Science.gov

Sample records for aggregate base material

  1. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  2. Aggregation of a dibenzo[b,def]chrysene based organic photovoltaic material in solution.

    PubMed

    Simonov, Alexandr N; Kemppinen, Peter; Pozo-Gonzalo, Cristina; Boas, John F; Bilic, Ante; Scully, Andrew D; Attia, Adel; Nafady, Ayman; Mashkina, Elena A; Winzenberg, Kevin N; Watkins, Scott E; Bond, Alan M

    2014-06-19

    Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl)dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using (1)H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material.

  3. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II.

  4. Structural concretes with waste-based lightweight aggregates: from landfill to engineered materials.

    PubMed

    De'Gennaro, Roberto; Graziano, Sossio Fabio; Cappelletti, Piergiulio; Colella, Abner; Dondi, Michele; Langella, Alessio; De'Gennaro, Maurizio

    2009-09-15

    This research provides possible opportunities in the reuse of waste and particularly muds, coming from both ornamental stone (granite sludges from sawing and polishing operations) and ceramic production (porcelain stoneware tile polishing sludge), for the manufacture of lightweight aggregates. Lab simulation of the manufacturing cycle was performed by pelletizing and firing the waste mixes in a rotative furnace up to 1300 degrees C, and determining composition and physicomechanical properties of lightweight aggregates. The best formulation was used to produce and test lightweight structural concretes according to standard procedures. Both granite and porcelain stoneware polishing sludges exhibit a suitable firing behavior due to the occurrence of SiC (an abrasive component) which, by decomposing at high temperature with gas release, acts as a bloating promoter, resulting in aggregates with particle density < 1 Mg/m3. However, slight variations of mixture composition produce aggregates with rather different properties, going from values close to those of typical commercial expanded clays (particle density 0.68 Mg/m3; strength of particle 1.2 MPa) to products with high mechanical features (particle density 1.25 Mg/m3; strength of particle 6.9 MPa). The best formulation (50 wt.% porcelain stoneware polishing sludge +50 wt.% granite sawing sludge) was used to successfully manufacture lightweight structural concretes with suitable properties (compressive strength 28 days > 20 MPa, bulk density 1.4-2.0 Mg/m3).

  5. A quantitative method for determining the antiwashout characteristics of cement-based dental materials including mineral trioxide aggregate.

    PubMed

    Formosa, L M; Mallia, B; Camilleri, J

    2013-02-01

    To introduce and assess a novel method for measuring washout resistance of cement-based dental materials, including mineral trioxide aggregate (MTA), to qualitatively verify the results with a clinical simulation and to evaluate the washout resistance of a new root-end filling material. A method for assessment of washout resistance of root-end filling materials was developed by adapting the CRD-C 661-06 (a method for evaluating the resistance of freshly mixed concrete to washout in water), to permit testing of dental cements. White Portland cement (PC), MTA-Plus mixed with either water or a polymer-based antiwashout gel (MTA-AW), MTA-Angelus, IRM and amalgam were tested with either distilled water or HBSS as washout media. Additionally, the washout resistance was tested qualitatively by spraying the test materials at the terminus of simulated canals with a metered jet of water. A mass loss of 2-7% for PC, 0.4-4% for MTA-Plus, -0.9% for MTA-AW, 5-10% for MTA-Angelus and 0% for IRM and amalgam was recorded with the modified CRD-C 661-06 method. No significant difference was found between using water and HBSS as washout media for the same material. The results of the modified CRD-C 661-06 method were similar to those obtained on the simulated canals. The modified CRD-C 661-06 method provided repeatable results that were comparable to the simulated clinical method. The antiwashout gel used with MTA-Plus reduced the material washout and was similar to IRM and amalgam. © 2012 International Endodontic Journal.

  6. Color changes of teeth after treatment with various mineral trioxide aggregate-based materials: an ex vivo study.

    PubMed

    Kang, Shin-Hong; Shin, Young-Seob; Lee, Hyo-Seol; Kim, Seong-Oh; Shin, Yooseok; Jung, Il-Young; Song, Je Seon

    2015-05-01

    Mineral trioxide aggregate (MTA) materials have been used for many years as a pulp therapy material. The most widely used product, ProRoot MTA (Dentsply, Tulsa, OK), has a major drawback in that it causes tooth discoloration. Alternatives have recently been developed such as ENDOCEM Zr (MARUCHI, Wonju, Korea) and RetroMTA (BioMTA, Seoul, Korea). The purpose of this study was to compare the discoloration of these various MTA-based materials. Discoloration of discs prepared from 4 different MTA-based materials (ProRoot MTA, MTA Angelus [Angelus, Londrina, PR, Brazil], ENDOCEM Zr, and RetroMTA) were observed at 15 and 30 minutes after exposure to light at an intensity of 1000 mA/cm(2). In a tooth model, 12 premolars were used per each group to retrofill the pulp chamber with MTA-based materials. The degree of discoloration was measured over a 16-week period using a digital spectrophotometer. Distinct color changes were observed for discs made from ProRoot MTA and MTA Angelus, but no clear change was observed for those made from either ENDOCEM Zr or RetroMTA. In the tooth model, more distinct, time-dependent color changes were observed for teeth filled with ProRoot MTA and MTA Angelus than for those filled with ENDOCEM Zr and RetroMTA. Less discoloration was observed with ENDOCEM Zr and RetroMTA (which contain zirconium oxide) than with ProRoot MTA and MTA Angelus (which contain bismuth oxide) in both of the test models used. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Acid soluble, pepsin resistant platelet aggregating material

    SciTech Connect

    Schneider, M.D.

    1982-08-31

    Disclosed is an acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid. The method of isolation and use to control bleeding are described. 4 figs.

  8. Combined research effort on aggregate road materials

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Hoff, Inge; Willy Danielsen, Svein; Wigum, Børge Johannes; Fladvad, Marit; Rieksts, Karlis; Loranger, Benoit; Barbieri, Diego

    2017-04-01

    In European countries, the average aggregate consumption per capita is 5 tons per year (European Aggregates Association 2016), while the corresponding number in Norway is 11 tons (Neeb 2015). Due to the increased demand for sand and gravel for construction purposes, e.g. in road construction, the last decade has seen a significant trend towards the use of crushed rock aggregates. Neeb (2015) reports that half of the Norwegian aggregate production (sand, gravel and crushed rock) is used for road construction, and 33 % of the overall sold tonnage of crushed rock is exported. This resource has been more and more preferred over sand and gravel due to the significant technological development of its process and utilization phase. In Norway, the development and implementation of crushed aggregate technology has been the main approach to solve natural resource scarcity (Danielsen and Kuznetsova 2015). In order to reduce aggregates transportation, it is aimed to use local aggregates and aggregates processed from rock excavations, tunneling, road cuts, etc. One issue focused in this research is the influence from blasting and processing on the final quality of the crushed aggregates, specifically relating to the properties for road construction purposes. It is therefor crucial to plan utilization of available materials for use in different road layers following the same production line. New developments and improved availability of mobile crushing and screening equipment could produce more sustainable and profitable sources of good quality aggregate materials from small volume deposits in proximity to construction sites. One of the biggest challenges today to use these materials is that the pavement design manual sets rigid requirements for pavement layers. Four research projects are being conducted in Norway to improve the use of local materials for road construction. Four aspects are to be covered by the research: a) geological characteristics of the materials, their b

  9. Thiophene functionalized silicon-containing aggregation-induced emission enhancement materials: applications as fluorescent probes for the detection of nitroaromatic explosives in aqueous-based solutions.

    PubMed

    Wang, Xuefeng; Bian, Jiangyan; Xu, Lichao; Wang, Hua; Feng, Shengyu

    2015-12-28

    Two novel aggregation-induced emission enhancement (AIEE) molecules, namely, 3,4-diphenyl-2,5-di(2-thienyl)phenyltrimethylsilane (DPTB-TMS) and bis[3,4-diphenyl- 2,5-di(2-thienyl)phenyl]methylphenylsilane (DPTB-TMS) were designed and synthesized. The optical properties of the two silanes were completely opposite to the traditional luminescent materials. Unlike the aggregation caused quenching, they all emit faint fluorescence in the dispersed state, while emission intensity increased sharply in aggregate states. Fluorescence spectra showed that the two compounds exhibited AIEE properties and that is due to the weak π-π stacking caused by the restriction of intramolecular rotations of dye segments, particularly the -SiMe3 and thienyl groups in the aggregate state. As fluorescent (FL) probes, the fluorescence quenching behavior was further investigated. Thanks to the richer-electron thiophene groups, both compounds showed good performance in detecting nitroaromatics, especially picric acid (PA). The two AIEE FL probes exhibited better quenching efficiency in aqueous-based than in organic-based solutions. For DPTB-MPS, the addition of 80 μM nitrobenzene, 60 μM m-nitrobenzene and 40 μM PA resulted in about 50% quenching in aqueous solutions. The quenching mechanism would be electron transfer from silanes to nitroaromatics. This work provides a basis for designing organic-silanes with "abnormal" but useful optical properties and FL probes with AIEE properties for the detection of nitroaromatics.

  10. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    PubMed

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λMAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; van der Sloot, Hans A; Petkovic, Gordana

    2017-06-01

    In the present study, the metal leaching from recycled concrete aggregates (RCA) used in road sub-base is presented after >10years of exposure. The released levels of inorganic constituents, the effect of small variation of pH and the use of de-icing salt during winter season were studied. In addition, speciation modelling for the major elements has been provided. The pH varied from 7.5 to 8.5 for the sub-base constructed with RCA whereas the pH of around 8 was obtained for the test section not affected by the traffic and de-icing salts. Despite a small variation in pH, the leachability of Al, Ca and Mg was found to be strongly dependent on pH and fair agreement between the measured and predicted concentrations was obtained. The speciation modelling indicated that gibbsite, calcite and magnesite controlled the solubility of Al, Ca and Mg, respectively, which was in agreement with the expected carbonation products. Due to the larger pH fluctuations in the test sections exposed to the road traffic, increased concentrations were observed for the oxyanions. The same effect was not seen for the trace metal cations Cd, Cu, Ni, Pb and Zn. The distinct pH dependent leaching profile (solubility maximum in the mildly basic pH region) for vanadium could be seen after 10years of exposure. The simplified risk assessment showed that the released quantities did not exceed the chosen acceptance criteria for groundwater and fresh water. The results obtained for the test section not influenced by road dust and de-icing salts, complied with these criteria even without considering any dilution effects caused by the mixing of pore water with groundwater.

  12. Healing after Root-end Microsurgery by Using Mineral Trioxide Aggregate and a New Calcium Silicate–based Bioceramic Material as Root-end Filling Materials in Dogs

    PubMed Central

    Chen, Ian; Karabucak, Bekir; Wang, Cong; Wang, Han-Guo; Koyama, Eiki; Kohli, Meetu R.; Nah, Hyun-Duck; Kim, Syngcuk

    2015-01-01

    Introduction The purpose of this study was to compare healing after root-end surgery by using grey mineral trioxide aggregate (MTA) and EndoSequence Root Repair Material (RRM) as root-end filling material in an animal model. Methods Apical periodontitis was induced in 55 mandibular premolars of 4 healthy beagle dogs. After 6 weeks, root-end surgeries were performed by using modern microsurgical techniques. Two different root-end filling materials were used, grey MTA and RRM. Six months after surgery, healing of the periapical area was assessed by periapical radiographs, cone-beam computed tomography (CBCT), micro computed tomography (CT), and histology. Results Minimal or no inflammatory response was observed in the majority of periapical areas regardless of the material. The degree of inflammatory infiltration and cortical plate healing were not significantly different between the 2 materials. However, a significantly greater root-end surface area was covered by cementum-like, periodontal ligament–like tissue, and bone in RRM group than in MTA group. When evaluating with periapical radiographs, complete healing rate in RRM and MTA groups was 92.6% and 75%, respectively, and the difference was not statistically significant (P = .073). However, on CBCT and micro CT images, RRM group demonstrated significantly superior healing on the resected root-end surface and in the periapical area (P = .000 to .027). Conclusions Like MTA, RRM is a biocompatible material with good sealing ability. However, in this animal model RRM achieved a better tissue healing response adjacent to the resected root-end surface histologically. The superior healing tendency associated with RRM could be detected by CBCT and micro CT but not periapical radiography. PMID:25596728

  13. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  14. Platelet aggregating material from equine arterial tissue

    DOEpatents

    Schneider, Morris D.

    1983-02-22

    Novel hemostatic agent comprises equine arterial fibrillar collagen in a carrier. The agent is useful for the aggregation of platelets for clinical diagnostic tests and for the clotting of blood, such as for controlling bleeding in warm blooded species. The fibrillar collagen is obtained by extracting homogenized equine arterial tissue with aqueous solutions followed by extensive dialysis.

  15. Platelet aggregating material from equine arterial tissue

    SciTech Connect

    Schneider, M.D.

    1983-02-22

    Novel hemostatic agent comprises equine arterial fibrillar collagen in a carrier. The agent is useful for the aggregation of platelets for clinical diagnostic tests and for the clotting of blood, such as for controlling bleeding in warm blooded species. The fibrillar collagen is obtained by extracting homogenized equine arterial tissue with aqueous solutions followed by extensive dialysis. No Drawings

  16. Acid soluble platelet aggregating material isolated from human umbilical cord

    SciTech Connect

    Schneider, M.D.

    1983-12-27

    An acid soluble, pepsin sensitive platelet aggregating material is isolated from human umbilical cord tissue by extraction with dilute aqueous acid. The method of isolation is disclosed and its use to control bleeding is described. 2 figs.

  17. Aggregation and sinking behaviour of resuspended fluffy layer material

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Forster, Stefan

    2005-09-01

    The influence of pelagic diatom addition ( Skeletonema costatum) on aggregation dynamics of resuspended fluffy layer material containing natural microorganism assemblages (bacteria and pennate diatoms) was studied during two roller table experiments. Sediment samples were taken at a fine sand site (16 m water depth) located in Mecklenburg Bight, south-western Baltic Sea. Fluff was experimentally resuspended from sediment cores and aggregation processes with and without S. costatum were studied in rotating tanks. Total particulate matter was incorporated into artificial aggregates in equal shares after both roller table experiments. However, biogenic parameters (particulate organic carbon, particulate organic nitrogen, and carbohydrate equivalents), as well as cell numbers of bacteria and pennate diatoms were found in higher percentages in S. costatum aggregates compared to aggregates without S. costatum. Transparent exopolymer particles were apparently irrelevant in the aggregation process during both experiments. Settling velocities of S. costatum aggregates exceeding 1000 μm in diameter showed a significantly higher mean settling velocity compared to aggregates without S. costatum of the same size. The pronounced effect of pelagic diatoms on aggregation processes of fluff in terms of particle attributes, size, and therewith sinking velocities could be demonstrated and may lead to further insight into near bed particle transport in coastal waters.

  18. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, R.

    1986-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on Earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JCS - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  19. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald

    1987-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JSC - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  20. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    PubMed

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  1. Material Properties of a Tricalcium Silicate-containing, a Mineral Trioxide Aggregate-containing, and an Epoxy Resin-based Root Canal Sealer.

    PubMed

    Prüllage, Raquel-Kathrin; Urban, Kent; Schäfer, Edgar; Dammaschke, Till

    2016-12-01

    The aim was to compare the solubility, radiopacity, and setting times of a tricalcium silicate-containing (BioRoot RCS; Septodont, St Maur-des-Fossés, France) and a mineral trioxide aggregate-containing sealer (MTA Fillapex; Angelus, Londrina, Brazil) with an epoxy resin-based sealer (AH Plus; Dentsply DeTrey, Konstanz, Germany). Solubility in distilled water, radiopacity, and setting time were evaluated in accordance with ISO 6876:2012. The solubility was also measured after soaking the materials in phosphate-buffered saline buffer (PBS). All data were analyzed using 1-way analysis of variance and the Student-Newman-Keuls test. After immersion for 1 minute in distilled water, BioRoot RCS was significantly less soluble than AH Plus and MTA Fillapex (P < .05). At all other exposure times, AH Plus was significantly less soluble than BioRoot RCS, whereas BioRoot RCS was significantly more soluble than the other 2 sealers (P < .05). All sealers had the same solubility in PBS and distilled water, except for BioRoot RCS after 28 days. At this exposure time, BioRoot RCS was significantly less soluble in PBS than in distilled water and less soluble than MTA Fillapex (P < .05). All BioRoot RCS specimens immersed in PBS had a surface precipitate after 14 and 28 days. The radiopacity of all sealers was greater than 3 mm aluminum with no statistical significant difference between the sealers (P > .05). The final setting time was 324 (±1) minutes for BioRoot RCS and 612 (±4) minutes for AH Plus. The difference was statistically significant (P < .05). MTA Fillapex did not set completely even after 1 week. The solubility and radiopacity of the sealers were in accordance with ISO 6876:2012. PBS decreased the solubility of BioRoot RCS. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp(2) hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Perspective: Interactive material property databases through aggregation of literature data

    NASA Astrophysics Data System (ADS)

    Seshadri, Ram; Sparks, Taylor D.

    2016-05-01

    Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.

  4. Aggregation Trade Offs in Family Based Recommendations

    NASA Astrophysics Data System (ADS)

    Berkovsky, Shlomo; Freyne, Jill; Coombe, Mac

    Personalized information access tools are frequently based on collaborative filtering recommendation algorithms. Collaborative filtering recommender systems typically suffer from a data sparsity problem, where systems do not have sufficient user data to generate accurate and reliable predictions. Prior research suggested using group-based user data in the collaborative filtering recommendation process to generate group-based predictions and partially resolve the sparsity problem. Although group recommendations are less accurate than personalized recommendations, they are more accurate than general non-personalized recommendations, which are the natural fall back when personalized recommendations cannot be generated. In this work we present initial results of a study that exploits the browsing logs of real families of users gathered in an eHealth portal. The browsing logs allowed us to experimentally compare the accuracy of two group-based recommendation strategies: aggregated group models and aggregated predictions. Our results showed that aggregating individual models into group models resulted in more accurate predictions than aggregating individual predictions into group predictions.

  5. Mineral trioxide aggregate (MTA)-like materials: an update review.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan; Soltani, Mohammad Karim

    2014-09-01

    Mineral trioxide aggregate (MTA) is a multi-application material used in endodontics. It is a mixture of a refined Portland cement and bismuth oxide and trace amounts of SiO₂, CaO, MgO, K₂SO₄, and Na₂SO₄. MTA powder is mixed with supplied sterile water in a 3:1 powder/liquid. Hydrated MTA has an initial pH of 10.2, which rises to 12.5 three hours after mixing. There are several materials derived from MTA such as Endo-CPM Sealer, Ortho MTA, MTA-Fillapex, DiaRoot BioAggregate, MTA Bio, light-cured MTA, tricalcium silicate, and iRoot SP. The purpose of this article is to review MTA-like materials.

  6. Geobotanical remote sensing for determination of aggregate source material

    NASA Technical Reports Server (NTRS)

    Minor, Timothy; Mouat, David; Myers, Jeff

    1988-01-01

    Aggregate source material suitable for facility and roadbed construction is often a very limited and highly valuable resource. The location of suitable source material is crucial to construction operations once facility requirements are established. The application of airborne and spaceborne remote sensing to terrain information requirements has proved attractive because of the rapid processing time and extensive spatial coverage associated with remotely gathered imagery. Source material identification may be improved by the remote sensing of vegetation associated with the material, particularly in areas of high vegetative cover. A research study employing remote sensing techniques was initiated to determine if vegetation could be used to discriminate parent materials for suitability as aggregate source material. Two test sites representing potential alluvial and residual source areas were selected in a semiarid region of Central California. Methods developed for the study included field observations of vegetation characteristics associated with the two parent material types along with the analysis of Thematic Mapper Simulator data flown over the test sites. The most useful images were those composites that included bands from two of the techniques (i.e., a Perpendicular Vegetation Index (PVI) band combined with principal components bands).

  7. Phosphate sludge: thermal transformation and use as lightweight aggregate material.

    PubMed

    Loutou, M; Hajjaji, M; Mansori, M; Favotto, C; Hakkou, R

    2013-11-30

    Phosphate sludge generated from beneficiation plants of Moroccan phosphate rocks was investigated at 900-1200 °C by X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier-transform infrared spectroscopy. Mixtures of the phosphate sludge and a swelling clay (up to 30 wt.%) were investigated and their properties (shrinkage, density, water absorption and compressive strength) were measured as a function of temperature and clay addition. The results showed that gehlenite neoformed from lime of decomposed carbonates and breakdown products of clay minerals and that fluorapatite (original mineral) resisted heating until fusion. The measured properties were mainly controlled by temperature, and the effect of clay addition was less regular, except for water absorption. Considering the mixtures densities (1.44-3.02 g/cm(3)), lightweight agglomerates can be produced at 900 or 1100 °C, but their compressive strengths were relatively low (2-4.5 MPa). Based on SiO2-Al2O3-Fluxes diagram and taking account of the chemical composition of the materials used, the production of expanded aggregates requires clay additions as high as 80 wt.%.

  8. Stoichiometry and Physical Chemistry of Promiscuous Aggregate-Based Inhibitors

    PubMed Central

    Coan, Kristin E. D.

    2009-01-01

    Many false positives in early drug discovery owe to nonspecific inhibition by colloid-like aggregates of organic molecules. Despite their prevalence, little is known about aggregate concentration, structure, or dynamic equilibrium; the binding mechanism, stoichiometry with, and affinity for enzymes remain uncertain. To investigate the elementary question of concentration, we counted aggregate particles using flow cytometry. For seven aggregate-forming molecules, aggregates were not observed until the concentration of monomer crossed a threshold, indicating a “critical aggregation concentration” (CAC). Above the CAC, aggregate count increased linearly with added organic material, while the particles dispersed when diluted below the CAC. The concentration of monomeric organic molecule is constant above the CAC, as is the size of the aggregate particles. For two compounds that form large aggregates, nicardipine and miconazole, we measured particle numbers directly by flow cytometry, determining that the aggregate concentration just above the CAC ranged from 5 to 30 fM. By correlating inhibition of an enzyme with aggregate count for these two drugs, we determined that the stoichiometry of binding is about 10 000 enzyme molecules per aggregate particle. Using measured volumes for nicardipine and miconazole aggregate particles (2.1 × 1011 and 4.7 × 1010 Å3, respectively), computed monomer volumes, and the observation that past the CAC all additional monomer forms aggregate particles, we find that aggregates are densely packed particles. Finally, given their size and enzyme stoichiometry, all sequestered enzyme can be comfortably accommodated on the surface of the aggregate. PMID:18588298

  9. Stabilized fiber-reinforced pavement base course with recycled aggregate

    NASA Astrophysics Data System (ADS)

    Sobhan, Khaled

    This study evaluates the benefits to be gained by using a composite highway base course material consisting of recycled crushed concrete aggregate, portland cement, fly ash, and a modest amount of reinforcing fibers. The primary objectives of this research were to (a) quantify the improvement that is obtained by adding fibers to a lean concrete composite (made from recycled aggregate and low quantities of Portland cement and/or fly ash), (b) evaluate the mechanical behavior of such a composite base course material under both static and repeated loads, and (c) utilize the laboratory-determined properties with a mechanistic design method to assess the potential advantages. The split tensile strength of a stabilized recycled aggregate base course material was found to be exponentially related to the compacted dry density of the mix. A lean mix containing 4% cement and 4% fly ash (by weight) develops sufficient unconfined compressive, split tensile, and flexural strengths to be used as a high quality stabilized base course. The addition of 4% (by weight) of hooked-end steel fibers significantly enhances the post-peak load-deformation response of the composite in both indirect tension and static flexure. The flexural fatigue behavior of the 4% cement-4% fly ash mix is comparable to all commonly used stabilized materials, including regular concrete; the inclusion of 4% hooked-end fibers to this mix significantly improves its resistance to fatigue failure. The resilient moduli of stabilized recycled aggregate in flexure are comparable to the values obtained for traditional soil-cement mixes. In general, the fibers are effective in retarding the rate of fatigue damage accumulation, which is quantified in terms of a damage index defined by an energy-based approach. The thickness design curves for a stabilized recycled aggregate base course, as developed by using an elastic layer approach, is shown to be in close agreement with a theoretical model (based on Westergaard

  10. Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.

    PubMed

    Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian

    2017-09-26

    The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C10E3) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C10E3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state (1)H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with(1)H-(13)C correlation experiments and different types of (13)C NMR experiments selectively probes mobile or rigid moieties of C10E3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution (1)H{(27)Al} CP-(1)H-(1)H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. (23)Na and (1)H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C10E3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.

  11. Effect of different sintering temperature on fly ash based geopolymer artificial aggregate

    NASA Astrophysics Data System (ADS)

    Abdullah, Alida; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Tahir, Muhammad Faheem Mohd

    2017-04-01

    This research was conducted to study the mechanical and morphology of fly ash based geopolymer as artificial aggregate at different sintering temperature. The raw material that are used is fly ash, sodium hydroxide, sodium silicate, geopolymer artificial aggregate, Ordinary Portland Cement (OPC), coarse aggregate and fine aggregate. The research starts with the preparation of geopolymer artificial aggregate. Then, geopolymer artificial aggregate will be sintered at six difference temperature that is 400°C, 500°C, 600°C, 700°C, 800°C and 900°C to known at which temperature the geopolymer artificial aggregate will become a lightweight aggregate. In order to characterize the geopolymer artificial aggregate the X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF) was done. The testing and analyses involve for the artificial aggregate is aggregate impact test, specific gravity test and Scanning Electron Microscopy (SEM). After that the process will proceed to produce concrete with two type of different aggregate that is course aggregate and geopolymer artificial aggregate. The testing for concrete is compressive strength test, water absorption test and density test. The result obtained will be compared and analyse.

  12. Acid and microhardness of mineral trioxide aggregate and mineral trioxide aggregate-like materials.

    PubMed

    Bolhari, Behnam; Nekoofar, Mohammad Hossein; Sharifian, Mohammadreza; Ghabrai, Sholeh; Meraji, Naghmeh; Dummer, Paul M H

    2014-03-01

    The aim of this study was to compare the surface microhardness of BioAggregate, ProRoot MTA, and CEM Cement when exposed to an acidic environment or phosphate-buffered saline (PBS) as a synthetic tissue fluid. Ninety cylindrical molds made of polymethyl methacrylate with an internal diameter of 6 mm and height of 4 mm (according to ASTM E384 standard for microhardness tests) were fabricated and filled with BioAggregate (n = 30), tooth-colored ProRoot MTA (n = 30), or CEM Cement (n = 30). Each group was then divided into 3 subgroups of 10 specimens consisting of those exposed to distilled water, exposed to PBS (pH = 7.4), or exposed to butyric acid (pH = 5.4). After 1 week the Vickers surface microhardness test was performed. Statistical analysis included 2-way analysis of variance, followed by post hoc Dunnett T3 in cases with lack of homoscedasticity and Tukey honestly significant difference in cases with homoscedasticity. The indentations obtained from the CEM Cement specimens exposed to an acidic pH were not readable because of incomplete setting. There was a significant difference between the microhardness of the materials regardless of the environmental conditions (P < .001). In all the environmental conditions, MTA had significantly higher and CEM Cement had significantly lower microhardness values (P < .001). All experimental cements had significantly higher microhardness values when exposed to PBS (P < .001) and had significantly lower microhardness values when exposed to butyric acid (P < .001). The surface microhardness of BioAggregate, ProRoot MTA, and CEM Cement was reduced significantly by exposure to butyric acid and increased significantly by exposure to PBS. In all environmental conditions, MTA had significantly higher microhardness values. Copyright © 2014 American Association of Endodontists. All rights reserved.

  13. Aggregates: Waste and recycled materials; new rapid evaluation technology. Soils, geology, and foundations; materials and construction. Transportation research record

    SciTech Connect

    Not Available

    1994-01-01

    ;Contents: Engineering Properties of Shredded Tires in Lightweight Fill Applications; Using Recovered Glass as Construction Aggregate Feedstock; Utilization of Phosphogypsum-Based Slag Aggregate in Portland Cement Concrete Mixtures; Waste Foundry Sand in Asphalt Concrete; Toward Automating Size-Gradation Analysis of Mineral Aggregate; Evaluation of Fine Aggregate Angularity Using National Aggregate Association Flow Test; Siliceous Content Determination of Sands Using Automatic Image Analysis; and Methodology for Improvement of Oxide Residue Models for Estimation of Aggregate Performance Using Stoichiometric Analysis.

  14. Efficient Unrestricted Identity-Based Aggregate Signature Scheme

    PubMed Central

    Yuan, Yumin; Zhan, Qian; Huang, Hua

    2014-01-01

    An aggregate signature scheme allows anyone to compress multiple individual signatures from various users into a single compact signature. The main objective of such a scheme is to reduce the costs on storage, communication and computation. However, among existing aggregate signature schemes in the identity-based setting, some of them fail to achieve constant-length aggregate signature or require a large amount of pairing operations which grows linearly with the number of signers, while others have some limitations on the aggregated signatures. The main challenge in building efficient aggregate signature scheme is to compress signatures into a compact, constant-length signature without any restriction. To address the above drawbacks, by using the bilinear pairings, we propose an efficient unrestricted identity-based aggregate signature. Our scheme achieves both full aggregation and constant pairing computation. We prove that our scheme has existential unforgeability under the computational Diffie-Hellman assumption. PMID:25329777

  15. Efficient unrestricted identity-based aggregate signature scheme.

    PubMed

    Yuan, Yumin; Zhan, Qian; Huang, Hua

    2014-01-01

    An aggregate signature scheme allows anyone to compress multiple individual signatures from various users into a single compact signature. The main objective of such a scheme is to reduce the costs on storage, communication and computation. However, among existing aggregate signature schemes in the identity-based setting, some of them fail to achieve constant-length aggregate signature or require a large amount of pairing operations which grows linearly with the number of signers, while others have some limitations on the aggregated signatures. The main challenge in building efficient aggregate signature scheme is to compress signatures into a compact, constant-length signature without any restriction. To address the above drawbacks, by using the bilinear pairings, we propose an efficient unrestricted identity-based aggregate signature. Our scheme achieves both full aggregation and constant pairing computation. We prove that our scheme has existential unforgeability under the computational Diffie-Hellman assumption.

  16. Durability of recycled aggregate concrete using pozzolanic materials.

    PubMed

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  17. Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials.

    PubMed

    Hestand, Nicholas J; Spano, Frank C

    2017-02-21

    The transport and photophysical properties of organic molecular aggregates, films, and crystals continue to receive widespread attention, driven mainly by expanding commercial applications involving display and wearable technologies as well as the promise of efficient, large-area solar cells. The main blueprint for understanding how molecular packing impacts photophysical properties was drafted over five decades ago by Michael Kasha. Kasha showed that the Coulombic coupling between two molecules, as determined by the alignment of their transition dipoles, induces energetic shifts in the main absorption spectral peak and changes in the radiative decay rate when compared to uncoupled molecules. In H-aggregates, the transition dipole moments align "side-by-side" leading to a spectral blue-shift and suppressed radiative decay rate, while in J-aggregates, the transition dipole moments align "head-to-tail" leading to a spectral red-shift and an enhanced radiative decay rate. Although many examples of H- and J-aggregates have been discovered, there are also many "unconventional" aggregates, which are not understood within the confines of Kasha's theory. Examples include nanopillars of 7,8,15,16-tetraazaterrylene, as well as several perylene-based dyes, which exhibit so-called H- to J-aggregate transformations. Such aggregates are typically characterized by significant wave function overlap between neighboring molecular orbitals as a result of small (∼4 Å) intermolecular distances, such as those found in rylene π-stacks and oligoacene herringbone lattices. Wave function overlap facilitates charge-transfer which creates an effective short-range exciton coupling that can also induce J- or H-aggregate behavior, depending on the sign. Unlike Coulomb coupling, short-range coupling is extremely sensitive to small (sub-Å) transverse displacements between neighboring chromophores. For perylene chromophores, the sign of the short-range coupling changes several times as two

  18. Aggregates from natural and recycled sources; economic assessments for construction applications; a materials flow study

    USGS Publications Warehouse

    Wilburn, David R.; Goonan, Thomas G.

    1998-01-01

    Increased amounts of recycled materials are being used to supplement natural aggregates (derived from crushed stone, sand and gravel) in road construction. An understanding of the economics and factors affecting the level of aggregates recycling is useful in estimating the potential for recycling and in assessing the total supply picture of aggregates. This investigation includes a descriptive analysis of the supply sources, technology, costs, incentives, deterrents, and market relationships associated with the production of aggregates.

  19. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  20. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.

    PubMed

    Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S

    2016-09-28

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.

  1. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission

    PubMed Central

    2016-01-01

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. PMID:27725956

  2. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management

    PubMed Central

    Liu, Rui; Coffman, Reid

    2016-01-01

    More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system. PMID:28773734

  3. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management.

    PubMed

    Liu, Rui; Coffman, Reid

    2016-07-23

    More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio's Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow "infiltration" based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900-1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  4. Improvement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base

    PubMed Central

    Garach, Laura; López, Mónica; Agrela, Francisco; Ordóñez, Javier; Alegre, Javier; Moya, José Antonio

    2015-01-01

    Recycled concrete aggregates and mixed recycled aggregates are specified as types of aggregates with lower densities, higher water absorption capacities, and lower mechanical strength than natural aggregates. In this paper, the mechanical behaviour and microstructural properties of natural aggregates, recycled concrete aggregates and mixed recycled aggregates were compared. Different specimens of unbound recycled mixtures demonstrated increased resistance properties. The formation of new cement hydrated particles was observed, and pozzolanic reactions were discovered by electronon microscopy in these novel materials. The properties of recycled concrete aggregates and mixed recycled aggregates suggest that these recycled materials can be used in unbound road layers to improve their mechanical behaviour in the long term. PMID:28793747

  5. Improvement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base.

    PubMed

    Garach, Laura; López, Mónica; Agrela, Francisco; Ordóñez, Javier; Alegre, Javier; Moya, José Antonio

    2015-12-16

    Recycled concrete aggregates and mixed recycled aggregates are specified as types of aggregates with lower densities, higher water absorption capacities, and lower mechanical strength than natural aggregates. In this paper, the mechanical behaviour and microstructural properties of natural aggregates, recycled concrete aggregates and mixed recycled aggregates were compared. Different specimens of unbound recycled mixtures demonstrated increased resistance properties. The formation of new cement hydrated particles was observed, and pozzolanic reactions were discovered by electronon microscopy in these novel materials. The properties of recycled concrete aggregates and mixed recycled aggregates suggest that these recycled materials can be used in unbound road layers to improve their mechanical behaviour in the long term.

  6. Fractal aggregates in reduced gravity experiments and numerical simulations to characterize cometary material properties.

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Hadamcik, Edith; Botet, Robert; Renard, Jean-Baptiste

    In situ missions have shown that cometary dust particles have low densities and are easily fragmenting aggregates [1]. The linear polarization of the solar light scattered by cometary dust corresponds to bell-shaped (with a small negative branch and a maximum below 30%) phase curves with a quasi-linear increase with the wavelength between 30° and 50° phase angle [2]. Such physical properties of the cometary material are reconciled by a fractal model of cometary dust and comet nuclei as formed by aggregation in reduced gravity as studied by laboratory experiments and numerical simulations. Reduced gravity light scattering experiments: The CODAG-LSU experiment (1999) gave the first indication of the light scattering properties transition between single particles and low dimensions fractal aggregates (D 1.3) [3, 4]. Such studies will be pursued on board the ISS with the ICAPS precursor experiment. The PROGRA2 experiment is designed to study the light scattering properties of particles levitated during dedicated microgravity flights or with ground-based configurations [5]. The material properties are chosen so as to be relevant in the context of cosmic dust from cometary and asteroidal origins. It is especially useful to disentangle the effects of varying albedos of constitutive materials [6], shape and size of constitutive grains [7]. Some of the results are interpreted in terms of fractal aggregates growth. Light scattering numerical simulations Based on numerical simulations and in coherence with the experimental results, a model of cometary coma by a mixture of fractal aggregates of up to 256 sub-micron sized spheroidal grains and compact spheroidal particles is shown to reproduce the polarimetric observations of comets such as 1P/Halley or C/1995 O1 Hale-Bopp [8]. Physical parameters of the size distribution of particles (minimum and maximum size, shape of the size distribution and quantity and location of absorbing and non-absorbing particles) can be retrieved

  7. Using new aggregation operators in rule-based intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.

    1990-01-01

    A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.

  8. Using new aggregation operators in rule-based intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.

    1990-01-01

    A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.

  9. An agent-based mathematical model about carp aggregation

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Wu, Chao

    2005-05-01

    This work presents an agent-based mathematical model to simulate the aggregation of carp, a harmful fish in North America. The referred mathematical model is derived from the following assumptions: (1) instead of the consensus among every carps involved in the aggregation, the aggregation of carp is completely a random and spontaneous physical behavior of numerous of independent carp; (2) carp aggregation is a collective effect of inter-carp and carp-environment interaction; (3) the inter-carp interaction can be derived from the statistical analytics about large-scale observed data. The proposed mathematical model is mainly based on empirical inter-carp force field, whose effect is featured with repulsion, parallel orientation, attraction, out-of-perception zone, and blind. Based on above mathematical model, the aggregation behavior of carp is formulated and preliminary simulation results about the aggregation of small number of carps within simple environment are provided. Further experiment-based validation about the mathematical model will be made in our future work.

  10. Utilization of recycled glass as aggregate in controlled low-strength material (CLSM)

    SciTech Connect

    Ohlheiser, T.R.

    1998-10-01

    Incoming glass from curbside recycling programs is successfully being utilized as aggregate replacements. The colored glass that can not be used by local bottle manufacturers is crushed to a {1/2} in. (12.5 mm) material and used in various construction projects. The most successful use of processed glass aggregate (PGA) to date, has been in replacing up to 100% of the aggregate in controlled low-strength material (CLSM). It has proven to be successful and has gained acceptance by contractors in the Boulder, Colorado area.

  11. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    PubMed

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete.

  12. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    SciTech Connect

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-03-15

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.

  13. Data relationship degree-based clustering data aggregation for VANET

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Dave, Mayank

    2016-03-01

    Data aggregation is one of the major needs of vehicular ad hoc networks (VANETs) due to the constraints of resources. Data aggregation in VANET can reduce the data redundancy in the process of data gathering and thus conserving the bandwidth. In realistic applications, it is always important to construct an effective route strategy that optimises not only communication cost but also the aggregation cost. Data aggregation at the cluster head by individual vehicle causes flooding of the data, which results in maximum latency and bandwidth consumption. Another approach of data aggregation in VANET is sending local representative data based on spatial correlation of sampled data. In this article, we emphasise on the problem that recent spatial correlation data models of vehicles in VANET are not appropriate for measuring the correlation in a complex and composite environment. Moreover, the data represented by these models is generally inaccurate when compared to the real data. To minimise this problem, we propose a group-based data aggregation method that uses data relationship degree (DRD). In the proposed approach, DRD is a spatial relationship measurement parameter that measures the correlation between a vehicle's data and its neighbouring vehicles' data. The DRD clustering method where grouping of vehicle's data is done based on the available data and its correlation is presented in detail. Results prove that the representative data using proposed approach have a low distortion and provides an improvement in packet delivery ratio and throughput (up to of 10.84% and 24.82% respectively) as compared to the other state-of-the-art solutions like Cluster-Based Accurate Syntactic Compression of Aggregated Data in VANETs.

  14. Crushed cement concrete substitution for construction aggregates; a materials flow analysis

    USGS Publications Warehouse

    Kelly, Thomas

    1998-01-01

    An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.

  15. Image-Based Analysis of Intracellular Tau Aggregation by Using Tau-BiFC Cell Model.

    PubMed

    Lim, Sungsu; Kim, Dohee; Kim, Dong Jin; Kim, Yun Kyung

    2017-01-01

    Abnormal tau aggregation is a pathological hallmark of neurodegenerative disease classified as tauopathy. Preventing tau aggregation becomes an important therapeutic strategy to cure tau-mediated neurodegeneration. Here, we describe a method to investigate intracellular tau aggregation by using a recently developed tau aggregation cell-based model named tau-BiFC. High-throughput and high-contents screening method for quantifying intracellular tau aggregation would expedite the discovery of drugs that inhibit tau aggregation.

  16. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission Maxwell J. Robb,†,‡,§ Wenle Li,†,§,∥ Ryan C. R...and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...Microscopic damage inevitably leads to failure in polymers and composite materials , but it is difficult to detect without the aid of specialized

  17. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    PubMed

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  18. Benzimidazole Based Aerogel Materials

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell E. (Inventor); Mihalcik, David (Inventor)

    2016-01-01

    The present invention provides aerogel materials based on imidazoles and polyimidazoles. The polyimidazole based aerogel materials can be thermally stable up to 500 C or more, and can be carbonized to produce a carbon aerogel having a char yield of 60% or more, specifically 70% or more. The present invention also provides methods of producing polyimidazole based aerogel materials by reacting at least one monomer in a suitable solvent to form a polybenzimidazole gel precursor solution, casting the polybenzimidazole gel precursor solution into a fiber reinforcement phase, allowing the at least one gel precursor in the precursor solution to transition into a gel material, and drying the gel materials to remove at least a portion of the solvent, to obtain an polybenzimidazole-based aerogel material.

  19. A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

    SciTech Connect

    Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S

    2007-05-31

    Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.

  20. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres.

    PubMed

    Pang, Y; Montagne, K; Shinohara, M; Komori, K; Sakai, Y

    2012-12-01

    To realize long-term in vitro culture of hepatocytes at a high density while maintaining a high hepatic function for aggregate-based liver tissue engineering, we report here a novel culture method whereby endothelialized rat hepatocyte aggregates were formed using a PDMS microwell device and cultured in a perfusion bioreactor by introducing spacers between aggregates to improve oxygen and nutrient supply. Primary rat hepatocyte aggregates around 100 µm in diameter coated with human umbilical vein endothelial cells were spontaneously and quickly formed after 12 h of incubation, thanks to the continuous supply of oxygen by diffusion through the PDMS honeycomb microwell device. Then, the recovered endothelialized rat hepatocyte aggregates were mixed with biodegradable poly-l-lactic acid fibres in suspension and packed into a PDMS-based bioreactor. Perfusion culture of 7 days was successfully achieved with more than 73.8% cells retained in the bioreactor. As expected, the fibres acted as spacers between aggregates, which was evidenced from the enhanced albumin production and more spherical morphology compared with fibre-free packing. In summary, this study shows the advantages of using PDMS-based microwells to form heterotypic aggregates and also demonstrates the feasibility of spacing tissue elements for improving oxygen and nutrient supply to tissue engineering based on modular assembly.

  1. Compression-based aggregation model for medical web services.

    PubMed

    Al-Shammary, Dhiah; Khalil, Ibrahim

    2010-01-01

    Many organizations such as hospitals have adopted Cloud Web services in applying their network services to avoid investing heavily computing infrastructure. SOAP (Simple Object Access Protocol) is the basic communication protocol of Cloud Web services that is XML based protocol. Generally,Web services often suffer congestions and bottlenecks as a result of the high network traffic that is caused by the large XML overhead size. At the same time, the massive load on Cloud Web services in terms of the large demand of client requests has resulted in the same problem. In this paper, two XML-aware aggregation techniques that are based on exploiting the compression concepts are proposed in order to aggregate the medical Web messages and achieve higher message size reduction.

  2. Reactions of connective tissue to amalgam, intermediate restorative material, mineral trioxide aggregate, and mineral trioxide aggregate mixed with chlorhexidine.

    PubMed

    Sumer, Mahmut; Muglali, Mehtap; Bodrumlu, Emre; Guvenc, Tolga

    2006-11-01

    The aim of this study was to histopathologically examine the biocompatibility of the high-copper amalgam, intermediate restorative material (IRM), mineral trioxide aggregate (MTA), and MTA mixed with chlorhexidine (CHX). This study was conducted to observe the rat subcutaneous connective tissue reaction to the implanted tubes filled with amalgam, IRM, MTA, and MTA mixed with CHX. The animals were sacrificed 15, 30, and 60 days after the implantation procedure. The implant sites were excised and prepared for histological evaluation. Sections of 5 to 6 microm thickness were cut by a microtome and stained with hemotoxylin eosin and examined under a light microscope. The inflammatory reactions were categorized as weak (none or few inflammatory cells < or =25 cells), moderate (>25 cells), and severe (a lot of inflammatory cells not to be counted, giant cells, and granulation tissue). Thickness of fibrous capsules measured five different areas by the digital imaging and the mean values were scored. Amalgam, IRM, and MTA mixed with CHX caused a weak inflammatory response on days 15, 30, and 60. MTA provoked an initial severe inflammatory response that subsided at the 30 and 60 day study period. A clear fibrous capsule was observed beginning from the 15 days in all of the groups. Within the limits of this study, amalgam, IRM, MTA, and MTA mixed with CHX materials were surrounded by fibrous connective tissue indicated that they were well tolerated by the tissues, therefore, MTA/CHX seemed to be biocompatible.

  3. New platelet aggregation inhibitors based on pyridazinone moiety.

    PubMed

    Costas, Tamara; Costas-Lago, María Carmen; Vila, Noemí; Besada, Pedro; Cano, Ernesto; Terán, Carmen

    2015-04-13

    New series of pyridazinone derivatives (4, 5 and 6) were synthesized in good yields following a synthetic strategy based on singlet oxygen oxidation of alkyl furans, in which a suitable β(α)-substituted γ-hydroxybutenolide (10 or 11) or a bicyclic lactone (12 or 13) was the key intermediate. The synthesized compounds were tested in vitro as antiplatelet agents and some of them (compounds 4b, 4d and 5b) exhibited potent inhibitory effects on collagen-induced platelet aggregation with IC50 values in the low μM range. Studies performed with the most active compound of these series (4b) demonstrated its lack of activity as inhibitor of platelet aggregation induced by other agonists as thrombin, ionomycin or U-46619 suggesting a selective action on the biochemical mechanisms triggered by collagen in the platelets.

  4. Aggregation Pheromone System: A Real-parameter Optimization Algorithm using Aggregation Pheromones as the Base Metaphor

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shigeyosi

    This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.

  5. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOEpatents

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  6. LDEF materials data bases

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  7. The influence of nickel slag aggregate concentration to compressive and flexural strength on fly ash-based geopolymer composite

    NASA Astrophysics Data System (ADS)

    Sujiono, E. H.; Setiawan, A.; Husain, H.; Irhamsyah, A.; Samnur, S.; Subaer, S.

    2016-04-01

    Fly ash-based geopolymer with nickel slag aggregate has been successfully produced. Fly ash and nickel slag were obtained from Bosowa Jeneponto Power Plant and PT. Vale Indonesia, respectively. This research aims to investigate the influence of nickel slag concentration to compressive strength, flexural strength, and microstructure of geopolymer composite. The increment of nickel slag aggregate on fly ash was relative to the weight of samples. Geopolymer composite were synthesized by using alkali activated method, cured at temperature of 70 °C for 1 hour. The resulting composites were left at room temperature for 14 days, before compressive and flexural strength were performed. The results showed that the addition of nickel slag aggregate was found to increase the compressive strength of the material. The optimum compressive strength was 14.81 MPa with the addition of 10% aggregate. The optimum flexural strength was 2.63 MPa with the addition of 15% aggregate.

  8. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    NASA Astrophysics Data System (ADS)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  9. Effect of acidic environment on dislocation resistance of endosequence root repair material and mineral trioxide aggregate.

