroxidases are involved in lignin biodegradation and are found only in the Homobasidiomycetes. In fact class II peroxidases were identified in only three orders, although degenerate forms were found in different Pezizomycota orders. Class III peroxidases are specific for higher plants, and their evolution is thought to be related to the emergence of the land plants. We have found, however, that class III peroxidases are present in some green algae, which predate land colonization. The presence of peroxidases in all major phyla (except vertebrates) makes them powerful marker genes for understanding the early evolutionary events that led to the appearance of the ancestors of each eukaryotic group. PMID:17355904

  9. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes.

    PubMed

    Passardi, Filippo; Bakalovic, Nenad; Teixeira, Felipe Karam; Margis-Pinheiro, Marcia; Penel, Claude; Dunand, Christophe

    2007-05-01

    Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. Class II peroxidases are involved in lignin biodegradation and are found only in the Homobasidiomycetes. In fact class II peroxidases were identified in only three orders, although degenerate forms were found in different Pezizomycota orders. Class III peroxidases are specific for higher plants, and their evolution is thought to be related to the emergence of the land plants. We have found, however, that class III peroxidases are present in some green algae, which predate land colonization. The presence of peroxidases in all major phyla (except vertebrates) makes them powerful marker genes for understanding the early evolutionary events that led to the appearance of the ancestors of each eukaryotic group.

  10. Production and Characterization of Monoclonal Antibodies to Wall-Localized Peroxidases from Corn Seedlings 1

    PubMed Central

    Kim, Sung-Ha; Terry, Maurice E.; Hoops, Pepper; Dauwalder, Marianne; Roux, Stanley J.

    1988-01-01

    A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls. Images Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:11537437

  11. Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase

    SciTech Connect

    Banci, L.; Bertini, I.; Turano, P. ); Ming Tien ); Kirk, T.K. )

    1991-08-15

    Lignin peroxidase shares several structural features with the well-studied horseradish peroxidase and cytochrome c peroxidase but carries a higher redox potential. Here the heme domain of lignin peroxidase and the lignin peroxidase cyanide adduct was examined by {sup 1}H NMR spectroscopy, including nuclear Overhauser effect and two-dimensional measurements, and the findings were compared with those for horseradish peroxidase and cytochrome c peroxidase. Structural information was obtained on the orientation of the heme vinyl and propionate groups and the proximal and distal histidines. The shifts of the {var epsilon}1 proton of the proximal histidine were found to be empirically related to the Fe{sup 3+}/Fe{sup 2+} redox potentials.

  12. Effect of reaction conditions on phenol removal by polymerization and precipitation using Coprinus cinereus peroxidase.

    PubMed

    Masuda, M; Sakurai, A; Sakakibara, M

    2001-03-01

    The quantitative relationships between removal efficiency of phenol and reaction conditions were investigated using Coprinus cinereus peroxidase. The most effective ratio of hydrogen peroxide to phenol was nearly 1/1 (mol/mol) at an adequate enzyme dose. 12.2 U of the enzyme was needed to remove 1 mg of phenol when our peroxidase preparation was used. At an insufficient peroxidase dose, the optimum pH value was 9.0, and lowering the reaction temperature led to the improvement of removal efficiency. At an excess peroxidase dose, almost 100% removal of phenol was obtained over a wide range of pH (5-9) and temperature (0-60 degrees C). Despite the presence of culture medium components, it was shown that Coprinus cinereus peroxidase had the same phenol polymerization performance as horseradish peroxidase or Arthromyces ramosus peroxidase.

  13. Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Terry, M. E.; Hoops, P.; Dauwalder, M.; Roux, S. J.

    1988-01-01

    A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.

  14. Biochemical and Pathological Studies on Peroxidases –An Updated Review

    PubMed Central

    Khan, Amjad A.; Rahmani, Arshad H.; Aldebasi, Yousef H.; Aly, Salah M.

    2014-01-01

    Peroxidases represent a family of isoenzymes actively involved in oxidizing reactive oxygen species, innate immunity, hormone biosynthesis and pathogenesis of several diseases. Different types of peroxidases have organ, tissues, cellular and sub-cellular level of specificities in their function. Different diseases lead to varied expressions of peroxidases based on several mechanisms proposed. Several researches are going on to understand its deficiency, over-expression and malfunction in relation with different diseases. Some common diseases of mankind like cancer, cardiovascular diseases and diabetes directly or indirectly involve the role of peroxidases. So the status of peroxidase levels may also function as a marker of different diseases. Although many types of diseases in human beings have a strong correlation with tissue specific peroxidases, the clear role of these oxido-reductases is not yet fully understood. Here we are focusing on the role of peroxidases in relations with different diseases occurring due to oxidative stress. PMID:25168993

  15. Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts.

    PubMed

    Eibes, G M; Lú-Chau, T A; Ruiz-Dueñas, F J; Feijoo, G; Martínez, M J; Martínez, A T; Lema, J M

    2009-01-01

    Production of recombinant versatile peroxidase in Aspergillus hosts was optimized through the modification of temperature during bioreactor cultivations. To further this purpose, the cDNA encoding a versatile peroxidase of Pleurotus eryngii was expressed under control of the alcohol dehydrogenase (alcA) promoter of Aspergillus nidulans. A dependence of recombinant peroxidase production on cultivation temperature was found. Lowering the culture temperature from 28 to 19 degrees C enhanced the level of active peroxidase 5.8-fold and reduced the effective proteolytic activity twofold. Thus, a maximum peroxidase activity of 466 U L(-1) was reached. The same optimization scheme was applied to a recombinant Aspergillus niger that bore the alcohol dehydrogenase regulator (alcR), enabling transformation with the peroxidase cDNA under the same alcA promoter. However, with this strain, the peroxidase activity was not improved, while the effective proteolytic activity was increased between 3- and 11-fold compared to that obtained with A. nidulans.

  16. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.

    PubMed

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita; Nunes, Eduardo da Costa; Neubert, Enilto de Oliveira; Peruch, Luiz Augusto Martins; Rocha, Miguel; Maraschin, Marcelo

    2016-04-15

    This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), polysaccharides, and protein contents associated with the early events of postharvest physiological deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained with Periodic Acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI) cultivar was more susceptible to PPD.

  17. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.

    PubMed

    MacDonald, Jacqueline; Goacher, Robyn E; Abou-Zaid, Mamdouh; Master, Emma R

    2016-09-01

    White-rot fungi are distinguished by their ability to efficiently degrade lignin via lignin-modifying type II peroxidases, including manganese peroxidase (MnP) and lignin peroxidase (LiP). In the present study, time-of flight secondary ion mass spectrometry (ToF-SIMS) was used to evaluate lignin modification in three coniferous and three deciduous wood preparations following treatment with commercial preparations of LiP and MnP from two different white-rot fungi. Percent modification of lignin was calculated as a loss of intact methoxylated lignin over nonfunctionalized aromatic rings, which is consistent with oxidative cleavage of methoxy moieties within the lignin structure. Exposure to MnP resulted in greater modification of lignin in coniferous compared to deciduous wood (28 vs. 18 % modification of lignin); and greater modification of G-lignin compared to S-lignin within the deciduous wood samples (21 vs. 12 %). In contrast, exposure to LiP resulted in similar percent modification of lignin in all wood samples (21 vs 22 %), and of G- and S-lignin within the deciduous wood (22 vs. 23 %). These findings suggest that the selected MnP and LiP may particularly benefit delignification of coniferous and deciduous wood, respectively. Moreover, the current analysis further demonstrates the utility of ToF-SIMS for characterizing enzymatic modification of lignin in wood fibre along with potential advantages over UV and HPCL-MS detection of solubilized delignification products.

  18. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    SciTech Connect

    Bonnarme, P.; Jeffries, T.W. )

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of {sup 14}CO{sub 2} from {sup 14}C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of {sup 14}CO{sub 2} release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.

  19. Thyroid microsomal/thyroid peroxidase autoantibodies show discrete patterns of cross-reactivity to myeloperoxidase, lactoperoxidase and horseradish peroxidase.

    PubMed Central

    Banga, J P; Tomlinson, R W; Doble, N; Odell, E; McGregor, A M

    1989-01-01

    The recent cloning of the thyroid peroxidase (TPO) has shown that it is identical to the thyroid microsomal antigen (TMA), a potent antigen involved in autoimmune thyroid disease (ATD), which shares significant sequence homology with myeloperoxidase. The present study shows that autoantibodies (aAb) to the TMA/TPO antigen cross-react with human leucocyte myeloperoxidase, bovine lactoperoxidase and horseradish peroxidase. Cross-reactivity to myeloperoxidase was only apparent by ELISA using reduced and alkylated antigen preparations or by immunoblotting following denaturation with SDS. Sequential absorption of sera on SDS-denatured thyroid microsomes immobilized on Sepharose-4B followed by absorption on native microsomes removed all aAb specificities to TMA/TPO and the three peroxidase preparations, giving compelling evidence on the genuine cross-reactive nature of these aAbs. Sera from different patients contain different qualitative and quantitative specificities of aAb to the TMA/TPO antigen, confirming the polyclonal nature of this autoimmune response. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2546881

  20. Peroxidase synthesis and activity in the interaction of soybean with Phytophthora megasperma f. sp. glycinea (Pmg)

    SciTech Connect

    Chibbar, R.N.; Esnault, R.; Lee, D.; van Huystee, R.B.; Ward, E.W.B.

    1986-04-01

    Changes, in peroxidase (EC1.11.1.7) have been reported following infection. However, determinations of biosynthesis of quantities of the peroxidase protein molecule have not been madeexclamation In this study hypocotyl of soybean seedlings (Glycine max; cv Harosoy, susceptible; cv Harosoy 63, resistant) were inoculated with zoospores of Pmg. Incorporation of /sup 35/S-methionine (supplied with inoculum) in TCA precipitates was measured. Peroxidase synthesis was measured by immuno precipitation using antibodies against a cationic and an anionic peroxidase derived from peanut cells. Specific peroxidase activity increased rapidly from 5 to 9 h following infection in the resistant reaction but not in the susceptible reaction or the water controls. There was increased synthesis of the anionic peroxidase but not of the cationic peroxidase in the resistant reaction. The anionic peroxidase did not increase in the susceptible until 15 h. The ratio of peroxidase synthesis to total protein synthesis decreased in inoculated tissues compared to control. Peroxidase synthesis is, therefore, a relative minor host response to infection.

  1. Antifungal Properties of Haem Peroxidase from Acorus calamus

    PubMed Central

    GHOSH, MODHUMITA

    2006-01-01

    • Background and Aims Plants have evolved a number of inducible defence mechanisms against pathogen attack, including synthesis of pathogenesis-related proteins. The aim of the study was to purify and characterize antifungal protein from leaves of Acorus calamus. • Methods Leaf proteins from A. calamus were fractionated by cation exchange chromatography and gel filtration and the fraction inhibiting the hyphal extension of phytopathogens was characterized. The temperature stability and pH optima of the protein were determined and its presence was localized in the leaf tissues. • Key Results The purified protein was identified as a class III haem peroxidase with a molecular weight of approx. 32 kDa and pI of 7·93. The temperature stability of the enzyme was observed from 5 °C to 60 °C with a temperature optimum of 36 °C. Maximum enzyme activity was registered at pH 5·5. The pH and temperature optima were corroborated with the antifungal activity of the enzyme. The enzyme was localized in the leaf epidermal cells and lumen tissues of xylem, characteristic of class III peroxidases. The toxic nature of the enzyme which inhibited hyphal growth was demonstrated against phytopathogens such as Macrophomina phaseolina, Fusarium moniliforme and Trichosporium vesiculosum. Microscopic observations revealed distortion in the hyphal structure with stunted growth, increased volume and extensive hyphal branching. • Conclusions This study indicates that peroxidases may have a role to play in host defence by inhibiting the hyphal extension of invading pathogens. PMID:17056613

  2. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer

    PubMed Central

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T.; Ruiz-Dueñas, Francisco Javier

    2015-01-01

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. PMID:26240145

  3. Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients.

    PubMed

    Gheita, Tamer A; Kenawy, Sanaa A

    2014-01-01

    Oxidative stress contributes to chronic inflammation of tissues and plays a central role in immunomodulation, which may lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and antiphospholipid syndrome. Markers of oxidative damage include malondialdehyde (MDA), antioxidant scavengers as glutathione (GSH), and glutathione peroxidase (GSH Px), which all correlate well with SLE disease activity. Amelioration of some clinical manifestations of SLE may be expected by targeting lipid peroxidation with dietary or pharmacological antioxidants. Here, we describe the detection of the key players of oxidant/antioxidant imbalance in SLE.

  4. Synthesis and properties of lignin peroxidase from Streptomyces viridosporus T7A

    SciTech Connect

    Lodha, S.J.; Korus, R.A.; Crawford, D.L.

    1991-12-31

    The production of lignin peroxidase by Streptomyces viridosporus T7A was studied in shake flasks and under aerobic conditions in a 7.5-L batch fermentor. Lignin peroxidase synthesis was found to be strongly affected by catabolite repression. Lignin peroxidase was a non-growth-associated, secondary metabolite. The maximum lignin peroxidase activity was 0.064 U/mL at 36 h. In order to maximize lignin peroxidase activity, optimal conditions were determined. The optimal incubation temperature, pH, and substrate (2,4-dichlorophenol) concentration for the enzyme assays were 45{degrees}C, 6, and 3 m-M, respectively. Stability of lignin peroxidase was determined at 37, 45, and 60{degrees}C, and over the pH range 4-9.

  5. Characterization of Laccases and Peroxidases from Wood-Rotting Fungi (Family Coprinaceae)

    PubMed Central

    Heinzkill, Marion; Bech, Lisbeth; Halkier, Torben; Schneider, Palle; Anke, Timm

    1998-01-01

    Panaeolus sphinctrinus, Panaeolus papilionaceus, and Coprinus friesii are described as producers of ligninolytic enzymes. P. papilionaceus and P. sphinctrinus both produced a laccase. In addition, P. sphinctrinus produced a manganese peroxidase. C. friesii secreted a laccase and two peroxidases similar to the peroxidase of Coprinus cinereus. The purified laccases and peroxidases were characterized by broad substrate specificities, significant enzyme activities at alkaline pH values, and remarkably high pH optima. The two peroxidases of C. friesii remained active at pH 7.0 and 60°C for up to 60 min of incubation. The peroxidases were inhibited by sodium azide and ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), whereas the laccases were inhibited by sodium azide and N,N-diethyldithiocarbamic acid. As determined by native polyacrylamide gel electrophoresis and isoelectric focusing, all three fungi produced laccase isoenzymes. PMID:9572923

  6. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae).

    PubMed

    Heinzkill, M; Bech, L; Halkier, T; Schneider, P; Anke, T

    1998-05-01

    Panaeolus sphinctrinus, Panaeolus papilionaceus, and Coprinus friesii are described as producers of ligninolytic enzymes. P. papilionaceus and P. sphinctrinus both produced a laccase. In addition, P. sphinctrinus produced a manganese peroxidase. C. friesii secreted a laccase and two peroxidases similar to the peroxidase of Coprinus cinereus. The purified laccases and peroxidases were characterized by broad substrate specificities, significant enzyme activities at alkaline pH values, and remarkably high pH optima. The two peroxidases of C. friesii remained active at pH 7.0 and 60 degrees C for up to 60 min of incubation. The peroxidases were inhibited by sodium azide and ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), whereas the laccases were inhibited by sodium azide and N,N-diethyldithiocarbamic acid. As determined by native polyacrylamide gel electrophoresis and isoelectric focusing, all three fungi produced laccase isoenzymes.

  7. The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features.

    PubMed

    Larrondo, Luisf; Gonzalez, Angel; Perez Acle, Tomas; Cullen, Dan; Vicuña, Rafael

    2005-07-01

    Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase_like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal) peroxidases, such as lignin peroxidases and manganese peroxidases. Comparative modeling of NoP was conducted using the crystal structures of Coprinus cinereus and Arthromyces ramosus peroxidases as templates. The model was validated by molecular dynamics and showed several novel structural features. In particular, NoP has only three disulfide bridges and tryptophan replaces the distal phenylalanine within the heme pocket.

  8. [Initiation and inhibition of free-radical processes in biochemical peroxidase systems: a review].

    PubMed

    Metelitsa, D I; Karaseva, E I

    2007-01-01

    The role of complexes containing oxygen or peroxide in monooxygenase systems and models thereof, as well as in peroxidase- and quasi-peroxidase-catalyzed processes, has been reviewed. Pathways of conversion of these intermediate complexes involving single-electron (radical) and two-electron (heterolytic) mechanisms are dealt with. Coupled peroxidase-catalyzed oxidation of aromatic amines and phenols is analyzed; inhibition and activation of peroxidase-catalyzed reactions are characterized quantitatively. Oxidation of chromogenic substrates (ABTS, OPD, and TMB) in the presence of phenolic inhibitors or polydisulfides of substituted phenols is characterized by inhibition constants (Ki, micromol). Activation of peroxidase-catalyzed oxidation of the same substrates is characterized by the degree (coefficient) of activation (alpha, M(-1)), which was determined for 2-aminothiazole, melamine, tetrazole, and its 5-substituted derivatives. Examples of applied use of peroxidase-catalyzed enzyme and model systems are given (oxidation of organic compounds, chemical analysis, enzyme immunoassay, tests for antioxidant activity of biological fluids).

  9. Three differentially expressed basic peroxidases from wound-lignifying Asparagus officinalis.

    PubMed

    Holm, Kirsten B; Andreasen, Per H; Eckloff, Reinhard M G; Kristensen, Brian K; Rasmussen, Søren K

    2003-10-01

    The activity of ionically bound peroxidases from an asparagus spear increased from 5-24 h post-harvest. Isoelectric focusing showed that the post-harvest increase of the total peroxidase activity was due to the increase of several distinct isoperoxidases. Concomitantly, a decrease in the activity of two anionic peroxidases was observed. Peroxidases with pI 5.9, 6.4 and 9.2 were detected only at 24 h post-harvest, whereas four peroxidases, with pI 8.7, 8.1, 7.4, and 6.7, detected throughout the time-course, increased in their activity. Histochemical staining demonstrated that lignin and peroxidase activity were located in the vascular bundles throughout the period of measurement. Lignin was detected in the cell walls of the protoxylem in the vascular bundles of the asparagus stem. A cDNA library of mRNA isolated from asparagus spears 24 h post-harvest was screened for peroxidases using homologous and heterologous probes. Three clones were isolated and the corresponding mature asparagus peroxidases displayed 70%, 76% and 81% amino acid sequence identity to each other. These new asparagus peroxidases are typical class III plant peroxidases in terms of conserved regions with a calculated pI >9.2, which is consistent with most basic peroxidases. One of the genes was shown to be a constitutively expressed single-copy gene, whereas the others showed an increased expression at post-harvest. The highest similarity in the amino acid sequence (71-77%) was found in peroxidases from roots of winter grown turnip TP7, to Arabidopsis AtP49, to an EST sequence from cotton fibres and to TMV-infected tobacco. PMID:12947050

  10. Oxidation of chlorophenols catalyzed by Coprinus cinereus peroxidase with in situ production of hydrogen peroxide.

    PubMed

    Pezzotti, Fabio; Okrasa, Krzysztof; Therisod, Michel

    2004-01-01

    Degradation of 2,6-dichlorophenol (2,6-DCP) was accomplished by oxidation catalyzed by Coprinus cinereus peroxidase. Immobilization of the enzyme in a polyacrylamide matrix enhanced DCP oxidation. Hydrogen peroxide, peroxidase's natural substrate, was produced enzymatically in situ to avoid peroxidase inactivation by its too high concentration. In the case of larger scale utilization, the method would also avoid direct handling of this hazardous reagent.

  11. Accumulation of peroxidase in the cap rays of Acetabularia during the development of gametangia.

    PubMed

    Menzel, D

    1979-06-01

    Accumulation of peroxidase was demonstrated by light and electron microscopy to occur in Acetabularia in certain regions of the cap rays in relation to the development of the gametangia (cysts). Peroxidase was found to be incorporated into special, cell wall-like obstructions that separate the cap rays from the stalk when the secondary nuclei have settled in the cap rays. It is assumed that peroxidase acts as an anti-microbial protectant of the gametangia.

  12. Improving the pH-stability of Versatile Peroxidase by Comparative Structural Analysis with a Naturally-Stable Manganese Peroxidase.

    PubMed

    Sáez-Jiménez, Verónica; Fernández-Fueyo, Elena; Medrano, Francisco Javier; Romero, Antonio; Martínez, Angel T; Ruiz-Dueñas, Francisco J

    2015-01-01

    Versatile peroxidase (VP) from the white-rot fungus Pleurotus eryngii is a high redox potential peroxidase of biotechnological interest able to oxidize a wide range of recalcitrant substrates including lignin, phenolic and non-phenolic aromatic compounds and dyes. However, the relatively low stability towards pH of this and other fungal peroxidases is a drawback for their industrial application. A strategy based on the comparative analysis of the crystal structures of VP and the highly pH-stable manganese peroxidase (MnP4) from Pleurotus ostreatus was followed to improve the VP pH stability. Several interactions, including hydrogen bonds and salt bridges, and charged residues exposed to the solvent were identified as putatively contributing to the pH stability of MnP4. The eight amino acid residues responsible for these interactions and seven surface basic residues were introduced into VP by directed mutagenesis. Furthermore, two cysteines were also included to explore the effect of an extra disulfide bond stabilizing the distal Ca2+ region. Three of the four designed variants were crystallized and new interactions were confirmed, being correlated with the observed improvement in pH stability. The extra hydrogen bonds and salt bridges stabilized the heme pocket at acidic and neutral pH as revealed by UV-visible spectroscopy. They led to a VP variant that retained a significant percentage of the initial activity at both pH 3.5 (61% after 24 h) and pH 7 (55% after 120 h) compared with the native enzyme, which was almost completely inactivated. The introduction of extra solvent-exposed basic residues and an additional disulfide bond into the above variant further improved the stability at acidic pH (85% residual activity at pH 3.5 after 24 h when introduced separately, and 64% at pH 3 when introduced together). The analysis of the results provides a rational explanation to the pH stability improvement achieved.

  13. Improving the pH-stability of Versatile Peroxidase by Comparative Structural Analysis with a Naturally-Stable Manganese Peroxidase.

    PubMed

    Sáez-Jiménez, Verónica; Fernández-Fueyo, Elena; Medrano, Francisco Javier; Romero, Antonio; Martínez, Angel T; Ruiz-Dueñas, Francisco J

    2015-01-01

    Versatile peroxidase (VP) from the white-rot fungus Pleurotus eryngii is a high redox potential peroxidase of biotechnological interest able to oxidize a wide range of recalcitrant substrates including lignin, phenolic and non-phenolic aromatic compounds and dyes. However, the relatively low stability towards pH of this and other fungal peroxidases is a drawback for their industrial application. A strategy based on the comparative analysis of the crystal structures of VP and the highly pH-stable manganese peroxidase (MnP4) from Pleurotus ostreatus was followed to improve the VP pH stability. Several interactions, including hydrogen bonds and salt bridges, and charged residues exposed to the solvent were identified as putatively contributing to the pH stability of MnP4. The eight amino acid residues responsible for these interactions and seven surface basic residues were introduced into VP by directed mutagenesis. Furthermore, two cysteines were also included to explore the effect of an extra disulfide bond stabilizing the distal Ca2+ region. Three of the four designed variants were crystallized and new interactions were confirmed, being correlated with the observed improvement in pH stability. The extra hydrogen bonds and salt bridges stabilized the heme pocket at acidic and neutral pH as revealed by UV-visible spectroscopy. They led to a VP variant that retained a significant percentage of the initial activity at both pH 3.5 (61% after 24 h) and pH 7 (55% after 120 h) compared with the native enzyme, which was almost completely inactivated. The introduction of extra solvent-exposed basic residues and an additional disulfide bond into the above variant further improved the stability at acidic pH (85% residual activity at pH 3.5 after 24 h when introduced separately, and 64% at pH 3 when introduced together). The analysis of the results provides a rational explanation to the pH stability improvement achieved. PMID:26496708

  14. Improving the pH-stability of Versatile Peroxidase by Comparative Structural Analysis with a Naturally-Stable Manganese Peroxidase

    PubMed Central

    Sáez-Jiménez, Verónica; Fernández-Fueyo, Elena; Medrano, Francisco Javier; Romero, Antonio; Martínez, Angel T.; Ruiz-Dueñas, Francisco J.

    2015-01-01

    Versatile peroxidase (VP) from the white-rot fungus Pleurotus eryngii is a high redox potential peroxidase of biotechnological interest able to oxidize a wide range of recalcitrant substrates including lignin, phenolic and non-phenolic aromatic compounds and dyes. However, the relatively low stability towards pH of this and other fungal peroxidases is a drawback for their industrial application. A strategy based on the comparative analysis of the crystal structures of VP and the highly pH-stable manganese peroxidase (MnP4) from Pleurotus ostreatus was followed to improve the VP pH stability. Several interactions, including hydrogen bonds and salt bridges, and charged residues exposed to the solvent were identified as putatively contributing to the pH stability of MnP4. The eight amino acid residues responsible for these interactions and seven surface basic residues were introduced into VP by directed mutagenesis. Furthermore, two cysteines were also included to explore the effect of an extra disulfide bond stabilizing the distal Ca2+ region. Three of the four designed variants were crystallized and new interactions were confirmed, being correlated with the observed improvement in pH stability. The extra hydrogen bonds and salt bridges stabilized the heme pocket at acidic and neutral pH as revealed by UV-visible spectroscopy. They led to a VP variant that retained a significant percentage of the initial activity at both pH 3.5 (61% after 24 h) and pH 7 (55% after 120 h) compared with the native enzyme, which was almost completely inactivated. The introduction of extra solvent-exposed basic residues and an additional disulfide bond into the above variant further improved the stability at acidic pH (85% residual activity at pH 3.5 after 24 h when introduced separately, and 64% at pH 3 when introduced together). The analysis of the results provides a rational explanation to the pH stability improvement achieved. PMID:26496708

  15. Preparation of horseradish peroxidase hydrazide and its use in immunoassay.

    PubMed

    Shrivastav, Tulsidas G

    2003-01-01

    Preparation of horseradish peroxidase (HRP) hydrazide that is HRP linked to adipic acid dihydrazide (HRP-ADH) and its use in enzyme immunoassay (EIA) is described. In this new strategy, horseradish peroxidase was conjugated to adipic acid dihydrazide using a carbodiimide coupling method. The resulting HRP-ADH was then coupled to cortisol-21-hemisuccinate (Cortisol-21-HS) to prepare enzyme conjugate. The prepared cortisol-21-HS coupled ADH-HRP (Cortisol-21-HS-ADH-HRP) enzyme conjugate was used for the development of an enzyme linked immunosorbent assay (ELISA) for direct estimation of cortisol. To the cortisol antibody coated microtiter wells, standard or serum samples (50 microL), along with cortisol-21-HS-ADH-HRP enzyme conjugate (100 microL) were incubated for 1 h at 37 degrees C. Bound enzyme activity was measured by using tetramethyl benzidine/hydrogen peroxide (TMB/H2O2) as substrate. The sensitivity of the assay was 0.05 microg/dL and the analytical recovery ranged from 92.9 to 101.7%. PMID:12953974

  16. Enzymatic degradation of Congo Red by turnip (Brassica rapa) peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Couvert, Annabelle; Amrane, Abdeltif

    2012-01-01

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolourize textile effluents. This study aims at evaluating the potential of a turnip (Brassica rapa) peroxidase (TP) preparation in the discolouration of textile azo dyes and effluents. An azo dye, Congo Red (CR), was used as a model pollutant for treatment by the enzyme. The effects of various operating conditions like pH value, temperature, initial dye and hydrogen peroxide concentrations, contact time, and enzyme concentration were evaluated. The optimal conditions for maximal colour removal were at pH 2.0, 40 degrees C, 50 mM hydrogen peroxide, 50 mg/l CR dye, and TP activity of 0.45 U/ml within 10 min of incubation time. Analysis of the by-products from the enzymatic treatment by UV-Vis and IR spectroscopy showed no residual compounds in the aqueous phase and a precipitate of polymeric nature.

  17. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: Activation by manganese

    SciTech Connect

    Brown, J.A.; Alic, M. Gold, M.H. )

    1991-07-01

    The expression of manganese peroxidase in nitrogen-limited cultures of Phanerochaete chrysosporium is dependent on Mn, and initial work suggested that Mn regulates transcription of the mnp gene. In this study, using Northern (RNA) blot analysis of kinetic, dose-response, and inhibitor experiments, the authors demonstrate unequivocally that Mn regulates mnp gene transcription. The amount of mnp mRNA in cells of 4-day-old nitrogen-limited cultures is a direct function of the concentration of Mn in the culture medium up to a maximum of 180 {mu}M. Addition of Mn to nitrogen-limited Mn-deficient secondary metabolic (4-, 5-, and 6-day-old) cultures results in the appearance of mnp mRNA within 40 min. The appearance of this message is completely inhibited by the RNA synthesis inhibitor dactinomycin but not by the protein synthesis inhibitor cycloheximide. Furthermore, the amount of mnp mRNA produced is a direct function of the concentration of added Mn. In contrast, addition of Mn to low-nitrogen Mn-deficient 2- or 3-day-old cultures does not result in the appearance of mnp mRNA. Manganese peroxidase protein is detected by specific immunoprecipitation of the in vitro translation products of poly(A) RNA isolated from Mn-supplemented (but nor from Mn-deficient) cells. All of these results demonstrate that Mn, the substrate for the enzyme, regulates mnp gene transcription via a growth-stage-specific and concentration-dependent mechanism.

  18. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater.

    PubMed

    Duan, Xiaonan; Corgié, Stéphane C; Aneshansley, Daniel J; Wang, Peng; Walker, Larry P; Giannelis, Emmanuel P

    2014-04-01

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2 O2 , producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes.

  19. Enzymatic degradation of Congo Red by turnip (Brassica rapa) peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Couvert, Annabelle; Amrane, Abdeltif

    2012-01-01

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolourize textile effluents. This study aims at evaluating the potential of a turnip (Brassica rapa) peroxidase (TP) preparation in the discolouration of textile azo dyes and effluents. An azo dye, Congo Red (CR), was used as a model pollutant for treatment by the enzyme. The effects of various operating conditions like pH value, temperature, initial dye and hydrogen peroxide concentrations, contact time, and enzyme concentration were evaluated. The optimal conditions for maximal colour removal were at pH 2.0, 40 degrees C, 50 mM hydrogen peroxide, 50 mg/l CR dye, and TP activity of 0.45 U/ml within 10 min of incubation time. Analysis of the by-products from the enzymatic treatment by UV-Vis and IR spectroscopy showed no residual compounds in the aqueous phase and a precipitate of polymeric nature. PMID:23016283

  20. Polyethylene glycol improves phenol removal by immobilized turnip peroxidase.

    PubMed

    Quintanilla-Guerrero, F; Duarte-Vázquez, M A; García-Almendarez, B E; Tinoco, R; Vazquez-Duhalt, R; Regalado, C

    2008-12-01

    Purified peroxidase from turnip (Brassica napus L. var. esculenta D.C.) was immobilized by entrapment in spheres of calcium alginate and by covalent binding to Affi-Gel 10. Both immobilized Turnip peroxidase (TP) preparations were assayed for the detoxification of a synthetic phenolic solution and a real wastewater effluent from a local paints factory. The effectiveness of phenolic compounds (PC's) removal by oxidative polymerization was evaluated using batch and recycling processes, and in the presence and in the absence of polyethylene glycol (PEG). The presence of PEG enhances the operative TP stability. In addition, reaction times were reduced from 3h to 10 min, and more effective phenol removals were achieved when PEG was added. TP was able to perform 15 reaction cycles with a real industrial effluent showing PC's removals >90% PC's during the first 10 reaction cycles. High PC's removal efficiencies (>95%) were obtained using both immobilized preparations at PC's concentrations <1.2mM. Higher PC's concentrations decreased the removal efficiency to 90% with both preparations after the first reaction cycle, probably due to substrate inhibition. On the other hand, immobilized TP showed increased thermal stability when compared with free TP. A large-scale enzymatic process for industrial effluent treatment is expected to be developed with immobilized TP that could be stable enough to make the process economically feasible. PMID:18502120

  1. Monosaccharide composition and properties of a deglycosylated turnip peroxidase isozyme.

    PubMed

    Duarte-Vázquez, Miguel A; García-Almendárez, Blanca E; Rojo-Domínguez, Arturo; Whitaker, John R; Arroyave-Hernández, C; Regalado, Carlos

    2003-01-01

    A neutral peroxidase isozyme (TP) purified from turnip (Brassica napus L. var. purple top white globe) was partially deglycosylated, using chemical and enzymatic treatment. A 32% carbohydrate removal was achieved by exposing TP to a mixture of PNGase F, O-glycosidase, NANase, GALase III and HEXase I, while m-periodate treatment removed about 88% of TP carbohydrate moiety. The glycoprotein fraction of the TP contained a relatively high mannose and fucose content (37 and 31%, w/w, respectively), 16% (w/w) galactose, and 15% (w/w) GlcNAc. Thus, the carbohydrate moiety was classified as a hybrid type. Partially deglycosylated TP had reduced activity (by 50-85%), was more susceptible to proteolysis, and showed a slight decrease in thermostability compared to the native enzyme. Circular dichroism studies strongly suggested that although the carbohydrate moiety of TP did not influence the conformation of the polypeptide backbone, its presence considerably enhanced protein conformational stability toward heat. Removal of oligosaccharide chains from TP caused a decrease in K(m) and V(max) for hydrogen peroxide. Native and chemically deglycosylated TP were similarly immunodetected by rabbit polyclonal antibodies raised against TP. The results suggest that the carbohydrate moiety of TP is important for peroxidase activity and stability. PMID:12475613

  2. Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk.

    PubMed

    Wang, Ching-Shuen; Pan, Huaizhong; Weerasekare, G Mahika; Stewart, Russell J

    2015-11-01

    Casemaker caddisfly (Hesperophylax occidentalis) larvae use adhesive silk fibres to construct protective shelters under water. The silk comprises a distinct peripheral coating on a viscoelastic fibre core. Caddisworm silk peroxinectin (csPxt), a haem-peroxidase, was shown to be glycosylated by lectin affinity chromatography and tandem mass spectrometry. Using high-resolution H2O2 and peroxidase-dependent silver ion reduction and nanoparticle deposition, imaged by electron microscopy, csPxt activity was shown to be localized in the peripheral layer of drawn silk fibres. CsPxt catalyses dityrosine cross-linking within the adhesive peripheral layer post-draw, initiated perhaps by H2O2 generated by a silk gland-specific superoxide dismutase 3 (csSOD3) from environmental reactive oxygen species present in natural water. CsSOD3 was also shown to be a glycoprotein and is likely localized in the peripheral layer. Using a synthetic fluorescent phenolic copolymer and confocal microscopy, it was shown that csPxt catalyses oxidative cross-linking to external polyphenolic compounds capable of diffusive interpenetration into the fuzzy peripheral coating, including humic acid, a natural surface-active polyphenol. The results provide evidence of enzyme-mediated covalent cross-linking of a natural bioadhesive to polyphenol conditioned interfaces as a mechanism of permanent adhesion underwater. PMID:26490632

  3. Manganese peroxidases of the white rot fungus Phanerochaete sordida.

    PubMed Central

    Rüttimann-Johnson, C; Cullen, D; Lamar, R T

    1994-01-01

    The ligninolytic enzymes produced by the white rot fungus Phanerochaete sordida in liquid culture were studied. Only manganese peroxidase (MnP) activity could be detected in the supernatant liquid of the cultures. Lignin peroxidase (LiP) and laccase activities were not detected under a variety of different culture conditions. The highest MnP activity levels were obtained in nitrogen-limited cultures grown under an oxygen atmosphere. The enzyme was induced by Mn(II). The initial pH of the culture medium did not significantly affect the MnP production. Three MnP isozymes were identified (MnPI, MnPII, and MnPIII) and purified to homogeneity by anion-exchange chromatography followed by hydrophobic chromatography. The isozymes are glycoproteins with approximately the same molecular mass (around 45 kDa) but have different pIs. The pIs are 5.3, 4.2, and 3.3 for MnPI, MnPII, and MnPIII, respectively. The three isozymes are active in the same range of pHs (pHs 3.0 to 6.0) and have optimal pHs between 4.5 and 5.0. Their amino-terminal sequences, although highly similar, were distinct, suggesting that each is the product of a separate gene. Images PMID:8135519

  4. A structural and functional perspective of DyP-type peroxidase family.

    PubMed

    Yoshida, Toru; Sugano, Yasushi

    2015-05-15

    Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name.

  5. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase

    SciTech Connect

    Lagrimini, L.M. )

    1991-06-01

    Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H{sub 2}O{sub 2} via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.

  6. Purification and characterization of a cationic peroxidase Cs in Raphanus sativus.

    PubMed

    Kim, Soung Soo; Lee, Dong Ju

    2005-06-01

    A short distance migrating cationic peroxidase from Korean radish seeds (Raphanus sativus) was detected. Cationic peroxidase Cs was purified to apparent homogeneity and characterized. The molecular mass of the purified cationic peroxidase Cs was estimated to be about 44 kDa on SDS-PAGE. After reconstitution of apoperoxidase Cs with protohemin, the absorption spectra revealed a new peak in the Soret region around 400 nm, which is typical in a classical type III peroxidase family. The optimum pH of peroxidase activity for o-dianisidine oxidation was observed at pH 7.0. Kinetic studies revealed that the reconstituted cationic peroxidase Cs has Km values of 1.18 mM and of 1.27 mM for o-dianisidine and H2O2, respectively. The cationic peroxidase Cs showed the peroxidase activities for native substrates, such as coumaric acid, ferulic acid, and scopoletin. This result suggested that cationic peroxidase Cs plays an important role in plant cell wall formation during seed germination.

  7. Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus.

    PubMed

    Kjalke, M; Andersen, M B; Schneider, P; Christensen, B; Schülein, M; Welinder, K G

    1992-04-17

    Initial structural and kinetic data suggested that peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus were similar. Therefore they were characterized more fully. The three peroxidases were purified to RZ 2.5 and showed immunochemical identity as well as an identical M(r) of 38,000, pI about 3.5 and similar amino acid compositions. The N-termini were blocked for amino acid sequencing. The peroxidases had similar retention volumes by anion-exchange and gel-filtration chromatography. All peroxidases showed multiple peaks by Concanavalin A-Sepharose chromatography. The Concanavalin A-Sepharose profiles were different and depended furthermore on a fermentation batch. Tryptic peptide maps were very similar except for one peptide. This peptide contained an N-linked glycan composed of varying ratios of glucosamine and mannose for the three peroxidases. Rate constants and their pH dependence were the same for the three peroxidases using guaiacol or iodide as reducing substrates. We conclude that peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus are most likely identical in their amino acid sequences, but deviate in glycosylation which, apparently, has no influence on the reaction rates of the enzyme. We suggest, that the Coprinus fungi express one peroxidase only in contrast to the lignin-degrading white-rot Basidiomycetes, which produce multiple peroxidase isozymes.

  8. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae.

    PubMed

    Mir, Albely Afifa; Park, Sook-Young; Abu Sadat, Md; Kim, Seongbeom; Choi, Jaeyoung; Jeon, Junhyun; Lee, Yong-Hwan

    2015-07-02

    Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus.

  9. Apoplastic Peroxidases and Lignification in Needles of Norway Spruce (Picea abies L.).

    PubMed Central

    Polle, A.; Otter, T.; Seifert, F.

    1994-01-01

    The objective of the present study was to investigate the correlation of soluble apoplastic peroxidase activity with lignification in needles of field-grown Norway spruce (Picea abies L.) trees. Apoplastic peroxidases (EC 1.11.1.7) were obtained by vacuum infiltration of needles. The lignin content of isolated cell walls was determined by the acetyl bromide method. Accumulation of lignin and seasonal variations of apoplastic peroxidase activities were studied in the first year of needle development. The major phase of lignification started after bud break and was terminated about 4 weeks later. This phase correlated with a transient increase in apoplastic guaiacol and coniferyl alcohol peroxidase activity. NADH oxidase activity, which is thought to sustain peroxidase activity by production of H2O2, peaked sharply after bud break and decreased during the lignification period. Histochemical localization of peroxidase with guaiacol indicated that high activities were present in lignifying cell walls. In mature needles, lignin was localized in walls of most needle tissues including mesophyll cells, and corresponded to 80 to 130 [mu]mol lignin monomers/g needle dry weight. Isoelectric focusing of apoplastic washing fluids and activity staining with guaiacol showed the presence of strongly alkaline peroxidases (isoelectric point [greater than or equal to] 9) in all developmental stages investigated. New isozymes with isoelectric points of 7.1 and 8.1 appeared during the major phase of lignification. These isozymes disappeared after lignification was terminated. A strong increase in peroxidase activity in autumn was associated with the appearance of acidic peroxidases (isoelectric point [less than or equal to] 3). These results suggest that soluble alkaline apoplastic peroxidases participate in lignin formation. Soluble acidic apoplastic peroxidases were apparently unrelated to developmentally regulated lignification in spruce needles. PMID:12232302

  10. Effect of enzyme impurities on phenol removal by the method of polymerization and precipitation catalyzed by Coprinus cinereus peroxidase.

    PubMed

    Masuda, M; Sakurai, A; Sakakibara, M

    2001-11-01

    The removal of phenol by peroxidase-catalyzed polymerization was examined using the Coprinus cinereus peroxidases at different levels of impurity with respect to contamination. The phenol removal efficiency was improved by lowering the peroxidase purity. Acidic and high molecular weight proteins present as impurities in the peroxidase solution had some positive effect on the phenol-polymerizing reaction. The residual enzyme activity, either only in the solution or both in the solution and on the precipitate during the polymerizing reaction, was measured. The results indicate that the main effect of impurities in the peroxidase solution was the suppression of the adsorption of peroxidase molecules on the polymerized precipitate.

  11. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    PubMed

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. PMID:24534439

  12. Horseradish peroxidase. Complex formation with anions and hydrocyanic acid.

    PubMed

    Araiso, T; Dunford, H B

    1981-10-10

    Equilibrium binding experiments have been performed with perchlorate, chloride, and acetate in the presence of horseradish peroxidase. The binding of perchlorate and acetate appears to be like that of nitrate, at a site other than the sixth coordination position of the heme iron. Competitive experiments using both nitrate and cyanide demonstrate that two different binding sites are present on the enzyme. Chloride appears to bind at the sixth coordination position as do both fluoride and cyanide. Temperature jump experiments indicate that it is likely the nitrate anion and not undissociated nitric acid which is the binding species. Competitive stopped flow experiments indicate that the bound nitrate slows both the association rate and dissociation rate of cyanide, indicating that nitrate binds close to the sixth coordination position.

  13. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling; Perrett, Sarah; Yan, Xiyun

    2007-09-01

    Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.

  14. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    PubMed

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction.

  15. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    PubMed

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP.

  16. Horseradish Peroxidase Inactivation: Heme Destruction and Influence of Polyethylene Glycol

    PubMed Central

    Mao, Liang; Luo, Siqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Horseradish peroxidase (HRP) mediates efficient conversion of many phenolic contaminants and thus has potential applications for pollution control. Such potentially important applications suffer however from the fact that the enzyme becomes quickly inactivated during phenol oxidation and polymerization. The work here provides the first experimental data of heme consumption and iron releases to support the hypothesis that HRP is inactivated by heme destruction. Product of heme destruction is identified using liquid chromatography with mass spectrometry. The heme macrocycle destruction involving deprivation of the heme iron and oxidation of the 4-vinyl group in heme occurs as a result of the reaction. We also demonstrated that heme consumption and iron releases resulting from HRP destruction are largely reduced in the presence of polyethylene glycol (PEG), providing the first evidence to indicate that heme destruction is effectively suppressed by co-dissolved PEG. These findings advance a better understanding of the mechanisms of HRP inactivation. PMID:24185130

  17. Asparagus byproducts as a new source of peroxidases.

    PubMed

    Jaramillo-Carmona, Sara; Lopez, Sergio; Vazquez-Castilla, Sara; Rodriguez-Arcos, Rocio; Jimenez-Araujo, Ana; Guillen-Bejarano, Rafael

    2013-07-01

    Soluble peroxidase (POD) from asparagus byproducts was purified by ion exchange chromatographies, and its kinetic and catalytic properties were studied. The isoelectric point of the purified isoperoxidases was 9.1, and the optimum pH and temperature values were 4.0 and 25 °C, respectively. The cationic asparagus POD (CAP) midpoint inactivation temperature was 57 °C, which favors its use in industrial processes. The Km values of cationic asparagus POD for H₂O₂ and ABTS were 0.318 and 0.634 mM, respectively. The purified CAP is economically obtained from raw materials using a simple protocol and possesses features that make it advantageous for the potential use of this enzyme in a large number of processes with demonstrated requirements of thermostable POD. The results indicate that CAP can be used as a potential candidate for removing phenolic contaminants.

