Science.gov

Sample records for aggregate cultures derived

  1. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  2. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates

    PubMed Central

    Amer, Luke D.; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J.; Bryant, Stephanie J.

    2015-01-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15) μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced in both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (~2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1+/Nkx6.1+ cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates. PMID:25913222

  3. Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold

    PubMed Central

    Bao, Ji; Wu, Qiong; Wang, Yujia; Li, Yi; Li, Li; Chen, Fei; Wu, Xiujuan; Xie, Mingjun; Bu, Hong

    2016-01-01

    In the present study, we aimed to determine whether the combination of aggregate culture and decellularized liver scaffolds (DLSs) promoted the hepatic differentiation of murine bone marrow-derived mesenchymal stem cells (BM-MSCs) into high yields of mature hepatocytes in vitro. Four culturing methods for differentiation [single cell (2D), spheroids (3D), 2D + DLS and 3D + DLS] were studied. To determine the differentiation stages of the MSCs, RT-qPCR of the hepatocyte genes, immunostaining of hepatocyte markers, and functional analyses were all performed. Compared with the other groups, hepatocyte-like cells which differentiated from BM-MSC spheroids on extracellular matrix (ECM) exhibited more intensive staining of stored glycogen, an elevated level of urea biosynthesis and albumin secretion as well as the higher expression of hepatocyte-specific genes. Our results indicated that DLSs combined with spheroidal aggregate culture may be used as an effective method to facilitate the hepatic maturation of BM-MSCs and may have future applications in stem cell-based liver regenerative medicine. PMID:27314916

  4. Development of a Scalable, High-Throughput-Compatible Assay to Detect Tau Aggregates Using iPSC-Derived Cortical Neurons Maintained in a Three-Dimensional Culture Format.

    PubMed

    Medda, X; Mertens, L; Versweyveld, S; Diels, A; Barnham, L; Bretteville, A; Buist, A; Verheyen, A; Royaux, I; Ebneth, A; Cabrera-Socorro, A

    2016-09-01

    Tau aggregation is the pathological hallmark that best correlates with the progression of Alzheimer's disease (AD). The presence of neurofibrillary tangles (NFTs), formed of hyperphosphorylated tau, leads to neuronal dysfunction and loss, and is directly associated with the cognitive decline observed in AD patients. The limited success in targeting β-amyloid pathologies has reinforced the hypothesis of blocking tau phosphorylation, aggregation, and/or spreading as alternative therapeutic entry points to treat AD. Identification of novel therapies requires disease-relevant and scalable assays capable of reproducing key features of the pathology in an in vitro setting. Here we use induced pluripotent stem cells (iPSCs) as a virtually unlimited source of human cortical neurons to develop a robust and scalable tau aggregation model compatible with high-throughput screening (HTS). We downscaled cell culture conditions to 384-well plate format and used Matrigel to introduce an extra physical protection against cell detachment that reduces shearing stress and better recapitulates pathological conditions. We complemented the assay with AlphaLISA technology for the detection of tau aggregates in a high-throughput-compatible format. The assay is reproducible across users and works with different commercially available iPSC lines, representing a highly translational tool for the identification of novel treatments against tauopathies, including AD. PMID:26984927

  5. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    PubMed Central

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  6. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  7. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  8. Inverse problem analysis of pluripotent stem cell aggregation dynamics in stirred-suspension cultures

    PubMed Central

    Rostami, Mahboubeh Rahmati; Wu, Jincheng; Tzanakakis, Emmanuel S.

    2015-01-01

    The cultivation of stem cells as aggregates in scalable bioreactor cultures is an appealing modality for the large-scale manufacturing of stem cell products. Aggregation phenomena are central to such bioprocesses affecting the viability, proliferation and differentiation trajectory of stem cells but a quantitative framework is currently lacking. A population balance equation (PBE) model was used to describe the temporal evolution of the embryonic stem cell (ESC) cluster size distribution by considering collision-induced aggregation and cell proliferation in a stirred-suspension vessel. For ESC cultures at different agitation rates, the aggregation kernel representing the aggregation dynamics was successfully recovered as a solution of the inverse problem. The rate of change of the average aggregate size was greater at the intermediate rate tested suggesting a trade-off between increased collisions and agitation-induced shear. Results from forward simulation with obtained aggregation kernels were in agreement with transient aggregate size data from experiments. We conclude that the framework presented here can complement mechanistic studies offering insights into relevant stem cell clustering processes. More importantly from a process development standpoint, this strategy can be employed in the design and control of bioreactors for the generation of stem cell derivatives for drug screening, tissue engineering and regenerative medicine. PMID:26036699