    PubMed

    Shokouhinejad, Noushin; Yazdi, Kazem Ashofteh; Nekoofar, Mohammad Hossein; Matmir, Shakiba; Khoshkhounejad, Mehrfam

    2014-03-01

    The aim of this study was to compare the effect of an acidic environment on dislocation resistance (push-out bond strength) of EndoSequence Root Repair Material (ERRM putty and ERRM paste), a new bioceramic-based material, to that of mineral tri-oxide aggregate (MTA). One-hundred twenty root dentin slices with standardized canal spaces were divided into 6 groups (n = 20 each) and filled with tooth-colored ProRoot MTA (groups 1 and 2), ERRM putty (groups 3 and 4), or ERRM paste (groups 5 and 6). The specimens of groups 1, 3, and 5 were exposed to phosphate buffered saline (PBS) solution (pH=7.4) and those of groups 2, 4, and 6 were exposed to butyric acid (pH= 4.4). The specimens were then incubated for 4 days at 37°C. The push-out bond strength was then measured using a universal testing machine. Failure modes after the push-out test were examined under a light microscope at ×40 magnification. The data for dislocation resistance were analyzed using the t-test and one-way analysis of variance. In PBS environment (pH=7.4), there were no significant differences among materials (P=0.30); but the mean push-out bond strength of ERRM putty was significantly higher than that of other materials in an acidic environment (P<0.001). Push-out bond strength of MTA and ERRM paste decreased after exposure to an acidic environment; whereas ERRM putty was not affected by acidic pH. The bond failure mode was predominantly cohesive for all groups except for MTA in an acidic environment; which showed mixed bond failure in most of the specimens. The force needed for dislocation of MTA and ERRM paste was significantly lower in samples stored in acidic pH; however, push-out bond strength of ERRM putty was not influenced by acidity.

  10. Replacement of Fine Aggregate by using Recyclable Materials in Paving Blocks

    NASA Astrophysics Data System (ADS)

    Koganti, Shyam Prakash; Hemanthraja, Kommineni; Sajja, Satish

    2017-08-01

    Cement concrete paving blocks are precast hard products complete out of cement concrete. The product is made in various sizes and shapes like square, round and rectangular blocks of different dimensions with designs for interlocking of adjacent tiles blocks. Several Research Works have been carried out in the past to study the possibility of utilizing waste materials and industrial byproducts in the manufacturing of paver blocks. Various industrial waste materials like quarry dust, glass powder, ceramic dust and coal dust are used as partial replacement of fine aggregate and assessed the strength parameters and compared the profit percentages after replacement with waste materials. Quarry dust can be replaced by 20% and beyond that the difference in strength is not much higher but considering cost we can replace upto 40% so that we can get a profit of almost 10%. Similarly we can replace glass powder and ceramic dust by 20% only beyond that there is decrement in strength and even with 20% replacement we can get 1.34 % and 2.42% of profit. Coal dust is not suitable for alternative material as fine aggregate as it reduces the strength.

  11. Charge Photogeneration Experiments and Theory in Aggregated Squaraine Donor Materials for Improved Organic Solar Cell Efficiencies

    NASA Astrophysics Data System (ADS)

    Spencer, Susan Demetra

    Fossil fuel consumption has a deleterious effect on humans, the economy, and the environment. Renewable energy technologies must be identified and commercialized as quickly as possible so that the transition to renewables can happen at a minimum of financial and societal cost. Organic photovoltaic cells offer an inexpensive and disruptive energy technology, if the scientific challenges of understanding charge photogeneration in a bulk heterojunction material can be overcome. At RIT, there is a strong focus on creating new materials that can both offer fundamentally important scientific results relating to quantum photophysics, and simultaneously assist in the development of strong candidates for future commercialized technology. In this presentation, the results of intensive materials characterization of a series of squaraine small molecule donors will be presented, as well as a full study of the fabrication and optimization required to achieve >4% photovoltaic cell efficiency. A relationship between the molecular structure of the squaraine and its ability to form nanoscale aggregates will be explored. Squaraine aggregation will be described as a unique optoelectronic probe of the structure of the bulk heterojunction. This relationship will then be utilized to explain changes in crystallinity that impact the overall performance of the devices. Finally, a predictive summary will be given for the future of donor material research at RIT.

  12. Blind Image Quality Assessment based on High Order Statistics Aggregation.

    PubMed

    Xu, Jingtao; Ye, Peng; Li, Qiaohong; Du, Haiqing; Liu, Yong; Doermann, David

    2016-06-28

    Blind image quality assessment (BIQA) research aims to develop a perceptual model to evaluate the quality of distorted images automatically and accurately without access to the non-distorted reference images. State-of-the-art general purpose BIQA methods can be classified into two categories according to the types of features used. The first includes handcrafted features which rely on the statistical regularities of natural images. These, however, are not suitable for images containing text and artificial graphics. The second includes learning based features which invariably require large codebook or supervised codebook updating procedures to obtain satisfactory performance. These are time consuming and not applicable in practice. In this paper, we propose a novel general purpose BIQA method based on High Order Statistics Aggregation (HOSA), requiring only a small codebook. HOSA consists of three steps. First, local normalized image patches are extracted as local features through a regular grid and a codebook containing 100 codewords is constructed by K-means clustering. In addition to the mean of each cluster, the diagonal covariance and coskewness (i.e., dimension wise variance and skewness) of clusters are also calculated. Second, each local feature is softly assigned to several nearest clusters and the differences of high order statistics (mean, variance and skewness) between local features and corresponding clusters are softly aggregated to build the global quality aware image representation. Finally, support vector regression (SVR) is adopted to learn the mapping between perceptual features and subjective opinion scores. The proposed method has been extensively evaluated on ten image databases with both simulated and realistic image distortions, and shows highly competitive performance to state-of-the-art BIQA methods.

  13. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials.

    PubMed

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots--along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20-80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations ofpolycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production.

  14. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing.

    PubMed

    Kueltzo, Lisa A; Wang, Wei; Randolph, Theodore W; Carpenter, John F

    2008-05-01

    Freeze-thawing is a potentially damaging stress to which therapeutic proteins can be exposed deliberately during storage of bulk drug substance, and accidentally because of mishandling of commercial product during shipping and/or storage. The primary route of degradation induced by freeze-thawing is protein aggregation. We studied the effects of freeze-thawing on aggregation of an IgG2 monoclonal antibody, examining solution conditions (pH, and the presence or absence of 150 mM KCl), protein concentration, cooling and warming rates, and container type and material. In addition, we determined the effect of pH and KCl on protein tertiary structure and thermal stability with second derivative UV spectroscopy. In general, aggregation of the antibody during freeze-thawing increased with decreasing pH, which correlated well with Tm values. Aggregation was most prevalent at pH 3 and 4, with potential mechanisms involving both the formation of aggregation-prone conformational states as well as adsorption to and denaturation at various interfaces. Although all the parameters examined demonstrated some effect on the formation of soluble aggregates, the effect of container material was especially pronounced. Samples stressed in plastic or glass containers contained low amounts of aggregate. Storage in Teflon or commercial freezing containers, however, led to significantly higher levels of aggregate formation.

  15. Applying a new procedure to assess the controls on aggregate stability - including soil parent material and soil organic carbon concentrations - at the landscape scale

    NASA Astrophysics Data System (ADS)

    Turner, Gren; Rawlins, Barry; Wragg, Joanna; Lark, Murray

    2014-05-01

    sampling locations were selected based on the quantities of SOC from previous analysis (on samples collected at sites across the entire region). We chose the samples to encompass a wide range of SOC concentrations (1.2-7%) within each of six strongly contrasting soil parent material (PM) groups (sandstone, mudstone, clay, chalk, limestone and marine alluvium). The DR values (calculated using re-scaled size distributions for particle diameters < 500 µm) ranged from 17 to 151 µm. The co-efficient of variation for DR analyses using fourteen aliquots of the RM was reasonably small (21 %). The PM groups accounted for a larger proportion of the variation in DR than SOC concentrations; together they accounted for around 50% of the variation in DR values. There was no evidence to include an interaction term between PM and SOC concentration. The proportion of clay-sized particles in the material after sonication was not a statistically significant predictor of DR. Pre-wetting the aggregates typically resulted in substantially smaller values of DR by comparison to using air-dried aggregates in our test. We suggest that the effects of differential clay swelling as a disruptive force during the wetting stage are greater than those associated with slaking (fragmentation due to trapped air). We believe this rapid (duration after the wetting procedure is 10 minutes), reproducible test could could be an effective means to monitor changes in this important soil property and improve predictions of soil erosion. Reference: Rawlins, B. G., Wragg, J. & Lark, R. M. 2012. Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. European Journal of Soil Science, 64, 92-103.

  16. Cytotoxicity of calcium enriched mixture cement compared with mineral trioxide aggregate and intermediate restorative material.

    PubMed

    Mozayeni, Mohammad A; Milani, Amin S; Marvasti, Laleh A; Asgary, Saeed

    2012-08-01

    Calcium enriched mixture (CEM) cement has been recently invented by the last author. It is composed of calcium oxide, calcium phosphate, calcium silicate and calcium sulphate; however, it has a different chemical composition to mineral trioxide aggregate (MTA). The purpose of this ex vivo study was to investigate the cytotoxicity of CEM cement, and compare it with intermediate restorative material (IRM) and MTA. The materials were tested in fresh and set states on L929 fibroblasts to assess their cytotoxicity. The cell viability responses were evaluated with methyl-tetrazolium bromide assay and Elisa reader at 1, 24 and 168 h (7 days). The tested materials were eluted with L929 culture medium according to international standard organisation 109935 standard. Distilled water and culture medium served as positive and negative controls, respectively. Differences in cytotoxicity were evaluated by one-way anova and t-tests. The cytotoxicity of the materials was statistically different at the three time intervals (P < 0.01). The lowest cytotoxic values recorded were expressed by MTA subgroups followed by CEM cement; IRM subgroups were the most cytotoxic root-end/dental material (P < 0.001). CEM cement and MTA are reasonable alternatives to IRM because of lower cytotoxicity. CEM cement also has good biocompatibility as well as lower estimated cost to MTA and seems to be a promising dental material.

  17. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  18. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    PubMed Central

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-01-01

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw. PMID:28788605

  19. Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Song, Chunyan; Xu, Xiaping; Xia, Jiaojiao; Huo, Shuhao; Cui, Fengjie

    2014-08-01

    Mesoporous material SBA-15 as the matrix and hydrophilic methyl imidazolium ionic liquids [MSiIM]+BF4- as modifier were involved in preparing ionic liquid modified materials as enzyme carriers through after-grafting silane coupling reaction. The method of enzyme aggregates coating was firstly used to immobilize porcine pancreatic lipase (PPL) onto ionic liquid modified SBA-15. Characterization before and after modification and immobilization were conducted using infrared spectroscopy (FT-IR), differential thermal-thermal analysis (DTA-TG) and N2 adsorption-desorption method (BET). The results indicated that the ordering degree of SBA-15 declined after ionic liquid modification, but mesoporous structure remained. After enzyme immobilization, pore size and specific surface area of carrier became smaller. The cross-linking agent amount, reaction temperature and pH were optimized in this paper. The result demonstrated that the initial activity of enzyme was raised from 35% to 53% after five times recycle by enzyme aggregate coating. 74% of the original activity remained after 25 days storage.

  20. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  1. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  2. A Secure-Enhanced Data Aggregation Based on ECC in Wireless Sensor Networks

    PubMed Central

    Zhou, Qiang; Yang, Geng; He, Liwen

    2014-01-01

    Data aggregation is an important technique for reducing the energy consumption of sensor nodes in wireless sensor networks (WSNs). However, compromised aggregators may forge false values as the aggregated results of their child nodes in order to conduct stealthy attacks or steal other nodes' privacy. This paper proposes a Secure-Enhanced Data Aggregation based on Elliptic Curve Cryptography (SEDA-ECC). The design of SEDA-ECC is based on the principles of privacy homomorphic encryption (PH) and divide-and-conquer. An aggregation tree disjoint method is first adopted to divide the tree into three subtrees of similar sizes, and a PH-based aggregation is performed in each subtree to generate an aggregated subtree result. Then the forged result can be identified by the base station (BS) by comparing the aggregated count value. Finally, the aggregated result can be calculated by the BS according to the remaining results that have not been forged. Extensive analysis and simulations show that SEDA-ECC can achieve the highest security level on the aggregated result with appropriate energy consumption compared with other asymmetric schemes. PMID:24732099

  3. A secure-enhanced data aggregation based on ECC in wireless sensor networks.

    PubMed

    Zhou, Qiang; Yang, Geng; He, Liwen

    2014-04-11

    Data aggregation is an important technique for reducing the energy consumption of sensor nodes in wireless sensor networks (WSNs). However, compromised aggregators may forge false values as the aggregated results of their child nodes in order to conduct stealthy attacks or steal other nodes' privacy. This paper proposes a Secure-Enhanced Data Aggregation based on Elliptic Curve Cryptography (SEDA-ECC). The design of SEDA-ECC is based on the principles of privacy homomorphic encryption (PH) and divide-and-conquer. An aggregation tree disjoint method is first adopted to divide the tree into three subtrees of similar sizes, and a PH-based aggregation is performed in each subtree to generate an aggregated subtree result. Then the forged result can be identified by the base station (BS) by comparing the aggregated count value. Finally, the aggregated result can be calculated by the BS according to the remaining results that have not been forged. Extensive analysis and simulations show that SEDA-ECC can achieve the highest security level on the aggregated result with appropriate energy consumption compared with other asymmetric schemes.

  4. Ru(II)-based metallosurfactant forming inverted aggregates.

    PubMed

    Domínguez-Gutiérrez, David; Surtchev, Marko; Eiser, Erika; Elsevier, Cornelis J

    2006-02-01

    Knowing the advantages of incorporating a transition metal into interfaces, we report on the first inverted aggregates formed using metallosurfactants. The metallosurfactant possesses four long linear tails that account for the shielding of the polar headgroup in apolar solvents. The nature of the so-formed aggregates changes dramatically from inverted vesicles (toluene) to inverted micelles (hexane). The size of the aggregates was determined using dynamic light scattering. Atomic force microscopy allowed us to study the dry structure of the vesicles on a glass surface.

  5. Power Hydrogen Evaluation of Apexification Materials: EndoCal 10, Mineral Trioxide Aggregate and Calasept Plus.

    PubMed

    Çiçek, Ersan; Bodrumlu, Emre

    2015-06-01

    The present study was to evaluate pH values of apexification materials. The materials were placed in 1 cm long and 4 mm diameter tubes. After sample immersion, glass flasks were hermetically sealed with rubber caps to attenuate any effects of external environmental factors and maintained at 37°C. The power hydrogen of the pastes was measured 1 hour, 3 hours, 8 hours, 24 hours, 72 hours and 7 days after preparation. pH was calibrated with solutions of known pH (7.0). Mann-Whitney test were used to determine significant differences. The mean pH of all medications was < 12.0 throughout the experiment. At 24 hours, EndoCal 10 had the highest pH of all the materials (p < 0.05). According to the results obtained, it may be concluded that calcium oxide (EndoCal 10) presented the highest pH compared with mineral trioxide aggregate (MTA) and Calasept Plus [Ca(OH)2]. Apexification is an important treatment in immature teeth. For this reason, used materials in apexification should have some properties, such as high pH and stimulating to be hard tissue. Therefore, the material should be chosen carefully in apexification of immature teeth.

  6. Evolution of an Aggregate-Based Community Health Curriculum.

    ERIC Educational Resources Information Center

    Segall, Mary; McKay, Rose

    1984-01-01

    Discusses the graduate program in community health nursing at the University of Colorado that is structured according to the aggregate/family and group model. Describes the development of the program and its evaluation. (JOW)

  7. Conformation-based assay of tau protein aggregation.

    PubMed

    Fichou, Yann; Eschmann, Neil A; Keller, Timothy J; Han, Songi

    2017-01-01

    Amyloid fiber-forming proteins are predominantly intrinsically disordered proteins (IDPs). The protein tau, present mostly in neurons, is no exception. There is a significant interest in the study of tau protein aggregation mechanisms, given the direct correlation between the deposit of β-sheet structured neurofibrillary tangles made of tau and pathology in several neurodegenerative diseases, including Alzheimer's disease. Among the core unresolved questions is the nature of the initial step triggering aggregation, with increasing attention placed on the question whether a conformational change of the IDPs plays a key role in the early stages of aggregation. Specifically, there is growing evidence that a shift in the conformation ensemble of tau is involved in its aggregation pathway, and might even dictate structural and pathological properties of mature fibers. Yet, because IDPs lack a well-defined 3D structure and continuously exchange between different conformers, it has been technically challenging to characterize their structural changes on-pathway to aggregation. Here, we make a case that double spin labeling of the β-sheet stacking region of tau combined with pulsed double electron-electron resonance spectroscopy is a powerful method to assay conformational changes occurring during the course of tau aggregation, by probing intramolecular distances around aggregation-prone domains. We specifically demonstrate the potential of this approach by presenting recent results on conformation rearrangement of the β-sheet stacking segment VQIINK (known as PHF6*) of tau. We highlight a canonical shift of the conformation ensemble, on-pathway and occurring at the earliest stage of aggregation, toward an opening of PHF6*. We expect this method to be applicable to other critical segments of tau and other IDPs. © 2017 Elsevier Inc. All rights reserved.

  8. Modeling Aggregation-Fragmentation Processes Based on Nonlinear Collision Dynamics

    NASA Astrophysics Data System (ADS)

    Manning, A. J.; Sahin, C.; Sheremet, A.

    2016-12-01

    Accurate estimations of the transport of cohesive sediment depend crucially on prediction of floc size and settling velocities. Understanding the hydrodynamic properties of flocs (e.g., settling velocity), which differ significantly from those of the primary particles, is complicated by the complex structure of the floc and its high sensitivity to hydrodynamic forcing. Highly variable properties of mud flocs (e.g., their size, density and strength) affect the settling velocity and hence the vertical and lateral transport. Flocs in suspension experience various mechanical processes such as aggregation, fragmentation, repacking, as well as remineralization. So far, modeling the details of this mechanical processes remains a challenge. Here, we derive a fundamental nonlinear evolution equation for aggregation and fragmentation of suspended cohesive particles. The equation includes terms due to arbitrary-order (number of particles) interactions. It is assumed that processes of aggregation/dis-aggregation are effective over a characteristic macroscopic time scale TM, much larger than the characteristic time Tm of collisions (TM >> Tm). Therefore, the details of the collision process are not resolved. The proposed model includes the processes of aggregation and fragmentation due to particle collisions and turbulent shear, aggregation due to differential settling, describing the evolution of the floc size in the water column. Size classes are implicitly described using the aggregate number and mass as state variables. The approach combines a structural description of interactions between different-sized aggregates. Model behaviour and sensitivity on the parameters defined to represent the collision efficiency and frequency, the initial floc size distribution and the primary particle size were investigated. Field observations of waves-currents, optical and acoustic backscatter suspended sediment concentrations, and the optical particle size distributions made on the

  9. A Histological Comparison of a New Pulp Capping Material and Mineral Trioxide Aggregate in Rat Molars

    PubMed Central

    Moazzami, Fariborz; Ghahramani, Yasmin; Tamaddon, Ali Mohammad; Dehghani Nazhavani, Ali; Adl, Alireza

    2014-01-01

    Introduction: Recent investigations have attempted to improve regenerative endodontics with the help of stem cell therapy. In vitro studies have shown the ability of different agents to stimulate the differentiation of dental pulp stem cells (DPSC) into odontoblast-like cells. A combination of dexamethasone, β-glycerophosphate and Vitamin D has been proven to induce a successful differentiation. The aim of this animal study was to evaluate the effect of this combination, named odontoblastic differentiating material (ODM), on pulp tissue when used as a capping material. Materials and Methods: Sixty maxillary right and left molars of 30 Sprague-dawley rats were selected for this study. The teeth were exposed under sterile condition. Half of the teeth were capped with mineral trioxide aggregate (MTA) and the other half with ODM. All cavities were restored with glass ionomer. The rats were sacrificed at post-operative intervals of 2 weeks and 2 months. Samples were histologically evaluated for the degree of inflammation and reparative dentin formation. Finally the data was analyzed with Mann-Whitney and Chi-Square tests. Results: Reparative dentin formed in all groups within both time periods and there was no statistically significant difference between the groups in the mentioned time periods. The MTA group, however, showed a statistically significant reduction in inflammation at both time intervals (P<0.05). Compared to MTA, ODM samples showed a greater amount of inflammation in the pulp tissue. Conclusion: ODM, as a pulp capping material, can induce dentinal bridge formation. PMID:24396376

  10. Marginal Adaptation of New Bioceramic Materials and Mineral Trioxide Aggregate: A Scanning Electron Microscopy Study

    PubMed Central

    Shokouhinejad, Noushin; Nekoofar, Mohmmad Hossein; Ashoftehyazdi, Kazem; Zahraee, Shohreh; Khoshkhounejad, Mehrfam

    2014-01-01

    Introduction: This study aimed to compare the marginal adaptation of new bioceramic materials, EndoSequence Root Repair Material (ERRM putty and ERRM paste), to that of mineral trioxide aggregate (MTA) as root-end filling materials. Materials and Methods: Thirty-six extracted human single-rooted teeth were prepared and obturated with gutta-percha and AH-26 sealer. The roots were resected 3 mm from the apex. Root-end cavities were then prepared with an ultrasonic retrotip. The specimens were divided into three groups (n=12) and filled with MTA, ERRM putty or ERRM paste. Epoxy resin replicas from the resected root-end surfaces and longitudinally sectioned roots were fabricated. The gaps at the material/dentin interface were measured using scanning electron microscope (SEM). Transversal, longitudinal, and overall gap sizes were measured for each specimen. The data were analyzed using the Kruskal-Wallis test. Results: In transversal sections, no significant difference was found between MTA, ERRM putty and ERRM paste (P=0.31). However, in longitudinal sections, larger gaps were evident between ERRM paste and dentinal walls compared to MTA and ERRM putty (P=0.002 and P=0.033, respectively). Considering the overall gap size values, the difference between three tested materials was not statistically significant (P=0.17). Conclusion: Within the limits of this study, the marginal adaptation of ERRM paste and putty was comparable to that of MTA. However, ERRM putty might be more suitable for filling the root-end cavities because of its superior adaptation compared to ERRM paste in longitudinal sections. PMID:24688585

  11. Polarized Supramolecular Aggregates Based on Luminescent Perhalogenated Gold Derivatives.

    PubMed

    Gavara, Raquel; Pinto, Andrea; Donamaría, Rocío; Olmos, M Elena; López de Luzuriaga, José M; Rodríguez, Laura

    2017-10-02

    The reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 1,3,5-triaza-7-phosphaadamantane (PTA) and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) leads to the formation of [Au(C6F5)(phosph)] (phosph = PTA, 1; phosph = DAPTA, 2). The compounds are slightly soluble in water and aggregate at higher concentrations, giving rise to the formation of needle- and rodlike structures (1) and well-organized spherical aggregates (2). Compounds 1 and 2 were reacted with AgPF6, giving rise to the formation in all cases of luminescent water-soluble 1:1 Au···Ag heterometallic complexes, as evidenced by X-ray crystal structure determination. The use of different silver salts that differ on the counterion induces changes in the resulting luminescence and aggregation morphology.

  12. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials

    NASA Astrophysics Data System (ADS)

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-05-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  13. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials.

    PubMed

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-01-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  14. Pyrene Schiff base: photophysics, aggregation induced emission, and antimicrobial properties.

    PubMed

    Kathiravan, Arunkumar; Sundaravel, Karuppasamy; Jaccob, Madhavan; Dhinagaran, Ganesan; Rameshkumar, Angappan; Arul Ananth, Devanesan; Sivasudha, Thilagar

    2014-11-26

    Pyrene containing Schiff base molecule, namely 4-[(pyren-1-ylmethylene)amino]phenol (KB-1), was successfully synthesized and well characterized by using (1)H, (13)C NMR, FT-IR, and EI-MS spectrometry. UV-visible absorption, steady-state fluorescence, time-resolved fluorescence, and transient absorption spectroscopic techniques have been employed to elucidate the photophysical processes of KB-1. It has been demonstrated that the absorption characteristics of KB-1 have been bathochromatically tuned to the visible region by extending the π-conjugation. The extended π-conjugation is evidently confirmed by DFT calculations and reveals that π→π* transition is the major factor responsible for electronic absorption of KB-1. The photophysical property of KB-1 was carefully examined in different organic solvents at different concentrations and the results show that the fluorescence of this molecule is completely quenched due to photoinduced electron transfer. Intriguingly, the fluorescence intensity of KB-1 increases enormously by the gradual addition of water up to 90% with concomitant increase in fluorescence lifetime. This clearly signifies that this molecule has aggregation-induced emission (AIE) property. The mechanism of AIE of this molecule is suppression of photoinduced electron transfer (PET) due to hydrogen bonding interaction of imine donor with water. A direct evidence of PET process has been presented by using nanosecond transient absorption measurements. Further, KB-1 was successfully used for antimicrobial and bioimaging studies. The antimicrobial studies were carried out through disc diffusion method. KB-1 is used against both Gram-positive (Rhodococcus rhodochrous and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial species and also fungal species (Candida albicans). The result shows KB-1 can act as an excellent antimicrobial agent and as a photolabeling agent. S. aureus, P. aeruginosa, and C. albicans

  15. The applicability of different waste materials for the production of lightweight aggregates.

    PubMed

    Ducman, V; Mirtic, B

    2009-08-01

    The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO(2) were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 degrees C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy. With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 degrees C homogeneously porous granules with a density down to 0.42 g/cm(3) were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 degrees C densities from 0.57 to 0.82 g/cm(3) were obtained.

  16. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars.

    PubMed

    Moazzami, Fariborz; Ghahramani, Yasmin; Tamaddon, Ali Mohammad; Dehghani Nazhavani, Ali; Adl, Alireza

    2014-01-01

    Recent investigations have attempted to improve regenerative endodontics with the help of stem cell therapy. In vitro studies have shown the ability of different agents to stimulate the differentiation of dental pulp stem cells (DPSC) into odontoblast-like cells. A combination of dexamethasone, β-glycerophosphate and Vitamin D has been proven to induce a successful differentiation. The aim of this animal study was to evaluate the effect of this combination, named odontoblastic differentiating material (ODM), on pulp tissue when used as a capping material. Sixty maxillary right and left molars of 30 Sprague-dawley rats were selected for this study. The teeth were exposed under sterile condition. Half of the teeth were capped with mineral trioxide aggregate (MTA) and the other half with ODM. All cavities were restored with glass ionomer. The rats were sacrificed at post-operative intervals of 2 weeks and 2 months. Samples were histologically evaluated for the degree of inflammation and reparative dentin formation. Finally the data was analyzed with Mann-Whitney and Chi-Square tests. Reparative dentin formed in all groups within both time periods and there was no statistically significant difference between the groups in the mentioned time periods. The MTA group, however, showed a statistically significant reduction in inflammation at both time intervals (P<0.05). Compared to MTA, ODM samples showed a greater amount of inflammation in the pulp tissue. ODM, as a pulp capping material, can induce dentinal bridge formation.

  17. [Using mineral trioxide aggregate as a direct pulp-capping material in dogs].

    PubMed

    Zhu, Ya-qin; Xia, Lie

    2003-02-01

    The purpose of this study was to compare the dental pulp responses in dogs after MTA (Mineral Trioxide Aggregate) and a calcium hydroxide (Dycal) were applied as pulp-capping materials. Twelve cuspids in three healthy adult beagle dogs were divided into two groups randomly. MTA or Dycal was used to repair the exposed site which was created with a fissure bur in a high-speed handpiece with copious water spray at the labial cervical access. Then the cavity was filled with glass ionomer cement (GIC). Four months later, the specimens were processed for histologic examination to observe the pulpal inflammation and dentin bridge formation. Five of six samples capped with MTA were free of pulpal inflammation, and all of samples in this group had dentin bridge formation. In contrast, all of samples capped with Dycal showed pulpal inflammation, and dentin bridge formation occurred in only 2 samples. MTA is a biocompatible material which can promote dentin bridge formation. It can be used as a direct pulp-capping material during vital pulp therapy.

  18. Security Analysis of the Unrestricted Identity-Based Aggregate Signature Scheme

    PubMed Central

    Lee, Kwangsu; Lee, Dong Hoon

    2015-01-01

    Aggregate signatures allow anyone to combine different signatures signed by different signers on different messages into a short signature. An ideal aggregate signature scheme is an identity-based aggregate signature (IBAS) scheme that supports full aggregation since it can reduce the total transmitted data by using an identity string as a public key and anyone can freely aggregate different signatures. Constructing a secure IBAS scheme that supports full aggregation in bilinear maps is an important open problem. Recently, Yuan et al. proposed such a scheme and claimed its security in the random oracle model under the computational Diffie-Hellman assumption. In this paper, we show that there is an efficient forgery on their IBAS scheme and that their security proof has a serious flaw. PMID:25993247

  19. Security analysis of the unrestricted identity-based aggregate signature scheme.

    PubMed

    Lee, Kwangsu; Lee, Dong Hoon

    2015-01-01

    Aggregate signatures allow anyone to combine different signatures signed by different signers on different messages into a short signature. An ideal aggregate signature scheme is an identity-based aggregate signature (IBAS) scheme that supports full aggregation since it can reduce the total transmitted data by using an identity string as a public key and anyone can freely aggregate different signatures. Constructing a secure IBAS scheme that supports full aggregation in bilinear maps is an important open problem. Recently, Yuan et al. proposed such a scheme and claimed its security in the random oracle model under the computational Diffie-Hellman assumption. In this paper, we show that there is an efficient forgery on their IBAS scheme and that their security proof has a serious flaw.

  20. Material-based Stratification

    SciTech Connect

    MacQueen, D H

    2007-05-31

    A simple probability model was applied to detection sampling in a room or space in which different surface materials are present. The model assesses the overall detection capability when the sampling and analytical methods have different performance properties for the different materials. The results suggest that some common sampling strategies may not be ideal. In particular: (1) In a single room or area that includes different surface types with different detection properties, do not use a single sampling grid with a common spacing throughout. (2) If it is known or strongly suspected that one material has better detection properties than the other, place all samples on that material. (3) When it is completely unknown which material has the better detection properties, allocate the samples equally between them.

  1. Association equation of state (AEOS) based on aggregate formation for pure substance

    NASA Astrophysics Data System (ADS)

    Mohsen-Nia, M.; Modarress, H.

    2007-07-01

    Based on the statistical mechanical theories and by using the concept of grand canonical ensemble a new equation of state for aggregate formations in the association fluids has been proposed. The compressibility factor for aggregate formation in an association fluid is represented by the following equation: Z=Z+Z-1 where Zagg is the aggregate compressibility factor due to aggregate formation by hydrogen bonding of molecules and Zdis is the dispersed compressibility factor due to dispersion interactions. Each aggregate is considered as an open system in the grand canonical ensemble in which a molecule can enter to form a larger aggregate or leave to form a smaller aggregate. The average number of molecules in an aggregate is used to obtain the compressibility factor Zagg and M4 equation of state previously proposed by Mohsen-Nia et al. [M. Mohsen-Nia, H. Modarress, G.A. Mansoori, Fluid Phase Equilibr. 206 (2003) 27.] for non-association compounds is used to obtain Zdis. The obtained new association equation of state (AEOS) based on the proposed compressibility factor is used for saturated properties calculations of pure well-known association fluids: water, ammonia and methanol. The results indicate that the saturated properties are well correlated by the new AEOS with a reasonable average number of molecules in each aggregate which is in agreement with spectroscopic experimental data and ab initio calculations.

  2. Composite alginate hydrogel microparticulate delivery system of zidovudine hydrochloride based on counter ion induced aggregation

    PubMed Central

    Roy, Harekrishna; Rao, P. Venkateswar; Panda, Sanjay Kumar; Biswal, Asim Kumar; Parida, Kirti Ranjan; Dash, Jharana

    2014-01-01

    Aim: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. Materials and Methods: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. Results and Discussion: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8th h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study. PMID:25298940

  3. The Strong Light-Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group.

    PubMed

    Li, Qianqian; Li, Zhen

    2017-07-01

    The strong light emission of organic luminogens in the aggregated state is essential to their applications as optoelectronic materials with good performance. In this review, with respect to the aggregation-induced emission and room-temperature phosphorescence luminogens, the important role of molecular packing modes is highlighted. As demonstrated in the selected examples, the molecular packing status in the aggregate state is affected by many factors, including the molecular configurations, the inherent electronic properties, the special functional groups, and so on. With the consideration of all these parameters, the strong fluorescence and phosphorescence in the aggregated state could be achieved in the rationally designed organic luminogens, providing some guidance for the further development.

  4. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.

    1999-01-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis

  5. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.

    1999-01-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis

  6. Computer Modeling of Electrostatic Aggregation of Granular Materials in Planetary and Astrophysical Settings

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Sauke, T.

    1999-09-01

    Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis

  7. Materials engineering data base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  8. Bismuth-Based Coordination Polymers with Efficient Aggregation-Induced Phosphorescence and Reversible Mechanochromic Luminescence.

    PubMed

    Toma, Oksana; Allain, Magali; Meinardi, Francesco; Forni, Alessandra; Botta, Chiara; Mercier, Nicolas

    2016-07-04

    Two bismuth coordination polymers (CPs), (TBA)[BiBr4 (bp4mo)] (TBA=tetrabutylammonium) and [BiBr3 (bp4mo)2 ], which are based on the rarely used simple ditopic ligand N-oxide-4,4'-bipyridine (bp4mo), show mechanochromic luminescence (MCL). High solid-state phosphorescence quantum yields of up to 85 % were determined for (TBA)[BiBr4 (bp4mo)] (λem =540 nm). Thorough investigations of the luminescence properties combined with DFT and TDDFT calculations revealed that the emission is due to aggregation-induced phosphorescence (AIP). Upon grinding, both samples became amorphous, and their luminescence changed from yellow to orange and red, respectively. Heating or exposure to water vapor led to the recovery of the initial luminescence. These materials are the first examples of mechanochromic phosphors based on bismuth(III). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An online detection system for aggregate sizes and shapes based on digital image processing

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Chen, Sijia

    2016-07-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  10. An online detection system for aggregate sizes and shapes based on digital image processing

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Chen, Sijia

    2017-02-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  11. New carbohydrate-based materials

    SciTech Connect

    Callstrom, M.R.

    1992-07-01

    We have prepared a series of new carbohydrate-based materials based on the use of carbohydrates as a template for the introduction of functionality to polymeric materials with complete regio- and stereochemical control. The synthesis of these new materials by the use of chemical and enzymatic methods allows for the rational design of new materials based on the properties of the monomeric subunit. These materials have potential applications that range from their use in enhanced oil recovery to biodegradable plastics to biological applications including targeted drug delivery and enzyme stabilization.

  12. Safety management of Ethernet broadband access based on VLAN aggregation

    NASA Astrophysics Data System (ADS)

    Wang, Li

    2004-04-01

    With broadband access network development, the Ethernet technology is more and more applied access network now. It is different from the private network -LAN. The differences lie in four points: customer management, safety management, service management and count-fee management. This paper mainly discusses the safety management related questions. Safety management means that the access network must secure the customer data safety, isolate the broad message which brings the customer private information, such as ARP, DHCP, and protect key equipment from attack. Virtue LAN (VLAN) technology can restrict network broadcast flow. We can config each customer port with a VLAN, so each customer is isolated with others. The IP address bound with VLAN ID can be routed rightly. But this technology brings another question: IP address shortage. VLAN aggregation technology can solve this problem well. Such a mechanism provides several advantages over traditional IPv4 addressing architectures employed in large switched LANs today. With VLAN aggregation technology, we introduce the notion of sub-VLANs and super-VLANs, a much more optimal approach to IP addressing can be realized. This paper will expatiate the VLAN aggregation model and its implementation in Ethernet access network. It is obvious that the customers in different sub-VLANs can not communication to each other because the ARP packet is isolated. Proxy ARP can enable the communication among them. This paper will also expatiate the proxy ARP model and its implementation in Ethernet access network.

  13. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  14. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  15. Software Architecture Design of GIS Web Service Aggregation Based on Service Group

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Yang, J.; Tan, M.-J.; Gan, Q.

    2011-08-01

    Based on the analysis of research status of domestic and international GIS web service aggregation and development tendency of public platform of GIS web service, the paper designed software architecture of GIS web service aggregation based on GIS web service group. Firstly, using heterogeneous GIS services model, the software architecture converted a variety of heterogeneous services to a unified interface of GIS services, and divided different types of GIS services into different service groups referring to description of GIS services. Secondly, a service aggregation process model was designed. This model completed the task of specific service aggregation instance, by automatically selecting member GIS Web services in the same service group. Dynamic capabilities and automatic adaptation of GIS Web services aggregation process were achieved. Thirdly, this paper designed a service evaluation model of GIS web service aggregation based on service group from three aspects, i.e. GIS Web Service itself, networking conditions and service consumer. This model implemented effective quality evaluation and performance monitoring of GIS web service aggregation. It could be used to guide the execution, monitor and service selection of aggregation process. Therefore, robustness of aggregated GIS web service was improved. Finally, the software architecture has been widely used in public platform of GIS web service and a number of geo-spatial framework constructions for digital city in Sichuan Province, and aggregated various GIS web services such as World Map(National Public Platform of Geo-spatial Service), ArcGIS, SuperMap, MapGIS, NewMap etc. Applications of items showed that this software architecture was practicability.

  16. Graphene-based smart materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan

    2017-09-01

    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  17. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  18. Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate.

    PubMed

    Bin, Claudia V; Valera, Marcia C; Camargo, Samira E A; Rabelo, Sylvia B; Silva, Gleyce O; Balducci, Ivan; Camargo, Carlos Henrique R

    2012-04-01

    MTA has good biological properties, and it is a mineralization-inducing material with different indications in endodontics. Initially this material was not recommended as root canal sealer. However, a resin sealer based on mineral trioxide aggregate (MTA Fillapex) was recently released with this indication. Because MTA is in contact with the periodontal tissues, bone, and pulp, it is important to know its cytotoxic and genotoxic effects. The purpose of this study was to evaluate the cytotoxicity and genotoxicity of MTA canal sealer (Fillapex) compared with white MTA cement and AH Plus. Chinese hamster fibroblasts (V79) were placed in contact with different dilutions of culture media previously exposed to such materials. Cytotoxicity was evaluated by methol-thiazol-diphenyl tetrazolium assay in spectrophotometer to check the viability rate and cell survival. The genotoxicity was accessed by the micronucleus formation assay. Cell survival rate and micronuclei number were assessed before and after exposure to cement extracts, and the results were statistically analyzed by Kruskal-Wallis and Dunn tests (P < .05). The results showed that the cell viability remained above 50% in white MTA group for all dilutions. AH Plus induced an intermediate cytotoxicity in a dilution-dependent manner, followed by Fillapex MTA. White MTA group was the less cytotoxic material in this study. Both AH Plus and Fillapex MTA sealer showed the lowest cell viability rates and caused an increased micronucleus formation when compared with control untreated group. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

    PubMed Central

    Eronina, Tatyana; Borzova, Vera; Maloletkina, Olga; Kleymenov, Sergey; Asryants, Regina; Markossian, Kira; Kurganov, Boris

    2011-01-01

    To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = Kagg(T−T0)2, where Kagg is the parameter characterizing the initial rate of aggregation and T0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets. PMID:21760963

  20. Solidification/stabilization of landfill leachate concentrate using different aggregate materials.

    PubMed

    Hunce, Selda Yigit; Akgul, Deniz; Demir, Goksel; Mertoglu, Bulent

    2012-07-01

    The application of reverse osmosis for the treatment of landfill leachate is becoming widespread in Turkey as well as in Europe. A major drawback of this process is the production of concentrate, which could be as much as 30% of the feed stream, and high concentrations of salts and contaminants. The reverse osmosis concentrate is disposed of by using several methods including re-infiltration, drying, incineration and solidification/stabilization. In this study, solidification/stabilization (S/S) technology was studied for the treatment of reverse osmosis concentrate produced from landfill leachate. In order to benefit from its capability to absorb heavy metals, ammonia and some other pollutants, zeolite and different aggregate materials were used in solidification experiments. Main pollutants in the leachate concentrate, TOC, DOC, TDS and ammonia were successfully solidified and approximately 1% of TOC, DOC, TDS and ammonia remained in the eluate water. The results indicated that the landfill disposal limits could be attained by solidification/stabilization process.

  1. Tooth discoloration induced by a novel mineral trioxide aggregate-based root canal sealer

    PubMed Central

    Lee, Dae-Sung; Lim, Myung-Jin; Choi, Yoorina; Rosa, Vinicius; Hong, Chan-Ui; Min, Kyung-San

    2016-01-01

    Objectives: The aim of this study was to evaluate tooth discoloration caused by contact with a novel injectable mineral trioxide aggregate (MTA)-based root canal sealer (Endoseal; Maruchi, Wonju, Korea) compared with a widely used resin-based root canal sealer (AHplus; Dentsply De Trey, Konstanz, Germany) and conventional MTA (ProRoot; Dentsply, Tulsa, OK, USA). Materials and Methods: Forty standardized bovine tooth samples were instrumented and divided into three experimental groups and one control group (n = 10/group). Each material was inserted into the cavity, and all specimens were sealed with a self-adhesive resin. Based on CIE Lab system, brightness change (ΔL) and total color change (ΔE) of each specimen between baseline and 1, 2, 4, and 8 weeks were obtained. Results: At all time points, Endoseal showed no significant difference in ΔL and ΔE compared to AHplus and control group (P > 0.05), whereas the ProRoot group showed significantly higher ΔL and ΔE values than the Endoseal group at 2, 4, and 8 weeks (P < 0.05). Therefore, Endoseal showed less discoloration than conventional MTA and a similar color change to AHplus. Conclusions: Within the limitations of this study, our data indicate that the MTA-based sealer produces a similar amount of tooth discoloration as AHplus which is considered to be acceptable. PMID:27403062

  2. Process-based reconstruction of sedimentary rocks, sandy soils and soil aggregates

    NASA Astrophysics Data System (ADS)

    Vasilyev, Roman; Gerke, Kirill; Čapek, Pavel; Karsanina, Marina; Korost, Dmitry

    2013-04-01

    There are three main approaches to model and reconstruct (using 2D cut(s), grain size distribution or some other limited information/properties) porous media: 1) statistical methods (correlation functions and simulated annealing, multi-point statistics, entropy methods), 2) sequential methods (sphere or other shapes granular packs), and 3) morphological methods. Each method has its own advantages and shortcomings, so there is no readily available solution and methods should be carefully chosen and tested for each particular media. Here we mainly focus on sequential process-based method due to its general simplicity and straightforward usability for different transformation modeling: diagenesis, mechanical compaction, erosion, etc. It is well known that process-based models for sandstone thin-sections give good transport properties after 3D reconstruction. This method is also useful for pore-network extraction validation. At first, polydisperse sphere packs are created using two different techniques: (1) modified Lubachevsky-Stillinger method, and (2) original Øren-Bakke method with global minimal or local minimal energy ballistic disposition rules. The latter are known to create anisotropic packs with kissing numbers different from real sedimentary materials. During the next step, the third phase (clay minerals for rocks and clay and organic matter for soils) is grown within pore space based on Voronoi tesselation to determine distances to the nearest grains. Input parameters, i.e., grain size distributions and porosities are determined using laboratory methods or image analysis for real porous media: sandstones, sandy soils and soil aggregates. To model soil aggregate structure a gravitational algorithm is used there a set of granules falls onto a gravity center in the middle of the aggregate. All further steps are similar to that of sedimentary rocks and soils. Resulted 3D reconstructions are compared with original 3D structures obtained using X

  3. Lignin-Based Thermoplastic Materials.

    PubMed

    Wang, Chao; Kelley, Stephen S; Venditti, Richard A

    2016-04-21

    Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.

  4. Recycled asphalt pavement as a base and sub-base material

    SciTech Connect

    Maher, M.H.; Gucunski, N.; Papp, W.J. Jr.

    1997-12-31

    Laboratory and field investigations were conducted to evaluate the use of recycled asphalt pavement (RAP) in roadway base and sub-base applications. The laboratory resilient modulus test results showed RAP has comparable strength with dense graded aggregate base and sub-base material used in the state of New Jersey. Using the spectral-analysis-of-the-surface-waves method (SASW), the field testing program evaluated the elastic modulus of the RAP base in the field and verified the laboratory results. The field test results showed higher modulus and stiffness for RAP than the dense graded aggregate base normally used in state of New Jersey.

  5. Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability.

    PubMed

    Suponitsky, Kyrill Yu; Masunov, Artëm E

    2013-09-07

    Theoretical estimation of nonlinear optical (NLO) properties is an important step in systematic search for optoelectronic materials. Density functional theory methods are often used to predict first molecular hyperpolarizability for compounds in advance of their synthesis. However, design of molecular NLO materials require an estimation of the bulk properties, which are often approximated as additive superposition of molecular tensors. It is therefore important to evaluate the accuracy of this additive approximation and estimate the extent by which intermolecular interactions influence the first molecular hyperpolarizability β. Here we focused on the stacking aggregates, including up to 12 model molecules (pNA and ANS) and observed enhancement and suppression of molecular hyperpolarizability relative to the additive sum. We found that degree of nonadditivity depends on relative orientation of the molecular dipole moments and does not correlate with intermolecular interaction energy. Frenkel exciton model, based on dipole-dipole approximation can be used for qualitative prediction of intermolecular effects. We report on inaccuracy of this model for the molecules with long π-systems that are significantly shifted relative to each other, when dipole-dipole approximation becomes inaccurate. To obtain more detailed information on the effect of intermolecular interactions on β we proposed electrostatic approach which accounts for the mutual polarization of the molecules by each other. We measure the induced polarization of each molecule in the aggregate by the charge of its donor (or acceptor) group. The proposed approach demonstrates linear correlation β(FF) vs β(elm) (estimated by finite field theory and electrostatic model, respectively) and allows decomposition of the hyperpolarizability for a molecular aggregate into separate molecular contributions. We used this decomposition to analyze the reasons of deviation of aggregate β from additivity, as well as the

  6. Sample - Based Material Structure Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Xingchen

    The paradigm of Sample-based Material Structure Modeling is proposed to facilitate the design and manufacturing of material structures towards desired mechanical properties. By modeling material structure samples via a Markov random field, the proposed paradigm views material structure as a collection of neighborhoods. The abstraction facilitates the reconstruction of both periodic and stochastic material structures and extends to the reconstruction and design of spatially varying material structures, a principal mechanism for creating and controlling spatially varying material properties in nature and engineering. The spatially varying material properties are represented and controlled using the notion of material descriptors which include common geometric, statistical, and topological measures such as correlation functions and Minkowski functionals. The proposed method is of particular advantage in preserving the microscopic geometry and related properties of the material structure sample while achieving target macroscopic property distributions during the design of material structures. For material structures that exhibit anisotropy, properly oriented neighborhoods could greatly enhance the efficiency of the material. The expansion of the design space to include the rotation of neighborhoods is appropriate when the properties that need to be preserved can be safely regarded as rotation invariant. With the assumption of orthotropic symmetry, an automatic way to determine the principal axes of neighborhoods for material structure samples with stochastic orientations is proposed. A Green's function based homogenization method is investigated for the efficient evaluation of the mechanical properties of neighborhoods. The formulated integral equation is converted into a system of linear equations which is shown to be symmetric and positive definite with the appropriate reference material properties and can be solved efficiently using the conjugate gradient method

  7. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  8. Graphene-based Materials

    NASA Astrophysics Data System (ADS)

    Ruoff, Rodney

    2009-03-01

    Our top-down approaches [Lu et al.] inspired physicists to obtain graphene by micromechanical exfoliation. Another approach to individual layers involves converting graphite to graphite oxide (GO) to generate aqueous colloidal suspensions of `graphene oxide'(GO') sheets. (i) Reduced GO' (RGO') sheets were embedded in polymers such as polystyrene and their dispersion/morphology studied by SEM/TEM, and the conductivity/ percolation threshold of such composites was determined; (ii) individual GO' and RGO' sheets were studied to elucidate their chemical, optical, and electrical properties, (iii) GO' and RGO' sheets were embedded in thin glass films by a sol-gel route yielding conductive/transparent films, (iii) a `paper' material of stacked GO' sheets was made and characterized, (iv) powders composed of RGO' showed exceptional promise for use in ultracapacitors, and (v) C13-labeled GO was made and the detailed chemical structure of GO was determined with SS NMR. --Lu,Yu,Huang,Ruoff, ``Tailoring graphite with the goal of achieving single sheets'', Nanotechnology, 10, 269-272 (1999). See also http://bucky-central.me.utexas.edu/publications.htm 139, 146, 150, 155, 160, 164, 166, 168, 169, 174, 179-182, 184 where collaborators are shown as coauthors.