  18. Peroxidase activity and superficial scald development in apple fruit.

    PubMed

    Fernández-Trujillo, J Pablo; Nock, Jacqueline F; Kupferman, Eugene M; Brown, Susan K; Watkins, Christopher B

    2003-11-19

    The relationship between soluble peroxidase (EC 1.11.1.7; POX) activity and the development of a chilling-related disorder, superficial scald, was studied in three apple fruit (Malus x domestica Borkh.) systems: a White Angel x Rome Beauty population with progeny with different scald susceptibilities; Delicious from three harvests with progressively declining scald susceptibility; and the scald-resistant Idared and the scald-susceptible Law Rome. Differences in incidence and severity of scald in progeny from White Angel x Rome Beauty progeny tended to show relationships with POX activity at harvest, but, overall, associations were not consistent. However, greater scald incidence and lower POX activity were found in less mature Delicious fruit than in later harvested fruit. Also, the scald-resistant Iotadared had a much higher POX activity compared with the scald-susceptible Law Rome. A general hypothesis that POX activity is related to scald susceptibility was generally supported, but exceptions were observed.

  19. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics.

    PubMed

    Bhowmick, Debasish; Mugesh, Govindasamy

    2015-11-01

    Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.

  20. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors

    PubMed Central

    Canli, Özge; Alankuş, Yasemin B.; Grootjans, Sasker; Vegi, Naidu; Hültner, Lothar; Hoppe, Philipp S.; Schroeder, Timm; Vandenabeele, Peter; Bornkamm, Georg W.

    2016-01-01

    Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress–induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis. PMID:26463424

  1. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    PubMed

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP. PMID:27270708

  2. Involvement of peroxidase activity in developing somatic embryos of Medicago arborea L. Identification of an isozyme peroxidase as biochemical marker of somatic embryogenesis.

    PubMed

    Gallego, Piedad; Martin, Luisa; Blazquez, Antonio; Guerra, Hilario; Villalobos, Nieves

    2014-01-15

    The legume Medicago arborea L. is very interesting as regards the regeneration of marginal arid soils. The problem is that it does not have a good germinative yield. It was therefore decided to regenerate via somatic embryogenesis and find a marker of embryogenic potential. In this study, peroxidase activity was evaluated in non-embryogenic and embryogenic calli from M. arborea L. A decrease in soluble peroxidase activity is observed in its embryonic calli at the time at which the somatic embryos begin to appear. This activity is always lower in embryonic calli than in non-embryonic ones (unlike what happens in the case of wall-bound peroxidases). These results suggest that peroxidases can be considered to be enzymes involved in somatic embryogenesis in M. arborea. In addition, isozyme analyses were carried out on protein extracts using polyacrylamide gel electrophoresis. The band called P5 was detected only in embryogenic cultures at very early stages of development. This band was digested with trypsin and analyzed using linear ion trap (LTQ) mass spectrometer. In P5 isoform a peroxidase-L-ascorbate peroxidase was identified. It can be used as a marker that allows the identification of embryological potential.

  3. Electrostatic control of the tryptophan radical in cytochrome c peroxidase.

    PubMed

    Barrows, Tiffany P; Bhaskar, B; Poulos, Thomas L

    2004-07-13

    Previously a K(+)-binding site, analogous to that found in ascorbate peroxidase (APX), was engineered into cytochrome c peroxidase (CcP) to test the hypothesis that the bound K(+) influences the stability of the Trp191 cation radical formed during the CcP catalytic cycle (Bonagura et al., (1996) Biochemistry 35, 6107 and Bonagura et al., (1999) Biochemistry 38, 5528). Characterization of this mutant, designated CcPK2, showed that the stability of the Trp191 cation radical is dependent on the occupancy of the engineered K(+) site and that the Trp191 radical was much less stable in this mutant than in wild-type CcP. The mutations Met230Leu, Met231Gln, and Met172Ser have now been constructed on the CcPK2 mutant template to test if the Met residues also contribute to the stabilization of the Trp191 cation radical. Crystal structures show that the mutations affect only the local structure near the sites of mutation. Removal of these electronegative residues located less than 8 A from the Trp radical results in a further destabilization of the Trp radical. The characteristic EPR signal associated with the Trp radical is significantly narrowed and is characteristic of a tyrosine radical signal. Double-mixing stopped-flow experiments, where the delay time between the formation of CcP compound I and its mixing with horse heart ferrocytochrome c is varied, show that the stability of the Trp radical decreases as the Met residues are removed from the proximal cavity. When taken together, these results demonstrate a strong correlation between the experimentally determined stability of the Trp191 radical, the enzyme activity, and the calculated electrostatic stabilization of the Trp191 radical. PMID:15236591

  4. The Roles of Glutathione Peroxidases during Embryo Development.

    PubMed

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on

  5. Characterization of a catalase-peroxidase from the hyperthermophilic archaeon Archaeoglobus fulgidus.

    PubMed

    Kengen, S W; Bikker, F J; Hagen, W R; de Vos, W M; van der Oost, J

    2001-10-01

    A putative perA gene from Archaeoglobus fulgidus was cloned and expressed in Escherichia coli BL21(DE3), and the recombinant catalase-peroxidase was purified to homogeneity. The enzyme is a homodimer with a subunit molecular mass of 85 kDa. UV-visible spectroscopic analysis indicated the presence of protoheme IX as a prosthetic group (ferric heme), in a stoichiometry of 0.25 heme per subunit. Electron paramagnetic resonance analysis confirmed the presence of ferric heme and identified the proximal axial ligand as a histidine. The enzyme showed both catalase and peroxidase activity with pH optima of 6.0 and 4.5, respectively. Optimal temperatures of 70 degrees C and 80 degrees C were found for the catalase and peroxidase activity, respectively. The catalase activity strongly exceeded the peroxidase activity, with Vmax values of 9600 and 36 U mg(-1), respectively. Km values for H2O2 of 8.6 and 0.85 mM were found for catalase and peroxidase, respectively. Common heme inhibitors such as cyanide, azide, and hydroxylamine inhibited peroxidase activity. However, unlike all other catalase-peroxidases, the enzyme was also inhibited by 3-amino-1,2,4-triazole. Although the enzyme exhibited a high thermostability, rapid inactivation occurred in the presence of H2O2, with half-life values of less than 1 min. This is the first catalase-peroxidase characterized from a hyperthermophilic microorganism. PMID:11699646

  6. Effects of elevated peroxidase levels and corn earworm feeding on gene expression in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato gene arrays were used to investigate how high levels of transgenic peroxidase expression and feeding by the corn earworm, Helicoverpa zea, affected expression of defensive and other genes. High peroxidase activity significantly upregulated proteinase inhibitors and a few other defensive gene...

  7. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase

    SciTech Connect

    Lukat, G.S.; Rodgers, K.R.; Jabro, M.N.; Goff, H.M. )

    1989-04-18

    Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, the authors characterize the H{sub 2}O{sub 2}-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Caprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.

  8. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase.

    PubMed

    Lukat, G S; Rodgers, K R; Jabro, M N; Goff, H M

    1989-04-18

    Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, we characterize the H2O2-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Coprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.

  9. Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment.

    PubMed

    Ikehata, Keisuke; Buchanan, Ian D; Pickard, Michael A; Smith, Daniel W

    2005-11-01

    Non-ligninolytic fungal peroxidases produced by Coprinus cinereus UAMH 4103 and Coprinus sp. UAMH 10067 were purified, characterized and evaluated as cost-effective alternatives to horseradish peroxidase for aqueous phenol treatment. Purified Coprinus peroxidases exhibited a molecular weight of 36 kDa on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although the catalytic properties of the two Coprinus peroxidases were nearly identical in both crude and purified forms, the stabilities were substantially different. The peroxidase from Coprinus sp. UAMH 10067 was more stable at 50 degrees C and under basic conditions (up to pH 10) than the enzyme from C. cinereus UAMH 4103. The former enzyme also performed better at pH 9 than the latter one in aqueous phenol treatment. The phenol removal efficiency of the Coprinus peroxidase was comparable to those of previously studied plant peroxidases. The broader working pH and higher thermal and alkaline stability of the peroxidase from Coprinus sp. UAMH 10067 may be advantageous for its application to industrial wastewater treatment.

  10. Participation of chitin-binding peroxidase isoforms in the wilt pathogenesis of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific chitin-binding isozymes of peroxidase (POX) play an important role in pathogenesis of plant diseases caused with fungi. We studied the dynamics of peroxidase activity in two varieties of cotton (Gossypium hirsutum L.); one was a susceptible and the other resistant to the plant pathogen Vert...

  11. Selective oxidation of enzyme extracts for improved quantification of peroxidase activity.

    PubMed

    Jiang, Shu; Penner, Michael H

    2015-05-01

    Natural components endogenous to plant material extracts often interfere with traditional peroxidase assays by reducing the oxidized product generated as a result of the peroxidase-catalyzed reaction. This leads to an underestimation of peroxidase activity when the oxidized product provides the signal for enzyme activity quantification. This article describes a relatively simple way to alleviate complications arising due to the presence of such confounding compounds. The method is based on using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as the reducing substrate. The oxidized product of the reaction is ABTS(+), the accumulation of which can be followed spectrophotometrically. It is shown here that one can selectively inactivate the endogenous compounds that confound the peroxidase assay by treating the enzyme preparation with the oxidized product itself, ABTS(+), prior to initiating the quantification assay. This approach is selective for those compounds likely to interfere with peroxidase quantification. The presented method is shown to alleviate the complications associated with lag phases typical of plant extract peroxidase assays and, thus, to more accurately reflect total peroxidase activity. The presented assay is expected to be applicable to the wide range of biological systems for which the determination of peroxidase activity is desired. PMID:25640588

  12. Identification and characterization of VPO1, a new animal heme-containing peroxidase.

    PubMed

    Cheng, Guangjie; Salerno, John C; Cao, Zehong; Pagano, Patrick J; Lambeth, J David

    2008-12-15

    Animal heme-containing peroxidases play roles in innate immunity, hormone biosynthesis, and the pathogenesis of inflammatory diseases. Using the peroxidase-like domain of Duox1 as a query, we carried out homology searching of the National Center for Biotechnology Information database. Two novel heme-containing peroxidases were identified in humans and mice. One, termed VPO1 for vascular peroxidase 1, exhibits its highest tissue expression in heart and vascular wall. A second, VPO2, present in humans but not in mice, is 63% identical to VPO1 and is highly expressed in heart. The peroxidase homology region of VPO1 shows 42% identity to myeloperoxidase and 57% identity to the insect peroxidase peroxidasin. A molecular model of the VPO1 peroxidase region reveals a structure very similar to that of known peroxidases, including a conserved heme binding cavity, critical catalytic residues, and a calcium binding site. The absorbance spectra of VPO1 are similar to those of lactoperoxidase, and covalent attachment of the heme to VPO1 protein was demonstrated by chemiluminescent heme staining. VPO1 purified from heart or expressed in HEK cells is catalytically active, with a K(m) for H(2)O(2) of 1.5 mM. When co-expressed in cells, VPO1 can use H(2)O(2) produced by NADPH oxidase enzymes. VPO1 is likely to carry out peroxidative reactions previously attributed exclusively to myeloperoxidase in the vascular system.

  13. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    SciTech Connect

    Adler, P.R.; Arora, R.; El Ghaouth, A.

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} root fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.

  14. Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L.).

    PubMed

    Hertig, C; Rebmann, G; Bull, J; Mauch, F; Dudler, R

    1991-01-01

    We have used a cDNA clone encoding a pathogen-induced putative wheat peroxidase to screen a genomic library of wheat (Triticum aestivum L. cv. Cheyenne) and isolated one positive clone, lambda POX1. Sequence analysis revealed that this clone contains a gene encoding a putative peroxidase with a calculated pI of 8.1 which exhibits 58% and 83% sequence identity to the amino acid sequence of the turnip (Brassica rapa) peroxidase and a pathogen-induced putative wheat peroxidase, respectively. The two introns in the wheat gene are at the same positions as introns in the peroxidase genes of tomato and horseradish. Results of S1-mapping experiments suggest that this gene is neither pathogen- nor wound-induced in leaves but is constitutively expressed in roots.

  15. Suppression of Arabidopsis peroxidase 72 alters cell wall and phenylpropanoid metabolism.

    PubMed

    Fernández-Pérez, Francisco; Pomar, Federico; Pedreño, María A; Novo-Uzal, Esther

    2015-10-01

    Class III peroxidases are glycoproteins with a major role in cell wall maturation such as lignin formation. Peroxidases are usually present in a high number of isoenzymes, which complicates to assign specific functions to individual peroxidase isoenzymes. Arabidopsis genome encodes for 73 peroxidases, among which AtPrx72 has been shown to participate in lignification. Here, we report by using knock out peroxidase mutants how the disruption of AtPrx72 causes thinner secondary walls in interfascicular fibres but not in the xylem of the stem. This effect is also age-dependent, and AtPrx72 function seems to be particularly important when lignification prevails over elongation processes. Finally, the suppression AtPrx72 leads to the down-regulation of lignin biosynthesis pathway, as well as genes and transcription factors involved in secondary wall thickening.

  16. Silymarin synthesis and degradation by peroxidases of cell suspension cultures of Silybum marianum.

    PubMed

    Sánchez-Sampedro, María Angeles; Fernández-Tárrago, Jorge; Corchete, Purificación

    2007-05-01

    Treatment of Silybum marianum cell cultures with methyl jasmonate elicits the production of the antihepatotoxic drug silymarin and its release into the culture medium. In this work, we investigated the involvement of peroxidases (EC 1.11.1.7; donor hydrogen peroxidase oxido-reductase) in silymarin turnover in cell cultures as well as the influence of elicitation on the activity towards several substrates. Peroxidases from cell extracts and, to a higher degree from the spent medium, used the silymarin precursors taxifolin and coniferyl alcohol as substrates. Silymarin compounds were also degraded by suspension culture peroxidases; however, the oxidation efficiency was not modified by elicitation. S. marianum peroxidases were able to catalyse the oxidative coupling of taxifolin and coniferyl alcohol to silybinins. The synthetic activity was mainly associated with the extracellular compartment and as before, methyl jasmonate did not modify oxidative coupling activity. Changes in the isoenzyme profiles were not observed in elicited cultures.

  17. A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group*

    PubMed Central

    Auer, Markus; Gruber, Clemens; Bellei, Marzia; Pirker, Katharina F.; Zamocky, Marcel; Kroiss, Daniela; Teufer, Stefan A.; Hofbauer, Stefan; Soudi, Monika; Battistuzzi, Gianantonio; Furtmüller, Paul G.; Obinger, Christian

    2013-01-01

    Reconstructing the phylogenetic relationships of the main evolutionary lines of the mammalian peroxidases lactoperoxidase and myeloperoxidase revealed the presence of novel bacterial heme peroxidase subfamilies. Here, for the first time, an ancestral bacterial heme peroxidase is shown to possess a very high bromide oxidation activity (besides conventional peroxidase activity). The recombinant protein allowed monitoring of the autocatalytic peroxide-driven formation of covalent heme to protein bonds. Thereby, the high spin ferric rhombic heme spectrum became similar to lactoperoxidase, the standard reduction potential of the Fe(III)/Fe(II) couple shifted to more positive values (−145 ± 10 mV at pH 7), and the conformational and thermal stability of the protein increased significantly. We discuss structure-function relationships of this new peroxidase in relation to its mammalian counterparts and ask for its putative physiological role. PMID:23918925

  18. Effect of methylmercury on the activity of glutathione peroxidase in rat liver

    SciTech Connect

    Hirota, Y.

    1986-09-01

    The effect of methylmercury on the activity of glutathione peroxidase in rat liver was studied in vivo. A daily dose of 10mg methylmercuric chloride/kg body weight was administered subcutaneously to 15 male Wistar rats for 10 days, and the glutathione peroxidase activity in the liver was measured to compare with the control activity. A marked decrease was observed in the glutathione peroxidase activity in the experimental animals, which measured as low as 40% in comparison to that in the control animals. It can be speculated that the inhibition of glutathione peroxidase activity plays a significant role in the development of mercury toxicity and that the protective effect of selenium and vitamin E on the mercury intoxication might be partly due to preserving the glutathione peroxidase activity in the antioxidative defense mechanisms.

  19. Iron triggers a rapid induction of ascorbate peroxidase gene expression in Brassica napus.

    PubMed

    Vansuyt, G; Lopez, F; Inzé, D; Briat, J F; Fourcroy, P

    1997-06-30

    In plants, only ferritin gene expression has been reported to be iron-dependent. Here it is demonstrated that an iron overload of Brassica napus seedlings causes a large and rapid accumulation of ascorbate peroxidase transcripts, a plant-specific hydrogen peroxide-scavenging enzyme. This result documents a novel link between iron metabolism and oxidative stress. The ascorbate peroxidase mRNA abundance was not modified by reducing agents like N-acetyl cysteine, glutathione and ascorbate or by pro-oxidants such as hydrogen peroxide or diamide. Furthermore, the iron-induced ascorbate peroxidase mRNA accumulation was not antagonized by N-acetyl cysteine. Abscisic acid had no effect on the ascorbate peroxidase gene expression. Taken together these results suggest that iron-mediated expression of ascorbate peroxidase gene occurs through a signal transduction pathway apparently different from those already described for plant genes responsive to oxidative stress. PMID:9237628

  20. Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L.).

    PubMed

    Hertig, C; Rebmann, G; Bull, J; Mauch, F; Dudler, R

    1991-01-01

    We have used a cDNA clone encoding a pathogen-induced putative wheat peroxidase to screen a genomic library of wheat (Triticum aestivum L. cv. Cheyenne) and isolated one positive clone, lambda POX1. Sequence analysis revealed that this clone contains a gene encoding a putative peroxidase with a calculated pI of 8.1 which exhibits 58% and 83% sequence identity to the amino acid sequence of the turnip (Brassica rapa) peroxidase and a pathogen-induced putative wheat peroxidase, respectively. The two introns in the wheat gene are at the same positions as introns in the peroxidase genes of tomato and horseradish. Results of S1-mapping experiments suggest that this gene is neither pathogen- nor wound-induced in leaves but is constitutively expressed in roots. PMID:1653627

  1. A comparison of horseradish peroxidase and manganese ions as catalysts for the oxidation of dihydroxyfumaric acid

    PubMed Central

    Hartree, E. F.

    1968-01-01

    With horseradish peroxidase as catalyst the main product was dihydroxytartrate, but small amounts of glycolaldehyde, mesoxalic semialdehyde, mesoxalate and possibly glyoxal were also formed. Mn2+ catalysis gave rise only to mesoxalate and oxalate. When oxygen uptake was followed by a manometric method the rate of the peroxidase-catalysed reaction was proportional to oxygen concentration and marked inhibition by cyanide was obtained only at low buffer concentration. The catalytic effects of peroxidase and Mn2+ were almost always additive. Chelating agents inhibited the Mn2+-catalysed reaction, but had either no effect or a slight accelerating effect on the peroxidase-catalysed reaction. It is concluded that Mn2+ does not function as cofactor in the peroxidase-catalysed oxidation. PMID:5660638

  2. Storage of Heparinised Canine Whole Blood for the Measurement of Glutathione Peroxidase Activity.

    PubMed

    van Zelst, Mariëlle; Hesta, Myriam; Gray, Kerry; Janssens, Geert P J

    2016-08-01

    Glutathione peroxidase activity is used as a biomarker of selenium status in dogs. Freshly collected blood samples are usually measured, due to the lack of knowledge on the effect of storing the samples. This study investigated if the analysis of glutathione peroxidase activity in whole blood collected from dogs was affected by storage of between 5 and 164 days. Results indicated that glutathione peroxidase activity was more variable in the freshly analysed samples compared to the stored samples. Although the mean differences between fresh and stored samples were not always equal to zero, this is thought to be caused by the variability of reagent preparation rather than by storage, as no consistent increase or decrease in glutathione peroxidase activity was found. Therefore, it can be concluded that heparinised dog blood samples can be successfully stored up to 164 days before analysis of glutathione peroxidase activity. PMID:26701335

  3. Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.

    PubMed

    Wang, X; Lu, Y

    1999-07-13

    The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely. PMID:10413489

  4. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes.

    PubMed

    Ruiz-Dueñas, Francisco J; Lundell, Taina; Floudas, Dimitrios; Nagy, Laszlo G; Barrasa, José M; Hibbett, David S; Martínez, Angel T

    2013-01-01

    The genomes of three representative Polyporales (Bjerkandera adusta, Phlebia brevispora and a member of the Ganoderma lucidum complex) were sequenced to expand our knowledge on the diversity of ligninolytic and related peroxidase genes in this Basidiomycota order that includes most wood-rotting fungi. The survey was completed by analyzing the heme-peroxidase genes in the already available genomes of seven more Polyporales species representing the antrodia, gelatoporia, core polyporoid and phlebioid clades. The study confirms the absence of ligninolytic peroxidase genes from the manganese peroxidase (MnP), lignin peroxidase (LiP) and versatile peroxidase (VP) families, in the brown-rot fungal genomes (all of them from the antrodia clade), which include only a limited number of predicted low redox-potential generic peroxidase (GP) genes. When members of the heme-thiolate peroxidase (HTP) and dye-decolorizing peroxidase (DyP) superfamilies (up to a total of 64 genes) also are considered, the newly sequenced B. adusta appears as the Polyporales species with the highest number of peroxidase genes due to the high expansion of both the ligninolytic peroxidase and DyP (super)families. The evolutionary relationships of the 111 genes for class-II peroxidases (from the GP, MnP, VP, LiP families) in the 10 Polyporales genomes is discussed including the existence of different MnP subfamilies and of a large and homogeneous LiP cluster, while different VPs mainly cluster with short MnPs. Finally, ancestral state reconstructions showed that a putative MnP gene, derived from a primitive GP that incorporated the Mn(II)-oxidation site, is the precursor of all the class-II ligninolytic peroxidases. Incorporation of an exposed tryptophan residue involved in oxidative degradation of lignin in a short MnP apparently resulted in evolution of the first VP. One of these ancient VPs might have lost the Mn(II)-oxidation site being at the origin of all the LiP enzymes, which are found only in

  5. Is Peroxiredoxin II's peroxidase activity strongly inhibited in human erythrocytes?

    PubMed

    Benfeitas, Rui; Selvaggio, Gianluca; Antunes, Fernando; Coelho, Pedro; Salvador, Armindo

    2014-10-01

    H2O2 elimination in human erythrocytes is mainly carried out by catalase (Cat), glutathione peroxidase (GPx1) and the more recently discovered peroxiredoxin 2 (Prx2). However, the contribution of Prx2 to H2O2 consumption is still unclear. Prx2's high reactivity with H2O2 (kPrx2=10×10(7) M(-1)s(-1), kCat =7×10(7) M(-1)s(-1), kGPx1 =4×10(7) M(-1)s(-1)) and high abundance ([Prx2]= 570µM, [Cat]= 32µM, [GPx1]= 1µM) suggest that under low H2O2 supply rates it should consume >99% of the H2O2. However, extensive evidence indicates that in intact erythrocytes Prx2 contributes no more than Cat to H2O2 consumption. In order for this to be attained, Prx2's effective rate constant with H2O2would have to be just ~10(5) M(-1)s(-1), much lower than that determined in multiple experiments with the purified proteins. Nevertheless, nearly all Prx2 is oxidized within 1min of exposing erythrocytes to a H2O2 bolus, which is inconsistent with an irreversible inhibition. A mathematical model of the H2O2 metabolism in human erythrocytes [Benfeitas et al. (2014) Free Radic. Biol. Med.] where Prx2 either has a low kPrx2 or is subject to a strong (>99%) but readily reversible inhibition achieves quantitative agreement with detailed experimental observations of the responses of the redox status of Prx2 in human erythrocytes and suggests functional advantages of this design (see companion abstract). By contrast, a variant where Prx2 is fully active with kPrx2=10(8) M(-1)s(-1) shows important qualitative discrepancies. Altogether, these results suggest that Prx2's peroxidase activity is strongly inhibited in human erythrocytes. We acknowledge fellowship SFRH/BD/51199/2010, grants PEst-C/SAU/LA0001/2013-2014, PEst-OE/QUI/UI0612/2013, PEst-OE/QUI/UI0313/2014, and FCOMP-01-0124-FEDER-020978 (PTDC/QUI-BIQ/119657/2010) co-financed by FEDER through the COMPETE program and by FCT.

  6. Molecular characterization of the lignin-forming peroxidase: Role in growth, development and response to stress. Progress summary report, April 1, 1992--March 31, 1993

    SciTech Connect

    Lagrimini, L.M.

    1993-03-01

    This laboratory has continued its comprehensive study of the structure and function of plant peroxidases and their genes. Specifically, we are characterizing the anionic peroxidase of tobacco. During the past year we have completed the nucleotide sequence of the tobacco anionic peroxidase gene, joined the anionic peroxidase promoter to {Beta}-glucuronidase and demonstrated expression in transformed plants, measured lignin, auxin, and ethylene levels in transgenic tobacco plants over-expressing the anionic peroxidase, developed chimeric peroxidase genes to over-or under-express the anionic peroxidase in tissue specific manner in transgenic plants, and over-expressed the tobacco anionic peroxidase in transgenic tomato and sweetgum plants.

  7. Crystal structure analysis of peroxidase from the palm tree Chamaerops excelsa.

    PubMed

    Bernardes, Amanda; Textor, Larissa C; Santos, Jademilson C; Cuadrado, Nazaret Hidalgo; Kostetsky, Eduard Ya; Roig, Manuel G; Bavro, Vassiliy N; Muniz, João R C; Shnyrov, Valery L; Polikarpov, Igor

    2015-04-01

    Palm tree peroxidases are known to be very stable enzymes and the peroxidase from the Chamaerops excelsa (CEP), which has a high pH and thermal stability, is no exception. To date, the structural and molecular events underscoring such biochemical behavior have not been explored in depth. In order to identify the structural characteristics accounting for the high stability of palm tree peroxidases, we solved and refined the X-ray structure of native CEP at a resolution of 2.6 Å. The CEP structure has an overall fold typical of plant peroxidases and confirmed the conservation of characteristic structural elements such as the heme group and calcium ions. At the same time the structure revealed important modifications in the amino acid residues in the vicinity of the exposed heme edge region, involved in substrate binding, that could account for the morphological variations among palm tree peroxidases through the disruption of molecular interactions at the second binding site. These modifications could alleviate the inhibition of enzymatic activity caused by molecular interactions at the latter binding site. Comparing the CEP crystallographic model described here with other publicly available peroxidase structures allowed the identification of a noncovalent homodimer assembly held together by a number of ionic and hydrophobic interactions. We demonstrate, that this dimeric arrangement results in a more stable protein quaternary structure through stabilization of the regions that are highly dynamic in other peroxidases. In addition, we resolved five N-glycosylation sites, which might also contribute to enzyme stability and resistance against proteolytic cleavage.

  8. Uncovering a new role for peroxidase enzymes as drivers of angiogenesis.

    PubMed

    Panagopoulos, Vasilios; Zinonos, Irene; Leach, Damien A; Hay, Shelley J; Liapis, Vasilios; Zysk, Aneta; Ingman, Wendy V; DeNichilo, Mark O; Evdokiou, Andreas

    2015-11-01

    Peroxidases are heme-containing enzymes released by activated immune cells at sites of inflammation. To-date their functional role in human health has mainly been limited to providing a mechanism for oxidative defence against invading bacteria and other pathogenic microorganisms. Our laboratory has recently identified a new functional role for peroxidase enzymes in stimulating fibroblast migration and collagen biosynthesis, offering a new insight into the causative association between inflammation and the pro-fibrogenic events that mediate tissue repair and regeneration. Peroxidases are found at elevated levels within and near blood vessels however, their direct involvement in angiogenesis has never been reported. Here we report for the first time that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are readily internalised by human umbilical vein endothelial cells (HUVEC) where they promote cellular proliferation, migration, invasion, and stimulate angiogenesis both in vitro and in vivo. These pro-angiogenic effects were attenuated using the specific peroxidase inhibitor 4-ABAH, indicating the enzyme's catalytic activity is essential in mediating this response. Mechanistically, we provide evidence that MPO and EPO regulate endothelial FAK, Akt, p38 MAPK, ERK1/2 phosphorylation and stabilisation of HIF-2α, culminating in transcriptional regulation of key angiogenesis pathways. These findings uncover for the first time an important and previously unsuspected role for peroxidases as drivers of angiogenesis, and suggest that peroxidase inhibitors may have therapeutic potential for the treatment of angiogenesis related diseases driven by inflammation.

  9. Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization

    PubMed Central

    2013-01-01

    Peroxidases are oxidoreductase enzymes produced by most organisms. In this study, a peroxidase was purified from Hevea brasiliensis cell suspension by using anion exchange chromatography (DEAE-Sepharose), affinity chromatography (Con A-agarose) and preparative SDS-PAGE. The obtained enzyme appeared as a single band on SDS-PAGE with molecular mass of 70 kDa. Surprisingly, this purified peroxidase also had polyphenol oxidase activity. However, the biochemical characteristics were only studied in term of peroxidase because similar experiments in term of polyphenol oxidase have been reported in our pervious publication. The optimal pH of the purified peroxidase was 5.0 and its activity was retained at pH values between 5.0–10.0. The enzyme was heat stable over a wide range of temperatures (0–60°C), and less than 50% of its activity was lost at 70°C after incubation for 30 min. The enzyme was completely inhibited by β-mercaptoethanol and strongly inhibited by NaN3; in addition, its properties indicated that it was a heme containing glycoprotein. This peroxidase could decolorize many dyes; aniline blue, bromocresol purple, brilliant green, crystal violet, fuchsin, malachite green, methyl green, methyl violet and water blue. The stability against high temperature and extreme pH supported that the enzyme could be a potential peroxidase source for special industrial applications. PMID:23402438

  10. Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization.

    PubMed

    Chanwun, Thitikorn; Muhamad, Nisaporn; Chirapongsatonkul, Nion; Churngchow, Nunta

    2013-01-01

    Peroxidases are oxidoreductase enzymes produced by most organisms. In this study, a peroxidase was purified from Hevea brasiliensis cell suspension by using anion exchange chromatography (DEAE-Sepharose), affinity chromatography (Con A-agarose) and preparative SDS-PAGE. The obtained enzyme appeared as a single band on SDS-PAGE with molecular mass of 70 kDa. Surprisingly, this purified peroxidase also had polyphenol oxidase activity. However, the biochemical characteristics were only studied in term of peroxidase because similar experiments in term of polyphenol oxidase have been reported in our pervious publication. The optimal pH of the purified peroxidase was 5.0 and its activity was retained at pH values between 5.0-10.0. The enzyme was heat stable over a wide range of temperatures (0-60°C), and less than 50% of its activity was lost at 70°C after incubation for 30 min. The enzyme was completely inhibited by β-mercaptoethanol and strongly inhibited by NaN3; in addition, its properties indicated that it was a heme containing glycoprotein. This peroxidase could decolorize many dyes; aniline blue, bromocresol purple, brilliant green, crystal violet, fuchsin, malachite green, methyl green, methyl violet and water blue. The stability against high temperature and extreme pH supported that the enzyme could be a potential peroxidase source for special industrial applications. PMID:23402438

  11. A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin1

    PubMed Central

    Quiroga, Mónica; Guerrero, Consuelo; Botella, Miguel A.; Barceló, Araceli; Amaya, Iraida; Medina, María I.; Alonso, Francisco J.; de Forchetti, Silvia Milrad; Tigier, Horacio; Valpuesta, Victoriano

    2000-01-01

    The last step in the synthesis of lignin and suberin has been proposed to be catalyzed by peroxidases, although other proteins may also be involved. To determine which peroxidases are involved in the synthesis of lignin and suberin, five peroxidases from tomato (Lycopersicon esculentum) roots, representing the majority of the peroxidase activity in this organ, have been partially purified and characterized kinetically. The purified peroxidases with isoelectric point (pI) values of 3.6 and 9.6 showed the highest catalytic efficiency when the substrate used was syringaldazine, an analog of lignin monomer. Using a combination of transgenic expression and antibody recognition, we now show that the peroxidase pI 9.6 is probably encoded by TPX1, a tomato peroxidase gene we have previously isolated. In situ RNA hybridization revealed that TPX1 expression is restricted to cells undergoing synthesis of lignin and suberin. Salt stress has been reported to induce the synthesis of lignin and/or suberin. This stress applied to tomato caused changes in the expression pattern of TPX1 and induced the TPX1 protein. We propose that the TPX1 product is involved in the synthesis of lignin and suberin. PMID:10759507

  12. Characterization of Plant Peroxidases and Their Potential for Degradation of Dyes: a Review.

    PubMed

    Kalsoom, Umme; Bhatti, Haq Nawaz; Asgher, Muhammad

    2015-07-01

    Peroxidases are ubiquitously found in all vascular plants and are promising biocatalysts for oxidization of wide range of aromatic substrates including various industrial dyes. Peroxidases can catalyze degradation of chemical structure of aromatic dyes either by precipitation or by opening the aromatic ring structure. Both soluble and immobilized peroxidases have been successfully used in batches as well as in continuous processes for the treatment of aromatic dyes present in industrial effluents. Plant peroxidases are stable catalysts that retain their activities over a broad range of pH and temperatures. The performance of an enzyme for degradation process depends upon the structure of dyes and the operational parameters like concentration of enzyme, H2O2 and dye, incubation time, pH, and temperature. Recalcitrant dyes can also be mineralized by plant peroxidases in the presence of redox mediators. Thus, plant peroxidases are easily available, inexpensive, and ecofriendly biocatalysts for the treatment of wastewaters containing a wide spectrum of textile and non-textile synthetic dyes. This article reviews the recent developments in isolation and characterization of plant peroxidases and their applications for bioremediation of synthetic dyes.

  13. Cloning, sequencing, and heterologous expression of a gene coding for Arthromyces ramosus peroxidase.

    PubMed

    Sawai-Hatanaka, H; Ashikari, T; Tanaka, Y; Asada, Y; Nakayama, T; Minakata, H; Kunishima, N; Fukuyama, K; Yamada, H; Shibano, Y

    1995-07-01

    To understand the relationship between the structure and functions of the peroxidase of Arthromyces ramosus, a novel taxon of hyphomycete, and the evolutionary relationship of the A.ramosus peroxidase (ARP) with the other peroxidases, we isolated complementary and genomic DNA clones encoding ARP and characterized them. The sequence analyses of the ARP and cDNA coding for ARP showed that a mature ARP consists of 344 amino acids with a N-terminal pyroglutamic acid preceded by a signal peptide of 20 amino acid residues. The amino acid sequence of ARP was 99% identical to that of the peroxidase of Coprinus cinereus, a basidiomycete, and also had very high similarities (41-43% identity) to those of basidiomycetous lignin peroxidases, although we could find no lignin peroxidase activities for ARP when assayed with lignin model compounds. We could identified His184 and His56 as proximal and distal ligands to heme, respectively, and Arg52 as an essential Arg. Comparison of the sequences of complementary and genomic DNAs found that protein-encoding DNA is interrupted by 14 intervening sequences. The ARP cDNA was expressed in the yeast Saccharomyces cerevisiae under the promoter of the glyceraldehyde 3-phosphate dehydrogenase gene, yielding 0.02 units/ml of a secreted active peroxidase.

  14. Characterization of lignin and Mn peroxidases from Phanerochaete chrysosporium. Progress report

    SciTech Connect

    Not Available

    1991-12-31

    Long-term objectives are to elucidate the role and mechanism of the various isozymes in lignin biodegradation. Work is described on electrochemical studies on lignin and Mn peroxidases. This study was performed to investigate the structural aspects which confer the lignin and Mn peroxidases with their high reactivity. The experimentally determined redox potential of the Fe{sup 3+}/Fe{sup 2+} couple for the lignin peroxidase isozymes H1, H2, H8 and H10 are very similar, near-130 mV. The redox potential for the Mn peroxidase isozymes H3 and H4 are similar to each other ({minus}88 mV and {minus}95 mV, respectively) and are more positive than the lignin peroxidases. The higher redox potential for the Fe{sup 3+}/Fe{sup 2+} couple is consistent with the heme active site of these fungal peroxidases being more electron deficient. To investigate the accessibility of the heme active site to the substrate which is oxidized [veratryl alcohol and Mn (II)], we investigated whether these substrates had any affect on the redox potential of the heme. The E{sub m7} value for lignin and Mn peroxidases are not affected by their respective substrates, veratryl alcohol and Mn (II). These results suggest that substrates do not directly interact with the ferric heme-iron as axial ligands. This is consistent with the present model for peroxidase catalysis. Suicide inhibitor (1) and nmr studies (2) indicate that the heme-iron of horseradish peroxidase (HRP) is not fully accessible to bulky substrates occur at the periphery of the heme.

  15. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.

    PubMed

    Nousiainen, Paula; Kontro, Jussi; Manner, Helmiina; Hatakka, Annele; Sipilä, Jussi

    2014-11-01

    Fungal oxidative enzymes, such as peroxidases and laccases, are the key catalysts in lignin biodegradation in vivo, and consequently provide an important source for industrial ligninolytic biocatalysts. Recently, it has been shown that some syringyl-type phenolics have potential as industrial co-oxidants or mediators, in laccase-catalyzed modification of lignocellulosic material. We have now studied the effect of such mediators with ligninolytic peroxidases on oxidation of the most recalcitrant lignin model compounds. We found that they are able to enhance the manganese peroxidase (MnP) catalyzed oxidation reactions of small non-phenolic compounds, veratryl alcohol and veratrylglycerol β-guaiacyl ether (adlerol), which are not usually oxidized by manganese peroxidases alone. In these experiments we compared two peroxidases from white-rot fungi, MnP from Phlebia sp. Nf b19 and versatile peroxidase (VP) from Bjerkandera adusta under two oxidation conditions: (i) the Mn(III) initiated mediated oxidation by syringyl compounds and (ii) the system involving MnP-dependent lipid peroxidation, both with production of (hydrogen) peroxides in situ to maintain the peroxidase catalytic cycle. It was found that both peroxidases produced α-carbonyl oxidation product of veratryl alcohol in clearly higher yields in reactions mediated by phenoxy radicals than in lipid-peroxyl radical system. The oxidation of adlerol, on the other hand, was more efficient in lipid-peroxidation-system. VP was more efficient than MnP in the oxidation of veratryl alcohol and showed its lignin peroxidase type activity in the reaction conditions indicated by some cleavage of Cα-Cβ-bond of adlerol. Finally, the mediator assisted oxidation conditions were applied in the oxidation of synthetic lignin (DHP) and the structural analysis of the oxidized polymers showed clear modifications in the polymer outcome, e.g. the oxidation resulted in reduced amount of aliphatic hydroxyls indicated by (31)P NMR.

  16. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.

    PubMed

    Nousiainen, Paula; Kontro, Jussi; Manner, Helmiina; Hatakka, Annele; Sipilä, Jussi

    2014-11-01

    Fungal oxidative enzymes, such as peroxidases and laccases, are the key catalysts in lignin biodegradation in vivo, and consequently provide an important source for industrial ligninolytic biocatalysts. Recently, it has been shown that some syringyl-type phenolics have potential as industrial co-oxidants or mediators, in laccase-catalyzed modification of lignocellulosic material. We have now studied the effect of such mediators with ligninolytic peroxidases on oxidation of the most recalcitrant lignin model compounds. We found that they are able to enhance the manganese peroxidase (MnP) catalyzed oxidation reactions of small non-phenolic compounds, veratryl alcohol and veratrylglycerol β-guaiacyl ether (adlerol), which are not usually oxidized by manganese peroxidases alone. In these experiments we compared two peroxidases from white-rot fungi, MnP from Phlebia sp. Nf b19 and versatile peroxidase (VP) from Bjerkandera adusta under two oxidation conditions: (i) the Mn(III) initiated mediated oxidation by syringyl compounds and (ii) the system involving MnP-dependent lipid peroxidation, both with production of (hydrogen) peroxides in situ to maintain the peroxidase catalytic cycle. It was found that both peroxidases produced α-carbonyl oxidation product of veratryl alcohol in clearly higher yields in reactions mediated by phenoxy radicals than in lipid-peroxyl radical system. The oxidation of adlerol, on the other hand, was more efficient in lipid-peroxidation-system. VP was more efficient than MnP in the oxidation of veratryl alcohol and showed its lignin peroxidase type activity in the reaction conditions indicated by some cleavage of Cα-Cβ-bond of adlerol. Finally, the mediator assisted oxidation conditions were applied in the oxidation of synthetic lignin (DHP) and the structural analysis of the oxidized polymers showed clear modifications in the polymer outcome, e.g. the oxidation resulted in reduced amount of aliphatic hydroxyls indicated by (31)P NMR. PMID

  17. Physicochemical peculiarities of iron porphyrin-containing electrodes in catalase- and peroxidase-type biomimetic sensors

    NASA Astrophysics Data System (ADS)

    Sardarly, N. A.; Nagiev, T. M.

    2009-08-01

    New catalase- and peroxidase-type iron porphyrin biomimetic electrodes have been developed for determining ultralow concentrations of H2O2 and C2H5OH in aqueous solutions. Their physicochemical features have been studied. A mechanism of catalase and peroxidase reactions was suggested. Biomimetic electrodes did not lose their activity for a long time under the action of the oxidant, intermediates, and the final products of the decomposition of H2O2. Potentiometric biomimetic sensors of catalase and peroxidase types have been designed and studied.

  18. Roles of cell wall peroxidases in plant development.

    PubMed

    Francoz, Edith; Ranocha, Philippe; Nguyen-Kim, Huan; Jamet, Elisabeth; Burlat, Vincent; Dunand, Christophe

    2015-04-01

    Class III peroxidases (CIII Prxs) are plant specific proteins. Based on in silico prediction and experimental evidence, they are mainly considered as cell wall localized proteins. Thanks to their dual hydroxylic and peroxidative cycles, they can produce ROS as well as oxidize cell wall aromatic compounds within proteins and phenolics that are either free or linked to polysaccharides. Thus, they are tightly associated to cell wall loosening and stiffening. They are members of large multigenic families, mostly due to an elevated rate of gene duplication in higher plants, resulting in a high risk of functional redundancy between them. However, proteomic and (micro)transcriptomic analyses have shown that CIII Prx expression profiles are highly specific. Based on these omic analyses, several reverse genetic studies have demonstrated the importance of the spatio-temporal regulation of their expression and ability to interact with cell wall microdomains in order to achieve specific activity in vivo. Each CIII Prx isoform could have specific functions in muro and this could explain the conservation of a high number of genes in plant genomes.

  19. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    PubMed

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. PMID:27432633

  20. Glutathione peroxidase mimics as novel antioxidants from vegetables.

    PubMed

    Terao, Junji; Hiwada, Mio; Taguchi, Keiko; Takahara, Keigo; Mohri, Satoshi

    2005-01-01

    Vegetables are generally recognized as rich sources of dietary antioxidants for inhibiting lipid peroxidation. Here we investigated lipid hydroperoxide (LOOH)-reducing activity of several vegetables to estimate their role on the prevention of lipid peroxidation in food and the digestive tract. By using HPLC analysis, we screened vegetables possessing the ability to convert 13-hydroperoxyoctadecadienoic acid (13-HPODE) to its reduced derivative, 13-hydroxyoctadecadienoic acid (13-HODE). Welsh onion (Allium fistulosum L.) was found to be highly active in the reduction of 13-HPODE among tested vegetables. There was no relationship between 13-HPODE reducing activity and GSH peroxidase (GPX) activity in the tested vegetables. 13-HPODE-reducing activity of welsh onion was enhanced by the addition of sulfhydryl compounds including glutathione (GSH). Neither GPX inhibitor nor heat treatment suppressed 13-HPODE-reducing activity effectively. These results suggest that welsh onion and other vegetables contain GPX mimics responsible for the reduction of LOOH. GPX mimics may be helpful in the attenuation of harmful effect of LOOH from food. PMID:15817993

  1. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus

    PubMed Central

    Yehia, Ramy Sayed

    2014-01-01

    Manganese peroxidase (MnP) was produced from white rot edible mushroom Pleurotus ostreatus on the culture filtrate. The enzyme was purified to homogeneity using (NH4)2SO4 precipitation, DEAE-Sepharose and Sephadex G-100 column chromatography. The final enzyme activity achieved 81 U mL−1, specific activity 78 U mg−1 with purification fold of 130 and recovery 1.2% of the crude enzyme. SDS-PAGE indicated that the pure enzyme have a molecular mass of approximately 42 kDa. The optimum pH was between 4–5 and the optimum temperature was 25 °C. The pure MnP activity was enhanced by Mn2+, Cu2+, Ca2+ and K+ and inhibited by Hg+2 and Cd+2. H2O2 at 5 mM enhanced MnP activity while at 10 mM inhibited it significantly. The MnP-cDNA encoding gene was sequenced and determined (GenBank accession no. AB698450.1). The MnP-cDNA was found to consist of 497 bp in an Open Reading Frame (ORF) encoding 165 amino acids. MnP from P. ostreatus could detoxify aflatoxin B1 (AFB1) depending on enzyme concentration and incubation period. The highest detoxification power (90%) was observed after 48 h incubation at 1.5 U mL−1 enzyme activities. PMID:24948923

  2. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus.