  9. Inverse problem analysis of pluripotent stem cell aggregation dynamics in stirred-suspension cultures.

    PubMed

    Rostami, Mahboubeh Rahmati; Wu, Jincheng; Tzanakakis, Emmanuel S

    2015-08-20

    The cultivation of stem cells as aggregates in scalable bioreactor cultures is an appealing modality for the large-scale manufacturing of stem cell products. Aggregation phenomena are central to such bioprocesses affecting the viability, proliferation and differentiation trajectory of stem cells but a quantitative framework is currently lacking. A population balance equation (PBE) model was used to describe the temporal evolution of the embryonic stem cell (ESC) cluster size distribution by considering collision-induced aggregation and cell proliferation in a stirred-suspension vessel. For ESC cultures at different agitation rates, the aggregation kernel representing the aggregation dynamics was successfully recovered as a solution of the inverse problem. The rate of change of the average aggregate size was greater at the intermediate rate tested suggesting a trade-off between increased collisions and agitation-induced shear. Results from forward simulation with obtained aggregation kernels were in agreement with transient aggregate size data from experiments. We conclude that the framework presented here can complement mechanistic studies offering insights into relevant stem cell clustering processes. More importantly from a process development standpoint, this strategy can be employed in the design and control of bioreactors for the generation of stem cell derivatives for drug screening, tissue engineering and regenerative medicine.

  10. Neurocognitive derivation of protein surface property from protein aggregate parameters

    PubMed Central

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein’s surface property might be possible using its bulk form, heat denatured aggregates. PMID:21572883

  11. Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide

    PubMed Central

    Dorken, Gary; Ferguson, Gail P.; French, Chris E.; Poon, Wilson C. K.

    2012-01-01

    In bacteria, the production of exopolysaccharides—polysaccharides secreted by the cells into their growth medium—is integral to the formation of aggregates and biofilms. These exopolysaccharides often form part of a matrix that holds the cells together. Investigating the bacterium Sinorhizobium meliloti, we found that a mutant that overproduces the exopolysaccharide succinoglycan showed enhanced aggregation, resulting in phase separation of the cultures. However, the aggregates did not appear to be covered in polysaccharides. Succinoglycan purified from cultures was applied to different concentrations of cells, and observation of the phase behaviour showed that the limiting polymer concentration for aggregation and phase separation to occur decreased with increasing cell concentration, suggesting a ‘crowding mechanism’ was occurring. We suggest that, as found in colloidal dispersions, the presence of a non-adsorbing polymer in the form of the exopolysaccharide succinoglycan drives aggregation of S. meliloti by depletion attraction. This force leads to self-organization of the bacteria into small clusters of laterally aligned cells, and, furthermore, leads to aggregates clustering into biofilm-like structures on a surface. PMID:22896568

  12. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    PubMed

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. PMID:26658353

  13. Cultural Consensus Theory: Aggregating Continuous Responses in a Finite Interval

    NASA Astrophysics Data System (ADS)

    Batchelder, William H.; Strashny, Alex; Romney, A. Kimball

    Cultural consensus theory (CCT) consists of cognitive models for aggregating responses of "informants" to test items about some domain of their shared cultural knowledge. This paper develops a CCT model for items requiring bounded numerical responses, e.g. probability estimates, confidence judgments, or similarity judgments. The model assumes that each item generates a latent random representation in each informant, with mean equal to the consensus answer and variance depending jointly on the informant and the location of the consensus answer. The manifest responses may reflect biases of the informants. Markov Chain Monte Carlo (MCMC) methods were used to estimate the model, and simulation studies validated the approach. The model was applied to an existing cross-cultural dataset involving native Japanese and English speakers judging the similarity of emotion terms. The results sharpened earlier studies that showed that both cultures appear to have very similar cognitive representations of emotion terms.

  14. Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids.

    PubMed

    Song, Yeonhwa; Yun, Sujin; Yang, Hye Jin; Yoon, A Young; Kim, Haekwon

    2012-12-01

    Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×10(4) as the least for the low density group, and 29.3±2.8×10(4) as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids.

  15. Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids

    PubMed Central

    Song, Yeonhwa; Yun, Sujin; Yang, Hye Jin; Yoon, A Young; Kim, Haekwon

    2012-01-01

    Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×104 as the least for the low density group, and 29.3±2.8×104 as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids. PMID:25949109