  9. Polyphosphazine-based polymer materials

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  10. Comparison of the antimicrobial activity of direct pulp-capping materials: Mineral trioxide aggregate-Angelus and Biodentine

    PubMed Central

    Özyürek, Taha; Demiryürek, Ebru Özsezer

    2016-01-01

    Purpose: To compare the antimicrobial activity of the tricalcium silicate-based Biodentine (BD) and mineral trioxide aggregate (MTA)-Angelus cement with the aid of agar diffusion test. Materials and Methods: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were inoculated in the Brucella liquid medium and were incubated at 37°C for 24 h. Thereafter, 100 >μl of the liquid culture of bacteria inoculated in the Mueller-Hinton agar with spread plate technique. Petri plates were dried in room temperature. For every microorganism, 3 petri plates were prepared (12 in total). In the medium, in every petri plate, 2 holes with 5 mm diameter and 2 mm depth were made. Afterward, BD and MTA-Angelus were filled into these holes under aseptic conditions according to the instructions of the manufacturing company. Then, the plates were kept in the incubator at 37°C for 24 h, and the diameters of the inhibition zones were measured with a digital caliper. Results: Inhibition zones formed by BD against E. coli and S. aureus were significantly larger than the zones formed by MTA-Angelus (P < 0.05). However, the inhibition zones formed by MTA-Angelus against P. aureus and E. faecium were larger than the zones formed by BD (P < 0.05). Conclusion: Within the limits of the present study, tricalcium silicate-based MTA-Angelus and BD have antimicrobial activity against E. coli, S. aureus, P. aureus, and E. faecium. PMID:27994321

  11. Photorefractive organic glasses based on a new chromophore with minimized aggregation tendency

    NASA Astrophysics Data System (ADS)

    Wortmann, Ruediger W.; Redi-Abshiro, Mesfin; Roesch, Ulrich; Yao, Sheng; Wuerthner, Frank

    2002-11-01

    A photorefractive (PR) organic glass based on the chromophore IDOP-20 is reported. The electronic structure of this merocyanine dye was tuned close to the cyanine limit to optimize the anisotropy of the linear polarizability δα and to achieve a large PR figure-of-merit. The carefully chosen aliphatic side chains of the chromophore prevent dipolar aggregation even at very high concentrations in liquid solution and provide excellent compatibility with polymer matrices. IDOP-20 also forms a stable glass with glass transition temperature of Tg=58o C. Mixtures with the plasticizer DPP were prepared to adjust the glass transition temperature close to room temperature. Such mixtures showed PR response after sensitization with TNFM where sensitization occurred through a CT band between TNFM and IDOP-20 and charge transport was supported by the multifunctional by IDOP-20. A PR glass of composition IDOP-20:DPP:TNFM 69:30:1 wt% was studied by a complete set of holographic-optical experiments (two-beam coupling and four-wave mixing), (photo)conductivity measurements and ellipsometric measurements. The performance of the new PR glasses is discussed with respect to similar materials based on the ATOP chromophore. The (mono-exponential) response time of the material is strongly temperature dependent and limited by chromophore reorientation.

  12. Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations.

    PubMed

    Kang, Yang Jun

    2017-09-06

    Red blood cell (RBC) aggregation and erythrocyte sedimentation rate (ESR) are considered to be promising biomarkers for effectively monitoring blood rheology at extremely low shear rates. In this study, a microfluidic-based measurement technique is suggested to evaluate RBC aggregation under hematocrit variations due to the continuous ESR. After the pipette tip is tightly fitted into an inlet port, a disposable suction pump is connected to the outlet port through a polyethylene tube. After dropping blood (approximately 0.2 mL) into the pipette tip, the blood flow can be started and stopped by periodically operating a pinch valve. To evaluate variations in RBC aggregation due to the continuous ESR, an EAI (Erythrocyte-sedimentation-rate Aggregation Index) is newly suggested, which uses temporal variations of image intensity. To demonstrate the proposed method, the dynamic characterization of the disposable suction pump is first quantitatively measured by varying the hematocrit levels and cavity volume of the suction pump. Next, variations in RBC aggregation and ESR are quantified by varying the hematocrit levels. The conventional aggregation index (AI) is maintained constant, unrelated to the hematocrit values. However, the EAI significantly decreased with respect to the hematocrit values. Thus, the EAI is more effective than the AI for monitoring variations in RBC aggregation due to the ESR. Lastly, the proposed method is employed to detect aggregated blood and thermally-induced blood. The EAI gradually increased as the concentration of a dextran solution increased. In addition, the EAI significantly decreased for thermally-induced blood. From this experimental demonstration, the proposed method is able to effectively measure variations in RBC aggregation due to continuous hematocrit variations, especially by quantifying the EAI.

  13. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  14. Evaluation of frame aggregation schemes for the p-persistent based next generation WLANS

    NASA Astrophysics Data System (ADS)

    Ahmad, Ashar; Anna, Kiran; Bassiouni, Mostafa A.

    2010-04-01

    The next Generation IEEE 802.11n is designed to improve the throughput of the existing standard 802.11. It aims to achieve this by increasing the data rate from 54 Mbps to 600 Mbps with the help of physical layer enhancements. Therefore, the Medium Access Layer (MAC) requires improvements to fully utilize the capabilities of the enhanced 802.11n physical layer. In this paper, we present the performance evaluation results of two frame aggregation schemes viz., MAC Protocol Data Unit Aggregation (A-MPDU) and MAC Service Data Unit Aggregation (A-MSDU) and study their performance impact when the two schemes are incorporated in a p-persistent based 802.11n. The simulation results have shown that the two schemes achieve consistent performance improvement over the standard non-aggregation scheme.

  15. A Cycle-Based Data Aggregation Scheme for Grid-Based Wireless Sensor Networks

    PubMed Central

    Chiang, Yung-Kuei; Wang, Neng-Chung; Hsieh, Chih-Hung

    2014-01-01

    In a wireless sensor network (WSN), a great number of sensor nodes are deployed to gather sensed data. These sensor nodes are typically powered by batteries so their energy is restricted. Sensor nodes mainly consume energy in data transmission, especially over a long distance. Since the location of the base station (BS) is remote, the energy consumed by each node to directly transmit its data to the BS is considerable and the node will die very soon. A well-designed routing protocol is thus essential to reduce the energy consumption. In this paper, we propose a Cycle-Based Data Aggregation Scheme (CBDAS) for grid-based WSNs. In CBDAS, the whole sensor field is divided into a grid of cells, each with a head. We prolong the network lifetime by linking all cell heads together to form a cyclic chain so that the gathered data can move in two directions. For data gathering in each round, the gathered data moves from node to node along the chain, getting aggregated. Finally, a designated cell head, the cycle leader, directly transmits to the BS. CBDAS performs data aggregation at every cell head so as to substantially reduce the amount of data that must be transmitted to the BS. Only cell heads need disseminate data so that the number of data transmissions is greatly diminished. Sensor nodes of each cell take turns as the cell head, and all cell heads on the cyclic chain also take turns being cycle leader. The energy depletion is evenly distributed so that the nodes' lifetime is extended. As a result, the lifetime of the whole sensor network is extended. Simulation results show that CBDAS outperforms protocols like Direct, PEGASIS, and PBDAS. PMID:24828579

  16. A cycle-based data aggregation scheme for grid-based wireless sensor networks.

    PubMed

    Chiang, Yung-Kuei; Wang, Neng-Chung; Hsieh, Chih-Hung

    2014-05-13

    In a wireless sensor network (WSN), a great number of sensor nodes are deployed to gather sensed data. These sensor nodes are typically powered by batteries so their energy is restricted. Sensor nodes mainly consume energy consumption in data transmission, especially for a long distance. Since the location of the base station (BS) is remote, the energy consumed by each node to directly transmit its data to the BS is considerable and the node will die very soon. A well-designed routing protocol is thus essential to reduce the energy consumption. In this paper, we propose a Cycle-Based Data Aggregation Scheme (CBDAS) for grid-based WSNs. In CBDAS, the whole sensor field is divided into a grid of cells, each with a head. We prolong the network lifetime by linking all cell heads together to form a cyclic chain so that the gathered data can move in two directions. For data gathering in each round, the gathered data moves from node to node along the chain, getting aggregated. Finally, a designated cell head, the cycle leader, directly transmits to the BS. CBDAS performs data aggregation at every cell head so as to substantially reduce the amount of data that must be transmitted to the BS. Only cell heads need disseminate data so that the number of data transmissions is greatly diminished. Sensor nodes of each cell take turns as the cell head, and all cell heads on the cyclic chain also take turns being cycle leader. The energy depletion is evenly distributed so that the nodes' lifetime is extended. As a result, the lifetime of the whole sensor network is extended. Simulation results show that CBDAS outperforms protocols like Direct, PEGASIS, and PBDAS.

  17. Enhanced fuzzy-connective-based hierarchical aggregation network using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Fang; Su, Chao-Ton

    2014-11-01

    The fuzzy-connective-based aggregation network is similar to the human decision-making process. It is capable of aggregating and propagating degrees of satisfaction of a set of criteria in a hierarchical manner. Its interpreting ability and transparency make it especially desirable. To enhance its effectiveness and further applicability, a learning approach is successfully developed based on particle swarm optimization to determine the weights and parameters of the connectives in the network. By experimenting on eight datasets with different characteristics and conducting further statistical tests, it has been found to outperform the gradient- and genetic algorithm-based learning approaches proposed in the literature; furthermore, it is capable of generating more accurate estimates. The present approach retains the original benefits of fuzzy-connective-based aggregation networks and is widely applicable. The characteristics of the learning approaches are also discussed and summarized, providing better understanding of the similarities and differences among these three approaches.

  18. Self-assembly of polypeptide-based copolymers into diverse aggregates.

    PubMed

    Cai, Chunhua; Wang, Liquan; Lin, Jiaping

    2011-10-28

    Recently, increasing attention has been given to the self-assembly behavior of polypeptide-based copolymers. Polypeptides can serve as either shell-forming or core-forming blocks in the formation of various aggregates. The solubility and rigidity of polypeptide blocks have been found to have a profound effect on the self-assembly behavior of polypeptide-based copolymers. Polypeptide graft copolymers combine the advantages of a grafting strategy and the characteristics of polypeptide chains and their self-assembly behavior can be easily adjusted by choosing different polymer chains and copolymer architectures. Fabricating hierarchical structures is one of the attractive topics of self-assembly research of polypeptide copolymers. These hierarchical structures are promising for use in preparing functional materials and, thus, attract increasing attention. Computer simulations have emerged as powerful tools to investigate the self-assembly behavior of polymers, such as polypeptides. These simulations not only support the experimental results, but also provide information that cannot be directly obtained from experiments. In this feature article, recent advances in both experimental and simulation studies for the self-assembly behavior of polypeptide-based copolymers are reviewed.

  19. Patient-level temporal aggregation for text-based asthma status ascertainment.

    PubMed

    Wu, Stephen T; Juhn, Young J; Sohn, Sunghwan; Liu, Hongfang

    2014-01-01

    To specify the problem of patient-level temporal aggregation from clinical text and introduce several probabilistic methods for addressing that problem. The patient-level perspective differs from the prevailing natural language processing (NLP) practice of evaluating at the term, event, sentence, document, or visit level. We utilized an existing pediatric asthma cohort with manual annotations. After generating a basic feature set via standard clinical NLP methods, we introduce six methods of aggregating time-distributed features from the document level to the patient level. These aggregation methods are used to classify patients according to their asthma status in two hypothetical settings: retrospective epidemiology and clinical decision support. In both settings, solid patient classification performance was obtained with machine learning algorithms on a number of evidence aggregation methods, with Sum aggregation obtaining the highest F1 score of 85.71% on the retrospective epidemiological setting, and a probability density function-based method obtaining the highest F1 score of 74.63% on the clinical decision support setting. Multiple techniques also estimated the diagnosis date (index date) of asthma with promising accuracy. The clinical decision support setting is a more difficult problem. We rule out some aggregation methods rather than determining the best overall aggregation method, since our preliminary data set represented a practical setting in which manually annotated data were limited. Results contrasted the strengths of several aggregation algorithms in different settings. Multiple approaches exhibited good patient classification performance, and also predicted the timing of estimates with reasonable accuracy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development

    USDA-ARS?s Scientific Manuscript database

    Primary particle size distribution (PSD) of eroded sediments can be used to estimate potential nutrient losses from soil and pollution hazards to the environment. We studied eroded sediment PSDs from three saturated soils, packed in trays (20 x 40 x 4 cm), that had undergone either minimal aggregate...

  1. Sources of settling material: aggregation and zooplankton mediated fluxes in the Gulf of Riga

    NASA Astrophysics Data System (ADS)

    Lundsgaard, C.; Olesen, M.; Reigstad, M.; Olli, K.

    1999-12-01

    The composition of sedimenting matter from the upper mixed layer was studied in relation to aggregation dynamics and food web structure in the stratified southern Gulf of Riga, Baltic Sea. Four stations were visited during three fortnight periods in spring (1995), midsummer (1994) and late summer (1993). In spring, diatoms constituted the major part of the sedimenting matter, and their abundance in the water column declined due to the sedimentation loss. A technique which preserves the structure of the sedimenting matter was applied; it revealed that neither diatoms nor other algae were sinking as aggregates. Occasionally both motile phytoplankton and heterotrophic organisms concentrated in the sediment traps, possibly due to vertical migration. In midsummer, and especially late summer, heterotrophic biomass was large relative to autotrophic biomass; however, total heterotrophic biomass had a maximum during midsummer. During the summer periods the sedimenting matter consisted of products from the metazoa (faecal pellets, eggs, cuticles) as well as of amorphous detritus, which mainly sedimented in the form of aggregates. Physical coagulation may have produced these aggregates, but turbulent shear, which was the major force making suspended particles collide, did not correlate with aggregate sedimentation. A disintegration factor related to high turbulence may also be of importance. The sedimentation of faecal particles and other detritus was low compared to the zooplankton biomass (0.6-8% day -1). Despite the eutrophic conditions of the Gulf of Riga there is a high recycling relative to the sedimentation. This may be related to the importance of auto- and heterotrophic picoplankton in the carbon flow, to the generally high heterotrophic biomass and to an efficient detritus decomposition.

  2. Dimerization of merocyanine dyes. Structural and energetic characterization of dipolar dye aggregates and implications for nonlinear optical materials.

    PubMed

    Würthner, Frank; Yao, Sheng; Debaerdemaeker, Tony; Wortmann, Rüdiger

    2002-08-14

    Aggregation of polar merocyanine dyes has been identified as an important problem in the fabrication of organic materials for photonic applications. In this work, a series of merocyanine dyes is synthesized, and their aggregation is investigated by a combination of several experimental techniques to reveal structure-property relationships. These studies provide clear evidence for the formation of centrosymmetric dimers for all investigated merocyanines in concentrated solution and in the solid state. The thermodynamics of dimerization in liquid solution is studied by concentration-dependent permittivity measurements, UV-vis spectroscopy, and electrooptical absorption experiments. A centrosymmetric dimer structure with antiparallel ordering of the dipole moments is observed in solution by 2D NMR spectroscopy as well as in the solid state by X-ray crystallography and interpreted in terms of dipolar and pi-pi interactions. The optical properties of the dimer aggregates are satisfactorily explained by an excitonic coupling model. The effect of an external electric field on the dimerization equilibrium is considered and quantitatively determined by electrooptical absorption measurements. Implications of the observed findings on the design of nonlinear optical and photorefractive materials are discussed.

  3. Suppression of Thermally Induced Fullerene Aggregation in Polyfullerene-Based Multiacceptor Organic Solar Cells.

    PubMed

    Dowland, Simon A; Salvador, Michael; Perea, José Darío; Gasparini, Nicola; Langner, Stefan; Rajoelson, Sambatra; Ramanitra, Hasina H; Lindner, Benjamin D; Osvet, Andres; Brabec, Christoph J; Hiorns, Roger C; Egelhaaf, Hans-Joachim

    2017-03-15

    A novel main-chain polyfullerene, poly[fullerene-alt-2,5-bis(octyloxy)terephthalaldehyde] (PPC4), is investigated for its hypothesized superior morphological stability as an electron-accepting material in organic photovoltaics relative to the widely used fullerene phenyl-C61-butyric acid methyl ester (PCBM). When mixed with poly(3-hexylthiophene-2,5-diyl) (P3HT), PPC4 affords low-charge-generation yields because of poor intermixing within the blend. The adoption of a multiacceptor system, by introducing PCBM into the P3HT:polyfullerene blend, was found to lead to a 3-fold enhancement in charge generation, affording power conversion efficiencies very close to that of the prototypical P3HT:PCBM binary control. Upon thermal stressing and in contrast to the P3HT:PCBM binary, photovoltaic devices based on the multiacceptor system demonstrated significantly improved stability, outperforming the control because of suppression of the PCBM migration and aggregation processes responsible for rapid device failure. We rationalize the influence of the fullerene miscibility and its implications on the device performance in terms of a thermodynamic model based on Flory-Huggins solution theory. Finally, the potential universal applicability of this approach for thermal stabilization of organic solar cells is demonstrated, utilizing an alternative low-band-gap polymer-donor system.

  4. Hesitant Fuzzy Linguistic Multicriteria Decision-Making Method Based on Generalized Prioritized Aggregation Operator

    PubMed Central

    Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong

    2014-01-01

    Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach. PMID:25258729

  5. Hesitant fuzzy linguistic multicriteria decision-making method based on generalized prioritized aggregation operator.

    PubMed

    Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong

    2014-01-01

    Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.

  6. Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells.

    PubMed

    Gao, Jing; Chen, Wei; Dou, Letian; Chen, Chun-Chao; Chang, Wei-Hsuan; Liu, Yongsheng; Li, Gang; Yang, Yang

    2014-05-21

    The power conversion efficiency (PCE) of a DPP-based polymer solar cell is significantly improved by using DIO or DCB as processing additives. The discovery that DCB outperforms DIO with a significantly wider solvent mixture operation window suggests different optimization mechanisms. Although both solvent mixture systems involve double aggregation processes, including a similar solution-to-film aggregation, however, two distinct solution-stage aggregations are observed: relatively amorphous polymer aggregates form in the CF-DIO solution, while more crystalline polymer aggregates form in CF-DCB solution.

  7. Bond strength of different restorative materials to light-curable mineral trioxide aggregate.

    PubMed

    Cantekin, K

    2015-01-01

    The aim of the present study was to evaluate the bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass-ionomer cement (GIC) in comparison to TheraCal and to compare those findings with the reference pulp capping material (MTA). A total of 90 acrylic blocks were prepared. Each of the blocks were prepared as 15 mm high and 10 mm diameter and the blocks had a 2 mm high and a 5 mm diameter central hole. In 45 of the samples, the holes were fully filled with TheraCal and in the other 45 samples, the holes were fully filled with MTA. The TheraCal and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: Methacrylate-based (MB) composite; Group-2: Silorane-based (SB) composite; and Group-3: Glass-ionomer cement (GIC). For the shear bond strength (SBS) test, each block was secured in a universal testing machine. After the SBS test, the fractured surfaces were examined under a stereomicroscope at ×25 magnification. The analysis of variance that compared the experimental groups revealed the presence of significant differences among the groups (P < 0.001). The highest (19.3 MPa) and the lowest (3.4 MPa) bond strength value were recorded for the MB composite-TheraCal and the GIC-TheraCal, respectively.There were significant differences in bond strength between the TheraCal and the MTA groups for the MB composite subgroup (P < 0.001) and the SB composite subgroup (P < 0.05); however, there was no significant difference in bond strength for the GIC subgroup (P ≯ 0.05). Conlusions: The results from this in vitro study suggest that the new pulp capping material, known as light-curable MTA, showed clinically acceptable and higher shear bond scores compared to MTA when used with the MB composite.

  8. Responsive starch-based materials

    USDA-ARS?s Scientific Manuscript database

    Starch, a low-cost, annually renewable resource, is naturally hydrophilic and its properties change with relative humidity. Starch’s hygroscopic nature can be used to develop materials which change shape or volume in response to environmental changes (e.g. humidity). For example, starch-based graf...

  9. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOEpatents

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  10. The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base

    SciTech Connect

    Poon, C.-S. . E-mail: cecspoon@polyu.edu.hk; Qiao, X.C.; Chan, Dixon

    2006-07-01

    The use of coarse recycled concrete aggregates (CRCA) in conjunction with fine recycled concrete aggregates (FRCA) as sub-base materials has been widely studied. Although research results indicate that it is feasible to employ both CRCA and FRCA as granular sub-base, the influence of the unhydrated cement in the adhered mortar of the RCA on the properties of the sub-base materials has not been thoroughly studied. Generally, it is known that the strength of the sub-base materials prepared with RCA increases over time. However, this mechanism, known as the self-cementing properties, is not well understood and is believed to be governed by the properties of the fine portion of the RCA (<5 mm). This paper presents an investigation on the cause of the self-cementing properties by measuring X-ray diffraction patterns, pH values, compressive strength and permeability of various size fractions of the FRCA obtained from a commercially operated construction and demolition waste recycling plant. Their influence on the overall sub-base materials was determined. The results indicate that the size fractions of <0.15 and 0.3-0.6 mm (active fractions) were most likely to be the principal cause of the self-cementing properties of the FRCA. However, the effects on the properties of the overall RCA sub-base materials were minimal if the total quantity of the active fractions was limited to a threshold by weight of the total fine aggregate.

  11. The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base.

    PubMed

    Poon, Chi-Sun; Qiao, X C; Chan, Dixon

    2006-01-01

    The use of coarse recycled concrete aggregates (CRCA) in conjunction with fine recycled concrete aggregates (FRCA) as sub-base materials has been widely studied. Although research results indicate that it is feasible to employ both CRCA and FRCA as granular sub-base, the influence of the unhydrated cement in the adhered mortar of the RCA on the properties of the sub-base materials has not been thoroughly studied. Generally, it is known that the strength of the sub-base materials prepared with RCA increases over time. However, this mechanism, known as the self-cementing properties, is not well understood and is believed to be governed by the properties of the fine portion of the RCA (<5mm). This paper presents an investigation on the cause of the self-cementing properties by measuring X-ray diffraction patterns, pH values, compressive strength and permeability of various size fractions of the FRCA obtained from a commercially operated construction and demolition waste recycling plant. Their influence on the overall sub-base materials was determined. The results indicate that the size fractions of <0.15 and 0.3-0.6mm (active fractions) were most likely to be the principal cause of the self-cementing properties of the FRCA. However, the effects on the properties of the overall RCA sub-base materials were minimal if the total quantity of the active fractions was limited to a threshold by weight of the total fine aggregate.

  12. Application of a kosmotrope-based solubility assay to multiple protein therapeutic classes indicates broad use as a high-throughput screen for protein therapeutic aggregation propensity.

    PubMed

    Yamniuk, Aaron P; Ditto, Noah; Patel, Mehul; Dai, Jun; Sejwal, Preeti; Stetsko, Paul; Doyle, Michael L

    2013-08-01

    Aggregation propensity is a critical attribute of protein therapeutics that can influence production, manufacturing, delivery, and potential activity and safety (immunogenicity). It is therefore imperative to select molecules with low aggregation propensity in the early stages of drug discovery to mitigate the risk of delays or failure in clinical development. Although many biophysical methods have been developed to characterize protein aggregation, most established methods are low-throughput, requiring large quantities of protein, lengthy assay times, and/or significant upstream sample preparation, which can limit application in early candidate screening. To avoid these limitations, we developed a reliable method to characterize aggregation propensity, by measuring the relative solubility of protein therapeutic candidates in the presence of the kosmotropic salt ammonium sulfate. Manual bench-scale and automated plate-based methods were applied to different protein therapeutic formats including Adnectins, domain antibodies, PEGylated Adnectins, Fc fusion proteins, and monoclonal antibodies. The kosmotrope solubility data agreed well with the aggregation propensity observed by established methods, while being amenable to high-throughput screening because of speed, simplicity, versatility and low protein material requirements. The results suggest that kosmotrope-based solubility assessment has broad applicability to selecting protein therapeutic candidates with low aggregation propensity and high "developability" to progress into development. Copyright © 2013 Wiley Periodicals, Inc.

  13. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  14. RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks.

    PubMed

    Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng

    2017-02-07

    Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users' queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both s u m ( ) queries and m i n ( ) / m a x ( ) queries, while the existing privacy-preserving aggregation methods can only deal with s u m ( ) queries. For processing s u m ( ) queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing m i n ( ) / m a x ( ) queries, RiPPAS provides effective privacy preservation and has low communication overhead.

  15. RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks

    PubMed Central

    Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng

    2017-01-01

    Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197

  16. Adaptive aggregation-based domain decomposition multigrid for twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Bacchio, Simone; Finkenrath, Jacob; Frommer, Andreas; Kahl, Karsten; Rottmann, Matthias

    2016-12-01

    The adaptive aggregation-base domain decomposition multigrid method [A. Frommer et al., SIAM J. Sci. Comput. 36, A1581 (2014)] is extended for two degenerate flavors of twisted mass fermions. By fine-tuning the parameters we achieve a speed-up of the order of a hundred times compared to the conjugate gradient algorithm for the physical value of the pion mass. A thorough analysis of the aggregation parameters is presented, which provides a novel insight into multigrid methods for lattice quantum chromodynamics independently of the fermion discretization.

  17. Effects of Photochromic Furan-Based Diarylethenes on Gold Nanoparticles Aggregation

    NASA Astrophysics Data System (ADS)

    Khodko, Alina; Kachalova, Nataliya; Scherbakov, Sergiy; Eremenko, Anna; Mukha, Iuliia

    2017-04-01

    The photochromic properties of furan-based diarylethenes and their interaction with citrate-capped gold nanoparticles were investigated by ultraviolet/visible absorption spectroscopy and transmission electron microscopy. We identified the optimal concentration of diarylethenes in water-ethanol mixture required for stability of colloidal systems. Nanoparticles coupled with diarylethene derivatives exhibit a new surface plasmon resonance band coming from their aggregation. We analyzed the effects of functional side-chain groups on aggregation process. These results can be considered as a basis for further designing of novel hybrid nanomaterials and optoelectronic elements.

  18. Effects of Photochromic Furan-Based Diarylethenes on Gold Nanoparticles Aggregation.

    PubMed

    Khodko, Alina; Kachalova, Nataliya; Scherbakov, Sergiy; Eremenko, Anna; Mukha, Iuliia

    2017-12-01

    The photochromic properties of furan-based diarylethenes and their interaction with citrate-capped gold nanoparticles were investigated by ultraviolet/visible absorption spectroscopy and transmission electron microscopy. We identified the optimal concentration of diarylethenes in water-ethanol mixture required for stability of colloidal systems. Nanoparticles coupled with diarylethene derivatives exhibit a new surface plasmon resonance band coming from their aggregation. We analyzed the effects of functional side-chain groups on aggregation process. These results can be considered as a basis for further designing of novel hybrid nanomaterials and optoelectronic elements.

  19. In vitro comparison of antibacterial properties of bioceramic-based sealer, resin-based sealer and zinc oxide eugenol based sealer and two mineral trioxide aggregates

    PubMed Central

    Singh, Gurpreet; Gupta, Iti; Elshamy, Faheim M. M.; Boreak, Nezar; Homeida, Husham Elraih

    2016-01-01

    Objective: Our goal of the study was to evaluate the antibacterial properties of endodontic sealers against the E. faecalis. Materials and Methods: Six millimeters wells were made for each material in all the preinoculated petri plates. Then, the petri plates were incubated for 24 h. The zones of inhibition appeared were measured, and the measurements were put to statistical analysis. Results: EndoSequence BC Sealer, MM-mineral trioxide aggregate (MTA), and ProRoot MTA showed maximum means of diameter of zones of inhibition, whereas MM-seal and Endoseal did not show any zones of inhibition. Conclusion: EndoSequence BC Sealer was found to be a better endodontic sealer as compared to resin-based and zinc oxide-eugenol-based sealer. PMID:27403055

  20. Aggregation of quantum dots in hybrid structures based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolesova, Ekaterina P.; Orlova, Anna O.; Maslov, Vladimir G.; Gun'ko, Yurii K.; Cleary, Olan; Baranov, Aleksander V.; Fedorov, Anatoly V.

    2016-04-01

    A morphology and photoinduced changes of luminescence properties of two types of hybrid structures based on TiO2 nanoparticles and CdSe/ZnS QDs were examined. A spin-coating method and a modified Langmuir- Blodgett technique have been applied to form the multilayer hybrid structures on glass slides. It was demonstrated that uniformity of QD surface concentration in hybrid structures depends on the method of structure formation. A photodegradation of luminescence properties of the structures is associated with the formation of QD aggregates. The QD aggregate concentration and their size depend on the method of the structure formation and the concentration of TiO2 nanoparticles. A decay of luminescence of QD aggregates in hybrid structures contains a microsecond components. An exposure of the hybrid structures with uniform QD surface concentration by visible light resulted in a photopassivation of their surface, which is accompanied by significant increase of luminescence quantum yield of QDs.

  1. Enhancing Nanoparticle-Based Visible Detection by Controlling the Extent of Aggregation

    NASA Astrophysics Data System (ADS)

    Lim, Seokwon; Koo, Ok Kyung; You, Young Sang; Lee, Yeong Eun; Kim, Min-Sik; Chang, Pahn-Shick; Kang, Dong Hyun; Yu, Jae-Hyuk; Choi, Young Jin; Gunasekaran, Sundaram

    2012-06-01

    Visible indication based on the aggregation of colloidal nanoparticles (NPs) is highly advantageous for rapid on-site detection of biological entities, which even untrained persons can perform without specialized instrumentation. However, since the extent of aggregation should exceed a certain minimum threshold to produce visible change, further applications of this conventional method have been hampered by insufficient sensitivity or certain limiting characteristics of the target. Here we report a signal amplification strategy to enhance visible detection by introducing switchable linkers (SLs), which are designed to lose their function to bridge NPs in the presence of target and control the extent of aggregation. By precisely designing the system, considering the quantitative relationship between the functionalized NPs and SLs, highly sensitive and quantitative visible detection is possible. We confirmed the ultrahigh sensitivity of this method by detecting the presence of 20 fM of streptavidin and fewer than 100 CFU/mL of Escherichia coli.

  2. Photodetectors based on single-walled carbon nanotubes and thiamonomethinecyanine J-aggregates on flexible substrates

    SciTech Connect

    Fedorov, I. V. Emel’yanov, A. V.; Romashkin, A. V.; Bobrinetskiy, I. I.

    2015-09-15

    The present paper is devoted to observations of the photoresistive effect in multilayer structures with a sensitive layer of J-aggregates of thiamonomethinecyanine polymethine dye and a transparent electrode of a conductive carbon-nanotube network on a flexible polyethylenenaphtalate substrate. The effect of narrow-band emission with a wavelength of 465 nm on a change in the conductivity of the fabricated structures is studied. The prepared samples are studied by atomic-force microscopy, Raman spectroscopy, and spectrophotometry methods. It is shown that these structures are photosensitive to the indicated spectral region, and the dye layer is a film of dye J-aggregates. The change in the sample conductivity upon exposure to light one hundred times exceeds the dark conductivity. In general, the principal possibility of developing a photoresistive detector based on J-aggregates of cyanine dyes on flexible supports on account of the use of transparent and conductive carbon-nanotube layers is shown.

  3. Aggregated TiO2 Based Nanotubes for Dye Sensitized Solar Cells

    SciTech Connect

    Nie, Zimin; Zhou, Xiaoyuan; Zhang, Qifeng; Cao, Guozhong; Liu, Jun

    2013-11-01

    One-dimensional (1D) semiconducting oxides have attracted great attention for dye sensitized solar cells (DSCs), but the overall performance is still quite limited as compared to TiO2 nanocrystalline DSCs. Here, we report the synthesis of aggregated TiO2 based nanotubes with controlled morphologies and crystalline structures to obtain an overall power conversion efficiency of 9.9% using conventional dye without any additional chemical treatment steps. The high efficiency is attributed to the unique aggregate structure for light harvesting, optimized high surface area, and good crystallinity of the nanotube aggregates obtained through proper thermal annealing. This study demonstrates that high efficiency DSCs can be obtained with 1D nanomaterials, and provides lessons on the importance of optimizing both the nanocrystalline structure and the overall microscale morphology.

  4. The Beast of Aggregating Cognitive Load Measures in Technology-Based Learning

    ERIC Educational Resources Information Center

    Leppink, Jimmie; van Merriënboer, Jeroen J. G.

    2015-01-01

    An increasing part of cognitive load research in technology-based learning includes a component of repeated measurements, that is: participants are measured two or more times on the same performance, mental effort or other variable of interest. In many cases, researchers aggregate scores obtained from repeated measurements to one single sum or…

  5. GLS coding based security solution to JPEG with the structure of aggregated compression and encryption

    NASA Astrophysics Data System (ADS)

    Zhang, Yushu; Xiao, Di; Liu, Hong; Nan, Hai

    2014-05-01

    There exists close relation among chaos, coding and cryptography. All the three can be combined into a whole as aggregated chaos-based coding and cryptography (ATC) to compress and encrypt data simultaneously. In particular, image data own high redundancy and wide transmission and thereby it is well worth doing research on ATC for image, which is very helpful to real application.

  6. The Beast of Aggregating Cognitive Load Measures in Technology-Based Learning

    ERIC Educational Resources Information Center

    Leppink, Jimmie; van Merriënboer, Jeroen J. G.

    2015-01-01

    An increasing part of cognitive load research in technology-based learning includes a component of repeated measurements, that is: participants are measured two or more times on the same performance, mental effort or other variable of interest. In many cases, researchers aggregate scores obtained from repeated measurements to one single sum or…

  7. Measurement-based Coherency Identification and Aggregation for Power Systems

    SciTech Connect

    Wang, Shaobu; Lu, Shuai; Lin, Guang; Zhou, Ning

    2012-07-26

    In power system model reduction, a high reduction ratio is often desired to handle much more complex power systems. The bottleneck of traditional methods lies in: Coherency identification methods are conservative. Some coherency generators are not detected when system topology or operating points change, because coherency identification depends on system topology or operating points. There are some solitary generators in external systems. These generators do not belong to any coherency group. However, sometimes these solitary generators have little impact on tie-line power flow, and it might be possible to ignore their dynamics in model reduction. But because they do not belong to any coherency group, existing reduction methods cannot handle them well. In order to overcome the first problem, a measurement-based online coherency identification method is presented in this paper. By analyzing post-fault trajectories measured by Phasor Measurement Units (PMUs), coherency generators are identified through principal component analysis. The method can track time-varying system topology and operating points. In order to address the second problem, this paper introduces sensitivity analysis into traditional reduction methods. The sensitivity of tie-line power flow against injected active power of external system generators is derived. Those generators having loose connection with tie-line power are identified through the sensitivity analysis, and their dynamics are ignored by replacing them with negative impedances. We test if the sensitivity, based on static power flow, provides good guidance to reduce the dynamic model. Case studies show that the proposed method can handle well these solitary generators and the reduction ratio can be enhanced through this method. Future work will include generalization of the sensitivity method.

  8. Conductive polymer-based material

    DOEpatents

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  9. Optimization-based channel constrained data aggregation routing algorithms in multi-radio wireless sensor networks.

    PubMed

    Yen, Hong-Hsu

    2009-01-01

    In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers

  10. In vitro comparative study of sealing ability of Diadent BioAggregate and other root-end filling materials

    PubMed Central

    El Sayed, MA; Saeed, MH

    2012-01-01

    Aim: This in vitro study evaluated and compared sealing ability of Diadent BioAggregate (DBA) as a new root-end filling material (REFM) versus amalgam, intermediate restorative material (IRM) and white mineral trioxide aggregate (WMTA). Materials and Methods: Crowns of sixty extracted human maxillary incisors were sectioned at the cemento-enamel junction (CEJ). All the roots were instrumented and obturated with gutta-percha and resin sealer. Obturated roots were divided randomly into 2 control groups and 4 experimental groups of 10 samples each. In the negative control group (group I), roots were kept without any further preparation. In the positive and experimental groups roots, were apically resected and root-end cavities were prepared and filled with: (a) gutta-percha (group 2-positive control group); (b) amalgam (group 3); (c) IRM (group 4); (d) WMTA (group 5); (e) DBA (group 6). Apical leakage was assessed using dye penetration technique. Data were submitted to statistical analysis by the one-way analysis of variance (ANOVA) and Tukey's test. Results: Significant difference of sealing ability was found among 4 tested groups. DBA followed by MTA showed the highest sealing ability. Conclusions: DBA with its high sealing ability can be considered a possible alternative to MTA. PMID:22876012

  11. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    NASA Astrophysics Data System (ADS)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  12. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  13. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  14. Quantification of Anti-Aggregation Activity of Chaperones: A Test-System Based on Dithiothreitol-Induced Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Kara, Dmitriy A.; Chebotareva, Natalia A.; Makeeva, Valentina F.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Kurganov, Boris I.

    2013-01-01

    The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (vagg) have been discussed. The comparison of the dependences of vagg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of vagg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin–target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively). PMID:24058554

  15. Bacterial leakage in root canals filled with resin-based and mineral trioxide aggregate-based sealers

    PubMed Central

    Razavian, Hamid; Barekatain, Behnaz; Shadmehr, Elham; Khatami, Mahdieh; Bagheri, Fahime; Heidari, Fariba

    2014-01-01

    Background: Sealing ability is one of the most important features of endodontic sealers. The purpose of this in vitro study was to compare the sealing ability of a resin-based sealer with a mineral trioxide aggregate-based sealer. Materials and Methods: A total of 60 single-rooted extracted human teeth were randomly divided into two experimental groups (n = 25) and two control groups (n = 5). After canal preparation and smear layer removal, both groups were obturated with gutta-percha and sealer. Resin-based AH26 sealer was used in the first group and Fillapex® sealer in the second group. Two layers of nail varnish were applied on tooth surfaces except for the apical 2 mm. In the negative control group, nail varnish was applied on the entire surface. The teeth were mounted according to Lima et al. study and then sterilized by ethylene oxide gas. The samples were evaluated for bacterial microleakage using Enterococcus faecalis (ATCC 29212) for 90 days. Data were analyzed by survival test (P < 0.05). Results: Control groups had either immediate leakage or no leakage. The Fillapex® showed significantly higher amounts of microleakage compared with AH26 sealer (P < 0.05) and both groups exhibited significant differences in comparison with control groups. Conclusion: Both sealers had bacterial leakage. Sealing ability of AH26 was significantly higher than that of Fillapex®. PMID:25426153

  16. Efficient Content-based Image Retrieval using Support Vector Machines for Feature Aggregation

    NASA Astrophysics Data System (ADS)

    Dimitrovski, Ivica; Loskovska, Suzana; Chorbev, Ivan

    In this paper, a content-based image retrieval system for aggregation and combination of different image features is presented. Feature aggregation is important technique in general content-based image retrieval systems that employ multiple visual features to characterize image content. We introduced and evaluated linear combination and support vector machines to fuse the different image features. The implemented system has several advantages over the existing content-based image retrieval systems. Several implemented features included in our system allow the user to adapt the system to the query image. The SVM-based approach for ranking retrieval results helps processing specific queries for which users do not have knowledge about any suitable descriptors.

  17. Impact of Sterilization Method on Protein Aggregation and Particle Formation in Polymer-Based Syringes.

    PubMed

    Kiminami, Hideaki; Krueger, Aaron B; Abe, Yoshihiko; Yoshino, Keisuke; Carpenter, John F

    2017-04-01

    The effects of sterilization methods on the storage stability of erythropoietin (EPO) in polymer-based syringes were assessed by quantifying protein oxidation, aggregation, and particle formation. Micro-particle counting and size exclusion chromatography coupled with a multi-angle light scattering detector demonstrated much lower levels of protein particles and aggregates for EPO stored for 12 weeks in steam-sterilized than in radiation (Rad)-sterilized syringes. Intermediate levels of damage were observed for EPO stored in ethylene oxide-sterilized syringes. HPLC analysis documented that the Rad-sterilized syringes caused increased oxidation of the protein during storage. In contrast, in the steam- and ethylene oxide-sterilized syringes EPO oxidation did not change. Analysis with electron spin resonance revealed that only Rad-sterilized syringes formed radicals in the syringe body, which persisted over the 12-week storage period. These results demonstrated that Rad-sterilization generated radicals in the syringes which in turn caused increased EPO oxidation, particle formation, and protein aggregation. Therefore, steam sterilization was shown to be a preferable sterilization method for the polymer-based syringe system when using biopharmaceutical drugs highly sensitive to oxidation, and particle formation and aggregation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Comparative evaluation of mineral trioxide aggregate and bioaggregate as apical barrier material in traumatized nonvital, immature teeth: A clinical pilot study.

    PubMed

    Tuloglu, N; Bayrak, S

    2016-01-01

    Clinical research examining the use of mineral trioxide aggregate (MTA) as an apical barrier material are limited, and no studies have so far examined the clinical performance of BioAggregate as apical barrier material in nonvital immature teeth. This study was aimed to provide a comparative evaluation of the clinical and radiographic success of MTA and BioAggregate as an apical barrier material in children with traumatized nonvital, immature permanent maxillary incisors. A total of 26 maxillary incisor teeth in 20 children aged 7-11 were chosen for this study. Teeth were randomly divided into two groups according to the material to be applied, and the apical barrier was performed. Following treatment, for 24-month, teeth were clinically and radiographically evaluated once every 3- and 6-month, respectively. All teeth treated with MTA and BioAggregate were clinically and radiographically successful throughout the 24-month follow-up period. Similar success was achieved in the apical barrier that using BioAggregate and MTA. BioAggregate would be considered suitable materials for apical barrier technique and can be used as an alternative to MTA.

  19. Biodentine versus Mineral Trioxide Aggregate versus Intermediate Restorative Material for Retrograde Root End Filling: An Invitro Study.

    PubMed

    Soundappan, Saravanapriyan; Sundaramurthy, Jothi Latha; Raghu, Sandhya; Natanasabapathy, Velmurugan

    2014-03-01

    The aim of this study was to evaluate the marginal adaptation of Biodentine in comparison with Mineral Trioxide Aggregate (MTA) and Intermediate Restorative Material (IRM), as a root end filling material, using Scanning Electron Microscopy (SEM). Thirty permanent maxillary central incisors were chemo-mechanically prepared and obturated. Three millimetres of the root end were resected and 3mm retro cavity preparation was done using ultrasonic retrotips. The samples were randomly divided into three groups (n=10) and were restored with root end filling materials: Group I - MTA, Group II - Biodentine, Group III - IRM. The root ends were sectioned transversely at 1mm and 2mm levels and evaluated for marginal adaptation using SEM. The gap between dentin and retro filling material was measured at four quadrants. The mean gap at 1mm level and 2mm level from the resected root tip and combined mean were calculated. The data were statistically analyzed, using one-way ANOVA and Tukey's HSD post hoc test for intergroup analysis and paired t-test for intragroup analysis. The overall results showed no statistically significant difference between MTA and IRM but both were superior when compared to Biodentine. At 1mm level there was no statistically significant difference among any of the tested materials. At 2mm level MTA was superior to both IRM and Biodentine. In overall comparison, MTA and IRM were significantly superior when compared to Biodentine in terms of marginal adaptation, when used as retrograde filling material.

  20. Multi-objective particle swarm optimization using Pareto-based set and aggregation approach

    NASA Astrophysics Data System (ADS)

    Huang, Song; Wang, Yan; Ji, Zhicheng

    2017-07-01

    Multi-objective optimization problems (MOPs) need to be solved in real world recently. In this paper, a multi-objective particle swarm optimization based on Pareto set and aggregation approach was proposed to deal with MOPs. Firstly, velocities and positions were updated similar to PSO. Then, global-best set was defined in particle swarm optimizer to preserve Pareto-based set obtained by the population. Specifically, a hybrid updating strategy based on Pareto set and aggregation approach was introduced to update the global-best set and local search was carried on global-best set. Thirdly, personal-best positions were updated in decomposition way, and global-best position was selected from global-best set. Finally, ZDT instances and DTLZ instances were selected to evaluate the performance of MULPSO and the results show validity of the proposed algorithm for MOPs.

  1. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    SciTech Connect

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  2. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  3. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels

    PubMed Central

    Rajan, Robin; Matsumura, Kazuaki

    2017-01-01

    Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation. PMID:28374820

  4. Useful multivariate kinetic analysis: Size determination based on cystein-induced aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rabbani, Faride; Hormozi Nezhad, Mohammad Reza; Abdollahi, Hamid

    2013-11-01

    This study describes spectrometric monitored kinetic processes to determine the size of citrate-capped Au nanoparticles (Au NPs) based on aggregation induced by L-cysteine (L-Cys) as a molecular linker. The Au NPs association process is thoroughly dependent on pH, concentration and size of nanoparticles. Size dependency of aggregation inspirits to determine the average diameters of Au NPs. For this aim the procedure is achieved in aqueous medium at pH 7 (phosphate buffer), and multivariate data including kinetic spectra of Au NPs are collected during aggregation process. Subsequently partial least squares (PLS) modeling is carried out analyzing the obtained data. The model is built on the basis of relation between the kinetics behavior of aggregation and different Au NPs sizes. Training the model was performed using latent variables (LVs) of the original data. The analytical performance of the model was characterized by relative standard error. The proposed method was applied to determination of size in unknown samples. The predicted sizes of unknown samples that obtained by the introduced method are interestingly in agreement with the sizes measured by Transmission Electron Microscopy (TEM) images and Dynamic Light Scattering (DLS) measurement.

  5. Useful multivariate kinetic analysis: Size determination based on cystein-induced aggregation of gold nanoparticles.

    PubMed

    Rabbani, Faride; Hormozi Nezhad, Mohammad Reza; Abdollahi, Hamid

    2013-11-01

    This study describes spectrometric monitored kinetic processes to determine the size of citrate-capped Au nanoparticles (Au NPs) based on aggregation induced by l-cysteine (l-Cys) as a molecular linker. The Au NPs association process is thoroughly dependent on pH, concentration and size of nanoparticles. Size dependency of aggregation inspirits to determine the average diameters of Au NPs. For this aim the procedure is achieved in aqueous medium at pH 7 (phosphate buffer), and multivariate data including kinetic spectra of Au NPs are collected during aggregation process. Subsequently partial least squares (PLS) modeling is carried out analyzing the obtained data. The model is built on the basis of relation between the kinetics behavior of aggregation and different Au NPs sizes. Training the model was performed using latent variables (LVs) of the original data. The analytical performance of the model was characterized by relative standard error. The proposed method was applied to determination of size in unknown samples. The predicted sizes of unknown samples that obtained by the introduced method are interestingly in agreement with the sizes measured by Transmission Electron Microscopy (TEM) images and Dynamic Light Scattering (DLS) measurement.

  6. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design.