    PubMed

    Yehia, Ramy Sayed

    2014-01-01

    Manganese peroxidase (MnP) was produced from white rot edible mushroom Pleurotus ostreatus on the culture filtrate. The enzyme was purified to homogeneity using (NH4)2SO4 precipitation, DEAE-Sepharose and Sephadex G-100 column chromatography. The final enzyme activity achieved 81 U mL(-1), specific activity 78 U mg(-1) with purification fold of 130 and recovery 1.2% of the crude enzyme. SDS-PAGE indicated that the pure enzyme have a molecular mass of approximately 42 kDa. The optimum pH was between 4-5 and the optimum temperature was 25 °C. The pure MnP activity was enhanced by Mn(2+), Cu(2+), Ca(2+) and K(+) and inhibited by Hg(+2) and Cd(+2). H2O2 at 5 mM enhanced MnP activity while at 10 mM inhibited it significantly. The MnP-cDNA encoding gene was sequenced and determined (GenBank accession no. AB698450.1). The MnP-cDNA was found to consist of 497 bp in an Open Reading Frame (ORF) encoding 165 amino acids. MnP from P. ostreatus could detoxify aflatoxin B1 (AFB1) depending on enzyme concentration and incubation period. The highest detoxification power (90%) was observed after 48 h incubation at 1.5 U mL(-1) enzyme activities.

  3. Calcium promotes activity and confers heat stability on plant peroxidases

    PubMed Central

    Plieth, Christoph; Vollbehr, Sonja

    2012-01-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695

  4. Kinetic modelling of phenol co-oxidation using horseradish peroxidase.

    PubMed

    Carvalho, R H; Lemos, F; Lemos, M A N D A; Vojinović, V; Fonseca, L P; Cabral, J M S

    2006-07-01

    Phenol is an industrial pollutant and its removal from industrial wastewaters is of great importance. In order to design optimised phenol removal procedures by using horseradish peroxidase-based systems, there are some points that have to be dealt with. One of the most important issues is the need for reliable kinetics as this is one of the difficulties found during process scale-up. Although simplified kinetics can be used for limited ranges of operating conditions, they are not usually reliable for the description of varying process conditions. The present work describes the implementation of a kinetic model, based on a mechanism, for the co-oxidation of phenol and 4-aminoantipyrine (Am-NH2), which is used as a chromogen agent, with hydrogen peroxide as the oxidant. The model covers not only the variation of the concentrations of all the species involved, but also the effect of temperature in the reaction. The estimation of kinetic rate constants and activation energies for the various steps in the mechanism is performed with a single optimisation procedure, and all the experimental results are described using a unique set of parameters, which, thus, is valid over an extended range of operating conditions. The mechanism allowed the determination of a reliable kinetic model which is appropriate for the range of experimental conditions used. The computational model was also tested with an independent set of experiments with different conditions from the ones for which the parameters were estimated. PMID:16612606

  5. Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts.

    PubMed

    Mahgoub, Samir; Tsioptsias, Costas; Samaras, Petros

    2016-01-01

    The ability of selected manganese peroxidase (MnP) yeast strains, isolated from the mixed liquor of an activated sludge bioreactor treating melanoidins wastewater, was investigated in this work, aiming to examine the degradation potential of melanoidins, in the presence or absence of nutrients. Ten yeast strains were initially isolated from the mixed liquor; four yeast strains (Y1, Y2, Y3 and Y4) were selected for further studies, based on their tolerance towards synthetic melanoidins (SMs) degradation and MnP activity onto solid agar medium. The Y1 strain exhibited almost 98% homology to Candida glabrata yeast, based on 28S rRNA identification studies. During experiments carried out using SM at 30 °C, the four isolated yeast cultures showed a noticeable organic matter reduction and decolorization capacity reaching up to 70% within 2-5 days. However, the corresponding yeast cultures grown in glucose peptone yeast extract medium using real melanoidin wastewater at 30°C showed lower organic matter and color removal capacity, reaching about 60% within 2-5 days. Nevertheless, it was found that the removal of real and synthetic melanoidins could be carried out by these strains under non-aseptic conditions, without requiring further addition of nutrients. PMID:27191565

  6. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase.

    PubMed

    Eibes, Gemma; Debernardi, Gianfranco; Feijoo, Gumersindo; Moreira, M Teresa; Lema, Juan M

    2011-06-01

    Pharmaceuticals are an important group of emerging pollutants with increasing interest due to their rising consumption and the evidence for ecotoxicological effects associated to trace amounts in aquatic environments. In this paper, we assessed the potential degradation of a series of pharmaceuticals: antibiotics (sulfamethoxazole), antidepressives (citalopram hydrobromide and fluoxetine hydrochloride), antiepileptics (carbamazepine), anti-inflammatory drugs (diclofenac and naproxen) and estrogen hormones (estrone, 17β-estradiol, 17α-ethinylestradiol) by means of a versatile peroxidase (VP) from the ligninolytic fungus Bjerkandera adusta. The effects of the reaction conditions: VP activity, organic acid concentration and H(2)O(2) addition rate, on the kinetics of the VP based oxidation system were evaluated. Diclofenac and estrogens were completely degraded after only 5-25 min even with a very low VP activity (10 U l(-1)). High degradation percentages (80%) were achieved for sulfamethoxazole and naproxen. Low or undetectable removal yields were observed for citalopram (up to 18%), fluoxetine (lower than 10%) and carbamazepine (not degraded). PMID:20972884

  7. Inactivation of Coprinus cinereus peroxidase by 4-chloroaniline during turnover: comparison with horseradish peroxidase and bovine lactoperoxidase.

    PubMed

    Chang, H C; Holland, R D; Bumpus, J A; Churchwell, M I; Doerge, D R

    1999-12-15

    The peroxidase from Coprinus cinereus (CPX) catalyzed oxidative oligomerization of 4-chloroaniline (4-CA) forming several products: N-(4-chlorophenyl)-benzoquinone monoamine (dimer D), 4,4'-dichloroazobenzene (dimer E); 2-(4-chloroanilino)-N-(4-chlorophenyl)-benzoquinone (trimer F); 2-amino-5-chlorobenzoquinone-di-4-chloroanil (trimer G); 2-(4-chloroanilino)-5-hydroxybenzoquinone-di-4-chloroanil (tetramer H) and 2-amino-5-(-4-chlroanilino)-benzoquinone-di-4-chloroanil (tetramer 1). In the presence of 4-CA and H2O2, CPX was irreversibly inactivated within 10 min. Inactivation of CPX in the presence of H2O2 was a time-dependent, first-order process when the concentration of 4-CA was varied between 0 and 2.5 mM. The apparent dissociation constant (Ki) for CPX and 4-CA was 0.71 mM. The pseudo-first order rate constant for inactivation (k(inact)), was 1.15 x 10(-2) s(-1). Covalent incorporation of 20 mole 14C-4-CA per mole of inactivated CPX was observed. The partition ratio was about 2200 when either 4-CA or H2O2 was used as the limiting substrate. These results show that 4-CA is a metabolically activated inactivator (i.e. a suicide substrate). Unmodified heme and hydroxymethyl heme were isolated from native, 4-CA-inactivated and H2O2-incubated CPX. Inactivation resulted in significant losses in both heme contents. Analysis of tryptic peptides from 4-CA-inactivated CPX by MALDI-TOF/ MS and UV-VIS spectrophotometry suggested that trimer G and tetramer H were the major 4-CA derivatives that were covalently bound, including to a peptide (MGDAGF-SPDEVVDLLAAHSLASQEGLNSAIFR) containing the heme binding site. These studies show that heme destruction and covalent modification of the polypeptide chain are both important for the inactivation of CPX. These results were compared with similar studies on 4-CA-inactivated horseradish peroxidase (HRP) and bovine lactoperoxidase (LPO) during the oxidation of 4-CA.

  8. The structure of an electron transfer complex containing a cytochrome c and a peroxidase.

    PubMed

    Pettigrew, G W; Prazeres, S; Costa, C; Palma, N; Krippahl, L; Moura, I; Moura, J J

    1999-04-16

    Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility. PMID:10196231

  9. Hydrogen peroxide-independent generation of superoxide catalyzed by soybean peroxidase in response to ferrous ion.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It is well documented that extracellular alkalization occurs in plants under the challenges by pathogenic microbes. This may eventually induce the pH-dependent extracellular peroxidase-mediated oxidative burst at the site of microbial challenges. By employing the purified proteins of horseradish peroxidase as a model, we have recently proposed a likely role for free Fe(2+) in reduction of ferric enzyme of plant peroxidases into ferrous intermediate and oxygen-bound form of enzyme known as Compound III which may eventually releases superoxide anion radical (O2(•-)), especially under alkaline condition, possibly contributing to the plant defense mechanism. In the present study, we employed the purified protein of soybean peroxidase (SBP) as an additional model, and examined the changes in the redox status of enzyme accompanying the generation of O2(•-) in response to Fe(2+) under alkaline condition.

  10. Inhibition of Peroxidase Activity of Cytochrome c: De Novo Compound Discovery and Validation

    PubMed Central

    Bakan, Ahmet; Kapralov, Alexandr A.; Bayir, Hulya; Hu, Feizhou; Kagan, Valerian E.

    2015-01-01

    Cytochrome c (cyt c) release from mitochondria is accepted to be the point of no return for eliciting a cascade of interactions that lead to apoptosis. A strategy for containing sustained apoptosis is to reduce the mitochondrial permeability pore opening. Pore opening is enhanced by peroxidase activity of cyt c gained upon its complexation with cardiolipin in the presence of reactive oxygen species. Blocking access to the heme group has been proposed as an effective intervention method for reducing, if not eliminating, the peroxidase activity of cyt c. In the present study, using a combination of druggability simulations, pharmacophore modeling, virtual screening, and in vitro fluorescence measurements to probe peroxidase activity, we identified three repurposable drugs and seven compounds that are validated to effectively inhibit the peroxidase activity of cyt c. PMID:26078313

  11. Amino acid sequence of anionic peroxidase from the windmill palm tree Trachycarpus fortunei.

    PubMed

    Baker, Margaret R; Zhao, Hongwei; Sakharov, Ivan Yu; Li, Qing X

    2014-12-10

    Palm peroxidases are extremely stable and have uncommon substrate specificity. This study was designed to fill in the knowledge gap about the structures of a peroxidase from the windmill palm tree Trachycarpus fortunei. The complete amino acid sequence and partial glycosylation were determined by MALDI-top-down sequencing of native windmill palm tree peroxidase (WPTP), MALDI-TOF/TOF MS/MS of WPTP tryptic peptides, and cDNA sequencing. The propeptide of WPTP contained N- and C-terminal signal sequences which contained 21 and 17 amino acid residues, respectively. Mature WPTP was 306 amino acids in length, and its carbohydrate content ranged from 21% to 29%. Comparison to closely related royal palm tree peroxidase revealed structural features that may explain differences in their substrate specificity. The results can be used to guide engineering of WPTP and its novel applications.

  12. A catalytic approach to estimate the redox potential of heme-peroxidases

    SciTech Connect

    Ayala, Marcela . E-mail: maa@ibt.unam.mx; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-06-08

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.

  13. Decolorization of direct dyes by immobilized turnip peroxidase in batch and continuous processes.

    PubMed

    Matto, Mahreen; Husain, Qayyum

    2009-03-01

    An inexpensive immobilized turnip peroxidase has been employed for the decolorization of some direct dyes in batch and continuous reactors. Wood shaving was investigated as an inexpensive material for the preparation of bioaffinity support. Concanavalin A-wood shaving bound turnip peroxidase exhibited 67% of the original enzyme activity. Both soluble and immobilized turnip peroxidase could effectively remove more than 50% color from dyes in the presence of metals/salt and 0.6mM 1-hydroxybenzotriazole, after 1h of incubation. The columns containing immobilized peroxidase could decolorize 64% direct red 23% and 50% mixture of direct dyes at 4 and 3 months of operation, respectively. Total organic carbon analysis of treated dye or mixture of dyes revealed that these results were quite comparable to the loss of color from solutions. Thus, this study showed that the immobilized enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:18423852

  14. Extracellular peroxidase production by Coprinus species from urea-treated soil.

    PubMed

    Ikehata, Keisuke; Buchanan, Ian D; Smith, Daniel W

    2004-01-01

    Thirteen strains of inky-cap mushroom Coprinus species were evaluated for the production of extracellular peroxidase. The liquid fermentation was carried out in shake flasks containing 1% glucose, 0.5% peptone, 0.3% yeast extract, and 0.3% malt extract broth at 25 degrees C. Peroxidase activity was detected in the liquid culture of several Coprinus species, including C. echinosporus NBRC 30630; C. macrocephalus NBRC 30117; Coprinus spp. UAMH 10065, UAMH 10066, UAMH 10067, and 074, after 10 days of growth. Peroxidase production by Coprinus sp. UAMH 10067, a Coprinus species isolated from urea-treated soil, was comparable to that of C. cinereus and reached 15 U.mL(-1) after 10 days. In addition, the peroxidase from Coprinus sp. UAMH 10067 was apparently more thermally stable than the enzyme produced by C. cinereus.

  15. Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing.

    PubMed

    Wang, Quanbo; Lei, Jianping; Deng, Shengyuan; Zhang, Lei; Ju, Huangxian

    2013-01-30

    A novel peroxidase mimic was designed by loading ferric porphyrin and streptavidin onto graphene, which was used to recognize a biotinylated molecular beacon for specific electrochemical detection of DNA down to attomolar levels.

  16. Degradation of disperse dye from textile effluent by free and immobilized Cucurbita pepo peroxidase

    NASA Astrophysics Data System (ADS)

    Boucherit, N.; Abouseoud, M.; Adour, L.

    2012-06-01

    Disperse dyes constitute the largest group of dyes used in local textile industry. This work evaluates the potential of the Cucurbita peroxidase(C-peroxidase) extracted from courgette in the decolourization of disperse dye in free and immobilized form. The optimal conditions for immobilization of C-peroxidase in Ca-alginate were identified. The immobilization was optimized at 2%(w/v) of sodium alginate and 0.2 M of calcium chloride. After optimization of treatment parameters, the results indicate that at pH 2, dye concentration: 80 mg/L(for FCP) and 180 mg/L(for ICP), H2O2 dose: 0,02M (for FCP) and 0,12M(for ICP), the decolourization by free and immobilized C-peroxidase were 72.02% and 69.71 % respectively. The degradation pathway and the metabolic products formed after the degradation were also predicted using UV-vis spectroscopy analysis.

  17. The SKPO-1 peroxidase functions in the hypodermis to protect Caenorhabditis elegans from bacterial infection.

    PubMed

    Tiller, George R; Garsin, Danielle A

    2014-06-01

    In recent years, the synergistic relationship between NADPH oxidase (NOX)/dual oxidase (DUOX) enzymes and peroxidases has received increased attention. Peroxidases utilize NOX/DUOX-generated H2O2 for a myriad of functions including, but not limited to, thyroid hormone biosynthesis, cross-linking extracellular matrices (ECM), and immune defense. We postulated that one or more peroxidases produced by Caenorhabditis elegans would act in host defense, possibly in conjunction with BLI-3, the only NOX/DUOX enzyme encoded by the genome that is expressed. Animals exposed to RNA interference (RNAi) of the putative peroxidase genes were screened for susceptibility to the human pathogen Enterococcus faecalis. One of three genes identified, skpo-1 (ShkT-containing peroxidase), was studied in depth. Animals mutant for this gene were significantly more susceptible to E. faecalis, but not Pseudomonas aeruginosa. A slight decrease in longevity was also observed. The skpo-1 mutant animals had a dumpy phenotype of incomplete penetrance; half the animals displayed a dumpy phenotype ranging from slight to severe, and half were morphologically wild type. The SKPO-1 protein contains the critical catalytic residues necessary for peroxidase activity, and in a whole animal assay, more H2O2 was detected from the mutant compared to the wild type, consistent with the loss of an H2O2 sink. By using tissue-specific skpo-1 RNAi and immunohistochemical localization with an anti-SKPO-1 antibody, it was determined that the peroxidase is functionally and physically present in the hypodermis. In conclusion, these results characterize a peroxidase that functions protectively in the hypodermis during exposure to E. faecalis.

  18. Impermeability of newt cerebral and pial capillaries to exogenous peroxidase. A light and electron microscope study.

    PubMed

    Ciani, F; Del Grande, P; Franceschini, V; Caniato, G; Minelli, G

    1983-01-01

    The permeability of cerebral vessels to exogenous peroxidase was studied in the newt. The reaction product was found only inside the cerebral or pial blood vessels. Electron microscope investigations revealed the presence of reaction product along the luminal area of vessels and in some parts of the intercellular spaces at the level of tight junctions joining endothelial cells. On the basis of the ultrastructural peroxidase localization, the presence of a brain-blood barrier in Triturus is discussed.

  19. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications.

    PubMed

    Tao, Yu; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-02-11

    Bifunctionalized mesoporous silica-supported gold nanoparticles as oxidase and peroxidase mimics for antibacterial applications are demonstrated. For the first time, these mesoporous silica-supported gold nanoparticles are applied as oxidase and peroxidase mimics. Taking advantage of their prominent enzyme activities, the MSN-AuNPs show excellent antibacterial properties against both Gram-negative and Gram-positive bacteria. Furthermore, MSN-AuNPs also exhibit outstanding performance in biofilm elimination . PMID:25655182

  20. Effects of experimental hypogravity on peroxidase and cell wall constituents in the dwarf marigold

    NASA Technical Reports Server (NTRS)

    Siegel, S.; Speitel, T.; Shiraki, D.; Fukumoto, J.

    1978-01-01

    Dwarf Marigolds grown from seed under experimental hypogravity are modified in lignin content, hemicellulose composition, and peroxidase activity. The two conditions used, clinostats and flotation, induced changes differing in magnitude but qualitatively similar. Most responses on clinostats required corrections for vertical axis rotational effects, thus limiting the value of these instruments in free-fall simulation. These findings extend earlier observations suggesting that increased peroxidase and decreased lignin are characteristic of growth under experimental hypogravity.

  1. Effects of experimental hypogravity on peroxidase and cell wall constituents in the dwarf marigold

    NASA Technical Reports Server (NTRS)

    Siegel, S.; Speitel, T.; Shiraki, D.; Fukumoto, J.

    1977-01-01

    Dwarf marigolds grown from seed under experimental hypogravity are modified in lignin content, hemicellulose composition and peroxidase activity. The two conditions used, clinostats and flotation, induced changes differing in magnitude but qualitatively similar. Most responses on clinostats required correction for vertical axis rotational effects, thus limiting the value of these instruments in free-fall simulation. These findings extend earlier observations suggesting that increased peroxidase and decreased lignin are characteristic of growth under experimental hypogravity.

  2. Determination of estrogenic/antiestrogenic potential of antifertility substances using rat uterine peroxidase assay.

    PubMed

    Johri, R K; Pahwa, G S; Sharma, S C; Zutshi, U

    1991-11-01

    The effect of three compounds (clomiphene citrate, centchroman, embelin) and plant-derived methanolic extracts (Abutilon indicum and Butea monosperma) was studied on uterotropic and uterine peroxidase activities in ovariectomized rats. It was observed that these two parameters were highly correlated in response to treatment with these test materials and also to estradiol. It was suggested that the uterine peroxidase assay could be utilized as a biochemical parameter in the screening of new antifertility agents for their estrogenic/antiestrogenic properties. PMID:1665776

  3. The effect of tilmicosin on cardiac superoxide dismutase and glutathione peroxidase activities.

    PubMed

    Yazar, E; Altunok, V; Elmas, M; Traş, B; Baş, A L; Ozdemir, V

    2002-05-01

    In this study, the effect of tilmicosin on cardiac superoxide dismutase and glutathione peroxidase activities was investigated. Forty male BALB/c mice were used as material. Ten mice served as a control group, and 30 mice were injected with tilmicosin (25 mg/kg body weight, subcutaneously, with a single injection). After drug administration, they were monitored for 3 days. Tilmicosin caused decreases in cardiac superoxide dismutase and glutathione peroxidase activities.

  4. Role of peroxidase inhibition by insulin in the bovine thyroid cell proliferation mechanism.

    PubMed

    Krawiec, León; Pizarro, Ramón A; Aphalo, Paula; de Cavanagh, Elena M V; Pisarev, Mario A; Juvenal, Guillermo J; Policastro, Lucía; Bocanera, Laura V

    2004-07-01

    Monolayer primary cultures of thyroid cells produce, in the presence of insulin, a cytosolic inhibitor of thyroid peroxidase (TPO), lacto peroxidase (LPO), horseradish peroxidase (HRPO) and glutathione peroxidase (GPX). The inhibitor, localized in the cytosol, is thermostable and hydrophylic. Its molecular mass is less than 2 kDa. The inhibitory activity, resistant to proteolytic and nucleolytic enzymes, disappears with sodium metaperiodate treatment, as an oxidant of carbohydrates, supporting its oligosaccharide structure. The presence of inositol, mannose, glucose, the specific inhibition of cyclic AMP-dependent protein kinase and the disappearance of peroxidase inhibition by alkaline phosphatase and alpha-mannosidase in purified samples confirms its chemical structure as inositol phosphoglycan-like. Purification by anionic interchange shows that the peroxidase inhibitor elutes like the two subtypes of inositol phosphoglycans (IPG)P and A, characterized as signal transducers of insulin action. Insulin significantly increases the concentration of the peroxidase inhibitor in a thyroid cell culture at 48 h. The addition of both isolated substances to a primary thyroid culture produces, after 30 min, a significant increase in hydrogen peroxide (H2O2) concentration in the medium, concomitantly with the disappearance of the GPX activity in the same conditions. The presence of insulin or anyone of both products, during 48 h, induces cell proliferation of the thyroid cell culture. In conclusion, insulin stimulates thyroid cell division through the effect of a peroxidase inhibitor, as its second messenger. The inhibition of GPX by its action positively modulates the H2O2 level, which would produce, as was demonstrated by other authors, the signal for cell proliferation.

  5. Association of antithyroid peroxidase antibody with fibromyalgia in rheumatoid arthritis.

    PubMed

    Ahmad, Jowairiyya; Blumen, Helena; Tagoe, Clement E

    2015-08-01

    To investigate how autoimmune thyroiditis (ATD) affects the clinical presentation of established rheumatoid arthritis (RA) with particular reference to fibromyalgia and chronic widespread pain (CWP). A cohort of 204 patients with RA for whom the presence or absence of autoimmune thyroid antibodies was documented was examined for the relationships between thyroid autoantibodies and fibromyalgia or CWP. We identified 29 % who tested positive for antithyroid peroxidase antibodies (TPOAb). The anti-thyroglobulin antibody (TgAb) was found in 24 %. Among the thyroid autoantibody-positive patients, 40 % had a diagnosis of fibromyalgia or CWP versus 17 % for antibody negative patients. Logistic regression analyses (adjusted by age, sex, diabetes and BMI) indicated that TPOAb-positive patients were more likely to have fibromyalgia or CWP, with an odds ratio (OR) of 4.641, 95 % confidence interval (CI) (2.110-10.207) P < .001. Adjusting for spinal degenerative disc disease did not change the association with fibromyalgia, OR 4.458, 95 % CI (1.950-10.191), P < .001. The OR between TgAb and fibromyalgia was not significant (P > .05). Additional logistic regression analyses (adjusted by age, sex and BMI) indicated a significant relationship between TPOAb and fibromyalgia or CWP in patients without diabetes and those without hypothyroidism (OR of 4.873, 95 % CI (1.877-12.653), P = .001 and OR of 4.615 95 % CI (1.810-11.770), P = .001, respectively). There may be a positive association between the ATD antibody TPOAb, and fibromyalgia syndrome and CWP in patients with established RA. PMID:25976307

  6. Evaluation of Glutathione Peroxidase 4 role in Preeclampsia.

    PubMed

    Peng, Xinguo; Lin, Yan; Li, Jinling; Liu, Mengchun; Wang, Jingli; Li, Xueying; Liu, Jingjing; Jia, Xuewen; Jing, Zhongcui; Huang, Zuzhou; Chu, Kaiqiu; Liu, Shiguo

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome that may be lifethreatening to pregnancies and fetus. Glutathione Peroxidase 4 (GPx4) is a powerful antioxidant enzyme that can provide protection from oxidative stress damage which plays a pivotal role in the pathology of PE. Therefore, this study aims to investigate the association between Gpx4 polymorphisms and the susceptibility to PE in Chinese Han women. TaqMan allelic discrimination real-time PCR was used to perform the genotyping of rs713041 and rs4807542 in 1008 PE patients and 1386 normotensive pregnancies. Obviously statistical difference of genotypic and allelic frequencies were found of rs713041 in GPx4 between PE patients and controls and the C allele has the higher risk for pathogenesis of PE (χ(2) = 12.292, P = 0.002 by genotype; χ(2) = 11.035, P = 0.001, OR = 1.216, 95% CI 1.084-1.365 by allele). Additionally, when subdividing these samples into CC + CT and TT groups, we found a significant difference between the two groups (χ(2) = 11.241, P = 0.001, OR = 1.417, 95% CI 1.155-1.738). Furthermore, the genotype of rs713041 was found to be associated with the mild, severe and early-onset PE. Our results suggest that rs713041 in GPx4 may play a key role in the pathogenesis of PE. PMID:27641822

  7. Thyroid peroxidase and the induction of autoimmune thyroid disease.

    PubMed Central

    McLachlan, S M; Atherton, M C; Nakajima, Y; Napier, J; Jordan, R K; Clark, F; Rees Smith, B

    1990-01-01

    Animal models of autoimmune thyroid disease are associated with thyroglobulin (Tg) as autoantigen whereas in man the autoimmune response to microsomal antigen/thyroid peroxidase (TPO) appears to play a major role in thyroiditis. Consequently, we have compared the ability of TPO and Tg to induce thyroid autoantibodies and thyroid damage in mice known to be susceptible (CBA/J) or resistant (BALB/c) to thyroiditis induced using murine Tg. Groups of three to five mice were immunized twice using Freund's complete adjuvant with 80-100 micrograms highly purified porcine (p) TPO, pTg, rat (r) Tg, human Tg, bovine serum albumin (BSA) or BSA + 0.2 micrograms pTg (the level of Tg contamination of TPO). Four weeks after immunization with TPO, plasma from CBA/J (but not BALB/c) mice contained IgG class antibodies which bound to TPO-coated tubes in the presence or absence of excess Tg (and could therefore be clearly distinguished from Tg antibodies) but there was no evidence of thyroiditis in either strain of mice. In contrast, in CBA/J mice immunized with rTg and, to a lesser extent in mice that had received pTg, thyroid tissue was infiltrated with lymphoid cells and/or neutrophils and antibodies to pTg (but not pTPO) were present. Our observations demonstrate that induction of TPO antibody alone is insufficient to lead to thyroiditis in CBA/J mice. Further, these studies emphasize the complex interactions between MHC and different thyroid antigens in the processes leading to thyroid destruction. PMID:2311297

  8. A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity.

    PubMed

    Yin, Yanzhen; Jiao, Shufei; Lang, Chao; Liu, Junqiu

    2014-05-21

    Glutathione peroxidase (GPx) protects cells from oxidative damage by scavenging surplus reactive oxygen species (ROS). Commonly, an appropriate amount of ROS acts as a signal molecule in the metabolism. A smart artificial GPx exhibits adjustable catalytic activity, which can potentially reduce the amount of ROS to an appropriate degree and maintain its important physiological functions in metabolism. To construct an optimum and excellent smart artificial GPx, a novel supramolecular microgel artificial GPx (SM-Te) was prepared based on the supramolecular host-guest interaction employing the tellurium-containing guest molecule (ADA-Te-ADA) and the cyclodextrin-containing host block copolymer (poly(N-isopropylacrylamide)-b-[polyacrylamides-co-poly(6-o-(triethylene glycol monoacrylate ether)-β-cyclodextrin)], PPAM-CD) as building blocks. Subsequently, based on these building blocks, SM-Te was constructed and the formation of its self-assembled structure was confirmed by dynamic light scattering, NMR, SEM, TEM, etc. Typically, benefitting from the temperature responsive properties of the PNIPAM scaffold, SM-Te also exhibited similar temperature responsive behaviour. Importantly, the GPx catalytic rates of SM-Te displayed a noticeable temperature responsive characteristic. Moreover, SM-Te exhibited the typical saturation kinetics behaviour of a real enzyme catalyst. It was proved that the changes of the hydrophobic microenvironment and the pore size in the supramolecular microgel network of SM-Te played significant roles in altering the temperature responsive catalytic behaviour. The successful construction of SM-Te not only overcomes the insurmountable disadvantages existing in previous covalent bond crosslinked microgel artificial GPx but also bodes well for the development of novel intelligent antioxidant drugs. PMID:24652520

  9. Function of glutathione peroxidases in legume root nodules

    PubMed Central

    Matamoros, Manuel A.; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M.; Barja, Maria V.; Rouhier, Nicolas; Moore, Marten; James, Euan K.; Dietz, Karl-Josef; Becana, Manuel

    2015-01-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  10. Evaluation of Glutathione Peroxidase 4 role in Preeclampsia

    PubMed Central

    Peng, Xinguo; Lin, Yan; Li, Jinling; Liu, Mengchun; Wang, Jingli; Li, Xueying; Liu, Jingjing; Jia, Xuewen; Jing, Zhongcui; Huang, Zuzhou; Chu, Kaiqiu; Liu, Shiguo

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome that may be lifethreatening to pregnancies and fetus. Glutathione Peroxidase 4 (GPx4) is a powerful antioxidant enzyme that can provide protection from oxidative stress damage which plays a pivotal role in the pathology of PE. Therefore, this study aims to investigate the association between Gpx4 polymorphisms and the susceptibility to PE in Chinese Han women. TaqMan allelic discrimination real-time PCR was used to perform the genotyping of rs713041 and rs4807542 in 1008 PE patients and 1386 normotensive pregnancies. Obviously statistical difference of genotypic and allelic frequencies were found of rs713041 in GPx4 between PE patients and controls and the C allele has the higher risk for pathogenesis of PE (χ2 = 12.292, P = 0.002 by genotype; χ2 = 11.035, P = 0.001, OR = 1.216, 95% CI 1.084–1.365 by allele). Additionally, when subdividing these samples into CC + CT and TT groups, we found a significant difference between the two groups (χ2 = 11.241, P = 0.001, OR = 1.417, 95% CI 1.155–1.738). Furthermore, the genotype of rs713041 was found to be associated with the mild, severe and early-onset PE. Our results suggest that rs713041 in GPx4 may play a key role in the pathogenesis of PE. PMID:27641822

  11. Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation.

    PubMed

    Liu, Jiayan; Seibold, Steve A; Rieke, Caroline J; Song, Inseok; Cukier, Robert I; Smith, William L

    2007-06-22

    The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.

  12. Glyco-variant library of the versatile enzyme horseradish peroxidase

    PubMed Central

    Capone, Simona; Pletzenauer, Robert; Maresch, Daniel; Metzger, Karl; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2014-01-01

    When the glycosylated plant enzyme horseradish peroxidase (HRP) is conjugated to specific antibodies, it presents a powerful tool for medical applications. The isolation and purification of this enzyme from plant is difficult and only gives low yields. However, HRP recombinantly produced in the yeast Pichia pastoris experiences hyperglycosylation, which impedes the use of this enzyme in medicine. Enzymatic and chemical deglycosylation are cost intensive and cumbersome and hitherto existing P. pastoris strain engineering approaches with the goal to avoid hyperglycosylation only resulted in physiologically impaired yeast strains not useful for protein production processes. Thus, the last resort to obtain less glycosylated recombinant HRP from P. pastoris is to engineer the enzyme itself. In the present study, we mutated all the eight N-glycosylation sites of HRP C1A. After determination of the most suitable mutation at each N-glycosylation site, we physiologically characterized the respective P. pastoris strains in the bioreactor and purified the produced HRP C1A glyco-variants. The biochemical characterization of the enzyme variants revealed great differences in catalytic activity and stability and allowed the combination of the most promising mutations to potentially give an unglycosylated, active HRP C1A variant useful for medical applications. Interestingly, site-directed mutagenesis proved to be a valuable strategy not only to reduce the overall glycan content of the recombinant enzyme but also to improve catalytic activity and stability. In the present study, we performed an integrated bioprocess covering strain generation, bioreactor cultivations, downstream processing and product characterization and present the biochemical data of the HRP glyco-library. PMID:24859724

  13. The enzyme horseradish peroxidase is less compressible at higher pressures.

    PubMed Central

    Smeller, László; Fidy, Judit

    2002-01-01

    Fluorescence line-narrowing (FLN) spectroscopy at 10 K was used to study the effect of high pressure through the prosthetic group in horseradish peroxidase (HRP), which was Mg-mesoporphyrin (MgMP) replacing the heme of the enzyme. The same measurement was performed on MgMP in a solid-state amorphous organic matrix, dimethyl sulfoxide (DMSO). Series of FLN spectra were registered to determine the (0, 0) band shape through the inhomogeneous distribution function (IDF). In the range of 0-2 GPa a red-shift of the IDF was determined, and yielded the isothermal compressibility of MgMP-HRP as 0.066 GPa(-1), which is significantly smaller than that found earlier as 0.106 GPa(-1) by fine-tuning the pressure in the range up to 1.1 MPa. The vibrational frequencies also shifted with pressure increase, as expected. The compressibility in the DMSO matrix was smaller, 0.042 GPa(-1), both when the pressure was applied at room temperature before cooling to 10 K, or at 10 K. At 200 K or above, the bimodal (0, 0) band shape in DMSO showed a population conversion under pressure that was not observed at or below 150 K. A significant atomic rearrangement was estimated from the volume change, 3.3 +/- 0.7 cm(3)/mol upon conversion. The compressibility in proteins and in amorphous solids seems not to significantly depend on the temperature and in the protein it decreases toward higher pressures. PMID:11751329

  14. Association of antithyroid peroxidase antibody with fibromyalgia in rheumatoid arthritis.

    PubMed

    Ahmad, Jowairiyya; Blumen, Helena; Tagoe, Clement E

    2015-08-01

    To investigate how autoimmune thyroiditis (ATD) affects the clinical presentation of established rheumatoid arthritis (RA) with particular reference to fibromyalgia and chronic widespread pain (CWP). A cohort of 204 patients with RA for whom the presence or absence of autoimmune thyroid antibodies was documented was examined for the relationships between thyroid autoantibodies and fibromyalgia or CWP. We identified 29 % who tested positive for antithyroid peroxidase antibodies (TPOAb). The anti-thyroglobulin antibody (TgAb) was found in 24 %. Among the thyroid autoantibody-positive patients, 40 % had a diagnosis of fibromyalgia or CWP versus 17 % for antibody negative patients. Logistic regression analyses (adjusted by age, sex, diabetes and BMI) indicated that TPOAb-positive patients were more likely to have fibromyalgia or CWP, with an odds ratio (OR) of 4.641, 95 % confidence interval (CI) (2.110-10.207) P < .001. Adjusting for spinal degenerative disc disease did not change the association with fibromyalgia, OR 4.458, 95 % CI (1.950-10.191), P < .001. The OR between TgAb and fibromyalgia was not significant (P > .05). Additional logistic regression analyses (adjusted by age, sex and BMI) indicated a significant relationship between TPOAb and fibromyalgia or CWP in patients without diabetes and those without hypothyroidism (OR of 4.873, 95 % CI (1.877-12.653), P = .001 and OR of 4.615 95 % CI (1.810-11.770), P = .001, respectively). There may be a positive association between the ATD antibody TPOAb, and fibromyalgia syndrome and CWP in patients with established RA.

  15. Glyco-variant library of the versatile enzyme horseradish peroxidase.

    PubMed

    Capone, Simona; Pletzenauer, Robert; Maresch, Daniel; Metzger, Karl; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2014-09-01

    When the glycosylated plant enzyme horseradish peroxidase (HRP) is conjugated to specific antibodies, it presents a powerful tool for medical applications. The isolation and purification of this enzyme from plant is difficult and only gives low yields. However, HRP recombinantly produced in the yeast Pichia pastoris experiences hyperglycosylation, which impedes the use of this enzyme in medicine. Enzymatic and chemical deglycosylation are cost intensive and cumbersome and hitherto existing P. pastoris strain engineering approaches with the goal to avoid hyperglycosylation only resulted in physiologically impaired yeast strains not useful for protein production processes. Thus, the last resort to obtain less glycosylated recombinant HRP from P. pastoris is to engineer the enzyme itself. In the present study, we mutated all the eight N-glycosylation sites of HRP C1A. After determination of the most suitable mutation at each N-glycosylation site, we physiologically characterized the respective P. pastoris strains in the bioreactor and purified the produced HRP C1A glyco-variants. The biochemical characterization of the enzyme variants revealed great differences in catalytic activity and stability and allowed the combination of the most promising mutations to potentially give an unglycosylated, active HRP C1A variant useful for medical applications. Interestingly, site-directed mutagenesis proved to be a valuable strategy not only to reduce the overall glycan content of the recombinant enzyme but also to improve catalytic activity and stability. In the present study, we performed an integrated bioprocess covering strain generation, bioreactor cultivations, downstream processing and product characterization and present the biochemical data of the HRP glyco-library. PMID:24859724

  16. Rapid and reliable determination of the halogenating peroxidase activity in blood samples.

    PubMed

    Flemmig, Jörg; Schwarz, Pauline; Bäcker, Ingo; Leichsenring, Anna; Lange, Franziska; Arnhold, Jürgen

    2014-12-15

    By combining easy and fast leukocyte enrichment with aminophenyl-fluorescein (APF) staining we developed a method to quickly and specifically address the halogenating activity of the immunological relevant blood heme peroxidases myeloperoxidase and eosinophil peroxidase, respectively. For leukocyte enrichment a two-fold hypotonic lysis procedure of the blood with Millipore water was chosen which represents a cheap, fast and reliable method to diminish the amount of erythrocytes in the samples. This procedure is shown to be suitable both to human and murine blood micro-samples, making it also applicable to small animal experiments with recurring blood sampling. As all types of leukocytes are kept in the sample during the preparation, they can be analysed separately after discrimination during the flow cytometry analysis. This also holds for all heme peroxidase-containing cells, namely neutrophils, eosinophils and monocytes. Moreover additional parameters (e.g. antibody staining) can be combined with the heme peroxidase activity determination to gain additional information about the different immune cell types. Based on previous results we applied APF for specifically addressing the halogenating activity of leukocyte peroxidases in blood samples. This dye is selectively oxidized by the MPO and EPO halogenation products hypochlorous and hypobromous acid. This approach may provide a suitable tool to gain more insights into the immune-physiological role of the halogenating activity of heme peroxidases.

  17. Differences in peroxidase localization of rabbit peritoneal macrophages after surface adherence.

    PubMed Central

    Bodel, P. T.; Nichols, B. A.; Bainton, D. F.

    1978-01-01

    Unlike resident peritoneal macrophages, which contain peroxidase in the rough endoplasmic reticulum (RER) and perinuclear cisternae (PN), macrophages elicited into the rabbit peritoneal cavity by various stimulants lack the enzyme. Since we had previously found that such peroxidase reactivity rapidly appears in the RER and PN of blood monocytes after surface adherence in vitro, we wondered whether the enzyme could be similarly produced in elicited macrophages by adherence. Cells from peritoneal exudates (96 hours after endotoxin injection) were harvested, suspended in culture medium, and allowed to adhere to fibrin-coated or plastic surfaces. Following culture for various intervals, they were fixed, incubated for peroxidase, and examined by electron microscopy. We observed that these elicited cells, which initially contained no cytochemically detectable peroxidase, acquired peroxidatic activity in the RER and PN within 2 hours after adherence in culture. Thus macrophages, like blood monocytes, may rapidly acquire peroxidase reactivity as a consequence of plasma membrane: external surface interaction. In view of this finding, it would seem unwise to use peroxidase localization as the basis for advocating the existence of two separate lines of peritoneal macrophages, as has been proposed by previous investigators. Images Figure 2 Figure 3 Figure 1 PMID:645814

  18. Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix Mineralization by Cultured Human Osteoblasts.

    PubMed

    DeNichilo, Mark O; Shoubridge, Alexandra J; Panagopoulos, Vasilios; Liapis, Vasilios; Zysk, Aneta; Zinonos, Irene; Hay, Shelley; Atkins, Gerald J; Findlay, David M; Evdokiou, Andreas

    2016-03-01

    The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.

  19. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    PubMed

    Hemetsberger, Christoph; Herrberger, Christian; Zechmann, Bernd; Hillmer, Morten; Doehlemann, Gunther

    2012-01-01

    The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  20. Stability testing of ligninase and Mn-peroxidase from Phanerochaete chrysosporium.

    PubMed

    Aitken, M D; Irvine, R L

    1989-12-01

    The white-rot fungus Phanerochaete chrysosporium produces extracellular peroxidases (ligninase and Mn-peroxidase) believed to be involved in lignin degradation. These extracellular enzymes have also been implicated in the degradation of recalcitrant pollutants by the organism. Commercial application of ligninase has been proposed both for biomechanical pulping of wood and for wastewater treatment. In vitro stability of lignin degrading enzymes will be an important factor in determining both the economic and technical feasibility of application for industrial uses, and also will be critical in optimizing commercial production of the enzymes. The effects of a number of variables on in vitro stability of ligninase and Mn-peroxidase are presented in this paper. Thermal stability of ligninase was found to improve by increasing pH and by increasing enzyme concentration. For a fixed pH and enzyme concentration, ligninase stability was greatly enhanced in the presence of its substrate veratryl alcohol (3,4-dimethoxybenzyl alcohol). Ligninase also was found to be inactivated by hydrogen peroxide in a second-order process that is proposed to involve the formation of the unreactive peroxidase intermediate Compound III. Mn-peroxidase was less susceptible to inactivation by peroxide, which corresponds to observations by others that Compound III of Mn-peroxidase forms less readily than Compound III of ligninase.

  1. Partial purification and characterization of a peroxidase from neonatal rat skin

    SciTech Connect

    Strohm, B.H.

    1987-01-01

    Peroxidase activity was partially purified from neonatal CFN rat skin. The membrane-bound peroxidase activity was extracted with 0.5 M calcium chloride and was monitored spectrophotometrically at 470 nm with 2-methoxyphenol and hydrogen peroxide as substrates. Subcellular distribution studies indicated the specific activity to be highest and comparable in the 800 {times} g and 8000 {times} g pellets, lowest in the 100,000 {times} g pellet, and absent in the 100,000 {times} g supernatant. The peroxidase activity was partially purified by affinity chromatography on concanavaline-A-sepharose 4-B and by gel filtration using Bio-gel P-150. The apparent molecular weight of the native enzyme as determined by Bio-gel P-200 gel filtration was approximately 42,500 {plus minus} 2,300 daltons. Peroxidase activity increased linearly with increases in protein concentration, time, and guaiacol concentration. Activity was inhibited approximately 75% by 0.1 mM potassium cyanide or 0.05 mM sodium azide. Pyrogallol, hydroquinone, p-cresol, catechol, benzidine, 3,3{prime}-dimethoxybenzidine, tetramethylbenzidine, and p-phenylenediamine were active as substrates for rat skin peroxidase. Rat skin peroxidase was also shown to mediate non-extractable binding of ({sup 3}H)-benzo(a)pyrene-7,8-dihydrodiol and ({sup 3}H)-2-aminofluorene to DNA and protein.

  2. Oxidase reaction of the hybrid Mn-peroxidase of the fungus Panus tigrinus 8/18.

    PubMed

    Lisov, A V; Leontievsky, A A; Golovleva, L A

    2005-04-01

    The hybrid Mn-peroxidase of the fungus Panus tigrinus 8/18 oxidized NADH in the absence of hydrogen peroxide, this being accompanied by the consumption of oxygen. The reaction of NADH oxidation started after a period of induction and completely depended on the presence of Mn(II). The reaction was inhibited in the presence of catalase and superoxide dismutase. Oxidation of NADH by the enzyme or by manganese(III)acetate was accompanied by the production of hydrogen peroxide and superoxide radicals. In the presence of NADH, the enzyme was transformed into a catalytically inactive oxidized form (compound III), and the latter was inactivated with bleaching of the heme. The substrate of the hybrid Mn-peroxidase (Mn(II)) reduced compound III to yield the native form of the enzyme and prevented its inactivation. It is assumed that the hybrid Mn-peroxidase used the formed hydrogen peroxide in the usual peroxidase reaction to produce Mn(III), which was involved in the formation of hydrogen peroxide and thus accelerated the peroxidase reaction. The reaction of NADH oxidation is a peroxidase reaction and the consumption of oxygen is due to its interaction with the products of NADH oxidation. The role of Mn(II) in the oxidation of NADH consisted in the production of hydrogen peroxide and the protection of the enzyme from inactivation. PMID:15892614

  3. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance

    PubMed Central

    Bindschedler, Laurence V.; Dewdney, Julia; Blee, Kris A.; Stone, Julie M.; Asai, Tsuneaki; Plotnikov, Julia; Denoux, Carine; Hayes, Tezni; Gerrish, Chris; Davies, Dewi R.; Ausubel, Frederick M.; Bolwell, G. Paul

    2011-01-01

    Summary The oxidative burst is an early response to pathogen attack leading to the production of reactive oxygen species (ROS) including hydrogen peroxide. Two major mechanisms involving either NADPH oxidases or peroxidases that may exist singly or in combination in different plant species have been proposed for the generation of ROS. We identified an Arabidopsis thaliana azide-sensitive but diphenylene iodonium-insensitive apoplastic oxidative burst that generates H2O2 in response to a Fusarium oxysporum cell-wall preparation. Transgenic Arabidopsis plants expressing an anti-sense cDNA encoding a type III peroxidase, French bean peroxidase type 1 (FBP1) exhibited an impaired oxidative burst and were more susceptible than wild-type plants to both fungal and bacterial pathogens. Transcriptional profiling and RT-PCR analysis showed that the anti-sense (FBP1) transgenic plants had reduced levels of specific peroxidase-encoding mRNAs, including mRNAs corresponding to Arabidopsis genes At3g49120 (AtPCb) and At3g49110 (AtPCa) that encode two class III peroxidases with a high degree of homology to FBP1. These data indicate that peroxidases play a significant role in generating H2O2 during the Arabidopsis defense response and in conferring resistance to a wide range of pathogens. PMID:16889645

  4. [Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings].