  16. Recovering industrial sludge-derived slag as fine aggregate.

    PubMed

    Huang, Yi-Chin; Li, Kung-Cheh; Chiang, Hui-Hsien

    2005-01-01

    This study presents the result of using melting to recover both industrial sludge slag (the main constituent of which is calcium fluoride) and water works sludge slag as fine aggregate in cement. The main characteristics of both slag and cement mortars were measured to evaluate the feasibility of using slag as aggregate. In this study, the slag replacement ratios were 0, 10, 20, 30, 40, and 50% (w/w), and the curing periods were 7, 28, and 90 days. Slag quality was determined according to the standards of fine aggregates in the ASTM specifications, and cement mortars with various slag replacement ratios were evaluated based on their compressive strength, and Toxicity Characteristic Leaching Procedure (TCLP). The crushed slag produced in this study met the ASTM standards for fine aggregate, including gravity, unit weight, absorption, and grading, and the TCLP leached concentrations are far below existing limits, establishing the safety and suitability of slag as fine aggregate. The TCLP leached concentrations of slag and cement mortar were not significantly related to the replacement ratio, and declined with increasing curing period, revealing that the hydration strongly influenced metal leaching. The compressive strength test results of the cement mortars demonstrated that the optimal replacement ratio for maximizing compressive strength was 40%. This study also discussed the effects of replacement ratio and curing periods on cement mortars.

  17. A population balance equation model of aggregation dynamics in Taxus suspension cell cultures.

    PubMed

    Kolewe, Martin E; Roberts, Susan C; Henson, Michael A

    2012-02-01

    The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture. We utilized the population balance equation framework to describe plant cell aggregates as a particulate system, accounting for the relevant phenomenological processes underlying aggregation, such as growth and breakage. We compared model predictions to experimental data to select appropriate kernel functions, and found that larger aggregates had a higher breakage rate, biomass was partitioned asymmetrically following a breakage event, and aggregates grew exponentially. Our model was then validated against several datasets with different initial aggregate size distributions and was able to quantitatively predict changes in total biomass and mean aggregate size, as well as actual size distributions. We proposed a breakage mechanism where a fraction of biomass was lost upon each breakage event, and demonstrated that even though smaller aggregates have been shown to produce more paclitaxel, an optimum breakage rate was predicted for maximum paclitaxel accumulation. We believe this is the first model to use a segregated, corpuscular approach to describe changes in the size distribution of plant cell aggregates, and represents an important first step in the design of rational strategies to control aggregation and optimize process performance.

  18. Increasing platelet aggregability after venepuncture is platelet, not plasma derived.

    PubMed

    Terres, W; Becker, B F; Kratzer, M A; Gerlach, E

    1986-05-15

    The time course of ADP induced aggregation of human platelets was determined in aliquots of stored platelet rich plasma 3.5, 10, 30 and 100 minutes after venepuncture. The maximal rate of aggregation was found to increase throughout this entire period, even though pH (7.4), CO2 (7 volume per cent) and temperature (35 degrees C) of the samples were kept constant. The mean acceleration (+/- SEM) between 3.5 and 100 minutes was 41.7 +/- 6.9 per cent (n = 67) at an ADP-concentration of 1 mumol/l and 18.3 +/- 6.2 per cent (n = 23) at 2 mumol/l ADP. The effect did not result from changes of any platelet regulatory factors putatively present alone in the plasma. Acceleration of aggregability was only found when the platelets themselves underwent storage, but not when freshly prepared plasma was given to prestored platelets. The change in aggregability was not diminished after inhibition of platelet cyclooxygenase by oral administration of acetylsalicylic acid. PMID:3715816

  19. Expression of Tight Junction Molecule In The Human Serum-Induced Aggregation of Human Abdominal Adipose-Derived Stem Cells In Vitro

    PubMed Central

    Yoon, A Young; Yun, Sujin; Yang, HyeJin; Lim, Yoon Hwa; Kim, Haekwon

    2014-01-01

    Previously we have shown that human abdominal adipose derived-stem cells (ADSCs) could aggregate during the high-density culture in the presence of human serum (HS). In the present study, we observed that human cord blood serum (CBS) and follicular fluid (HFF) also induced aggregation. Similarly, porcine serum could induce aggregation whereas bovine and sheep sera induced little aggregation. qRT-PCR analyses demonstrated that, compared to FBS-cultured ADSCs, HScultured cells exhibited higher level of mRNA expression of CLDN3, -6, -7, -15, and -16 genes among the tight junction proteins. ADSCs examined at the time of aggregation by culture with HS, BSA, HFF, CBS, or porcine serum showed significantly higher level of mRNA expression of JAM2 among JAM family members. In contrast, cells cultured in FBS, bovine serum or sheep serum, showed lower level of JAM2 expression. Immunocytochemical analyses demonstrated that the aggregates of HS-cultured cells (HS-Agg) showed intense staining against the anti-JAM2 antibody whereas neither non-aggregated cells (HS-Ex) nor FBS-cultured cells exhibited weak staining. Western blot results showed that HS-Agg expressed JAM2 protein more prominently than HS-Ex and FBS-cultured cells, both of latter reveled weaker intensity. These results suggest that the aggregation property of ADSCs during high-density culture would be dependent on the specific components of serum, and that JAM2 molecule could play a role in the animal sera-induced aggregation in vitro. PMID:25949191