    PubMed

    Mishra, Pankaj; Ayyannan, Senthil R; Panda, Gautam

    2015-09-01

    Targeting β-amyloid (Aβ) remains the most desired strategy in Alzheimer's disease (AD) drug discovery research. Many peptides that specifically target Aβ aggregates are known, encompassing efforts from both industrial and academic research settings. However, in clinical terms, not much success has been gained with peptide research; in turn, small drug-like molecules are already globally recognized as showing promise as an alternate approach. Aβ aggregation inhibitors are the most important part of the multifunctional drug design regimen for treating AD. Unfortunately, rational drug design approaches with small molecules are still in the initial stages. Herein we highlight, update, and elaborate on the structural anatomy of Aβ and known Aβ aggregation inhibitors in hopes of helping to optimize their use in structure-based drug design approaches toward inhibitors with greater specificity. Furthermore, we present the first review of efforts to target a previously uncharacterized region of acetylcholinesterase: the N-terminal 7-20 sub-region, which was experimentally elucidated to participate in Aβ aggregation and deposition.

  7. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels

    NASA Astrophysics Data System (ADS)

    Rajan, Robin; Matsumura, Kazuaki

    2017-04-01

    Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation.

  8. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    SciTech Connect

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power data are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.

  9. Data Aggregation Based on Overlapping Rate of Sensing Area in Wireless Sensor Networks.

    PubMed

    Tang, Xiaolan; Xie, Hua; Chen, Wenlong; Niu, Jianwei; Wang, Shuhang

    2017-06-29

    Wireless sensor networks are required in smart applications to provide accurate control, where the high density of sensors brings in a large quantity of redundant data. In order to reduce the waste of limited network resources, data aggregation is utilized to avoid redundancy forwarding. However, most of aggregation schemes reduce information accuracy and prolong end-to-end delay when eliminating transmission overhead. In this paper, we propose a data aggregation scheme based on overlapping rate of sensing area, namely AggOR, aiming for energy-efficient data collection in wireless sensor networks with high information accuracy. According to aggregation rules, gathering nodes are selected from candidate parent nodes and appropriate neighbor nodes considering a preset threshold of overlapping rate of sensing area. Therefore, the collected data in a gathering area are highly correlated, and a large amount of redundant data could be cleaned. Meanwhile, AggOR keeps the original entropy by only deleting the duplicated data. Experiment results show that compared with others, AggOR has a high data accuracy and a short end-to-end delay with a similar network lifetime.

  10. Quality control of lightweight aggregate concrete based on initial and final water absorption tests

    NASA Astrophysics Data System (ADS)

    Maghfouri, M.; Shafigh, P.; Ibrahim, Z. Binti; Alimohammadi, V.

    2017-06-01

    Water absorption test is used to evaluate overall performance of concrete in terms of durability. The water absorption of lightweight concrete might be considerably higher than the conventional concrete due to higher rate of pores in concrete and lightweight aggregate. Oil palm shell is a bio-solid waste in palm oil industry, which could be used as lightweight aggregate in the concrete mixture. The present study aims to measure the initial and final water absorption and compressive strength of oil palm shell lightweight concrete in order to evaluation of quality control and durability performance. Total normal coarse aggregates were substituted with coarse oil palm shell in a high strength concrete mixture. The quality of concrete was then evaluated based on the compressive strength and water absorption rates. The results showed that fully substitution of normal coarse aggregates with oil palm shell significantly reduced the compressive strength. However, this concrete with the 28-day compressive strength of 40 MPa still can be used as structural concrete. The initial and final water absorption test results also showed that this concrete is not considered as a good concrete in terms of durability. Therefore, it is recommended that both compressive strength and waster absorption tests must be performed for quality control of oil palm shell concretes.

  11. Interval-Valued Model Level Fuzzy Aggregation-Based Background Subtraction.

    PubMed

    Chiranjeevi, Pojala; Sengupta, Somnath

    2016-07-29

    In a recent work, the effectiveness of neighborhood supported model level fuzzy aggregation was shown under dynamic background conditions. The multi-feature fuzzy aggregation used in that approach uses real fuzzy similarity values, and is robust for low and medium-scale dynamic background conditions such as swaying vegetation, sprinkling water, etc. The technique, however, exhibited some limitations under heavily dynamic background conditions, as features have high uncertainty under such noisy conditions and these uncertainties were not captured by real fuzzy similarity values. Our proposed algorithm is particularly focused toward improving the detection under heavy dynamic background conditions by modeling uncertainties in the data by interval-valued fuzzy set. In this paper, real-valued fuzzy aggregation has been extended to interval-valued fuzzy aggregation by considering uncertainties over real similarity values. We build up a procedure to calculate the uncertainty that varies for each feature, at each pixel, and at each time instant. We adaptively determine membership values at each pixel by the Gaussian of uncertainty value instead of fixed membership values used in recent fuzzy approaches, thereby, giving importance to a feature based on its uncertainty. Interval-valued Choquet integral is evaluated using interval similarity values and the membership values in order to calculate interval-valued fuzzy similarity between model and current. Adequate qualitative and quantitative studies are carried out to illustrate the effectiveness of the proposed method in mitigating heavily dynamic background situations as compared to state-of-the-art.

  12. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials.

    PubMed

    Shahi, Shahriar; Yavari, Hamid R; Rahimi, Saeed; Eskandarinezhad, Mahsa; Shakouei, Sahar; Unchi, Mahsa

    2011-12-01

    Inadequate apical seal is the major cause of surgical endodontic failure. The root-end filling material used should prevent egress of potential contaminants into periapical tissue. The purpose of this study was to compare the sealing ability of four root-end filling materials: white mineral trioxide aggregate (MTA), gray MTA, white Portland cement (PC) and gray PC by dye leakage test. Ninety-six human single-rooted teeth were instrumented, and obturated with gutta-percha. After resecting the apex, an apical cavity was prepared. The teeth were randomly divided into four experimental groups (A: white MTA, B: gray MTA, C: white PC and D: gray PC; n = 20) and two control groups (positive and negative control groups; n = 8). Root-end cavities in the experimental groups were filled with the experimental materials. The teeth were exposed to Indian ink for 72 hours. The extent of dye penetration was measured with a stereomicroscope at 16× magnification. The negative controls showed no dye penetration and dye penetration was seen in the entire root-end cavity of positive controls. However, there was no statistically significant difference among the four experimental groups (P > 0.05). All retrograde filling materials tested in this study showed the same microleakage in vitro. Given the low cost and apparently similar sealing ability of PC, PC could be considered as a substitute for MTA as a root-end filling material.

  13. A new algorithm based on bipartite graph networks for improving aggregate recommendation diversity

    NASA Astrophysics Data System (ADS)

    Ma, Lulu; Zhang, Jun

    2017-08-01

    Most of the traditional recommendation algorithms focus on the accuracy of recommendation results; however, the diversity of recommendation results is also important, which can be used to avoid the long-tail phenomenon. In this paper, a new algorithm for improving aggregate recommendation diversity is proposed. Firstly, a candidate recommendation list based on predictive scores is constructed; and then a bipartite graph network model is constructed. Secondly, item capacity is set to limit the number of recommendations of popular items. Finally, the final recommendation result is generated by combining the recommendation augmenting path. Based on the real world movie rating datasets, experiment results show that the proposed algorithm can effectively guarantee the accuracy of the recommendation results as well as improved the aggregate diversity of the recommendation.

  14. Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport

    PubMed Central

    Nawroth, Peter P.; Tyedmers, Jens

    2016-01-01

    Aggregation of amyloidogenic proteins is associated with several neurodegenerative diseases. Sequestration of misfolded and aggregated proteins into specialized deposition sites may reduce their potentially detrimental properties. Yeast exhibits a distinct deposition site for amyloid aggregates termed “Insoluble PrOtein Deposit (IPOD)”, but nothing is known about the mechanism of substrate recruitment to this site. The IPOD is located directly adjacent to the Phagophore Assembly Site (PAS) where the cell initiates autophagy and the Cytoplasm-to-Vacuole Targeting (CVT) pathway destined for delivery of precursor peptidases to the vacuole. Recruitment of CVT substrates to the PAS was proposed to occur via vesicular transport on Atg9 vesicles and requires an intact actin cytoskeleton and “SNAP (Soluble NSF Attachment Protein) Receptor Proteins (SNARE)” protein function. It is, however, unknown how this vesicular transport machinery is linked to the actin cytoskeleton. We demonstrate that recruitment of model amyloid PrD-GFP and the CVT substrate precursor-aminopeptidase 1 (preApe1) to the IPOD or PAS, respectively, is disturbed after genetic impairment of Myo2-based actin cable transport and SNARE protein function. Rather than accumulating at the respective deposition sites, both substrates reversibly accumulated often together in the same punctate structures. Components of the CVT vesicular transport machinery including Atg8 and Atg9 as well as Myo2 partially co-localized with the joint accumulations. Thus we propose a model where vesicles, loaded with preApe1 or PrD-GFP, are recruited to tropomyosin coated actin cables via the Myo2 motor protein for delivery to the PAS and IPOD, respectively. We discuss that deposition at the IPOD is not an integrated mandatory part of the degradation pathway for amyloid aggregates, but more likely stores excess aggregates until downstream degradation pathways have the capacity to turn them over after liberation by the Hsp104

  15. Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport.

    PubMed

    Kumar, Rajesh; Nawroth, Peter P; Tyedmers, Jens

    2016-09-01

    Aggregation of amyloidogenic proteins is associated with several neurodegenerative diseases. Sequestration of misfolded and aggregated proteins into specialized deposition sites may reduce their potentially detrimental properties. Yeast exhibits a distinct deposition site for amyloid aggregates termed "Insoluble PrOtein Deposit (IPOD)", but nothing is known about the mechanism of substrate recruitment to this site. The IPOD is located directly adjacent to the Phagophore Assembly Site (PAS) where the cell initiates autophagy and the Cytoplasm-to-Vacuole Targeting (CVT) pathway destined for delivery of precursor peptidases to the vacuole. Recruitment of CVT substrates to the PAS was proposed to occur via vesicular transport on Atg9 vesicles and requires an intact actin cytoskeleton and "SNAP (Soluble NSF Attachment Protein) Receptor Proteins (SNARE)" protein function. It is, however, unknown how this vesicular transport machinery is linked to the actin cytoskeleton. We demonstrate that recruitment of model amyloid PrD-GFP and the CVT substrate precursor-aminopeptidase 1 (preApe1) to the IPOD or PAS, respectively, is disturbed after genetic impairment of Myo2-based actin cable transport and SNARE protein function. Rather than accumulating at the respective deposition sites, both substrates reversibly accumulated often together in the same punctate structures. Components of the CVT vesicular transport machinery including Atg8 and Atg9 as well as Myo2 partially co-localized with the joint accumulations. Thus we propose a model where vesicles, loaded with preApe1 or PrD-GFP, are recruited to tropomyosin coated actin cables via the Myo2 motor protein for delivery to the PAS and IPOD, respectively. We discuss that deposition at the IPOD is not an integrated mandatory part of the degradation pathway for amyloid aggregates, but more likely stores excess aggregates until downstream degradation pathways have the capacity to turn them over after liberation by the Hsp104

  16. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    NASA Astrophysics Data System (ADS)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  17. Polyimide-based electrooptic materials

    SciTech Connect

    Cahill, P.A.; Seager, C.H.; Meinhardt, M.B.; Beuhler, A.J.; Wargowski, D.A.; Singer, K.D.; Kowalczyk, T.C.; Kosc, T.Z.

    1993-08-01

    The properties of new, high temperature optical materials based on dye-doped Ultradel{reg_sign} 9000D{sup 1} polyimides are presented. Ultradel 9000D is a soluble, pre-imidized, fluorinated polymer with properties optimized for integrated optical applications. When thermally or photochemically cross-linked, it has a Tg approaching 400{degree}C and retains excellent optical transparency as measured by both waveguide loss spectroscopy (WLS) and photothermal deflection spectroscopy (PDS). The agreement between WLS and PDS data indicates that losses in polyimides are due to absorption, not scattering. Two thermally stable, donor-acceptor oxazole-based dyes were designed, synthesized, and doped into the polyimide at concentrations up to 25 percent by weight. The Tg of the doped polymers decreased from the neat polymer, but remained above 300 {degree}C. The effects of doping on the dielectric constant, refractive index, and coefficient of thermal expansion of the polyamide are presented. The oxazoles also photobleach and thereby provide an additional means of photodefining waveguides in these materials.

  18. Dynamic intratubular biomineralization following root canal obturation with pozzolan‐based mineral trioxide aggregate sealer cement

    PubMed Central

    Yoo, Yeon‐Jee; Baek, Seung‐Ho; Kum, Kee‐Yeon; Shon, Won‐Jun; Woo, Kyung‐Mi

    2015-01-01

    Summary The application of mineral trioxide aggregates (MTA) cement during the root canal obturation is gaining concern due to its bioactive characteristic to form an apatite in dentinal tubules. In this regard, this study was to assess the biomineralization of dentinal tubules following root canal obturation by using pozzolan‐based (Pz‐) MTA sealer cement (EndoSeal MTA, Maruchi). Sixty curved roots (mesiobuccal, distobuccal) from human maxillary molars were instrumented and prepared for root canal obturation. The canals were obturated with gutta‐percha (GP) and Pz‐MTA sealer by using continuous wave of condensation technique. Canals obturated solely with ProRoot MTA (Dentsply Tulsa Dental) or Pz‐MTA sealer were used for comparison. In order to evaluate the biomineralization ability under different conditions, the PBS pretreatment before the root canal obturation was performed in each additional samples. At dentin‐material interfaces, the extension of intratubular biomineralization was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy. When the root canal was obturated with GP and Pz‐MTA sealer, enhanced biomineralization of the dentinal tubules beyond the penetrated sealer tag was confirmed under the SEM observation (p < 0.05). Mineralized apatite structures (calcium/phosphorous ratio, 1.45–1.89) connecting its way through the dentinal tubules were detected at 350–400 μm from the tubule orifice, and the pre‐crystallization seeds were also observed along the intra‐ and/or inter‐tubular collagen fiber. Intratubular biomineralization depth was significantly enhanced in all PBS pretreated canals (p < 0.05). Pz‐MTA cement can be used as a promising bioactive root canal sealer to enhance biomineralization of dentinal tubules under controlled environment. SCANNING 38:50–56, 2016. © 2015 The Authors. Scanning Published by Wiley Periodicals, Inc. PMID:26179659

  19. Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish

    DTIC Science & Technology

    2013-09-30

    statistical models for signal- processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...the experimental area. This expectation has been affirmed by fishery catch statistics for 2012 (PACFIN, 2013a; PACFIN, 2013b, Hicks et al., 2013...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally, these models

  20. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  1. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    PubMed Central

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%. PMID:28139768

  2. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress

    PubMed Central

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J.M.

    2016-01-01

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ). PMID:28773376

  3. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    PubMed

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  4. Red-light-emitting system based on aggregation of donor-acceptor derivatives in polar aqueous media.

    PubMed

    Ishi-i, Tsutomu; Ikeda, Kei; Kichise, Yuki; Ogawa, Michiaki

    2012-06-01

    Glowing together: An efficient red-light-emitting system has been created in polar water media based on the aggregation of donor-acceptor molecules. In the THF/water mixture, the emission was quenched when a small volume of water was used, whereas it was recovered and enhanced upon aggregate formation with a large water volume.

  5. Biodentine versus Mineral Trioxide Aggregate versus Intermediate Restorative Material for Retrograde Root End Filling: An Invitro Study

    PubMed Central

    Soundappan, Saravanapriyan; Sundaramurthy, Jothi Latha; Raghu, Sandhya; Natanasabapathy, Velmurugan

    2014-01-01

    Objective The aim of this study was to evaluate the marginal adaptation of Biodentine in comparison with Mineral Trioxide Aggregate (MTA) and Intermediate Restorative Material (IRM), as a root end filling material, using Scanning Electron Microscopy (SEM). Materials and Methods: Thirty permanent maxillary central incisors were chemo-mechanically prepared and obturated. Three millimetres of the root end were resected and 3mm retro cavity preparation was done using ultrasonic retrotips. The samples were randomly divided into three groups (n=10) and were restored with root end filling materials: Group I – MTA, Group II – Biodentine, Group III – IRM. The root ends were sectioned transversely at 1mm and 2mm levels and evaluated for marginal adaptation using SEM. The gap between dentin and retro filling material was measured at four quadrants. The mean gap at 1mm level and 2mm level from the resected root tip and combined mean were calculated. The data were statistically analyzed, using one-way ANOVA and Tukey’s HSD post hoc test for intergroup analysis and paired t-test for intragroup analysis. Results: The overall results showed no statistically significant difference between MTA and IRM but both were superior when compared to Biodentine. At 1mm level there was no statistically significant difference among any of the tested materials. At 2mm level MTA was superior to both IRM and Biodentine. Conclusion: In overall comparison, MTA and IRM were significantly superior when compared to Biodentine in terms of marginal adaptation, when used as retrograde filling material. PMID:24910689

  6. Comparing Gray and White Mineral Trioxide Aggregate as a Repair Material for Furcation Perforation: An in Vitro Dye Extraction Study

    PubMed Central

    Patel, Kiran; Baba, Suheel Manzoor; Jaiswal, Shikha; Venkataraghavan, Karthik; Jani, Mehul

    2014-01-01

    Introduction: Furcation perforation can have a negative impact on the prognosis of the affected tooth by compromising the attached apparatus. Hence these perforations require immediate repair. A variety of materials have been suggested for repair, of that MTA is the most promising material. The purpose of this study was to compare the ability of Gray and White MTA to seal furcation perforations using a dye extraction method under spectrophotometer. Materials and Methods: A total of 60 permanent mandibular molars were randomly divided into four experimental groups of 15 samples each as follows: Group A: Perforation repaired with White MTA. Group B: Perforation repaired with Gray MTA. Group C: Perforation left unsealed (positive). Group D: without perforation (negative). Dye extraction was performed using full concentration nitric acid. Dye absorbance was measured at 550 nm using spectrophotometer. The data analyzed using one-way-Anova Ratio and Unpaired t-test showing statistically significance difference among the groups. Result: It was seen that Group D samples without perforation showed least absorbance followed by Group A (perforation repaired with White MTA) and Group B (perforation repaired with Gray MTA). Group C (perforation left unsealed) showed highest absorbance. Conclusion: The White and Gray Mineral Trioxide Aggregate performed similarly as a furcation perforation repair material. There was no significant difference between the Gray MTA and White MTA. PMID:25478452

  7. Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation

    PubMed Central

    Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.

    2015-01-01

    Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353

  8. Quality assessment for recycling aggregates from construction and demolition waste: An image-based approach for particle size estimation.

    PubMed

    Di Maria, Francesco; Bianconi, Francesco; Micale, Caterina; Baglioni, Stefano; Marionni, Moreno

    2016-02-01

    The size distribution of aggregates has direct and important effects on fundamental properties of construction materials such as workability, strength and durability. The size distribution of aggregates from construction and demolition waste (C&D) is one of the parameters which determine the degree of recyclability and therefore the quality of such materials. Unfortunately, standard methods like sieving or laser diffraction can be either very time consuming (sieving) or possible only in laboratory conditions (laser diffraction). As an alternative we propose and evaluate the use of image analysis to estimate the size distribution of aggregates from C&D in a fast yet accurate manner. The effectiveness of the procedure was tested on aggregates generated by an existing C&D mechanical treatment plant. Experimental comparison with manual sieving showed agreement in the range 81-85%. The proposed technique demonstrated potential for being used on on-line systems within mechanical treatment plants of C&D.

  9. Natural Aggregation Approach based Home Energy Manage System with User Satisfaction Modelling

    NASA Astrophysics Data System (ADS)

    Luo, F. J.; Ranzi, G.; Dong, Z. Y.; Murata, J.

    2017-07-01

    With the prevalence of advanced sensing and two-way communication technologies, Home Energy Management System (HEMS) has attracted lots of attentions in recent years. This paper proposes a HEMS that optimally schedules the controllable Residential Energy Resources (RERs) in a Time-of-Use (TOU) pricing and high solar power penetrated environment. The HEMS aims to minimize the overall operational cost of the home, and the user’s satisfactions and requirements on the operation of different household appliances are modelled and considered in the HEMS. Further, a new biological self-aggregation intelligence based optimization technique previously proposed by the authors, i.e., Natural Aggregation Algorithm (NAA), is applied to solve the proposed HEMS optimization model. Simulations are conducted to validate the proposed method.

  10. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila

    NASA Astrophysics Data System (ADS)

    Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie

    2003-05-01

    The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.

  11. Vanadium based materials as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  12. Natural aggregates of the conterminous United States

    USGS Publications Warehouse

    Langer, William H.

    1988-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregates. These materials are commonly used construction materials and frequently can be interchanged with one another. They are widely used throughout the United States, with every State except two producing crushed stone. Together they amount to about half the mining volume in the United States. Approximately 96 percent of sand and gravel and 77 percent of the crushed stone produced in the United States are used in the construction industry. Natural aggregates are widely distributed throughout the United States in a variety of geologic environments. Sand and gravel deposits commonly are the results of the weathering of bedrock and subsequent transportation and deposition of the material by water or ice (glaciers). As such, they commonly occur as river or stream deposits or in glaciated areas as glaciofluvial and other deposits. Crushed stone aggregates are derived from a wide variety of parent bedrock materials. Limestone and other carbonates account for approximately three quarters of the rocks used for crushed stone, with granite and other igneous rocks making up the bulk of the remainder. Limestone deposits are widespread throughout the Central and Eastern United States and are scattered in the West. Granites are widely distributed in the Eastern and Western United States, with few exposures in the Midwest. Igneous rocks (excluding granites) are largely concentrated in the Western United States and in a few isolated localities in the East. Even though natural aggregates are widely distributed throughout the United States, they are not universally available for consumptive use. Some areas are devoid of sand and gravel, and potential sources of crushed stone may be covered with sufficient unconsolidated material to make surface mining impractical. In some areas many aggregates do not meet the physical property requirements for certain uses, or they may contain mineral constituents that react

  13. Bacterial Leakage of Mineral Trioxide Aggregate, Calcium-Enriched Mixture and Biodentine as Furcation Perforation Repair Materials in Primary Molars

    PubMed Central

    Ramazani, Nahid; Sadeghi, Parisa

    2016-01-01

    Introduction: Adequate seal of iatrogenically perforated area within the root canal system can improve the long term treatment prognosis. This in vitro study evaluated the sealing ability of mineral trioxide aggregate (MTA), calcium-enriched mixture (CEM) cement and Biodentine in repair of furcation perforation in primary molars. Methods and Materials: A total of 61 freshly extracted primary mandibular second molars were randomly divided into three groups (n=17) and 10 teeth were put in negative (without perforation, n=5) and positive (perforated without repair, n=5) control groups. Turbidity was used as the criteria of bacterial leakage, when detected in the model of dual-chamber leakage. Data were analyzed using the Chi-Square and Kaplan-Meier survival analysis in SPSS software. The level of significance was set at 0.05. Results: All positive samples showed turbidity, whereas none of the negative samples allowed bacterial leakage. There was no significant difference between the number of turbidity samples in repaired teeth with all test materials (P=0.13). No significant difference was also detected in the mean survival time (P>0.05). Conclusion: CEM cement and Biodentine showed promising results as perforation repair materials and can be recommended as suitable alternatives of MTA for repair of furcation perforation of primary molars. PMID:27471534

  14. Hypothermia-induced platelet aggregation in human blood in an in vitro model: the dominant role of blood-material interactions.

    PubMed

    Hall, Matthew W; Solen, Kenneth A

    2002-03-05

    Hypothermia-induced platelet aggregation (HIPA) with or without neutrophil involvement may cause neurologic dysfunction during hypothermic surgery. We report the use of a previously developed model to study the contributions of several surfaces, surface area, shear rate, and blood-material exposure time to HIPA. Heparinized (1.5 u/mL) human blood was quenched to 24 degrees C and passed (0.5 mL/min) through a 75-cm long 1/32" ID tubing of polyvinylchloride (PVC), polyethylene (PE), polyurethane (PU), Teflon-FEP, or heparin (Duraflo)-coated PVC. The number of aggregates was measured by a light-scattering method, and the concentration of occlusive aggregates was assessed using constant-pressure filtration (50 mmHg). No differences were seen among PVC, PE, PU, or Teflon-FEP. The heparin-coated PVC tubing produced fewer occlusive aggregates, and heparin leaching from the coating was not the cause of the decrease in occlusive aggregates. Increasing surface area increased the number of aggregates, and increasing shear rates decreased the occlusiveness of those aggregates.

  15. Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material.

    PubMed

    Fischer, E J; Arens, D E; Miller, C H

    1998-03-01

    Several dye leakage studies have demonstrated the fact that mineral trioxide aggregate (MTA) leaks significantly less than other root-end filling materials. The purpose of this study was to determine the time needed for Serratia marcescens to penetrate a 3 mm thickness of zinc-free amalgam, Intermediate Restorative Material (IRM), Super-EBA, and MTA when these materials were used as root-end filling materials. Fifty-six, single-rooted extracted human teeth were cleaned and shaped with a series of .04 Taper rotary instruments (Pro-series 29 files). Once the canals were prepared in a crown down approach, the ends were resected and 48 root-end cavities were ultrasonically prepared to a 3 mm depth. The teeth were then steam sterilized. Using an aseptic technique, under a laminar air flow hood, the root-end cavities were filled with amalgam, IRM, Super-EBA, and MTA. Four root-end cavities were filled with thermoplasticized gutta-percha without a root canal sealer and served as positive controls. Another four root-end cavities were filled with sticky wax covered with two layers of nail polish and served as negative controls. The teeth were attached to presterilized (ethylene oxide gas) plastic caps, and the root ends were placed into 12-ml vials of phenol red broth. Using a micropipette, a tenth of a milliliter of S. marcescens was placed into the root canal of each tooth. To test the sterility of the apparatus set-up, the root canals of two teeth with test root-end filling materials and one tooth from the positive and negative control groups were filled with sterile saline. The number of days required for S. marcescens to penetrate the four root-end filling materials and grow in the phenol red broth was recorded and analyzed. Most of the samples filled with zinc-free amalgam leaked bacteria in 10 to 63 days. IRM began leaking 28 to 91 days. Super-EBA began leaking 42 to 101 days. MTA did not begin leaking until day 49. At the end of the study, four of the MTA samples

  16. Multistimuli-Responsive Luminescence of Naphthalazine Based on Aggregation-Induced Emission

    PubMed Central

    Yao, Xiang; Ru, Jia-Xi; Xu, Cong; Liu, Ya-Ming; Dou, Wei; Tang, Xiao-Liang; Zhang, Guo-Lin; Liu, Wei-Sheng

    2015-01-01

    Stimuli-responsive luminescent materials, which are dependent on changes in physical molecular packing modes, have attracted more and more interest over the past ten years. In this study, 2,2-dihydroxy-1,1-naphthalazine was synthesized and shown to exhibit different fluorescence emission in solution and solid states with characteristic aggregation-induced emission (AIE) properties. A remarkable change in the fluorescence of 2,2-dihydroxy-1,1-naphthalazine occurred upon mechanical grinding, heating, or exposure to solvents. According to the characterization by solid-state fluorescence spectroscopy, X-ray crystallography, differential scanning calorimetry, and X-ray powder diffraction, the fluorescence change could be attributed to transitions between two structurally different polymorphs. These significant properties could also give 2,2-dihydroxy-1,1-naphthalazine more potential applications as a multifunctional material. PMID:26478843

  17. Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application.

    PubMed

    Zhang, Xiqi; Liu, Meiying; Yang, Bin; Zhang, Xiaoyong; Wei, Yen

    2013-12-01

    Tetraphenylethene-based (TPE) aggregation-induced emission fluorescent organic nanoparticles (FONs) were facilely prepared via Schiff base condensation with ɛ-polylysine (Ply) and subsequent reduction to form stable CN covalent bond. Thus obtained TPE-Ply FONs were characterized by a series of techniques including fluorescent spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of TPE-Ply FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high water dispersibility, intense fluorescence, uniform morphology (100-200nm) and excellent biocompatibility, making them promising for cell imaging application.

  18. Apical Sealing Ability of Mineral Trioxide Aggregate, Intermediate Restorative Material and Calcium Enriched Mixture Cement: A Bacterial Leakage Study

    PubMed Central

    Shahriari, Shahriar; Faramarzi, Farhad; Alikhani, Mohammad-Yousef; Farhadian, Maryam; Hendi, Seyedeh Sareh

    2016-01-01

    Introduction: This in vitro study compared the apical sealing ability of three common root end filling materials namely mineral trioxide aggregate (MTA), intermediate restorative material (IRM) and calcium-enriched mixture (CEM) cement using a bacterial leakage model. Methods and Materials: The study was conducted on 83 single-rooted human teeth. Tooth crowns were cut and root canals were prepared using the step-back technique. Apical 3 mm of the roots were cut and a three-mm-deep cavity was prepared using an ultrasonic instrument. The samples were divided into three groups (n=25) according to the root-end filling material including MTA, IRM and CEM cement. The roots were inserted into cut-end microtubes. After sterilization with ethylene oxide, microtubes were placed in sterile vials containing 10 mL of Brain Heart Infusion (BHI) broth and incubated at 37°C and 0.1 mL of Enterococcus faecalis suspension compatible with 0.5 McFarland standard (1.5×108 cell/ ml), which was refreshed daily. This procedure was continued for 70 days. The data were analyzed using the chi-square, Kruskal-Wallis and log rank tests. The level of significance was set at 0.05. Results: No significant difference was found in bacterial microleakage among three groups; MTA showed slightly (but not significantly) less microleakage than IRM and CEM. However, the difference in the mean time of microleakage was significant among the groups (P<0.04) and in MTA samples leakage occurred in a longer time than CEM (P<0.012). Conclusion: The three tested root end filling materials had equal sealing efficacy for preventing bacterial leakage. PMID:27790267

  19. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    PubMed

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings

    PubMed Central

    Zhang, Qinli; Xiao, Chongchun; Chen, Xin

    2017-01-01

    To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72–74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection. PMID:28662072

  1. Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    He, Zhoukun; Ma, Meng; Xu, Xiangchuan; Wang, Jianying; Chen, Feng; Deng, Hua; Wang, Ke; Zhang, Qin; Fu, Qiang

    2012-01-01

    Herein, we report a facile and low cost method for the fabrication of superhydrophobic surface via spin coating the mixture of polydimethylsiloxane precursor (PDMS) and silicon dioxide (SiO2) nanoparticles. The surface hydrophobicity can be well tuned by adjusting the weight percent of PDMS and SiO2. The water contact angle (WCA) can increase from 106.8 ± 1.2° on PDMS film to 165.2 ± 2.3° on PDMS/SiO2 coating, companying with a change from adhering to rolling which was observed from tilting angle (TA) characterization. Multi-scale physical structures with SiO2 nanoparticle aggregates and networks of SiO2 nanoparticle aggregates are characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM), and they can be observed more clearly from the AFM images treated with software (WSxM). Then the relationship between surface hydrophobicity and structures is further discussed based on Wenzel and Cassie models, indicating that the appearance of networks of nanoparticle aggregates is important in the Cassie state. The superhydrophobic coating can keep the superhydrophobicity at least for one month under environment conditions and readily regenerate after mechanical damage. Additionally, the superhydrophobic coating can be fabricated using other methods including dip coating, spray coating and casting. Thus, a large area of superhydrophobic coatings can be easily fabricated. Therefore the range of possible applications for these facile and versatile methods can be expanded to various actual conditions.

  2. Game Design and Analysis for Price-Based Demand Response: An Aggregate Game Approach.

    PubMed

    Ye, Maojiao; Hu, Guoqiang

    2016-02-18

    In this paper, an aggregate game is adopted for the modeling and analysis of energy consumption control in smart grid. Since the electricity users' cost functions depend on the aggregate energy consumption, which is unknown to the end users, an average consensus protocol is employed to estimate it. By neighboring communication among the users about their estimations on the aggregate energy consumption, Nash seeking strategies are developed. Convergence properties are explored for the proposed Nash seeking strategies. For energy consumption game that may have multiple isolated Nash equilibria, a local convergence result is derived. The convergence is established by utilizing singular perturbation analysis and Lyapunov stability analysis. Energy consumption control for a network of heating, ventilation, and air conditioning systems is investigated. Based on the uniqueness of the Nash equilibrium, it is shown that the players' actions converge to a neighborhood of the unique Nash equilibrium nonlocally. More specially, if the unique Nash equilibrium is an inner Nash equilibrium, an exponential convergence result is obtained. Energy consumption game with stubborn players is studied. In this case, the actions of the rational players can be driven to a neighborhood of their best response strategies by using the proposed method. Numerical examples are presented to verify the effectiveness of the proposed methods.

  3. Supramolecular Aggregates of Defined Stereochemical Scaffolds: Aggregation/Deaggregation in Schiff-Base Zinc(II) Complexes Derived from Enantiopure trans-1,2-Diaminocyclohexane.

    PubMed

    Consiglio, Giuseppe; Oliveri, Ivan Pietro; Failla, Salvatore; Di Bella, Santo

    2016-10-17

    This contribution explores, through detailed (1)H NMR, DOSY NMR, optical absorption, and circular dichroism spectroscopic studies, the aggregation properties in solution of noncoordinating solvents of some new Zn(II) Schiff-base complexes, (R)-1, (S)-1, and (R)-2, derived from the chiral trans-1,2-diaminocyclohexane. It is found that chloroform solutions of 1 are characterized by the presence of three species, the predominance of which consists of large oligomeric aggregates. For chloroform solutions of 1, upon heating or standing, all species are irreversibly converted into a dimer, 1C, which is very stable and hardly disaggregable. Analysis of (1)H NMR, UV/vis, and CD spectroscopic data and chemical evidence allow proposing a double helicate Zn2L2 structure with a tetrahedral coordination around the Zn(II) ions for 1C, as a consequence of the defined stereochemistry of the trans-1,2-diaminocyclohexane chelate bridge. This represents a different, uncommon aggregation mode in Zn(II) complexes of tetradentate Schiff-bases.

  4. Biocompatibility of Resin-based Dental Materials

    PubMed Central

    Moharamzadeh, Keyvan; Brook, Ian M.; Van Noort, Richard

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined the biocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental materials.

  5. Bayesian model aggregation for ensemble-based estimates of protein pKa values

    SciTech Connect

    Gosink, Luke J.; Hogan, Emilie A.; Pulsipher, Trenton C.; Baker, Nathan A.

    2014-03-01

    This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid p$K_a$ predictions. Structure-based p$K_a$ calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for p$K_a$ prediction, ranging from empirical statistical models to {\\it ab initio} quantum mechanical approaches. However, each of these methods are based on a set of assumptions that have inherent bias and sensitivities that can effect a model's accuracy and generalizability for p$K_a$ prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the Garc{\\'i}a-Moreno lab. Our study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods in our cross-validation study with improvements from 40-70\\% over other method classes. This work illustrates a new possible mechanism for improving the accuracy of p$K_a$ prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.

  6. Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments

    PubMed Central

    Schrum, Adam G.

    2015-01-01

    Monoclonal antibodies (mAbs) have proven to be useful for development of new therapeutic drugs and diagnostic techniques. To overcome the difficulties posed by their complex structure and folding, reduce undesired immunogenicity, and improve pharmacokinetic properties, a plethora of different Ab fragments have been developed. These include recombinant Fab and Fv segments that can display improved properties over those of the original mAbs upon which they are based. Antibody (Ab) fragments such as Fabs, scFvs, diabodies, and nanobodies, all contain the variable Ig domains responsible for binding to specific antigenic epitopes, allowing for specific targeting of pathological cells and/or molecules. These fragments can be easier to produce, purify and refold than a full Ab, and due to their smaller size they can be well absorbed and distributed into target tissues. However, the physicochemical and structural properties of the immunoglobulin (Ig) domain, upon which the folding and conformation of all these Ab fragments is based, can limit the stability of Ab-based drugs. The Ig domain is fairly sensitive to unfolding and aggregation when produced out of the structural context of an intact Ab molecule. When unfolded, Ab fragments may lose their specificity as well as establish non-native interactions leading to protein aggregation. Aggregated antibody fragments display altered pharmacokinetic and immunogenic properties that can augment their toxicity. Therefore, much effort has been placed in understanding the factors impacting the stability of Ig folding at two different levels: 1) intrinsically, by studying the effects of the amino acid sequence on Ig folding; 2) extrinsically, by determining the environmental conditions that may influence the stability of Ig folding. In this review we will describe the structure of the Ig domain, and the factors that impact its stability, to set the context for the different approaches currently used to achieve stable recombinant Ig

  7. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  8. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  9. Sealing ability of mineral trioxide aggregate and super-EBA when used as furcation repair materials: a longitudinal study.

    PubMed

    Weldon, J Kenneth; Pashley, David H; Loushine, Robert J; Weller, R Norman; Kimbrough, W Frank

    2002-06-01

    Immediate sealing of furcation perforations enhances the repair process. The purpose of this study was to longitudinally compare the ability of mineral trioxide aggregate (MTA) and Super-EBA to seal furcation perforations. Fifty-one extracted human maxillary molars were decoronated 3 mm above the CEJ, and the roots were amputated 3 mm below the furcation. A #2 high-speed round bur was used to perforate the center of the furcations. The canals were obturated with gutta-percha, and the root ends were sealed with C&B Metabond. Three experimental groups of 15 teeth each were restored with MTA, Super-EBA, or a combination of MTA in the perforation and a Super-EBA dome on the pulpal floor. Six teeth served as controls. Each tooth was affixed to a fluid filtration device and subjected to a pressure of 20 cm H2O. The integrity of the perforation seal was evaluated initially at 30 min for the Super-EBA and the combination groups and at 4 h for the MTA group. Additional measurements were then made at 24 h, 1 week, and 1 month. The controls behaved as expected. A two-way ANOVA revealed a significant difference (p = 0.01) between materials. Tukey's test isolated the difference to Super EBA as producing a superior seal but only at 24 h. There was no significant effect with time (p = 0.57) or the interaction of the materials with time (p = 0.66). All materials sealed the perforations very well. The maximum leakage of all materials was <0.007 microL min(-1) cm H2O(-1).

  10. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material.

    PubMed

    Sluyk, S R; Moon, P C; Hartwell, G R

    1998-11-01

    Furcation perforations were created in 32 extracted maxillary and mandibular molars. The perforations were prepared in the center of the pulp chamber floor parallel to the long axis of each tooth and a saline-moistened Gelfoam matrix was placed below the perforation to simulate a clinical condition. The teeth were randomly divided into four groups, and the perforations were all repaired with mineral trioxide aggregate (MTA) and then covered with either a wet or dry cotton pellet for 24 or 72 h. Instron testing was used to measure the force required to displace the material from the perforation. The force measurements showed that MTA resisted displacement at 72 h to a significantly greater level than at 24 h (p < 0.05). When slight displacement occurred at 24 h the material demonstrated the ability to re-establish resistance to dislodgement from the dentin wall. The presence of some moisture in the perforation during placement was advantageous in aiding adaptation of MTA to the walls of the perforation, but there was no significant difference in MTA retention when a wet or dry cotton pellet was placed in the pulp chamber during the setting time (p > 0.05).

  11. Ash-Based Ceramic Materials.

    DTIC Science & Technology

    This patent discloses a ceramic material made from raw coal fly ash or raw municipal solid waste fly ash and (1) sodium tetraborate or (2) a mixture of sodium tetraborate and a calcium containing material that is triple superphosphate, lime, dolomite lime, or mixtures thereof.

  12. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-10-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films.

  13. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    PubMed Central

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-01-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900

  14. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection.

    PubMed

    Wen, Jun; Huang, Zeng; Hu, Sheng; Li, Shuo; Li, Weiyi; Wang, Xiaolin

    2016-11-15

    A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO2(2+) from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems.

  15. RBC aggregation based system for long-term photoplethysmography (PPG): new prospects for PPG applications

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Tverskoy, Boris

    2015-03-01

    We present system for long-term continuous PPG monitoring, and physical model for PPG analysis. The system is based on ideology of light scattering modulated by the process of RBC aggregation. OXIRATE's system works in reflection geometry. The sensor is tiny, completely mobile phone compatible, it can be placed nearly everywhere on the body surface. These technical features allow all-night comfortable PPG monitoring that was performed and analyzed. We can define various sleep stages on the basis of different reproducible time-behavior of PPG signal. Our system of PPG monitoring was used also for reflection pulse oximetry and for extreme PPG studies, such as diving.

  16. Aggregation-Induced-Emission Materials with Different Electric Charges as an Artificial Tongue: Design, Construction, and Assembly with Various Pathogenic Bacteria for Effective Bacterial Imaging and Discrimination.

    PubMed

    Liu, Guang-Jian; Tian, Sheng-Nan; Li, Cui-Yun; Xing, Guo-Wen; Zhou, Lei

    2017-08-30

    Imaging-based total bacterial count and type identification of bacteria play crucial roles in clinical diagnostics, public health, biological and medical science, and environmental protection. Herein, we designed and synthesized a series of tetraphenylethenes (TPEs) functionalized with one or two aldehyde, carboxylic acid, and quaternary ammonium groups, which were successfully used as fluorescent materials for rapid and efficient staining of eight kinds of representative bacterial species, including pathogenic bacteria Vibrio cholera, Klebsiella pneumoniae, and Listeria monocytogenes and potential bioterrorism agent Yersinia pestis. By comparing the fluorescence intensity changes of the aggregation-induced-emission (AIE) materials before and after bacteria incubation, the sensing mechanisms (electrostatic versus hydrophobic interactions) were simply discussed. Moreover, the designed AIE materials were successfully used as an efficient artificial tongue for bacteria discrimination, and all of the bacteria tested were identified via linear discriminant analysis. Our current work provided a general method for simultaneous broad-spectrum bacterial imaging and species discrimination, which is helpful for bacteria surveillance in many fields.

  17. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    DTIC Science & Technology

    2008-05-27

    process additive in foundry and scrap metal 3 operations before the toxic dust is collected in a bag house. Due to its high alkalinity, Bantox® can...assist in achieving concrete that does not have the toxicity characteristic for lead. Based on the information from available literature and industrial ...as percent (by weight) sodium oxide (Na2O). 3.2 Concrete Mixing and Curing A LWD Lancaster pan concrete mixer (Kercher Industries , Inc., Lebanon

  18. Pyrosequencing-based assessment of soil bacterial communities within soil aggregates: Linking structure to C storage

    USDA-ARS?s Scientific Manuscript database

    Alterations in soil structural properties created by agricultural management practices have a significant influence on soil aggregation, which manages the chemical and physical heterogeneity of soil properties, and, consequently, the distribution of microorganisms and their activity among aggregates...

  19. Lightweight alumina refractory aggregate. Final report

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate, based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.

  20. Influence of a polarizable surrounding on the electronically excited states of aggregated perylene materials.

    PubMed

    Bellinger, Daniel; Settels, Volker; Liu, Wenlan; Fink, Reinhold F; Engels, Bernd

    2016-06-30

    To tune the efficiency of organic semiconductor devices it is important to understand limiting factors as trapping mechanisms for excitons or charges. An understanding of such mechanisms deserves an accurate description of the involved electronical states in the given environment. In this study, we investigate how a polarizable surrounding influences the relative positions of electronically excited states of dimers of different perylene dyes. Polarization effects are particularly interesting for these systems, because gas phase computations predict that the CT states lie slightly above the corresponding Frenkel states. A polarizable environment may change this energy order because CT states are thought to be more sensitive to a polarizable surrounding than Frenkel states. A first insight we got via a TD-HF approach in combination with a polarizable continuum model (PCM). These give limited insights because TD-HF overestimates excitation energies of CT states. However, SCS-CC2 approaches, which are sufficiently accurate, cannot easily be used in combination with continuum solvent models. Hence, we developed two approaches to combine gas phase SCS-CC2 results with solvent effects based on TD-HF computations. Their accuracies were finally checked via ADC(2)//COSMO computations. The results show that for perylene dyes a polarizable surrounding alone does not influence the energetic ordering of CT and Frenkel states. Variations in the energy order of the states only result from nuclear relaxation effects after the excitation process. © 2016 Wiley Periodicals, Inc.

  1. A linearization approach for the model-based analysis of combined aggregate and individual patient data.

    PubMed

    Ravva, Patanjali; Karlsson, Mats O; French, Jonathan L

    2014-04-30

    The application of model-based meta-analysis in drug development has gained prominence recently, particularly for characterizing dose-response relationships and quantifying treatment effect sizes of competitor drugs. The models are typically nonlinear in nature and involve covariates to explain the heterogeneity in summary-level literature (or aggregate data (AD)). Inferring individual patient-level relationships from these nonlinear meta-analysis models leads to aggregation bias. Individual patient-level data (IPD) are indeed required to characterize patient-level relationships but too often this information is limited. Since combined analyses of AD and IPD allow advantage of the information they share to be taken, the models developed for AD must be derived from IPD models; in the case of linear models, the solution is a closed form, while for nonlinear models, closed form solutions do not exist. Here, we propose a linearization method based on a second order Taylor series approximation for fitting models to AD alone or combined AD and IPD. The application of this method is illustrated by an analysis of a continuous landmark endpoint, i.e., change from baseline in HbA1c at week 12, from 18 clinical trials evaluating the effects of DPP-4 inhibitors on hyperglycemia in diabetic patients. The performance of this method is demonstrated by a simulation study where the effects of varying the degree of nonlinearity and of heterogeneity in covariates (as assessed by the ratio of between-trial to within-trial variability) were studied. A dose-response relationship using an Emax model with linear and nonlinear effects of covariates on the emax parameter was used to simulate data. The simulation results showed that when an IPD model is simply used for modeling AD, the bias in the emax parameter estimate increased noticeably with an increasing degree of nonlinearity in the model, with respect to covariates. When using an appropriately derived AD model, the linearization

  2. Properties of Cement-based Composite Materials under Different Storing Environment Temperature

    NASA Astrophysics Data System (ADS)

    Weng, T. L.; Weng, S. H.; Cho, S. W.

    2017-02-01

    This study reports on the properties of cement-based composite materials (mortars) under different storing environment temperature, as determined using the accelerated chloride migration test (ACMT). Mortars with a water/cement ratio of 0.45 and five fine aggregate volume fractions (0%, 15%, 30%, 50% and 60%) under various environment temperatures (25, 40, 60 and 80°C) were evaluated according to the passage of chloride ions through the specimens using ACMT. Calculate chloride migration coefficients on the steady-state. Cement-based composite materials with 60 % fine aggregate presented a migration coefficient higher than that of other specimens, whereas mortar with 30 % fine aggregate was lower, due to the effects of dilution and tortuosity.

  3. Familial aggregation of food allergy and sensitization to food allergens: a family-based study.

    PubMed

    Tsai, H-J; Kumar, R; Pongracic, J; Liu, X; Story, R; Yu, Y; Caruso, D; Costello, J; Schroeder, A; Fang, Y; Demirtas, H; Meyer, K E; O'Gorman, M R G; Wang, X

    2009-01-01

    The increasing prevalence of food allergy (FA) is a growing clinical and public health problem. The contribution of genetic factors to FA remains largely unknown. This study examined the pattern of familial aggregation and the degree to which genetic factors contribute to FA and sensitization to food allergens. This study included 581 nuclear families (2,004 subjects) as part of an ongoing FA study in Chicago, IL, USA. FA was defined by a set of criteria including timing, clinical symptoms obtained via standardized questionnaire interview and corroborative specific IgE cut-offs for > or =95% positive predictive value (PPV) for food allergens measured by Phadia ImmunoCAP. Familial aggregation of FA as well as sensitization to food allergens was examined using generalized estimating equation (GEE) models, with adjustment for important covariates including age, gender, ethnicity and birth order. Heritability was estimated for food-specific IgE measurements. FA in the index child was a significant and independent predictor of FA in other siblings (OR=2.6, 95% CI: 1.2-5.6, P=0.01). There were significant and positive associations among family members (father-offspring, mother-offspring, index-other siblings) for total IgE and specific IgE to all the nine major food allergens tested in this sample (sesame, peanut, wheat, milk, egg white, soy, walnut, shrimp and cod fish). The estimated heritability of food-specific IgE ranged from 0.15 to 0.35 and was statistically significant for all the nine tested food allergens. This family-based study demonstrates strong familial aggregation of FA and sensitization to food allergens, especially, among siblings. The heritability estimates indicate that food-specific IgE is likely influenced by both genetic and environmental factors. Together, this study provides strong evidence that both host genetic susceptibility and environmental factors determine the complex trait of IgE-mediated FA.