    PubMed

    Kolupaev, Iu E; Oboznyĭ, A I

    2012-01-01

    The influence of one-minute hardening heating at 42 degrees C on the dynamics of hydrogen peroxide generation and activity of antioxidant enzymes in roots of winter wheat seedlings has been investigated. It was shown that the content of hydrogen peroxide increased within the first 30 minutes after heat influence, whereupon it approached the level of control variant. The activity of superoxide dismutase (SOD) increased significantly within 10 min after heating and was maintained at a high level during 24 hours of observation. The activity of ascorbate peroxidase and guaiacol peroxidase increased after 3-6 hours after the hardening and reached its maximum after 24 hours, when there was the most significant increase in heat resistance of seedlings. The short-term increase in hydrogen peroxide content caused by hardening heating was suppressed by treatment of seedlings with H2O2 scavenger dimethylthiourea, inhibitors of NADPH-oxidase (imidazole) and SOD (sodium diethyldithiocarbamate). All these effectors levelled the increase of activity of ascorbate peroxidase and guaiacol peroxidase and significantly inhibited the development of heat resistance of seedlings. The conclusion was made about the role of hydrogen peroxide produced with the participation of NADPH-oxidase and SOD in the induction of antioxidant system by heat hardening of wheat seedlings.

  5. [Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings].

    PubMed

    Kolupaev, Iu E; Oboznyĭ, A I

    2012-01-01

    The influence of one-minute hardening heating at 42 degrees C on the dynamics of hydrogen peroxide generation and activity of antioxidant enzymes in roots of winter wheat seedlings has been investigated. It was shown that the content of hydrogen peroxide increased within the first 30 minutes after heat influence, whereupon it approached the level of control variant. The activity of superoxide dismutase (SOD) increased significantly within 10 min after heating and was maintained at a high level during 24 hours of observation. The activity of ascorbate peroxidase and guaiacol peroxidase increased after 3-6 hours after the hardening and reached its maximum after 24 hours, when there was the most significant increase in heat resistance of seedlings. The short-term increase in hydrogen peroxide content caused by hardening heating was suppressed by treatment of seedlings with H2O2 scavenger dimethylthiourea, inhibitors of NADPH-oxidase (imidazole) and SOD (sodium diethyldithiocarbamate). All these effectors levelled the increase of activity of ascorbate peroxidase and guaiacol peroxidase and significantly inhibited the development of heat resistance of seedlings. The conclusion was made about the role of hydrogen peroxide produced with the participation of NADPH-oxidase and SOD in the induction of antioxidant system by heat hardening of wheat seedlings. PMID:23387278

  6. The peroxidase-mediated biodegradation of petroleum hydrocarbons in a H2O2-induced SBR using in-situ production of peroxidase: Biodegradation experiments and bacterial identification.

    PubMed

    Shekoohiyan, Sakine; Moussavi, Gholamreza; Naddafi, Kazem

    2016-08-01

    A bacterial peroxidase-mediated oxidizing process was developed for biodegrading total petroleum hydrocarbons (TPH) in a sequencing batch reactor (SBR). Almost complete biodegradation (>99%) of high TPH concentrations (4g/L) was attained in the bioreactor with a low amount (0.6mM) of H2O2 at a reaction time of 22h. A specific TPH biodegradation rate as high as 44.3mgTPH/gbiomass×h was obtained with this process. The reaction times required for complete biodegradation of TPH concentrations of 1, 2, 3, and 4g/L were 21, 22, 28, and 30h, respectively. The catalytic activity of hydrocarbon catalyzing peroxidase was determined to be 1.48U/mL biomass. The biodegradation of TPH in seawater was similar to that in fresh media (no salt). A mixture of bacteria capable of peroxidase synthesis and hydrocarbon biodegradation including Pseudomonas spp. and Bacillus spp. were identified in the bioreactor. The GC/MS analysis of the effluent indicated that all classes of hydrocarbons could be well-degraded in the H2O2-induced SBR. Accordingly, the peroxidase-mediated process is a promising method for efficiently biodegrading concentrated TPH-laden saline wastewater. PMID:27060866

  7. Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure.

    PubMed

    Savitsky, P A; Gazaryan, I G; Tishkov, V I; Lagrimini, L M; Ruzgas, T; Gorton, L

    1999-06-15

    Indole-3-acetic acid (IAA) can be oxidized via two mechanisms: a conventional hydrogen-peroxide-dependent pathway, and one that is hydrogen-peroxide-independent and requires oxygen. It has been shown here for the first time that only plant peroxidases are able to catalyse the reaction of IAA oxidation with molecular oxygen. Cytochrome c peroxidase (CcP), fungal peroxidases (manganese-dependent peroxidase, lignin peroxidase and Arthromyces ramosus peroxidase) and microperoxidase were essentially inactive towards IAA in the absence of added H2O2. An analysis of amino acid sequences allowed five structurally similar fragments to be identified in auxin-binding proteins and plant peroxidases. The corresponding fragments in CcP and fungal peroxidases showed no similarity with auxin-binding proteins. Five structurally similar fragments form a subdomain including the catalytic centre and two residues highly conserved among 'classical' plant peroxidases only, namely His-40 and Trp-117. The subdomain identified above with the two residues might be responsible for the oxidation of the physiological substrate of classical plant peroxidases, IAA. PMID:10359640

  8. Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure.

    PubMed Central

    Savitsky, P A; Gazaryan, I G; Tishkov, V I; Lagrimini, L M; Ruzgas, T; Gorton, L

    1999-01-01

    Indole-3-acetic acid (IAA) can be oxidized via two mechanisms: a conventional hydrogen-peroxide-dependent pathway, and one that is hydrogen-peroxide-independent and requires oxygen. It has been shown here for the first time that only plant peroxidases are able to catalyse the reaction of IAA oxidation with molecular oxygen. Cytochrome c peroxidase (CcP), fungal peroxidases (manganese-dependent peroxidase, lignin peroxidase and Arthromyces ramosus peroxidase) and microperoxidase were essentially inactive towards IAA in the absence of added H2O2. An analysis of amino acid sequences allowed five structurally similar fragments to be identified in auxin-binding proteins and plant peroxidases. The corresponding fragments in CcP and fungal peroxidases showed no similarity with auxin-binding proteins. Five structurally similar fragments form a subdomain including the catalytic centre and two residues highly conserved among 'classical' plant peroxidases only, namely His-40 and Trp-117. The subdomain identified above with the two residues might be responsible for the oxidation of the physiological substrate of classical plant peroxidases, IAA. PMID:10359640

  9. Lignin peroxidase compound III. Mechanism of formation and decomposition

    SciTech Connect

    Wariishi, Hiroyuki; Gold, M.H. )

    1990-02-05

    Lignin peroxidase compound III (LiPIII) was prepared via three procedures: (a) ferrous LiP + O{sub 2} (LiPIIIa), (b) ferric LiP + O{sub 2}{sup {bar {sm bullet}}} (LiPIIIb), and (c) LiP compound II + excess H{sub 2}O{sub 2} followed by treatment with catalase (LiPIIIc). LiPIIIa, b, and c each have a Soret maximum at {approximately}414 nm and visible bands at 543 and 578 nm. LiPIIIa, b, and c each slowly reverted to native ferric LiP, releasing stoichiometric amounts of O{sub 2}{sup {bar {sm bullet}}} in the process. The LiPIII reversion reactions obeyed first-order kinetics with rate constants of {approximately}1.0 {times} 10{sup {minus}3} s{sup {minus}1}. In the presence of excess peroxide, at pH 3.0, native LiP, LiPII, and LiPIIIa, b, and c are all converted to a unique oxidized species (LiPIII*) with a spectrum displaying visible bands at 543 and 578 nm, but with a Soret maximum at 419 nm, red-shifted 5 nm from that of LiPIII. LiPIII* is bleached and inactivated in the presence of excess H{sub 2}O{sub 2} via a biphasic process. The fast first phase of this bleaching reaction obeys second-order kinetics, with a rate constant of 1.7 {times} 10{sup 1} M{sup {minus}1} s{sup {minus}1}. Addition of veratryl alcohol to LiPIII* results in its rapid reversion to the native enzyme, via an apparent one-step reaction that obeys second-order kinetics, with a rate constant of 3.5 {times} 10{sup 1} M{sup {minus}1} s{sup {minus}1}. Stoichiometric amounts of O{sub 2}{sup {bar {sm bullet}}} are released during this reaction. When this reaction was run under conditions that prevented further reactions, HPLC analysis of the products demonstrated that veratryl alcohol was not oxidized. These results suggest that the binding of veratryl alcohol to LiPIII* displaces O{sub 2}{sup {bar {sm bullet}}}, thus returning the enzyme to its native state. In contrast, the addition of veratryl alcohol to LiPIII did not affect the rate of spontaneous reversion of LiPIII to the native enzyme.

  10. Stabilization of the veratryl alcohol cation radical by lignin peroxidase.

    PubMed

    Khindaria, A; Yamazaki, I; Aust, S D

    1996-05-21

    Lignin peroxidase (LiP) catalyzes the H2O2-dependent oxidation of veratryl alcohol (VA) to veratryl aldehyde, with the enzyme-bound veratryl alcohol cation radical (VA.+) as an intermediate [Khindaria et al. (1995) Biochemistry 34, 16860-16869]. The decay constant we observed for the enzyme generated cation radical did not agree with the decay constant in the literature [Candeias and Harvey (1995) J. Biol. Chem. 270, 16745-16748] for the chemically generated radical. Moreover, we have found that the chemically generated VA.+ formed by oxidation of VA by Ce(IV) decayed rapidly with a first-order mechanism in air- or oxygen-saturated solutions, with a decay constant of 1.2 x 10(3) s-1, and with a second-order mechanism in argon-saturated solution. The first-order decay constant was pH- independent suggesting that the rate-limiting step in the decay was deprotonation. When VA.+ was generated by oxidation with LiP the decay also occurred with a first-order mechanism but was much slower, 1.85 s-1, and was the same in both oxygen- and argon-saturated reaction mixtures. However, when the enzymatic reaction mixture was acid-quenched the decay constant of VA.+ was close to the one obtained in the Ce(IV) oxidation system, 9.7 x 10(2) s-1. This strongly suggested that the LiP-bound VA.+ was stabilized and decayed more slowly than free VA.+. We propose that the stabilization of VA.+ may be due to the acidic microenvironment in the enzyme active site, which prevents deprotonation of the radical and subsequent reaction with oxygen. We have also obtained reversible redox potential of VA.+/VA couple using cyclic voltammetery. Due to the instability of VA.+ in aqueous solution the reversible redox potential was measured in acetone, and was 1.36 V vs normal hydrogen electrode. Our data allow us to propose that enzymatically generated VA.+ can act as a redox mediator but not as a diffusible oxidant for LiP-catalyzed lignin or pollutant degradation.

  11. Characterization of a human blood monocyte subset with low peroxidase activity.

    PubMed Central

    Akiyama, Y; Miller, P J; Thurman, G B; Neubauer, R H; Oliver, C; Favilla, T; Beman, J A; Oldham, R K; Stevenson, H C

    1983-01-01

    Two human monocyte subsets from the peripheral blood of healthy donors have been isolated in greater than 90% purity by countercurrent centrifugal elutration and human serum albumin gradients and their functional capabilities have been assessed. We have demonstrated that one subset ("regular" monocytes, RM) showed intense cytoplasmic peroxidase staining and contained substantial peroxidase activity. In contrast, another subset ("intermediate" monocytes, IM) stained poorly for peroxidase and had low peroxidase activity. By electron microscopic analysis combined with peroxidase localization, it was found that IM had fewer peroxidase-positive granules per cell than did RM. IM coelutriated with some lymphocytes and by cell sizing analysis were shown to be slightly smaller than RM. Functional and cytochemical analysis of these subsets indicated that IM had less activity than RM in assays such as accessory cell function for mitogen-induced T lymphocyte proliferation and antibody-dependent cellular cytotoxicity, and that fewer IM expressed OKM1 antigen and pokeweed mitogen (PWM) receptors on their membranes than did RM. The subset of IM not bearing either the PWM receptor or the OKM1 antigen had very low peroxidase activity. IM also were found to have a greater sensitivity to polyriboinosinic and polyribocytidilic acid (100 micrograms/ml)-induced secretion of interferon. There was no significant difference in the phagocytic capability, the percentage of Fc receptor-positive cells, 5'-nucleotidase activity, DR antigen expression, or the responsiveness to migration inhibitory factor of IM as compared with RM. Furthermore, it was found that the ratio of IM to RM increased after prolonged cytapheresis, which suggests that IM are more mobilizable than RM from the extravascular reservoirs of human monocytes. Images FIGURE 5 PMID:6193141

  12. IgG abzymes with peroxidase and oxidoreductase activities from the sera of healthy humans.

    PubMed

    Tolmacheva, Anna S; Blinova, Elena A; Ermakov, Evgeny A; Buneva, Valentina N; Vasilenko, Nataliya L; Nevinsky, Georgy A

    2015-09-01

    We present the evidence showing that small fractions of electrophoretically homogeneous immunoglobulin G (IgGs) from the sera of healthy humans and their Fab and F(ab)2 fragments oxidize 3,3'-diaminobenzidine through a peroxidase activity in the presence of H2 O2 and through an oxidoreductase activity in the absence of H2 O2 . During purification on protein G-Sepharose and gel filtration, the polyclonal IgGs partially lose the Me(2+) ions. After extensive dialysis of purified Abs against agents chelating metal ions, the relative peroxidase activity decreased dependently of IgG analyzed from 100 to ~10-85%, while oxidoreductase activity from 100 to 14-83%. Addition of external metal ions to dialyzed and non-dialyzed IgGs leads to a significant increase in their activity. Chromatography of the IgGs on Chelex non-charged with Cu(2+) ions results in the adsorption of a small IgG fraction bound with metal ions (~5%), while Chelex charged with Cu(2+) ions bind additionally ~38% of the total IgGs. Separation of Abs on both sorbents results in IgG separation to many different subfractions demonstrating various affinities to the chelating resin and different levels of the specific oxidoreductase and peroxidase activities. In the presence of external Cu(2+) ions, the specific peroxidase activity of several IgG subfractions achieves 20-27 % as compared with horseradish peroxidase (HRP, taken for 100%). The oxidoreductase activity of these fractions is ~4-6-fold higher than that for HRP. Antioxidant enzymes such as superoxide dismutases, catalases, and glutathione peroxidases are known to represent critical defence mechanisms for preventing oxidative modifications of DNA, proteins, and lipids. Peroxidase and oxidoreductase activities of human IgGs could also play an important role in the protection of organisms from oxidative stress and toxic compounds.

  13. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications.

    PubMed

    Knop, Doriv; Yarden, Oded; Hadar, Yitzhak

    2015-02-01

    Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.

  14. Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes.

    PubMed

    Akhtar, Suhail; Ali Khan, Amjad; Husain, Qayyum

    2005-11-01

    The aim of this study was to evaluate the enzymatic action of partially purified bitter gourd peroxidase for the degradation/decolorization of complex aromatic structures. Twenty-one dyes, with a wide spectrum of chemical groups, currently being used by the textile and other important industries have been selected for the study. Here, for the first time we have shown peroxidases from Momordica charantia (300 EU/gm of vegetable) to be highly effective in decolorizing industrially important dyes. Dye solutions, containing 50-200 mg dye/l, were used for the treatment with bitter gourd peroxidase (specific activity of 99.0 EU/mg protein). M. charantia peroxidases were able to decolorize most of the textile dyes by forming insoluble precipitate. When the textile dyes were treated with increasing concentration of enzyme, it was observed that greater fraction of the color was removed but four out of eight reactive dyes were recalcitrant to decolorization by bitter gourd peroxidase. Step-wise addition of enzyme to the decolorizing reaction mixture at the interval of 1h further enhanced the dye decolorization. The rate of decolorization was enhanced when the dyes were incubated with fixed quantity of enzyme for increasing times. Decolorization of non-textile dyes resulted in the degradation and removal of dyes from the solution without any precipitate formation. Decolorization rate was drastically increased when the textile and other industrially important non-textile dyes were treated with bitter gourd peroxidase in presence of 1.0 mM 1-hydroxybenzotriazole. Complex mixtures of dyes were prepared by taking three to four reactive textile and non-textile dyes in equal proportions. Each mixture was decolorized by more than 80% when treated with the enzyme in presence of 1.0 mM 1-hydroxybenzotriazole. Our data suggest that the peroxidase/mediator system is an effective biocatalyst for the treatment of effluents containing recalcitrant dyes from textile, dye manufacturing

  15. Phenylbutazone Oxidation via Cu,Zn-SOD Peroxidase Activity: An EPR Study.

    PubMed

    Aljuhani, Naif; Whittal, Randy M; Khan, Saifur R; Siraki, Arno G

    2015-07-20

    We investigated the effect of Cu,Zn-superoxide dismutase (Cu,Zn-SOD)-peroxidase activity on the oxidation of the nonsteroidal anti-inflammatory drug phenylbutazone (PBZ). We utilized electron paramagnetic resonance (EPR) spectroscopy to detect free radical intermediates of PBZ, UV-vis spectrophotometry to monitor PBZ oxidation, oxygen analysis to determine the involvement of C-centered radicals, and LC/MS to determine the resulting metabolites. Using EPR spectroscopy and spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), we found that the spin adduct of CO3(•-) (DMPO/(•)OH) was attenuated with increasing PBZ concentrations. The resulting PBZ radical, which was assigned as a carbon-centered radical based on computer simulation of hyperfine splitting constants, was trapped by both DMPO and MNP spin traps. Similar to Cu,Zn-SOD-peroxidase activity, an identical PBZ carbon-centered radical was also detected with the presence of both myeloperoxidase (MPO/H2O2) and horseradish peroxidase (HRP/H2O2). Oxygen analysis revealed depletion in oxygen levels when PBZ was oxidized by SOD peroxidase-activity, further supporting carbon radical formation. In addition, UV-vis spectra showed that the λmax for PBZ (λ = 260 nm) declined in intensity and shifted to a new peak that was similar to the spectrum for 4-hydroxy-PBZ when oxidized by Cu,Zn-SOD-peroxidase activity. LC/MS evidence supported the formation of 4-hydroxy-PBZ when compared to that of a standard, and 4-hydroperoxy-PBZ was also detected in significant yield. These findings together indicate that the carbonate radical, a product of SOD peroxidase activity, appears to play a role in PBZ metabolism. Interestingly, these results are similar to findings from heme peroxidase enzymes, and the context of this metabolic pathway is discussed in terms of a mechanism for PBZ-induced toxicity. PMID:26090772

  16. Michaelis-Menten Kinetics and the Activation Energy Relate Soil Peroxidase Kinetics to the Lignin Chemistry

    NASA Astrophysics Data System (ADS)

    Triebwasser-Freese, D.; Tharayil, N.; Preston, C. M.; Gerard, P.

    2013-12-01

    Recently, it has been suggested that lignin exhibit a turnover rate of less than 6 years, suggesting that the enzymatic mechanisms mediating the decay of lignin are less understood. One factor that could be affecting the mean residence time of lignin in the soil is the catalytic efficiency of soil oxidoreductase enzymes. We characterized the spatial and seasonal transitions in the Michaelis-Menten kinetics and activation energy of the soil oxidoreductase enzyme, peroxidase, across three ecosystems of differing litter chemistries- pine, deciduous forest, and a cultivated field- and associate it to the soil lignin chemistries. To interpret the combined effect of Vmax and Km, the two parameters were integrated into one term which we defined as the catalytic efficiency. Generally, the peroxidases in pine soils exhibited the highest Vmax and Km, resulting in the lowest catalytic efficiency, followed by that in the deciduous soils. Meanwhile, the agricultural soils which exhibited the lowest Vmax and Km contained the highest catalytic efficiency of peroxidase. Through linear regression analysis of the kinetic parameters to the soil lignin chemistry, we discerned that the catalytic efficiency term best associated to the lignin monomer ratios (C/V, P/V, and SCV/V). The Activation Energy of peroxidase varied by depth, and seasons across the ecosystems. However, the Activation Energy of peroxidase did not relate to the lignin chemistry or quantity. Collectively, our results show that although the peroxidase Vmax and Km in the phenolic-poor soils are low, the degradation efficiency of peroxidases in this soils can be equivalent or exceed that of phenolic-rich soils. This study, through the characterization of Michaelis-Menten kinetics, provides a new insight into the mechanisms that could moderate the decomposition of lignin in soils.

  17. 2,4,6-Trichlorophenol mediated increases in extracellular peroxidase activity in three species of Lemnaceae.

    PubMed

    Biswas, Dilip K; Scannell, Gillian; Akhmetov, Nurlan; Fitzpatrick, Dara; Jansen, Marcel A K

    2010-11-01

    Chlorinated phenols, or chlorophenols, are persistent priority pollutants that are widespread in the environment. Class III peroxidases are well-characterised plant enzymes that can catalyse the oxidative dechlorination of chlorophenols. Expression of these enzymes by plants is commonly associated with plant stress, therefore limiting scope for phytoremediation. In this study, we have quantitatively compared peroxidase activity and phytotoxicity as a function of 2,4,6-trichlorophenol (TCP) concentration in three species of Lemnaceae; Lemna minor, Lemna gibba and Landoltia punctata. Effects of TCP on the growth rates of the three species differed considerably with L. punctata being the most tolerant species. TCP also affected photosynthetic parameters, causing a decrease in open photosystem II reaction centres (qP) and, in L. punctata only, a decrease in non-photochemical quenching (qN). In parallel, TCP exposure resulted in increased peroxidase activity in all three species. Peroxidase activity in L. minor and L. gibba displayed an inverse relationship with biomass accumulation, i.e. the more growth reduction the more peroxidase activity. In contrast, induction of peroxidase activity in L. punctata was bi-phasic, with a TCP-induced activity peak at concentrations that had no major effect on growth, and further induction under phytotoxic concentrations. The mechanism by which L. punctata recognises and responds to low concentrations of an anthropogenic compound, in the absence of wide-ranging stress, remains enigmatic. However, we conclude that this "window" of peroxidase production in the absence of major growth inhibition offers potential for the development of sustainable, peroxidise-mediated phytoremediation systems. PMID:20810175

  18. Catalytic Profile of Arabidopsis Peroxidases, AtPrx-2, 25 and 71, Contributing to Stem Lignification

    PubMed Central

    Shigeto, Jun; Nagano, Mariko; Fujita, Koki; Tsutsumi, Yuji

    2014-01-01

    Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors. PMID:25137070

  19. Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification.

    PubMed

    Shigeto, Jun; Nagano, Mariko; Fujita, Koki; Tsutsumi, Yuji

    2014-01-01

    Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors.

  20. A putative peroxidase cDNA from turnip and analysis of the encoded protein sequence.

    PubMed

    Romero-Gómez, S; Duarte-Vázquez, M A; García-Almendárez, B E; Mayorga-Martínez, L; Cervantes-Avilés, O; Regalado, C

    2008-12-01

    A putative peroxidase cDNA was isolated from turnip roots (Brassica napus L. var. purple top white globe) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Total RNA extracted from mature turnip roots was used as a template for RT-PCR, using a degenerated primer designed to amplify the highly conserved distal motif of plant peroxidases. The resulting partial sequence was used to design the rest of the specific primers for 5' and 3' RACE. Two cDNA fragments were purified, sequenced, and aligned with the partial sequence from RT-PCR, and a complete overlapping sequence was obtained and labeled as BbPA (Genbank Accession No. AY423440, named as podC). The full length cDNA is 1167bp long and contains a 1077bp open reading frame (ORF) encoding a 358 deduced amino acid peroxidase polypeptide. The putative peroxidase (BnPA) showed a calculated Mr of 34kDa, and isoelectric point (pI) of 4.5, with no significant identity with other reported turnip peroxidases. Sequence alignment showed that only three peroxidases have a significant identity with BnPA namely AtP29a (84%), and AtPA2 (81%) from Arabidopsis thaliana, and HRPA2 (82%) from horseradish (Armoracia rusticana). Work is in progress to clone this gene into an adequate host to study the specific role and possible biotechnological applications of this alternative peroxidase source. PMID:18686036

  1. Fast and Specific Assessment of the Halogenating Peroxidase Activity in Leukocyte-enriched Blood Samples.

    PubMed

    Flemmig, Jörg; Schwarz, Pauline; Bäcker, Ingo; Leichsenring, Anna; Lange, Franziska; Arnhold, Jürgen

    2016-01-01

    In this paper a protocol for the quick and standardized enrichment of leukocytes from small whole blood samples is described. This procedure is based on the hypotonic lysis of erythrocytes and can be applied to human samples as well as to blood of non-human origin. The small initial sample volume of about 50 to 100 µl makes this method applicable to recurrent blood sampling from small laboratory animals. Moreover, leukocyte enrichment is achieved within minutes and with low material efforts regarding chemicals and instrumentation, making this method applicable in multiple laboratory environments. Standardized purification of leukocytes is combined with a highly selective staining method to evaluate halogenating peroxidase activity of the heme peroxidases, myeloperoxidase (MPO) and eosinophil peroxidase (EPO), i.e., the formation of hypochlorous and hypobromous acid (HOCl and HOBr). While MPO is strongly expressed in neutrophils, the most abundant immune cell type in human blood as well as in monocytes, the related enzyme EPO is exclusively expressed in eosinophils. The halogenating activity of these enzymes is addressed by using the almost HOCl- and HOBr-specific dye aminophenyl fluorescein (APF) and the primary peroxidase substrate hydrogen peroxide. Upon subsequent flow cytometry analysis all peroxidase-positive cells (neutrophils, monocytes, eosinophils) are distinguishable and their halogenating peroxidase activity can be quantified. Since APF staining may be combined with the application of cell surface markers, this protocol can be extended to specifically address leukocyte sub-fractions. The method is applicable to detect HOCl and HOBr production both in human and in rodent leukocytes. Given the widely and diversely discussed immunological role of these enzymatic products in chronic inflammatory diseases, this protocol may contribute to a better understanding of the immunological relevance of leukocyte-derived heme peroxidases. PMID:27501318

  2. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    PubMed Central

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  3. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases.

    PubMed

    Gutscher, Marcus; Sobotta, Mirko C; Wabnitz, Guido H; Ballikaya, Seda; Meyer, Andreas J; Samstag, Yvonne; Dick, Tobias P

    2009-11-13

    H(2)O(2) acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H(2)O(2)-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H(2)O(2)-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H(2)O(2), and the Orp1-roGFP2 redox relay effectively converts physiological H(2)O(2) signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H(2)O(2)-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins. PMID:19755417

  4. Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases*♦

    PubMed Central

    Gutscher, Marcus; Sobotta, Mirko C.; Wabnitz, Guido H.; Ballikaya, Seda; Meyer, Andreas J.; Samstag, Yvonne; Dick, Tobias P.

    2009-01-01

    H2O2 acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H2O2-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H2O2-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H2O2, and the Orp1-roGFP2 redox relay effectively converts physiological H2O2 signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H2O2-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins. PMID:19755417

  5. Interprotein Coupling Enhances the Electrocatalytic Efficiency of Tobacco Peroxidase Immobilized at a Graphite Electrode.

    PubMed

    Olloqui-Sariego, José Luis; Zakharova, Galina S; Poloznikov, Andrey A; Calvente, Juan José; Hushpulian, Dmitry M; Gorton, Lo; Andreu, Rafael

    2015-11-01

    Covalent immobilization of enzymes at electrodes via amide bond formation is usually carried out by a two-step protocol, in which surface carboxylic groups are first activated with the corresponding cross-coupling reagents and then reacted with protein amine groups. Herein, it is shown that a modification of the above protocol, involving the simultaneous incubation of tobacco peroxidase and the pyrolytic graphite electrode with the cross-coupling reagents produces higher and more stable electrocatalytic currents than those obtained with either physically adsorbed enzymes or covalently immobilized enzymes according to the usual immobilization protocol. The remarkably improved electrocatalytic properties of the present peroxidase biosensor that operates in the 0.3 V ≤ E ≤ 0.8 V (vs SHE) potential range can be attributed to both an efficient electronic coupling between tobacco peroxidase and graphite and to the formation of intra- and intermolecular amide bonds that stabilize the protein structure and improve the percentage of anchoring groups that provide an adequate orientation for electron exchange with the electrode. The optimized tobacco peroxidase sensor exhibits a working concentration range of 10-900 μM, a sensitivity of 0.08 A M(-1) cm(-2) (RSD 0.05), a detection limit of 2 μM (RSD 0.09), and a good long-term stability, as long as it operates at low temperature. These parameter values are among the best reported so far for a peroxidase biosensor operating under simple direct electron transfer conditions.

  6. Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae.

    PubMed

    Kaya, Alaattin; Lobanov, Alexei V; Gerashchenko, Maxim V; Koren, Amnon; Fomenko, Dmitri E; Koc, Ahmet; Gladyshev, Vadim N

    2014-11-01

    Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness.

  7. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana.

    PubMed

    Fernández-Pérez, Francisco; Vivar, Tamara; Pomar, Federico; Pedreño, María A; Novo-Uzal, Esther

    2015-03-01

    Syringyl lignins result from the oxidative polymerization of sinapyl alcohol in a reaction mediated by syringyl (basic) peroxidases. Several peroxidases have been identified in the genome of Arabidopsis thaliana as close homologues to ZePrx, the best characterized basic peroxidase so far, but none of these has been directly involved in lignification. We have used a knock-out mutant of AtPrx4, the closest homologue to ZePrx, to study the involvement of this basic peroxidase in the physiology of the plant under both long- and short-day light conditions. Our results suggest that AtPrx4 is involved in cell wall lignification, especially in syringyl monomer formation. The disruption of AtPrx4 causes a decrease in syringyl units proportion, but only when light conditions are optimal. Moreover, the effect of AtPrx4 disruption is age-dependent, and it is only significant when the elongation process of the stem has ceased and lignification becomes active. In conclusion, AtPrx4 emerges as a basic peroxidase regulated by day length with an important role in lignification.

  8. An updated view on horseradish peroxidases: recombinant production and biotechnological applications.

    PubMed

    Krainer, Florian W; Glieder, Anton

    2015-02-01

    Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.

  9. Activity and Isoenzyme Profile of Peroxidase as Affected by Microgravity Stress

    NASA Astrophysics Data System (ADS)

    Sarnatska, V. V.; Gladun, H. O.; Padalko, S. F.

    2008-06-01

    To investigate microgravity (clinorotation) effect on activity and isoenzyme pattern of peroxidase the culture of primary explants of potato tubers with normal activation of proliferation in vitro, explants inoculated with Agrobacterium tumefaciens(A.t.), where crown-gall tumors were formed and dormant potato tubers were used. Substantial decrease of total peroxidase activity after one day-clinorotation of potato explants, normal and inoculated with A.t., was revealed. Seven day- clinorotation resulted in the decreased peroxidase activity in normal clinorotated explants, while peroxidase activity in clinorotated explants, inoculated with A.t., returned to the level of its stationary control. When peroxidase of potato explants was analyzed by PAGE, the result obtained show the decrease in activity of one electrophoretic fractions with low migrating mobility and two fractions with moderate mobility in clinorotated explants, normal and with crown gall, as compared with the ones in stationary conditions. The decrease in activity of these fractions under microgravity was less pronounced in explants with crown-galls.

  10. Characteristics of estrogen-induced peroxidase in mouse uterine luminal fluid

    SciTech Connect

    Jellinck, P.H.; Newbold, R.R.; McLachlan, J.A. )

    1991-04-01

    Peroxidase activity in the uterine luminal fluid of mice treated with diethylstilbestrol was measured by the guaiacol assay and also by the formation of 3H2O from (2-3H)estradiol. In the radiometric assay, the generation of 3H2O and 3H-labeled water-soluble products was dependent on H2O2 (25 to 100 microM), with higher concentrations being inhibitory. Tyrosine or 2,4-dichlorophenol strongly enhanced the reaction catalyzed either by the luminal fluid peroxidase or the enzyme in the CaCl2 extract of the uterus, but decreased the formation of 3H2O from (2-3H)estradiol by lactoperoxidase in the presence of H2O2 (80 microM). NADPH, ascorbate, and cytochrome c inhibited both luminal fluid and uterine tissue peroxidase activity to the same extent, while superoxide dismutase showed a marginal activating effect. Lactoferrin, a major protein component of uterine luminal fluid, was shown not to contribute to its peroxidative activity, and such an effect by prostaglandin synthase was also ruled out. However, it was not possible to exclude eosinophil peroxidase, brought to the uterus after estrogen stimulation, as being the source of peroxidase activity in uterine luminal fluid.

  11. Phenol-Oxidizing Peroxidases Contribute to the Protection of Plants from Ultraviolet Radiation Stress1

    PubMed Central

    Jansen, Marcel A.K.; van den Noort, Ria E.; Tan, M.Y. Adillah; Prinsen, Els; Lagrimini, L. Mark; Thorneley, Roger N.F.

    2001-01-01

    We have studied the mechanism of UV protection in two duckweed species (Lemnaceae) by exploiting the UV sensitivity of photosystem II as an in situ sensor for radiation stress. A UV-tolerant Spirodela punctata G.F.W. Meyer ecotype had significantly higher indole-3-acetic acid (IAA) levels than a UV-sensitive ecotype. Parallel work on Lemna gibba mutants suggested that UV tolerance is linked to IAA degradation rather than to levels of free or conjugated IAA. This linkage is consistent with a role for class III phenolic peroxidases, which have been implicated both in the degradation of IAA and the cross-linking of various UV-absorbing phenolics. Biochemical analysis revealed increased activity of a specific peroxidase isozyme in both UV-tolerant duckweed lines. The hypothesis that peroxidases play a role in UV protection was tested in a direct manner using genetically modified tobacco (Nicotiana sylvestris). It was found that increased activity of the anionic peroxidase correlated with increased tolerance to UV radiation as well as decreased levels of free auxin. We conclude that phenol-oxidizing peroxidases concurrently contribute to UV protection as well as the control of leaf and plant architecture. PMID:11457952

  12. Interprotein Coupling Enhances the Electrocatalytic Efficiency of Tobacco Peroxidase Immobilized at a Graphite Electrode.

    PubMed

    Olloqui-Sariego, José Luis; Zakharova, Galina S; Poloznikov, Andrey A; Calvente, Juan José; Hushpulian, Dmitry M; Gorton, Lo; Andreu, Rafael

    2015-11-01

    Covalent immobilization of enzymes at electrodes via amide bond formation is usually carried out by a two-step protocol, in which surface carboxylic groups are first activated with the corresponding cross-coupling reagents and then reacted with protein amine groups. Herein, it is shown that a modification of the above protocol, involving the simultaneous incubation of tobacco peroxidase and the pyrolytic graphite electrode with the cross-coupling reagents produces higher and more stable electrocatalytic currents than those obtained with either physically adsorbed enzymes or covalently immobilized enzymes according to the usual immobilization protocol. The remarkably improved electrocatalytic properties of the present peroxidase biosensor that operates in the 0.3 V ≤ E ≤ 0.8 V (vs SHE) potential range can be attributed to both an efficient electronic coupling between tobacco peroxidase and graphite and to the formation of intra- and intermolecular amide bonds that stabilize the protein structure and improve the percentage of anchoring groups that provide an adequate orientation for electron exchange with the electrode. The optimized tobacco peroxidase sensor exhibits a working concentration range of 10-900 μM, a sensitivity of 0.08 A M(-1) cm(-2) (RSD 0.05), a detection limit of 2 μM (RSD 0.09), and a good long-term stability, as long as it operates at low temperature. These parameter values are among the best reported so far for a peroxidase biosensor operating under simple direct electron transfer conditions. PMID:26437673

  13. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana.

    PubMed

    Fernández-Pérez, Francisco; Vivar, Tamara; Pomar, Federico; Pedreño, María A; Novo-Uzal, Esther

    2015-03-01

    Syringyl lignins result from the oxidative polymerization of sinapyl alcohol in a reaction mediated by syringyl (basic) peroxidases. Several peroxidases have been identified in the genome of Arabidopsis thaliana as close homologues to ZePrx, the best characterized basic peroxidase so far, but none of these has been directly involved in lignification. We have used a knock-out mutant of AtPrx4, the closest homologue to ZePrx, to study the involvement of this basic peroxidase in the physiology of the plant under both long- and short-day light conditions. Our results suggest that AtPrx4 is involved in cell wall lignification, especially in syringyl monomer formation. The disruption of AtPrx4 causes a decrease in syringyl units proportion, but only when light conditions are optimal. Moreover, the effect of AtPrx4 disruption is age-dependent, and it is only significant when the elongation process of the stem has ceased and lignification becomes active. In conclusion, AtPrx4 emerges as a basic peroxidase regulated by day length with an important role in lignification. PMID:25506770

  14. Thiol Peroxidase Deficiency Leads to Increased Mutational Load and Decreased Fitness in Saccharomyces cerevisiae

    PubMed Central

    Kaya, Alaattin; Lobanov, Alexei V.; Gerashchenko, Maxim V.; Koren, Amnon; Fomenko, Dmitri E.; Koc, Ahmet; Gladyshev, Vadim N.

    2014-01-01

    Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness. PMID:25173844

  15. Impurity-induced peroxidase mimicry of nanoclay and its potential for the spectrophotometric determination of cholesterol.

    PubMed

    Aneesh, K; Vusa, Chiranjeevi Srinivasa Rao; Berchmans, Sheela

    2016-09-01

    A green version of the "Fe" impurity-induced peroxidase mimicry exhibited by simple and cheap substrate "nanoclay (NC)" along with the highly sensitive amperometric and spectrophotometric determination of cholesterol is demonstrated. The "Fe" impurity can act as the catalyst center for hydrogen peroxide reduction similar to the horseradish peroxidase (HRP)-catalyzed reaction. The Michaelis-Menten constant for the NC-catalyzed reaction is found to be lower than that of the HRP-catalyzed reaction indicating high affinity for the substrate. The NC-modulated peroxidase-like catalytic activity originates from the electron transfer between the reducing substrate in the catalyst center and H2O2 with the intermediate generation of hydroxyl radicals. The peroxidase mimicry is successfully applied for the low-potential electrochemical detection of H2O2 (linear detection range 1.96-10.71 mM, R (2) = 0.97). The H2O2 sensing platform is further modified with cholesterol oxidase (CHOx) for the spectrophotometric (linear detection range 50-244 μM, R (2) = 0.99) and amperometric detection of cholesterol (linear detection range 0.099-1.73 mM, R (2) = 0.998). Graphical abstract Peroxidase mimicry of nanoclay for the determination of cholesterol. PMID:27392749

  16. Cloning, heterologous expression and properties of a recombinant active turnip peroxidase.

    PubMed

    Rodriguez-Cabrera, Norma A; Regalado, C; Garcia-Almendarez, Blanca E

    2011-07-13

    Turnip (Brassica napus) roots peroxidase isoforms have been used in diagnostic kits and can also efficiently polymerize phenolic compounds from wastewaters. Heterologous expression of a turnip acidic peroxidase (BnPA) was investigated to increase availability of this widely used enzyme. The mature BnPA was ligated into the pET28a(+) vector and used to transform Escherichia coli Rosetta 2. Recombinant BnPA peroxidase was overexpressed and accumulated in inclusion bodies from which it was purified to homogeneity by immobilized metal affinity chromatography under denaturing conditions. Peroxidase activity was observed after a refolding process under oxidative conditions. The yield of pure recombinant BnPA was 29 mg L(-1) of culture with a specific activity of 981 ± 20 ABTS units mg(-1) at optimal conditions (pH 6, 45 °C). Recombinant BnPA showed similar kinetic properties compared to native turnip peroxidase, and its secondary structure evaluated by circular dichroism comprised 20% α-helix, 32% β-sheet and 48% random structure. Recombinant BnPA showed high yield and good kinetic properties which are key steps for future structure-function studies and biotechnological applications. PMID:21591783

  17. Ca2+ activation of wheat peroxidase: a possible physiological mechanism of control.

    PubMed

    Converso, D A; Fernández, M E

    1996-09-01

    Peroxidation of substrates such as ascorbic acid, pyrogallol, or ferulic acid, as well as indole acetic acid oxidation catalyzed by wheat germ peroxidase (WGP)2 C2, were found to be activated by Ca2+. This activation is independent of the stabilizing effect of structural Ca2+ reported for peroxidases. Steady state kinetics of ferulic acid oxidation catalyzed by WGP C2 showed an increase in the rate of compound I formation and of compound II decomposition in the presence of the ion, evidenced as an increase in rate constants k1, from 8.9 x 10(5) to 4.5 x 10(5) M-1 cm-1, and k3, from 4.4 x 10(5) to 1.1 x 10(6) M-1 cm-1. The dissociation constant Kd, for the cyanide derivative of the enzyme showed a marked decrease from 220 to 34 microM in the presence of Ca2+, thus implying an effect of the ion in the H2O2 binding step. In the presence of Ca2+, a conformational change in the protein was revealed by tryptophan fluorescence, providing a basis for the activation mechanism. Other peroxidases such as horseradish peroxidase and WGP C3 were not activated by Ca2+. The results suggest the existence of a physiological mechanism of control of peroxidase isozymes activity mediated by Ca2+.

  18. Evidence for an unusual electronic structure of wheat germ peroxidase compound I.

    PubMed

    Converso, D A; Fernández, M E

    1998-09-01

    Oxidized states of wheat germ peroxidase isozyme C2 (WGP C2) were investigated by means of electronic absorption spectroscopy. Addition of one molar equivalent of H2O2 to ferric WGP C2 led to the formation of an oxidized species with an absorption spectrum very similar to that of peroxidase compound II, with a Soret maximum at 411 nm and visible maxima at 523 and 553 nm. The transformation took place with an isosbestic point at 409 nm. Stopped flow spectroscopy showed no inflection points for the formation of this species when it was registered at 420 nm, and we could verify the persistence of the isosbestic point from 20 ms to 10 s. The oxidized species decays spontaneously to ferric enzyme in a double-exponential manner. By adding excess H2O2 to the system we obtained an inactive derivative identical to horseradish peroxidase P-670. In the presence of one equivalent of reducing substrate and excess H2O2 compound III was formed. The results so indicate that the species obtained in the reaction of WGP C2 with equimolecular amounts of H2O2 is compound I. The resulting compound I spectrum was identical to that of cytochrome c peroxidase, suggesting the formation of a protein radical rather than the typical pi cation radical, a feature which had not been described before for a plant peroxidase.

  19. [Effects of local treatment with sodium fluoride mouthrinse on peroxidase and hypothiocyanite saliva levels in adolescent]/.

    PubMed

    Azcurra, A I; Calamari, S E; Yankilevich, E R; Battellino, L J; Cattoni, S T; Colantonio, G

    1997-01-01

    The present work describes and analyzes the results of a randomized clinical trial on adolescents (age 18.2 +/- 0.6) carried out in order to evaluate the effects of a twice daily mouthrinse application containing xylitol, sorbitol, sacarine, ciclamate, aspartame, chlorhexidine, hexetidine or NaF for 14 days on amylase, peroxidase, thiocyanate, hypothiocyanite, secretory IgA and total proteins in whole saliva. No significative changes were observed in health and bucodental parameters nor in flow salivary rate, protein, secretory Ig A, or thiocyanate levels as a consequence of the mouthrinses application. On the other hand, NaF treatment (0.02%, 0.05% or 0.1%) did cause an increase in salivary peroxidase and hypothiocyanite, being the former increase higher than the second one. Peroxidase increase was proportional to the mouthrinse dose (r = 0.78; p < 0.01), but not to the hypothiocyanite increase (r = 0.407; p = 0.12). Since the adolescents' health condition was the adequate, it is suggested that the peroxidase increase was due to a higher enzyme synthesis and/or secretion by the parotid and/or submaxillar glands. It is concluded that the increases in salivary peroxidase and hypothiocyanite caused by the NaF treatment favour the host, as they potentiate one of the mechanisms that modulate dental plaque composition, preventing in such a way the colonization by cariogenic pathogens.

  20. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi.