  20. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  1. Method for the production of cementitious compositions and aggregate derivatives from said compositions

    DOEpatents

    Minnick, L. John

    1981-01-01

    Method for the production of cementitious compositions and aggregate derivatives of said compositions, and cementitious compositions and aggregates produced by said method, wherein fluidized bed combustion residue and pozzolanic material, such as pulverized coal combustion system fly ash, are incorporated in a cementitious mix. The mix is cast into desired shape and cured. If desired, the shape may then be crushed so as to result in a fluidized bed combustion residue-fly ash aggregate material or the shape may be used by itself.

  2. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    PubMed

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in

  3. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    PubMed

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered. PMID:22320435

  4. A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells

    PubMed Central

    Bernard, Abigail B.; Lin, Chien-Chi

    2012-01-01

    Cell–cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell–cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell–cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered. PMID:22320435

  5. The Involvement of Microbially Derived Extracellular Proteins in Nanoparticle Formation and Aggregation

    NASA Astrophysics Data System (ADS)

    Pearce, C. I.; Moreau, J. W.

    2007-12-01

    While humans are newcomers to the field of nanoscience, microbes have been synthesizing functional nanoscale structures for billions of years. Bacteria have evolved the capability to produce proteins that can unite cellular processes with inorganic substrates, transfer electrons, template biomineralization, and facilitate adhesion. Biominerals are commonly nano-composite materials in which biomolecules such as proteins and/or polysaccharides act as a template to direct nanoparticle nucleation and growth. Understanding the capability of microbes to form nanoparticles and influence their reactive transport properties offers potential for bioremediation and materials synthesis applications. The identification of biomolecules and functional groups associated with biogenic nanoparticle formation in both environmental and laboratory systems is the objective of our research. Two such systems in which protein-nanoparticle interactions were studied are discussed. First, the biogenic reduction of selenium oxyanions to Se0 was studied in pure cultures of Veillonella atypica, Bacillus selenitireducens and Geobacter sulfurreducens. Biogenic Se0 nanostructures were observed as spherical, fibrillar, granular or amorphous aggregates, both in the cytoplasm or periplasmic space and extracellularly. These nanoparticles formed as protein-nanoparticle complexes that could be separated from the cells on the basis of density. A protein of ~39 kDa associated with biogenic nano-Se0 was recovered via polyacrylamide gel electrophoresis for characterization by MALDI-TOF mass spectrometry. Initial results suggest that this protein plays an integral, structural role in Se0 nanosphere formation. Second, the nanoparticulate products of bacterial sulfate reduction in a biofilm growing in minewater were investigated with multiple high- spatial resolution microanalyses. Biogenic zinc-sulfide nanoparticles exhibited evidence for rapid, highly efficient aggregation to form orders-of-magnitude larger

  6. Selective Inhibition of Aggregation and Toxicity of a Tau-Derived Peptide using Its Glycosylated Analogues.

    PubMed

    Frenkel-Pinter, Moran; Richman, Michal; Belostozky, Anna; Abu-Mokh, Amjaad; Gazit, Ehud; Rahimipour, Shai; Segal, Daniel

    2016-04-18

    Protein glycosylation is a ubiquitous post-translational modification that regulates the folding and function of many proteins. Misfolding of protein monomers and their toxic aggregation are the hallmark of many prevalent diseases. Thus, understanding the role of glycans in protein aggregation is highly important and could contribute both to unraveling the pathology of protein misfolding diseases as well as providing a means for modifying their course for therapeutic purposes. Using β-O-linked glycosylated variants of the highly studied Tau-derived hexapeptide motif VQIVYK, which served as a simplified amyloid model, we demonstrate that amyloid formation and toxicity can be strongly attenuated by a glycan unit, depending on the nature of the glycan itself. Importantly, we show for the first time that not only do glycans hinder self-aggregation, but the glycosylated peptides are capable of inhibiting aggregation of the non-modified corresponding amyloid scaffold.