  4. All-Solution-Based Aggregation Control in Solid-State Photon Upconverting Organic Model Composites.

    PubMed

    Goudarzi, Hossein; Keivanidis, Panagiotis E

    2017-01-11

    Hitherto, great strides have been made in the development of organic systems that exhibit triplet-triplet annihilation-induced photon-energy upconversion (TTA-UC). Yet, the exact role of intermolecular states in solid-state TTA-UC composites remains elusive. Here we perform a comprehensive spectroscopic study in a series of solution-processable solid-state TTA-UC organic composites with increasing segregated phase content for elucidating the impact of aggregate formation in their TTA-UC properties. Six different states of aggregation are reached in composites of the 9,10-diphenylanthracene (DPA) blue emitter mixed with the (2,3,7,8,12,13,17,18-octaethylporphyrinato)platinum(II) sensitizer (PtOEP) in a fixed nominal ratio (2 wt % PtOEP). Fine-tuning of the PtOEP and DPA phase segregation in these composites is achieved with a low-temperature solution-processing protocol when three different solvents of increasing boiling point are alternatively used and when the binary DPA:PtOEP system is dispersed in the optically inert polystyrene (PS) matrix (PS:DPA:PtOEP). Time-gated (in the nanosecond and microsecond time scales) photoluminescence measurements identify the upper level of PtOEP segregation at which the PtOEP aggregate-based networks favor PtOEP triplet exciton migration toward the PtOEP:DPA interfaces and triplet energy transfer to the DPA triplet manifold. The maximum DPA TTA-UC luminescence intensity is ensured when the bimolecular annihilation constant of PtOEP remains close to γTTA-PtOEP = 1.1 × 10(-13) cm(3) s(-1). Beyond this PtOEP segregation level, the DPA TTA-UC luminescence intensity decreases because of losses caused by the generation of PtOEP delayed fluorescence and DPA phosphorescence in the nanosecond and microsecond time scales, respectively.

  5. Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material.

    PubMed

    Saghiri, Mohammad Ali; Lotfi, Mehrdad; Saghiri, Ali Mohammad; Vosoughhosseini, Sepideh; Fatemi, Ali; Shiezadeh, Vahab; Ranjkesh, Bahram

    2008-10-01

    The aim of the present study was to evaluate microleakage of mineral trioxide aggregate (MTA) used as a root-end filling material after its exposure to a range of acidic environments during hydration. Seventy single-rooted teeth were divided into 4 experimental and 2 control groups. All the teeth were instrumented, and their apices were resected. Root-end cavities were filled with white MTA in the experimental groups. In the control groups root-end cavities were not filled. Root-end fillings were exposed to acidic environments with pH values of 4.4, 5.4, 6.4, or 7.4 for 3 days in the experimental groups. Microleakage was evaluated by using bovine serum albumin. The evaluation was conducted at 24-hour intervals for 80 days. Data were analyzed by using one-way analysis of variance and a post hoc Tukey test. The earliest bovine serum albumin microleakage was observed in a pH value of 4.4 followed by pH values of 5.4, 6.4, and 7.4, respectively. There was a significantly longer time necessary for leakage to occur in samples stored in higher pH values (P < .000).

  6. Modelling decomposition, intermolecular protection and physical aggregation based on organic matter quality assessed by 13C-CPMAS-NMR

    NASA Astrophysics Data System (ADS)

    Incerti, Guido; Bonanomi, Giuliano; Sarker, Tushar Chandra; Giannino, Francesco; Cartenì, Fabrizio; Peressotti, Alessandro; Spaccini, Riccardo; Piccolo, Alessandro; Mazzoleni, Stefano

    2017-04-01

    Modelling organic matter decomposition is fundamental to predict biogeochemical cycling in terrestrial ecosystems. Current models use C/N or Lignin/N ratios to describe susceptibility to decomposition, or implement separate C pools decaying with different rates, disregarding biomolecular transformations and interactions and their effect on decomposition dynamics. We present a new process-based model of decomposition that includes a description of biomolecular dynamics obtained by 13C-CPMAS NMR spectroscopy. Baseline decay rates for relevant molecular classes and intermolecular protection were calibrated by best fitting of experimental data from leaves of 20 plant species decomposing for 180 days in controlled optimal conditions. The model was validated against field data from leaves of 32 plant species decomposing for 1-year at four sites in Mediterranean ecosystems. Our innovative approach accurately predicted decomposition of a wide range of litters across different climates. Simulations correctly reproduced mass loss data and variations of selected molecular classes both in controlled conditions and in the field, across different plant molecular compositions and environmental conditions. Prediction accuracy emerged from the species-specific partitioning of molecular types and from the representation of intermolecular interactions. The ongoing model implementation and calibration are oriented at representing organic matter dynamics in soil, including processes of interaction between mineral and organic soil fractions as a function of soil texture, physical aggregation of soil organic particles, and physical protection of soil organic matter as a function of aggregate size and abundance. Prospectively, our model shall satisfactorily reproduce C sequestration as resulting from experimental data of soil amended with a range of organic materials with different biomolecular quality, ranging from biochar to crop residues. Further application is also planned based on

  7. Merging catalysis and supramolecular aggregation features of triptycene based Zn(salphen)s.

    PubMed

    Anselmo, Daniele; Salassa, Giovanni; Escudero-Adán, Eduardo C; Martin, Eddy; Kleij, Arjan W

    2013-06-14

    A series of trinuclear, triptycene-based metallosalphen complexes (M = Zn, Ni) have been prepared incorporating various peripheral substituents. The introduction of Zn metal centres into these triptycene based salphen ligands gives rise to cross-linking between different triptycene molecules through μ-phenoxo bridges between the Zn metal centres, and variation in the peripheral groups allows the control of the self-assembling properties as shown by UV-Vis titration data. The strong association of these trinuclear Zn3 complexes under relatively apolar conditions has been exploited to recover the complex after its application as a catalyst in the cycloaddition of carbon dioxide to 1,2-epoxyhexane. The catalysis results and recycling studies show that the co-catalyst structure is important for efficient recovery of the binary system, demonstrating that reversible supramolecular aggregation may become a useful tool for recycling homogeneous catalysts.

  8. Label free colorimetric sensing of thiocyanate based on inducing aggregation of Tween 20-stabilized gold nanoparticles.

    PubMed

    Zhang, Zhiyang; Zhang, Jun; Qu, Chengli; Pan, Dawei; Chen, Zhaopeng; Chen, Lingxin

    2012-06-07

    Based on inducing the aggregation of gold nanoparticles (AuNPs), a simple colorimetric method with high sensitivity and selectivity was developed for the sensing of thiocyanate (SCN(-)) in aqueous solutions. Citrate-capped AuNPs were prepared following a classic method and Tween 20 was subsequently added as a stabilizer. With the addition of SCN(-), citrate ions on AuNPs surfaces were replaced due to the high affinity between SCN(-) and Au. As a result, Tween 20 molecules adsorbed on the AuNPs surfaces were separated and the AuNPs aggregated. The process was accompanied by a visible color change from red to blue within 5 min. The sensing of SCN(-) can therefore be easily achieved by a UV-vis spectrophotometer or even by the naked eye. The potential effects of relevant experimental conditions, including concentration of Tween 20, pH, incubation temperature and time, were evaluated to optimize the method. Under optimized conditions, this method yields excellent sensitivity (LOD = 0.2 μM or 11.6 ppb) and selectivity toward SCN(-). Our attempt may provide a cost-effective, rapid and simple solution to the inspection of SCN(-) ions in saliva and environmental aqueous samples.

  9. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    PubMed

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Image super resolution using deep convolutional network based on topology aggregation structure

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xu, Wei; Tian, Yapeng

    2017-08-01

    In this paper, we propose a new architecture of the deep convolutional network for single-image super-resolution (SR). Our convolutional network is inspired by GoogLeNet and Res Ne Xt, improved on VDSR which is a representative state-of-the-art method for deep learning-based SR approach. In the field of image super-resolution, we pioneer using the topology aggregation method to improve the network structure. Our network is constructed by repeating the same blocks and each block has the same uniform topology aggregation structure. This design results in reducing the amount of network parameters, so as to increase the depth of the network, thereby enhancing the image super-resolution performance. The design of the network is to take into account both computing performance and practicality. In addition to the performance, the size of model is also important. Experiments show that if the depth of our network is 20 layers, as same as VDSR, our model size is smaller than VDSR 1/3 and the performance is as good as VDSR. Moreover, if we set our model size is as same as VDSR's model size, the depth of our network can be increased to 32 layers, and the performance is better than VDSR.

  11. Aggregation properties and structural studies of anticancer drug Irinotecan in DMSO solution based on NMR measurements

    NASA Astrophysics Data System (ADS)

    D'Amelio, N.; Aroulmoji, V.; Toraldo, A.; Sundaraganesan, N.; Anbarasan, P. M.

    2012-04-01

    Irinotecan is an antitumor drug mostly used in the treatment of colorectal cancer. Its efficacy is influenced by the chemical state of the molecule undergoing chemical equilibria, metabolic changes and photodegradation. In this work, we describe the chemical equilibria of the drug in dimethyl sulfoxide (DMSO). The energetic barrier for hindered rotation around the bond connecting the piperidino—piperidino moiety with the camptothecin-like fragment was evaluated. Furthermore, we showed how the molecule aggregates in DMSO solution forming dimeric species able to prevent its degradation. The equilibrium constant for self-aggregation was determined by NMR based on the assumption of the isodesmic model. The formation of a dimer was highlighted by NMR diffusion ordered spectroscopy (NMR-DOSY) experiments at the concentrations used. Structural features of the complex were inferred by NOE and 13C chemical shift data. Molecular modelling of the complex driven by experimental data, lead to a structure implying the formation of two hydrogen bonds involving the lactone ring whose opening is one of the main causes of drug degradation. This species is probably responsible for the improved stability of the drug at concentrations higher than 1 mM.

  12. Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative.

    PubMed

    Zheng, Jiao; Ye, Tai; Chen, Jinyang; Xu, Li; Ji, Xinghu; Yang, Chuluo; He, Zhike

    2017-04-15

    Tetraphenylethene derivatives were reported for sensitive "turn on" detection of heparin (Hep) based on the typical aggregation-induced emission (AIE). In the present strategy, three derivatives of tetraphenylethene (TPE) were designed,synthesized and compared the sensitivities for the detection of Hep. Furthermore, the (Z)-4,4'-(((1,2-diphenylethene-1,2-diyl) bis(4,1-phenylene))bis (oxy))bis(butan-1-aminium) (Z-TPE-5) was the most sensitive and chosen as the probe for Hep detection. Since Hep could be employed as a medium for inducing the aggregation of positively charged Z-TPE-5, the designed Z-TPE-5 shows excellent fluorescence response to Hep through multiple electrostatic interactions with a detection limit of 1.53ng/mL, which is far below than most of the reported method for the detection of Hep. Due to the stronger affinity between Hep and protamine, Hep preferred to bind with it instead of Z-TPE-5 after the addition of protamine, so the fluorescence could be reduced. In comparison to prior studies, this developed strategy here not only simplifies the preparation procedure of the fluorescent probes but also can be applied in sensitive determination of Hep with good accuracy. Moreover, the detection of Hep with Z-TPE-5 was not interfered by Hep analogues, such as chondroitin sulfate and hyaluronic acid, as well as in the matrix of human serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

    2017-03-01

    To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

  14. Materials based on modified cryogels

    NASA Astrophysics Data System (ADS)

    Altunina, Lyubov K.; Manzhay, Vladimir N.; Fufayeva, Maria S.

    2015-10-01

    The results of the study of the mechanical and thermal properties of two-component cryogels and those filled with sand, soot, coke, cement and bentonite are presented. A method of formation of fuel briquettes from cryogels filled with particles of waste materials of organic origin and impregnated with used mineral oil is developed. The mechanical and thermal thermalphysic properties of filled briquettes are studied.

  15. Comparison of Mineral Trioxide Aggregate and iRoot BP Plus Root Repair Material as Root-end Filling Materials in Endodontic Microsurgery: A Prospective Randomized Controlled Study.

    PubMed

    Zhou, Wei; Zheng, Qinghua; Tan, Xuelian; Song, Dongzhe; Zhang, Lan; Huang, Dingming

    2017-01-01

    This prospective randomized controlled study evaluated the clinical and radiographic outcome of endodontic microsurgery when using iRoot BP Plus Root Repair Material (BP-RRM; Innovative BioCeramix Inc, Vancouver, BC, Canada) or mineral trioxide aggregate (MTA) as the retrograde filling material and analyzed the relationship between some potential prognostic factors and the outcome of the surgery. By using strict inclusion and exclusion criteria, 240 teeth were successfully enrolled and randomly and equally allocated to either the MTA or BP-RRM treatment group. A standardized surgical procedure was performed by a single operator. The patients were followed up at 1 week, 3 months, 6 months, and 12 months; follow-up included clinical and radiographic examination. Clinical and radiographic evaluations acquired at the 12-month follow-up were taken as the primary outcome. For the identification of prognostic factors, the dichotomous outcome (success vs failure) was taken as the dependent variable. A total of 158 teeth were analyzed at the 12-month follow-up, including 87 teeth in the MTA group and 71 teeth in the BP-RRM group. The success rate in the MTA and BP-RRM groups was 93.1% (81/87 teeth) and 94.4% (67/71 teeth), respectively (P > .05). Three significant outcome predictors were identified: quality of root filling (P < .05), tooth type (P < .05), and size of the lesion (P < .05) CONCLUSIONS: These results suggest that BP-RRM is comparable with MTA in clinical outcome when used as root-end filling materials in endodontic microsurgery. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: A comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood.

    PubMed

    Yeom, Eunseop; Lee, Sang Joon

    2015-03-01

    Biochemical alterations in the plasma and red blood cell (RBC) membrane of diabetic blood lead to excessive erythrocyte aggregation (EA). EA would significantly impede the blood flow and increase the vascular flow resistance contributing to peripheral vascular diseases. In this study, a simple microfluidic-based method is proposed to achieve sensitive detection of hyperaggregation. When a blood sample is delivered into the device, images of blood flows are obtained with a short exposure time for a relatively long measuring time. A micro-particle image velocimetry technique was employed to monitor variation of the flow rate of blood as a function of time. Given that EA formation in the channel creates clear speckle patterns, the EA extent can be estimated by calculating a speckle area (ASpeckle) through a normalized autocovariance function. The hematocrit effect is assessed by comparing optical images transmitted through blood samples. EA variations caused by dextran treatment are quantitatively evaluated using characteristic time (λSpeckle) obtained by fitting the variations of ASpeckle. Other indices including number of RBCs in an aggregate (NRBC), characteristic time of erythrocyte sedimentation rate (λESR), and aggregation index estimated from ultrasound signals (AIEcho) are determined under different EA conditions using conventional techniques. The four different methods are applied to diabetic blood samples to compare their indices under hyperaggregation conditions. It is found that the proposed method can detect variation of EA reasonably, compared with conventional measurement techniques. These experimental demonstrations support the notion that the proposed method is capable of effectively monitoring the biophysical properties of diabetic blood.

  17. Comparison of the antimicrobial activity of direct pulp-capping materials: Mineral trioxide aggregate-Angelus and Biodentine.

    PubMed

    Özyürek, Taha; Demiryürek, Ebru Özsezer

    2016-01-01

    To compare the antimicrobial activity of the tricalcium silicate-based Biodentine (BD) and mineral trioxide aggregate (MTA)-Angelus cement with the aid of agar diffusion test. Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were inoculated in the Brucella liquid medium and were incubated at 37°C for 24 h. Thereafter, 100 >μl of the liquid culture of bacteria inoculated in the Mueller-Hinton agar with spread plate technique. Petri plates were dried in room temperature. For every microorganism, 3 petri plates were prepared (12 in total). In the medium, in every petri plate, 2 holes with 5 mm diameter and 2 mm depth were made. Afterward, BD and MTA-Angelus were filled into these holes under aseptic conditions according to the instructions of the manufacturing company. Then, the plates were kept in the incubator at 37°C for 24 h, and the diameters of the inhibition zones were measured with a digital caliper. Inhibition zones formed by BD against E. coli and S. aureus were significantly larger than the zones formed by MTA-Angelus (P < 0.05). However, the inhibition zones formed by MTA-Angelus against P. aureus and E. faecium were larger than the zones formed by BD (P < 0.05). Within the limits of the present study, tricalcium silicate-based MTA-Angelus and BD have antimicrobial activity against E. coli, S. aureus, P. aureus, and E. faecium.

  18. Wavelength selection in measuring red blood cell aggregation based on light transmittance.

    PubMed

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J; Baskurt, Oguz K

    2011-11-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT.

  19. Wavelength selection in measuring red blood cell aggregation based on light transmittance

    NASA Astrophysics Data System (ADS)

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J.; Baskurt, Oguz K.

    2011-11-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT.

  20. Wavelength selection in measuring red blood cell aggregation based on light transmittance

    PubMed Central

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J.; Baskurt, Oguz K.

    2011-01-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT. PMID:22112138

  1. Graphene-based materials for tissue engineering.

    PubMed

    Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali

    2016-10-01

    Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.

  2. Healing Process Following Application of Set or Fresh Mineral Trioxide Aggregate as a Root-End Filling Material

    PubMed Central

    Habibi, Mehdi; Ghoddusi, Jamileh; Habibi, Ataollah; Mohtasham, Nooshin

    2011-01-01

    Objectives: An unsuccessful attempt to reach the apical area or to place the retrograde material is a major difficulty in periradicular surgery. The aim of this study was to compare the histological evaluation of the healing process following an orthograde versus a retrograde application of mineral trioxide aggregate (MTA) as a root-end filling material during apical surgery on cats’ teeth in order to find out whether orthograde placement of MTA before surgery can be used instead of retrograde placement during surgery. Methods: In this experimental study, 24 canine teeth in 12 mature and healthy cats were filled with either MTA or gutta-percha in an orthograde manner. Two weeks later, the teeth with MTA were surgically exposed and resected to the set-MTA within the canals. The teeth previously filled by gutta-percha were also surgically exposed, and retrograde cavities were prepared at the root ends and filled with fresh-MTA. After 8 weeks, the animals were euthanized by vital perfusion. Six-micron histological slices were prepared from samples, stained by Hematoxylin & Eosin, and histologically studied by means of a light microscope. The collected data was analyzed by the Chi-square and the T-test. Results: One of the samples in the fresh-MTA group was omitted during processing because of inappropriate sectioning. In the set-MTA group, 5 out of 12 showed chronic abscess, while in the fresh-MTA group, 2 out of 11 were discovered to have chronic abscess; however, no significant difference was observed (P>.05). Hard tissue healing (cementum, bone, cementum + bone formation) in the set-MTA and fresh-MTA groups were 7 out of 12 and 9 out of 11, respectively. While healing seemed more likely to occur in the fresh-MTA group, the difference was statistically insignificant (P>.05). The magnitude of bone, cementum, or bone and cementum formation showed slight differences between the two groups; however, the figures failed to show any marked differences (P>.05

  3. Electrorheological Material Based Smart Structures

    DTIC Science & Technology

    2007-11-02

    based in-situ structural vibration monitoring, and real-time neural network based vibration control. In order to facilitate the basic science...structural vibration model was developed and tested with corresponding experimentation. Novel fiber-optic sensors and neural network controllers were also

  4. A Gossip-based Energy Efficient Protocol for Robust In-network Aggregation in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fauji, Shantanu

    We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.

  5. Analysis of the Route-Based Aggregate Model for Strategic Air Traffic Control

    NASA Astrophysics Data System (ADS)

    De Los Santos Bernad, Victor

    Because of the vital importance of the National Airspace System (NAS) and its diagnosed growth over the next years, the planning and prediction at a strategic phase of the Traffic Flow Management (TFM) proves to be a difficult task but a useful tool to reduce the airspace congestion. Research has led to the creation of several models in order to address this challenge. Because of the complexity of the problem, the Eulerian (aggregate) approach may be the best to reduce the dimension and complexity of the problem, whilst maintaining accuracy. This study analyzes one of the latest aggregate models created, the Route-Based Aggregate Model (RBAM), and compares it to the Large-Capacity Cell Transmission Model (CTM(L)) and the Link Transmission Model (LTM). These three models share some similarities such as the non-existence of diverging nodes or, in the case of the CTM(L), the condition of submitting all the airplanes in a cell to the next cell after one time-stepBut there are also big differences which make them different enough to coexist. For example, the RBAM can be used without the need of historical data in order to model the NAS, only the information of the upcoming flight plans. Also, the RBAM is designed to base its controls from a ground perspective, allowing ground rerouting and ground delay. An explanation on how to implement the RBAM in Matlab can be found in this project, explaining the peculiarities of the translation of the cost function constraints into a Linear Programming (LP) problem, with several examples that show how the solution to the LP problem distributes the delays between ground delays and ground reroutings. Because the cost of a ground rerouting is different from the cost of a ground delay because of the extra fuel expense that the rerouting may cause (assuming always that the original route is shorter), a proper weighting of both controls is found, considering different variables such as the cost of the fuel or the cost of overtime parking

  6. On mean type aggregation.

    PubMed

    Yager, R R

    1996-01-01

    We introduce and define the concept of mean aggregation of a collection of n numbers. We point out that the lack of associativity of this operation compounds the problem of the extending mean of n numbers to n+1 numbers. The closely related concepts of self identity and the centering property are introduced as one imperative for extending mean aggregation operators. The problem of weighted mean aggregation is studied. A new concept of prioritized mean aggregation is then introduced. We next show that the technique of selecting an element based upon the performance of a random experiment can be considered as a mean aggregation operation.

  7. Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer.

    PubMed

    Shen, Guangyu; Xu, Hui; Gurung, Anant S; Yang, Yunhui; Liu, Guodong

    2013-01-01

    In order to amplify the signal in a gold nanoparticle-based lateral flow immunoassay, a simple and sensitive method utilizing gold nanoparticle aggregates as a colored reagent formed with a polyamidoamine dendrimer was developed. The results were compared with that achieved by employing the individual nanoparticles used in the conventional lateral flow immunoassay. Under the optimized experimental conditions, a detection limit of 0.1 ng mL⁻¹ for rabbit immunoglobulin G was achieved, which is almost 20-fold lower than that of the traditional method using individual gold nanoparticles. We believe that this simple, practical bioassay platform will be of interest for use in areas such as disease diagnostics, pathogen detection, and quality monitoring of food and water.

  8. A primary study on the performance of piezoceramic based smart aggregate under various compressive stresses

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Yang, Antai; Zhao, Yanru; Du, Chengcheng

    2017-10-01

    The reliability of piezoceramic based smart aggregate (SA) used for damage detection of concrete structures has already been validated by laboratory tests. However, the in situ concrete members are generally under a big range of stress levels, and the performance of SA under various compressive stresses is still unclear. In this study, an electronic universal testing machine was employed to apply different stresses on the SAs. The received signals of SA sensor accompanying with different drive signals were recorded. The experimental results show that the amplitude of received signals increases firstly, and then tends to be stable with stress. This enhancement is mainly induced by the decrease in thickness of epoxy resin layer caused by compressive stress. It indicates that the change of load applied on monitored concrete members embedded with SAs may lead to a change in monitoring signal amplitude even in elastic range, but it does not stand for the change of health state of monitored concrete member.

  9. LDEF materials special investigation group's data bases

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  10. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  11. New Cork-Based Materials and Applications

    PubMed Central

    Gil, Luís

    2015-01-01

    This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork) for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders), and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before. PMID:28787962

  12. The use of marine sediments as a pavement base material.

    PubMed

    Dubois, Vincent; Abriak, Nor Edine; Zentar, Rachid; Ballivy, Gérard

    2009-02-01

    The management of marine sediments after dredging has become increasingly complex. In the context of sustainable development, traditional solutions such as immersion will be increasingly regulated. More than ever, with the shortage of aggregates from quarries, dredged material could constitute a new source of materials. In this study of the potential of using dredged marine sediments in road construction, the first objective is to determine the physical and mechanical characteristics of fine sediments dredged from a harbour in the north of France. The impacts of these materials on the environment are also explored. In the second stage, the characteristics of the fine sediment are enhanced for use as a road material. At this stage, the treatment used is compatible with industrial constraints. To decrease the water content of the fine sediments, natural decantation is employed; in addition, dredged sand is added to enhance the granular distribution and to reinforce the granular skeleton. Finally, the characteristics of the mix are enhanced by incorporating binders (cement and/or lime). The mechanical characteristics measured on the mixes are compatible with their use as a base course material. Moreover, the obtained results demonstrate the effectiveness of lime in the mixes. In terms of environmental impacts, on the basis of leaching tests and according to available thresholds developed for the use of municipal solid waste incineration (MSWI) bottom ash in road construction, the designed dredged mixes satisfy the prescribed thresholds.

  13. Engineering DNA-based functional materials.

    PubMed

    Roh, Young Hoon; Ruiz, Roanna C H; Peng, Songming; Lee, Jong Bum; Luo, Dan

    2011-12-01

    While DNA is a genetic material, it is also an inherently polymeric material made from repeating units called nucleotides. Although DNA's biological functions have been studied for decades, the polymeric features of DNA have not been extensively exploited until recently. In this tutorial review, we focus on two aspects of using DNA as a polymeric material: (1) the engineering methods, and (2) the potential real-world applications. More specifically, various strategies for constructing DNA-based building blocks and materials are introduced based on DNA topologies, which include linear, branched/dendritic, and networked. Different applications in nanotechnology, medicine, and biotechnology are further reviewed.

  14. Directed Nanoscale Assembly of Graphene Based Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Ouk

    Graphene based materials, including fullerene, carbon nanotubes and graphene, are two-dimensional polymeric materials consisting of sp2 hybrid carbons. Those carbon materials have attracted enormous research attention for their outstanding material properties along with molecular scale dimension. The optimized utilization of those materials in various application fields inevitably requires the subtle controllability of their structures and properties. In this presentation, our research achievements associated to directed nanoscale assembly of B- or N-doped graphene based materials will be introduced. Graphene based materials can be efficiently processed into various three-dimensional structures via self-assembly principles. Those carbon assembled structures with extremely large surface and high electro-conductivity are potentially useful for energy and environmental applications. Aqueous dispersion of graphene oxide shows liquid crystalline phase, whose spontaneous molecular ordering is useful for display or fiber spinning. Along with the structure control by directed nanoscale assembly, substitutional doping of graphene based materials with B- or N- can be attained via various chemical treatment methods. The resultant chemically modified carbon materials with tunable workfunction, charge carrier density and enhanced surface activity could be employed for various nanomaterials and nanodevices for improved functionalities and performances.

  15. Organogels based on J- and H-type aggregates of amphiphilic perylenetetracarboxylic diimides.

    PubMed

    Wu, Haixia; Xue, Lin; Shi, Yan; Chen, Yanli; Li, Xiyou

    2011-03-15

    Three new perylenetetracarboxylic diimide (PDI) compounds substituted with hydrophobic and/or hydrophilic groups at the two imide nitrogen positions, namely N,N'-di[N-(4-aminophenyl)-3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzamide]-1,7-di(4-tert-butylphenoxy)perylene-3,4;9,10-tetracarboxylic diimide (1), N,N'-di[N-amido-3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzamide]-1,7-di(4-tert-butylphenoxy)perylene-3,4;9,10-tetracarboxylic diimide (2), and N-amido-3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzamide-N'-amido-3,4,5-tris(dodecyloxy)benzamide-1,7-di(4-tert-butylphenoxy)perylene-3,4;9,10-tetracarboxylate diimide (3), have been designed and prepared. The gelating abilities of them in different solvents have been investigated, and the results indicated that compounds 1 and 3 can form fluorescent gels whereas compound 2 cannot. The properties of the gels of compounds 1 and 3 have been investigated by UV-vis absorption and emission spectra. The results indicate that the gel of compound 1 is composed of H-aggregates, whereas the gel of compound 3 is composed of J-aggregates. The reversible transformation between gel and solution states induced by temperature change is observed. The structure of dried gel has been investigated by X-ray diffraction (XRD) experiments, and the morphology has been measured by atomic force microscopy (AFM). This research revealed successfully the crucial roles of amphiphilic properties and the side-chain conformations in controlling the gelating properties of PDI molecules. This information may be useful for the design of novel organogels based on perylenetetracarboxylic diimides.

  16. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates.

    PubMed

    Li, Hui; Sun, Ziyin; Zhong, Wenying; Hao, Nan; Xu, Danke; Chen, Hong-Yuan

    2010-07-01

    Multiplexed DNA target detection is of great significance in many fields including clinical diagnostics, environmental monitoring, biothreat detection and forensics. Although the emergence of DNA chip technology has accelerated this process, it is still a challenge to perform ultrasensitive DNA assay at low attomol concentrations so that DNA detection can be directly achieved without a PCR protocol. In this work, an oligonucleotide-functionalized silver nanoparticle tag has been successfully developed for multiplexed DNA electrochemical detection with ultrahigh sensitivity. The multiprobes containing oligo(d)A and the reporting probes were anchored onto the silver nanoparticles, followed by hybridizing with the silver nanoparticle conjugate modified with oligo(d)T. The hybridization-induced tag was found to show an aggregated nanostructure 10 times larger than the individual nanoparticle, as revealed by TEM. For sandwich-based assays, the tag was specifically coupled to a gold electrode surface via target DNA. Compared to a single nanoparticle label, this novel tag has shown excellent electroactive property and produces 10(3)-fold amplification in the differential pulse voltammetric (DPV) method. Hepatitis B virus (HBV) sequence was employed as a sample model, and we have achieved a detection limit of 5 aM ( approximately 120 molecules in 40 muL volume), demonstrating ultrasensitive measurement for DNA. The property of the electrochemical process involving silver aggregates was further investigated and the integrative oxidation of the silver tag was observed. We further demonstrated the multiplexed DNA target detection using array chips functionalized with Herpes simplex virus (HSV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) sequences, which shows effective recognition of the relative sequences individually or simultaneously. The method offers a uniquely new approach for DNA detection with ultrahigh sensitivity as well as advantages of rapidity, throughput

  17. Regional Demand Models for Water-Based Recreation: Combining Aggregate and Individual-Level Choice Data

    EPA Science Inventory

    Estimating the effect of changes in water quality on non-market values for recreation involves estimating a change in aggregate consumer surplus. This aggregate value typically involves estimating both a per-person, per-trip change in willingness to pay, as well as defining the m...

  18. Construction of macroscopic cytomimetic vesicle aggregates based on click chemistry: controllable vesicle fusion and phase separation.

    PubMed

    Jin, Haibao; Huang, Wei; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2012-07-09

    Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically studied. For this purpose, azide and alkynyl groups were loaded on the membranes of BPs through the co-assembly method to obtain N(3)-BPs and Alk-BPs, respectively. Subsequently, macroscopic vesicle aggregates were obtained when these two kinds of functional BPs were mixed together with the ratio of azide to alkynyl groups of about 1:1. Both the vesicle fusion events and lateral phase separation on the vesicle membrane occurred during such a vesicle aggregation process, and the fusion rate and phase-separation degree could be controlled by adjusting the clickable group content. The vesicle aggregation process with N(3) -micelles as desmosome mimics to connect with Alk-BPs through click-chemistry reaction was also studied, and large-scale vesicle aggregates without vesicle fusion were obtained in this process. The present work has extended the controllable cytomimetic vesicle aggregation process with the use of covalent bonds, instead of noncovalent bonds, as the driving force.

  19. Regional Demand Models for Water-Based Recreation: Combining Aggregate and Individual-Level Choice Data

    EPA Science Inventory

    Estimating the effect of changes in water quality on non-market values for recreation involves estimating a change in aggregate consumer surplus. This aggregate value typically involves estimating both a per-person, per-trip change in willingness to pay, as well as defining the m...

  20. Structure of amphotericin B aggregates based on calculations of optical spectra

    SciTech Connect

    Hemenger, R.P.; Kaplan, T.; Gray, L.J.

    1983-01-01

    The degenerate ground state approximation was used to calculate the optical absorption and CD spectra for helical polymer models of amphotericin B aggregates in aqueous solution. Comparisons with experimental spectra indicate that a two-molecule/unit cell helical polymer model is a possible structure for aggregates of amphotericin B.

  1. Fluorescence Detection of Microcapsule-Type Self-Healing, Based on Aggregation-Induced Emission.

    PubMed

    Song, Young Kyu; Kim, Beomjin; Lee, Tae Hee; Kim, Jin Chul; Nam, Joon Hyun; Noh, Seung Man; Park, Young Il

    2017-03-01

    An extrinsic self-healing coating system containing tetraphenylethylene (TPE) in microcapsules was monitored by measuring aggregation-induced emission (AIE). The core healing agent comprised of methacryloxypropyl-terminated polydimethylsiloxane, styrene, benzoin isobutyl ether, and TPE was encapsulated in a urea-formaldehyde shell. The photoluminescence of the healing agent in the microcapsules was measured that the blue emission intensity dramatically increased and the storage modulus also increased up to 10(5) Pa after the photocuring. These results suggested that this formulation might be useful as a self-healing material and as an indicator of the self-healing process due to the dramatic change in fluorescence during photocuring. To examine the ability of the healing agent to repair damage to a coating, a self-healing coating containing embedded microcapsules was scribed with a razor. As the healing process proceeded, blue light fluorescence emission was observed at the scribed regions. This observation suggested that self-healing could be monitored using the AIE fluorescence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  3. A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states.

    PubMed

    Monnier, C A; Lattuada, M; Burnand, D; Crippa, F; Martinez-Garcia, J C; Hirt, A M; Rothen-Rutishauser, B; Bonmarin, M; Petri-Fink, A

    2016-07-21

    We propose a new methodology based on lock-in thermography to study and quantify the heating power of magnetic nanoparticles. Superparamagnetic iron oxide nanoparticles exposed to a modulated alternating magnetic field were used as model materials to demonstrate the potency of the system. Both quantitative and qualitative information on their respective heating power was extracted at high thermal resolutions under increasingly complex conditions, including nanoparticles in the liquid, solid and aggregated states. Compared to conventional techniques, this approach offers a fast, sensitive and non-intrusive alternative to investigate multiple and dilute specimens simultaneously, which is essential for optimizing and accelerating screening procedures and comparative studies.

  4. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection.

    PubMed

    Du, Baoan; Li, Zhengping; Cheng, Yongqiang

    2008-05-30

    A universal platform of homogeneous noncompetitive immunoassay, using human immunoglobulin (IgG) as a model analyte, has been developed. The assay is based on aggregation of antibody-functionalized gold nanoparticles directed by the immunoreaction coupled with light scattering detection with a common spectrofluorimeter. In phosphate buffer (pH 7.0) solution, the light scattering intensity of the gold nanoparticles functionalized with goat-anti-human IgG can be greatly enhanced by addition of the human IgG. Based on this phenomenon, a wide dynamic range of 0.05-10 microg ml(-1) for determination of human IgG can be obtained, and the detection limit can reach 10 ng ml(-1). The proposed immunoassay can be accomplished in a homogeneous solution with one-step operation within 10 min and has been successfully applied to the determination of human IgG in serum samples, in which the results are well consistent with those of the enzyme-linked immunosorbent assay (ELISA), indicating its high selectivity and practicality. Therefore, the gold nanoparticle-based light scattering method can be used as a model to establish the general methods for protein assay in the fields of molecular biology and clinical diagnostics.

  5. Short-term model of the production of construction aggregates in Taiwan based on artificial neural networks.

    PubMed

    Chang, I-Cheng; Hsiao, Teng-Yuan

    2004-01-01

    Taiwan's geography and limited stock of sandstone have caused sandstone resources to gradually decline to the point of exhaustion after long-term excavation. Moreover, the Taiwanese government has continuously increased the amount of land area near rivers that cannot be excavated to facilitate riverbed remediation and promote conservation of water resources. Accordingly, predicting and managing the annual production of construction aggregates in future construction projects, and dealing appropriately with some thorny problems, for instance, demand that excess supply, excessive excavation, unregulated excavation, and the consequent environmental damage, will significantly affect the efficient use of natural resources in a manner that accords with the national policy of Sustainable Development (SD). . This study establishes an empirical model for forecasting the annual production of future construction aggregates using Artificial Neural Networks (ANN), based on 15 relevant socio-economic indicators, such as indicator of annual consumption of cement. A sensitivity analysis is then performed on these indicators. This work applies ANN to estimate the annual production of construction aggregates; the estimates, the verification of the model and the sensitivity analysis are all acceptable. Furthermore, sensitivity analysis results indicate that the annual consumption of cement is the indicator that most strongly influences the production of construction aggregates, as well as whether construction waste can be recycled and steel structures can be used in buildings, helping to reduce the future production of construction aggregates in Taiwan. The elaborate prediction methodology presented in this study avoids some of the weaknesses or limitations of conventional linear statistics, linear programming or system dynamics. Additionally, the results not only provide a short-term prediction of the production of construction aggregates in Taiwan, but also provide a viable and

  6. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    PubMed

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions.

  7. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge.

    PubMed

    Tsai, Chen-Chiu; Wang, Kuen-Sheng; Chiou, Ing-Jia

    2006-06-30

    This study investigates the characteristics of lightweight aggregates sintered from sewage sludge ash by modifying the proportion of the main components (SiO(2)-Al(2)O(3)-flux). The ash of incinerated sludge from a municipal sewage treatment plant (STP) was used as the tested material and sintering temperature ranged from 1050 to 1100 degrees C within a time span of 10-30min. The sludge ash appeared to have a high proportion of SiO(2) (44.89%), Al(2)O(3) (11.62%) and Fe(2)O(3) (6.81%) resembling the dilatable shale. When the sintering temperature was raised to above 1060 degrees C, the blowing phenomenon appeared. The aggregates become lighter in weight by prolonging the sintering time and raising the temperature. Cullet powder (amorphous SiO(2)), Al(2)O(3), and fly ash were added to sludge ash to analyse the characteristic changes of the aggregates. The results showed that amorphous SiO(2) lowered the melting point and increased foaming; Al(2)O(3) raised the compression resistance; fly ash lowered the sintering temperature required. However, the composition of fly ash can vary dramatically, resulting in a less predictable characteristic of aggregates.

  8. Materiality in a Practice-Based Approach

    ERIC Educational Resources Information Center

    Svabo, Connie

    2009-01-01

    Purpose: The paper aims to provide an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Design/methodology/approach: The overview is theoretically generated and is based on the anthology Knowing in Organizations: A Practice-based Approach edited by Nicolini, Gherardi and Yanow. The…

  9. [Materials and technologies for fabricating denture bases].

    PubMed

    Pietrokovski, Y; Pilo, R; Shmidt, A

    2010-10-01

    The materials and technologies for fabrication of denture bases have developed during the last 150 years. The requirements of the ideal material are versatile and include functional, physical and esthetical demands. The current manuscript classifies denture base materials according to their chemical characteristics into polymers, reinforced polymers and light cured polymers. Poly Methyl Metacrylate (PMMA) was developed 70 years ago, and is still the major material for fabrication of denture bases due to its esthetic characteristics, high processing and polishing abilities, relining and rebasing possibility and low cost. The main disadvantages of PMMA are its dimensional changes during polymerization, porosity and allergic/cytotoxic effects. PMMA may be reinforced by metal, polyethylene or glass fibers. Other materials used for fabrication of denture bases are Nylon and Urethane dimethacrylate. Their advantages are better esthetics, low modulus of elasticity and reduced cytotoxicity. This review presents the advances in materials and techniques used for denture bases, the different materials, their advantages and disadvantages, the chemical reactions associated with their production, and their allergic and cytotoxic side effects.

  10. A composite material based on recycled tires

    NASA Astrophysics Data System (ADS)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  11. Making Graphene Resist Aggregation

    NASA Astrophysics Data System (ADS)

    Luo, Jiayan

    Graphene-based sheets have stimulated great interest in many scientific disciplines and shown promise for wide potential applications. Among various ways of creating single atomic layer carbon sheets, a promising route for bulk production is to first chemically exfoliate graphite powders to graphene oxide (GO) sheets, followed by reduction to form chemically modified graphene (CMG). Due to the strong van der Waals attraction between graphene sheets, CMG tends to aggregate. The restacking of sheets is largely uncontrollable and irreversible, thus it reduces their processability and compromises properties such as accessible surface area. Strategies based on colloidal chemistry have been applied to keep CMG dispersed in solvents by introducing electrostatic repulsion to overcome the van der Waals attraction or adding spacers to increase the inter-sheet spacing. In this dissertation, two very different ideas that can prevent CMG aggregation without extensively modifying the material or introducing foreign spacer materials are introduced. The van der Waals potential decreases with reduced overlapping area between sheets. For CMG, reducing the lateral dimension from micrometer to nanometer scale should greatly enhance their colloidal stability with additional advantages of increased charge density and decreased probability to interact. The enhanced colloidal stability of GO and CMG nanocolloids makes them especially promising for spectroscopy based bio-sensing applications. For potential applications in a compact bulk solid form, the sheets were converted into paper-ball like structure using capillary compression in evaporating aerosol droplets. The crumpled graphene balls are stabilized by locally folded pi-pi stacked ridges, and do not unfold or collapse during common processing steps. They can tightly pack without greatly reducing the surface area. This form of graphene leads to scalable performance in energy storage. For example, planer sheets tend to aggregate and

  12. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    NASA Astrophysics Data System (ADS)

    Stewart, Michael K.; Morgenstern, Uwe; Gusyev, Maksym A.; Małoszewski, Piotr

    2017-09-01

    Kirchner (2016a) demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs) of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years) are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  13. A novel physico-chemical property based model for studying the effects of mutation on the aggregation of peptides.

    PubMed

    Mathura, Venkatarajan S; Paris, Daniel; Mullan, Michael J

    2009-01-01

    Macromolecular events like protein aggregation are complex processes involving physico-chemical properties of their constituting residues. In this study, we used 5-dimensional physico-chemical property (PCP-descriptors) descriptors of amino acids, derived from 237 physico-chemical properties, to develop linear (LM) and neural network (NM) based regression models. We demonstrate their prediction performance in log values of aggregation rates (psi) for 15 human muscle acyl-phosphatase (AcP) mutants. The correlation coefficient between the predicted and the observed psi-values of the point mutations by LM and NM was 0.81 (p-value<0.001) and 0.71 (p-value<0.002) respectively. Using LM, we calculated psi-values for all possible mutations and performed an average linkage cluster analysis. We identified three groups of amino acids that differ in tolerance to mutations, resulting in increased or decreased aggregation rates. We suggest that our linear regression model can be applied to predict the aggregation propensity of point mutants where only sequence information is known. We also show that sequences containing beta-sheet classes of Structural Classification of Proteins (SCOP) have a higher propensity for aggregation.

  14. Gold nanoparticle aggregation-based colorimetric assay for β-casein detection in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Song, F; Lu, S Y; Ren, H L; Hu, P; Liu, Z S; Zhang, J H

    2014-11-01

    Traditional Kjeldahl method, used for quality evaluation of bovine milk, has intrinsic defects of time-consuming sample preparation and two analyses to determine the difference between non-protein nitrogen content and total protein nitrogen content. Herein, based upon antibody functionalized gold nanoparticles (AuNPs), we described a colorimetric method for β-casein (β-CN) detection in bovine milk samples. The linear dynamic range and the LOD were 0.08-250 μg mL(-1), and 0.03 μg mL(-1) respectively. In addition, the real content of β-CN in bovine milk was measured by using the developed assay. The results are closely correlated with those from Kjeldahl method. The advantages of β-CN triggered AuNP aggregation-based colorimetric assay are simple signal generation, the high sensitivity and specificity as well as no need of complicated sample preparation, which make it for on-site detection of β-CN in bovine milk samples.

  15. Objective video quality assessment method for freeze distortion based on freeze aggregation

    NASA Astrophysics Data System (ADS)

    Watanabe, Keishiro; Okamoto, Jun; Kurita, Takaaki

    2006-01-01

    With the development of the broadband network, video communications such as videophone, video distribution, and IPTV services are beginning to become common. In order to provide these services appropriately, we must manage them based on subjective video quality, in addition to designing a network system based on it. Currently, subjective quality assessment is the main method used to quantify video quality. However, it is time-consuming and expensive. Therefore, we need an objective quality assessment technology that can estimate video quality from video characteristics effectively. Video degradation can be categorized into two types: spatial and temporal. Objective quality assessment methods for spatial degradation have been studied extensively, but methods for temporal degradation have hardly been examined even though it occurs frequently due to network degradation and has a large impact on subjective quality. In this paper, we propose an objective quality assessment method for temporal degradation. Our approach is to aggregate multiple freeze distortions into an equivalent freeze distortion and then derive the objective video quality from the equivalent freeze distortion. Specifically, our method considers the total length of all freeze distortions in a video sequence as the length of the equivalent single freeze distortion. In addition, we propose a method using the perceptual characteristics of short freeze distortions. We verified that our method can estimate the objective video quality well within the deviation of subjective video quality.

  16. Graphene-based Composite Materials

    NASA Astrophysics Data System (ADS)

    Rafiee, Mohammad Ali

    We investigated the mechanical properties, such as fracture toughness (KIc), fracture energy (GIc), ultimate tensile strength (UTS), Young¡¦s modulus (E), and fatigue crack propagation rate (FCPR) of epoxy-matrix composites with different weight fractions of carbon-based fillers, including graphene platelets (GPL), graphene nanoribbons (GNR), single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and fullerenes (C60). Only ˜0.125 wt.% GPL was found to increase the KIc of the pure epoxy by ˜65% and the GIc by ˜115%. To get similar improvement, CNT and nanoparticle epoxy composites required one to two orders of magnitude greater weight fraction of nanofillers. Moreover, ˜0.125% wt.% GPL also decreased the fatigue crack propagation rate in the epoxy by ˜30-fold. The E value of 0.1 wt.% GPL/epoxy nanocomposite was ˜31% larger than the pure epoxy while there was only an increase of ˜3% for the SWNT composites. The UTS of the pristine epoxy was improved by ˜40% with GPLs in comparison with ˜14% enhancement for the MWNTs. The KIc of the GPL nanocomposite enhanced by ˜53% over the pristine epoxy compared to a ˜20% increase for the MWNT-reinforced composites. The results of the FCPR tests for the GPL nanocomposites showed a different trend. While the CNT nanocomposites were not effective enough to suppress the crack growth at high values of the stress intensity factor (DeltaK), the reverse behavior is observed for the GPL nanocomposites. The advantage of the GPLs over CNTs in terms of mechanical properties enhancement is due to their enormous specific surface area, enhanced adhesion at filler/epoxy interface (because of the wrinkled surfaces of GPLs), as well as the planar structure of the GPLs. We also show that unzipping of MWNTs into graphene nanoribbons (GNRs) enhances the load transfer effectiveness in epoxy nanocomposites. For instance, at ˜0.3 wt.% of fillers, the Young's modulus (E) of the epoxy nanocomposite with GNRs increased

  17. Geology-based planning and the aggregate industry - Perspectives from opposite sides of the globe

    USGS Publications Warehouse

    Stephens, A.W.; Langer, W.H.

    2006-01-01

    In Australia and in the United States, encroachment by conflicting land uses, zoning restrictions and the "not-in-my-backyard" syndrome make it increasingly difficult to access high-quality aggregate resources located near their market areas. Attempts by government agencies in the United States to protect aggregate resources for future development have met with varying degrees of success. The State of Queensland, Australia, designates aggregate resource areas as Key Resource Areas. These protect the resource and the routes to transport the resource, provide a separation area from incompatible land uses and indicate the likelihood that the area is free from conflicting social or environmental issues.