    PubMed Central

    Orth, A B; Royse, D J; Tien, M

    1993-01-01

    Phanerochaete chrysosporium is rapidly becoming a model system for the study of lignin biodegradation. Numerous studies on the physiology, biochemistry, chemistry, and genetics of this system have been performed. However, P. chrysosporium is not the only fungus to have a lignin-degrading enzyme system. Many other ligninolytic species of fungi, as well as other distantly related organisms which are known to produce lignin peroxidases, are described in this paper. In this study, we demonstrated the presence of the peroxidative enzymes in nine species not previously investigated. The fungi studied produced significant manganese peroxidase activity when they were grown on an oak sawdust substrate supplemented with wheat bran, millet, and sucrose. Many of the fungi also exhibited laccase and/or glyoxal oxidase activity. Inhibitors present in the medium prevented measurement of lignin peroxidase activity. However, Western blots (immunoblots) revealed that several of the fungi produced lignin peroxidase proteins. We concluded from this work that lignin-degrading peroxidases are present in nearly all ligninolytic fungi, but may be expressed differentially in different species. Substantial variability exists in the levels and types of ligninolytic enzymes produced by different white not fungi. Images PMID:8285705

  1. Impurity-induced peroxidase mimicry of nanoclay and its potential for the spectrophotometric determination of cholesterol.

    PubMed

    Aneesh, K; Vusa, Chiranjeevi Srinivasa Rao; Berchmans, Sheela

    2016-09-01

    A green version of the "Fe" impurity-induced peroxidase mimicry exhibited by simple and cheap substrate "nanoclay (NC)" along with the highly sensitive amperometric and spectrophotometric determination of cholesterol is demonstrated. The "Fe" impurity can act as the catalyst center for hydrogen peroxide reduction similar to the horseradish peroxidase (HRP)-catalyzed reaction. The Michaelis-Menten constant for the NC-catalyzed reaction is found to be lower than that of the HRP-catalyzed reaction indicating high affinity for the substrate. The NC-modulated peroxidase-like catalytic activity originates from the electron transfer between the reducing substrate in the catalyst center and H2O2 with the intermediate generation of hydroxyl radicals. The peroxidase mimicry is successfully applied for the low-potential electrochemical detection of H2O2 (linear detection range 1.96-10.71 mM, R (2) = 0.97). The H2O2 sensing platform is further modified with cholesterol oxidase (CHOx) for the spectrophotometric (linear detection range 50-244 μM, R (2) = 0.99) and amperometric detection of cholesterol (linear detection range 0.099-1.73 mM, R (2) = 0.998). Graphical abstract Peroxidase mimicry of nanoclay for the determination of cholesterol.

  2. [Accelerated determination of microbial sensitivity to antibiotics and chemotherapeutic preparations by serial dilutions using the peroxidase test].

    PubMed

    Fel'dman, Iu M; Leĭbman, E T

    1980-02-01

    A rapid method for determination of microbial sensitivity to antibiotics and chemotherapeutic drugs with the use of the peroxidase test is described. The procedure takes 6 hours. Peroxidase is determined by a change in the color of the methyl-para-amino phenol sulfate solution added to the broth culture in 6 hours (simultaneously with hydrogen peroxide). The peroxidase test provides detection of the microbe multiplication even when no turbidity is observed.

  3. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L.

    PubMed

    Syros, Thomas; Yupsanis, Traianos; Zafiriadis, Helias; Economou, Athanasios

    2004-01-01

    Adventitious rooting of Ebenus cretica cuttings was studied in order to examine a) the rooting ability of different genotypes in relation to electrophoretic patterns of peroxidases. b) the activity and electrophoretic patterns of soluble and wall ionically bound peroxidases, the lignin content and anatomical changes in the control and IBA treated cuttings of and genotypes in the course of adventitious root formation. In addition, a fraction of soluble cationic peroxidases was separated by gel filtration chromatography from the total soluble peroxidases of a genotype. No rooting occurred in cuttings without IBA-treatment. In both genotypes, electrophoretic patterns of soluble anionic peroxidases revealed two common peroxidase isoforms, while a fast-migrating anionic peroxidase isoform (A3) appeared only in genotypes. Both genotypes showed similar patterns of soluble, as well as wall ionically bound cationic peroxidase isoforms. The number of isoforms was unchanged during the rooting process (induction, initiation and expression phase) but an increase in peroxidase activity (initiation phase) followed by decrease has been found in IBA-treated cuttings. During initiation phase the lignin content was almost similar to that on day 0 in genotype while it was reduced at by about 50% in genotype at the respective time. Microscopic observations revealed anatomical differences between genotypes. According to this study, the and genotypes display differences in anatomy, lignin content, activity of soluble peroxidases and the electrophoretic patterns of soluble anionic peroxidase isoforms. The A3-anionic peroxidase isoform could be used as biochemical marker to distinguish and genotypes of E. cretica and seems to be correlated to lignin synthesis in rooting process. PMID:15002666

  4. Oxidation of porphyrinogens by horseradish peroxidase and formation of a green pyrrole pigment.

    PubMed

    Jacobs, J M; Jacobs, N J; Kuhn, C B; Gorman, N; Dayan, F E; Duke, S O; Sinclair, J F; Sinclair, P R

    1996-10-01

    When humans or plants are exposed to certain chemicals which interfere with heme biosynthetic enzymes, porphyrinogen intermediates accumulate and are oxidized to cytotoxic porphyrins. Here we have investigated the role of peroxidases in porphyrinogen oxidation. Horseradish peroxidase (HRP) rapidly oxidizes uroporphyrinogen to uroporphyrin and this is inhibited by ascorbic acid. HRP also oxidizes deuteroporphyrinogen (a synthetic porphyrin similar to protoporphyrinogen), but the yield of porphyrin is lower than with uroporphyrinogen as substrate. This low yield is in part due to a rapid, HRP-dependent conversion of deuteroporphyrin (but not uroporphyrin) to a green compound with spectral characteristics of a chlorin with a large peak at 638 nm. This reaction requires addition of a sulfhydryl reductant such as glutathione and is inhibited by ascorbic acid. These findings suggest that cellular peroxidases and ascorbic acid levels may play a role in modifying the phototoxic tetrapyrroles which accumulate in plants and humans after certain environmental exposures.

  5. Primary product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol

    SciTech Connect

    Kazunga, C.; Aitken, M.D.; Gold, A.

    1999-05-01

    Peroxidases are a class of enzymes that catalyze the oxidation of various phenolic substrates by hydrogen peroxide. They are common enzymes in soil and are also available commercially, so that they have been proposed as agents of phenolic pollutant transformation both in the environment and in engineered systems. Previous research on the peroxidase-catalyzed oxidation of pentachlorophenol (PCP) has suggested that tetrachloro-p-benzoquinone (chloranil) is the principal product and that a considerable fraction of the PCP added to reaction mixtures appears to be resistant to oxidation. In experiments employing alternative methods of product separation and analysis, the authors found that both of these observations are artifacts of extraction and analytical methods used in previous studies. The major product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol from pH 4--7 was 2,3,4,5,6-pentachloro-4-pentachlorophenoxy-2,5-cyclohexadienone (PPCHD), which is formed by the coupling of two pentachlorophenoxyl radicals.

  6. Generation of novel functional metalloproteins via hybrids of cytochrome c and peroxidase.

    PubMed

    Ying, Tianlei; Zhong, Fangfang; Wang, Zhong-Hua; Xie, Jin; Tan, Xiangshi; Huang, Zhong-Xian

    2013-06-01

    The continued interest in protein engineering has led to intense efforts in developing novel stable enzymes, which could not only give boost to industrial and biomedical applications, but also enhance our understanding of the structure-function relationships of proteins. We present here the generation of three hybrid proteins of cytochrome c (cyt c) and peroxidase via structure-based rational mutagenesis of cyt c. Several residues (positions 67, 70, 71 and 80) in the distal heme region of cyt c were mutated to the highly conserved amino acids in the heme pocket of peroxidases. The multiple mutants were found to exhibit high peroxidase activity and conserve the impressive stability of cyt c. We expect that this strategy could be extended to other cases of metalloprotein engineering, and lead to the development of stable and active biocatalysts for industrial uses. Besides, this study also provides insight into the structure-function relationships of hemoproteins.

  7. Specific Binding of Peroxidase-Labeled Myelin Basic Protein in Allergic Encephalomyelitis

    PubMed Central

    Johnson, Anne B.; Wiśniewski, Henryk M.; Raine, Cedric S.; Eylar, E. H.; Terry, Robert D.

    1971-01-01

    A conjugate of horseradish peroxidase and the encephalitogenic basic protein from myelin has been used to study the antigen reactivity of tissue in the autoimmune disease, experimental allergic encephalomyelitis. Control conjugates were also prepared of peroxidase and bovine serum albumin and of peroxidase and lysozyme, another basic protein. The basic protein from myelin conjugate was specifically bound by lymph node cells from rabbits immunized against the basic protein. Some of these cells appeared to be plasma cells. The conjugate was also specifically bound by occasional cells in the spinal-cord infiltrates of animals with early signs of allergic encephalomyelitis. These cells resembled large lymphocytes and plasma cells. There was no difference between the binding of basic protein of bovine and rabbit origin. The findings suggest the possibility that a local release of antibody within the target organ may play a role in the pathogenesis of allergic encephalomyelitis. Images PMID:5288245

  8. Specific binding of peroxidase-labeled myelin basic protein in allergic encephalomyelitis.

    PubMed

    Johnson, A B; Wiśniewski, H M; Raine, C S; Eylar, E H; Terry, R D

    1971-11-01

    A conjugate of horseradish peroxidase and the encephalitogenic basic protein from myelin has been used to study the antigen reactivity of tissue in the autoimmune disease, experimental allergic encephalomyelitis. Control conjugates were also prepared of peroxidase and bovine serum albumin and of peroxidase and lysozyme, another basic protein. The basic protein from myelin conjugate was specifically bound by lymph node cells from rabbits immunized against the basic protein. Some of these cells appeared to be plasma cells. The conjugate was also specifically bound by occasional cells in the spinal-cord infiltrates of animals with early signs of allergic encephalomyelitis. These cells resembled large lymphocytes and plasma cells. There was no difference between the binding of basic protein of bovine and rabbit origin. The findings suggest the possibility that a local release of antibody within the target organ may play a role in the pathogenesis of allergic encephalomyelitis.

  9. Proton nuclear Overhauser effect study of the heme active site structure of Coprinus macrorhizus peroxidase.

    PubMed

    Dugad, L B; Goff, H M

    1992-07-13

    Proton nuclear Overhauser effect and paramagnetic relaxation measurements have been used to define more extensively the heme active site structure of Coprinus macrorhizus peroxidase, CMP (previously known as Coprinus cinereus peroxidase), as the ferric low-spin cyanide ligated complex. The results are compared with other well-characterized peroxidase enzymes. The NMR spectrum of CMPCN shows changes in the paramagnetically shifted resonances as a function of time, suggesting a significant heme disorder for CMP. The presence of proximal and distal histidine amino acid residues are common to the heme environments of both CMPCN and HRPCN. However, the upfield distal arginine signals of HRPCN are not evident in the 1H-NMR spectra of CMPCN.

  10. Effect of Low and Very Low Doses of Simple Phenolics on Plant Peroxidase Activity

    PubMed Central

    Malarczyk, Elżbieta; Kochmańska-Rdest, Janina; Paździoch-Czochra, Marzanna

    2004-01-01

    Changes in the activity of horseradish peroxidase resulting from an addition of ethanol water dilutions of 19 phenolic compounds were observed. For each compound, the enzyme activity was plotted against the degree of dilution expressed as n = –log100 (mol/L) in the range 0 ≤ n ≥ 20. All the curves showed sinusoidal activity, more or less regular, with two to four peaks on average. Each analyzed compound had a characteristic sinusoidal shape, which was constant for samples of peroxidase from various commercial firms. This was clearly visible after function fitting to experimental results based on the Marquadt–Levenberg algorithm using the least-squares method. Among the 19 phenolics, the highest amplitudes were observed for phenol and iso- and vanillate acids and aldehydes. The specific character of each of the analyzed curves offers a possibility of choosing proper dilutions of phenolic compound for activating or inhibiting of peroxidase activity. PMID:19330128

  11. Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B.

    PubMed

    Baker, R D; Baker, S S; LaRosa, K; Whitney, C; Newburger, P E

    1993-07-01

    Glutathione peroxidase is an important enzyme in cellular antioxidant defense systems, detoxifying peroxides and hydroperoxides. As a component of the glutathione cycle, it protects the liver from reactive oxygen metabolites. Selenocysteine is present at the catalytic site of glutathione peroxidase, and selenium availability regulates glutathione peroxidase enzyme activity. Hep3B cells, a well-differentiated human hepatoma-derived cell line, exhibited time-dependent decrease in glutathione peroxidase activity (nmol NADPH oxidized/min/mg protein, mean +/- SE) when incubated in selenium-free medium for 10 days (Day 0, 21.8 +/- 7.3; Day 2, 10.9 +/- 1.2; Day 4, 7.9 +/- 0.8; Day 6, 4.0 +/- 0.7; Day 8, 4.5 +/- 0.6; Day 10, 1.6 +/- 0.4). With the reintroduction of selenium, glutathione peroxidase activity returned. A second human hepatoma cell line, HepG2, demonstrated a similar pattern when depleted of and then repleted with selenium. To assess protein synthesis, glutathione peroxidase activity was measured in deficient and replete Hep3B cells incubated with and without selenium and with and without cycloheximide. Deficient cells (mean +/- SE) (4.9 +/- 0.2) showed an increase in glutathione peroxidase activity after 24 h in selenium-containing medium (11.6 +/- 0.2), but not when cycloheximide was included in the medium (6.9 +/- 0.5) or when cycloheximide and no selenium was included (5.3 +/- 0.8). Replete Hep3B cells (40.1 +/- 1.1) demonstrated decreased glutathione peroxidase after 24 h in medium without selenium (34.0 +/- 1.4), medium with both cycloheximide and selenium (34.0 +/- 2.6), and medium without selenium and containing cycloheximide (37.6 +/- 1.3). These data suggest that protein synthesis is needed for selenium repletion to exert control on glutathione peroxidase activity. Using a cDNA for human glutathione peroxidase (GPx1), selenium-deficient and replete Hep3B cell RNA was analyzed by Northern blot. mRNA for GPx was quantified by densitometry. The steady

  12. Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase.

    PubMed

    Dowd, P F; Lagrimini, L M; Herms, D A

    1998-07-01

    Leaves of transgenic sweetgum (Liquidambar styraciflua) trees that expressed tobacco anionic peroxidase were compared with leaves of L. styraciflua trees that did not express the tobacco enzyme. Leaves of the transgenic trees were generally more resistant to feeding by caterpillars and beetles than wild-type leaves. However, as for past studies with transgenic tobacco and tomato expressing the tobacco anionic peroxidase, the degree of relative resistance depended on the size of insect used and the maturity of the leaf. Decreased growth of gypsy moth larvae appeared mainly due to decreased consumption, and not changes in the nutritional quality of the foliage. Transgenic leaves were more susceptible to feeding by the corn earworm, Helicoverpa zea. Thus, it appears the tobacco anionic peroxidase can contribute to insect resistance, but its effects are more predictable when it is expressed in plant species more closely related to the original gene source.

  13. Screening of postharvest agricultural wastes as alternative sources of peroxidases: characterization and kinetics of a novel peroxidase from lentil ( Lens culinaris L.) stubble.

    PubMed

    Hidalgo-Cuadrado, Nazaret; Pérez-Galende, Patricia; Manzano, Teresa; De Maria, Cándido Garcia; Shnyrov, Valery L; Roig, Manuel G

    2012-05-16

    Aqueous crude extracts of a series of plant wastes (agricultural, wild plants, residues from sports activities (grass), ornamental residues (gardens)) from 17 different plant species representative of the typical biodiversity of the Iberian peninsula were investigated as new sources of peroxidases (EC 1.11.1.7). Of these, lentil (Lens culinaris L.) stubble crude extract was seen to provide one of the highest specific peroxidase activities, catalyzing the oxidation of guaiacol in the presence of hydrogen peroxide to tetraguaiacol, and was used for further studies. For the optimum extraction conditions found, the peroxidase activity in this crude extract (110 U mL(-1)) did not vary for at least 15 months when stored at 4 °C (k(inact) = 0.146 year(-1), t(1/2 inact) = 4.75 year), whereas, for comparative purposes, the peroxidase activity (60 U mL(-1)) of horseradish (Armoracia rusticana L.) root crude extract, obtained and stored under the same conditions, showed much faster inactivation kinetics (k(inact) = 2.2 × 10(-3) day(-1), t(1/2 inact) = 315 days). Using guaiacol as an H donor and a universal buffer (see above), all crude extract samples exhibited the highest peroxidase activity in the pH range between 4 and 7. Once semipurified by passing the crude extract through hydrophobic chromatography on phenyl-Sepharose CL-4B, the novel peroxidase (LSP) was characterized as having a purity number (RZ) of 2.5 and three SDS-PAGE electrophoretic bands corresponding to molecular masses of 52, 35, and 18 kDa. The steady-state kinetic study carried out on the H(2)O(2)-mediated oxidation of guaiacol by the catalytic action of this partially purified peroxidase pointed to apparent Michaelian kinetic behavior (K(m)(appH(2)O(2)) = 1.87 mM; V(max)(appH(2)O(2)) = 6.4 mM min(-1); K(m)(app guaicol) = 32 mM; V(max)(app guaicol) = 9.1 mM min(-1)), compatible with the two-substrate ping-pong mechanism generally accepted for peroxidases. Finally, after the effectiveness of the crude

  14. Arabidopsis thaliana peroxidases involved in lignin biosynthesis: in silico promoter analysis and hormonal regulation.

    PubMed

    Herrero, Joaquín; Esteban Carrasco, Alberto; Zapata, José Miguel

    2014-07-01

    Phytohormones such as auxins, cytokinins, and brassinosteroids, act by means of a signaling cascade of transcription factors of the families NAC, MYB, AP2 (APETALA2), MADS and class III HD (homeodomain) Zip, regulating secondary growth. When the hormonal regulation of Zinnia elegans peroxidase (ZePrx), an enzyme involved in lignin biosynthesis, was studied, it was found that this peroxidase is sensitive to a plethora of hormones which control xylem lignification. In a previous study we sought Arabidopsis thaliana homologues to ZePrx. Peroxidases 4, 52, 49 and 72 are the four peroxidases that fulfill the restrictive conditions that a peroxidase involved in lignification must have. In the present study, we focus our attention on hormonal regulation in order to establish the minimal structural and regulatory elements contained in the promoter region which an AtPrx involved in lignification must have. The results indicate that of the four peroxidases selected in our previous study, the one most likely to be homologous to ZePrx is AtPrx52. The results suggest that hormones such as auxins, cytokinins and BRs directly regulate AtPrx52, and that the AtPrx52 promoter may be the target of the set of transcription factors (NAC, MYB, AP2 and class I and III HD Zip) which are up-regulated by these hormones during secondary growth. In addition, the AtPrx52 promoter contains multiple copies of all the putative cis-elements (the ACGT box, the OCS box, the OPAQ box, the L1BX, the MYCL box and the W box) known to confer regulation by NO and H2O2.

  15. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II).

    PubMed

    Fernández-Fueyo, Elena; Linde, Dolores; Almendral, David; López-Lucendo, María F; Ruiz-Dueñas, Francisco J; Martínez, Angel T

    2015-11-01

    Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes (Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, both enzymes also oxidize Mn(2+) to Mn(3+), albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn(2+) turnover (56 s(-1)) nearly in the same order of the two other Mn(2+)-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s(-1) average turnover) and versatile peroxidases (145 s(-1) average turnover), whose genes were also heterologously expressed. Oxidation of Mn(2+) has been reported for an Amycolatopsis DyP (24 s(-1)) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn(2+) oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. It is suggested that generation of Mn(3+) oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn(2+)-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.

  16. Vascular peroxidase-1 is rapidly secreted, circulates in plasma, and supports dityrosine cross-linking reactions.

    PubMed

    Cheng, Guangjie; Li, Hong; Cao, Zehong; Qiu, Xiaoyun; McCormick, Sally; Thannickal, Victor J; Nauseef, William M

    2011-10-01

    Members of the peroxidase-cyclooxygenase superfamily catalyze biochemical reactions essential to a broad spectrum of biological processes, including host defense, thyroid hormone biosynthesis, and modification of extracellular matrix, as well as contributing to the pathogenesis of chronic inflammatory diseases. We recently identified a novel member of this family, vascular peroxidase-1 (VPO1), that is highly expressed in the human cardiovascular system. Its biosynthesis and enzymatic properties are largely unknown. Here, we report that VPO1 was rapidly and efficiently secreted into the extracellular space when the gene was stably expressed in human embryonic kidney (HEK) cells. Secreted VPO1 is a monomer with complex N-linked oligosaccharides and exhibits peroxidase activity. Biosynthesis of endogenous VPO1 by cultured human umbilical vein endothelial cells (HUVECs) shares features exhibited by heterologous expression of recombinant VPO1 (rVPO1) in HEK cells. The proinflammatory agents lipopolysaccharide and tumor necrosis factor-α induce expression of VPO1 mRNA and protein in HUVECs. Furthermore, murine and bovine sera and human plasma contain enzymatically active VPO1. rVPO1 exhibits spectral and enzymatic properties characteristic of the peroxidase-cyclooxygenase family, except with regard to its heat stability. rVPO1 catalyzes tyrosyl radical formation and promotes dityrosine cross-linking. Taken together, these data demonstrate that VPO1 is a glycosylated heme peroxidase that is actively secreted into circulating plasma by vascular endothelial cells and shares several features with other members of the peroxidase-cyclooxygenase family, including the catalysis of dityrosine formation. PMID:21798344

  17. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II).

    PubMed

    Fernández-Fueyo, Elena; Linde, Dolores; Almendral, David; López-Lucendo, María F; Ruiz-Dueñas, Francisco J; Martínez, Angel T

    2015-11-01

    Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes (Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, both enzymes also oxidize Mn(2+) to Mn(3+), albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn(2+) turnover (56 s(-1)) nearly in the same order of the two other Mn(2+)-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s(-1) average turnover) and versatile peroxidases (145 s(-1) average turnover), whose genes were also heterologously expressed. Oxidation of Mn(2+) has been reported for an Amycolatopsis DyP (24 s(-1)) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn(2+) oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. It is suggested that generation of Mn(3+) oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn(2+)-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation. PMID:25967658

  18. Purification and characterization of a new cationic peroxidase from fresh flowers of Cynara scolymus L.

    PubMed

    López-Molina, Dorotea; Heering, Hendrik A; Smulevich, Giulietta; Tudela, José; Thorneley, Roger N F; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2003-03-01

    A basic heme peroxidase isoenzyme (AKPC) has been purified to homogeneity from artichoke flowers (Cynara scolymus L.). The enzyme was shown to be a monomeric glycoprotein, M(r)=42300+/-1000, (mean+/-S.D.) with an isoelectric point >9. The native enzyme exhibits a typical peroxidase ultraviolet-visible spectrum with a Soret peak at 404 nm (epsilon=137,000+/-3000 M(-1) cm(-1)) and a Reinheitzahl (Rz) value (A(404nm)/A(280nm)) of 3.8+/-0.2. The ultraviolet-visible absorption spectra of compounds I, II and III were typical of class III plant peroxidases but unlike horseradish peroxidase isoenzyme C, compound I was unstable. Resonance Raman and UV-Vis spectra of the ferric form show that between pH 5.0 and 7.0 the protein is mainly 6 coordinate high spin with a water molecule as the sixth ligand. The substrate-specificity of AKPC is characteristic of class III (guaiacol-type) peroxidases with chlorogenic and caffeic acids, that are abundant in artichoke flowers, as particularly good substrates at pH 4.5. Ferric AKPC reacts with hydrogen peroxide to yield compound I with a second-order rate constant (k(+1)) of 7.4 x 10(5) M(-1) s(-1) which is significantly slower than that reported for most other class III peroxidases. The reaction of ferric and ferrous AKPC with nitric oxide showed a potential use of this enzyme for quantitative spectrophotometric determination of NO and as a component of novel NO sensitive electrodes.

  19. [Isolation and purification of Mn-peroxidase from Azospirillum brasilense Sp245].

    PubMed

    Kupriashina, M A; Selivanov, N Iu; Nikitina, V E

    2012-01-01

    Homogenous Mn-peroxidase of a 26-fold purity grade was isolated from a culture of Azospirillum brasilense Sp245 cultivated on a medium containing 0.1 mM pyrocatechol. The molecular weight of the enzyme is 43 kD as revealed by electrophoresis in SDS-PAAG. It was shown that the use of pyrocatechol and 2,2'-azino-bis(3-ethylbenzotiazoline-6-sulfonate) at concentrations of 0.1 and I mM as inductors increased the Mn-peroxidase activity by a factor of 3.

  20. Crystal and solution structural studies of mouse phospholipid hydroperoxide glutathione peroxidase 4

    PubMed Central

    Janowski, Robert; Scanu, Sandra; Niessing, Dierk; Madl, Tobias

    2016-01-01

    The mammalian glutathione peroxidase (GPx) family is a key component of the cellular antioxidative defence system. Within this family, GPx4 has unique features as it accepts a large class of hydroperoxy lipid substrates and has a plethora of biological functions, including sperm maturation, regulation of apoptosis and cerebral embryogenesis. In this paper, the structure of the cytoplasmic isoform of mouse phospholipid hydroperoxide glutathione peroxidase (O70325-2 GPx4) with selenocysteine 46 mutated to cysteine is reported solved at 1.8 Å resolution using X-ray crystallography. Furthermore, solution data of an isotope-labelled GPx protein are presented. PMID:27710939

  1. Effect of linking allyl and aromatic chains to histidine 170 in horseradish peroxidase.

    PubMed

    Urrutigoïty, M; Baboulène, M; Lattes, A; Souppe, J; Seris, J L

    1991-08-30

    Histidine residues in horseradish peroxidase (HRP) were modified chemically with diethyl pyrocarbonate, 4,omega-dibromoacetophenone or diallylpyrocarbonate. Histidines were chosen as His-170, the fifth ligand of the heme iron atom, forms part of the active site of this enzyme. Good yields of hemoprotein were obtained in all cases. Analysis by HPLC of peptides obtained after tryptic digestion showed that His-170 of HRP was in fact modified. The specific activity remained satisfactory after chemical modification of the histidine residues, and so the active site of HRP can thus be altered without a dramatic loss of hemoprotein or peroxidase activity. This may open routes to the preparation of novel biocatalysts.

  2. Understanding the formation of CuS concave superstructures with peroxidase-like activity

    NASA Astrophysics Data System (ADS)

    He, Weiwei; Jia, Huimin; Li, Xiaoxiao; Lei, Yan; Li, Jing; Zhao, Hongxiao; Mi, Liwei; Zhang, Lizhi; Zheng, Zhi

    2012-05-01

    Copper sulfide (CuS) concave polyhedral superstructures (CPSs) have been successfully prepared in an ethanolic solution by a simple solvothermal reaction without the use of surfactants or templates. Two typical well defined, high symmetry CuS concave polyhedrons, forming a concave truncated cuboctahedron and icosahedron were prepared. The effect of the reaction time, temperature and different Cu ion and sulfur sources on the formation of CuS CPSs were investigated and a possible formation mechanism was proposed and discussed based on gas chromatography-mass spectrometry. More importantly, we found, for the first time, that the CuS CPSs exhibit intrinsic peroxidase-like activity, as they can quickly catalyze the oxidation of typical horseradish peroxidase (HRP) substrates, 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD), in the presence of hydrogen peroxide. In addition to the recent discoveries regarding peroxidase mimetics on Fe3O4 NPs and carbon nanostructures, our findings suggest a new kind of candidate for peroxidase mimics. This may open up a new application field of CuS micro-nano structures in biodetection, biocatalysis and environmental monitoring.Copper sulfide (CuS) concave polyhedral superstructures (CPSs) have been successfully prepared in an ethanolic solution by a simple solvothermal reaction without the use of surfactants or templates. Two typical well defined, high symmetry CuS concave polyhedrons, forming a concave truncated cuboctahedron and icosahedron were prepared. The effect of the reaction time, temperature and different Cu ion and sulfur sources on the formation of CuS CPSs were investigated and a possible formation mechanism was proposed and discussed based on gas chromatography-mass spectrometry. More importantly, we found, for the first time, that the CuS CPSs exhibit intrinsic peroxidase-like activity, as they can quickly catalyze the oxidation of typical horseradish peroxidase (HRP) substrates, 3

  3. Screening of laccase, manganese peroxidase, and versatile peroxidase activities of the genus Pleurotus in media with some raw plant materials as carbon sources.

    PubMed

    Stajic, Mirjana; Persky, Limor; Cohen, Emanuel; Hadar, Yitzhak; Brceski, Ilija; Wasser, Solomon P; Nevo, Eviatar

    2004-06-01

    Species of the genus Pleurotus are among the most efficient natural species in lignin degradation belonging to the subclass of ligninolytic organisms that produce laccase (Lac), Mn-dependent peroxidase (MnP), versatile peroxidase (VP), and the H2O2-generating enzyme aryl-alcohol oxidase, but not lignin peroxidases. Production of Lac and oxidation of 2,6-dimethoxyphenol (DMP) in the presence and absence of Mn2+ were detected both in submerged fermentation (SF) of dry ground mandarine peels and in solid-state fermentation (SSF) of grapevine sawdust in all investigated Pleurotus species and strains. Evidence of cultivation methods having a distinct influence on the level of enzyme activities has been demonstrated. Most of the species and strains had higher Lac activity under SSF conditions than under SF conditions. DMP oxidation in the presence and absence of Mn2+ was detected in all investigated species and strains, but was lower under SF conditions than under SSF conditions for most of them. However, relative activities of DMP oxidation in the absence of Mn2+, as percentages of activity against DMP in the presence of Mn2+, were higher under conditions of SF than in SSF cultures in most of the investigated species and strains. The obtained results showed that strains of different origins have different efficiently ligninolytic systems and that conditions of SSF are more favorable for ligninolytic activity than those in SF owing to their similarity to natural conditions on wood substrates. PMID:15304767

  4. Heme precursor injection is effective for Arthromyces ramosus peroxidase fusion protein production by a silkworm expression system.

    PubMed

    Hayashi, Kounosuke; Lee, Jae Man; Tomozoe, Yusuke; Kusakabe, Takahiro; Kamiya, Noriho

    2015-10-01

    Recombinant peroxidase from Arthromyces ramosus, fused with domains of antibody-binding proteins, was successfully obtained by a silkworm larvae expression system. The catalytic activity of the fusion peroxidase was increased 6-fold with the injection of 5-aminolevulinic acid into silkworm larvae as a heme precursor.

  5. Identification of an orthologous clade of peroxidases that respond to feeding by greenbugs (Schizaphis graminum) in c4 grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of specific peroxidases that respond to aphid herbivory is limited in C4 grasses, but could provide targets for improving defence against these pests. A sorghum (Sorghum bicolor (L.) Moench) peroxidase (SbPrx-1; Sobic.002G416700) has been previously linked to biotic stress responses, and w...

  6. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    PubMed

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase.

  7. Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase.

    PubMed

    Yang, Jinjin; Zheng, Lin; Wang, Yu; Li, Wei; Zhang, Jinli; Gu, Junjie; Fu, Yan

    2016-03-15

    DNA-based peroxidase mimetics are facilely constructed through Cu(II)-coordination with different oligonucleotides involving G20, C20, A20 and T20, respectively, with high peroxidase mimicking activity as well as high stability against proteins. Peroxidase-like activities of DNA-Cu(II) complexes are greatly associated with the sequence composition of DNA templates, which decrease in the following order: G20>C20>A20>T20. G20-Cu(II) complex ([Cu(2+)]/[base]=0.05) possesses the Km value of 0.257 mM toward 3,3',5,5'-tetramethylbenzidine and 102.3mM toward hydrogen peroxide at 25 °C. G20-Cu(II) complexes are employed to develop a colorimetric turn-on assay of alkaline phosphatase with high sensitivity and selectivity, on the basis of pyrophosphate-induced inhibition of their intrinsic peroxidase-like activities. The limit of detection is achieved as 0.84 U/L with the linear response region of 20-200 U/L. Such colorimetric assay system is probably applicable for the quantitative determination of ALP in biological fluids.

  8. In planta anthocyanin degradation by a vacuolar class III peroxidase in Brunfelsia calycina flowers.

    PubMed

    Zipor, Gadi; Duarte, Patrícia; Carqueijeiro, Inês; Shahar, Liat; Ovadia, Rinat; Teper-Bamnolker, Paula; Eshel, Dani; Levin, Yishai; Doron-Faigenboim, Adi; Sottomayor, Mariana; Oren-Shamir, Michal

    2015-01-01

    In contrast to detailed knowledge regarding the biosynthesis of anthocyanins, the largest group of plant pigments, little is known about their in planta degradation. It has been suggested that anthocyanin degradation is enzymatically controlled and induced when beneficial to the plant. Here we investigated the enzymatic process in Brunfelsia calycina flowers, as they changed color from purple to white. We characterized the enzymatic process by which B. calycina protein extracts degrade anthocyanins. A candidate peroxidase was partially purified and characterized and its intracellular localization was determined. The transcript sequence of this peroxidase was fully identified. A basic peroxidase, BcPrx01, is responsible for the in planta degradation of anthocyanins in B. calycina flowers. BcPrx01 has the ability to degrade complex anthocyanins, it co-localizes with these pigments in the vacuoles of petals, and both the mRNA and protein levels of BcPrx01 are greatly induced parallel to the degradation of anthocyanins. Both isoelectric focusing (IEF) gel analysis and 3D structure prediction indicated that BcPrx01 is cationic. Identification of BcPrx01 is a significant breakthrough both in the understanding of anthocyanin catabolism in plants and in the field of peroxidases, where such a consistent relationship between expression levels, in planta subcellular localization and activity has seldom been demonstrated.

  9. Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome p450 properties.

    PubMed

    Hofrichter, Martin; Kellner, Harald; Pecyna, Marek J; Ullrich, René

    2015-01-01

    Eleven years ago, a secreted heme-thiolate peroxidase with promiscuity for oxygen transfer reactions was discovered in the basidiomycetous fungus, Agrocybe aegerita. The enzyme turned out to be a functional mono-peroxygenase that transferred an oxygen atom from hydrogen peroxide to diverse organic substrates (aromatics, heterocycles, linear and cyclic alkanes/alkenes, fatty acids, etc.). Later similar enzymes were found in other mushroom genera such as Coprinellus and Marasmius. Approximately one thousand putative peroxygenase sequences that form two large clusters can be found in genetic databases and fungal genomes, indicating the widespread occurrence of such enzymes in the whole fungal kingdom including all phyla of true fungi (Eumycota) and certain fungus-like heterokonts (Oomycota). This new enzyme type was classified as unspecific peroxygenase (UPO, EC 1.11.2.1) and placed in a separate peroxidase subclass. Furthermore, UPOs and related heme-thiolate peroxidases such as well-studied chloroperoxidase (CPO) represent a separate superfamily of heme proteins on the phylogenetic level. The reactions catalyzed by UPOs include hydroxylation, epoxidation, O- and N-dealkylation, aromatization, sulfoxidation, N-oxygenation, dechlorination and halide oxidation. In many cases, the product patterns of UPOs resemble those of human cytochrome P450 (P450) monooxygenases and, in fact, combine the catalytic cycle of heme peroxidases with the "peroxide shunt" of P450s. Here, an overview on UPOs is provided with focus on their molecular and catalytic properties.

  10. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  11. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview.

    PubMed

    Garg, Bhaskar; Bisht, Tanuja; Ling, Yong-Chien

    2015-01-01

    "Artificial enzymes", a term coined by Breslow for enzyme mimics is an exciting and promising branch of biomimetic chemistry aiming to imitate the general and essential principles of natural enzymes using a variety of alternative materials including heterogeneous catalysts. Peroxidase enzymes represent a large family of oxidoreductases that typically catalyze biological reactions with high substrate affinity and specificity under relatively mild conditions and thus offer a wide range of practical applications in many areas of science. The increasing understanding of general principles as well as intrinsic drawbacks such as low operational stability, high cost, difficulty in purification and storage, and sensitivity of catalytic activity towards atmospheric conditions of peroxidases has triggered a dynamic field in nanotechnology, biochemical, and material science that aims at joining the better of three worlds by combining the concept adapted from nature with the processability of catalytically active graphene-based nanomaterials (G-NMs) as excellent peroxidase mimetic catalysts. This comprehensive review discusses an up-to-date synthesis, kinetics, mechanisms, and biosensing applications of a variety of G-NMs that have been explored as promising catalysts to mimic natural peroxidases.

  12. Oxidation and nitration of mononitrophenols by a DyP-type peroxidase.

    PubMed

    Büttner, Enrico; Ullrich, René; Strittmatter, Eric; Piontek, Klaus; Plattner, Dietmar A; Hofrichter, Martin; Liers, Christiane

    2015-05-15

    Substantial conversion of nitrophenols, typical high-redox potential phenolic substrates, by heme peroxidases has only been reported for lignin peroxidase (LiP) so far. But also a dye-decolorizing peroxidase of Auricularia auricula-judae (AauDyP) was found to be capable of acting on (i) ortho-nitrophenol (oNP), (ii) meta-nitrophenol (mNP) and (iii) para-nitrophenol (pNP). The pH dependency for pNP oxidation showed an optimum at pH 4.5, which is typical for phenol conversion by DyPs and other heme peroxidases. In the case of oNP and pNP conversion, dinitrophenols (2,4-DNP and 2,6-DNP) were identified as products and for pNP additionally p-benzoquinone. Moreover, indications were found for the formation of random polymerization products originating from initially formed phenoxy radical intermediates. Nitration was examined using (15)N-labeled pNP and Na(14)NO2 as an additional source of nitro-groups. Products were identified by HPLC-MS, and mass-to-charge ratios were evaluated to clarify the origin of nitro-groups. The additional nitrogen in DNPs formed during enzymatic conversion was found to originate both from (15)N-pNP and (14)NO2Na. Based on these results, a hypothetical reaction scheme and a catalytically responsible confine of the enzyme's active site are postulated.

  13. Peroxidase activity as an indicator of exposure of wetland seedlings to metals

    SciTech Connect

    Sutton, H.D.; Klaine, S.J.

    1995-12-31

    The enzyme peroxidase has been found to increase quantitatively in several aquatic plant species in response to increasing exposure to various contaminants. In this study, a number of wetland species are tested for their usefulness as bioindicators of metal exposure using the peroxidase assay. Woody species tested include Liquidambar styraciflua (sweetgum), Fraxinus pennsylvanica (green ash), and Cephalanthus occidentalis (buttonbush), while herbaceous species include Saururus cernuus (lizard`s tail) and Sparganium americanum (bur-reed). The assay has been optimized for all of these species. In all cases the pH optimum has been found to be either 5.5 or 6.0 and the substrate optimum is 2.8 or 1.4mM hydrogen peroxide. There is considerable variation in baseline peroxidase activity among the species when tested under their optimal assay conditions. These species are being dosed with copper, nickel, and cadmium in order to determine whether a response elicited. Seedlings will be dosed using both petri dish culture conditions and test tubes filled with vermiculite and sand combinations. The peroxidase response will be compared to germination and root elongation endpoints. Lettuce (Lactuca saliva) and radish (Raphanus sativus) are being tested alongside the wetland species as reference organisms for which background data is available. The wetland species tested in the present study have rarely if ever been used in toxicological studies.

  14. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  15. Abolishing activity against ascorbate in a cytosolic ascorbate peroxidase from switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is being developed as a bioenergy species. Recently an early version of its genome has been released permitting a route to the cloning and analysis of key proteins. Ascorbate peroxidases (APx) are an important part of the antioxidant defense system of plant cells a...

  16. Biochemical characterization of the suberization-associated anionic peroxidase of potato.

    PubMed

    Bernards, M A; Fleming, W D; Llewellyn, D B; Priefer, R; Yang, X; Sabatino, A; Plourde, G L

    1999-09-01

    The anionic peroxidase associated with the suberization response in potato (Solanum tuberosum L.) tubers during wound healing has been purified and partially characterized at the biochemical level. It is a 45-kD, class III (plant secretory) peroxidase that is localized to suberizing tissues and shows a preference for feruloyl (o-methoxyphenol)-substituted substrates (order of substrate preference: feruloyl > caffeoyl > p-coumaryl approximately syringyl) such as those that accumulate in tubers during wound healing. There was little influence on oxidation by side chain derivatization, although hydroxycinnamates were preferred over the corresponding hydroxycinnamyl alcohols. The substrate specificity pattern is consistent with the natural substrate incorporation into potato wound suberin. In contrast, the cationic peroxidase(s) induced in response to wound healing in potato tubers is present in both suberizing and nonsuberizing tissues and does not discriminate between hydroxycinnamates and hydroxycinnamyl alcohols. A synthetic polymer prepared using E-[8-(13)C]ferulic acid, H(2)O(2), and the purified anionic enzyme contained a significant amount of cross-linking through C-8, albeit with retention of unsaturation. PMID:10482668

  17. Direct interaction between terbium ion and peroxidase in horseradish at different pH values.

    PubMed

    Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-02-01

    Rare earth elements (REEs) entering plant cells can directly interact with peroxidase in plants, which is the structural basis for the decrease in the activity of peroxidase. Different cellular compartments have different pH values. However, little information is available regarding the direct interaction between REEs and peroxidase in plants at different pH values. Here, we investigated the charge distribution on the surface of horseradish peroxidase (HRP) molecule as well as the interaction of terbium ion (Tb(3+), one type of REEs) and HRP at different pH values. Using the molecular dynamics simulation, we found that when the pH value was from 4.0 to 8.0, a large amount of negative charges were intensively distributed on the surface of HRP molecule, and thus, we speculated that Tb(3+) with positive charges might directly interact with HRP at pH 4.0-8.0. Subsequently, using ultraviolet-visible spectroscopy, we demonstrated that Tb(3+) could directly interact with HRP in the simulated physiological solution at pH 7.0 and did not interact with HRP in other solutions at pH 5.0, pH 6.0 and pH 8.0. In conclusion, we showed that the direct interaction between Tb(3+) and HRP molecule depended on the pH value of cellular compartments.

  18. Pd-Ir Core-Shell Nanocubes: A Type of Highly Efficient and Versatile Peroxidase Mimic.

    PubMed

    Xia, Xiaohu; Zhang, Jingtuo; Lu, Ning; Kim, Moon J; Ghale, Kushal; Xu, Ye; McKenzie, Erin; Liu, Jiabin; Ye, Haihang

    2015-10-27

    Peroxidase mimics with dimensions on the nanoscale have received great interest as emerging artificial enzymes for biomedicine and environmental protection. While a variety of peroxidase mimics have been actively developed recently, limited progress has been made toward improving their catalytic efficiency. In this study, we report a type of highly efficient peroxidase mimic that was engineered by depositing Ir atoms as ultrathin skins (a few atomic layers) on Pd nanocubes (i.e., Pd-Ir cubes). The Pd-Ir cubes exhibited significantly enhanced efficiency, with catalytic constants more than 20- and 400-fold higher than those of the initial Pd cubes and horseradish peroxidase (HRP), respectively. As a proof-of-concept demonstration, the Pd-Ir cubes were applied to the colorimetric enzyme-linked immunosorbent assay (ELISA) of human prostate surface antigen (PSA) with a detection limit of 0.67 pg/mL, which is ∼110-fold lower than that of the conventional HRP-based ELISA using the same set of antibodies and the same procedure.

  19. Tissue Printing to Visualize Polyphenol Oxidase and Peroxidase in Vegetables, Fruits, and Mushrooms

    ERIC Educational Resources Information Center

    Melberg, Amanda R.; Flurkey, William H.; Inlow, Jennifer K.

    2009-01-01

    A simple tissue-printing procedure to determine the tissue location of the endogenous enzymes polyphenol oxidase and peroxidase in a variety of vegetables, fruits, and mushrooms is described. In tissue printing, cell contents from the surface of a cut section of the tissue are transferred to an adsorptive surface, commonly a nitrocellulose…

  20. Peroxidase mediated conjugation of corn fibeer gum and bovine serum albumin to improve emulsifying properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...

  1. Structure of a mitochondrial cytochrome c conformer competent for peroxidase activity

    PubMed Central

    McClelland, Levi J.; Mou, Tung-Chung; Jeakins-Cooley, Margaret E.; Sprang, Stephen R.; Bowler, Bruce E.

    2014-01-01

    At the onset of apoptosis, the peroxidation of cardiolipin at the inner mitochondrial membrane by cytochrome c requires an open coordination site on the heme. We report a 1.45-Å resolution structure of yeast iso-1-cytochrome c with the Met80 heme ligand swung out of the heme crevice and replaced by a water molecule. This conformational change requires modest adjustments to the main chain of the heme crevice loop and is facilitated by a trimethyllysine 72-to-alanine mutation. This mutation also enhances the peroxidase activity of iso-1-cytochrome c. The structure shows a buried water channel capable of facilitating peroxide access to the active site and of moving protons produced during peroxidase activity to the protein surface. Alternate positions of the side chain of Arg38 appear to mediate opening and closing of the buried water channel. In addition, two buried water molecules can adopt alternate positions that change the network of hydrogen bonds in the buried water channel. Taken together, these observations suggest that low and high proton conductivity states may mediate peroxidase function. Comparison of yeast and mammalian cytochrome c sequences, in the context of the steric factors that permit opening of the heme crevice, suggests that higher organisms have evolved to inhibit peroxidase activity, providing a more stringent barrier to the onset of apoptosis. PMID:24760830

  2. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  3. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  4. Reducing odorous VOC emissions from swine manure using soybean peroxidase and peroxides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air emissions from swine production facilities can cause odor nuisance issues. Peroxidase enzymes have been used to treat phenolic compounds in industrial wastewaters, but little is known about their efficacy for treating swine manure. The objective of the research was to determine the optimum app...