  7. Inhibition of tau aggregation by a rosamine derivative that blocks tau intermolecular disulfide cross-linking.

    PubMed

    Haque, Md Mamunul; Kim, Dohee; Yu, Young Hyun; Lim, Sungsu; Kim, Dong Jin; Chang, Young-Tae; Ha, Hyung-Ho; Kim, Yun Kyung

    2014-09-01

    Abnormal tau aggregates are presumed to be neurotoxic and are an important therapeutic target for multiple neurodegenerative disorders including Alzheimer's disease. Growing evidence has shown that tau intermolecular disulfide cross-linking is critical in generating tau oligomers that serve as a building block for higher-order aggregates. Here we report that a small molecule inhibitor prevents tau aggregation by blocking the generation of disulfide cross-linked tau oligomers. Among the compounds tested, a rosamine derivative bearing mild thiol reactivity selectively labeled tau and effectively inhibited oligomerization and fibrillization processes in vitro. Our data suggest that controlling tau oxidation status could be a new therapeutic strategy for prevention of abnormal tau aggregation. PMID:24919397

  8. Development of ultrastructural specializations during the formation of acetylcholine receptor aggregates on cultured myotubes.

    PubMed

    Olek, A J; Ling, A; Daniels, M P

    1986-02-01

    The ultrastructure of cultured rat myotubes was examined at stages in the initial assembly of acetylcholine receptor (AChR) aggregates in order to elucidate the role of cell-surface specializations in aggregate formation. Within 4-6 hr, embryonic brain extract (EBX) induces the formation of sites of AChR density elevated 5-9 X above that of surrounding regions, and the appearance of these aggregates is preceded by the formation of clouds of punctate microaggregates (Olek et al., 1983). A video image-intensification system was used to monitor this redistribution of fluorescently labeled AChR, and sites of aggregation were mapped on identified myotubes. After processing the cultures for electron microscopy, thin sections were taken through identified aggregate sites at various stages in assembly. Specializations, including a basal lamina, mound-shaped plasma membrane contours with occasional deep infoldings, and a subjacent dense cytoskeletal specialization, which tended to exclude other cytoplasmic organelles, were associated with newly formed aggregates found 4-6 hr after adding EBX to the cultures. Analysis of random thin sections through EBX-treated and untreated myotubes showed that the extent of specializations of the basal lamina and cytoplasm was approximately threefold greater in cells exposed to EBX for 4 hr, suggesting a concurrent, and possibly interdependent, organization of such specializations with AChR aggregate assembly. Examination of sections through clouds of microaggregates, which formed within 90 min, revealed mound-shaped plasma membrane contours and underlying cytoplasm depleted of organelles but relatively little basal lamina and submembrane cytoskeletal density. These results suggest that the initial stage of AChR aggregate assembly involves relatively subtle changes in the structure of the cell cortex and that the evolution of microaggregates to aggregates may require the formation of additional cytoskeletal and extracellular matrix

  9. Cultural Heritage Content Re-Use: An Aggregators's Point of View

    NASA Astrophysics Data System (ADS)

    Gavrilis, D.; Ioannides, M.; Theofanous, E.

    2015-08-01

    This paper introduces a use case of re-using aggregated and enriched metadata for the tourism creative industry. The MORe aggregation and enrichment framework is presented along with an example for enriching cultural heritage objects harvested from a number of Omeka repositories. The enriched content is then published both to the EU Digital Library Europeana (http://www.europeana.eu) and to an Elastic Search component that feeds a portal aimed at providing tourists with interesting information.

  10. Copper nanoparticles generated from aggregates of a hexarylbenzene derivative: a reusable catalytic system for 'click' reactions.

    PubMed

    Kaur, Sharanjeet; Bhalla, Vandana; Kumar, Manoj

    2015-01-11

    Fluorescent aggregates of hexarylbenzene derivative 3 have been utilized as reactors for the preparation of copper nanoparticles in aqueous medium, which serve as effective catalytic system for the alkyl-azide 'click' reaction to synthesize 1,2,3-triazoles in excellent yields under solvent-free conditions. This catalytic system can be recycled and reused five times without significant loss of catalytic activity.

  11. A triazole derivative elicits autophagic clearance of polyglutamine aggregation in neuronal cells

    PubMed Central

    Hsieh, Chang Heng; Lee, Li-Ching; Leong, Wai-Yin; Yang, Tsai-Chen; Yao, Ching-Fa; Fang, Kang

    2016-01-01

    Trinucleotide CAG repeat expansion in the coding region of genes has a propensity to form polyglutamine (polyQ) aggregates that contribute to neuronal disorders. Strategies in elevating autophagy to disintegrate the insoluble aggregates without injuring cells have become a major goal for therapy. In this work, a triazole derivative, OC-13, was found accelerating autophagic clearance of polyQ aggregation in human neuroblastoma cells following induction of the enhanced green fluorescence-conjugated chimeric protein that enclosed 79 polyQ repeats (Q79-EGFP). OC-13 accelerated autophagy development and removed nuclear Q79-EGFP aggregates. The increase of Beclin-1, turnover of LC3-I to LC3-II and degradation of p62 supported autophagy activation. Pretreatment of autophagy inhibitor, bafilomycin A1, not only suppressed autophagolysome fusion, but also impeded aggregate eradication. The study also showed that c-Jun N-terminal kinase/Beclin-1 pathway was activated during OC-13 treatment and c-Jun N-terminal kinase inhibitor impaired autophagy and final breakdown. Autophagic clearance of the insoluble aggregates demonstrated the feasibility of OC-13 in alleviating neuronal disorders because of expanded glutamine stretches.