  18. Geology based planning and the aggregate industry -Perspectives from opposite sides of the globe

    USGS Publications Warehouse

    Stephens, A.W.; Langer, W.H.

    2005-01-01

    In Australia and America, encroachment by conflicting land uses, zoning restrictions, and the "not in my backyard" syndrome make it increasingly difficult to access high-quality aggregate resources located near the market areas. Attempts by government agencies in America to protect aggregate resources for future development have met with varying degrees of success. The State of Queensland, Australia, designates aggregate resource areas as Key Resource Areas, which protect the resource and the routes to transport the resource, provide a separation area from incompatible land uses, and indicate the likelihood that the area is free from conflicting social or environmental issues. Copyright ?? 2005 by SME.

  19. Sensitive and selective detection of copper ions based on the aggregation of chitosan-stablized silver nanoparticles.

    PubMed

    Zuo, Ying; Zhao, Hua Wen; Huang, Cheng Zhi; Zhang, Qing

    2011-06-01

    In this contribution, we present a simple and sensitive method for detecting Cu2+ based on the Cu(2+)-induced aggregation of silver nanoparticle (AgNPs) capped with chitosan. Chitosan could be adsorbed on the surface of AgNPs, and keep AgNPs against aggregation. However, in the presence of Cu2+, AgNPs aggregate again, the absorption decreases, and the color changes from yellow to colorless, which is due to the coordination of Cu2+ and chitosan. The depressed intensity (deltaA) is in proportion to the concentration of Cu2+ over the range of 3.33-40.0 microM with the limit of detection (3sigma) of 10.25 nM, the recovery of 92.60-104.20% and R.S.D. of 0.94-4.62%. The advantages of this method are simple, sensitive and low cost.

  20. A novel aggregation-induced emission based fluorescent probe for an angiotensin converting enzyme (ACE) assay and inhibitor screening.

    PubMed

    Wang, Haibo; Huang, Yi; Zhao, Xiaoping; Gong, Wan; Wang, Yi; Cheng, Yiyu

    2014-12-11

    A 'turn-on' fluorescent probe based on aggregation-induced emission (AIE) has been developed. It exhibits excellent selectivity and sensitivity for monitoring angiotensin converting enzyme (ACE) activity both in solutions and in living cells as well as for screening ACE inhibitors in vitro.

  1. A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation.

    PubMed

    Chen, Cuie; Song, Guangtao; Ren, Jinsong; Qu, Xiaogang

    2008-12-14

    A simple and rapid colorimetric pH meter has been developed based on the conformational switch of i-motif DNA and non-crosslinking AuNP aggregation, the average accuracy of the nano-meter was found to be +/-0.04 pH unit across the physiological operating range.

  2. QUANTIFYING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN USING A PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...

  3. QUANTIFYING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN USING A PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...

  4. Aggregation and Push-Based Distribution of THREDDS Catalogs in Operational Information Systems

    NASA Astrophysics Data System (ADS)

    Manzella, G. M.; Mazzetti, P.; Nativi, S.; Bigagli, L.; Pecci, L.

    2006-12-01

    We present a solution for the implementation of a catalog service in the context of an European infrastructure; this has the strategic objective of providing an integrated service for global and regional ocean resources to intermediate users and policy makers. The current European information systems (e.g. MERSEA Marine Environment and Security for the European Area, MOON Mediterranean Operational Oceanography Network and SeaDataNet PanEuropean infrastructure for Ocean and marine data management) are characterized by a three-level hierarchy. At the bottom level we find the regional and local data sources, providing observation data and model outputs. At the intermediate level, the operational projects have Thematic Portals (TEP's) aggregating the information on logical basis, e.g. Observation data portals (In situ and Satellite), Forcing (meteorological portal), Modelling/forecasting portals. At the top level, the Information Management Portal provides query services and links to TEP's. Currently, several architectural and technological general solutions are available for implementing catalog services, for typical use-cases in the context of geospatial information systems. However, if we consider Operational Oceanography a particular case, characterised by tighter non-functional characteristics -such as seamless integration with other services, responsiveness, etc.- we must conceive a tailored architectural solution. In the particular cases of operational projects, the hierarchical structure of the information system can be considered near-static and the needed scalability in terms of data sources is small; thus, a simpler solution based on datasets aggregation can be suitable and profitable. In such a schema, upper level catalogs are built merging lower-level catalogs. On the other hand, to adopt this approach, it is necessary that any update is notified to the upper-level catalogs, whenever a lower level catalog is modified. Hence, our solution implemented a push-based

  5. Aggregation number-based degrees of counterion dissociation in sodium n-alkyl sulfate micelles.

    PubMed

    Lebedeva, Nataly V; Shahine, Antoine; Bales, Barney L

    2005-10-27

    Values of the degree of counterion dissociation, alpha, for sodium n-alkyl sulfate micelles, denoted by SN(c)S, where N(c) is the number of carbon atoms in the alkyl chain, are defined by asserting that the aggregation number, N, is dependent only on the concentration, C(aq), of counterions in the aqueous pseudophase. By using different combinations of surfactant and added salt concentrations to yield the same value of N, alpha can be determined, independent of the experimental method. Electron paramagnetic resonance measurements of the hyperfine spacings of two nitroxide spin probes, 16- and 5-doxylstearic acid methyl ester (16DSE and 5DSE, respectively), are employed to determine whether micelles from two samples have the same value of N to high precision. The EPR spectra are different for the two spin probes, but the values of alpha are the same, within experimental error, as they must be. In agreement with recent work on S12S and with prevailing thought in the literature, values of alpha are constant as a function of N. This implies that the value of alpha is constant whether the surfactant or added electrolyte concentrations are varied. Interestingly, alpha varies with chain length as follows: N(c) = 8, alpha = 0.42 +/- 0.03; N(c) = 9, alpha = 0.41 +/- 0.03; N(c) = 10, alpha = 0.35 +/- 0.02; N(c) = 11, alpha = 0.30 +/- 0.02 at 25 degrees C and N(c) = 13, alpha = 0.22 +/- 0.02; and N(c) = 14, alpha = 0.19 +/- 0.01 at 40 degrees C. A simple electrostatic theoretical description, based on the nonlinear Poisson-Boltzmann equation for the ion distribution around a charged sphere, was compared with the experimental results. The theory predicts values of alpha that are in reasonable agreement with experiment, nicely predicting the decrease of alpha as N(c) increases. However, the theory also predicts that, for a given value of N(c), alpha decreases as N increases. Moreover, this decrease is predicted to be different if N is increased by adding salt or by increasing

  6. [Progress of alginate-based biomedical materials].

    PubMed

    Wei, Xiaojuan; Xi, Tingfei; Gu, Qisheng; Zheng, Yufeng

    2013-08-01

    To review the current situation of alginate-based biomedical materials, especially focus on the clinical strategies and research progress in the clinical applications and point out several key issues that should be concerned about. Based on extensive investigation of domestic and foreign alginate-based biomedical materials research and related patent, literature, and medicine producted, the paper presented the comprehensive analysis of its research and development, application status, and then put forward several new research directions which should be focused on. Alginate-based biomedical materials have been widely used in clinical field with a number of patients, but mainly in the fields of wound dressings and dental impression. Heart failure treatment, embolization, tissue engineering, and stem cells culture are expected to become new directions of research and products development. Development of alginate-based new products has good clinical feasibility and necessity, but a lot of applied basic researches should be carried out in the further investigations.

  7. Scalable and fault tolerant orthogonalization based on randomized distributed data aggregation

    PubMed Central

    Gansterer, Wilfried N.; Niederbrucker, Gerhard; Straková, Hana; Schulze Grotthoff, Stefan

    2013-01-01

    The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging distributed values, the push-flow algorithm, is developed, which achieves superior resilience properties with respect to failures compared to existing aggregation methods. It is illustrated that on a hypercube topology it asymptotically requires the same number of iterations as the optimal all-to-all reduction operation and that it scales well with the number of nodes. Orthogonalization is studied as a prototypical matrix computation task. A new fault tolerant distributed orthogonalization method rdmGS, which can produce accurate results even in the presence of node failures, is built on top of distributed data aggregation algorithms. PMID:24748902

  8. Self-quenching DNA probes based on aggregation of fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Schafer, Gabriela; Muller, Matthias; Hafner, Bernhard; Habl, Gregor; Nolte, Oliver; Marme, Nicole; Knemeyer, Jens-Peter

    2005-04-01

    Here we present a novel class of self-quenching, double-labeled DNA probes based on the formation of non fluorescent H-type dye dimers. We therefore investigated the aggregation behavior of the red-absorbing oxazine derivative MR121 and found a dimerization constant of about 3000 M-1. This dye was successfully used to develop hairpin-structured as well as linear self-quenching DNA probes that report the presence of the target DNA by an increase of the fluorescence intensity by a factor of 3 to 12. Generally fluorescence quenching of the hairpin-structure probes is more efficient compared to the linear probes, whereas the kinetic of the fluorescence increase is significantly slower. The new probes were used for the identification of different mycobacteria and their antibiotic resistant species. As a test system a probe for the identification of a DNA sequence specific for the Mycobacterium xenopi was synthesized differing from the sequence of the Mycobacterium fortuitum by 6 nucleotides. Furthermore we developed a method for the discrimination between the sequences of the wild type and an antibiotic resistant species of Mycobacterium tuberculosis. Both sequences differ by just 2 nucleotides and were detected specifically by the use of competing olignonucleotides.

  9. Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation

    DOE PAGES

    Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...

    2015-06-01

    Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less

  10. Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation

    SciTech Connect

    Huang, Hao; Yoo, Shinjae; Yu, Dantong; Qin, Hong

    2015-06-01

    Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, so it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.

  11. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    PubMed

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  12. Electronics based on two-dimensional materials.

    PubMed

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  13. A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states

    NASA Astrophysics Data System (ADS)

    Monnier, C. A.; Lattuada, M.; Burnand, D.; Crippa, F.; Martinez-Garcia, J. C.; Hirt, A. M.; Rothen-Rutishauser, B.; Bonmarin, M.; Petri-Fink, A.

    2016-07-01

    We propose a new methodology based on lock-in thermography to study and quantify the heating power of magnetic nanoparticles. Superparamagnetic iron oxide nanoparticles exposed to a modulated alternating magnetic field were used as model materials to demonstrate the potency of the system. Both quantitative and qualitative information on their respective heating power was extracted at high thermal resolutions under increasingly complex conditions, including nanoparticles in the liquid, solid and aggregated states. Compared to conventional techniques, this approach offers a fast, sensitive and non-intrusive alternative to investigate multiple and dilute specimens simultaneously, which is essential for optimizing and accelerating screening procedures and comparative studies.We propose a new methodology based on lock-in thermography to study and quantify the heating power of magnetic nanoparticles. Superparamagnetic iron oxide nanoparticles exposed to a modulated alternating magnetic field were used as model materials to demonstrate the potency of the system. Both quantitative and qualitative information on their respective heating power was extracted at high thermal resolutions under increasingly complex conditions, including nanoparticles in the liquid, solid and aggregated states. Compared to conventional techniques, this approach offers a fast, sensitive and non-intrusive alternative to investigate multiple and dilute specimens simultaneously, which is essential for optimizing and accelerating screening procedures and comparative studies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02066f

  14. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    PubMed Central

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-01-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings. PMID:27113330

  15. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-04-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.

  16. Triarylborane-Based Materials for OLED Applications.

    PubMed

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-09-13

    Multidisciplinary research on organic fluorescent molecules has been attracting great interest owing to their potential applications in biomedical and material sciences. In recent years, electron deficient systems have been increasingly incorporated into fluorescent materials. Triarylboranes with the empty p orbital of their boron centres are electron deficient and can be used as strong electron acceptors in conjugated organic fluorescent materials. Moreover, their applications in optoelectronic devices, energy harvesting materials and anion sensing, due to their natural Lewis acidity and remarkable solid-state fluorescence properties, have also been investigated. Furthermore, fluorescent triarylborane-based materials have been commonly utilized as emitters and electron transporters in organic light emitting diode (OLED) applications. In this review, triarylborane-based small molecules and polymers will be surveyed, covering their structure-property relationships, intramolecular charge transfer properties and solid-state fluorescence quantum yields as functional emissive materials in OLEDs. Also, the importance of the boron atom in triarylborane compounds is emphasized to address the key issues of both fluorescent emitters and their host materials for the construction of high-performance OLEDs.

  17. Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics.

    PubMed

    Singla, A; Bansal, R; Joshi, Varsha; Rathore, Anurag S

    2016-05-01

    Monoclonal antibodies (mAbs) as a class of therapeutic molecules are finding an increasing demand in the biotechnology industry for the treatment of diseases like cancer and multiple sclerosis. A key challenge associated to successful commercialization of mAbs is that from the various physical and chemical instabilities that are inherent to these molecules. Out of all probable instabilities, aggregation of mAbs has been a major problem that has been associated with a change in the protein structure and is a hurdle in various upstream and downstream processes. It can stimulate immune response causing protein misfolding having deleterious and harmful effects inside a cell. Also, the extra cost incurred to remove aggregated mAbs from the rest of the batch is huge. Size exclusion chromatography (SEC) is a major technique for characterizing aggregation in mAbs where change in the aggregates' size over time is estimated. The current project is an attempt to understand the rate and mechanism of formation of higher order oligomers when subjected to different environmental conditions such as buffer type, temperature, pH, and salt concentration. The results will be useful in avoiding the product exposure to conditions that can induce aggregation during upstream, downstream, and storage process. Extended Lumry-Eyring model (ELE), Lumry-Eyring Native Polymerization model (LENP), and Finke-Watzky model (F-W) have been employed in this work to fit the aggregation experimental data and results are compared to find the best fit model for mAb aggregation to connect the theoretical dots with the reality.

  18. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells.

    PubMed

    Zhou, Erjun; Cong, Junzi; Hashimoto, Kazuhito; Tajima, Keisuke

    2013-12-23

    A power conversion efficiency of 3.6% for an all-polymer solar cell, which is the highest ever reported, is achieved by introducing a conjugated side chain into a p-type polymer to improve the miscibility of the polymer blend and by adding small amounts of 1,8-diiodooctane to increase the aggregation of n-type polymer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  20. Aggregation Effects and Population-Based Dynamics as a Source of Therapy Resistance in Cancer.

    PubMed

    Brown, Joel S; Cunningham, Jessica J; Gatenby, Robert A

    2017-03-01

    Evolution of resistance allows cancer cells to adapt and continue proliferating even when therapy is initially very effective. Most investigations of treatment resistance focus on the adaptive phenotypic properties of individual cells. We propose that the resistance of a single cell to therapy may extend beyond its own phenotypic and molecular properties and be influenced by the phenotypic properties of surrounding cells and variations in cell density. Similar variation exists in population densities of animals living in groups and can significantly affect the outcome of an external threat. We investigate aggregation effects in cancer therapy using Darwinian models that integrate phenotypic properties of individual cells and common population effects found in nature to simulate the dynamics of resistance and sensitivity in the diverse cellular environments within cancers. We demonstrate that the density of cancer cell populations can profoundly influence response to chemotherapy independent of the properties of individual cells. Most commonly, these aggregation effects benefit the tumor allowing cells to survive even with phenotypic properties that would render them highly vulnerable to therapy in the absence of population effects. We demonstrate aggregation effects likely play a significant role in conferring resistance to therapy on tumor cells that would otherwise be sensitive to treatment. The potential role of aggregation in outcomes from cancer therapy has not been previously investigated. Our results demonstrate these dynamics may play a key role in resistance to therapy and could be used to design evolutionarily-enlightened therapies that exploit aggregation effects to improve treatment outcomes.

  1. Amphiphilic benzothiadiazole-triphenylamine-based aggregates that emit red light in water.

    PubMed

    Ishi-i, Tsutomu; Kitahara, Ikumi; Yamada, Shimpei; Sanada, Yusuke; Sakurai, Kazuo; Tanaka, Asami; Hasebe, Naoya; Yoshihara, Toshitada; Tobita, Seiji

    2015-02-14

    In this study, we report a preparation and an aggregate emission behavior of an amphiphilic donor-acceptor dye, which is composed of a triphenylamine-benzothiadiazole donor-acceptor chromophore and two water-soluble hexa(ethylene glycol) chains. The dye is strongly fluorescent in nonpolar solutions such as cyclohexane and toluene, whereas the emission intensity is reduced in aprotic polar solutions such as DMF and acetonitrile. This fluorescence reduction correlates with the increase in polarity, by which the transition from a local excited state to a highly polarized excited state is facilitated, leading to an increased nonradiative deactivation rate. Furthermore, significant fluorescence quenching is observed in protic polar solutions such as ethanol and methanol. Hydrogen-bonding interactions between the dye and the protic solvent molecules further accelerate the deactivation rate. In contrast, in a water solution, red light emission is achieved distinctly at 622 nm with a relatively large fluorescence quantum yield of 0.20. This red emission is related to the aggregation of the dye molecules grown in water. The kinetic analysis from the fluorescence rate constant and nonradiative rate constant indicates that the nonradiative deactivation channel is restricted in water. The formed aggregate, which was indicated by transmittance electron microscopy as a spherical aggregate morphology with a diameter of 3-4 nm, provides a less polar hydrophobic space inside the aggregate structure, by which hydrogen-bonding and the subsequent quenching are restricted, leading to the reduction of the nonradiative deactivation rate.

  2. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation.

    PubMed

    Agresti, Filippo; Barison, Simona; Battiston, Simone; Pagura, Cesare; Colla, Laura; Fedele, Laura; Fabrizio, Monica

    2013-09-13

    With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO₃ with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV-visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight.

  3. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation

    NASA Astrophysics Data System (ADS)

    Agresti, Filippo; Barison, Simona; Battiston, Simone; Pagura, Cesare; Colla, Laura; Fedele, Laura; Fabrizio, Monica

    2013-09-01

    With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO3 with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV-visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight.

  4. Aggregation Properties and Liquid Crystal Phase of a Dye Based on Naphthalenetetracarboxylic Acid

    NASA Astrophysics Data System (ADS)

    Tomasik, Michelle; Collings, Peter

    2007-03-01

    R003 is a dye produced for thin film optical components by Optiva, Inc.^1 made from the sulfonation of the dibenzimidazole derivative of naphthalenetetracarboxylic acid. Its molecular structure is very different from the aggregating food dye previously investigated in our laboratory^2 and R003 forms a liquid crystal phase at significantly lower concentrations. We have performed polarizing microscopy, absorption spectroscopy, and x-ray diffraction experiments in order to determine the phase diagram and aggregate structure. In addition, we have included both translational and orientational entropy in the theoretical analysis of the aggregation process, and have used a more realistic lineshape in analyzing the absorption data. Our results indicate that the ``bond energy'' for molecules in an aggregate is even larger than for the previously studied dye and that the aggregate structure has a cross-sectional area equal to two or three molecular areas rather than one.^1Lazarev, P., N. Ovchinnikova, M. Paukshto, SID Int. Symp. Digest of Tech. Papers, San Jose, California, June XXXII, 571 (2001).^2V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. A. Heiney, and P. J. Collings, Phys. Rev. E 72, 041710 (2005).

  5. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.

    PubMed

    Li, Shuhua; Li, Wei; Ma, Jing

    2014-09-16

    Conspectus The generalized energy-based fragmentation (GEBF) approach provides a very simple way of approximately evaluating the ground-state energy or properties of a large system in terms of ground-state energies of various small "electrostatically embedded" subsystems, which can be calculated with any traditional ab initio quantum chemistry (X) method (X = Hartree-Fock, density functional theory, and so on). Due to its excellent parallel efficiency, the GEBF approach at the X theory level (GEBF-X) allows full quantum mechanical (QM) calculations to be accessible for systems with hundreds and even thousands of atoms on ordinary workstations. The implementation of the GEBF approach at various theoretical levels can be easily done with existing quantum chemistry programs. This Account reviews the methodology, implementation, and applications of the GEBF-X approach. This method has been successfully applied to optimize the structures of various large systems including molecular clusters, polypeptides, proteins, and foldamers. Such investigations could allow us to elucidate the origin and nature of the cooperative interaction in secondary structures of long peptides or the driving force of the self-assembly processes of aromatic oligoamides. These GEBF-based QM calculations reveal that the structures and stability of various complex systems result from a subtle balance of many types of noncovalent interactions such as hydrogen bonding and van der Waals interactions. The GEBF-based ab initio molecular dynamics (AIMD) method also allows the investigation of dynamic behaviors of large systems on the order of tens of picoseconds. It was demonstrated that the conformational dynamics of two model peptides predicted by GEBF-based AIMD are noticeably different from those predicted by the classical force field MD method. With the target of extending QM calculations to molecular aggregates in the condensed phase, we have implemented the GEBF-based multilayer hybrid models

  6. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  7. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography.

    PubMed

    Zhu, Feng; Liao, Jiaxin; Xue, Shengguo; Hartley, William; Zou, Qi; Wu, Hao

    2016-12-15

    Bauxite residue often has poor physical conditions which impede plant growth. Native plant encroachment on a bauxite residue disposal area in Central China reveals that natural regeneration may improve its physicochemical properties. Residue samples collected from three different disposal ages were assessed to evaluate residue micromorphology and three-dimensional (3D) aggregate microstructure under natural regeneration. The residue aggregates in different disposal ages were divided in two sections: macro-aggregate (2-1mm) and micro-aggregate (0.25-0.05mm). Residue aggregate micromorphology was determined by scanning electron microscope and energy dispersive X-ray spectroscopy, and the residue aggregate microstructure was determined by synchrotron-based X-ray micro-computed tomography (SR-μCT) and image analysis techniques. Natural regeneration may improve residue aggregate stability and form a stable aggregate structure. Calcium content increased whilst sodium content decreased significantly on the surface of residue aggregates. Under natural soil-forming processes bauxite residue porosity, specific surface area, average length of paths, and average tortuosity of paths all significantly increased. This demonstrated that natural regeneration may stimulate the formation of stable aggregate structure in residues. Further understanding should focus on particle interaction forces and agglomeration mechanisms with the addition of external ameliorations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides.

    PubMed

    Oishi, Jun; Asami, Yoji; Mori, Takeshi; Kang, Jeong-Hun; Niidome, Takuro; Katayama, Yoshiki

    2008-09-01

    The mechanisms of colorimetric assays based on aggregation of gold nanoparticles (GNPs) have been separated into two categories, crosslinking, and noncrosslinking aggregation. The noncrosslinking aggregation has recently been emerging as a simple and rapid mechanism and has been applied to enzymatic activity assays and DNA detection. We report here the detailed study of an enzymatic activity assay for protein kinases based on noncrosslinking aggregation. The principle of the assay is to detect kinase activity by utilizing the difference of coagulating ability of a cationic substrate peptide and its phosphorylated form toward GNPs with anionic surface charge. The critical coagulation concentrations (CCCs) of the peptides were about 10(3) times lower than those of the metal cations with the same cationic charges. The multivalent coordination bonds of the functional groups of the peptides with the GNP surface will strongly support the adsorption of the peptide on the GNP surface. The effect of the GNP size (10, 20, 40, 60 nm) on the dynamic range of OD before and after aggregation was studied. The dynamic range became a maximum for 20 nm GNP among those studied. The difference of CCC between the phosphorylated and nonphosphorylated peptides was governed by (1) the ratio between the peptide concentration and the surface area concentration of GNP and (2) the net charge of the peptides. When the assay system was applied to the activity assessment of protein kinase A, the dynamic range of OD was largest for 20 nm GNPs. However, when the peptide concentration was lowered, the largest 60 nm GNP was advantageous because of its smaller specific surface area.

  9. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammadi, Somayeh; Khayatian, Gholamreza

    2017-10-01

    We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0 μM with detection limits of 15.0, 84.6 and 40.0 nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).

  10. Aggregation kinetics of carbonyl iron based magnetic suspensions in 2D.

    PubMed

    Shahrivar, Keshvad; Carreón-González, Elizabeth; Morillas, Jose R; de Vicente, Juan

    2017-04-05

    We investigate the (irreversible) two-dimensional aggregation kinetics of dilute non-Brownian magnetic suspensions in rectangular microchannels using video-microscopy, image analysis and particle-level dynamics simulations. Special emphasis is given to carbonyl iron suspensions that are of interest in the formulation of magnetorheological fluids. The results are compared to non-Brownian suspensions of magnetic latexes. We demonstrate that both suspensions follow a deterministic aggregation process. Furthermore, experimental and simulation aggregation curves can be collapsed onto a master curve when using the appropriate scaling time (∝λ(-1)ϕ2D(-2.5)) as a function of only two dimensionless numbers: the lambda ratio (λ) and the particle surface fraction (ϕ2D).

  11. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles.

    PubMed

    Hormozi-Nezhad, M Reza; Abbasi-Moayed, Samira

    2014-11-01

    A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu(2+) along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L(-1) and [NaCl]=25 mmol L(-1)), a linear calibration curve for Cu(2+) was obtained within the range of 0.05-1.85 µmol L(-1) with a limit of detection (3Sb) of 30 nmol L(-1). Excellent selectivity toward Cu(2+) was observed among various metal ions due to a specific complex formation between Cu(2+) and D-PC. The proposed method has been successfully applied for the detection of Cu(2+) in various real samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Structure and aggregation properties of a Schiff-base zinc(II) complex derived from cis-1,2-diaminocyclohexane.

    PubMed

    Consiglio, Giuseppe; Oliveri, Ivan Pietro; Punzo, Francesco; Thompson, Amber L; Di Bella, Santo; Failla, Salvatore

    2015-08-07

    This contribution explores the effect of the bridging diamine upon the aggregation properties of a Zn(II) Schiff-base complex, , both in the solid state and in solution. The X-ray structure of , resulting from the harvest of good quality crystals using chloroform and diethyl ether as solvents, shows the presence of a densely packed dimer in the solid state which pentacoordinates two Zn atoms involved in a μ-phenoxo bridge. Detailed studies in solution, through (1)H NMR, DOSY NMR, and optical spectroscopic investigations, indicate the typical aggregation/deaggregation behaviour on switching from non-coordinating to coordinating solvents, in relation to the Lewis acidic character of such Zn(II) complexes. Thus, while in DMSO-d6 both (1)H NMR and DOSY studies suggest the existence of monomeric species, in chloroform solution experimental data support the existence of aggregates. However, unlike our previous studies, (1)H NMR data in chloroform solution indicate the existence of an asymmetric dimer, as observed in the X-ray crystal structure. This further evidences a very rigid backbone of the dimeric aggregate and can be related to the defined stereochemistry of the chelate cis-1,2-diaminocyclohexane bridge.

  13. Modulation of the aggregation properties of sodium deoxycholate in presence of hydrophilic imidazolium based ionic liquid: water dynamics study to probe the structural alteration of the aggregates.

    PubMed

    Kundu, Niloy; Banik, Debasis; Roy, Arpita; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2015-10-14

    In this article, we have investigated the effect of a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]-BF4), on the aggregation properties of a biological surfactant, sodium deoxycholate (NaDC), in water. In solution, unlike conventional surfactants it shows stepwise aggregation and the effect of the conventional ionic liquid on the aggregation properties is rather interesting. We have observed concentration dependent dual role of the ionic liquid; at their low concentration, the aggregated structure of NaDC reorganizes itself into an elongated rod like structure. However, the aggregated network is disintegrated into small aggregates upon further addition of ionic liquid. TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and FLIM (Fluorescence Lifetime Imaging Microscopy) images also confirmed the structural alteration of NaDC upon varying the concentration of the ionic liquid. The proton NMR data indicate that hydrophobic as well as electrostatic interaction is solely responsible for such structural adaptation of NaDC in the presence of an ionic liquid. The host-guest interaction inside the aggregates is monitored using Coumarin-153 (C-153) and the location of C-153 is probed by varying the excitation wavelength from 375 nm to 440 nm and the two binding sites of the aggregates are affected in a different fashion in the presence of ionic liquid. Excitation in the blue region selects the fluorophores which preferably bind to the buried region of the aggregates, whereas 440 nm excitation corresponds to the guest molecules which are exposed to the solvent molecules. The average solvation time of C-153 is increased in the presence of 1.68 wt% [bmim]-BF4 at λexc = 440 nm i.e. the probe molecules relocate themselves to a more restricted region. However, the average solvation time became 2.6 times faster in the presence of 11.2 wt% [bmim]-BF4, which corresponds to a more polar and exposed region. The time resolved

  14. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates.

    PubMed

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-05

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λ(max)) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH=2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λ(max) corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL(-1) to 100.0 ng mL(-1) with the correlation coefficient of r=0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL(-1).

  15. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates

    NASA Astrophysics Data System (ADS)

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-01

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λmax) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH = 2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH 2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λmax corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL- 1 to 100.0 ng mL- 1 with the correlation coefficient of r = 0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL- 1.

  16. Carbohydrate based materials for gamma radiation shielding

    NASA Astrophysics Data System (ADS)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  17. New prospects for noninvasive blood monitoring based on effect of RBC aggregation

    NASA Astrophysics Data System (ADS)

    Shvartsman, L. D.; Fine, I.; Romanov, D. A.

    2008-02-01

    Our analysis of spectral behavior of time-variant optical characteristics caused by RBC aggregation is applied to issues of non-invasive blood monitoring. Modulations of blood flow cause the change in geometry of RBC aggregates and corresponding variance of light scattering. This changes cause the variation of optical transmission, reflection, and polarization of outcoming light. The last can be translated back in absorption coefficients of various blood constituents, refractive index mismatch, etc. For instance, in case of long occlusion simultaneous measurements of both the azimuthal angle and the ellipticity of outcoming light can provide sufficient data to determine the blood glucose.

  18. Non-aggregated Zn(ii)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells.

    PubMed

    Javier Ramos, F; Ince, M; Urbani, M; Abate, Antonio; Grätzel, M; Ahmad, Shahzada; Torres, T; Nazeeruddin, Mohammad Khaja

    2015-06-21

    A non-aggregated Zn(ii)octa(2,6-diphenylphenoxy) phthalocyanine (coded as TT80) has been used as a hole-transporting material for perovskite solar cells. The cells were fabricated under three different configurations by changing the uptake solvent (chlorobenzene or toluene) and incorporating additives (bis(trifluoromethane) sulfonimide lithium salt (LiTFSI) and 4-tert-butylpyridine (TBP). A power conversion efficiency of 6.7% (AM1.5G standard conditions) was achieved for the best cell under optimized configuration.

  19. Microemulsion-based synthesis of nanocrystalline materials.

    PubMed

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika

    2010-02-01

    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials.

  20. Thermionic Converters Based on Nanostructured Carbon Materials

    NASA Astrophysics Data System (ADS)

    Koeck, Franz A. M.; Wang, Yunyu; Nemanich, Robert J.

    2006-01-01

    Thermionic energy converters are based on electron emission through thermal excitation and collection where the thermal energy is directly converted into electrical power. Conventional thermionic energy converters based on emission from planar metal emitters have been limited due to space charge. This paper presents a novel approach to thermionic energy conversion by focusing on nanostructured carbon materials, sulfur doped nanocrystalline diamond and carbon nanotube films as emitters. These materials exhibit intrinsic field enhancement which can be exploited in lowering the emission barrier, i.e. the effective work function. Moreover, emission from these materials is described in terms of emission sites as a result of a non-uniform spatial distribution of the field enhancement factor. This phenomenon can prove advantageous in a converter configuration to mitigate space charge effects by reducing the transit time of electrons in the gap due to an accelerated charge carrier transport.

  1. Carbon-based Materials for Energy Storage

    NASA Astrophysics Data System (ADS)

    Rice, Lynn Margaret

    Fossil fuels can be burned to provide on-demand energy at any time, but cleaner renewable energy sources such as the sun and wind are intermittent. Energy storage systems, then, that are efficient and also economical and environmentally benign are key to a future fueled by renewable energy. Carbon-based materials are prototypical systems in all these aspects. Herein, three promising, novel carbon-based materials are presented. These include microporous carbon for supercapacitors produced by the condensation and carbonization of siloxane elastomers, porous graphitic carbon for supercapacitors produced by an aerosol route, and interpenetrating, binder-free carbon nanotube/vanadium nanowire composites for lithium ion battery electrodes produced by chemical crosslinking and aerogel fabrication. These materials syntheses are facile and can be easily scaled up, and their electrochemical performance, especially their energy densities and cycleability, are notable.

  2. Defects in Carbon-Based Materials

    NASA Astrophysics Data System (ADS)

    Duscher, Gerd

    2013-03-01

    Two distinctly different carbon based semiconducting materials were investigated as to how point defects can influence the electric properties. SiC is a high power electronic material with high bulk mobility. The interface between SiC and SiO2 is generally considered to be the cause for the reduced mobility of SiC devices compared to bulk SiC. We investigated this interface with atomic resolution Z-contrast and electron energy-loss spectroscopy. We come to the conclusion that the previously observed interface layer is due to the miscut and does not exhibit any stoichiometric change. The structure of the interface which is limiting the device performance is caused by the steps and facets at the interface introduced by the miscut. We observed a high number of carbon in the oxide right next to the interface. Aberration corrected transmission electron microscopy enabled the investigation of the atomic structure of this highly stepped interface and the impact of geometry and chemistry on the electronic properties of this material. Graphene is an emerging electronic material also with high mobility. We investigated the defects and dopants in graphene were investigated. We observed point and extended defects in this 2D material. Due to the clear observation of all atoms involved, this material can serve as a model material to study point defects directly. We observe a electronegativity doping of substitutional Si. We observed a remarkable resistance to oxidation of a variety of point defects of elements that readily oxidize in normal circumstances. Boron and nitrogen doped graphene was investigated and the exact nature of the dopant sites and interactions will be shown. Generally speaking modern electron microscopy can directly visualize the full atomic structures in geometrically simple materials like graphene. The knowledge of point defects can be the basis to understand the electronic property structure relationship of structurally complex materials like SiC.

  3. Ecotoxicological effects of graphene-based materials

    NASA Astrophysics Data System (ADS)

    Montagner, A.; Bosi, S.; Tenori, E.; Bidussi, M.; Alshatwi, A. A.; Tretiach, M.; Prato, M.; Syrgiannis, Z.

    2017-03-01

    Graphene-based materials (GBMs) are currently under careful examination due to their potential impact on health and environment. Over the last few years, ecotoxicology has started to analyze all the potential issues related to GBMs and their possible consequences on living organisms. These topics are critically considered in this comprehensive review along with some considerations about future perspectives.

  4. Costs of fire suppression forces based on cost-aggregation approach

    Treesearch

    Gonz& aacute; lez-Cab& aacute; Armando n; Charles W. McKetta; Thomas J. Mills

    1984-01-01

    A cost-aggregation approach has been developed for determining the cost of Fire Management Inputs (FMls)-the direct fireline production units (personnel and equipment) used in initial attack and large-fire suppression activities. All components contributing to an FMI are identified, computed, and summed to estimate hourly costs. This approach can be applied to any FMI...

  5. Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes.

    PubMed

    Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen

    2015-01-01

    Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy.

  6. [An experimental study on mineral triozide aggregate and calcium hydroxide-based paste applied to direct pulp capping in rat].

    PubMed

    Zhao, Yan; Jin, Asari; Gao, Ping; Mitsuko, Inoue

    2013-08-01

    To evaluate the volume change of rat root following direct pulp capping with mineral triozide aggregate(MTA) and calcium hydroxide-based paste (Vitapex) . Sixty-four female, 1-month-old Wistar rats were randomly divided into 4 groups, MTA group, Vitapex group, model group and control group, 16 rats in each group. The right maxillary first molar was taken as experimental tooth and control tooth. The exposed pulp was capped separately with MTA and calcium hydroxide after the pulp had been exposed mechanically, while nothing done to the control group. Using micro-CT and three-dimensional reconstruction techniques, the volume change of rat root was evaluated at 1, 2, 4 weeks and 6 weeks after direct pulp capping. The data were analyzed by an way ANOVA analysis followed by a LSD-t test. The root volume in the MTA group[(1.08 ± 0.07), (1.32 ± 0.18) mm(3)] was significantly smaller than that in the Vitapex group[(1.28 ± 0.16), (1.59 ± 0.18) mm(3)] at 2 and 4 weeks after operation (P < 0.05) . At the sixth week , there was no significant difference between the MTA group [(1.36 ± 0.03) mm(3)] and the Vitapex group[(1.61 ± 0.31) mm(3)] (P > 0.05) . The root volume in the MTA group and Vitapex group was significantly larger than that in the model group [(0.87 ± 0.09), (1.01 ± 0.17) , (1.02 ± 0.25) mm(3)] from the second to sixth week after operation (P < 0.05) . MTA and Vitapex can effectively promote root formation and growth and can be used as biological pulp-capping material.

  7. Superconductivity in dense carbon-based materials

    SciTech Connect

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; Meng, Sheng; Li, Yinwei; Tse, John S.; Yang, Bai; Hemley, Russell J.

    2016-03-08

    Guided by a simple strategy in searching of new superconducting materials we predict that high temperature superconductivity can be realized in classes of high-density materials having strong sp3 chemical bonding and high lattice symmetry. Here, we examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited and the density of states at the Fermi level in them can be as high as that in the renowned MgB2. Altogether, with other factors, this boosts the superconducting temperature (Tc) in the materials investigated to higher levels compared to doped diamond. For example, the superconducting Tc of sodalite-like NaC6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. In owing to the rigid carbon framework of these and related dense carbon-materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.

  8. Photodetectors based on two dimensional materials

    NASA Astrophysics Data System (ADS)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  9. Superconductivity in dense carbon-based materials

    DOE PAGES

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; ...

    2016-03-08

    Guided by a simple strategy in searching of new superconducting materials we predict that high temperature superconductivity can be realized in classes of high-density materials having strong sp3 chemical bonding and high lattice symmetry. Here, we examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited and the density of states at the Fermi level in them can be as high as that in the renowned MgB2. Altogether, with other factors, this boosts the superconducting temperature (Tc) inmore » the materials investigated to higher levels compared to doped diamond. For example, the superconducting Tc of sodalite-like NaC6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. In owing to the rigid carbon framework of these and related dense carbon-materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.« less

  10. Superconductivity in dense carbon-based materials

    NASA Astrophysics Data System (ADS)

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; Meng, Sheng; Li, Yinwei; Tse, John S.; Yang, Bai; Hemley, Russell J.

    2016-03-01

    Guided by a simple strategy in search of new superconducting materials, we predict that high-temperature superconductivity can be realized in classes of high-density materials having strong sp3 chemical bonding and high lattice symmetry. We examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited, and the density of states at the Fermi level in them can be as high as that in the renowned Mg B2 . Together with other factors, this boosts the superconducting temperature (Tc) in the materials investigated to higher levels compared to doped diamond. For example, the Tc of sodalitelike Na C6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. Owing to the rigid carbon framework of these and related dense carbon materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.

  11. Frequency-based heuristics for material perception.

    PubMed

    Giesel, Martin; Zaidi, Qasim

    2013-12-06

    People often make rapid visual judgments of the properties of surfaces they are going to walk on or touch. How do they do this when the interactions of illumination geometry with 3-D material structure and object shape result in images that inverse optics algorithms cannot resolve without externally imposed constraints? A possibly effective strategy would be to use heuristics based on information that can be gleaned rapidly from retinal images. By using perceptual scaling of a large sample of images, combined with correspondence and canonical correlation analyses, we discovered that material properties, such as roughness, thickness, and undulations, are characterized by specific scales of luminance variations. Using movies, we demonstrate that observers' percepts of these 3-D qualities vary continuously as a function of the relative energy in corresponding 2-D frequency bands. In addition, we show that judgments of roughness, thickness, and undulations are predictably altered by adaptation to dynamic noise at the corresponding scales. These results establish that the scale of local 3-D structure is critical in perceiving material properties, and that relative contrast at particular spatial frequencies is important for perceiving the critical 3-D structure from shading cues, so that cortical mechanisms for estimating material properties could be constructed by combining the parallel outputs of sets of frequency-selective neurons. These results also provide methods for remote sensing of material properties in machine vision, and rapid synthesis, editing and transfer of material properties for computer graphics and animation.

  12. Frequency-based heuristics for material perception

    PubMed Central

    Giesel, Martin; Zaidi, Qasim

    2013-01-01

    People often make rapid visual judgments of the properties of surfaces they are going to walk on or touch. How do they do this when the interactions of illumination geometry with 3-D material structure and object shape result in images that inverse optics algorithms cannot resolve without externally imposed constraints? A possibly effective strategy would be to use heuristics based on information that can be gleaned rapidly from retinal images. By using perceptual scaling of a large sample of images, combined with correspondence and canonical correlation analyses, we discovered that material properties, such as roughness, thickness, and undulations, are characterized by specific scales of luminance variations. Using movies, we demonstrate that observers' percepts of these 3-D qualities vary continuously as a function of the relative energy in corresponding 2-D frequency bands. In addition, we show that judgments of roughness, thickness, and undulations are predictably altered by adaptation to dynamic noise at the corresponding scales. These results establish that the scale of local 3-D structure is critical in perceiving material properties, and that relative contrast at particular spatial frequencies is important for perceiving the critical 3-D structure from shading cues, so that cortical mechanisms for estimating material properties could be constructed by combining the parallel outputs of sets of frequency-selective neurons. These results also provide methods for remote sensing of material properties in machine vision, and rapid synthesis, editing and transfer of material properties for computer graphics and animation. PMID:24317425

  13. Aggregation-induced blue shift of fluorescence emission due to suppression of TICT in a phenothiazine-based organogel.

    PubMed

    Yang, Xinchun; Lu, Ran; Zhou, Huipeng; Xue, Pengchong; Wang, Fengyong; Chen, Peng; Zhao, Yingying

    2009-11-15

    A new D-pi-A type gelator based on a phenothiazine derivative, which can gel cyclohexane, hexane, and ethanol/water under ultrasound treatment, has been synthesized. Because such gelators can act as twisted intermolecular charge transfer (TICT) probes, their emission in solution can be tuned by varying the polarity of the solvents. It is notable that an unusual aggregation-induced blue shift of the emission has been detected on account of the suppression of TICT in the gel phase.

  14. Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet.

    PubMed

    Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe

    2017-08-30

    In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

  15. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  16. Collagen-based new bioartificial polymeric materials.

    PubMed

    Giusti, P; Lazzeri, L; De Petris, S; Palla, M; Cascone, M G

    1994-12-01

    Bioartificial polymeric materials, based on blends of biological and synthetic polymers, have been proposed as new materials for applications in the biomedical field. They should usefully combine the biocompatibility of the biological component with the physical and mechanical properties of the synthetic component. Blends of collagen with either poly(vinyl alcohol) or poly(acrylic acid) have been prepared by mixing aqueous solutions of the two polymers. Differential scanning calorimetry and dynamic mechanical thermal analysis has been carried out to investigate the miscibility properties of the polymers and the mechanical behaviour of the blends.

  17. Gas sensors based on nanostructured materials.

    PubMed

    Jiménez-Cadena, Giselle; Riu, Jordi; Rius, F Xavier

    2007-11-01

    Gas detection is important for controlling industrial and vehicle emissions, household security and environmental monitoring. In recent decades many devices have been developed for detecting CO(2), CO, SO(2), O(2), O(3), H(2), Ar, N(2), NH(3), H(2)O and several organic vapours. However, the low selectivity or the high operation temperatures required when most gas sensors are used have prompted the study of new materials and the new properties that come about from using traditional materials in a nanostructured mode. In this paper, we have reviewed the main research studies that have been made of gas sensors that use nanomaterials. The main quality characteristics of these new sensing devices have enabled us to make a critical review of the possible advantages and drawbacks of these nanostructured material-based sensors.

  18. Satellite Contamination and Materials Outgassing Knowledge base

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  19. Protein-Based Drug-Delivery Materials

    PubMed Central

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review. PMID:28772877

  20. Gadolinium-based contrast agents targeted to amyloid aggregates for the early diagnosis of Alzheimer's disease by MRI.

    PubMed

    Bort, Guillaume; Catoen, Sarah; Borderies, Hélène; Kebsi, Adel; Ballet, Sébastien; Louin, Gaëlle; Port, Marc; Ferroud, Clotilde

    2014-11-24

    While important efforts were made in the development of positron emission tomography (PET) tracers for the in vivo molecular diagnosis of Alzheimer's disease, very few investigations to develop magnetic resonance imaging (MRI) probes were performed. Here, a new generation of Gd(III)-based contrast agents (CAs) is proposed to detect the amyloid β-protein (Aβ) aggregates by MRI, one of the earliest biological hallmarks of the pathology. A building block strategy was used to synthesize a library of 16 CAs to investigate structure-activity relationships (SARs) on physicochemical properties and binding affinity for the Aβ aggregates. Three types of blocks were used to modulate the CA structures: (i) the Gd(III) chelates (Gd(III)-DOTA and Gd(III)-PCTA), (ii) the biovectors (2-arylbenzothiazole, 2-arylbenzoxazole and stilbene derivatives) and (iii) the linkers (neutrals, positives and negatives with several lengths). These investigations revealed unexpected SARs and a difficulty of these probes to cross the blood-brain barrier (BBB). General insights for the development of Gd(III)-based CAs to detect the Aβ aggregates are described. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Experimental indication of a naphthalene-base molecular aggregate for the carrier of the 2175 angstroms interstellar extinction feature

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Wdowiak, T. J.; Robinson, M. S.; Cronin, J. R.; McGehee, M. D.; Clemett, S. J.; Gillette, S.

    1997-01-01

    Experiments where the simple polycyclic aromatic hydrocarbon (PAH) naphthalene (C10H8) is subjected to the energetic environment of a plasma have resulted in the synthesis of a molecular aggregate that has ultraviolet spectral characteristics that suggest it provides insight into the nature of the carrier of the 2175 angstroms interstellar extinction feature and may be a laboratory analog. Ultraviolet, visible, infrared, and mass spectroscopy, along with gas chromatography, indicate that it is a molecular aggregate in which an aromatic double ring ("naphthalene") structural base serves as the electron "box" chromophore that gives rise to the envelope of the 2175 angstroms feature. This chromophore can also provide the peak of the feature or function as a mantle in concert with another peak provider such as graphite. The molecular base/chromophore manifests itself both as a structural component of an alkyl-aromatic polymer and as a substructure of hydrogenated PAH species. Its spectral and molecular characteristics are consistent with what is generally expected for a complex molecular aggregate that has a role as an interstellar constituent.

  2. Experimental indication of a naphthalene-base molecular aggregate for the carrier of the 2175 angstroms interstellar extinction feature

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Wdowiak, T. J.; Robinson, M. S.; Cronin, J. R.; McGehee, M. D.; Clemett, S. J.; Gillette, S.

    1997-01-01

    Experiments where the simple polycyclic aromatic hydrocarbon (PAH) naphthalene (C10H8) is subjected to the energetic environment of a plasma have resulted in the synthesis of a molecular aggregate that has ultraviolet spectral characteristics that suggest it provides insight into the nature of the carrier of the 2175 angstroms interstellar extinction feature and may be a laboratory analog. Ultraviolet, visible, infrared, and mass spectroscopy, along with gas chromatography, indicate that it is a molecular aggregate in which an aromatic double ring ("naphthalene") structural base serves as the electron "box" chromophore that gives rise to the envelope of the 2175 angstroms feature. This chromophore can also provide the peak of the feature or function as a mantle in concert with another peak provider such as graphite. The molecular base/chromophore manifests itself both as a structural component of an alkyl-aromatic polymer and as a substructure of hydrogenated PAH species. Its spectral and molecular characteristics are consistent with what is generally expected for a complex molecular aggregate that has a role as an interstellar constituent.

  3. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    PubMed

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  4. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation.