  5. Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system

    PubMed

    Hofrichter; Ziegenhagen; Sorge; Ullrich; Bublitz; Fritsche

    1999-07-01

    Ligninolytic basidiomycetes (wood and leaf-litter-decaying fungi) have the ability to degrade low-rank coal (lignite). Extracellular manganese peroxidase is the crucial enzyme in the depolymerization process of both coal-derived humic substances and native coal. The depolymerization of coal by Mn peroxidase is catalysed via chelated Mn(III) acting as a diffusible mediator with a high redox potential and can be enhanced in the presence of additional mediating agents (e.g. glutathione). The depolymerization process results in the formation of a complex mixture of lower-molecular-mass fulvic-acid-like compounds. Experiments using a synthetic 14C-labeled humic acid demonstrated that the Mn peroxidase-catalyzed depolymerization of humic substances was accompanied by a substantial release of carbon dioxide (17%-50% of the initially added radio-activity was released as 14CO2). Mn peroxidase was found to be a highly stable enzyme that remained active for several weeks under reaction conditions in a liquid reaction mixture and even persisted in sterile and native soil from an opencast mining area for some days.

  6. Induction of peroxidases and superoxide dismutases in transformed embryogenic calli of alfalfa (Medicago sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activities of peroxidase (POD) and superoxide dismutase (SOD) enzymes were analyzed in non-regenerative transformed embryogenic lines of alfalfa (Medicago sativa L.) carrying wound-inducible oryzacystatin I (OC-I), wound-inducible oryzacystatin I antisense (OC-Ias) or hygromycin phosphotransferase (...

  7. Partial purification and characterization of a copper-induced anionic peroxidase of sunflower roots.

    PubMed

    Jouili, Hager; Bouazizi, Houda; Rossignol, Michel; Borderies, Gisèle; Jamet, Elisabeth; El Ferjani, Ezzeddine

    2008-01-01

    Treatment of 14-day-old sunflower seedlings with a toxic amount of copper (50 microM of CuSO(4)) during 5days caused significant increase in peroxidase activity in roots. Qualitative analysis of soluble proteins using native anionic PAGE followed by detection of peroxidase activity with guaïacol as electron donor in the presence of H(2)O(2) revealed five stimulated peroxidases, named A1, A2, A3, A4, and A5. These peroxidases had differential behavior during the period of treatment. A1, A2, A3 and A4 were stimulated in the first period of stress, but rapidly suppressed at 72h. A5 showed a progressive stimulation which was even increased at 120h. A1 was partially purified, identified using liquid chromatography coupled to mass spectrometry (LC-MS/MS), and characterized. Effects of pH and temperature on its activity were determined with guaïacol as electron donor. Optima were obtained at pH 8 and at 40 degrees C. Analysis of substrate specificity showed that A1 was active on coniferyl alcohol but not on IAA. Enzymatic activity was inhibited by a high concentration of H(2)O(2).

  8. Purification and partial characterization of three turnip (Brassicanapus L. var. esculenta D.C.) peroxidases.

    PubMed

    Duarte-Vázquez, M A; García-Almendárez, B; Regalado, C; Whitaker, J R

    2000-05-01

    Three turnip peroxidases (fractions C1, C2, and C3) were partially purified and characterized, to permit study of their feasibility for use in clinical and enzyme immunoassays. These fractions represented 20% of the initial activity, and fractions C1 and C2 were purified to homogeneity. The optimum pH was between 5.0 and 5.5, while optimum temperature ranged from 40 to 55 degrees C. The ABTS K(m) values for the two acidic fractions (C2 and C3) were 0.70 and 0.42 mM, respectively; about 5 times lower than that reported for the acidic commercial horseradish peroxidase (HRP). Fraction C3 had 4 times higher K(m) value than commercial cationic HRP. The molecular weights determined by SDS-PAGE ranged from 39.2 to 42.5 kDa. Activation energies for inactivation were 113 (C1), 130 (C2), and 172 kJ/mol (C3) which are higher or comparable to other peroxidase isoenzymes reported. Fractions C1 and C3 represent an alternative source of peroxidase because of their higher purification yield and specific activity, when compared to fraction C2. PMID:10820061

  9. Oxidase-peroxidase enzymes of Datura innoxia. Oxidation of formylphenylacetic acid ethyl ester.

    PubMed Central

    Kalyanaraman, V S; Mahadevan, S; Kumar, S A

    1975-01-01

    An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed. PMID:997

  10. Enzymatic removal of phenols from aqueous solutions by Coprinus cinereus peroxidase and hydrogen peroxide.

    PubMed

    Kauffmann, C; Petersen, B R; Bjerrum, M J

    1999-07-30

    The fungal enzyme Coprinus cinereus peroxidase (CIP) can be used for the removal of toxic phenols from water. After treating aqueous solutions of phenols with CIP and H2O2 the phenols polymerized and precipitated. The decrease in phenol concentration was investigated for 10 different phenols. At neutral pH, the investigated phenols were in general removed with high efficiency.

  11. Peroxidase as the Major Protein Constituent in Areca Nut and Identification of Its Natural Substrates

    PubMed Central

    Liu, Yu-Ching; Chen, Chao-Jung; Lee, Miau-Rong; Li, Mi; Hsieh, Wen-Tsong; Chung, Jing-Gung; Ho, Heng-Chien

    2013-01-01

    Numerous reports illustrate the diverse effects of chewing the areca nut, most of which are harmful and have been shown to be associated with oral cancer. Nearly all of the studies are focused on the extract and/or low molecular weight ingredients in the areca nut. The purpose of this report is to identify the major protein component in the areca nut. After ammonium sulfate fractionation, the concentrated areca nut extract is subjected to DEAE-cellulose chromatography. A colored protein is eluted at low NaCl concentration and the apparently homogeneous eluent represents the major protein component compared to the areca nut extract. The colored protein shares partial sequence identity with the royal palm tree peroxidase and its peroxidase activity is confirmed using an established assay. In the study, the natural substrates of areca nut peroxidase are identified as catechin, epicatechin, and procyanidin B1. The two former substrates are similarly oxidized to form a 576 Da product with concomitant removal of four hydrogen atoms. Interestingly, oxidation of procyanidin B1 occurs only in the presence of catechin or epicatechin and an additional product with an 864 Da molecular mass. In addition, procyanidin B1 is identified as a peroxidase substrate for the first time. PMID:24250715

  12. Correlation between Glutathione Peroxidase Activity and Anthropometrical Parameters in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Ordonez, F. J.; Rosety-Rodriguez, M.

    2007-01-01

    Since we have recently found that regular exercise increased erythrocyte antioxidant enzyme activities such as glutathione peroxidase (GPX) in adolescents with Down syndrome, these programs may be recommended. This study was designed to assess the role of anthropometrical parameters as easy, economic and non-invasive biomarkers of GPX. Thirty-one…

  13. Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA.

    PubMed

    Gao, Wenchao; Dong, Haifeng; Lei, Jianping; Ji, Hanxu; Ju, Huangxian

    2011-05-14

    A novel biosensing strategy for selective electrochemical detection of DNA down to the attomolar level with a linear range of 5 orders of magnitude was developed by the specific recognitions of target DNA and streptavidin to biotin labelled molecular beacon and signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes.

  14. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases.

    PubMed

    Saikia, R; Kumar, R; Arora, D K; Gogoi, D K; Azad, P

    2006-01-01

    Three isolates of Pseudomonas aeruginosa were used for seed treatment of rice; all showed plant growth promoting activity and induced systemic resistance in rice against Rhizoctonia solani G5 and increased seed yield. Production of salicylic acid (Sal) by P. aeruginosa both in vitro and in vivo was quantified with high performance liquid chromatography. All three isolates produced more Sal in King's B broth than in induced roots. Using a split root system, more Sal accumulated in root tissues of bacterized site than in distant roots on the opposite site of the root system after 1 d, but this difference decreased after 3 d. Sal concentration 0-200 g/L showed no inhibition of mycelial growth of R. solani in vitro, while at > or =300 g/L it inhibited it. P. aeruginosa-pretreated rice plants challenged inoculation with R. solani (as pathogen), an additional increase in the accumulation of peroxidase was observed. Three pathogenesis-related peroxidases in induced rice plants were detected; molar mass of these purified peroxidases was 28, 36 and 47 kDa. Purified peroxidase showed antifungal activity against phytopathogenic fungi R. solani, Pyricularia oryzae and Helminthosporium oryzae. PMID:17176755

  15. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions

    PubMed Central

    2012-01-01

    Background Synthetic dyes represent a broad and heterogeneous class of durable pollutants, that are released in large amounts by the textile industry. The ability of two immobilized metalloporphines (structurally emulating the ligninolytic peroxidases) to bleach six chosen dyes (alizarin red S, phenosafranine, xylenol orange, methylene blue, methyl green, and methyl orange) was compared to enzymatic catalysts. To achieve a green and sustainable process, very mild conditions were chosen. Results IPS/MnTSPP was the most promising biomimetic catalyst as it was able to effectively and quickly bleach all tested dyes. Biomimetic catalysis was fully characterized: maximum activity was centered at neutral pH, in the absence of any organic solvent, using hydrogen peroxide as the oxidant. The immobilized metalloporphine kept a large part of its activity during multi-cycle use; however, well-known redox mediators were not able to increase its catalytic activity. IPS/MnTSPP was also more promising for use in industrial applications than its enzymatic counterparts (lignin peroxidase, laccase, manganese peroxidase, and horseradish peroxidase). Conclusions On the whole, the conditions were very mild (standard pressure, room temperature and neutral pH, using no organic solvents, and the most environmental-friendly oxidant) and a significant bleaching and partial mineralization of the dyes was achieved in approximately 1 h. Therefore, the process was consistent with large-scale applications. The biomimetic catalyst also had more promising features than the enzymatic catalysts. PMID:23256784

  16. Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes.

    PubMed

    Ghodake, Gajanan S; Kalme, Satish D; Jadhav, Jyoti P; Govindwar, Sanjay P

    2009-01-01

    Lignin peroxidase was purified (72-fold) from Acinetobacter calcoaceticus NCIM 2890. The purified lignin peroxidase (55-65 kDa) showed dimeric nature. The maximum enzyme activity was observed at pH 1.0, between a broad temperature range of 50 and 70 degrees C, at H2O2 concentration (40 mM) and the substrate concentration (n-propanol, 100 mM). Purified lignin peroxidase was able to oxidize a variety of substrates including Mn2+, tryptophan, mimosine, L-Dopa, hydroquinone, xylidine, n-propanol, veratryl alcohol, and ten textile dyes of various groups indicating as a versatile peroxidase. Most of the dyes decolorized up to 90%. Tryptophan stabilizes the lignin peroxidase activity during decolorization of dyes.

  17. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study.

    PubMed

    Semba, K; Fibiger, H C

    1992-09-15

    Increasingly strong evidence suggests that cholinergic neurons in the mesopontine tegmentum play important roles in the control of wakefulness and sleep. To understand better how the activity of these neurons is regulated, the potential afferent connections of the laterodorsal (LDT) and pedunculopontine tegmental nuclei (PPT) were investigated in the rat. This was accomplished by using retrograde and anterograde axonal transport methods and NADPH-diaphorase histochemistry. Immunohistochemistry was also used to identify the transmitter content of some of the retrogradely identified afferents. Following injections of the retrograde tracer wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) into either the LDT or the PPT, labelled neurons were seen in a number of limbic forebrain structures. The medial prefrontal cortex and lateral habenula contained more retrogradely labelled neurons from the LDT, whereas in the bed nucleus of the stria terminalis and central nucleus of the amygdala, more cells were labelled from the PPT. Moderate numbers of neurons were seen in the magnocellular regions of the basal forebrain, and many labelled neurons were observed in the lateral hypothalamus, the zona incerta, and the midbrain central gray from both the LDT and the PPT. Accessory oculomotor nuclei in the midbrain as well as eye movement-related structures in the lower brainstem contained some neurons labelled from the LDT, and fewer neurons from the PPT. A few labelled neurons were seen in somatosensory and other sensory relay nuclei in the brainstem and the spinal cord. Retrograde labelling was seen in a number of extrapyramidal structures, including the globus pallidus, entopenduncular and subthalamic nuclei, and substantia nigra following PPT injections; with LDT injections, labelling was similar in density in the substantia nigra but virtually absent in the entopeduncular and subthalamic nuclei. Data with the fluorescent retrograde tracer fluorogold combined with

  18. Prefrontal connections of the parabelt auditory cortex in macaque monkeys.

    PubMed

    Hackett, T A; Stepniewska, I; Kaas, J H

    1999-01-30

    In the present study, we determined connections of three newly defined regions of auditory cortex with regions of the frontal lobe, and how two of these regions in the frontal lobe interconnect and connect to other portions of frontal cortex and the temporal lobe in macaque monkeys. We conceptualize auditory cortex as including a core of primary areas, a surrounding belt of auditory areas, a lateral parabelt of two divisions, and adjoining regions of temporal cortex with parabelt connections. Injections of several different fluorescent tracers and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were placed in caudal (CPB) and rostral (RPB) divisions of the parabelt, and in cortex of the superior temporal gyrus rostral to the parabelt with parabelt connections (STGr). Injections were also placed in two regions of the frontal lobe that were labeled by a parabelt injection in the same case. The results lead to several major conclusions. First, CPB injections label many neurons in dorsal prearcuate cortex in the region of the frontal eye field and neurons in dorsal prefrontal cortex of the principal sulcus, but few or no neurons in orbitofrontal cortex. Fine-grain label in these same regions as a result of a WGA-HRP injection suggests that the connections are reciprocal. Second, RPB injections label overlapping prearcuate and principal sulcus locations, as well as more rostral cortex of the principal sulcus, and several locations in orbitofrontal cortex. Third, STGr injections label locations in orbitofrontal cortex, some of which overlap those of RPB injections, but not prearcuate or principal sulcus locations. Fourth, injections in prearcuate and principal sulcus locations labeled by a CPB injection labeled neurons in CPB and RPB, with little involvement of the auditory belt and no involvement of the core. In addition, the results indicated that the two frontal lobe regions are densely interconnected. They also connect with largely separate

  19. Cyclometalated ruthenium(II) complexes as efficient redox mediators in peroxidase catalysis.

    PubMed

    Alpeeva, Inna S; Soukharev, Valentin S; Alexandrova, Larissa; Shilova, Nadezhda V; Bovin, Nicolai V; Csöregi, Elisabeth; Ryabov, Alexander D; Sakharov, Ivan Yu

    2003-07-01

    Cyclometalated ruthenium(II) complexes, [Ru(II)(C~N)(N~N)(2)]PF(6) [HC~N=2-phenylpyridine (Hphpy) or 2-(4'-tolyl)pyridine; N~N=2,2'-bipyridine, 1,10-phenanthroline, or 4,4'-dimethyl-2,2'-bipyridine], are rapidly oxidized by H(2)O(2) catalyzed by plant peroxidases to the corresponding Ru(III) species. The commercial isoenzyme C of horseradish peroxidase (HRP-C) and two recently purified peroxidases from sweet potato (SPP) and royal palm tree (RPTP) have been used. The most favorable conditions for the oxidation have been evaluated by varying the pH, buffer, and H(2)O(2) concentrations and the apparent second-order rate constants ( k(app)) have been measured. All the complexes studied are oxidized by HRP-C at similar rates and the rate constants k(app) are identical to those known for the best substrates of HRP-C (10(6)-10(7) M(-1) s(-1)). Both cationic (HRP-C) and anionic (SPP and RPTP) peroxidases show similar catalytic efficiency in the oxidation of the Ru(II) complexes. The mediating capacity of the complexes has been evaluated using the SPP-catalyzed co-oxidation of [Ru(II)(phpy)(bpy)(2)]PF(6) and catechol as a poor peroxidase substrate as an example. The rate of enzyme-catalyzed oxidation of catechol increases more than 10000-fold in the presence of the ruthenium complex. A simple routine for calculating the rate constant k(c) for the oxidation of catechol by the Ru(III) complex generated enzymatically from [Ru(II)(phpy)(bpy)(2)](+) is proposed. It is based on the accepted mechanism of peroxidase catalysis and involves spectrophotometric measurements of the limiting Ru(II) concentration at different concentrations of catechol. The calculated k(c) value of 0.75 M(-1) s(-1) shows that the cyclometalated Ru(II) complexes are efficient mediators in peroxidase catalysis. PMID:12774217

  20. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    PubMed

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  1. From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification.

    PubMed

    Novo-Uzal, Esther; Fernández-Pérez, Francisco; Herrero, Joaquín; Gutiérrez, Jorge; Gómez-Ros, Laura V; Bernal, María Ángeles; Díaz, José; Cuello, Juan; Pomar, Federico; Pedreño, María Ángeles

    2013-09-01

    Zinnia elegans constitutes one of the most useful model systems for studying xylem differentiation, which simultaneously involves secondary cell wall synthesis, cell wall lignification, and programmed cell death. Likewise, the in vitro culture system of Z. elegans has been the best characterized as the differentiation of mesophyll cells into tracheary elements allows study of the biochemistry and physiology of xylogenesis free from the complexity that heterogeneous plant tissues impose. Moreover, Z. elegans has emerged as an excellent plant model to study the involvement of peroxidases in cell wall lignification. This is due to the simplicity and duality of the lignification pattern shown by the stems and hypocotyls, and to the basic nature of the peroxidase isoenzyme. This protein is expressed not only in hypocotyls and stems but also in mesophyll cells transdifferentiating into tracheary elements. Therefore, not only does this peroxidase fulfil all the catalytic requirements to be involved in lignification overcoming all restrictions imposed by the polymerization step, but also its expression is inherent in lignification. In fact, its basic nature is not exceptional since basic peroxidases are differentially expressed during lignification in other model systems, showing unusual and unique biochemical properties such as oxidation of syringyl moieties. This review focuses on the experiments which led to a better understanding of the lignification process in Zinnia, starting with the basic knowledge about the lignin pattern in this plant, how lignification takes place, and how a sole basic peroxidase with unusual catalytic properties is involved and regulated by hormones, H2O2, and nitric oxide. PMID:23956408

  2. Oxidation of phenolic compounds by peroxidase in the presence of soluble polymers.

    PubMed

    Bratkovskaja, I; Vidziunaite, R; Kulys, J

    2004-09-01

    The kinetics of Coprinus cinereus peroxidase-catalyzed 1-naphthol, 2-naphthol, and 4-hydroxybiphenyl oxidation was investigated. The initial rates of the naphthols' and 4-hydroxybiphenyl oxidations were linearly dependent on enzyme concentration. The rates depended on substrate concentration and saturated at concentrations above 100 microM of hydrogen peroxide, 25-50 microM of naphthols, and 10 microM of 4-hydroxybiphenyl. At the peroxide concentration 100 microM calculated K(m) and the maximal rate (V(max)) were 74.7 microM and 0.53 microM/sec or 175 microM and 2.0 microM/sec for 1- or 2-naphthol, respectively, and 29.68 microM and 0.42 microM/sec for 4-hydroxybiphenyl. Kinetic measurements of exhaustive naphthol and 4-hydroxybiphenyl oxidation showed that peroxidase is inactivated during the oxidation of the substrates. Different factors and additives, water soluble polymers and albumins (PEG, PEI, PL, BSA, HSA), influenced the initial naphthols and 4-hydroxybiphenyl oxidation rates, peroxidase inactivation rates, and the degree of the substrate conversion. Addition of albumin increased turnover number of naphthols oxidation 1.5-4 times. Light scattering increase was observed when peroxidase-catalyzed oxidation reaction was investigated and suggested that insoluble particles were formed during the process. The addition of polymers, change of concentration and ionic strength of the solution as well as the number of other factors influenced the observed light scattering. The number of particles formed during peroxidase-catalyzed naphthols' and 4-hydroxybiphenyl oxidation and their distribution according to size in the interval 2.5-300 microm were detected by particle counting in solutions.

  3. Molecular characterization of the lignin-forming peroxidase: Role in growth, development and response to stress. Progress summary report, April 1, 1993--March 31, 1994

    SciTech Connect

    Lagrimini, L.M.

    1994-05-01

    Our group continues to focus on the characterization of the tobacco anionic peroxidase and its genes. Throughout this past year we have generated transgenic plants expressing {beta}-glucuronidase under control of the anionic peroxidase promoter, characterized effectors of peroxidase gene expression in transformed protoplasts, generated numerous transgenic plants which over- and under-express the anionic peroxidase in a tissue specific manner, characterized the role of the anionic peroxidase in the metabolism of auxin, introduced a marker (flag) into the anionic peroxidase primary protein sequence which will permit the identification of the recombinant protein in plant tissue, and described the enhancement of insect resistance as a result of over-expression of the anionic peroxidase. Although our research program has continued along the lines of the original proposal, we have redirected a significant effort to the role which this enzyme plays in the metabolism of auxin, and conversely, the role which auxin plays in regulating the expression of the anionic peroxidase gene.

  4. The molecular characterization of the lignin-forming peroxidase. Progress summary report, April 1, 1989--March 31, 1992

    SciTech Connect

    Lagrimini, L.M.

    1992-04-01

    This laboratory is committed to understanding the function of plant peroxidases via a multi-disciplinary approach. We have chosen the lignin-forming peroxidase from tobacco as the first isoenzyme to be subjected to this comprehensive approach. The goals which were set out upon the initiation of this project were as follows: (1) utilize a cDNA clone to the tobacco anionic peroxidase to generate transgenic plants which either over-produced this isoenzyme or specifically under-produced this isoenzyme via antisense RNA, (2) describe any phenotypic changes resulting from altered peroxidase expression, (3) perform morphological, physiological, and biochemical analysis of the above mentioned plants to help in determining the in planta function for this enzyme, and (4) clone and characterize the gene for the tobacco anionic peroxidase. A summary of progress thus far which includes both published and unpublished work will be presented in three sections: generation and characterization of transgenic plants, description of phenotypes, and biochemical and physiological analysis of peroxidase function, and cloning and characterization of the tobacco anionic peroxidase gene.

  5. Antioxidant Capacity of Poly(Ethylene Glycol) (PEG) as Protection Mechanism Against Hydrogen Peroxide Inactivation of Peroxidases.

    PubMed

    Juarez-Moreno, Karla; Ayala, Marcela; Vazquez-Duhalt, Rafael

    2015-11-01

    The ability of poly(ethylene glycol) (PEG) to protect enzymatic peroxidase activity was determined for horseradish peroxidase (HRP), versatile peroxidase (VP), commercial Coprinus peroxidase (BP), and chloroperoxidase (CPO). The operational stability measured as the total turnover number was determined for the four peroxidases. The presence of PEG significantly increased the operational stability of VP and HRP up to 123 and 195%, respectively, and dramatically increased the total turnover number of BP up to 597%. Chloroperoxidase was not protected by PEG, which may be due to the different oxidation mechanism, in which the oxidation is mediated by hypochlorous ion instead of free radicals as in the other peroxidases. The presence of PEG does not protect the enzyme when incubated only in the presence of H2O2 without reducing substrate. The catalytic constants (k cat) are insensitive to the presence of PEG, suggesting that the protection mechanism is not due to a competition between the PEG and the substrate as electron donors. On the other hand, PEG showed to have a significant antioxidant capacity. Thus, we conclude that the protection mechanism for peroxidases of PEG is based in its antioxidant capacity with which it is able scavenge or drain radicals that are harmful to the protein.

  6. Identification And Structural Characterization of Heme Binding in a Novel Dye-Decolorizing Peroxidase, TyrA

    SciTech Connect

    Zubieta, C.; Joseph, R.; Krishna, S.S.; McMullan, D.; Kapoor, M.; Axelrod, H.L.; Miller, M.D.; Abdubek, P.; Acosta, C.; Astakhova, T.; Carlton, D.; Chiu, H.J.; Clayton, T.; Deller, M.C.; Duan, L.; Elias, Y.; Elsliger, M.A.; Feuerhelm, J.; Grzechnik, S.K.; Hale, J.; Han, G.W.; /JCSG /SLAC, SSRL /Burnham Inst. Med. Res. /UC, San Diego /Novartis Res. Found. /Scripps Res. Inst.

    2007-10-31

    TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 Angstroms. TyrA is a dimer, with each monomer exhibiting a two-domain, {alpha}/{beta} ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases.

  7. The molecular characterization of the lignin-forming peroxidase. Progress summary report, April 1, 1992--March 31, 1995

    SciTech Connect

    Lagrimini, L.M.

    1995-06-01

    My research program focuses entirely on the study of the lignin-forming peroxidase of tobacco. Ever since our cloning and sequencing of the first plant peroxidase cDNA, we have pioneered in the introduction of the tools of molecular biology to the study of plant peroxidases. A significant part of our effort has been focused on the construction and analysis of transgenic plants which either over- or under-express the tobacco anionic peroxidase. This research has not only supported the role for this enzyme in lignification, but has opened the door to our understanding of additional metabolic functions including auxin metabolism and insect defense. As you will learn, this enzyme`s role in auxin catabolism has lead to numerous phenotypes in transgenic plants. More recently, our attention has been directed towards the analysis of peroxidase gene expression. From this work we have learned that the anionic peroxidase gene is expressed at high levels in the xylem-forming cells, epidermis, and trichomes. This expression pattern supports its role lignification and hose defenses. We have also learned that this gene is down-regulated by auxin which indicates a strong relationship between auxin and the anionic peroxidase. 12 figs.

  8. Cytoarchitecture and musculotopic organization of the facial motor nucleus in Cebus apella monkey

    PubMed Central

    Horta-Júnior, J A C; Tamega, O J; Cruz-Rizzolo, R J

    2004-01-01

    The architecture and musculotopic organization of the facial motor nucleus in the Cebus apella monkey (a New World primate) were investigated using histological techniques and a multiple labelling strategy, in which horseradish peroxidase-conjugated neuroanatomical tracers (CTB-HRP and WGA-HRP) and fluorescent tracers were injected into individual facial muscles. The facial motor nucleus was formed by multipolar motoneurons and had an ovoid shape, with its rostrocaudal axis measuring on average 1875 μm. We divided the nucleus into four different subnuclei: medial, intermediate, dorsal and lateral. Retrograde labelling patterns revealed that individual muscles were innervated by longitudinal functional columns of motoneurons. The columns of the orbicularis oculi, zygomaticus, orbicularis oris, auricularis superior, buccinator and platysma muscles were located in the dorsal, intermediate, lateral, medial, lateral and intermediate subnuclei, respectively. However, the motoneuron columns of the levator labii superioris alaeque nasi muscle and frontalis muscle could not be associated with a specific subnucleus. The present results confirm previous studies regarding the musculotopic organization of the facial motor nucleus. However, we observed some particularities in terms of the relative size of each column in C. apella, which might be related to the functional and behavioral importance of each muscle in the particular context of this primate. PMID:15032907

  9. Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI.

    PubMed

    Yeo, C H; Hardiman, M J; Glickstein, M

    1985-01-01

    We report the connections of cerebellar cortical lobule HVI in the rabbit. We have studied the anterograde and retrograde transport of wheatgerm-agglutinated horseradish peroxidase (WGA-HRP) following its injection into HVI to reveal efferent and afferent connections. All of the cases showed strong anterograde transport to the anterior interpositus nucleus (AIP) - indicating that this is the major efferent target of HVI. Retrogradely labelled cells were found in the inferior olivary, spinal trigeminal, lateral reticular, inferior vestibular and pontine nuclei. Within the olive, the medial part of the rostral dorsal accessory olive (DAO) and the adjacent medial part of the principal olive (PO) were consistently labelled in all cases. This area is known to receive somatosensory information from the face and neck. There was no projection to the hemispheral part of lobule VI from visual parts of the olive within the dorsal cap and medial parts of the medial accessory olive. Likely sources of visual and auditory information to HVI are the dorsolateral basilar pontine nuclei and nucleus reticularis tegmenti pontis, which were densely labelled in all cases. These anatomical findings are consistent with the suggestion that, during NMR conditioning, information related to the periorbital shock unconditional stimulus (US) may be provided by climbing fibres to HVI and light and white noise conditional stimulus (CS) information may be supplied by pontine mossy fibres. PMID:4043270

  10. Cloning and sequencing of cDNAs encoding a pathogen-induced putative peroxidase of wheat (Triticum aestivum L.).

    PubMed

    Rebmann, G; Hertig, C; Bull, J; Mauch, F; Dudler, R

    1991-02-01

    We report here the complete amino acid sequence of a pathogen-induced putative peroxidase from wheat (Triticum aestivum L.) as deduced from cDNA clones representing mRNA from leaves infected with the powdery mildew fungus Erysiphe graminis. The protein consists of 312 amino acids, of which the first 22 form a putative signal sequence, and has a calculated pI of 5.7. Sequence comparison revealed that the putative wheat peroxidase is most similar to the turnip (Brassica rapa) peroxidase, with which it shares 57% identical and 13% conserved amino acids.

  11. Role of. pi. -cation radicals in the enzymatic cycles of peroxidases, catalases, and nitrite and sulfite reductases

    SciTech Connect

    Hanson, L K; Chang, C K; Davis, M S; Fajer, J

    1980-01-01

    Charge iterative extended Hueckel calculations, and magnetic and optical results on porphyrins, chlorins, and isobacteriochlorins (1) suggest that the catalytic cycles of the enzymes horseradish peroxidase, catalase, Neurospora crassa catalase, and nitrite and sulfite reductases proceed via ..pi..-cation radicals of their prosthetic groups; (2) offer distinguishing features for the optical and magnetic spectra of these radicals, pertinent to their detection as enzymatic intermediates; (3) reconcile the seemingly contradictory optical and NMR data on Compounds I of horseradish peroxidase; and (4) predict that the axial ligation of the heme differs for horseradish peroxidase and catalase.

  12. Cloning and sequencing of cDNAs encoding a pathogen-induced putative peroxidase of wheat (Triticum aestivum L.).

    PubMed

    Rebmann, G; Hertig, C; Bull, J; Mauch, F; Dudler, R

    1991-02-01

    We report here the complete amino acid sequence of a pathogen-induced putative peroxidase from wheat (Triticum aestivum L.) as deduced from cDNA clones representing mRNA from leaves infected with the powdery mildew fungus Erysiphe graminis. The protein consists of 312 amino acids, of which the first 22 form a putative signal sequence, and has a calculated pI of 5.7. Sequence comparison revealed that the putative wheat peroxidase is most similar to the turnip (Brassica rapa) peroxidase, with which it shares 57% identical and 13% conserved amino acids. PMID:1893103

  13. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon.

    PubMed

    Maseko, Tebo; Howell, Kate; Dunshea, Frank R; Ng, Ken

    2014-03-01

    The effect of dietary supplementation with Se-enriched Agaricus bisporus on cytosolic gluthathione peroxidase-1 (GPx-1), gastrointestinal specific glutathione peroxidase-2 (GPx-2), thioredoxin reductase-1 (TrxR-1) and selenoprotein P (SeP) mRNA expression and GPx-1 enzyme activity in rat colon was examined. Rats were fed for 5weeks with control diet (0.15μg Se/g feed) or Se-enriched diet fortified with selenised mushroom (1μg Se/g feed). The mRNA expression levels were found to be significantly (P<0.01) up-regulated by 1.65-fold and 2.3-fold for GPx-1 and GPx-2, respectively, but were not significantly different for TrxR-1 and SeP between the 2 diet treatments. The up-regulation of GPx-1 mRNA expression was consistent with GPX-1 activity level, which was significantly (P<0.05) increased by 1.77-fold in rats fed with the Se-enriched diet compared to the control diet. The results showed that selenised A. bisporus can positively increase GPx-1 and GPx-2 gene expression and GPx-1 enzyme activity in rat colon.

  14. Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches.

    PubMed

    Ozyigit, Ibrahim I; Filiz, Ertugrul; Vatansever, Recep; Kurtoglu, Kuaybe Y; Koc, Ibrahim; Öztürk, Münir X; Anjum, Naser A

    2016-01-01

    Among major reactive oxygen species (ROS), hydrogen peroxide (H2O2) exhibits dual roles in plant metabolism. Low levels of H2O2 modulate many biological/physiological processes in plants; whereas, its high level can cause damage to cell structures, having severe consequences. Thus, steady-state level of cellular H2O2 must be tightly regulated. Glutathione peroxidases (GPX) and ascorbate peroxidase (APX) are two major ROS-scavenging enzymes which catalyze the reduction of H2O2 in order to prevent potential H2O2-derived cellular damage. Employing bioinformatics approaches, this study presents a comparative evaluation of both GPX and APX in 18 different plant species, and provides valuable insights into the nature and complex regulation of these enzymes. Herein, (a) potential GPX and APX genes/proteins from 18 different plant species were identified, (b) their exon/intron organization were analyzed, (c) detailed information about their physicochemical properties were provided, (d) conserved motif signatures of GPX and APX were identified, (e) their phylogenetic trees and 3D models were constructed, (f) protein-protein interaction networks were generated, and finally (g) GPX and APX gene expression profiles were analyzed. Study outcomes enlightened GPX and APX as major H2O2-scavenging enzymes at their structural and functional levels, which could be used in future studies in the current direction. PMID:27047498

  15. Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches

    PubMed Central

    Ozyigit, Ibrahim I.; Filiz, Ertugrul; Vatansever, Recep; Kurtoglu, Kuaybe Y.; Koc, Ibrahim; Öztürk, Münir X.; Anjum, Naser A.

    2016-01-01

    Among major reactive oxygen species (ROS), hydrogen peroxide (H2O2) exhibits dual roles in plant metabolism. Low levels of H2O2 modulate many biological/physiological processes in plants; whereas, its high level can cause damage to cell structures, having severe consequences. Thus, steady-state level of cellular H2O2 must be tightly regulated. Glutathione peroxidases (GPX) and ascorbate peroxidase (APX) are two major ROS-scavenging enzymes which catalyze the reduction of H2O2 in order to prevent potential H2O2-derived cellular damage. Employing bioinformatics approaches, this study presents a comparative evaluation of both GPX and APX in 18 different plant species, and provides valuable insights into the nature and complex regulation of these enzymes. Herein, (a) potential GPX and APX genes/proteins from 18 different plant species were identified, (b) their exon/intron organization were analyzed, (c) detailed information about their physicochemical properties were provided, (d) conserved motif signatures of GPX and APX were identified, (e) their phylogenetic trees and 3D models were constructed, (f) protein-protein interaction networks were generated, and finally (g) GPX and APX gene expression profiles were analyzed. Study outcomes enlightened GPX and APX as major H2O2-scavenging enzymes at their structural and functional levels, which could be used in future studies in the current direction. PMID:27047498

  16. Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis.

    PubMed

    Pütz, Simone; Gelius-Dietrich, Gabriel; Piotrowski, Markus; Henze, Katrin

    2005-08-01

    The parasitic flagellate Trichomonas vaginalis contains hydrogenosomes, anaerobic organelles related to mitochondria, that generate ATP from the fermentative conversion of pyruvate to acetate, CO2 and molecular hydrogen. Although an essentially anaerobic organism, Trichomonas encounters low oxygen concentrations in its natural habitat and has to protect itself, and especially the oxygen-sensitve enzymes of hydrogenosomal metabolism, from oxidative damage. We have identified two novel proteins in the hydrogenosomal proteome with strong similarity to two putative prokaryotic peroxidases, rubrerythrin and periplasmic thiol peroxidase. Both proteins have previously been found in many prokaryotes but were not known from eukaryotes, suggesting a significant prokaryotic component in the oxygen-detoxification system of trichomonad hydrogenosomes. PMID:15904985

  17. Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein.

    PubMed

    Flemmig, J; Remmler, J; Zschaler, J; Arnhold, J

    2015-06-01

    The formation of hypochlorous and hypobromous acids by heme peroxidases is a key property of certain immune cells. These products are not only involved in defense against pathogenic microorganisms and in regulation of inflammatory processes, but contribute also to tissue damage in certain pathologies. After a short introduction about experimental approaches for the assessment of the halogenating activity in vitro and in cell suspensions, we are focusing on novel applications of fluorescent dye systems to detect the formation of hypochlorous acid (HOCl) in leukocytes. Special attention is directed to properties and applications of the non-fluorescent dye aminophenyl fluorescein that is converted by HOCl, HOBr, and other strong oxidants to fluorescein. This dye allows the detection of the halogenating activity in samples containing free myeloperoxidase and eosinophil peroxidase as well as in intact granulocytes using fluorescence spectroscopy and flow cytometry, respectively.

  18. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    SciTech Connect

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  19. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo.

    PubMed

    Kotchey, Gregg P; Zhao, Yong; Kagan, Valerian E; Star, Alexander

    2013-12-01

    As a result of their unique electronic, optical, and mechanical properties, carbon nanotubes (CNTs) have been implemented in therapeutic and imaging applications. In an idealized situation, CNTs would be disposed of after they transport their theranostic payloads. Biodegradation represents an attractive pathway for the elimination of CNT carriers post-delivery and may be integral in catalyzing the release of the cargo from the delivery vehicle. Accordingly, recent research efforts have focused on peroxidase-driven biodegradation of CNTs. In this review, we not only summarize recent efforts to biodegrade CNTs in the test tube, in vitro, and in vivo, but also attempt to explore the fundamental parameters underlying degradation. Encouraged by the in vivo results obtained to date, we envision a future, where carbon-based nano-containers, which are specifically designed to target organs/cells, deliver their cargo, and biodegrade via peroxidase-driven mechanism, will represent an attractive therapeutic delivery option in nanomedicine. PMID:23856412

  20. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie

    2015-02-01

    Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the

  1. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection.

    PubMed

    Lin, Tianran; Zhong, Liangshuang; Wang, Jing; Guo, Liangqia; Wu, Hanyin; Guo, Qingquan; Fu, FengFu; Chen, Guonan

    2014-09-15

    g-C3N4 was found to possess intrinsic peroxidase-like activity, and could catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction. Using g-C3N4 peroxidase-like catalytic activity and glucose oxidase (GOx), a colorimetric method for glucose detection in serum samples has been developed. The linear range for glucose was from 5 to 100 μM (R(2)=0.9987) and the limit of detection was as low as 1.0 μM. The proposed method was applied to detect glucose in serum samples by the naked eyes. PMID:24704762

  2. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo.

    PubMed

    Kotchey, Gregg P; Zhao, Yong; Kagan, Valerian E; Star, Alexander

    2013-12-01

    As a result of their unique electronic, optical, and mechanical properties, carbon nanotubes (CNTs) have been implemented in therapeutic and imaging applications. In an idealized situation, CNTs would be disposed of after they transport their theranostic payloads. Biodegradation represents an attractive pathway for the elimination of CNT carriers post-delivery and may be integral in catalyzing the release of the cargo from the delivery vehicle. Accordingly, recent research efforts have focused on peroxidase-driven biodegradation of CNTs. In this review, we not only summarize recent efforts to biodegrade CNTs in the test tube, in vitro, and in vivo, but also attempt to explore the fundamental parameters underlying degradation. Encouraged by the in vivo results obtained to date, we envision a future, where carbon-based nano-containers, which are specifically designed to target organs/cells, deliver their cargo, and biodegrade via peroxidase-driven mechanism, will represent an attractive therapeutic delivery option in nanomedicine.

  3. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  4. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    NASA Astrophysics Data System (ADS)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-04-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  5. Cardiolipin activates cytochrome c peroxidase activity since it facilitates H(2)O(2) access to heme.

    PubMed

    Vladimirov, Yu A; Proskurnina, E V; Izmailov, D Yu; Novikov, A A; Brusnichkin, A V; Osipov, A N; Kagan, V E

    2006-09-01

    In this work, the effect of liposomes consisting of tetraoleyl cardiolipin and dioleyl phosphatidylcholine (1 : 1, mol/mol) on the rate of three more reactions of Cyt c heme with H2O2 was studied: (i) Cyt c (Fe2+) oxidation to Cyt c (Fe3+), (ii) Fe...S(Met80) bond breaking, and (iii) heme porphyrin ring decomposition. It was revealed that the rates of all those reactions increased greatly in the presence of liposomes containing cardiolipin and not of those consisting of only phosphatidylcholine, and approximately to the same extent as peroxidase activity. These data suggest that cardiolipin activates specifically Cyt c peroxidase activity not only because it promotes Fe...S(Met80) bond breaking but also facilitates H2O2 penetration to the reaction center. PMID:17009954

  6. Emerging pollutants and plants--Metabolic activation of diclofenac by peroxidases.

    PubMed

    Huber, Christian; Preis, Martina; Harvey, Patricia J; Grosse, Sylvia; Letzel, Thomas; Schröder, Peter

    2016-03-01

    Human pharmaceuticals and their residues are constantly detected in our waterbodies, due to poor elimination rates, even in the most advanced waste water treatment plants. Their impact on the environment and human health still remains unclear. When phytoremediation is applied to aid water treatment, plants may transform and degrade xenobiotic contaminants through phase I and phase II metabolism to more water soluble and less toxic intermediates. In this context, peroxidases play a major role in activating compounds during phase I via oxidation. In the present work, the ability of a plant peroxidase to oxidize the human painkiller diclofenac was confirmed using stopped flow spectroscopy in combination with LC-MS analysis. Analysis of an orange colored product revealed the structure of the highly reactive Diclofenac-2,5-Iminoquinone, which may be the precursor of several biological conjugates and breakdown products in planta.

  7. Detection of DNA with Catalytic Beacons Based on Peroxidase-oxidase Oscillating Reaction.

    PubMed

    Zeng, Jinhong; Liu, Qiong; Xu, Huibi; Wang, Hongmei; Wang, Jun; Cai, Ruxiu

    2005-01-01

    This paper aims at investigating a new method for the detection of DNA with catalytic beacons based on peroxidase-oxidase (PO) oscillation and analytic pulse perturbation technique. Two DNAzymes were constructed by the binding of specific DNA sequence with hemin or by the hybridization of target DNA with the catalytic beacon. Both DNAzymes possessed peroxidase-like activity and perturb the PO oscillator reaction when they were added into the oscillation system. The period and amplitude of oscillation increased significantly by both DNAzymes, which implied the decrease in the average rate of consumption of oxygen in solution, i.e., the decrease of the average rate of NADH oxidation. The results provide a new sensitive method for DNA detection and molecular recognition.

  8. Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase.

    PubMed

    Watanabe, Leandra; Nascimento, Alessandro S; Zamorano, Laura S; Shnyrov, Valery L; Polikarpov, Igor

    2007-09-01

    Royal palm tree peroxidase (RPTP), which was isolated from Roystonea regia leaves, has an unusually high stability that makes it a promising candidate for diverse applications in industry and analytical chemistry [Caramyshev et al. (2005), Biomacromolecules, 6, 1360-1366]. Here, the purification and crystallization of this plant peroxidase and its X-ray diffraction data collection are described. RPTP crystals were obtained by the hanging-drop vapour-diffusion method and diffraction data were collected to a resolution of 2.8 A. The crystals belong to the trigonal space group P3(1)21, with unit-cell parameters a = b = 116.83, c = 92.24 A, and contain one protein molecule per asymmetric unit. The V(M) value and solvent content are 4.07 A3 Da(-1) and 69.8%, respectively. PMID:17768354

  9. Dihydrotetramethylrosamine: a long wavelength, fluorogenic peroxidase substrate evaluated in vitro and in a model phagocyte.

    PubMed

    Whitaker, J E; Moore, P L; Haugland, R P; Haugland, R P

    1991-03-15

    Dihydrotetramethylrosamine, a fluorogenic substrate for peroxidase, and its fluorescent oxidation product, tetramethylrosamine chloride, were evaluated. The substrate is colorless and nonfluorescent while the oxidized dye absorbs at 550 nm and emits at 574 nm in both methanol and water. In vitro assays demonstrated that the substrate was oxidized to the fluorophore by horseradish peroxidase in the presence of hydrogen peroxide. In vivo uptake and oxidation of the substrate by Amoeba proteus was characterized by the initial appearance of fluorescent phagocytic vacuoles with subsequent localization in vesicular organelles the size and shape of protozoan mitochondria. Similar staining patterns occurred in cells incubated with substrate, oxidized rosamine or rhodamine 123, a known mitochondrial stain. PMID:2018489

  10. Emerging pollutants and plants--Metabolic activation of diclofenac by peroxidases.

    PubMed

    Huber, Christian; Preis, Martina; Harvey, Patricia J; Grosse, Sylvia; Letzel, Thomas; Schröder, Peter

    2016-03-01

    Human pharmaceuticals and their residues are constantly detected in our waterbodies, due to poor elimination rates, even in the most advanced waste water treatment plants. Their impact on the environment and human health still remains unclear. When phytoremediation is applied to aid water treatment, plants may transform and degrade xenobiotic contaminants through phase I and phase II metabolism to more water soluble and less toxic intermediates. In this context, peroxidases play a major role in activating compounds during phase I via oxidation. In the present work, the ability of a plant peroxidase to oxidize the human painkiller diclofenac was confirmed using stopped flow spectroscopy in combination with LC-MS analysis. Analysis of an orange colored product revealed the structure of the highly reactive Diclofenac-2,5-Iminoquinone, which may be the precursor of several biological conjugates and breakdown products in planta. PMID:26741549

  11. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings. PMID:26460152

  12. Characterisation of Fasciola hepatica cytochrome c peroxidase as an enzyme with potential antioxidant activity in vitro.