  12. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar. PMID:25390075

  13. Intravascular filarial parasites inhibit platelet aggregation. Role of parasite-derived prostanoids.

    PubMed Central

    Liu, L X; Weller, P F

    1992-01-01

    The nematode parasites that cause human lymphatic filariasis survive for long periods in their vascular habitats despite continual exposure to host cells. Platelets do not adhere to blood-borne microfilariae, and thrombo-occlusive phenomena are not observed in patients with circulating microfilariae. We studied the ability of microfilariae to inhibit human platelet aggregation in vitro. Brugia malayi microfilariae incubated with human platelets caused dose-dependent inhibition of agonist-induced platelet aggregation, thromboxane generation, and serotonin release. As few as one microfilaria per 10(4) platelets completely inhibited aggregation of platelets induced by thrombin, collagen, arachidonic acid, or ionophore A23187. Microfilariae also inhibited aggregation of platelets in platelet-rich plasma stimulated by ADP, compound U46619, or platelet-activating factor. The inhibition required intimate proximity but not direct contact between parasites and platelets, and was mediated by parasite-derived soluble factors of low (less than 1,000 Mr) molecular weight that were labile in aqueous media and caused an elevation of platelet cAMP. Prior treatment of microfilariae with pharmacologic inhibitors of cyclooxygenase decreased both parasite release of prostacyclin and PGE2 and microfilarial inhibition of platelet aggregation. These results indicate that microfilariae inhibit platelet aggregation, via mechanisms that may include the elaboration of anti-aggregatory eicosanoids. Images PMID:1313445

  14. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.

  15. A triazole derivative elicits autophagic clearance of polyglutamine aggregation in neuronal cells

    PubMed Central

    Hsieh, Chang Heng; Lee, Li-Ching; Leong, Wai-Yin; Yang, Tsai-Chen; Yao, Ching-Fa; Fang, Kang

    2016-01-01

    Trinucleotide CAG repeat expansion in the coding region of genes has a propensity to form polyglutamine (polyQ) aggregates that contribute to neuronal disorders. Strategies in elevating autophagy to disintegrate the insoluble aggregates without injuring cells have become a major goal for therapy. In this work, a triazole derivative, OC-13, was found accelerating autophagic clearance of polyQ aggregation in human neuroblastoma cells following induction of the enhanced green fluorescence-conjugated chimeric protein that enclosed 79 polyQ repeats (Q79-EGFP). OC-13 accelerated autophagy development and removed nuclear Q79-EGFP aggregates. The increase of Beclin-1, turnover of LC3-I to LC3-II and degradation of p62 supported autophagy activation. Pretreatment of autophagy inhibitor, bafilomycin A1, not only suppressed autophagolysome fusion, but also impeded aggregate eradication. The study also showed that c-Jun N-terminal kinase/Beclin-1 pathway was activated during OC-13 treatment and c-Jun N-terminal kinase inhibitor impaired autophagy and final breakdown. Autophagic clearance of the insoluble aggregates demonstrated the feasibility of OC-13 in alleviating neuronal disorders because of expanded glutamine stretches. PMID:27695292

  16. Oxygen Transport and Stem Cell Aggregation in Stirred-Suspension Bioreactor Cultures

    PubMed Central

    Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P.; Tzanakakis, Emmanuel S.

    2014-01-01

    Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics. PMID:25032842

  17. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures.

    PubMed

    Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P; Tzanakakis, Emmanuel S

    2014-01-01

    Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.

  18. Enhancement of endothelial differentiation of adipose derived mesenchymal stem cells by a three-dimensional culture system of microwell.

    PubMed

    Qiu, Xuefeng; Zhang, Yanting; Zhao, Xiaozhi; Zhang, Shiwei; Wu, Jinhui; Guo, Hongqian; Hu, Yiqiao