    PubMed

    Herrmann, I K; Bertazzo, S; O'Callaghan, D J P; Schlegel, A A; Kallepitis, C; Antcliffe, D B; Gordon, A C; Stevens, M M

    2015-08-28

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (≤1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.

  5. Innovative materials based on sol gel technology

    NASA Astrophysics Data System (ADS)

    Reisfeld, Renata; Saraidarov, Tsiala

    2006-01-01

    We review the sol-gel based new materials which were prepared in our laboratory including: tunable lasers, active waveguides, luminescent solar concentrators, electrochromic, photochromic and gasochromic plates for smart windows, chemical and biological sensors, semiconductor quantum dots and complexes of rare earth ions. In this paper we present the firstly obtained results of the Eu sulfide nanocrystalline (NCs) powder material and doped in the sol-gel based zirconia films. The powder and films were studied by high resolution transmittance electron microscopy (HRTEM), energy dispersive X-ray spectroscopy analysis (EDS) and luminescence spectroscopy. Eu sulfide nanocrystals (NCs) ranging between 8 and 10 nm were obtained as powder and 3-4 nm incorporated in zirconia film.

  6. Formation of rigid organic nanotubes with controlled internal cavity based on frustrated aggregate internal rearrangement mechanism.

    PubMed

    Han, Minwoo; Hyun, Jungin; Sim, Eunji

    2013-06-27

    We introduce frustrated aggregate internal rearrangement (FAIR) mechanism for anisotropic higher-order structure formations, in which the anisotropy arose due to the structural frustration. We demonstrate the FAIR mechanism by investigating the recently observed rigid organic nanotube formations through the self-assembly of building blocks, which include rigid segments and make intermolecular H-bonds, whereas the principle of the FAIR mechanism is general and is not limited to H-bonding building blocks or nanotube formations. Initially, molecules aggregate into sheetlike structures driven by nonspecific and nondirectional intermolecular interactions such as π-π stacking or amphiphilicity. Weak intermolecular H-bonds provide additional stability to the structure. Within the aggregate, however, not all molecules have the right orientation for specific and directional H-bonds whereas collective internal rearrangement of rigid building blocks requires a large amount of energy to overcome kinetically trapped barriers. Consequently, instead of the fully H-bonded global equilibrium structure, self-assembled layers become trapped with partial and disordered H-bonding schemes at various fractions leading to an anisotropic layer that undergoes spontaneous transformation into curved structures. The FAIR mechanism can readily be extended to anisotropic higher-order structures other than nanotubes and to the assembly of diverse building blocks including hybrids such as polymer nanocomposites. Also the reversible transformation from metastable nanotubes into layered sheets is potentially useful for controlling internal cavity size of nanotubes.

  7. [Anti-platelet aggregation bioassay based quality control for XST capsules].

    PubMed

    Han, Bing; Mao, Xin; Han, Shu-xian; Chen, Ying; Xiang, Yan-hua; Ge, Yi-meng; Liao, Fu-long; You, Yun

    2015-12-01

    A in vitro platelet aggregation bioassay was developed for the quality control of XST capsules. The in vitro anti-platelet aggregation effect in rats was observed to detect the bioactivity of XST capsules. Panax notoginseng saponins and Xuesaitong lyophilizedpowder for injection were taken as standard control substances to determine the potency. According to the results, XST capsules showeda significant inhibitory effect on thrombin-induced platelet aggregation in a dose-dependent manner. The in vitro anti-platelet activity oflyophilized powder for injection was stabler than that of Panax notoginseng saponins, and so suitable to serve as a standard control substance. The biological potency of XST capsules compared with standard control substance was detected by using parallel line assay. According to the results, the established bioassay method had a good repeatability (RSD 2.92%). The sample test results could pass thereliability test(linear deviation P > 0.05, parallel deviation P > 0.05). This bioassay method could be used as one of the complementary quality control methods for XST capsules.

  8. Pheromone-based mating and aggregation in the sorghum chafer, Pachnoda interrupta.

    PubMed

    Bengtsson, Jonas M; Prabhakar Chinta, Satya; Wolde-Hawariat, Yitbarek; Negash, Merid; Seyoum, Emiru; Hansson, Bill S; Schlyter, Fredrik; Schulz, Stefan; Hillbur, Ylva

    2010-07-01

    Adults of the sorghum chafer, Pachnoda interrupta Olivier (Coleoptera: Scarabaeidae: Cetoniinae), form aggregations during the mating period in July, but also in October. The beetles aggregate on food sources, e.g., Acacia spp. trees or sorghum with ripe seeds, to feed and mate. During the mating season, field trapping experiments with live beetles as bait demonstrated attraction of males to unmated females, but not to mated females or males, indicating the presence of a female-emitted sex pheromone. Unmated females combined with banana (food source) attracted significantly more males and females than did unmated females alone. Other combinations of beetles with banana were not more attractive than banana alone. Thus, aggregation behavior appears to be guided by a combination of pheromone and host volatiles. Females and males were extracted with hexane during the mating period, and the extracts were compared by using GC-MS. In a field trapping experiment, 19 compounds found only in females were tested, both singly and in a mixture. Traps baited with one of the female-associated compounds, phenylacetaldehyde, caught significantly more beetles than any other treatment. However, the sex ratio of beetles caught in these traps did not differ from that of control traps, and it is possible that other components may be involved in the sex pheromone signal. Furthermore, traps baited with a mixture of all 19 compounds attracted significantly fewer beetles than did phenylacetaldehyde alone.

  9. Emergent Catalytic Behavior of Self-Assembled Low Molecular Weight Peptide-Based Aggregates and Hydrogels.

    PubMed

    Tena-Solsona, Marta; Nanda, Jayanta; Díaz-Oltra, Santiago; Chotera, Agata; Ashkenasy, Gonen; Escuder, Beatriu

    2016-05-04

    We report a series of short peptides possessing the sequence (FE)n or (EF)n and bearing l-proline at their N-terminus that self-assemble into high aspect ratio aggregates and hydrogels. We show that these aggregates are able to catalyze the aldol reaction, whereas non-aggregated analogues are catalytically inactive. We have undertaken an analysis of the results, considering the accessibility of catalytic sites, pKa value shifts, and the presence of hydrophobic pockets. We conclude that the presence of hydrophobic regions is indeed relevant for substrate solubilization, but that the active site accessibility is the key factor for the observed differences in reaction rates. The results presented here provide an example of the emergence of a new chemical property caused by self-assembly, and support the relevant role played by self-assembled peptides in prebiotic scenarios. In this sense, the reported systems can be seen as primitive aldolase I mimics, and have been successfully tested for the synthesis of simple carbohydrate precursors.

  10. Optical Limiting Materials Based on Gold Nanoparticles

    DTIC Science & Technology

    2014-04-30

    AFRL-OSR-VA-TR-2014-0104 OPTICAL LIMITING MATERIALS BASED ON GOLD NANOPARTICLES John Dawson SOUTH CAROLINA RESEARCH FOUNDATION Final Report 04/30...2009; therefore, the award was modified so that her former department chair, John Dawson, became the PI of the award, with Murphy as a subcontract at...Mediated Synthesis to Nanoscale Sculpting,” Curr. Opin. Colloid. Interfac. Sci. 2011, 16, 128-134. • Sivapalan, S. T.; Vella, J. H.; Yang, T. K.; Dalton

  11. Electron beam irradiation of denture base materials.

    PubMed

    Behr, M; Rosentritt, M; Faltermeier, A; Handel, G

    2005-02-01

    Electron beam irradiation can be used to influence the properties of polymers. It was the aim of this study to investigate whether PMMA denture base materials can benefit from irradiation in order to have increased fracture toughness, work of fracture or hardness. Rectangular specimens of heat-and auto-curing denture base materials were electron beam irradiated (post-cured) with 25, 100 and 200 kGy using an electron acceleration of 10 MeV or 4.5 MeV respectively. Fracture toughness, work of fracture, Vickers hardness and colour changes were measured and compared with not-irradiated specimens. The toughness, work of fracture and hardness increased using 10 MeV with a dose of 25 kGy and with 100 kGy using 4.5 MeV. However, the clinical use may not benefit from the observed small changes. Higher dosage (200 kGy) decreased the values significantly. The colour changes reached a level which was found to be not clinically acceptable. PMMA denture base materials do not benefit from post-curing with electron beam irradiation.

  12. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  13. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  14. Determination of pegfilgrastim aggregates by size-exclusion high-performance liquid chromatography on a methacrylate-based column.

    PubMed

    Shahbazi, Majid; Tamaskany Zahedy, Elnaz; Kiumarsi, Shiva; Hadi Soltanabad, Mojtaba; Shahbazi Azar, Saleh; Amini, Hossein

    2017-03-01

    A size-exclusion high-performance liquid chromatographic method using a methacrylate-based column was developed, validated and implemented for the determination of pegfilgrastim aggregates. The samples were directly injected into a TSKgel G4000PWXL column (7.5 mm × 300 mm, 10 μm, <500 A°) with a mobile phase of 100 mM phosphate, pH 2.5. Detection was made at 215 nm and analyses were run at a flow-rate of 0.6 ml/min at 10 °C. Vortex-mixing of samples produced oligomers, however, very high molecular weight aggregates were formed at high temperatures. The method exhibited linearity over the concentration range of 0.1-14 mg/ml for pegfilgrastim monomer and high molecular weight aggregates with a correlation coefficient of greater than 0.99. The method was specific and sensitive, with a lower quantification limit of 0.1 mg/ml and a detection limit of 0.02 mg/ml. Over 1200 samples were analyzed by the present method without significant change in the column performance. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.

    PubMed

    Miranda, Cláudia C; Fernandes, Tiago G; Diogo, M Margarida; Cabral, Joaquim M S

    2016-12-01

    The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems.

  16. Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with 'salen' type asymmetric Schiff base ligands.

    PubMed

    Chakraborty, Sutapa; Bhattacharjee, Chira R; Mondal, Paritosh; Prasad, S Krishna; Rao, D S Shankar

    2015-04-28

    A new series of photoluminescent Zn(II)-salen type asymmetric Schiff base complexes, [ZnL], H2L = [N,N'-bis-(4-n-alkoxysalicylidene)-1,2-diaminopropane] (n = 12, 14 and 16) have been accessed and their mesomorphic and photophysical properties investigated. Though the ligands are non-mesomorphic, coordination to Zn(2+) ion induces liquid crystalline behaviour. The complexes exhibited a lamello-columnar phase (Coll) as characterized by a variable temperature powder X-ray diffraction (XRD) study. Intense blue emissions were observed for the complexes at room temperature in solution, in the solid state and in the mesophase. Aggregation properties of the complexes were explored in different solvents through absorption and photoluminescence studies. While de-aggregation to monomers occurred in coordinating solvents due to axial coordination to Zn(II), aggregates were formed in the solution of non-coordinating solvents. Density functional theory (DFT) computation carried out on a representative complex using a GAUSSIAN 09 program at the B3LYP level suggested a distorted square planar geometry. The results of a time-dependent DFT (TD-DFT) spectral correlative study showed the electronic properties of the complex molecule to be in compliance with the spectral data.

  17. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    Rationale and Experimental Approach Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables. Results and Discussion Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis. Summary Lack of

  18. Brittle Destruction of Carbon Based Materials

    NASA Astrophysics Data System (ADS)

    Koza, Y.; Amouroux, S.; Bazylev, B. N.; Berthe, E.; Kuehnlein, W.; Linke, J.; Penkalla, H. J.; Singheiser, L.

    Erosion mechanisms for different carbon based materials (graphite, carbon fiber composites (CFCs), Si-doped CFC) have been studied under brittle destruction under intense transient thermal loads (ELMs, plasma disruptions, VDEs) with respect to material erosion in different particle emission regimes, characterization of emitted particles, and behavior of preheated samples. Furthermore, the experimental data were compared with 3-D numerical simulation on the onset of brittle destruction. From a morphological point of view, the resulting erosion patterns on the test samples and ejected particles differ significantly for the three materials. The isotropic graphite shows a homogeneous erosion profile with flat craters, while the CFC forms no crater and only preferential erosion in localized spots in the PAN fiber area while the pitch fiber strands remain almost undamaged. The particles originating from graphite samples which have been collected on TEM grids are composed of nano sized amorphous carbon. CFCs have been the source for sub Î 1/4 m sized agglomerated fragments of crystalline carbon or silicon particles with âe 1/4 50 nm diameter. Preheating of the test samples to 500 or 800°C results in a remarkable increase of the erosion depth and weight loss compared to the samples loaded at room temperature and identical heat fluxes. In particular, melting phenomena in the Si-doped CFC materials became essential at elevated temperatures.

  19. Complex coacervate-based materials for biomedicine.

    PubMed

    Blocher, Whitney C; Perry, Sarah L

    2017-07-01

    There has been increasing interest in complex coacervates for deriving and transporting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liquid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, particularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, proteins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, and adhesives for wet, biological environments. Here, we discuss the self-assembly of complex coacervate-based materials, current challenges in the intelligent design of these materials, and their utility applications in the broad field of biomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1442. doi: 10.1002/wnan.1442 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. Graphene-encapsulated hollow Fe₃O₄ nanoparticle aggregates as a high-performance anode material for lithium ion batteries.

    PubMed

    Chen, Dongyun; Ji, Ge; Ma, Yue; Lee, Jim Yang; Lu, Jianmei

    2011-08-01

    Graphene-encapsulated ordered aggregates of Fe(3)O(4) nanoparticles with nearly spherical geometry and hollow interior were synthesized by a simple self-assembly process. The open interior structure adapts well to the volume change in repetitive Li(+) insertion and extraction reactions; and the encapsulating graphene connects the Fe(3)O(4) nanoparticles electrically. The structure and morphology of the graphene-Fe(3)O(4) composite were confirmed by X-ray diffraction, scanning electron microscopy, and high-resolution transmission microscopy. The electrochemical performance of the composite for reversible Li(+) storage was evaluated by cyclic voltammetry and constant current charging and discharging. The results showed a high and nearly unvarying specific capacity for 50 cycles. Furthermore, even after 90 cycles of charge and discharge at different current densities, about 92% of the initial capacity at 100 mA g(-1) was still recoverable, indicating excellent cycle stability. The graphene-Fe(3)O(4) composite is therefore a capable Li(+) host with high capacity that can be cycled at high rates with good cycle life. The unique combination of graphene encapsulation and a hollow porous structure definitely contributed to this versatile electrochemical performance.

  1. Contamination of tooth-colored mineral trioxide aggregate used as a root-end filling material: a bacterial leakage study.

    PubMed

    Montellano, Angela M; Schwartz, Scott A; Beeson, Thomas J

    2006-05-01

    This experiment investigated the ability of tooth-colored mineral trioxide aggregate (MTA) to maintain an apical seal in the presence of bacteria when contaminated with blood, saline or saliva. Ninety extracted human teeth with single canals were randomly placed into six groups of 15. Canals were prepared to size 50. The apical 3 mm of each root was removed and 3 mm root-end preparations were made with a #329 bur. Root-end preparations in groups 1 through 3 were filled with MTA after contamination with blood, saline, or saliva, respectively. In group 4, uncontaminated root-end preparations were filled with MTA. Groups 5 and 6 served as negative and positive controls. A tube/tooth assembly was utilized to suspend each root end in Trypticase Soy Broth (TSB). The access chambers were filled with Staphylococcus epidermidis. Positive growth over thirty days was demonstrated by turbidity of the TSB. Vitek analysis was used to confirm the presence of S. epidermidis in the positive samples. Data evaluation consisted of a chi(2) analysis (p < 0.05). Although all experimental groups demonstrated leakage, tooth-colored MTA contaminated with saliva (group 3) leaked significantly more than the uncontaminated tooth-colored MTA (group 4) (p = 0.028).

  2. Method for hardfacing a ferrous base material

    SciTech Connect

    Sakaguchi, S.; Ito, H.; Shiroyama, M.

    1984-10-23

    Tungsten carbide and nickel-phosphorus alloy coexist in individual particles. The composite powder produced by a mechanical mix of these two substances consists of 30 about 95 percent by weight of tungsten carbide and valanced nickel-phosphorus alloy. This powder is sprayed to the ferrous base material, resulting in a uniform dispersion of both tungsten carbide and nickel-phosphorus, causing tight adhesion to the surface because the tungsten carbide and nickel-phosphorus alloy coexist in individual particles in the composite. A hard metal coating is produced having high hardness and excellent wear resistance, after the surface of the hard metal coating is heated and the high temperature of the nickel-phosphorus alloy causes a liquid phase under the condition of a nonoxidizing atmosphere. This hard metal coating is used for various kinds of the wear-resistant materials.

  3. Effect of dental materials calcium hydroxide-containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells.

    PubMed

    Guven, Esra Pamukcu; Yalvac, Mehmet Emir; Sahin, Fikrettin; Yazici, Munevver M; Rizvanov, Albert A; Bayirli, Gunduz

    2011-05-01

    Biocompatibility of pulp capping materials is important for successful use in dentistry. These materials should be nontoxic and permissive for proliferation and induction of odontogenic differentiation of pulp cells. The aim of our study was to evaluate the effects of enamel matrix derivative (EMD), mineral trioxide aggregate (MTA), and calcium hydroxide-containing cement (DYCAL) on proliferation and odontogenic differentiation of human tooth germ stem cells (hTGSCs) in which cells belonging to both pulp tissue and dental follicle exist. The 96-well plates, 24-well plates, and special chamber slides were coated with biomaterials for cell proliferation, differentiation, and scanning electron microscopy analysis. Odontogenic differentiation of hTGSCs was evaluated by analyzing mRNA expression of dentin sialophosphoprotein (DSPP) by real-time polymerase chain reaction expression analysis, measurement of alkaline phosphatase activity, and visualization of calcium depositions by von Kossa staining. Our results demonstrate that EMD is the best material in terms of inducing differentiation and proliferation of hTGSCs. DYCAL was found to be toxic to hTGSCs; however, EMD-coated DYCAL showed less toxicity. EMD-coated MTA was not efficient at inducing proliferation and differentiation. Pulp capping materials come in direct contact with dental pulp cells; thus, they require comprehensive evaluation of interactions between cells and biomaterials. Therefore, we cultured hTGSCs, capable of odontogenic differentiation, on pulp capping materials directly. Our results suggest that combination of capping materials with EMD would increase the quality of capping by increasing biocompatibility of capping materials. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Comparison of sealing ability of bioactive bone cement, mineral trioxide aggregate and Super EBA as furcation repair materials: A dye extraction study

    PubMed Central

    Balachandran, Janani; Gurucharan

    2013-01-01

    Context: Sealing ability of furcation repair material. Aims: To evaluate the sealing ability of bioactive bone cement, mineral trioxide aggregate (MTA) and Super Ethoxybenzoic Acid (EBA) as furcation repair materials in mandibular molars using a dye extraction leakage model. Settings and Design: In vitro, dye extraction study. Materials and Methods: Forty mandibular molars were randomly divided according to the material used to repair perforation: Group I-MTA, Group II-bioactive bone cement, Group III-Super EBA, Group IV-Control (furcation left unrepaired). All samples were subject to ortho grade and retrograde methylene blue dye challenge followed by dye extraction with 65% nitric acid. Samples were then analyzed using Ultra violet (UV) Visible Spectrophotometer. Statistical Analysis Used: One way analysis of variance (ANOVA), Tukey-Kramer Multiple Comparisons Test. Results: MTA and bioactive bone cement showed almost similar and lower absorbance values in comparison to Super EBA. Conclusions: Bioactive bone cement provi ded an excellent seal for furcal perforation repair and at the same time it provided comfortable handling properties, which could overcome the potential disadvantages as faced with MTA. PMID:23833460

  5. Evaluation of compressive strength of hydraulic silicate-based root-end filling materials.

    PubMed

    Walsh, Ryan M; Woodmansey, Karl F; Glickman, Gerald N; He, Jianing

    2014-07-01

    Hydraulic silicate cements such as mineral trioxide aggregate (MTA) have many clinical advantages. Newer hydraulic silicate materials have been developed that improve on the limitations of mineral trioxide aggregate such as the long setting time and difficult handling characteristics. The purpose of this study was to examine the effect of saline and fetal bovine serum (FBS) on the setting and compressive strength of the following hydraulic silicate cements: ProRoot MTA (white WMTA; Dentsply International, Tulsa Dental Specialties, Johnson City, TN), EndoSequence Root Repair Material (Brasseler USA, Savannah, GA), MTA Plus (MTAP; Avalon Biomed Inc, Bradenton, FL), and QuickSet (QS; Avalon Biomed Inc, Bradenton, FL). Samples of root-end filling materials were compacted into polyethylene molds. Samples were exposed to FBS or saline for 7 days. A universal testing machine was used to determine the compressive strengths. QS had significantly lower compressive strength than all other materials (P < .001). White MTA and MTAP mixed with liquid had lower compressive strengths after exposure to FBS compared with saline (P = .003). ERRM, MTAP mixed with gel, and QS were not affected by the exposure to FBS. New silicate-based root-end filling materials, other than QS, have compressive strength similar to MTA. Within the limits of this study, premixed materials and those mixed with antiwashout gel maintain their compressive strength when exposed to biological fluids. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  7. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation

    NASA Astrophysics Data System (ADS)

    Herrmann, I. K.; Bertazzo, S.; O'Callaghan, D. J. P.; Schlegel, A. A.; Kallepitis, C.; Antcliffe, D. B.; Gordon, A. C.; Stevens, M. M.

    2015-08-01

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and

  8. Advanced Civil Engineering Materials Based on Inorganic Polymers

    DTIC Science & Technology

    1993-04-29

    to evaluate cement chemistries more suitable for macrodefect- free cement materials. Therefore, the thrust of this work is oriented to the chemistry...uses conventional cement in advanced applications. Generically, such materiais are called macrodefect- free cements (MDF cements). MDF cements develop... aggregate particles, to the water-to-solids ratio, to the rheology, which is related to the degree of dispersion of the solids originally present, and to the

  9. Perovskite-based photodetectors: materials and devices.

    PubMed

    Wang, Huan; Kim, Dong Ha

    2017-08-29

    While the field of perovskite-based optoelectronics has mostly been dominated by photovoltaics, light-emitting diodes, and transistors, semiconducting properties peculiar to perovskites make them interesting candidates for innovative and disruptive applications in light signal detection. Perovskites combine effective light absorption in the broadband range with good photo-generation yield and high charge carrier mobility, a combination that provides promising potential for exploiting sensitive and fast photodetectors that are targeted for image sensing, optical communication, environmental monitoring or chemical/biological detection. Currently, organic-inorganic hybrid and all-inorganic halide perovskites with controlled morphologies of polycrystalline thin films, nano-particles/wires/sheets, and bulk single crystals have shown key figure-of-merit features in terms of their responsivity, detectivity, noise equivalent power, linear dynamic range, and response speed. The sensing region has been covered from ultraviolet-visible-near infrared (UV-Vis-NIR) to gamma photons based on two- or three-terminal device architectures. Diverse photoactive materials and devices with superior optoelectronic performances have stimulated attention from researchers in multidisciplinary areas. In this review, we provide a comprehensive overview of the recent progress of perovskite-based photodetectors focusing on versatile compositions, structures, and morphologies of constituent materials, and diverse device architectures toward the superior performance metrics. Combining the advantages of both organic semiconductors (facile solution processability) and inorganic semiconductors (high charge carrier mobility), perovskites are expected to replace commercial silicon for future photodetection applications.

  10. Magneto-Optic Devices Based on Organic Polymer Materials

    DTIC Science & Technology

    2012-09-10

    a   polymethylmethacrylate   (PMMA)   matrix   with   little   or   no   aggregation;   unlike   previously   reported...diameter)   polymethylmethacrylate   (PMMA)  based  PNC,  both  developed  by   the  UA   team.     The   FR   response

  11. A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars

    NASA Astrophysics Data System (ADS)

    D'Agostino, Agnese; Taglietti, Angelo; Bassi, Barbara; Donà, Alice; Pallavicini, Piersandro

    2014-10-01

    Gold nanostars (AuNS) with a mean hydrodynamic size of 40 nm, obtained with a seed-growth approach using a zwitterionic surfactant (laurylsulfobetaine, LSB), were successfully coated with glutathione (GSH), obtaining a stable and purified solid product which can be easily stored and re-dissolved on need in 0.1 M aqueous solution of Hepes buffered at pH 7. Upon exposure to micromolar concentrations of Pb2+ cation, the GSH-coated nano-objects undergo a fast aggregation followed by sedimentation leading to complete precipitation in about an hour. The subsequent disappearing of the intense LSPR extinction can of course be followed spectrophotometrically but, most importantly, can be easily detected with the naked eye. No signs of this event are noticed when other divalent cations are added to the colloidal suspension in the same condition. A careful investigation was performed to study this selectivity and the behaviour of aggregation as a function of time and Pb2+ cation concentration. We demonstrate that an easy, rapid, instrument-free, visual detection of micromolar levels of Pb2+ is thus possible with this assay, showing a good selectivity towards other investigated metal cations.

  12. Familial aggregation of body mass index: a population-based family study in eastern Finland.

    PubMed

    Fuentes, R M; Notkola, I-L; Shemeikka, S; Tuomilehto, J; Nissinen, A

    2002-07-01

    In this study, we investigated the familial aggregation of body mass index (BMI) in a sample of families with young offspring from eastern Finland. 15-year-olds were examined from 1996 to 1997, and their biological parents were examined from 1993 to 1994. 224 children were invited; 184 families participated, and 144 were included in the analysis with complete data. Significant positive correlations were found for mother-offspring pairs (correlation [r] = 0.31, p < 0.001, n = 140), father-offspring (r = 0.23, p = 0.017, n = 107), mother-daughter (r = 0.26, p = 0.044, n = 63) and mother-son (r = 0.36, p = 0.001, n = 77). Adjustment for confounding variables did not alter these results. There was a higher proportion of children in the highest quartile of BMI when the mother was obese (odds ratio [OR] = 3.0, 95 % CI = 1.4 - 6.7, n = 140) and when one or both parents were obese (OR = 2.8, 95 % CI = 1.0 - 8.0 when one parent was obese; OR = 4.6, 95 % CI = 1.1 - 20.0 when both parents were obese; n = 103). The study confirmed familial BMI aggregation. The consistent obesity relationship between mother and offspring may indicate the key role of the mother in primary obesity prevention.

  13. Laser materials based on transition metal ions

    NASA Astrophysics Data System (ADS)

    Moncorgé, Richard

    2017-01-01

    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  14. Dielectric response based characterization and strength prediction of cementitious materials

    NASA Astrophysics Data System (ADS)

    Manchiryal, Ram Kishore

    aggregates is evident. The relaxation times of the cement pastes are determined using several methods. Among those, relaxation times determined using a modified equivalent circuit model is found to be adequate. Representing the dielectric constant (or conductivities) at particular frequencies as a function of the capillary porosities in the cement pastes, it is observed that percolation threshold of porosity of cement pastes can be detected. The observed percolation thresholds agree well with those reported for cement based materials. The compressive strengths of cement pastes are predicted using two methods that employ electrical conductivity. The first method is developed using the measured non-evaporable water contents to determine degrees of hydration, and thus the porosity. Standard strength-porosity relationships are then used to extract strength from porosity values. In the second method, a generalized effective medium (GEM) theory is used along with the measured effective conductivity to predict the porosity and then the, compressive strength. The compressive strength predicted by both methods agrees well with the experimental results.

  15. Hesitant Triangular Fuzzy Information Aggregation Operators Based on Bonferroni Means and Their Application to Multiple Attribute Decision Making

    PubMed Central

    Zhou, Xiaoqiang; Yang, Tian

    2014-01-01

    We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338

  16. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  17. Prediction of successive steps of SOM formation in aggregates and density fractions based on the 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov

    2014-05-01

    Aggregate formation is a key process of soil development, which promotes carbon (C) stabilization by hindering decomposition of particulate organic matter (POM) and its interactions with mineral particles. C stabilization processes lead to 13C fractionation and consequently to various δ13C values of soil organic matter (SOM) fractions. Differences in δ13C within the aggregates and fractions may have two reasons: 1) preferential stabilization of organic compounds with light or heavy δ13C and/or 2) stabilization of organic materials after passing one or more microbial utilization cycles, leading to heavier δ13C in remaining C. We hypothesized that: 1) 13C enrichment between the SOM fractions corresponds to successive steps of SOM formation; 2) 13C fractionation (but not the δ13C signature) depends mainly on the transformation steps and not on the C precursors. Consequently, minimal differences between Δ13C of SOM fractions between various ecosystems correspond to maximal probability of the SOM formation pathways. We tested these hypotheses on three soils formed from cover loam during 45 years of growth of coniferous or deciduous forests or arable crops. Organic C pools in large macroaggregates, small macroaggregates, and microaggregates were fractionated sequentially for four density fractions to obtain free POM with ρ

  18. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  19. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  20. Nanocellulose-Based Materials for Water Purification

    PubMed Central

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P.

    2017-01-01

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted. PMID:28336891

  1. Polyimide-based electro-optic materials

    NASA Astrophysics Data System (ADS)

    Cahill, Paul A.; Seager, Carl H.; Meinhardt, Michael B.; Beuhler, Allyson J.; Wargowski, David A.; Singer, Kenneth D.; Kowalczyk, Tony C.; Kosc, Tanya Z.

    1993-12-01

    The properties of new, high temperature optical materials based on dye-doped Ultradel 9000D polyimides are presented. Ultradel 9000D is a soluble, pre-imidized, fluorinated polymer with properties optimized for integrated optical applications. When thermally or photochemically cross-linked, it has a Tg approaching 400DEGC and retains excellent optical transparency as measured by both waveguide loss spectroscopy (WLS) and photothermal deflection spectroscopy (PDS). The agreement between WLS and PDS data indicates that losses in polyimides are due to absorption, not scattering. Two thermally stable, donor-acceptor oxazole-based dyes were designed, synthesized, and doped into the polyimide at concentrations up to 25 percent by weight. The Tg of the doped polymers decreased from the neat polymer, but remained above 300DEGC. The effects of doping on the dielectric constant, refractive index, and coefficient of thermal expansion of the polyimide are presented.

  2. Nanocellulose-Based Materials for Water Purification.

    PubMed

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  3. Road-base construction utilizing coal-waste materials. Research report

    SciTech Connect

    Hunsucker, D.; Sharpe, G.W.; Rose, J.G.; Deen, R.C.

    1987-07-01

    This paper describes the development and implementation of a no-cement concrete mixture containing pulverized fuel ash (PVA) and atmospheric fluidized-bed combustion (AFBC) by-products as the cementitious components for combination with conventional limestone aggregates used as bulk filler. The paper presents a summary of laboratory evaluations and the application of those results to the design of a base for roadway construction. The paper also describes the construction, evaluation, and performance of a pilot application of this material used as a base for a thin bituminous pavement.

  4. Solution-based nanoengineering of materials.

    SciTech Connect

    Criscenti, Louise Jacqueline; Spoerke, Erik David; Liu, Jun; Voigt, James A.; Cygan, Randall Timothy; Machesky, Michael L.; Tian, Zhengrong Ryan; McKenzie, Bonnie Beth

    2005-02-01

    Solution-based synthesis is a powerful approach for creating nano-structured materials. Although there have been significant recent successes in its application to fabricating nanomaterials, the general principles that control solution synthesis are not well understood. The purpose of this LDRD project was to develop the scientific principles required to design and build unique nanostructures in crystalline oxides and II/VI semiconductors using solution-based molecular self-assembly techniques. The ability to synthesize these materials in a range of different nano-architectures (from controlled morphology nanocrystals to surface templated 3-D structures) has provided the foundation for new opportunities in such areas as interactive interfaces for optics, electronics, and sensors. The homogeneous precipitation of ZnO in aqueous solution was used primarily as the model system for the project. We developed a low temperature, aqueous solution synthesis route for preparation of large arrays of oriented ZnO nanostructures. Through control of heterogeneous nucleation and growth, methods to predicatively alter the ZnO microstructures by tailoring the surface chemistry of the crystals were established. Molecular mechanics simulations, involving single point energy calculations and full geometry optimizations, were developed to assist in selecting appropriate chemical systems and understanding physical adsorption and ultimately growth mechanisms in the design of oxide nanoarrays. The versatility of peptide chemistry in controlling the formation of cadmium sulfide nanoparticles and zinc oxide/cadmium sulfide heterostructures was also demonstrated.

  5. Atomic Resolution Insights into the Structural Aggregations and Optical Properties of Neat Imidazolium-Based Ionic Liquids.

    PubMed

    Du, Likai; Geng, Cuihuan; Zhang, Dongju; Lan, Zhenggang; Liu, Chengbu

    2016-07-14

    A fundamental understanding of the structural heterogeneity and optical properties of ionic liquids is crucial for their potential applications in catalysis, optical measurement, and solar cells. Herein, a synergistic approach combining molecular dynamics simulations, excited-state calculations, and statistical analysis was used to explore the explicit correlation between the structural and optical properties of one imidazolium amino acid-based ionic liquid, 1-butyl-3-methylimidazolium glycine. The estimated absorption spectrum successfully rationalizes the unusual and non-negligible absorption band beyond 300 nm for the neat imidazolium-based ionic liquid. The absorption behavior of imidazolium-based ionic liquids is shown to be sensitive to the details of their locally heterogeneous environments. We quantitatively highlight the imidazolium moiety and its various molecular aggregations, rather than the monomeric imidazolium moiety, that are responsible for the absorption characteristics. These results would improve our understanding of the preliminary interplay between structural heterogeneity and optical properties for neat imidazolium-based ionic liquids.

  6. A prospective clinical study of Mineral Trioxide Aggregate and IRM when used as root-end filling materials in endodontic surgery.

    PubMed

    Chong, B S; Pitt Ford, T R; Hudson, M B

    2003-08-01

    To assess the success rate of the root-end filling material, Mineral Trioxide Aggregate (MTA). Referred adult patients were recruited using strict entry criteria and randomly allocated to receive MTA or IRM. A standardized surgical technique was employed: the root end was resected perpendicularly and a root-end cavity was prepared ultrasonically and filled. A radiograph taken immediately after surgery was compared with those taken at 12 and 24 months. Customised film holders and the paralleling technique were used; radiographs were assessed by two trained observers using agreed criteria. The results from 122 patients (58 in IRM group, 64 in MTA group) after 12 months and 108 patients (47 in IRM group, 61 in MTA group) for the 24-month review period were analysed using the chi2 test. The highest number of teeth with complete healing at both times was observed when MTA was used. When the numbers of teeth with complete and incomplete (scar) healing, and those with uncertain and unsatisfactory healing were combined, the success rate for MTA was higher (84% after 12 months, 92% after 24 months) compared with IRM (76% after 12 months, 87% after 24 months). However, statistical analysis showed no significant difference in success between materials (P > 0.05) at both 12 and 24 months. In this study, the use of MTA as a root-end filling material resulted in a high success rate that was not significantly better than that obtained using IRM.

  7. From alkaline earth ion aggregates via transition metal coordination polymer networks towards heterometallic single source precursors for oxidic materials.

    PubMed

    Gschwind, Fabienne; Crochet, Aurélien; Maudez, William; Fromm, Katharina M

    2010-01-01

    Heterometallic oxides are used as materials in many applications, e.g. from ferroelectrics to superconductors. Making these compounds usually requires high temperatures and long reaction times. Molecular precursors may contribute to render their processing shorter and accessible at lower temperatures, thus cheaper in energy and time. In this review article, different approaches toward oxide materials will be shown, starting with homometallic clusters and coordination polymers and highlighting recent results with heterometallic single source precursors. On the way to the latter, we came across many exciting results which themselves allowed applications in different fields. This work will give an overview on how these fields were brought together for the current mixed metallic compounds as precursors for heterometallic oxides.

  8. Variable importance analysis based on rank aggregation with applications in metabolomics for biomarker discovery.

    PubMed

    Yun, Yong-Huan; Deng, Bai-Chuan; Cao, Dong-Sheng; Wang, Wei-Ting; Liang, Yi-Zeng

    2016-03-10

    Biomarker discovery is one important goal in metabolomics, which is typically modeled as selecting the most discriminating metabolites for classification and often referred to as variable importance analysis or variable selection. Until now, a number of variable importance analysis methods to discover biomarkers in the metabolomics studies have been proposed. However, different methods are mostly likely to generate different variable ranking results due to their different principles. Each method generates a variable ranking list just as an expert presents an opinion. The problem of inconsistency between different variable ranking methods is often ignored. To address this problem, a simple and ideal solution is that every ranking should be taken into account. In this study, a strategy, called rank aggregation, was employed. It is an indispensable tool for merging individual ranking lists into a single "super"-list reflective of the overall preference or importance within the population. This "super"-list is regarded as the final ranking for biomarker discovery. Finally, it was used for biomarkers discovery and selecting the best variable subset with the highest predictive classification accuracy. Nine methods were used, including three univariate filtering and six multivariate methods. When applied to two metabolic datasets (Childhood overweight dataset and Tubulointerstitial lesions dataset), the results show that the performance of rank aggregation has improved greatly with higher prediction accuracy compared with using all variables. Moreover, it is also better than penalized method, least absolute shrinkage and selectionator operator (LASSO), with higher prediction accuracy or less number of selected variables which are more interpretable. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mineral of the month: aggregates

    USGS Publications Warehouse

    Tepordei, Valentin V.

    2005-01-01

    Natural aggregates, consisting of crushed stone, and sand and gravel, are a major contributor to economic health, and have an amazing variety of uses. Aggregates are among the most abundant mineral resources and are major basic raw materials used by construction, agriculture and other industries that employ complex chemical and metallurgical processes.

  10. Comparison of the Osteogenic Potential of Mineral Trioxide Aggregate and Endosequence Root Repair Material in a 3-dimensional Culture System.

    PubMed

    Rifaey, Hisham S; Villa, Max; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran; Chen, I-Ping

    2016-05-01

    The ability to promote osteoblast differentiation is a desirable property of root-end filling materials. Several in vitro studies compare the cytotoxicity and physical properties between mineral trioxide aggregate (MTA) and Endosequence root repair material (ERRM), but not their osteogenic potential. Three-dimensional cultures allow cells to better maintain their physiological morphology and better resemble in vivo cellular response than 2-dimensional cultures. Here we examined the osteogenic potential of MTA and ERRM by using a commercially available 3-dimensional Alvetex scaffold. Mandibular osteoblasts were derived from 3-week-old male transgenic reporter mice where mature osteoblasts express green fluorescent protein (GFP) driven by a 2.3-kilobase type I collagen promoter (Col(I)-2.3). Mandibular osteoblasts were grown on Alvetex in direct contact with MTA, ERRM, or no material (negative control) for 14 days. Osteoblast differentiation was evaluated by expression levels of osteogenic genes by using quantitative polymerase chain reaction and by the spatial dynamics of Col(I)-2.3 GFP-positive mature osteoblasts within the Alvetex scaffolds by using 2-photon microscopy. ERRM significantly increased alkaline phosphatase (Alp) and bone sialoprotein (Bsp) expression compared with MTA and negative control groups. Both MTA and ERRM increased osterix (Osx) mRNA significantly compared with the negative control group. The percentage of Col(I)-2.3 GFP-positive cells over total cells within Alvetex was the highest in the ERRM group, followed by MTA and by negative controls. ERRM promotes osteoblast differentiation better than MTA and controls with no material in a 3-dimensional culture system. Alvetex scaffolds can be used to test endodontic materials. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates

    NASA Astrophysics Data System (ADS)

    Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D.; Ramon, H.

    2010-06-01

    This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs-10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.

  12. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates.

    PubMed

    Van Liedekerke, P; Ghysels, P; Tijskens, E; Samaey, G; Smeedts, B; Roose, D; Ramon, H

    2010-05-26

    This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 micros-10 micros) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.

  13. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  14. Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation

    NASA Astrophysics Data System (ADS)

    Palachanis, Dimitrios; Szabó, András; Merks, Roeland M. H.

    2015-12-01

    Computational modeling is helpful for elucidating the cellular mechanisms driving biological morphogenesis. Previous simulation studies of blood vessel growth based on the cellular Potts model proposed that elongated, adhesive or mutually attractive endothelial cells suffice for the formation of blood vessel sprouts and vascular networks. Because each mathematical representation of a model introduces potential artifacts, it is important that model results are reproduced using alternative modeling paradigms. Here, we present a lattice-free, particle-based simulation of the cell elongation model of vasculogenesis. The new, particle-based simulations confirm the results obtained from the previous cellular Potts simulations. Furthermore, our current findings suggest that the emergence of order is possible with the application of a high enough attractive force or, alternatively, a longer attraction radius. The methodology will be applicable to a range of problems in morphogenesis and noisy particle aggregation in which cell shape is a key determining factor.

  15. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  16. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study

    PubMed Central

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-01-01

    Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

  17. Highly explosive nanosilicon-based composite materials

    NASA Astrophysics Data System (ADS)

    Clément, D.; Diener, J.; Gross, E.; Künzner, N.; Timoshenko, V. Yu.; Kovalev, D.

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter.

  18. Fullerene-based materials research and development

    NASA Astrophysics Data System (ADS)

    Cahill, P. A.; Henderson, C. C.; Rohlfing, C. M.; Loy, D. A.; Assink, R. A.; Gillen, K. T.; Jacobs, S. J.; Dugger, M. T.

    1995-05-01

    The chemistry and physical properties of fullerenes, the third, molecular allotrope of carbon, have been studied using both experimental and computational techniques. Early computational work investigated the stability of fullerene isomers and oxides, which was followed by extensive work on hydrogenated fullerenes. Our work led to the first synthesis of a polymer containing C60 and the synthesis of the simplest hydrocarbon derivatives of C60 and C70. The excellent agreement between theory and experiment ((plus minus) 0.1 kcal/mol in the relative stability of isomers) has provided insight into the chemical nature of fullerenes and has yielded a sound basis for prediction of the structure of derivatized fullerenes. Such derivatives are the key to the preparation of fullerene-based materials.

  19. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  20. Comparative environmental assessment of natural and recycled aggregate concrete.

    PubMed

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Surface Functionalization of Graphene-based Materials

    NASA Astrophysics Data System (ADS)

    Mathkar, Akshay

    Graphene-based materials have generated tremendous interest in the past decade. Manipulating their characteristics using wet-chemistry methods holds distinctive value, as it provides a means towards scaling up, while not being limited by yield. The majority of this thesis focuses on the surface functionalization of graphene oxide (GO), which has drawn tremendous attention as a tunable precursor due to its readily chemically manipulable surface and richly functionalized basal plane. Firstly, a room-temperature based method is presented to reduce GO stepwise, with each organic moiety being removed sequentially. Characterization confirms the carbonyl group to be reduced first, while the tertiary alcohol is reduced last, as the optical gap decrease from 3.5 eV down to 1 eV. This provides greater control over GO, which is an inhomogeneous system, and is the first study to elucidate the order of removal of each functional group. In addition to organically manipulating GO, this thesis also reports a chemical methodology to inorganically functionalize GO and tune its wetting characteristics. A chemical method to covalently attach fluorine atoms in the form of tertiary alkyl fluorides is reported, and confirmed by MAS 13C NMR, as two forms of fluorinated graphene oxide (FGO) with varying C/F and C/O ratios are synthesized. Introducing C-F bonds decreases the overall surface free energy, which drastically reduces GO's wetting behavior, especially in its highly fluorinated form. Ease of solution processing leads to development of sprayable inks that are deposited on a range of porous and nonporous surfaces to impart amphiphobicity. This is the first report that tunes the wetting characteristics of GO. Lastly as a part of a collaboration with ConocoPhillips, another class of carbon nanomaterials - carbon nanotubes (CNTs), have been inorganically functionalized to repel 30 wt% MEA, a critical solvent in CO 2 recovery. In addition to improving the solution processability of CNTs

  2. Performance of algebraic multi-grid solvers based on unsmoothed and smoothed aggregation schemes

    NASA Astrophysics Data System (ADS)

    Webster, R.

    2001-08-01

    A comparison is made of the performance of two algebraic multi-grid (AMG0 and AMG1) solvers for the solution of discrete, coupled, elliptic field problems. In AMG0, the basis functions for each coarse grid/level approximation (CGA) are obtained directly by unsmoothed aggregation, an appropriate scaling being applied to each CGA to improve consistency. In AMG1 they are assembled using a smoothed aggregation with a constrained energy optimization method providing the smoothing. Although more costly, smoothed basis functions provide a better (more consistent) CGA. Thus, AMG1 might be viewed as a benchmark for the assessment of the simpler AMG0. Selected test problems for D'Arcy flow in pipe networks, Fick diffusion, plane strain elasticity and Navier-Stokes flow (in a Stokes approximation) are used in making the comparison. They are discretized on the basis of both structured and unstructured finite element meshes. The range of discrete equation sets covers both symmetric positive definite systems and systems that may be non-symmetric and/or indefinite. Both global and local mesh refinements to at least one order of resolving power are examined. Some of these include anisotropic refinements involving elements of large aspect ratio; in some hydrodynamics cases, the anisotropy is extreme, with aspect ratios exceeding two orders. As expected, AMG1 delivers typical multi-grid convergence rates, which for all practical purposes are independent of mesh bandwidth. AMG0 rates are slower. They may also be more discernibly mesh-dependent. However, for the range of mesh bandwidths examined, the overall cost effectiveness of the two solvers is remarkably similar when a full convergence to machine accuracy is demanded. Thus, the shorter solution times for AMG1 do not necessarily compensate for the extra time required for its costly grid generation. This depends on the severity of the problem and the demanded level of convergence. For problems requiring few iterations, where grid

  3. Sealing ability of white and gray mineral trioxide aggregate mixed with distilled water and 0.12% chlorhexidine gluconate when used as root-end filling materials.

    PubMed

    Shahi, Shahriar; Rahimi, Saeed; Yavari, Hamid Reza; Shakouie, Sahar; Nezafati, Saeed; Abdolrahimi, Majid

    2007-12-01

    This in vitro study used dye penetration to compare the sealing ability of white and gray mineral trioxide aggregate mixed with distilled water and 0.12% chlorhexidine gluconate when used as root-end filling materials. Ninety-six single-rooted human teeth were cleaned, shaped, and obturated with gutta-percha and AH26 root canal sealer. The apical 3 mm of each root was resected, and 3-mm deep root-end cavity preparations were made. The teeth were randomly divided into 4 experimental groups, each containing 20 teeth, and 2 negative and positive control groups, each containing 8 teeth. Root-end cavities in the experimental groups were filled with the experimental materials. After decoronation of the teeth and application of nail polish, the teeth were exposed to India ink for 72 hours and longitudinally sectioned, and the extent of dye penetration was measured with a stereomicroscope. Statistical analysis showed that there were no significant differences among the 4 experimental groups.

  4. Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kong, Sumei; Liao, Ming; Gu, Yu; Li, Nan; Wu, Pinping; Zhang, Tingting; He, Hua

    2016-03-01

    A novel colorimetric nanomaterial-assisted optical sensor for pazufloxacin mesilate was proposed for the first time. Pazufloxacin mesilate could induce the aggregation of glucose-reduced gold nanoparticles (AuNPs) through hydrogen-bonding interaction and electrostatic attraction, leading to the changes in color and absorption spectra of AuNPs. The effect of different factors such as pH, the amount of AuNPs, reaction time and reaction temperature was inspected. Under the optimum condition, UV-vis spectra showed that the absorption ratio (A670/A532) was linear with the concentration of pazufloxacin mesilate in the range from 9 × 10- 8 mol L- 1 to 7 × 10- 7 mol L- 1 with a linear coefficient of 0.9951. This method can be applied to detecting pazufloxacin mesilate with an ultralow detection limit of 7.92 × 10- 9 mol L- 1 without any complicated instruments. Through inspecting other analytes and ions, the anti-interference performance of AuNP detection system for pazufloxacin mesilate was excellent. For its high efficiency, rapid response rate as well as wide linear range, it had been successfully used to the analysis of pazufloxacin mesilate in human urine quantificationally.