    PubMed

    Campos, E G; Hermes-Lima, M; Smith, J M; Prichard, R K

    1999-05-01

    Cytochrome c peroxidase oxidises hydrogen peroxide using cytochrome c as the electron donor. This enzyme is found in yeast and bacteria and has been also described in the trematodes Fasciola hepatica and Schistosoma mansoni. Using partially purified cytochrome c peroxidase samples from Fasciola hepatica we evaluated its role as an antioxidant enzyme via the investigation of its ability to protect against oxidative damage to deoxyribose in vitro. A system containing FeIII-EDTA plus ascorbate was used to generate reactive oxygen species superoxide radical, H2O2 as well as the hydroxyl radical. Fasciola hepatica cytochrome c peroxidase effectively protected deoxyribose against oxidative damage in the presence of its substrate cytochrome c. This protection was proportional to the amount of enzyme added and occurred only in the presence of cytochrome c. Due to the low specific activity of the final partially purified sample the effects of ascorbate and calcium chloride on cytochrome c peroxidase were investigated. The activity of the partially purified enzyme was found to increase between 10 and 37% upon reduction with ascorbate. However, incubation of the partially purified enzyme with 1 mM calcium chloride did not have any effect on enzyme activity. Our results showed that Fasciola hepatica CcP can protect deoxyribose from oxidative damage in vitro by blocking the formation of the highly toxic hydroxyl radical (.OH). We suggest that the capacity of CcP to inhibit .OH-formation, by efficiently removing H2O2 from the in vitro oxidative system, may extend the biological role of CcP in response to oxidative stress in Fasciola hepatica. PMID:10404259

  13. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis.

    PubMed

    Herrero, Joaquín; Fernández-Pérez, Francisco; Yebra, Tatiana; Novo-Uzal, Esther; Pomar, Federico; Pedreño, Ma Ángeles; Cuello, Juan; Guéra, Alfredo; Esteban-Carrasco, Alberto; Zapata, José Miguel

    2013-06-01

    Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl, and sinapyl) alcohols in a reaction mediated by peroxidases. The most important of these is the cationic peroxidase from Zinnia elegans (ZePrx), an enzyme considered to be responsible for the last step of lignification in this plant. Bibliographical evidence indicates that the arabidopsis peroxidase 72 (AtPrx72), which is homolog to ZePrx, could have an important role in lignification. For this reason, we performed a bioinformatic, histochemical, photosynthetic, and phenotypical and lignin composition analysis of an arabidopsis knock-out mutant of AtPrx72 with the aim of characterizing the effects that occurred due to the absence of expression of this peroxidase from the aspects of plant physiology such as vascular development, lignification, and photosynthesis. In silico analyses indicated a high homology between AtPrx72 and ZePrx, cell wall localization and probably optimal levels of translation of AtPrx72. The histochemical study revealed a low content in syringyl units and a decrease in the amount of lignin in the atprx72 mutant plants compared to WT. The atprx72 mutant plants grew more slowly than WT plants, with both smaller rosette and principal stem, and with fewer branches and siliques than the WT plants. Lastly, chlorophyll a fluorescence revealed a significant decrease in ΦPSII and q L in atprx72 mutant plants that could be related to changes in carbon partitioning and/or utilization of redox equivalents in arabidopsis metabolism. The results suggest an important role of AtPrx72 in lignin biosynthesis. In addition, knock-out plants were able to respond and adapt to an insufficiency of lignification.

  14. Dynamic disorder in horseradish peroxidase observed with total internal reflection fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hassler, Kai; Rigler, Per; Blom, Hans; Rigler, Rudolf; Widengren, Jerker; Lasser, Theo

    2007-04-01

    This paper discusses the application of objective-type total internal reflection fluorescence correlation spectroscopy (TIR-FCS) to the study of the kinetics of immobilized horseradish peroxidase on a single molecule level. Objective-type TIR-FCS combines the advantages of FCS with TIRF microscopy in a way that allows for simultaneous ultra-sensitive spectroscopic measurements using a single-point detector and convenient localization of single molecules on a surface by means of parallel imaging.

  15. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.

    PubMed

    Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme

    2015-09-01

    Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation.

  16. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases

    PubMed Central

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R.

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  17. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles.

    PubMed

    Wang, Chunshuai; Liu, Chang; Luo, Jibao; Tian, Yaping; Zhou, Nandi

    2016-09-14

    An enzyme-free, ultrasensitive electrochemical detection of kanamycin residue was achieved based on mimetic peroxidase activity of gold nanoparticles (AuNPs) and target-induced replacement of the aptamer. AuNPs which were synthesized using tyrosine as a reducing and capping agent, exhibited mimetic peroxidase activity. In the presence of kanamycin-specific aptamer, however, the single-stranded DNA (ssDNA) adsorbed on the surface of AuNPs via the interaction between the bases of ssDNA and AuNPs, and therefore blocked the catalytic site of AuNPs, and inhibited their peroxidase activity. While in the presence of target kanamycin, it bound with the adsorbed aptamer on AuNPs with high affinity, exposed the surface of AuNPs and recovered the peroxidase activity. Then AuNPs catalyzed the reaction between H2O2 and reduced thionine to produce oxidized thionine. The latter exhibited a distinct reduction peak on gold electrode in differential pulse voltammetry (DPV), and could be utilized to quantify the concentration of kanamycin. Under the optimized conditions, the proposed electrochemical assay showed an extremely high sensitivity towards kanamycin, with a linear relationship between the peak current and the concentration of kanamycin in the range of 0.1-60 nM, and a detection limit of 0.06 nM. Moreover, the established approach was successfully applied in the detection of kanamycin in honey samples. Therefore, the proposed electrochemical assay has great potential in the fields of food quality control and environmental monitoring. PMID:27566341

  18. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

    PubMed

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  19. Chemical evolution of peroxidase--amino acid pentacyanoferrate (II) complexes as model.

    PubMed

    Kamaluddin; Nath, M; Deopujari, S W

    1988-01-01

    Complexes of the type [Fe(II)(CN)5(L)]n- (where n = 3, or 4; L = glycine, histidine, imidazole, and triglycine) are proposed as evolutionary model of peroxidases. Detailed kinetic investigation for disproportionation of hydrogen peroxide catalysed by [Fe(II)(CN)5(L)]n- complexes at 40 degrees C and pH 9.18 are discussed. Decomposition of hydrogen peroxide catalysed by above complexes conforms to Michaelis-Menten type kinetics.

  20. Evaluation of seven cosubstrates in the quantification of horseradish peroxidase enzyme by square wave voltammetry.

    PubMed

    Kergaravat, Silvina V; Pividori, Maria Isabel; Hernandez, Silvia R

    2012-01-15

    The electrochemical detection for horseradish peroxidase-cosubstrate-H(2)O(2) systems was optimized. o-Phenilendiamine, phenol, hydroquinone, pyrocatechol, p-chlorophenol, p-aminophenol and 3,3'-5,5'-tetramethylbenzidine were evaluated as cosubstrates of horseradish peroxidase (HRP) enzyme. Therefore, the reaction time, the addition sequence of the substrates, the cosubstrate:H(2)O(2) ratio and the electrochemical techniques were elected by one-factor optimization assays while the buffer pH, the enzymatic activity and cosubstrate and H(2)O(2) concentrations for each system were selected simultaneously by response surface methodology. Then, the calibration curves for seven horseradish peroxidase-cosubstrate-H(2)O(2) systems were built and the analytic parameters were analyzed. o-Phenilendiamine was selected as the best cosubstrate for the HRP enzyme. For this system the reaction time of 60s, the phosphate buffer pH 6.0, and the concentrations of 2.5×10(-4)molL(-1) o-phenilendiamine and of 1.25×10(-4)molL(-1) H(2)O(2) were chosen as the optimal conditions. In these conditions, the calibration curve of horseradish peroxidase by square wave voltammetry showed a linearity range from 9.5×10(-11) to 1.9×10(-8)molL(-1) and the limit of detection of 3.8×10(-11)molL(-1) with RSD% of 0.03% (n=3). PMID:22265528

  1. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

    PubMed

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  2. Improving the Oxidative Stability of a High Redox Potential Fungal Peroxidase by Rational Design

    PubMed Central

    Sáez-Jiménez, Verónica; Acebes, Sandra; Guallar, Victor; Martínez, Angel T.; Ruiz-Dueñas, Francisco J.

    2015-01-01

    Ligninolytic peroxidases are enzymes of biotechnological interest due to their ability to oxidize high redox potential aromatic compounds, including the recalcitrant lignin polymer. However, different obstacles prevent their use in industrial and environmental applications, including low stability towards their natural oxidizing-substrate H2O2. In this work, versatile peroxidase was taken as a model ligninolytic peroxidase, its oxidative inactivation by H2O2 was studied and different strategies were evaluated with the aim of improving H2O2 stability. Oxidation of the methionine residues was produced during enzyme inactivation by H2O2 excess. Substitution of these residues, located near the heme cofactor and the catalytic tryptophan, rendered a variant with a 7.8-fold decreased oxidative inactivation rate. A second strategy consisted in mutating two residues (Thr45 and Ile103) near the catalytic distal histidine with the aim of modifying the reactivity of the enzyme with H2O2. The T45A/I103T variant showed a 2.9-fold slower reaction rate with H2O2 and 2.8-fold enhanced oxidative stability. Finally, both strategies were combined in the T45A/I103T/M152F/M262F/M265L variant, whose stability in the presence of H2O2 was improved 11.7-fold. This variant showed an increased half-life, over 30 min compared with 3.4 min of the native enzyme, under an excess of 2000 equivalents of H2O2. Interestingly, the stability improvement achieved was related with slower formation, subsequent stabilization and slower bleaching of the enzyme Compound III, a peroxidase intermediate that is not part of the catalytic cycle and leads to the inactivation of the enzyme. PMID:25923713

  3. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings.

  4. Evaluation of seven cosubstrates in the quantification of horseradish peroxidase enzyme by square wave voltammetry.

    PubMed

    Kergaravat, Silvina V; Pividori, Maria Isabel; Hernandez, Silvia R

    2012-01-15

    The electrochemical detection for horseradish peroxidase-cosubstrate-H(2)O(2) systems was optimized. o-Phenilendiamine, phenol, hydroquinone, pyrocatechol, p-chlorophenol, p-aminophenol and 3,3'-5,5'-tetramethylbenzidine were evaluated as cosubstrates of horseradish peroxidase (HRP) enzyme. Therefore, the reaction time, the addition sequence of the substrates, the cosubstrate:H(2)O(2) ratio and the electrochemical techniques were elected by one-factor optimization assays while the buffer pH, the enzymatic activity and cosubstrate and H(2)O(2) concentrations for each system were selected simultaneously by response surface methodology. Then, the calibration curves for seven horseradish peroxidase-cosubstrate-H(2)O(2) systems were built and the analytic parameters were analyzed. o-Phenilendiamine was selected as the best cosubstrate for the HRP enzyme. For this system the reaction time of 60s, the phosphate buffer pH 6.0, and the concentrations of 2.5×10(-4)molL(-1) o-phenilendiamine and of 1.25×10(-4)molL(-1) H(2)O(2) were chosen as the optimal conditions. In these conditions, the calibration curve of horseradish peroxidase by square wave voltammetry showed a linearity range from 9.5×10(-11) to 1.9×10(-8)molL(-1) and the limit of detection of 3.8×10(-11)molL(-1) with RSD% of 0.03% (n=3).

  5. Turnover capacity of Coprinus cinereus peroxidase for phenol and monosubstituted phenols

    SciTech Connect

    Aitken, M.D.; Heck, P.E.

    1998-05-01

    Coprinus cinereus peroxidase (CIP) and other peroxidases are susceptible to mechanism-based inactivation during the oxidation of phenolic substrates. The turnover capacity of CIP was quantified for phenol and 11 monosubstituted phenols under conditions in which enzyme inactivation by mechanisms involving hydrogen peroxide alone were minimized. Turnover capacities varied by nearly 2 orders of magnitude, depending on the substituent. On a mass basis, the enzyme consumption corresponding to the lowest turnover capacities is considerable and may influence the economic feasibility of proposed industrial applications of peroxidases. Within a range of substituent electronegativity values, molar turnover capacities correlated well (r{sup 2} = 0.89) with substituent effects quantified by radical {sigma} values and semiquantitatively with homolytic O-H bond dissociation energies of the phenolic substrates, suggesting that phenoxyl radical intermediates are probably involved in the suicide inactivation of CIP. The correlation range in each case did not include phenols with highly electron-withdrawing (nitro and cyano) substituents because they are not oxidized by CIP, nor phenols with highly electron-donating (hydroxy and amino) substituents because they led to virtually complete inactivation of the enzyme with minimal substrate removal.

  6. Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase

    SciTech Connect

    Watanabe, Leandra; Nascimento, Alessandro S.; Zamorano, Laura S.; Shnyrov, Valery L.; Polikarpov, Igor

    2007-09-01

    The purification, crystallization, X-ray diffraction data acquisition and molecular-replacement results of royal palm tree (R. regia) peroxidase are described. Royal palm tree peroxidase (RPTP), which was isolated from Roystonea regia leaves, has an unusually high stability that makes it a promising candidate for diverse applications in industry and analytical chemistry [Caramyshev et al. (2005 ▶), Biomacromolecules, 6, 1360–1366]. Here, the purification and crystallization of this plant peroxidase and its X-ray diffraction data collection are described. RPTP crystals were obtained by the hanging-drop vapour-diffusion method and diffraction data were collected to a resolution of 2.8 Å. The crystals belong to the trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 116.83, c = 92.24 Å, and contain one protein molecule per asymmetric unit. The V{sub M} value and solvent content are 4.07 Å{sup 3} Da{sup −1} and 69.8%, respectively.

  7. Purification, crystallization and preliminary X-ray analysis of glutathione peroxidase Gpx3 from Saccharomyces cerevisiae

    SciTech Connect

    Yang, Zhu; Zhou, Cong-Zhao

    2006-06-01

    The glutathione peroxidase Gpx3 from the yeast S. cerevisiae has been overexpressed, purified, crystallized and diffracted to 2.6 Å resolution. Gpx3 is a monomer in solution which is different from its counterparts in mammals. The glutathione peroxidase Gpx3 from the yeast Saccharomyces cerevisiae has been overexpressed, purified and crystallized. Both gel-filtration and dynamic light-scattering (DLS) results indicate that Gpx3 is a monomer in solution at a concentration of about 2 mg ml{sup −1}, whereas glutathione peroxidases are normally tetrameric or dimeric. X-ray diffraction data from a single crystal of Gpx3 have been collected to 2.6 Å resolution. The crystals are triclinic and belong to space group P1, with unit-cell parameters a = 38.187, b = 43.372, c = 56.870 Å, α = 71.405, β = 73.376, γ = 89.633°. There are two Gpx3 monomers in a crystallographic asymmetric unit. Preliminary analyses show that the yeast Gpx3 is quite different from those of mammals.

  8. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.

    PubMed

    Khan, Mudassar Nawaz; Sakata, Katsumi; Hiraga, Susumu; Komatsu, Setsuko

    2014-12-01

    Soybean is an important legume crop that exhibits markedly reduced growth and yields under flooding conditions. To unravel the mechanisms involved in recovery after flooding in soybean root, gel-free proteomic analysis was performed. Morphological analysis revealed that growth suppression was more severe with increased flooding duration. Out of a total of 1645 and 1707 identified proteins, 73 and 21 proteins were changed significantly during the recovery stage following 2 and 4 days flooding, respectively. Based on the proteomic, clustering, and in silico protein-protein interaction analyses, six key enzymes were analyzed at the mRNA level. Lipoxygenase 1, which was increased at the protein level during the recovery period, was steadily down-regulated at the mRNA level. The peroxidase superfamily protein continuously increased in abundance during the course of recovery and was up-regulated at the mRNA level. HAD acid phosphatase was decreased at the protein level and down-regulated at the transcript level, while isoflavone reductase and an unknown protein were increased at both the protein and mRNA levels. Consistent with these findings, the enzymatic activity of peroxidase was decreased under flooding stress but increased significantly during the recovery sage. These results suggest that peroxidases might play key roles in post-flooding recovery in soybean roots through the scavenging of toxic radicals.

  9. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).

    PubMed

    Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto

    2007-08-25

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.

  10. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.

    PubMed

    Lončar, Nikola; Fraaije, Marco W

    2015-03-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.

  11. Biobleaching of Industrial Important Dyes with Peroxidase Partially Purified from Garlic

    PubMed Central

    Osuji, Akudo Chigozirim; Eze, Sabinus Oscar O.; Osayi, Emmanuel Emeka; Chilaka, Ferdinand Chiemeka

    2014-01-01

    An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and Vmax for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5–5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range. PMID:25401128

  12. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    NASA Astrophysics Data System (ADS)

    Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana

    2014-08-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.

  13. Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast

    SciTech Connect

    Lee, Si-Young; Song, Ji-Yoon; Kwon, Eun-Soo; Roe, Jung-Hye

    2008-02-29

    The genome sequence of Schizosaccharomyces pombe reveals only one gene for a putative glutathione peroxidase (gpx1{sup +}). The Gpx1 protein has a peroxidase activity but preferred thioredoxin to glutathione as an electron donor when examined in vitro and in vivo, and therefore is a thioredoxin peroxidase. Besides H{sub 2}O{sub 2}, it can reduce alkyl and phospholipid hydroperoxides. Expression of the gpx1 gene was elevated at the stationary phase, and we found that it supported long-term survival of S. pombe. The mutant also exhibited some defect in the activity of aconitase, an oxidation-labile Fe-S enzyme in mitochondria. Activity of sulfite reductase, a labile Fe-S enzyme in the cytosol, was also dramatically lowered in the mutant in the stationary phase. The Gpx1 protein, without any obvious targeting sequence, was localized in mitochondria as well as in the cytosol. Therefore, Gpx1 must serve to ensure optimal mitochondrial function and cytosolic environment, especially in the stationary phase.

  14. Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds.

    PubMed

    Scialabba, A; Bellani, L M; Dell'Aquila, A

    2002-01-01

    Peroxidase activity was assayed in crude extracts of integument, cotyledons and embryo axis of radish seeds, deteriorated under accelerated ageing conditions. Over five days of ageing, in which germination decreased from 100 to 52%, the enzyme activity in integument was higher than that in other seed parts, increasing in the first days of ageing and then decreasing sharply in extremely aged seeds. Polyacrylamide gel electrophoresis analysis showed four peroxidase isoenzymes with MM of 98, 52.5, 32.8 and 29.5 kDa in the embryo axis of unaged seeds, and only the 32.8 and 29.5 kDa MM isoforms in the integument and cotyledons. In these parts of the seed, only the 29.5 kDa MM isoenzyme increased in activity in early days of ageing and decreased there-after. In the embryo axis, the 29.5 kDa MM isoenzyme activity increased slowly in the first day of ageing, while the 98 and 52.5 kDa MM isoenzyme activities disappeared. A cytochemical localization of peroxidase activity in the various tissues showed that main differences between unaged and extremely aged seeds occurred in the embryo axis.

  15. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes.

    PubMed

    Kumar, Sanjeev; Barillas-Mury, Carolina

    2005-07-01

    Previous analysis of the temporal-spatial relationship between ookinete migration and the cellular localization of genes mediating midgut immune defense responses suggested that, in order to survive, parasites must complete invasion before toxic chemicals ("a bomb") are generated by the invaded cell. Recent studies indicate that ookinete invasion induces tyrosine nitration as a two-step reaction, in which NOS induction is followed by a localized increase in peroxidase activity. Peroxidases utilize nitrite and hydrogen peroxide as substrates, and detonate the time bomb by generating reactive nitrogen intermediates, such as nitrogen dioxide, which mediate nitration. There is evidence that peroxidases also mediate antimicrobial responses to bacteria, fungi and parasites in a broad range of biological systems including humans and plants. Defense reactions that generate toxic chemicals are also potentially harmful to the host mounting the response and often results in apoptosis. The two-step nitration pathway is probably an ancient response, as it has also been described in vertebrate leukocytes and probably evolved as a mechanism to circumscribe the toxic products generated during defense responses involving protein nitration. PMID:15894189

  16. Identification and Functional Characterization of Leishmania donovani Secretory Peroxidase: Delineating Its Role in NRAMP1 Regulation

    PubMed Central

    Singh, Rakesh K.

    2013-01-01

    Leishmania silently evades host immune system and establish in the hostile environment of host macrophage phagolysosomes. For differentiation, growth and division parasite acquires divalent cations especially iron from the host nutritive pool. Natural resistance associated with macrophage protein1 (NRAMP1), a cation transporter that effluxes out divalent cations specifically iron from phagosomal milieu to the cytosol, to create ions deprived status for pathogenic microorganisms. The mechanisms of NRAMP1 regulation are largely unknown in leishmanial infections. In the present study, we identified a secretory Leishmania donovani peroxidase (Prx) that showed peroxidoxin like peroxidase activity and significantly reduced H2O2, O2.− and NO levels in LPS activated macrophages. Further, we also observed down regulated Nramp1 expression and concomitantly declined labile iron pool in activated macrophages treated with identified peroxidase. Prx also decreased levels of TNF-α, IFN-γ and IL-12 in LPS activated macrophages. These observations indicate a bifunctional protective role of secretory Prx; first it reduces redox activation of macrophages, and secondly it allows iron access to Leishmania by down regulating NRAMP1 expression. PMID:23326430

  17. A thermostable humic acid peroxidase from Streptomyces sp. strain AH4: purification and biochemical characterization.

    PubMed

    Fodil, Djamila; Jaouadi, Bassem; Badis, Abdelmalek; Nadia, Zaraî Jaouadi; Ferradji, Fatma Zohra; Bejar, Samir; Boutoumi, Houcine

    2012-05-01

    An extracellular thermostable humic acid peroxidase (HaP3) was isolated from a Streptomyces sp. strain AH4. MALDI-TOF MS analysis showed that the purified enzyme was a monomer with a molecular mass of 60,215.18Da. The 26N-terminal residues of HaP3 displayed high homology with Streptomyces peroxidases. Optimal peroxidase activity was obtained at pH 5 and 80°C. HaP3 was stable at pH and temperature ranges of 4-8 and 60-90°C for 72 and 4h, respectively. HaP3 catalyzed the oxidation of 2,4-dichlorophenol, commercial humic acid, guiacol, and 2,6-dichlorophenol (50mM); L-3,4-dihydroxyphenylalanine (40 mM); 4-chlorophenol, 2,4,5-trichlorophenol, and 2,4,6-trichlorophenol (30 mM) in the presence of hydrogen peroxide. Sodium azide and potassium cyanide inhibited HaP3, which indicated the presence of heme components. These properties make HaP3 a potential strong candidate for future application in the elimination of natural humic acids in drinking water. PMID:22342039

  18. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    NASA Astrophysics Data System (ADS)

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-06-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms.

  19. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses.

    PubMed

    Bela, Krisztina; Horváth, Edit; Gallé, Ágnes; Szabados, László; Tari, Irma; Csiszár, Jolán

    2015-03-15

    The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.

  20. Coal Depolymerising Activity and Haloperoxidase Activity of Mn Peroxidase from Fomes durissimus MTCC-1173

    PubMed Central

    Singh, Sunil Kumar; Yadav, Meera; Yadava, Sudha; Yadav, Kapil Deo Singh

    2011-01-01

    Mn peroxidase has been purified to homogeneity from the culture filtrate of a new fungal strain Fomes durissimus MTCC-1173 using concentration by ultrafiltration and anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The molecular mass of the purified enzyme has been found to be 42.0 kDa using SDS-PAGE analysis. The Km values using MnSO4 and H2O2 as the variable substrates in 50 mM lactic acid-sodium lactate buffer pH 4.5 at 30°C were 59 μM and 32 μM, respectively. The catalytic rate constants using MnSO4 and H2O2 were 22.4 s−1 and 14.0 s−1, respectively, giving the values of kcat/Km 0.38 μM−1s−1 and 0.44 μM−1s−1, respectively. The pH and temperature optima of the Mn peroxidase were 4 and 26°C, respectively. The purified MnP depolymerises humic acid in presence of H2O2. The purified Mn peroxidase exhibits haloperoxidase activity at low pH. PMID:22162670

  1. Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers.

    PubMed

    Yoshida, Toru; Ogola, Henry Joseph Oduor; Amano, Yoshimi; Hisabori, Toru; Ashida, Hiroyuki; Sawa, Yoshihiro; Tsuge, Hideaki; Sugano, Yasushi

    2016-01-01

    DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49-55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes.

  2. Purification and characterization of novel cationic peroxidases from Asparagus acutifolius L. with biotechnological applications.

    PubMed

    Guida, Vincenzo; Cantarella, Maria; Chambery, Angela; Mezzacapo, Maria C; Parente, Augusto; Landi, Nicola; Severino, Valeria; Di Maro, Antimo

    2014-08-01

    Four novel basic peroxidases, named AaP-1, AaP-2, AaP-3, and AaP-4, were purified from Asparagus acutifolius L. seeds by cation-exchange and gel filtration chromatographies. The four proteins showed a similar electrophoretic mobility of 46 kDa while, by MALDI-TOF MS, different Mr values of 42758.3, 41586.9, 42796.3, and 41595.5 were determined for AaP-1, AaP-2, AaP-3, and AaP-4, respectively. N-terminal sequences of AaPs 1-4 up to residue 20 showed a high percentage of identity with the peroxidase from Glycine max. In addition, AaP-1, AaP-2, AaP-3, and AaP-4 were found to be glycoproteins, containing 21.75, 22.27, 25.62, and 18.31 % of carbohydrates, respectively. Peptide mapping and MALDI-TOF MS analysis of AaPs 1-4 showed that the structural differences between AaP-1 and AaP-2 and AaP-3 and AaPs-4 were mainly due to their glycan content. We also demonstrate that AaPs were able to remove phenolic compounds from olive oil mill wastewaters with a higher catalytic efficiency with respect to horseradish peroxidase, thus representing candidate enzymes for potential biotechnological applications in the environmental field.

  3. Purification and characterization of membrane-bound peroxidase from date palm leaves (Phoenix dactylifera L.)

    PubMed Central

    Al-Senaidy, Abdurrahman M.; Ismael, Mohammad A.

    2011-01-01

    Peroxidase from date palm (Phoenix dactylifera L.) leaves was purified to homogeneity and characterized biochemically. The enzyme purification included homogenization, extraction of pigments followed by consecutive chromatographies on DEAE-Sepharose and Superdex 200. The purification factor for purified date palm peroxidase was 17 with 5.8% yield. The purity was checked by SDS and native PAGE, which showed a single prominent band. The molecular weight of the enzyme was approximately 55 kDa as estimated by SDS–PAGE. The enzyme was characterized for thermal and pH stability, and kinetic parameters were determined using guaiacol as substrate. The optimum activity was between pH 5–6. The enzyme showed maximum activity at 55 °C and was fairly stable up to 75 °C, with 42% loss of activity. Date palm leaves peroxidase showed Km values of 0.77 and 0.045 mM for guaiacol and H2O2, respectively. These properties suggest that this enzyme could be a promising tool for applications in different analytical determinations as well as for treatment of industrial effluents at low cost. PMID:23961138

  4. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    PubMed Central

    2014-01-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine. PMID:25221454

  5. A method for large scale purification of turnip peroxidase and its characterization.

    PubMed

    Singh, Naresh; Singh, Jai

    2003-05-01

    Purification of peroxidase has been carried out since 1960 from different sources and with different methods. Ion exchange, affinity, hydrophobic, and metal affinity chromatography are known, to our knowledge. The present method, developed in this study, is three-phase partitioning, a novel technique to separate protein directly from a large volume of crude suspension. It has been observed that interfacing phase with a metal makes this technique highly selective. Turnip peroxidase purified with this method has 512 units/mg with 20.3% recovery. The natural proteins containing histidine or cystine are often purified by immobilized metal affinity chromatography. The purification of turnip peroxidase with the three-phase partitioning technique is based on immobilized metal affinity chromatography and is used for large-scale purification. The present method, described here, would prove its value in purifying an industrially important enzyme on a large scale from a crude suspension. The enzyme purified with this technique showed two bands on SDS- PAGE, which showed a molecular weight of approx. 39KD. Enzyme showed maximum purification with Cu++ metal and had a maximum activity at pH 6.0. The enzyme has an affinity towards hydrogen peroxide as its substrate in the presence of orthodianisidine as a chromogenic substrate. Enzyme activity was enhanced with calcium and magnesium, whereas sodium, potassium, and manganese inhibit the enzyme activity. PMID:12784883

  6. Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9.

    PubMed

    Rekik, Hatem; Nadia, Zaraî Jaouadi; Bejar, Wacim; Kourdali, Sidali; Belhoul, Mouna; Hmidi, Maher; Benkiar, Amina; Badis, Abdelmalek; Sallem, Naim; Bejar, Samir; Jaouadi, Bassem

    2015-02-01

    A novel extracellular lignin peroxidase (called LiP-SN) was produced and purified from a newly isolated Streptomyces griseosporeus strain SN9. The findings revealed that the pure enzyme was a monomeric protein with an estimated molecular mass of 43 kDa and a Reinheitzahl value of 1.63. The 19 N-terminal residue sequence of LiP-SN showed high homology with those of Streptomyces peroxidases. Its optimum pH and temperature were pH 8.5 and 65 °C, respectively. The enzyme was inhibited by sodium azide and potassium cyanide, suggesting the presence of heme components in its tertiary structure. Its catalytic efficiency was higher than that of the peroxidase from Streptomyces albidoflavus strain TN644. Interestingly, LiP-SN showed marked dye-decolorization efficiency and stability toward denaturing, oxidizing, and bleaching agents, and compatibility with EcoVax and Dipex as laundry detergents for 48 h at 40 °C. These properties make LiP-SN a potential candidate for future applications in distaining synthetic dyes and detergent formulations.

  7. A thermostable humic acid peroxidase from Streptomyces sp. strain AH4: purification and biochemical characterization.

    PubMed

    Fodil, Djamila; Jaouadi, Bassem; Badis, Abdelmalek; Nadia, Zaraî Jaouadi; Ferradji, Fatma Zohra; Bejar, Samir; Boutoumi, Houcine

    2012-05-01

    An extracellular thermostable humic acid peroxidase (HaP3) was isolated from a Streptomyces sp. strain AH4. MALDI-TOF MS analysis showed that the purified enzyme was a monomer with a molecular mass of 60,215.18Da. The 26N-terminal residues of HaP3 displayed high homology with Streptomyces peroxidases. Optimal peroxidase activity was obtained at pH 5 and 80°C. HaP3 was stable at pH and temperature ranges of 4-8 and 60-90°C for 72 and 4h, respectively. HaP3 catalyzed the oxidation of 2,4-dichlorophenol, commercial humic acid, guiacol, and 2,6-dichlorophenol (50mM); L-3,4-dihydroxyphenylalanine (40 mM); 4-chlorophenol, 2,4,5-trichlorophenol, and 2,4,6-trichlorophenol (30 mM) in the presence of hydrogen peroxide. Sodium azide and potassium cyanide inhibited HaP3, which indicated the presence of heme components. These properties make HaP3 a potential strong candidate for future application in the elimination of natural humic acids in drinking water.

  8. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    PubMed

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  9. Turnover capacity of coprinus cinereus peroxidase for phenol and monosubstituted phenols

    PubMed

    Aitken; Heck

    1998-05-01

    Coprinus cinereus peroxidase (CIP) and other peroxidases are susceptible to mechanism-based inactivation during the oxidation of phenolic substrates. The turnover capacity (defined as the molar or mass concentration of substrate oxidized per unit concentration of enzyme inactivated) of CIP was quantified for phenol and 11 monosubstituted phenols under conditions in which enzyme inactivation by mechanisms involving hydrogen peroxide alone were minimized. Turnover capacities varied by nearly 2 orders of magnitude (absolute values on the order of 10(5)-10(6) on a molar basis), depending on the substituent. On a mass basis, the enzyme consumption corresponding to the lowest turnover capacities is considerable and may influence the economic feasibility of proposed industrial applications of peroxidases. Within a range of substituent electronegativity values, molar turnover capacities correlated well (r2 = 0.89) with substituent effects quantified by radical sigma values and semiquantitatively with homolytic O-H bond dissociation energies of the phenolic substrates, suggesting that phenoxyl radical intermediates are probably involved in the suicide inactivation of CIP. The correlation range in each case did not include phenols with highly electron-withdrawing (nitro and cyano) substituents because they are not oxidized by CIP, nor phenols with highly electron-donating (hydroxy and amino) substituents because they led to virtually complete inactivation of the enzyme with minimal substrate removal. In the latter case we conclude that inactivation of CIP during the oxidation of hydroxy- and amino-substituted phenols occurs by a different mechanism than that of the other phenolic substrates.

  10. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes.

    PubMed

    Kumar, Sanjeev; Barillas-Mury, Carolina

    2005-07-01

    Previous analysis of the temporal-spatial relationship between ookinete migration and the cellular localization of genes mediating midgut immune defense responses suggested that, in order to survive, parasites must complete invasion before toxic chemicals ("a bomb") are generated by the invaded cell. Recent studies indicate that ookinete invasion induces tyrosine nitration as a two-step reaction, in which NOS induction is followed by a localized increase in peroxidase activity. Peroxidases utilize nitrite and hydrogen peroxide as substrates, and detonate the time bomb by generating reactive nitrogen intermediates, such as nitrogen dioxide, which mediate nitration. There is evidence that peroxidases also mediate antimicrobial responses to bacteria, fungi and parasites in a broad range of biological systems including humans and plants. Defense reactions that generate toxic chemicals are also potentially harmful to the host mounting the response and often results in apoptosis. The two-step nitration pathway is probably an ancient response, as it has also been described in vertebrate leukocytes and probably evolved as a mechanism to circumscribe the toxic products generated during defense responses involving protein nitration.

  11. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles.

    PubMed

    Ni, Pengjuan; Dai, Haichao; Wang, Yilin; Sun, Yujing; Shi, Yan; Hu, Jingting; Li, Zhuang

    2014-10-15

    In this study, a facile method to sensitively detect melamine and highly improve the peroxidase-like activity of bare gold nanoparticles (Au NPs) at the same time is proposed for the first time. It is interesting to find that the addition of melamine could improve the peroxidase-like activity of Au NPs. By coupling with 3,3',5,5'-tetramethlybenzidine (TMB)-H2O2 chormogenic reaction, a novel method for colorimetic detection of melamine is developed. The detection limit of this method is as low as 0.2 nM with the help of UV-vis spectroscopy and 0.5 µM by naked-eye observation, both which are far below the US food and Drug Administration estimated melamine safety limit of 20 µM. In addition, the present method is successfully applied for the detection of melamine in raw milk and milk powder. More importantly, the proposed method could also improve the peroxidase-like activity of Au NPs, which may not only provide a new approach to develop effective nanomaterials-based mimetic enzyme, but also irradiative to develop new applications for Au NPs in varieties of cost-effective and simple sensors in medicine, biotechnology and environmental chemistry.

  12. Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity.

    PubMed

    Tkalec, Mirta; Malarić, Kresimir; Pevalek-Kozlina, Branka

    2005-04-01

    Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure. PMID:15768427

  13. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.

    PubMed

    Andeer, Peter F; Learman, Deric R; McIlvin, Matt; Dunn, James A; Hansel, Colleen M

    2015-10-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants in environmental systems. A number of biotic and abiotic pathways induce the oxidation of Mn(II) to Mn oxides. Here, we use a combination of proteomic analyses and activity assays, to identify the enzyme(s) responsible for extracellular superoxide-mediated Mn oxide formation by a bacterium within the ubiquitous Roseobacter clade. We show that animal haem peroxidases (AHPs) located on the outer membrane and within the secretome are responsible for Mn(II) oxidation. These novel peroxidases have previously been implicated in direct Mn(II) oxidation by phylogenetically diverse bacteria. Yet, we show that in this Roseobacter species, AHPs mediate Mn(II) oxidation not through a direct reaction but by producing superoxide and likely also by degrading hydrogen peroxide. These findings point to a eukaryotic-like oscillatory oxidative-peroxidative enzymatic cycle by these AHPs that leads to Mn oxide formation by this organism. AHP expression appears unaffected by Mn(II), yet the large energetic investment required to produce and secrete these enzymes points to an as yet unknown physiological function. These findings are further evidence that bacterial peroxidases and secreted enzymes, in general, are unappreciated controls on the cycling of metals and reactive oxygen species (ROS), and by extension carbon, in natural systems.

  14. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    SciTech Connect

    Singh, Anchal; Rathaur, Sushma . E-mail: sushmarathaur@yahoo.com

    2005-06-17

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass {approx}20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/{mu}g of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.

  15. PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae.

    PubMed

    Oliva, Michele; Theiler, Grégory; Zamocky, Marcel; Koua, Dominique; Margis-Pinheiro, Marcia; Passardi, Filippo; Dunand, Christophe

    2009-01-01

    Peroxidases are enzymes that are implicated in several biological processes and are detected in all living organisms. The increasing number of sequencing projects and the poor quality of annotation justified the creation of an efficient tool that was suitable for collecting and annotating the huge quantity of data. Started in 2004 to collect only class III peroxidases, PeroxiBase has undergone important updates since then and, currently, the majority of peroxidase sequences from all kingdoms of life is stored in the database. In addition, the web site (http://peroxibase.isb-sib.ch) provides a series of bioinformatics tools and facilities suitable for analysing these stored sequences. In particular, the high number of isoforms in each organism makes phylogenetic studies extremely useful to elucidate the complex evolution of these enzymes, not only within the plant kingdom but also between the different kingdoms. This paper provides a general overview of PeroxiBase, focusing on its tools and the stored data. The main goal is to give researchers some guidelines to extract classified and annotated sequences from the data base in a quick and easy way in order to perform alignments and phylogenetic analysis. The description of the database is accompanied by the updates we have recently carried out in order to improve its completeness and make it more user-friendly.

  16. Serum Malondialdehyde Concentration and Glutathione Peroxidase Activity in a Longitudinal Study of Gestational Diabetes

    PubMed Central

    Miranda, María; Muriach, María; Romero, Francisco J.; Villar, Vincent M.

    2016-01-01

    Aims The main goal of this study was to evaluate the presence of oxidative damage and to quantify its level in gestational diabetes. Methods Thirty-six healthy women and thirty-six women with gestational diabetes were studied in the three trimesters of pregnancy regarding their levels of oxidative stress markers. These women were diagnosed with diabetes in the second trimester of pregnancy. Blood glucose levels after 100g glucose tolerance test were higher than 190, 165 or 145 mg/dl, 1, 2 or 3 hours after glucose intake. Results The group of women with gestational diabetes had higher serum malondialdehyde levels, with significant differences between groups in the first and second trimester. The mean values of serum glutathione peroxidase activity in the diabetic women were significantly lower in the first trimester. In the group of women with gestational diabetes there was a negative linear correlation between serum malondialdehyde concentration and glutathione peroxidase activity in the second and third trimester. Conclusions In this observational and longitudinal study in pregnant women, the alterations attributable to oxidative stress were present before the biochemical detection of the HbA1c increase. Usual recommendations once GD is detected (adequate metabolic control, as well as any other normally proposed to these patients) lowered the concentration of malondialdehyde at the end of pregnancy to the same levels of the healthy controls. Serum glutathione peroxidase activity in women with gestational diabetes increased during the gestational period. PMID:27228087

  17. The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes.

    PubMed

    Shkryl, Y N; Veremeichik, G N; Bulgakov, V P; Avramenko, T V; Günter, E A; Ovodov, Y S; Muzarok, T I; Zhuravlev, Y N

    2013-10-10

    The production of plant peroxidases by plant cell cultures is of great interest because of the potential for industrial applications. We used plant cell cultures overexpressing the rolB gene to produce increased amounts of plant class III peroxidases. The rolB gene ensured the stable and permanent activation of peroxidase activity in the transformed callus cultures of different plants. In particular, the total peroxidase activity in transformed Rubia cordifolia cells was increased 23-86-fold, and the abundance of the major peroxidase gene transcripts was increased 17-125-fold (depending on the level of rolB expression) compared with non-transformed control calli. The peroxidase-activating effect of rolB was greater than that of other peroxidase inducers, such as external stresses and methyl jasmonate.

  18. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae).

    PubMed

    Lavid, N; Schwartz, A; Yarden, O; Tel-Or, E

    2001-02-01

    Co-localization of polyphenols and peroxidase activity was demonstrated in epidermal glands of the waterlily (Nymphaea) by histochemistry. Total phenols, tannins and peroxidase activity were determined quantitatively in plant extracts. Polyphenols were partially identified and were found to consist mainly of hydrolyzable tannins, gallic and tannic acid derivatives. Nymphaea polyphenols were shown to chelate Cr, Hg, and Pb in vitro, and Cd-binding by polymerized polyphenols was demonstrated in leaves exposed to Cd in vivo. Both polyphenols and peroxidases were found at very high constitutive levels, which were not induced or altered by external conditions, such as light and heavy-metal stress. It is suggested that the polymerization of polyphenols by peroxidases, enhanced after heavy-metal uptake and detoxification, is responsible for the binding of heavy metals in Nymphaea epidermal glands.

  19. Optimization of the functional expression of Coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter.

    PubMed

    Kim, Su-Jin; Lee, Jeong-Ah; Kim, Yong-Hwan; Song, Bong-Keun

    2009-09-01

    Peroxidase from Coprinus cinereus (CiP) has attracted attention for its high specific activity and broad substrate spectrum compared with other peroxidases. In this study, the functional expression of this peroxidase was successfully achieved in the methylotrophic yeast Pichia pastoris. The expression level of CiP was increased by varying the microbial hosts and the expression promoters. Since a signal sequence, such as the alpha mating factor of Saccharomyces cerevisiae, was placed preceding the cDNA of the CiP coding gene, expressed recombinant CiP (rCiP) was secreted into the culture broth. The Mut+ Pichia pastoris host showed a 3-fold higher peroxidase activity, as well as 2-fold higher growth rate, compared with the Muts Pichia pastoris host. Furthermore, the AOX1 promoter facilitated a 5-fold higher expression of rCiP than did the GAP promoter.

  20. Localized Changes in Peroxidase Activity Accompany Hydrogen Peroxide Generation during the Development of a Nonhost Hypersensitive Reaction in Lettuce1

    PubMed Central

    Bestwick, Charles S.; Brown, Ian R.; Mansfield, John W.

    1998-01-01

    Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR. PMID:9808752

  1. Effect of organic solvents on peroxidases from rice and horseradish: prospects for enzyme based applications.

    PubMed

    Singh, Priyanka; Prakash, Rajiv; Shah, Kavita

    2012-08-15

    A feasibility test for rice peroxidase (RP) enzyme as a substitute for horseradish peroxidase (HRP) was carried out. The activity of HRP was maximum at 30 °C with pH 6.0-7.0. The purified rice peroxidase showed optimum activity at 30 °C with pH 7-8 and was thermostable till 68 °C, which is higher than the temperature reported for HRP. RP obeyed Michaelis-Menten kinetics. With increasing substrate concentrations, RP and HRP had V(max) as 8.23 μM min(-1) and 4.21 μM min(-1) and K(m) as 5.585 and 3.662 mM, respectively. In 10% 1,4-dioxane and ethanol, RP exhibited 2 and 1.3 times higher activity, respectively than HRP. Shelf life studies show RP to be significantly stable till 60 h in 20% 1,4-dioxane and till 12 h in ethanol. The activity of RP/HRP increased gradually with 0%-40% ethanol or 0%-30% 1,4-dioxane till 20 h with a sharp decline thereafter. The stability of HRP and RP reduced with increasing storage period. Enzyme efficiencies compared as V(m)/K(m) showed water miscible organic solvents, viz.1,4-dioxane and ethanol, to exhibit a regular decrease in V(m)/K(m) with increase in organic solvent concentration whereas, a reverse trend was observed with water-immiscible solvent like chloroform. The relative activity of RP and HRP enzymes upon immobilization on poly-5-carboxy-indole shows increasing enzyme activity with time and with guaiacol/dopamine hydrochloride as substrates. Immobilized RP had a better relative activity with dopamine as substrate than immobilized HRP, whereas with guaiacol both RP and HRP had a comparable activity upon immobilization. Results suggest rice peroxidase to be a cheaper and convenient enzyme system for immobilization using organic solvents. The high thermal stability, more stability in organic solvents and longer shelf life of RP over the immobilizing matrix suggest conducting polyindole having carboxyl functional groups to be a suitable matrix for the covalent entrapment of rice peroxidase through amide linkage. Good

  2. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection.

    PubMed

    Tian, Zhimin; Li, Jing; Zhang, Zhiyun; Gao, Wei; Zhou, Xuemei; Qu, Yongquan

    2015-08-01

    Porous nanorods of ceria (PN-Ceria), a novel ceria nanostructure with a large surface area and a high surface Ce(3+) fraction, exhibited strong intrinsic peroxidase activity toward a classical peroxidase substrate in the presence of H2O2. Peroxidase-like activity of ceria originated from surface Ce(3+) species as the catalytic center, thereby explaining the high performance of PN-Ceria as an artificial enzyme mimicking peroxidase. Compared with the natural enzyme horseradish peroxidase (HRP), PN-Ceria showed several advantages such as low cost, easy storage, high sensitivity, and, prominently, chemical and catalytic stability under harsh conditions. Importantly, the enzymatic activity of PN-Ceria remained nearly constant and stable over a wide range of temperature and pH values, ensuring the accuracy and reliability of measurements of its peroxidase-like activity. A PN-Ceria based novel diagnostic system was developed for breast cancer detection with a higher sensitivity than the standard HRP detection system. Our work has laid a solid foundation for the development of PN-Ceria as a novel diagnostic tool for clinical use.