    2015-01-01

    Adipose derived mesenchymal stem cells (AdMSCs) have been demonstrated to have ability to differentiate into several cell lineages, including endothelial cells. The low endothelial differentiation efficiency, however, limits further clinical application of AdMSCs for therapeutic angiogenesis. This study was designed to investigate the feasibility to promote endothelial differentiation efficacy of AdMSCs using microwell array as a 3-D culture system. AdMSCs aggregates were prepared using photocrosslinkable polyethylene glycol dimethacrylate (PEGDM) derived microwell. AdMSCs aggregated and formed well defined 3-D aggregates following seeding. The microwell was effective in regulating the size of AdMSCs aggregates with low variation. AdMSCs within the 3-D aggregates maintained the cell surface epitopes of AdMSCs with high viability. Endothelial growth medium was used to induce the in vitro endothelial differentiation of AdMSCs. Both gene expression results from real time PCR and protein expression data from immunofluorescent staining revealed that 3-D cultured aggregates significantly promote the endothelial differentiation efficacy of AdMSCs. AdMSCs or AdMSCs aggregates were injected into the subcutaneous space of nu/nu mice to investigate the endothelial differentiation in vivo. The immunofluorescent staining data indicated promoted endothelial differentiation of 3-D aggregates compared with 2-D AdMSCs. Aggregates dissociated cells were obtained by transferring 3-D aggregates onto the adherent surfaces. Cells dissociated from induced aggregates were still positive for endothelial specific markers and were able to form endothelial-like tube structures on matrigel, indicating the endothelial properties. We conclude that microwell is an ideal 3-D culture system for promoting endothelial differentiation efficacy of AdMSCs. PMID:25890756

  19. Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities

    PubMed Central

    Amidi, Salimeh; Kobarfard, Farzad; Bayandori Moghaddam, Abdolmajid; Tabib, Kimia; Soleymani, Zohreh

    2013-01-01

    Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which were provided in electrochemical cell. The in-vitro antiplatelet and anticoagulant activity of these compounds was evaluated, using arachidonic acid (AA) and adenosine diphosphate (ADP) as the platelet aggregation inducers. The results show that the incorporation of catechol ring in 1,3-indandione nucleus leads to the emergence of antiplatelet aggregation activity in these compounds. The compounds may exert their antiaggregation activity by interfering with the arachidonic acid pathway. PMID:24250677

  20. Piezoflurochromism and Aggregation Induced Emission Properties of 9, 10-bis (trisalkoxystyryl) Anthracene Derivatives.

    PubMed

    Duraimurugan, Kumaraguru; Sivamani, Jayaraman; Sathiyaraj, Munusamy; Thiagarajan, Viruthachalam; Siva, Ayyanar

    2016-07-01

    We report the synthesis of trisalkoxy substituted 9, 10-bis styrylanthracene derivatives (C8-ant and C12-ant) by Heck coupling with very good yield and their photophysical properties. Both C8-ant and C12-ant exhibit aggregation induced emission (AIE), mechnoflurochromism and thermochromism. Trisubstituted 9, 10-distyrylanthracene molecules having all the luminescent properties in a single molecule are first of its kind.

  1. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Roberts, R.; Reitstetter, R.

    1994-01-01

    We carried out parallel experiments first on the slow clinostat and then in space-flight to examine the effects of altered gravity on the aggregation of the nicotinic acetylcholine receptors and the structure of the cytoskeleton in cultured Xenopus embryonic muscle cells. By examining the concordance between results from space flight and the clinostat, we tested whether the slow clinostat is a relevant simulation paradigm. Space-flown cells showed marked changes in the distribution and organization of actin filaments and had a reduced incidence of acetylcholine receptor aggregates at the site of contact with polystyrene beads. Similar effects were found after clinostat rotation. The sensitivity of synaptic receptor aggregation and cytoskeletal morphology suggests that in the microgravity of space cell behavior may be importantly altered.

  2. Development of a new distyrylbenzene-derivative amyloid-β-aggregation and fibril formation inhibitor.

    PubMed

    Suzuki, Hideharu; Ishigami, Akihito; Orimoto, Ayako; Matsuyama, Akihiro; Handa, Setsuko; Maruyama, Naoki; Yokoyama, Yuusaku; Okuno, Hiroaki; Nakakoshi, Masamichi

    2012-01-01

    Several new amyloid-β (Aβ) aggregation inhibitors were synthesized according to our theory that a hydrophilic moiety could be attached to the Aβ-recognition unit for the purpose of preventing amyloid plaque formation. A distyrylbenzene-derivative, DSB(EEX)(3), which consider the Aβ recognition unit (DSB, 1,4-distyrylbenzene) and expected to bind to amyloid fibrils (β-sheet structure), was combined with the hydrophilic aggregation disrupting element (EEX) (E, Glu; X, 2-(2-(2-aminoethoxy)ethoxy)acetic acid). This DSB(EEX)(3) compound, compared to several others synthesized similarly, was found to be the most active for reducing Aβ toxicity toward IMR-32 human neuroblastoma cells. Moreover, its inhibition of Aβ-aggregation or fibril formation was directly confirmed by transmission electron microscopy and atomic force microscopy. These results suggest that the Aβ aggregation inhibitor DSB(EEX)(3) disrupts clumps of Aβ protein and is a likely candidate for drug development to treat Alzheimer's disease.