  5. Facile colorimetric method for simple and rapid detection of endotoxin based on counterion-mediated gold nanorods aggregation.

    PubMed

    Wang, Yashan; Zhang, Daohong; Liu, Wei; Zhang, Xiao; Yu, Shaoxuan; Liu, Tao; Zhang, Wentao; Zhu, Wenxin; Wang, Jianlong

    2014-05-15

    Existence of endotoxin in food and injection products indicates bacterial contaminations and therefore poses threat to human health. Herein, a simple and rapid colorimetric method for the effective detection of endotoxin in food and injections based on counterion-mediated gold nanorods aggregation is first proposed. By taking advantage of the color change of unmodified gold nanorods resulted from endotoxin mediated gold nanorods aggregation, endotoxin could be detected in the concentration range of 0.01-0.6 μM. Further, we studied the performance of gold nanorods with different aspect ratios (2.7 and 3.3) in determination of endotoxin and found that gold nanorods with higher aspect ratio (AR) showed superiority in the sensing sensitivity of endotoxin. A good specificity for endotoxin, a detection limit of 0.0084 μM and recoveries ranging from 84% to 109% in spiked food and injection samples are obtained with the colorimetric method. Results demonstrate that the present method provides a novel and effective approach for on-site screening of endotoxin in common products, which is beneficial for monitoring and reducing the risk of bacterial contaminations in food and injections production.

  6. Water-based preparation of highly oleophobic thin films through aggregation of nanoparticles using layer-by-layer treatment

    NASA Astrophysics Data System (ADS)

    Nishizawa, Shingo; Shiratori, Seimei

    2012-12-01

    The layer-by-layer (LBL) adsorption technique has potential for controlling the surface wettability. In this study, we controlled surface wettability between "superhydrophobic and oleophobic" and "hydrophobic and oleophilic" by LBL process on TiO2 nanoparticle with hydrophobic polymer and hydrophilic polymer. From the cast coating with LBL process on TiO2 nanoparticle, the surface showed "superhydophobic and oleophobic" when the top surface was hydrophobic polymer, on the other hand, the surface showed "hydrophobic and oleophilic" when the top surface was hydrophilic polymer. The LBL process also affected to the structure of TiO2 nanoparticle/polymer composite, and TiO2 nanoparticle were aggregated with polymers in LBL process. In the condition of the aggregated diameter of TiO2 nanoparticle/polymer composite around 10 μm in solution, the oleohobicity of spray coated film was enhanced with its hierarchical structure (static contact angles of rapeseed oil of 150° and hexadecane of 145°) "Superhydrophobic and high oleophobic" surfaces generated from all water-based dispersions are expected for application in technologies that need to avoid organic solvents.

  7. Novel fluid shear-based dissociation device for improved single cell dissociation of spheroids and cell aggregates.

    PubMed

    Triantafillu, Ursula L; Nix, Jaron N; Kim, Yonghyun

    2017-07-20

    Biological industries commonly rely on bioreactor systems for the large-scale production of cells. Cell aggregation, clumping, and spheroid morphology of certain suspension cells make their large-scale culture challenging. Growing stem cells as spheroids is indispensable to retain their stemness, but large spheroids (>500 µm diameter) suffer from poor oxygen and nutrient diffusion, ultimately resulting in premature cell death in the centers of the spheroids. Despite this, most large-scale bioprocesses do not have an efficient method for dissociating cells into single cells, but rely on costly enzymatic dissociation techniques. Therefore, we tested a proof-of-concept fluid shear-based mechanical dissociator that was designed to dissociate stem cell spheroids and aggregates. Our prototype was able to dissociate cells while retaining high viability and low levels of apoptosis. The dissociator also did not impact long-term cell growth or spheroid formation. Thus, the dissociator introduced here has the potential to replace traditional dissociation methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.

  8. Aggregation behavior and in vitro biocompatibility study of octopus-shaped macromolecules based on tert-butylcalix[4]arenes.

    PubMed

    Momekova, Denitsa; Budurova, Desislava; Drakalska, Elena; Shenkov, Stoycho; Momekov, Georgi; Trzebicka, Barbara; Lambov, Nikolay; Tashev, Emil; Rangelov, Stanislav

    2012-10-15

    A series of products based on tert-butylcalix[4]arene have been synthesized by anionic polymerization of ethylene oxide. The resulting products are amphiphilic octopus-shaped macromolecules, consisting of a hydrophobic calix[4]arene core and four arms of hydrophilic poly(ethylene oxide) chains. In aqueous solutions the polyoxyethylated tert-butylcalix[4]arenes were found to self-associate above certain CMC determined by dye solubilization technique. The light scattering study reveals that the polyoxyethylated tert-butylcalix[4]arenes form aggregates of narrow size distribution and hydrodynamic diameters ranging from about 155 to 245 nm and aggregation numbers from tens to hundreds macromolecules per particle depending on the degree of polymerization of the PEO chains. An in vitro biocompatibility study showed that the tested compounds are practically devoid of intrinsic cytotoxic and hemolytic effects and moreover they failed to modulate the mitogen-induced interleukin-2 release from the human T-lymphocyte cell line Jurkat E6-1. Taken together the excellent in vitro biocompatibility profile and the favorable physicochemical characteristics of the tested polyoxyethylated calix[4]arenes give us reason to consider them as promising for further evaluation as drug delivery platforms. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Edible Electrochemistry: Food Materials Based Electrochemical Sensors.

    PubMed

    Kim, Jayoung; Jeerapan, Itthipon; Ciui, Bianca; Hartel, Martin C; Martin, Aida; Wang, Joseph

    2017-08-07

    This study demonstrates the first example of completely food-based edible electrochemical sensors. The new edible composite electrodes consist of food materials and supplements serving as the edible conductor, corn, and olive oils as edible binders, vegetables as biocatalysts, and food-based packing sleeves. These edible composite electrodes are systematically characterized for their attractive electrochemical properties, such as potential window, capacitance, redox activity using various electrochemical techniques. The sensing performance of the edible carbon composite electrodes compares favorably with that of "traditional" carbon paste electrodes. Well defined voltammetric detection of catechol, uric acid, ascorbic acid, dopamine, and acetaminophen is demonstrated, including sensitive measurements in simulated saliva, gastric fluid, and intestinal fluid. Furthermore, successful biosensing applications are realized by incorporating a mushroom and horseradish vegetable tissues with edible carbon pastes for imparting biocatalytic activity toward the biosensing of phenolic and peroxide compounds. The attractive sensing performance of the new edible sensors indicates considerable promise for physiological monitoring applications and for developing edible and ingestible devices for diverse biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study.

    PubMed

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-11-01

    The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10(-6) Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation.

  11. Efficient waveguide coupler based on metal materials

    NASA Astrophysics Data System (ADS)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  12. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  13. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  14. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  15. FDI report on adverse reactions to resin-based materials.

    PubMed

    Fan, P L; Meyer, D M

    2007-02-01

    Resin-based restorative materials are considered safe for the vast majority of dental patients. Although constituent chemicals such as monomers, accelerators and initiators can potentially leach out of cured resin-based materials after placement, adverse reactions to these chemicals are rare and reaction symptoms commonly subside after removal of the materials. Dentists should be aware of the rare possibility that patients could have adverse reactions to constituents of resin-based materials and be vigilant in observing any adverse reactions after restoration placement. Dentists should also be cognisant of patient complaints about adverse reactions that may result from components of resin-based materials. To minimise monomer leaching and any potential risk of dermatological reactions, resin-based materials should be adequately cured. Dental health care workers should avoid direct skin contact with uncured resin-based materials. Latex and vinyl gloves do not provide adequate barrier protection to the monomers in resin-based materials.

  16. The familial co-aggregation of ASD and ADHD: a register-based cohort study.

    PubMed

    Ghirardi, L; Brikell, I; Kuja-Halkola, R; Freitag, C M; Franke, B; Asherson, P; Lichtenstein, P; Larsson, H

    2017-02-28

    Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur. The presence of a genetic link between ASD and ADHD symptoms is supported by twin studies, but the genetic overlap between clinically ascertained ASD and ADHD remains largely unclear. We therefore investigated how ASD and ADHD co-aggregate in individuals and in families to test for the presence of a shared genetic liability and examined potential differences between low- and high-functioning ASD in the link with ADHD. We studied 1 899 654 individuals born in Sweden between 1987 and 2006. Logistic regression was used to estimate the association between clinically ascertained ASD and ADHD in individuals and in families. Stratified estimates were obtained for ASD with (low-functioning) and without (high-functioning) intellectual disability. Individuals with ASD were at higher risk of having ADHD compared with individuals who did not have ASD (odds ratio (OR)=22.33, 95% confidence interval (CI): 21.77-22.92). The association was stronger for high-functioning than for low-functioning ASD. Relatives of individuals with ASD were at higher risk of ADHD compared with relatives of individuals without ASD. The association was stronger in monozygotic twins (OR=17.77, 95% CI: 9.80-32.22) than in dizygotic twins (OR=4.33, 95% CI: 3.21-5.85) and full siblings (OR=4.59, 95% CI: 4.39-4.80). Individuals with ASD and their relatives are at increased risk of ADHD. The pattern of association across different types of relatives supports the existence of genetic overlap between clinically ascertained ASD and ADHD, suggesting that genomic studies might have underestimated this overlap.Molecular Psychiatry advance online publication, 28 February 2017; doi:10.1038/mp.2017.17.

  17. Channel Aggregation Schemes for Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Lee, Jongheon; So, Jaewoo

    This paper proposed three channel aggregation schemes for cognitive radio networks, a constant channel aggregation scheme, a probability distribution-based variable channel aggregation scheme, and a residual channel-based variable channel aggregation scheme. A cognitive radio network can have a wide bandwidth if unused channels in the primary networks are aggregated. Channel aggregation schemes involve either constant channel aggregation or variable channel aggregation. In this paper, a Markov chain is used to develop an analytical model of channel aggregation schemes; and the performance of the model is evaluated in terms of the average sojourn time, the average throughput, the forced termination probability, and the blocking probability. Simulation results show that channel aggregation schemes can reduce the average sojourn time of cognitive users by increasing the channel occupation rate of unused channels in a primary network.

  18. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates.

    PubMed

    Faulkner-Jones, Alan; Greenhough, Sebastian; King, Jason A; Gardner, John; Courtney, Aidan; Shu, Wenmiao

    2013-03-01

    In recent years, the use of a simple inkjet technology for cell printing has triggered tremendous interest and established the field of biofabrication. A key challenge has been the development of printing processes which are both controllable and less harmful, in order to preserve cell and tissue viability and functions. Here, we report on the development of a valve-based cell printer that has been validated to print highly viable cells in programmable patterns from two different bio-inks with independent control of the volume of each droplet (with a lower limit of 2 nL or fewer than five cells per droplet). Human ESCs were used to make spheroids by overprinting two opposing gradients of bio-ink; one of hESCs in medium and the other of medium alone. The resulting array of uniform sized droplets with a gradient of cell concentrations was inverted to allow cells to aggregate and form spheroids via gravity. The resulting aggregates have controllable and repeatable sizes, and consequently they can be made to order for specific applications. Spheroids with between 5 and 140 dissociated cells resulted in spheroids of 0.25-0.6 mm diameter. This work demonstrates that the valve-based printing process is gentle enough to maintain stem cell viability, accurate enough to produce spheroids of uniform size, and that printed cells maintain their pluripotency. This study includes the first analysis of the response of human embryonic stem cells to the printing process using this valve-based printing setup.

  19. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  20. Injection-molded nanocomposites and materials based on wheat gluten.

    PubMed

    Cho, S-W; Gällstedt, M; Johansson, E; Hedenqvist, M S

    2011-01-01

    This is, to our knowledge, the first study of the injection molding of materials where wheat gluten (WG) is the main component. In addition to a plasticizer (glycerol), 5 wt.% natural montmorillonite clay was added. X-ray indicated intercalated clay and transmission electron microscopy indicated locally good clay platelet dispersion. Prior to feeding into the injection molder, the material was first compression molded into plates and pelletized. The filling of the circular mold via the central gate was characterized by a divergent flow yielding, in general, a stronger and stiffer material in the circumferential direction. It was observed that 20-30 wt.% glycerol yielded the best combination of processability and mechanical properties. The clay yielded improved processability, plate homogeneity and tensile stiffness. IR spectroscopy and protein solubility indicated that the injection molding process yielded a highly aggregated structure. The overall conclusion was that injection molding is a very promising method for producing WG objects.

  1. Important features of Sustainable Aggregate Resource Management

    USGS Publications Warehouse

    Solar, Slavko V.; Shields, Deborah J.; Langer, William H.

    2004-01-01

    Every society, whether developed, developing or in a phase of renewal following governmental change, requires stable, adequate and secure supplies of natural resources. In the latter case, there could be significant need for construction materials for rebuilding infrastructure, industrial capacity, and housing. It is essential that these large-volume materials be provided in a rational manner that maximizes their societal contribution and minimizes environmental impacts. We describe an approach to resource management based on the principles of sustainable developed. Sustainable Aggregate Resource Management offers a way of addressing the conflicting needs and interests of environmental, economic, and social systems. Sustainability is an ethics based concept that utilizes science and democratic processes to reach acceptable agreements and tradeoffs among interests, while acknowledging the fundamental importance of the environment and social goods. We discuss the features of sustainable aggregate resource management.

  2. On the "tertiary structure" of poly-carbenes; self-assembly of sp3-carbon-based polymers into liquid-crystalline aggregates.

    PubMed

    Franssen, Nicole M G; Ensing, Bernd; Hegde, Maruti; Dingemans, Theo J; Norder, Ben; Picken, Stephen J; Alberda van Ekenstein, Gert O R; van Eck, Ernst R H; Elemans, Johannes A A W; Vis, Mark; Reek, Joost N H; de Bruin, Bas

    2013-08-26

    The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities along the carbon backbone of st-PEA could perhaps be expected to lead directly to rigid-rod behavior, molecular modeling reveals that individual st-PEA chains are actually highly flexible and should not reveal rigid-rod induced LC behavior. Nonetheless, st-PEA clearly reveals LC behavior, both in solution and in the melt over a broad elevated temperature range. A combined set of experimental measurements, supported by MM/MD studies, suggests that the observed LC behavior is due to self-aggregation of st-PEA into higher-order aggregates. According to MM/MD modeling st-PEA single helices adopt a flexible helical structure with a preferred trans-gauche syn-syn-anti-anti orientation. Unexpectedly, similar modeling experiments suggest that three of these helices can self-assemble into triple-helical aggregates. Higher-order assemblies were not observed in the MM/MD simulations, suggesting that the triple helix is the most stable aggregate configuration. DLS data confirmed the aggregation of st-PEA into higher-order structures, and suggest the formation of rod-like particles. The dimensions derived from these light-scattering experiments correspond with st-PEA triple-helix formation. Langmuir-Blodgett surface pressure-area isotherms also point to the formation of rod-like st-PEA aggregates with similar dimensions as st-PEA triple helixes. Upon increasing the st-PEA concentration, the viscosity of the polymer solution increases strongly, and at concentrations above 20 wt % st-PEA forms an organogel. STM on this gel reveals the formation of helical aggregates on the graphite surface-solution interface with shapes and dimensions matching st-PEA triple helices, in good agreement

  3. Vision Based Instrumentation For Microelectronic Materials Processing

    NASA Astrophysics Data System (ADS)

    Lake, Donald W.

    1990-02-01

    Proper instrumentation, documentation, and analysis are crucial to the continued advance of micro-electronic materials science. Many important phenomenon are visible. Many of those are progressive events that need observation throughout their transitory period. Microelectronics scientists and engineers have long required optical systems tools which properly handle visible phenomena. An optical based system, called a high-resolution Still/Video system, to fulfill crucial microelec-tronic needs is available. Microelectronic dimensions require the highest possible resolution to resolve the small details. The system provides 1134 by 486 pixel video frames. The transient nature of many events requires video and the associated capability of video recording. The system stores over 14,000 high-resolution video frames on a single standard commercial VHS tape. The widespread use of microscopy requires the ability to operate with a variety of optical microscopes. The system is directly compatible with most microscopes. In addition, analysis requires the ability to produce film and computer processed results of all crucial images. The system has both a companion film printer and a direct computer interface.

  4. Left Handed Materials Based on Magnetic Nanocomposites

    DTIC Science & Technology

    2006-10-18

    We have observed signature of negative index in NiFe-Si02 magnetic granular materials and in NiFe/Si02 multilayers . However, the signal is weak due...of refraction (NIMs). These structures include: 1. Double negative materials (DNMs) for LHMs: E/M multilayers consisting of alternating negative e and...negative u layers. 2. Single negative materials (SNMs) for NIMs: Ferrite/(Semiconductor or Oxides) multilayer with negative u. We have developed a

  5. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    SciTech Connect

    Wykes, M. Parambil, R.; Gierschner, J.; Beljonne, D.

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  6. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations.

    PubMed

    Wykes, M; Parambil, R; Beljonne, D; Gierschner, J

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  7. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    NASA Astrophysics Data System (ADS)

    Wykes, M.; Parambil, R.; Beljonne, D.; Gierschner, J.

    2015-09-01

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  8. Biomimetic engineering of cellulose-based materials.

    PubMed

    Teeri, Tuula T; Brumer, Harry; Daniel, Geoff; Gatenholm, Paul

    2007-07-01

    Biomimetics is a field of science that investigates biological structures and processes for their use as models for the development of artificial systems. Biomimetic approaches have considerable potential in the development of new high-performance materials with low environmental impact. The cell walls of different plant species represent complex and highly sophisticated composite materials that can provide inspiration on how to design and fabricate lightweight materials with unique properties. Such materials can provide environmentally compatible solutions in advanced packaging, electronic devices, vehicles and sports equipment. This review gives an overview of the structures and interactions in natural plant cell walls and describes the first attempts towards mimicking them to develop novel biomaterials.

  9. Mineral resource of the month: aggregates

    USGS Publications Warehouse

    Willett, Jason C.

    2012-01-01

    Crushed stone and construction sand and gravel, the two major types of natural aggregates, are among the most abundant and accessible natural resources on the planet. The earliest civilizations used aggregates for various purposes, mainly construction. Today aggregates provide the basic raw materials for the foundation of modern society.

  10. Locally available aggregate and sediment production

    Treesearch

    Randy B. Foltz; Mark Truebe

    2003-01-01

    Selection of suitable locally available materials to build strong and durable roads with aggregate surfaces is desired to minimize road construction and maintenance costs and to minimize the detrimental effects of sedimentation. Eighteen aggregates were selected from local sources in Idaho, Oregon, South Dakota, and Washington State. Aggregate was placed in shallow...

  11. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  12. Aggregation-Induced Emission of Organogels Based on Self-Assembled 5-(4-Nonylphenyl)-7-azaindoles.

    PubMed

    López, Daniel; García-Frutos, Eva M

    2015-08-11

    A new self-assembled organogel based on 5-(4-nonylphenyl)-7-azaindole (1), possessing an aggregation-induced emission phenomenon (AIE), is described. The incorporation of phenyl alkyl chains improves processability of the platform to form a new class of gelator. The fluorescence spectrum of 1 suffers changes in the gelation process, and an AIE phenomenon is observed during the phase transition from sol to gel state. The fluorescence is decreased slowly by heating the gel, and no emission is detected in concentrated solutions of 1. The AIE effect is due to the formation of the supramolecular organogel, where a self-association of the 7-azaindole moieties by dual hydrogen-bonded dimers is present. Regarding the solid-state emission properties, the xerogel 1 exhibits blue emission as well as in its organogel form. Therefore, it could be considered as a promising blue emitter in the solid state.

  13. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation.

    PubMed

    Wei, Xiangcong; Wang, Yuxian; Zhao, Yingxin; Chen, Zhengbo

    2017-11-15

    A facile colorimetric sensor array for detection of proteins was demonstrated using DNA as nonspecific receptors. We found that different proteins could trigger the DNA-protected gold nanoparticles (AuNPs) to show different aggregation behaviors in the presence of salt with high concentrations along with various color changes. As a proof-of-concept application, a multi-protein discrimination array was fabricated with two ssDNA strands (15A and 30A bases) as a receptor array. The combinatorial colorimetric response of this sensor array can be analyzed by linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). 12 proteins have been well distinguished with the naked eye at the 50nM level. The proteins in human serum have also been discriminated. Furthermore, the accuracies of discrimination of the similar mixtures of proteins and unknown samples were all 100%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Recycled wool-based nonwoven material as an oil sorbent.

    PubMed

    Radetić, Maja M; Jocić, Dragan M; Iovantić, Petar M; Petrović, Zoran L J; Thomas, Helga F

    2003-03-01

    The aim of this study was to highlight the possibility of using recycled wool-based nonwoven material as a sorbent in an oil spill cleanup. This material sorbed higher amounts of base oil SN 150 than diesel or crude oil from the surface of a demineralized or artificial seawater bath. Superficial modification of material with the biopolymer chitosan and low-temperature air plasma led to a slight decrease of sorption capacity. Loose fibers of the same origin as nonwoven material have significantly higher sorption capacities than investigated nonwoven material. White light scanning interferometry analysis of the fibers suggested that roughness of the wool fiber surface has an important role in oil sorption. The laboratory experiments demonstrated that this material is reusable. Recycled wool-based nonwoven material showed good sorption properties and adequate reusability, indicating that a material based on natural fibers could be a viable alternative to commercially available synthetic materials that have poor biodegradability.

  15. Tribological properties of aluminium-based materials

    NASA Astrophysics Data System (ADS)

    Iglesias Victoria, Patricia

    In order to improve the tribological performance of the aluminium-steel contact, two research lines have been followed: (1) Use of the ordered fluids liquid crystals and ionic liquids as lubricant additives. (2) Tribological behaviour of new powder metallurgy aluminium materials processed by mechanical milling. A parafinic-naftenic base oil modified by a 1wt% of four additives has been used: Three liquid crystals with increasing polarity: 4,4' -dibutylazobenzene (LC1) < colesteryl linoleate (LC2) < n-dodecyl ammonium chloride (LC3), and the ionic liquid 1-ethyl, 3-methyl-imidazolonium tetrafluoroborate. This is the first time that a ionic liquid is studied as lubricant additive. Viscosity measurements at 25 and 100°C, maximum number of molecules by unit aluminium surface and comparative costs of the additives showed the advantage of the ionic additives over the neutral ones. Pin-on-disk tests were performed according to ASTM G99. Influence of load, speed and temperature on friction and wear was studied for each additive. While the ionic liquid gives low friction (<0.1) and wear (≤10-5 mm3m-1), the performance of the liquid crystalline additives depends on the conditions. LC3 shows a higher lubricating ability than the neutral LC1 and LC2 under high load, speed or temperature. Only the ionic liquid shows tribochemical interaction (by SEM and EDS) with the steel and aluminium surfaces, with an increment in the fluorine content inside the wear track. The second line was to study the influence of the process conditions on the dry and lubricated wear of new powder-metallurgy aluminium materials. MA Al-NH3 milled under NH3 atmosphere was compared with (MA Al-Air) processed in air and with Al-1 which has not been mechanically alloyed. Conditions for mild to severe wear transition have been established. Al-1 is always under a severe wear regime. MA Al-NH3 shows transition to severe wear at 150°C, showing a 60% reduction in wear rate with respect to MA Al-Air and a two

  16. [Preface for special issue on bio-based materials (2016)].

    PubMed

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  17. One-Pot Click Access to a Cyclodextrin Dimer-Based Novel Aggregation Induced Emission Sensor and Monomer-Based Chiral Stationary Phase

    PubMed Central

    Li, Xiaoli; Zhao, Rui; Tang, Xiaoying; Shi, Yanyan; Li, Chunyi; Wang, Yong

    2016-01-01

    A ‘two birds, one stone’ strategy was developed via a one-pot click reaction to simultaneously prepare a novel cyclodextrin (CD) dimer based aggregation induced emission (AIE) sensor (AIE-DCD) and a monomer based chiral stationary phase (CSP-MCD) for chiral high performance liquid chromatography (CHPLC). AIE-DCD was found to afford satisfactory AIE response for specific detection of Zn2+ with a detection limit of 50 nM. CSP-MCD exhibits excellent enantioseparation ability toward dansyl amino acids, where the resolution of dansyl amino leucine reaches 5.43. PMID:27886123

  18. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  19. Comparison of push-out bond strength of mineral trioxide aggregate and calcium enriched mixture cement as root end filling materials.

    PubMed

    Adl, Alireza; Sobhnamayan, Fereshte; Kazemi, Omid

    2014-09-01

    The purpose of this study was to compare the push-out bond strength of mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM) as root end filling materials. A total of 40 root dentin slices (1 ± 0.2 mm) were prepared from freshly extracted human maxillary central teeth and their lumens were enlarged to 1.3 mm. The slices were randomly divided into two groups (n = 20). MTA and CEM cement were mixed according to manufacturer's instruction and introduced into the lumens. The specimens were wrapped in pieces of wet gauze soaked in distilled water and incubated at 37°C for 3 days. The push-out bond strength was measured using a universal testing machine. The slices were then examined under a light microscope at ×10 magnification to determine the nature of bond failure. The data were analyzed using Mann-Whitney test (P < 0.001). The mean push-out bond strength for CEM cement and MTA were 1.68 ± 0.9 and 5.94 ± 3.99 respectively. The difference was statistically significant (P < 0.001). The bond failure was predominantly of adhesive type in MTA group and cohesive type in CEM group. CEM cement showed significantly lower bond strength to the dentinal wall compared to MTA.

  20. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  1. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    SciTech Connect

    Funk, J.G.; Strickland, J.W.; Davis, J.M.

    1992-10-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  2. Microcrack Identification in Cement-Based Materials Using Nonlinear Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Kim, J.-Y.; Qu, J.; Kurtis, K. E.; Wu, S. C.; Jacobs, L. J.

    2007-03-01

    This paper presents results from tests that use nonlinear acoustic waves to distinguish microcracks in cement-based materials. Portland cement mortar samples prepared with alkali-reactive aggregate were exposed to an aggressive environment to induce cracking were compared to control samples, of the same composition, but which were not exposed to aggressive conditions. Two nonlinear ultrasonic methods were used to characterize the samples, with the aim of identifying the time and extent of microcracking; these techniques were a nonlinear acoustical modulation (NAM) method and a harmonic amplitude relation (HAR) method. These nonlinear acoustic results show that both methods can distinguish damaged samples from undamaged ones, demonstrating the potential of nonlinear acoustic waves to provide a quantitative evaluation of the deterioration of cement-based materials.

  3. Granulomorphometry: a suitable tool for identifying hydrophobic and disulfide bonds in β-lactoglobulin aggregates. Application to the study of β-lactoglobulin aggregation mechanism between 70 and 95°C.

    PubMed

    Petit, J; Herbig, A-L; Moreau, A; Le Page, J-F; Six, T; Delaplace, G

    2012-08-01

    This work deals with the investigation of β-lactoglobulin (β-LG) aggregation by granulomorphometry. In the first part of this study, we showed that the binding interactions involved in aggregate structure could be identified by their appearance in granulomorphometric pictures. The reliability of this analytical approach was demonstrated by comparing the appearance of β-LG aggregates in the presence and absence of a thiol-blocking agent (N-ethylmaleimide). The translucency of the aggregates was associated with hydrophobic interactions and their opacity was associated with disulfide bonds. We state, based on the morphology of the aggregates, along with the color of protein aggregates and insoluble materials, that hydrophobic interactions had a better water-holding capacity than disulfide bonds. Additionally, our results suggest that disulfide and hydrophobic bonds compete for β-LG aggregate shaping. In the second part of this work, interesting features of granulomorphometry useful for identifying aggregate binding interactions were highlighted to clarify the effect of temperature on the aggregation mechanisms occurring in a β-LG concentrate with a moderate calcium content (6.6mmol·L(-1)). Heat treatment experiments were performed between 70 and 95°C, and granulomorphometric measurements (aggregate size, aggregate number, and gray level of the picture) were conducted at different sampling times up to 4h. Results, which were interpreted in light of calculated β-LG denaturation levels, revealed that the aggregation mechanism could be split into 2 steps. Initially, β-LG denatured quickly, leading to fast β-LG aggregation by disulfide bonds. The denaturation rate then declined, which drastically slowed the disulfide aggregation mechanism. From that point on, a second aggregation path became preponderant. It consisted of the agglomeration of small aggregates by hydrophobic interactions and resulted in the formation of large aggregates containing both interaction

  4. Smart material-based radiation sources

    NASA Astrophysics Data System (ADS)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  5. Processing and applications of carbon based nano-materials

    NASA Astrophysics Data System (ADS)

    Yu, Aiping

    Carbon-based nanomaterials, including single walled carbon nanotubes (SWNTs) and graphite nanoplatelets (GNPs, multi-layer graphene), possess exceptional electrical, thermal and mechanical properties coupled with high aspect ratio and high temperature stability. These unique properties have attracted increased attention during the past decade. These materials form the basis of the work presented here, which includes research targeting fabrication, processing and applications in new composites and devices. As-prepared SWNTs are typically contaminated with amorphous carbon as well as metal catalyst and graphitic nanoparticles. We have demonstrated an efficient approach for removing most of these impurities by the combination of nitric acid treatment and both low speed (2000 g) and high speed centrifugation (20,000 g). This approach gives rise to the highest-purified arc-discharge SWNTs which are almost free from impurities, and in addition are left in a low state of aggregation. The new purification process offers a convenient way to obtain different grade of SWNTs and allows the study of the effect purity on the thermal conductivity of SWNT epoxy composite. Purified functionalized SWNTs provide a significantly greater enhancement of the thermal conductivity, whereas AP-SWNTs allow the best electrical properties because of their ability to form efficient percolating network. We found that purified SWNTs provide ˜5 times greater enhancement of the thermal conductivity than the impure SWNT fraction demonstrating the significance of SWNTs quality for thermal management. The introduced GNPs have directed the thermal management project to a new avenue due to the significant improvement of the thermal conductivity of the composites in comparison with that of SWNTs. A novel process was demonstrated to achieve a 4-graphene layer structure referred to GNPs with a thickness of ˜2 nm. This material was embedded in an epoxy resin matrix and the measured thermal conductivity of

  6. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  7. Observing Convective Aggregation

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-06-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  8. Observing convective aggregation

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher; Wing, Allison; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan; Turner, David; Zuidema, Paquita

    2017-04-01

    Convective self-aggregation was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad a distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  9. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown

    PubMed Central

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G.; Lievens, Caroline; van der Meer, Freek

    2017-01-01

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing–thawing cycles are the cause of soil aggregate breakdown. PMID:28556803

  10. Lightweight alumina refractory aggregate. Phase 2, Pilot scale development

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1994-11-01

    Kilogram quantities of refractory aggregate were prepared from both a paste and a pelletized form of extruder feed material in both bench and pilot-scale equipment. The 99{sup +} % alumina aggregate exhibited a bulk density approaching 2.5 g/cm{sup 3} and a fired strength slightly lower than fused alumina. Based on initial evaluation by two refractory manufacturers in brick or castable applications, the new aggregate offered adequate strength with thermal conductivity reductions up to 34%, depending on the temperature and application of the new aggregate in these initial trials. The new aggregate was simply substituted for Tabular{trademark} in the refractory formulation. Thus, there is room for improvement through formulation optimization with the lightweight aggregate. The new aggregate offers a unique combination of density, strength, and thermal properties not available in current aggregate. To this point in time, technical development has led to a pelletized formulation with borderline physical form leaving the Eirich mixer. The formulation requires further development to provide more latitude for the production of pelletized material without forming paste, while still reducing the bulk density slightly to reach the 2.5 g/cm{sup 3} target. The preferred, pelletized process flowsheet was outlined and a preliminary economic feasibility study performed based on a process retrofit into Alcoa`s Arkansas tabular production facilities. Based on an assumed market demand of 20,000 mt/year and an assumed selling price of $0.65/lb (25% more than the current selling price of Tabular{trademark}, on a volume basis), economics were favorable. Decision on whether to proceed into Phase 3 (full- scale demonstration) will be based on a formal market survey in 1994 October.

  11. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    PubMed

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A micromechanical study of drying and carbonation effects in cement-based materials

    NASA Astrophysics Data System (ADS)

    Shen, W. Q.; Shao, J. F.; Kondo, D.

    2015-01-01

    This paper is devoted to a micromechanical study of mechanical properties of cement-based materials by taking into account effects of water saturation degree and carbonation process. To this end, the cement-based materials are considered as a composite material constituted with a cement matrix and aggregates (inclusions). Further, the cement matrix is seen as a porous medium with a solid phase (CSH) and pores. Using a two-step homogenization procedure, a closed-form micromechanical model is first formulated to describe the basic mechanical behavior of materials. This model is then extended to partially saturated materials in order to account for the effects of water saturation degree on the mechanical properties. Finally, considering the solid phase change and porosity variation related to the carbonation process, the micromechanical model is coupled with the chemical reaction and is able to describe the consequences of carbonation on the macroscopic mechanical properties of material. Some comparisons between numerical results and experimental data are presented.

  13. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.

    PubMed

    Karvelas, E G; Lampropoulos, N K; Sarris, I E

    2017-04-01

    This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯a=7.5B0di(3/2). The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯a=6.63G˜B0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯a∝7B0. A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017 Elsevier B

  14. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    that nMgO has similar effects. Incorporation of nMgO into a PCL composite was easily achieved and revealed similar, although not identical antimicrobial results. This work has provided a strong foundation and methodology for further evaluation of Mg based materials and their antimicrobial properties.

  15. dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation.

    PubMed

    Chen, Junjie; Long, Ren; Wang, Xiao-Long; Liu, Bin; Chou, Kuo-Chen

    2016-09-01

    Protein remote homology detection is an important task in computational proteomics. Some computational methods have been proposed, which detect remote homology proteins based on different features and algorithms. As noted in previous studies, their predictive results are complementary to each other. Therefore, it is intriguing to explore whether these methods can be combined into one package so as to further enhance the performance power and application convenience. In view of this, we introduced a protein representation called profile-based pseudo protein sequence to extract the evolutionary information from the relevant profiles. Based on the concept of pseudo proteins, a new predictor, called "dRHP-PseRA", was developed by combining four state-of-the-art predictors (PSI-BLAST, HHblits, Hmmer, and Coma) via the rank aggregation approach. Cross-validation tests on a SCOP benchmark dataset have demonstrated that the new predictor has remarkably outperformed any of the existing methods for the same purpose on ROC50 scores. Accordingly, it is anticipated that dRHP-PseRA holds very high potential to become a useful high throughput tool for detecting remote homology proteins. For the convenience of most experimental scientists, a web-server for dRHP-PseRA has been established at http://bioinformatics.hitsz.edu.cn/dRHP-PseRA/.

  16. Sewage sludge sugarcane trash based compost and synthetic aggregates as peat substitutes in containerized media for crop production.

    PubMed

    Jayasinghe, G Y; Tokashiki, Yoshihiro; Arachchi, I D Liyana; Arakaki, Mika

    2010-02-15

    Effect of partial substitution of peat in growth media by sewage sludge sugarcane trash based compost (SSC) and synthetic aggregates (SA) on the physical and chemical characteristics of the growth media and on the growth and nutrition of lettuce (Lactuca sativa L.) grown in the substituted media was investigated under this study. SSC was produced from sugarcane trash and sewage sludge. Unconventional SA were produced by low productive acidic red soil with paper waste and starch waste. The treatments assayed were: SSC (40%)+Peat (60%), SA (40%)+Peat (60%), SSC (60%)+SA (40%), SSC (40%)+SA (20%)+Peat (40%) and SSC (40%)+SA (40%)+Peat (20%). Peat only was used as the control. The physical and chemical properties of all growing media were analyzed. SSC-SA based substrates showed adequate physical and chemical properties compared to peat for their use as growing media in horticulture. In relation to the plant growth in peat control, plants grown in the SSC-SA based substrates reached better growth and nutrition. The concentration of trace elements in plant tissues was far lower than the ranges considered phytotoxic for plants. Utilization of SSC and SA can be considered as an alternative media component to substitute the widely using expensive peat in horticulture.

  17. Butadiene-based photoresponsive soft materials.

    PubMed

    Das, Suresh; Varghese, Shinto; Kumar, N S Saleesh

    2010-02-02

    The creation of stimuli-responsive materials offers considerable challenges in the area of material science. The use of light as an external stimulus has particular advantages because it can bring about rapid transformations in remote regions in a very precise manner. Naturally occurring photoresponsive systems provide the motivation for developing corresponding artificial systems using molecular self-assembly to address issues such as quantum efficiency, selectivity, and amplification. A practical strategy for developing photoresponsive materials is to utilize molecules that can undergo considerable change in shape on photoisomerization. Although the photoisomerization of polyenes between their linear all-trans isomer and bent cis isomers has been extensively investigated in solution and in organized media because of its relevance to naturally occurring photoresponsive systems, its use in developing artificial photoresponsive systems has not been well explored. This feature article provides an overview of photoresponsive soft materials such as liquid crystals and gels with special emphasis on our recent studies related to the use of the butadiene chromophore for the design of such materials. The role of molecular self-assembly in controlling the photochemical and photophysical properties of these molecules is also discussed.

  18. Aerosol synthesis and application of folded graphene-based materials

    NASA Astrophysics Data System (ADS)

    Chen, Yantao; Wang, Zhongying; Qiu, Yang

    2015-12-01

    Graphene oxide colloid has been widely used in the synthesis of various graphene-based materials. Graphene oxide sheets, with a low bending rigidity, can be folded when assembled in aqueous phase. A simple but industrial scalable way, aerosol processing, can be used to fabricate folded graphene-based materials. These folded materials can carry various cargo materials and be used in different applications such as time-controlled drug release, medical imaging enhancement, catalyst support and energy related areas. The aerosol synthesis of folded graphene-based materials can also be easily extended to fabricate hybrid nanomaterials without any complicated chemistries.

  19. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  20. Stretchable, curvilinear electronics based on inorganic materials.

    PubMed

    Kim, Dae-Hyeong; Xiao, Jianliang; Song, Jizhou; Huang, Yonggang; Rogers, John A

    2010-05-18

    All commercial forms of electronic/optoelectronic technologies use planar, rigid substrates. Device possibilities that exploit bio-inspired designs or require intimate integration with the human body demand curvilinear shapes and/or elastic responses to large strain deformations. This article reviews progress in research designed to accomplish these outcomes with established, high-performance inorganic electronic materials and modest modifications to conventional, planar processing techniques. We outline the most well developed strategies and illustrate their use in demonstrator devices that exploit unique combinations of shape, mechanical properties and electronic performance. We conclude with an outlook on the challenges and opportunities for this emerging area of materials science and engineering.

  1. Cooperative Secure Data Aggregation in Sensor Networks Using Elliptic Curve Based Cryptosystems

    NASA Astrophysics Data System (ADS)

    Lin, Hua-Yi; Chiang, Tzu-Chiang

    Remote sensing infrastructures are now in widespread use to acquire detected information. Since the deployed nodes are separated, they need to cooperatively communicate sensed data to the base station, as shown in Fig.1. Additionally, the carried information probably contains confidential data. However, the properties of wireless communications are vulnerable to an exposed environment. Hence, secure data transmissions for cooperative information integration in sensor networks are essential. In general, wireless sensor nodes have limited resources, and they cannot provide sufficient CPU, memory and bandwidth to address complex operations. The proposed scheme depends on Discrete Logarithm Problem (DLP) of Elliptic Curve Cryptography (ECC), and exploits a smaller key size to achieve comparable security levels than Rivest Shamir Adleman (RSA) and Diffie-Hellman (DH) cryptosystems. Consequently, this paper exploits Elliptic Curve Diffie-Hellman (ECDH) based security methods to achieve cooperative secure information integration.

  2. Microstructural Characterization of Calcite-Based Powder Materials Prepared by Planetary Ball Milling

    PubMed Central

    Tsai, Wen-Tien

    2013-01-01

    In this work, a planetary ball milling was used to modify the surface properties of calcite-based material from waste oyster shell under the rotational speed of 200–600 rpm, grinding time of 5–180 min and sample mass of 1–10 g. The milling significantly changed the microstructural properties of the calcite-based minerals (i.e., surface area, pore volume, true density, and porosity). The surface characterization of the resulting powder should be macroporous and/or nonporous based on the nitrogen adsorption/desorption isotherms. Under the optimal conditions at the rotational speed of 400 rpm, grinding time of 30 min and sample mass of 5 g, the resulting calcite-based powder had larger specific surface area (i.e., 10.64 m2·g−1) than the starting material (i.e., 4.05 m2·g−1). This finding was also consistent with the measurement of laser-diffraction (i.e., 9.7 vs. 15.0 μm of mean diameter). In addition, the results from the scanning electron microscope (SEM) observation indicated that surface roughness can be enhanced as particle size decreases as a result of particle-particle attrition. Thus, grinding the aquacultural bioresource by a high-energy ball milling can create the fine materials, which may be applied in the fields of inorganic minerals like aggregate and construction material. PMID:28811439

  3. Acetylene-Based Materials in Organic Photovoltaics

    PubMed Central

    Silvestri, Fabio; Marrocchi, Assunta

    2010-01-01

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices. PMID:20480031

  4. Acetylene-based materials in organic photovoltaics.

    PubMed

    Silvestri, Fabio; Marrocchi, Assunta

    2010-04-08

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C(60), and their use as the active materials in photovoltaic devices.

  5. Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations.

    PubMed

    Yu, Yi; Sun, Huiyong; Gilmore, Keith; Hou, Tingjun; Wang, Suidong; Li, Youyong

    2017-09-12

    Single-walled carbon nanotubes (SWCNTs) have attracted considerable attention owing to their applications in various fields such as biotechnology and biomedicine. Recently, aggregated SWCNTs have shown more significant effects on the treatment of methamphetamine addiction (Nat. Nanotech. 2016, 11, 613). However, the mechanisms underlying these actions are unclear. By using all-atom molecular dynamics simulations, we investigate the effects of single and aggregated SWCNTs (single-(10,10)CNT, aggregated-7-(10,10)CNTs, and single-(35,35)CNT with the same diameter as that of the aggregated one) on the activity of dopamine-related proteins [tyrosine hydroxylase (TyrOH) and dopamine transporter (DAT), which are related to the synthesis and transport of dopamine, respectively]. We find that both TyrOH and DAT can adsorb onto these SWCNTs. For TyrOH, the aggregated-7-(10,10)CNTs mainly affect the conformation of the active site of the protein, and hence, they are more effective in inhibiting the expression of TyrOH. For DAT, our results suggest that the aggregated-7-(10,10)CNTs allow DAT to maintain an outward-facing conformation and hence are favorable to the reuptake of dopamine. The binding of a dopamine reuptake inhibitor, [(3)H]-WIN35,428, to DAT is significantly disrupted by aggregated-7-(10,10)CNTs and hence improve the ability to transport dopamine. Our results provide the dynamic interactions of proteins with single/aggregated SWCNTs, which illustrate the mechanism of aggregated SWCNTs for the treatment of drug addiction.

  6. Solution behavior of mixed systems based on novel amphiphilic cyclophanes and Triton X100: aggregation, cloud point phenomenon and cloud point extraction of lanthanide ions.

    PubMed

    Mustafina, Asiya; Zakharova, Lucia; Elistratova, Julia; Kudryashova, Juliana; Soloveva, Svetlana; Garusov, Alexander; Antipin, Igor; Konovalov, Alexander

    2010-06-15

    Aggregation and cloud point (CP) behavior, as well as CP extraction of lanthanide ions have been studied for novel non-ionic cyclophanic surfactants with the varied length of polyoxyethylene and hydrophobic moieties (CnEm) based on calix[4]arene platform in their mixtures with Triton X100 (TX100). The dynamic light scattering data reveal the contribution of the large size lamellar or stack like mixed aggregates in CnEm-TX100 solutions. Aggregation and CP behavior of TX100-CnEm mixed solutions are quite different from those of conventional non-ionic surfactants. The effect of the hydrophobic substituents and polyoxyethylene chains length of CnEm on the CP extraction of La(III), Gd(III) and Lu(III) in the mixed TX100-CnEm micellar solutions is discussed in the correlation with their aggregation and cloud point behavior. The obtained data elucidate the cyclophanic structure of CnEm as the key reason of the formation of large lamellar-like aggregates with TX100, exhibiting the unusual CP behavior and CPE efficiency.

  7. A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction.

    PubMed

    Vichapong, Jitlada; Burakham, Rodjana; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2016-08-01

    A preconcentration approach based on ionic liquid-based cold-induced aggregation microextraction for determination of neonicotinoid insecticide residues in honey samples before high-performance liquid chromatographic analysis has been developed. Room temperature ionic liquid [C4MIM][PF6] (extraction solvent) and SDS (emulsifier) was used for extraction of the target analytes. The parameters affecting the extraction efficiency were optimized. The optimum microextraction conditions were 200µL room temperature ionic liquids [C4MIM][PF6] containing 0.05molL(-1) SDS, 0.75g sodium carbonate, vortex agitation speed of 1800rpm for 30s and centrifugation at 3500rpm for 10min. Under optimum conditions, the high enrichment factors of 200 could be obtained, leading to low limit of detection (0.01µgL(-1) for all analytes) with the relative standard deviations lower than 2.68% and 5.38% for retention time and peak area, respectively. Good recoveries for the spiked target neonicotinoids at three different concentrations of honey samples were obtained in 86-100% and relative standard deviations were lower than 8.1%. The results demonstrated that the proposed method can be used as an alternative powerful method for the simultaneous determination of the studied insecticides in real honey samples.

  8. PLGA-based nanoparticles: effect of chitosan in the aggregate stabilization. A dielectric relaxation spectroscopy study.

    PubMed

    Chronopoulou, L; Cutonilli, A; Cametti, C; Dentini, M; Palocci, C

    2012-09-01

    Chitosan-modified polylactic-co-glycolic acid (PLGA) nanoparticles with average diameter of 200 nm in PBS buffer solution have been investigated by means of dielectric relaxation spectroscopy measurements in the frequency range (1 MHz-2 GHz) where interfacial polarizations occur. PLGA-based nanoparticles offer remarkable advantages in different biotechnological fields, such as their biocompatibility, easiness of administration and rather complete biodegradation. However, despite the use of these drug delivery systems is increasing, little is known about the basic process involved in the formation of complexes and in the subsequent release kinetics. In the present work, we have characterized the colloidal behavior of PLGA-based nanoparticles in the presence of oppositely charged chitosan polyelectrolyte by means of dynamic light scattering, electrophoretic mobility and radiowave dielectric relaxation measurements. In particular, we have emphasized how the presence of a coating layer at the nanoparticle surface could exert a marked slowing-down in the drug release. The consequence of this finding is briefly discussed at the light of some biological implications. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model.

    PubMed

    Wood, Andrew J; Ackland, Graeme J

    2007-07-07

    From zebra to starlings, herring and even tadpoles, many creatures move in an organized group. The emergent behaviour arises from simple underlying movement rules, but the evolutionary pressure which favours these rules has not been conclusively identified. Various explanations exist for the advantage to the individual of group formation: reduction of predation risk; increased foraging efficiency or reproductive success. Here, we adopt an individual-based model for group formation and subject it to simulated predation and foraging; the haploid individuals evolve via a genetic algorithm based on their relative success under such pressure. Our work suggests that flock or herd formation is likely to be driven by predator avoidance. Individual fitness in the model is strongly dependent on the presence of other phenotypes, such that two distinct types of evolved group can be produced by the same predation or foraging conditions, each stable against individual mutation. We draw analogies with multiple Nash equilibria theory of iterated games to explain and categorize these behaviours. Our model is sufficient to capture the complex behaviour of dynamic collective groups, yet is flexible enough to manifest evolutionary behaviour.

  10. Synthesis, char