  3. Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation.

    PubMed

    Li, Kefeng; Chen, Chuanfang; Chen, Changyou; Wang, Yuzhan; Wei, Zhao; Pan, Weidong; Song, Tao

    2015-05-01

    Magnetosomes are intracellular structures produced by magnetotactic bacteria and are magnetic nanoparticles surrounded by a lipid bilayer membrane. Magnetosomes reportedly possess intrinsic enzyme mimetic activity similar to that found in horseradish peroxidase (HRP) and can scavenge reactive oxygen species depending on peroxidase activity. Our previous study has demonstrated the phototaxis characteristics of Magnetospirillum magneticum strain AMB-1 cells, but the mechanism is not well understood. Therefore, we studied the relationship between visible-light irradiation and peroxidase-like activity of magnetosomes extracted from M. magneticum strain AMB-1. We then compared this characteristic with that of HRP, iron ions, and naked magnetosomes using 3,3',5,5'-tetramethylbenzidine as a peroxidase substrate in the presence of H2O2. Results showed that HRP and iron ions had different activities from those of magnetosomes and naked magnetosomes when exposed to visible-light irradiation. Magnetosomes and naked magnetosomes had enhanced peroxidase-like activities under visible-light irradiation, but magnetosomes showed less affinity toward substrates than naked magnetosomes under visible-light irradiation. These results suggested that the peroxidase-like activity of magnetosomes may follow an ordered ternary mechanism rather than a ping-pong mechanism. This finding may provide new insight into the function of magnetosomes in the phototaxis in magnetotactic bacteria.

  4. Enhancement of Peroxidase Release from Non-Malignant and Malignant Cells through Low-Dose Irradiation with Different Radiation Quality.

    PubMed

    Abdelrazzak, Abdelrazek B; Pottgießer, Stefanie J; Hill, Mark A; O'Neill, Peter; Bauer, Georg

    2016-02-01

    The release of peroxidase by nontransformed or transformed fibroblasts or epithelial cells (effector cells) triggers apoptosis induction selectively in transformed fibroblasts or transformed epithelial cells (target cells) through intercellular apoptosis-inducing signaling. The release of peroxidase can be induced either by treatment with transforming growth factor beta 1 or by low doses of alpha particles, gamma rays or ultrasoft X rays. In addiation, data indicates that radiation quality does not determine the overall efficiency of peroxidase release and the effects among a wide range of radiation doses are indistinguishable. These findings suggested that peroxidase release might be being triggered through intercellular bystander signaling. We show here that maximal peroxidase release does indeed occur after coculture of a small number of irradiated cells with an excess of unirradiated cells and demonstrate an enhanced effector function of nontransformed cells after the addition of a small number of irradiated cells. These data strongly indicate that peroxidase release is indeed triggered through bystander signaling mechanisms in mammalian cells.

  5. Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin A layered calcium alginate-starch beads.

    PubMed

    Matto, Mahreen; Husain, Qayyum

    2009-05-30

    Bitter gourd peroxidase immobilized on the surface of concanavalin A layered calcium alginate-starch beads was used for the successful and effective decolorization of textile industrial effluent. Effluent was recalcitrant to the action of bitter gourd peroxidase; however, in the presence of some redox mediators, it was successfully decolorized. Effluent decolorization was maximum (70%) in the presence of 1.0mM 1-hydroxybenzotriazole within 1h of incubation. However, immobilized bitter gourd peroxidase showed maximum decolorization at pH 5.0 and 40 degrees C. Immobilized bitter gourd peroxidase decolorized more than 90% effluent after 3h of incubation in a batch process. The two-reactor system, one reactor containing immobilized peroxidase and the other had activated silica, was quite effective in the decolorization of textile effluent. The system was capable of decolorizing 40% effluent even after 2 months of continuous operation. The absorption spectra of the untreated and treated effluent exhibited a marked difference in absorbance at various wavelengths. Immobilized peroxidase/1-hydroxybenzotriazole system could be employed for the treatment of a large volume of effluent in a continuous reactor.

  6. Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes.

    PubMed

    Stajic, Mirjana; Persky, Limor; Hadar, Yitzhak; Friesem, Dana; Duletic-Lausevic, Sonja; Wasser, Solomon P; Nevo, Eviatar

    2006-01-01

    Copper (Cu2+) and manganese (Mn2+) ions influenced laccase (Lac) and peroxidase production in Pleurotus eryngii, Pleurotus ostreatus, and Pleurotus pulmonarius. In P. eryngii, the optimum Cu2+ concentration for Lac production was 1 mM and for peroxidases 10 mM, and Mn2+ concentration of 5 mM led to peaks of Lac and peroxidase activity. In P. ostreatus HAI 493, the highest level of Lac activity was at Cu2+ concentrations of 1 and 10 mM and Mn2+ concentration of 1 mM, respectively. The absence of Cu2+ and Mn2+ caused the highest levels of peroxidase production. In P. ostreatus HAI 494, the highest level of Lac activity was at a Cu2+ concentration of 5 mM and at Mn2+ concentration of 1 mM, respectively. High levels of peroxidase activity were found in the medium without and with 1 mM Cu2+, and at 1 and 5 mM Mn2+, respectively. In P. pulmonarius, the highest Lac activity was found in the presence of 5 mM Cu2+ and 5 mM Mn2+, respectively. The absence of Cu2+ and Mn2+ as well as their presence at a concentration of 1 mM led to the peaks of peroxidase activities. PMID:16415481

  7. Isolation and sequencing of cDNA clones encoding ethylene-induced putative peroxidases from cucumber cotyledons.

    PubMed

    Morgens, P H; Callahan, A M; Dunn, L J; Abeles, F B

    1990-05-01

    A cDNA library from ethephon-treated cucumber cotyledons (Cucumis sativus L. cv. Poinsett 76) was constructed. Two cDNA clones encoding putative peroxidases were isolated by means of a synthetic probe based on a partial amino acid sequence of a 33 kDa cationic peroxidase that had been previously shown to be induced by ethylene. DNA sequencing indicates that the two clones were derived from two closely related RNA species that are related to published plant peroxidase sequences. Southern analysis indicates that there are 1-5 copies in a haploid genome of a gene homologous to the cDNA clones. The deduced amino acid sequences are homologous with a tobacco (55% sequence identity), a horseradish (53%), a turnip (45%), and a potato (41%) peroxidase. The cloned sequences do not encode the 33 kDa peroxidase from which the original synthetic probe was been derived, but rather other putative peroxidases. An increase in the level of mRNA is evident by 3 hours after ethephon or ethylene treatment and plateaus by 15 hours. PMID:2102850

  8. Novel tungsten carbide nanorods: an intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents.

    PubMed

    Li, Nan; Yan, Ya; Xia, Bao-Yu; Wang, Jing-Yuan; Wang, Xin

    2014-04-15

    Tungsten carbide nanorods (WC NRs) are demonstrated for the first time to possess intrinsic peroxidase-like activity towards typical peroxidase substrates, such as 3, 3', 5, 5'-tetramethylbenzidine (TMB) and ο-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The reactions catalyzed by these nanorods follow the Michaelis-Menten kinetics. The excellent catalytic performance of WC NRs could be attributed to their intrinsic catalytic activity to efficiently accelerate the electron-transfer process and facilitate the decomposition of H2O2 to generate more numbers of reactive oxygen species (ROS). Based upon the strong peroxidase-like activity of these WC NRs, a colorimetric sensor for H2O2 is designed, which provides good response towards H2O2 concentration over a range of 2×10(-7)-8×10(-5) M with a detection limit of 60 nM. Moreover, the peroxidase-like activities of WC NRs with TMB as the substrate are investigated in both protic and aprotic organic media, showing different colorimetric reactions from that performed in aqueous solutions. In comparison with the natural horse radish peroxidase, WC NR exhibits excellent robustness of catalytic activity and considerable reusability, thus making it a promising mimic of peroxidase catalysts. PMID:24325981

  9. The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity[W][OA

    PubMed Central

    Daudi, Arsalan; Cheng, Zhenyu; O’Brien, Jose A.; Mammarella, Nicole; Khan, Safina; Ausubel, Frederick M.; Bolwell, G. Paul

    2012-01-01

    In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish the expression of two Arabidopsis peroxidases (peroxidase 33 [PRX33] and PRX34), block the oxidative burst in response to a fungal elicitor, and cause enhanced susceptibility to a broad range of fungal and bacterial pathogens. Here we show that mature leaves of T-DNA insertion lines with diminished expression of PRX33 and PRX34 exhibit reduced ROS and callose deposition in response to microbe-associated molecular patterns (MAMPs), including the synthetic peptides Flg22 and Elf26 corresponding to bacterial flagellin and elongation factor Tu, respectively. PRX33 and PRX34 knockdown lines also exhibited diminished activation of Flg22-activated genes after Flg22 treatment. These MAMP-activated genes were also downregulated in unchallenged leaves of the peroxidase knockdown lines, suggesting that a low level of apoplastic ROS production may be required to preprime basal resistance. Finally, the PRX33 knockdown line is more susceptible to Pseudomonas syringae than wild-type plants. In aggregate, these data demonstrate that the peroxidase-dependent oxidative burst plays an important role in Arabidopsis basal resistance mediated by the recognition of MAMPs. PMID:22247251

  10. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Shinkle, J. R.; Roux, S. J.

    1989-01-01

    The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.

  11. Enhancement of Peroxidase Release from Non-Malignant and Malignant Cells through Low-Dose Irradiation with Different Radiation Quality.

    PubMed

    Abdelrazzak, Abdelrazek B; Pottgießer, Stefanie J; Hill, Mark A; O'Neill, Peter; Bauer, Georg

    2016-02-01

    The release of peroxidase by nontransformed or transformed fibroblasts or epithelial cells (effector cells) triggers apoptosis induction selectively in transformed fibroblasts or transformed epithelial cells (target cells) through intercellular apoptosis-inducing signaling. The release of peroxidase can be induced either by treatment with transforming growth factor beta 1 or by low doses of alpha particles, gamma rays or ultrasoft X rays. In addiation, data indicates that radiation quality does not determine the overall efficiency of peroxidase release and the effects among a wide range of radiation doses are indistinguishable. These findings suggested that peroxidase release might be being triggered through intercellular bystander signaling. We show here that maximal peroxidase release does indeed occur after coculture of a small number of irradiated cells with an excess of unirradiated cells and demonstrate an enhanced effector function of nontransformed cells after the addition of a small number of irradiated cells. These data strongly indicate that peroxidase release is indeed triggered through bystander signaling mechanisms in mammalian cells. PMID:26849404

  12. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  13. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress.

    PubMed

    Csiszár, Jolán; Gallé, Agnes; Horváth, Edit; Dancsó, Piroska; Gombos, Magdolna; Váry, Zsolt; Erdei, László; Györgyey, János; Tari, Irma

    2012-03-01

    One-week-old seedlings of Triticum aestivum L. cv. Plainsman V, a drought tolerant; and Cappelle Desprez, a drought sensitive wheat cultivar were subjected gradually to osmotic stress using polyethylene glycol (PEG 6000) reaching 400 mOsm on the 11th day. Compared to controls cv. Plainsman V maintained the root growth and relative water content of root tissues, while these parameters were decreased in the drought sensitive cv. Cappelle Desprez under PEG-mediated osmotic stress. Simultaneously, H(2)O(2) content in 1-cm-long apical segment of roots comprising the proliferation and elongation zone, showed a transient increase in cv. Plainsman V and a permanent raise in cv. Cappelle Desprez. Measurements of the transcript levels of selected class III peroxidase (TaPrx) coding sequences revealed significant differences between the two cultivars on the 9th day, two days after applying 100 mOsm PEG. The abundance of TaPrx04 transcript was enhanced transitionally in the root apex of cv. Plainsman V but decreased in cv. Cappelle Desprez under osmotic stress while the expression of TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107 and TaPrx109-C decreased to different extents in both cultivars. After a transient decrease, activities of soluble peroxidase fractions of crude protein extracts rose in both cultivars on day 11, but the activities of cell wall-bound fractions increased only in cv. Cappelle Desprez under osmotic stress. Parallel with high H(2)O(2) content of the tissues, certain isoenzymes of covalently bound fraction in cv. Cappelle Desprez showed increased activity suggesting that they may limit the extension of root cell walls in this cultivar.

  14. pH effects on the haem iron co-ordination state in the nitric oxide and deoxy derivatives of ferrous horseradish peroxidase and cytochrome c peroxidase.

    PubMed Central

    Ascenzi, P; Brunori, M; Coletta, M; Desideri, A

    1989-01-01

    The spectral (e.p.r. and absorbance) properties of the NO and deoxy derivatives of ferrous horseradish peroxidase (HRP; EC 1.11.1.7) and baker's-yeast cytochrome c peroxidase (CCP; EC 1.11.1.5) were investigated between pH 7 and pH 2; over the same pH range the kinetics for CO binding were also determined. At neutral pH the e.p.r. and absorption spectra of the NO and deoxy derivatives of HRP and CCP are typical of systems in which the haem iron is in the hexaco-ordinated state and the pentaco-ordinated state respectively. By lowering pH, the e.p.r. and absorption spectra of HRP and CCP undergo reversible transitions, with pKa values of 4.1 for the NO derivatives and less than or equal to 3 for the deoxy derivatives of the ferrous forms. By analogy with O2-carrying proteins and haem model compounds, the pH-dependent spectral changes of HRP and CCP were interpreted as indicative of the protonation of the N(epsilon) atom of the proximal histidine residue and of the cleavage of the Fe-N(epsilon) bond. However, the slow second-order rate constant (0.003 microM-1.s-1) for CO binding to deoxy ferrous HRP and CCP does not increase substantially even at pH 2.6, suggesting that changes in the Fe-haem plane geometry, presumably associated with the cleavage of the Fe-N(epsilon) bond, do not affect appreciably the observed ligand association rate constant. PMID:2539809

  15. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-01-01

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity. PMID:27355940

  16. Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris.

    PubMed

    Gu, Lina; Lajoie, Curtis; Kelly, Christine

    2003-01-01

    A gene encoding manganese peroxidase (mnp1) from Phanerochaete chrysosporium was cloned downstream of a constitutive glyceraldehyde-3-phosphate dehydrogenase promoter in the methylotrophic yeast Pichia pastoris. Three different expression vectors were constructed: pZBMNP contains the native P. chrysosporium fungal secretion signal, palphaAMNP contains an alpha-factor secretion signal derived from Saccharomyces cerevisiae, and pZBIMNP has no secretion signal and was used for intracellular expression. Both the native fungal secretion signal sequence and alpha-factor secretion signal sequence directed the secretion of active recombinant manganese peroxidase (rMnP) from P. pastoris transformants. The majority of the rMnP produced by P. pastoris exhibited a molecular mass (55-100 kDa) considerably larger than that of the wild-type manganese peroxidase (wtMnP, 46 kDa). Deletion of the native fungal secretion signal yielded a molecular mass of 39 kDa for intracellular rMnP in P. pastoris. Treatment of the secreted rMnP with endoglycosidase H (Endo H) resulted in a considerable decrease in the mass of rMnP, indicating N-linked hyperglycosylation. Partially purified rMnP showed kinetic characteristics similar to those of wtMnP. Both enzymes also had similar pH stability profiles. Addition of exogenous Mn(II), Ca(II), and Fe(III) conferred additional thermal stability to both enzymes. However, rMnP was slightly less thermostable than wtMnP, which demonstrated an extended half-life at 55 degrees C. PMID:14524699

  17. Functional expression of horseradish peroxidase in E. coli by directed evolution.

    PubMed

    Lin, Z; Thorsen, T; Arnold, F H

    1999-01-01

    In an effort to develop a bacterial expression system for horseradish peroxidase (HRP), we inserted the gene encoding HRP into the pET-22b(+) vector (Novagen) as a fusion to the signal peptide PelB. A similar construct for cytochrome c peroxidase (CcP) leads to high CcP activity in the supernatant. Expression of the wild-type HRP gene in the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG) yielded no detectable activity against ABTS (azinobis(ethylbenzthiazoline sulfonate)). However, weak peroxidase activity was detected in the supernatant in the absence of IPTG. The HRP gene was subjected to directed evolution: random mutagenesis and gene recombination followed by screening in a 96-well microplate format. From 12 000 clones screened in the first generation, one was found that showed 14-fold higher HRP activity than wild-type, amounting to approximately 110 microg of HRP/L, which is similar to that reported from laborious in vitro refolding. No further improvement was obtained in subsequent generations of directed evolution. This level of expression has nonetheless enabled us to carry out further directed evolution to render the enzyme more thermostable and more resistant toward inactivation by H2O2. These results show that directed evolution can identify mutations that assist proteins to fold more efficiently in Escherichia coli. This approach will greatly facilitate efforts to "fine-tune" those many enzymes that are promising industrial biocatalysts, but for which suitable bacterial or yeast expression systems are currently lacking. PMID:10356264

  18. Molecular characterization of fruit-specific class III peroxidase genes in tomato (Solanum lycopersicum).

    PubMed

    Wang, Chii-Jeng; Chan, Yuan-Li; Shien, Chin Hui; Yeh, Kai-Wun

    2015-04-01

    In this study, expression of four peroxidase genes, LePrx09, LePrx17, LePrx35 and LePrxA, was identified in immature tomato fruits, and the function in the regulation of fruit growth was characterized. Analysis of amino acid sequences revealed that these genes code for class III peroxidases, containing B, D and F conserved domains, which bind heme groups, and a buried salt bridge motif. LePrx35 and LePrxA were identified as novel peroxidase genes in Solanum lycopersicum (L.). The temporal expression patterns at various fruit growth stages revealed that LePrx35 and LePrxA were expressed only in immature green (IMG) fruits, whereas LePrx17 and LePrx09 were expressed in both immature and mature green fruits. Tissue-specific expression profiles indicated that only LePrx09 was expressed in the mesocarp but not the inner tissue of immature fruits. The effects of hormone treatments and stresses on the four genes were examined; only the expression levels of LePrx17 and LePrx09 were altered. Transcription of LePrx17 was up-regulated by jasmonic acid (JA) and pathogen infection and expression of LePrx09 was induced by ethephon, salicylic acid (SA) and JA, in particular, as well as wounding, pathogen infection and H2O2 stress. Tomato plants over-expressing LePrx09 displayed enhanced resistance to H2O2 stress, suggesting that LePrx09 may participate in the H2O2 signaling pathway to regulate fruit growth and disease resistance in tomato fruits.

  19. Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit.

    PubMed

    Chisari, Marco; Barbagallo, Riccardo N; Spagna, Giovanni

    2007-05-01

    Polyphenol oxidase and peroxidase were extracted from two different varieties of strawberry fruit (Fragaria x ananassa D, cv. 'Elsanta' and Fragaria vesca L, cv. 'Madame Moutot') and characterized using reliable spectrophotometric methods. In all cases, the enzymes followed Michaelis-Menten kinetics, showing different values of peroxidase kinetics parameters between the two cultivars: Km = 50.68 +/- 2.42 mM ('Elsanta') and 18.18 +/- 8.79 mM ('Madame Moutot') mM and Vmax = 0.14 +/- 0.03 U/g ('Elsanta') and 0.05 +/- 0.01 U/g ('Madame Moutot'). The physiological pH of fruit at the red ripe stage negatively affected the expression of both oxidases, except polyphenol oxidase from 'Madame Moutot' that showed the highest residual activity (68% of the maximum). Peroxidase from both cultivars was much more thermolable as compared with PPO, losing over 60% of relative activity already after 60 min of incubation at 40 degrees C. The POD activation energy was much lower than the PPO activation energy (DeltaE = 97.5 and 57.8 kJ mol-1 for 'Elsanta' and 'Madame Moutot', respectively). Results obtained from d-glucose and d-fructose inhibition tests evidenced a decreasing course of PPO and POD activities from both cultivars as the sugar concentration in the assay medium increased. Changes in CIE L*, a*, b*, chroma, and hue angle values were taken as a browning index of the samples during storage at 4 degrees C. A decrease in L* was evident in both cultivars but more marked in 'Elsanta'. PPO and POD activities from cv. 'Elsanta' were very well-correlated with the parameter L* (r2=0.86 and 0.89, respectively) and hue angle (r2=0.85 and 0.93, respectively). According to these results, the browning of the fruit seemed to be in relation to both oxidase activities.

  20. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.

    2001-01-01

    The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.

  1. Design of ruthenium-cytochrome c derivatives to measure electron transfer to cytochrome c peroxidase.

    PubMed

    Liu, R Q; Geren, L; Anderson, P; Fairris, J L; Peffer, N; McKee, A; Durham, B; Millet, F

    1995-01-01

    A new technique has been introduced to measure interprotein electron transfer which involves photoexcitation of a tris(bipyridine)ruthenium (Ru) complex covalently attached to one of the proteins. Four different strategies have been developed to specifically attach Ru to protein lysine amino groups, histidine imidazole groups, and cysteine sulhydryl groups. These strategies have been used to prepare more than 20 different singly-labeled Ru-cytochrome c derivatives. The new ruthenium photoexcitation technique has been used to study the mechanism for electron transfer between cytochrome c and cytochrome c peroxidase. Laser excitation of a complex between Ru-cytochrome c and cytochrome c peroxidase compound I results in formation of Ru(II*) which is a strong reducing agent, and rapidly transfers an electron to heme c Fe(III) to form Fe(II). The heme c Fe(II) then rapidly transfers an electron to the Trp-191 radical cation in CMPI. The rate constant for this reaction is 6 x 10(4) s-1 for a horse Ru-cytochrome c derivative labeled at lysine 27, and greater than 10(6) s-1 for yeast Ru-cytochrome c derivatives. A second laser flash results in electron transfer from heme c to the oxyferryl heme in cytochrome c peroxidase compound II with a rate constant of 350 s-1. The ruthenium photoreduction technique has been used to study the interaction domain between the two proteins, the pathway for electron transfer to the radical cation and the oxyferryl heme, and the specific residues in the heme crevice which control the electron transfer properties of the Trp-191 radical cation and the oxyferryl heme.

  2. Inactivation of the potent Pseudomonas aeruginosa cytotoxin pyocyanin by airway peroxidases and nitrite.

    PubMed

    Reszka, Krzysztof J; Xiong, Ye; Sallans, Larry; Pasula, Rajamouli; Olakanmi, Oyebode; Hassett, Daniel J; Britigan, Bradley E

    2012-05-15

    Pyocyanin (1-hydroxy-N-methylphenazine, PCN) is a cytotoxic pigment and virulence factor secreted by the human bacterial pathogen, Pseudomonas aeruginosa. Here, we report that exposure of PCN to airway peroxidases, hydrogen peroxide (H(2)O(2)), and NaNO(2) generates unique mononitrated PCN metabolites (N-PCN) as revealed by HPLC/mass spectrometry analyses. N-PCN, in contrast to PCN, was devoid of antibiotic activity and failed to kill Escherichia coli and Staphylococcus aureus. Furthermore, in contrast to PCN, intratracheal instillation of N-PCN into murine lungs failed to induce a significant inflammatory response. Surprisingly, at a pH of ∼7, N-PCN was more reactive than PCN with respect to NADH oxidation but resulted in a similar magnitude of superoxide production as detected by electron paramagnetic resonance and spin trapping experiments. When incubated with Escherichia coli or lung A549 cells, PCN and N-PCN both led to superoxide formation, but lesser amounts were detected with N-PCN. Our results demonstrate that PCN that has been nitrated by peroxidase/H(2)O(2)/NO(2)(-) systems possesses less cytotoxic/proinflammatory activity than native PCN. Yield of N-PCN was decreased by the presence of the competing physiological peroxidase substrates (thiocyonate) SCN(-) (myeloperoxidase, MPO, and lactoperoxidase, LPO) and Cl(-) (MPO), which with Cl(-) yielded chlorinated PCNs. These reaction products also showed decreased proinflammatory ability when instilled into the lungs of mice. These observations add important insights into the complexity of the pathogenesis of lung injury associated with Pseudomonas aeruginosa infections and provide additional rationale for exploring the efficacy of NO(2)(-) in the therapy of chronic Pseudomonas aeruginosa airway infection in cystic fibrosis.

  3. Purification, properties, and distribution of ascorbate peroxidase in legume root nodules

    SciTech Connect

    Dalton, D.A.; Hanus, F.J.; Russell, S.A.; Evans, H.J. )

    1987-01-01

    All aerobic biological system, including N{sub 2}-fixing root nodules, are subject to O{sub 2} toxicity that results from the formation of reactive intermediates such as H{sub 2}O{sub 2} and free radicals of O{sub 2}. H{sub 2}O{sub 2} may be removed from root nodules in a series of enzymic reactions involving ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. The authors confirm here the presence of these enzymes in root nodules from nine species of legumes and from Alnus rubra. Ascorbate peroxidase from soybean nodules was purified to near homogeneity. This enzyme was found to be a hemeprotein with a molecular weight of 30,000 as determined by sodium dodecyl sulfate gel electrophoresis. KCN, NaN{sub 3}, CO, and C{sub 2}H{sub 2} were potent inhibitors of activity. Nonphysiological reductants such as guaiacol, o-dianisidine, and pyrogallol functioned as substrates for the enzyme. No activity was detected with NAD(P)H, reduced glutathione, or urate. Ascorbate peroxidation did not follow Michaelis-Menten kinetics. The substrate concentration which resulted in a reaction rate of 1/2 V{sub max} was 70 micromolar for ascorbate and 3 micromolar for H{sub 2}O{sub 2}. The high affinity of ascorbate peroxidase for H{sub 2}O{sub 2} indicates that this enzyme, rather than catalase, is responsible for most H{sub 2}O{sub 2} removal outside of peroxisomes in root nodules.

  4. Changes in the activity of ascorbate peroxidase under anaerobiosis in cocoyam (Colocasia esculenta).

    PubMed

    Chibueze, Nwose

    2014-01-01

    This study was conducted to determine the activity of ascorbate peroxidase in the cormels of cocoyam (Colocasia esculenta var. antiquorum) immediately after harvest and in storage under anaerobiosis for one and three weeks, respectively. During stress condition in plants, hydrogen peroxide is released and mechanisms to detoxify it must be maintained. The cocoyam tubers that were neither damaged nor affected by disease were harvested from a local farm in Ugbogui, Ovia North Local Government Area in Edo State, Nigeria. The selected cocoyam tubers were peeled manually, washed with ice cold water and cut into pieces. The root tissues (50 g) were homogenised with 100 mL of ice cold 0.05 M phosphate buffer. The extract obtained was clarified by centrifugation for 15 min at 8000 g at 4 degrees C. Ascorbate-peroxidising activity was assayed using the initial rate of decrease in ascorbate concentration as measured by its absorbance at 290 nm using Milton Roy Spectron 21D. Results showed the weight of the cormels decreased all through during storage. Immediately after harvest the activity of ascorbate peroxidase was 15.49 unit mL(-1) with a significant increase (p < 0.05) after one week to 73.05 U mL(-1). Thereafter there was a significant decrease in activity of the enzyme after three weeks of storage to 33.33 U mL(-1). This increase in activity of ascorbate peroxidase after three weeks of storage may be related to increase in response to various biotic stresses. Therefore, manipulation of the capacity of cocoyam to tolerate anaerobiosis is a function of its ability to modulate the antioxidant enzymes' armory in case of need.

  5. Thiol peroxidase is an important component of Streptococcus pneumoniae in oxygenated environments.

    PubMed

    Hajaj, Barak; Yesilkaya, Hasan; Benisty, Rachel; David, Maayan; Andrew, Peter W; Porat, Nurith

    2012-12-01

    Streptococcus pneumoniae is an aerotolerant gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth, S. pneumoniae produces high levels of H(2)O(2). Since S. pneumoniae lacks catalase, the question of how it controls H(2)O(2) levels is of critical importance. The psa locus encodes an ABC Mn(2+)-permease complex (psaBCA) and a putative thiol peroxidase, tpxD. This study shows that tpxD encodes a functional thiol peroxidase involved in the adjustment of H(2)O(2) homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H(2)O(2) efficiently. However, in vivo experiments revealed that TpxD detoxifies only a fraction of the H(2)O(2) generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys(58) undergoes selective oxidation in vivo, under conditions where H(2)O(2) is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesis in vitro were significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H(2)O(2) resulted in tpxD upregulation, while psaBCA expression was oppositely affected. However, the challenge of ΔtpxD mutants with H(2)O(2) did not affect psaBCA, implying that TpxD is involved in the regulation of the psa operon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H(2)O(2).

  6. Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid

    PubMed Central

    Abu-Soud, Husam M.; Maitra, Dhiman; Shaeib, Faten; Khan, Sana; Byun, Jaeman; Abdulhamid, Ibrahim; Yang, Zhe; Saed, Ghassan M.; Diamond, Michael P.; Andreana, Peter R.; Pennathur, Subramaniam

    2015-01-01

    Myeloperoxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) play a central role in oxidative damage in inflammatory disorders by utilizing hydrogen peroxide and halides/pseudo halides to generate the corresponding hypohalous acid. The catalytic sites of these enzymes contain a covalently modified heme group, which is tethered to the polypeptide chain at two ester linkages via the methyl group (MPO, EPO and LPO) and one sulfonium bond via the vinyl group (MPO only). Covalent cross-linking of the catalytic site heme to the polypeptide chain in peroxidases is thought to play a protective role, since it renders the heme moiety less susceptible to the oxidants generated by these enzymes. Mass-spectrometric analysis revealed the following possible pathways by which hypochlorous acid (HOCl) disrupts the heme-protein cross-linking: (1) the methyl-ester bond is cleaved to form an alcohol; (2) the alcohol group undergoes an oxygen elimination reaction via the formation of an aldehyde intermediate or undergoes a demethylation reaction to lose the terminal CH2 group; and (3) the oxidative cleavage of the vinyl-sulfonium linkage. Once the heme moiety is released it undergoes cleavage at the carbon-methyne bridge either along the δ-β or a α-γ axis to form different pyrrole derivatives. These results indicate that covalent cross-linking is not enough to protect the enzymes from HOCl mediated heme destruction and free iron release. Thus, the interactions of mammalian peroxidases with HOCl modulates their activity and sets a stage for initiation of the Fenton reaction, further perpetuating oxidative damage at sites of inflammation. PMID:25193127

  7. Resonance Raman study of the active site of Coprinus cinereus peroxidase.

    PubMed

    Smulevich, G; Feis, A; Focardi, C; Tams, J; Welinder, K G

    1994-12-27

    Resonance Raman (RR) spectra for the resting state ferric and the reduced ferrous forms of recombinant Coprinus cinereus peroxidase (CIP), obtained with different excitation wavelengths and in polarized light, are reported. The spectra are compared with those obtained previously for cytochrome c peroxidase expressed in Escherichia coli [(CCP(MI)] and horseradish peroxidase (HRP-C). Although the enzymic properties of CIP and HRP-C are similar, the RR data show that, in terms of the heme cavity structures, CIP and CCP(MI) are much more closely related to each other than to HRP-C. The ferric state of CIP at neutral pH is characteristic mainly of a five-coordinate high spin heme. However, the lower frequency of the v2 mode and a higher frequency of the v(C = C) vinyl stretching modes for CIP as compared to CCP, indicate a higher degree of vibrational coupling between the two modes in CIP. In addition, CIP is rather unstable under low laser power irradiation as an irreversible transition to a six-coordinate high spin heme followed by a second transition to a six-coordinate low spin heme is observed. This instability of CIP as compared to CCP(MI) is proposed to be a consequence of the presence of a distal Phe54 in CIP rather than the homologous Trp51 in CCP, as Trp51 is hydrogen-bonded to a distal water molecule located above the heme Fe thereby preventing its coordination in CCP. In CIP the FeII-His RR band has two components with frequencies at 230 and 211 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    PubMed

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-01

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment. PMID:26921508

  9. Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit.

    PubMed

    Chisari, Marco; Barbagallo, Riccardo N; Spagna, Giovanni

    2007-05-01

    Polyphenol oxidase and peroxidase were extracted from two different varieties of strawberry fruit (Fragaria x ananassa D, cv. 'Elsanta' and Fragaria vesca L, cv. 'Madame Moutot') and characterized using reliable spectrophotometric methods. In all cases, the enzymes followed Michaelis-Menten kinetics, showing different values of peroxidase kinetics parameters between the two cultivars: Km = 50.68 +/- 2.42 mM ('Elsanta') and 18.18 +/- 8.79 mM ('Madame Moutot') mM and Vmax = 0.14 +/- 0.03 U/g ('Elsanta') and 0.05 +/- 0.01 U/g ('Madame Moutot'). The physiological pH of fruit at the red ripe stage negatively affected the expression of both oxidases, except polyphenol oxidase from 'Madame Moutot' that showed the highest residual activity (68% of the maximum). Peroxidase from both cultivars was much more thermolable as compared with PPO, losing over 60% of relative activity already after 60 min of incubation at 40 degrees C. The POD activation energy was much lower than the PPO activation energy (DeltaE = 97.5 and 57.8 kJ mol-1 for 'Elsanta' and 'Madame Moutot', respectively). Results obtained from d-glucose and d-fructose inhibition tests evidenced a decreasing course of PPO and POD activities from both cultivars as the sugar concentration in the assay medium increased. Changes in CIE L*, a*, b*, chroma, and hue angle values were taken as a browning index of the samples during storage at 4 degrees C. A decrease in L* was evident in both cultivars but more marked in 'Elsanta'. PPO and POD activities from cv. 'Elsanta' were very well-correlated with the parameter L* (r2=0.86 and 0.89, respectively) and hue angle (r2=0.85 and 0.93, respectively). According to these results, the browning of the fruit seemed to be in relation to both oxidase activities. PMID:17407312

  10. Characterization and expression of the Schistosoma japonicum thioredoxin peroxidase-2 gene.

    PubMed

    Hong, Yang; Han, Yanhui; Fu, Zhiqiang; Han, Hongxiao; Qiu, Chunhui; Zhang, Min; Yang, Jianmei; Shi, Yaojun; Li, Xiangrui; Lin, Jiaojiao

    2013-02-01

    We analyzed proteins that were differentially expressed by 10-day-old schistosomula from 3 different hosts and determined that a functional thioredoxin peroxidase-2 gene has an important antioxidant role in Schistosoma japonicum , which we investigated further. A full-length cDNA encoding the S. japonicum thioredoxin peroxidase-2 (SjTPx-2) had an open reading frame of 681 bp that encoded 226 amino acids with a signal peptide of 24 amino acids. A cDNA encoding SjTPx-2 without the signal peptide sequence was isolated from 42-day-old schistosome cDNAs. Real-time quantitative RT-PCR analysis revealed that SjTPx-2 was upregulated in 7- and 13-day-old schistosomes, while the expression level in females was around 2-fold higher than that in male worms at 42 days. SjTPx was subcloned into pET28a(+) and expressed as both inclusion bodies and supernatant in Escherichia coli BL21 (DE3) cells. Western blotting showed that the recombinant SjTPx-2 (rSjTPx-2) was immunogenic. The purified recombinant protein could form disulfide-bonded dimers and it had peroxidase activity in vitro. An immunoprotection experiment in BALB/c mice showed that vaccination with recombinant SjTPx-2 could induce 31.2% and 34.0% reductions in the numbers of worms and eggs in the liver, respectively. This study suggests that SjTPx-2 may be an important antioxidative enzyme in scavenging ROS, and it may be a potential vaccine candidate or new drug target for schistosomiasis. PMID:22924918

  11. Thiol Peroxidase Is an Important Component of Streptococcus pneumoniae in Oxygenated Environments

    PubMed Central

    Hajaj, Barak; Yesilkaya, Hasan; Benisty, Rachel; David, Maayan; Andrew, Peter W.

    2012-01-01

    Streptococcus pneumoniae is an aerotolerant Gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth, S. pneumoniae produces high levels of H2O2. Since S. pneumoniae lacks catalase, the question of how it controls H2O2 levels is of critical importance. The psa locus encodes an ABC Mn2+-permease complex (psaBCA) and a putative thiol peroxidase, tpxD. This study shows that tpxD encodes a functional thiol peroxidase involved in the adjustment of H2O2 homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H2O2 efficiently. However, in vivo experiments revealed that TpxD detoxifies only a fraction of the H2O2 generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys58 undergoes selective oxidation in vivo, under conditions where H2O2 is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesis in vitro were significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H2O2 resulted in tpxD upregulation, while psaBCA expression was oppositely affected. However, the challenge of ΔtpxD mutants with H2O2 did not affect psaBCA, implying that TpxD is involved in the regulation of the psa operon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H2O2. PMID:23027531

  12. Changes in the activity of ascorbate peroxidase under anaerobiosis in cocoyam (Colocasia esculenta).

    PubMed

    Chibueze, Nwose

    2014-01-01

    This study was conducted to determine the activity of ascorbate peroxidase in the cormels of cocoyam (Colocasia esculenta var. antiquorum) immediately after harvest and in storage under anaerobiosis for one and three weeks, respectively. During stress condition in plants, hydrogen peroxide is released and mechanisms to detoxify it must be maintained. The cocoyam tubers that were neither damaged nor affected by disease were harvested from a local farm in Ugbogui, Ovia North Local Government Area in Edo State, Nigeria. The selected cocoyam tubers were peeled manually, washed with ice cold water and cut into pieces. The root tissues (50 g) were homogenised with 100 mL of ice cold 0.05 M phosphate buffer. The extract obtained was clarified by centrifugation for 15 min at 8000 g at 4 degrees C. Ascorbate-peroxidising activity was assayed using the initial rate of decrease in ascorbate concentration as measured by its absorbance at 290 nm using Milton Roy Spectron 21D. Results showed the weight of the cormels decreased all through during storage. Immediately after harvest the activity of ascorbate peroxidase was 15.49 unit mL(-1) with a significant increase (p < 0.05) after one week to 73.05 U mL(-1). Thereafter there was a significant decrease in activity of the enzyme after three weeks of storage to 33.33 U mL(-1). This increase in activity of ascorbate peroxidase after three weeks of storage may be related to increase in response to various biotic stresses. Therefore, manipulation of the capacity of cocoyam to tolerate anaerobiosis is a function of its ability to modulate the antioxidant enzymes' armory in case of need. PMID:24783794

  13. Stress protein synthesis and peroxidase activity in a submersed aquatic macrophyte exposed to cadmium

    SciTech Connect

    Siesko, M.M.; Grossfeld, R.M.; Fleming, W.J.

    1997-08-01

    Sago pondweed (Potamogeton pectinatus L.) was exposed to CdCl{sub 2} to evaluate peroxidase (POD) activity and stress protein (SP) synthesis as potential biomarkers of contaminant stress in an aquatic plant. Peroxidase activity did not increase in sago pondweed incubated for 24 h in a liquid culture medium containing 0.5, 0.75, or 1 mM CdCl{sub 2}. By contrast, at each of these CdCl{sub 2} concentrations, SPs of 162, 142, 1122, 82, and 61 kDa were preferentially synthesized, and synthesis of a 66-kDa protein was reduced relative to controls. Peroxidase activity also did not change in sago pondweed rooted for 21 d in agar containing 1 mM CdCl{sub 2}, despite the lower growth rate, lower protein content, and brown discoloration of the plants. Only when the plants were grown 7 or 21 d on agar containing 10 mM CdCl{sub 2} were the growth retardation and phenotypic deterioration accompanied by significantly increased POD activity. In contrast, plants rooted for 7 d in agar containing 1 mM CdCl{sub 2} were not significantly discolored or retarded in growth, yet they preferentially synthesized SPs of 122, 82, and 50 kDa and synthesized proteins of 59 and 52 kDa at reduced rates relative to controls. Similar changes in protein synthesis were accompanied by signs of depressed growth after 21 d of incubation with 1 mM CdCl{sub 2} and with 7 or 21 d of exposure to 10 mM CdCl{sub 2}. These data indicate that changes in SP synthesis may precede detectable alterations in growth of aquatic plants and, therefore, may be a potentially useful early biomarker of contaminant stress. However, further studies will be required to determine whether the SP response is measurable during exposure to environmentally relevant contaminant levels.

  14. Thiol peroxidase is an important component of Streptococcus pneumoniae in oxygenated environments.

    PubMed

    Hajaj, Barak; Yesilkaya, Hasan; Benisty, Rachel; David, Maayan; Andrew, Peter W; Porat, Nurith

    2012-12-01

    Streptococcus pneumoniae is an aerotolerant gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth, S. pneumoniae produces high levels of H(2)O(2). Since S. pneumoniae lacks catalase, the question of how it controls H(2)O(2) levels is of critical importance. The psa locus encodes an ABC Mn(2+)-permease complex (psaBCA) and a putative thiol peroxidase, tpxD. This study shows that tpxD encodes a functional thiol peroxidase involved in the adjustment of H(2)O(2) homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H(2)O(2) efficiently. However, in vivo experiments revealed that TpxD detoxifies only a fraction of the H(2)O(2) generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys(58) undergoes selective oxidation in vivo, under conditions where H(2)O(2) is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesis in vitro were significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H(2)O(2) resulted in tpxD upregulation, while psaBCA expression was oppositely affected. However, the challenge of ΔtpxD mutants with H(2)O(2) did not affect psaBCA, implying that TpxD is involved in the regulation of the psa operon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H(2)O(2). PMID:23027531

  15. Peroxidase-like oxidative activity of a manganese-coordinated histidyl bolaamphiphile self-assembly

    NASA Astrophysics Data System (ADS)

    Kim, Min-Chul; Lee, Sang-Yup

    2015-10-01

    A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol-1, which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments.A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy

  16. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

    NASA Astrophysics Data System (ADS)

    Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine

    The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

  17. Peroxidase-linked assay for detection of antibodies against bovine leukosis virus.

    PubMed

    de Castro, Clarissa C; Nunes, Cristina F; Finger, Paula F; Siedler, Bianca S; Dummer, Luana; de Lima, Marcelo; Leite, Fábio P L; Fischer, Geferson; Vargas, Gilberto D'A; Hübner, Silvia de O

    2013-01-01

    A peroxidase linked assay (PLA) was designed to screen bovine sera for the presence of specific antibodies against bovine leukosis virus (BLV). Out of 201 samples of bovine sera analyzed, 52.2% were considered positive by PLA, 26.4% by AGID, and 38.9% by ELISA. Western blotting analyses excluded 27 samples found to be positive by PLA. PLA showed 100% of sensitivity when compared with AGID and ELISA. Specificity was 64.8% and 78%, respectively (kappa coefficients were 0.70 and 0.83). These findings indicate that PLA can be used as an alternative method for the diagnosis of BLV infection in cattle.

  18. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae

    SciTech Connect

    Stewart, P.; Whitwam, R.E.; Tien, Ming

    1996-03-01

    A manganese peroxidase (mnp1) from Phanerochaete chrysosporium was efficiently expressed in Aspergillus oryzae. Expression was achieved by fusing the mature cDNA of mnp1 with the A. oryzae Taka amylase promoter and secretion signal. The 3{prime} untranslated region of the glucoamylase gene of Asperigillus awamori provided the terminator. The recombinant protein (rMnP) was secreted in an active form, permitting rapid detection and purification. Physical and kinetic properties of rMnP were similar to those of the native protein. The A. oryzae expression system is well suited for both mechanistic and site-directed mutagenesis studies. 34 refs., 7 figs., 1 tab.

  19. An ionizable active-site tryptophan imparts catalase activity to a peroxidase core.

    PubMed

    Loewen, Peter C; Carpena, Xavi; Vidossich, Pietro; Fita, Ignacio; Rovira, Carme

    2014-05-21

    Catalase peroxidases (KatG's) are bifunctional heme proteins that can disproportionate hydrogen peroxide (catalatic reaction) despite their structural dissimilarity with monofunctional catalases. Using X-ray crystallography and QM/MM calculations, we demonstrate that the catalatic reaction of KatG's involves deprotonation of the active-site Trp, which plays a role similar to that of the distal His in monofunctional catalases. The interaction of a nearby mobile arginine with the distal Met-Tyr-Trp essential adduct (in/out) acts as an electronic switch, triggering deprotonation of the adduct Trp.

  20. Erythrocyte glutathione peroxidase in subjects of Mediterranean origin. A family study.

    PubMed

    Gerli, G C; Mongiat, R; Gualandri, V; Orsini, G B; Porta, E

    1984-01-01

    Erythrocyte glutathione peroxidase (GSH-Px) was assayed in subjects of Mediterranean origin and the distribution of the data obtained seems to confirm the existence of two alleles coding for low and high enzyme activity. In order to define the limits of expected genotypes less arbitrarily we studied families where parents' genotypes could allow us to define that of the children. Gene frequencies were calculated from genotype frequencies of an unrelated population and from crossings distribution by the Hardy-Weinberg equation. We observed a good agreement between gene frequencies obtained by these two different methods. PMID:6469259