  3. Synthesis and evaluation of copper-64 labeled benzofuran derivatives targeting β-amyloid aggregates.

    PubMed

    Watanabe, Hiroyuki; Kawasaki, Azusa; Sano, Kohei; Ono, Masahiro; Saji, Hideo

    2016-08-15

    In vivo imaging of β-amyloid (Aβ) aggregates consisting of Aβ(1-40) and Aβ(1-42) peptides by positron emission tomography (PET) contributes to the diagnosis and therapy for Alzheimer's disease (AD). Because (64)Cu (t1/2=12.7h) is a radionuclide for PET with a longer physical half-life than (11)C (t1/2=20min) and (18)F (t1/2=110min), it is an attractive radionuclide for the development of Aβ imaging probes that are suitable for routine use. In the present study, we designed and synthesized two novel (64)Cu labeled benzofuran derivatives and evaluated their utility as PET imaging probes for Aβ aggregates. In an in vitro binding assay, 6 and 8 showed binding affinity for Aβ(1-42) aggregates with a Ki value of 33 and 243nM, respectively. In addition, these probes bound to Aβ plaques deposited in the brain of an AD model mouse in vitro. In a biodistribution experiment using normal mice, these probes showed low brain uptake (0.33% and 0.36% ID/g) at 2min post-injection. Although refinement to enhance brain uptake is needed, [(64)Cu]6 and [(64)Cu]8 demonstrated the feasibility of developing novel PET probes for imaging Aβ aggregates. PMID:27301677

  4. Time-dependent aggregation-induced enhanced emission, absorption spectral broadening, and aggregation morphology of a novel perylene derivative with a large D-π-A structure.

    PubMed

    Yang, Long; Yu, Yuyan; Zhang, Jin; Ge, Feijie; Zhang, Jianling; Jiang, Long; Gao, Fang; Dan, Yi

    2015-05-01

    Strong aggregation-caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C=C at the bay positions to obtain aggregation-induced enhanced emission (AIEE) of a perylene derivative (Cya-PDI) with a large π-conjugation system. Cya-PDI is weakly luminescent in the well-dispersed CH(3)CN or THF solutions and exhibits an evident time-dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya-PDI molecules changed from plate-shaped to rod-like aggregates under the co-effects of time and water. An edge-to-face arrangement of aggregation was proposed and discussed. The fact that the Cya-PDI aggregates show a broad absorption covering the whole visible-light range and strong intermolecular interaction through π-π stacking in the solid state makes them promising materials for optoelectric applications.

  5. Thrombin action decreases acetylcholine receptor aggregate number and stability in cultured mouse myotubes.

    PubMed

    Davenport, R W; Lanuza, M; Kim, S; Jia, M; Snyder, E; Nelson, P G

    2000-08-30

    Neurons develop and make very stable, long-term synaptic connections with other nerve cells and with muscle. Synaptic stability at the neuromuscular junction changes over development in that a proliferation of synaptic input are made to individual myotubes and synapses from all but one neuron are lost during development. In an established co-culture paradigm in which spinal motoneurons synaptically contact myotubes, thrombin and associated protease inhibitors have been shown to affect the loss of functional synaptic contacts [6]. Evidence has not been provided which clearly demonstrate whether protease/protease inhibitors affect either the pre- or postsynaptic terminal, or both. In an effort to determine whether these reagents directly affect postsynaptic receptors on myotubes, myotubes were cultured in the absence of neurons and the spontaneous presence and stability of aggregates of acetylcholine receptors (AChR) in control and thrombin-containing media were evaluated. In dishes fixed after treatment and in dishes in which individual aggregates were observed live, thrombin action appeared to increase loss of AChR aggregates over time. Hirudin, a specific inhibitor of the thrombin protease, diminished this loss. Neither reagent affected the overall incorporation or degradation of AChR; therefore, it appears these protease/protease inhibitors affect the state of AChR aggregation. PMID:10960680

  6. Internal curing with lightweight aggregate produced from biomass-derived waste

    SciTech Connect

    Lura, Pietro; Wyrzykowski, Mateusz; Tang, Clarence; Lehmann, Eberhard

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  7. Floating mucus aggregates derived from benthic microorganisms on rocky intertidal reefs: Potential as food sources for benthic animals

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Tsuchiya, M.

    2011-09-01

    Mucus films, flocs or foams consisting of fine sand, algae and detritus frequently occur in the surface waters of rocky intertidal reef flats during incoming tide. These masses are referred to as mucus aggregates. We examined the developmental process of mucus aggregates and their abundance, distribution, migration and trophic composition. The trophic composition of mucus aggregates was then compared to those of sediments to evaluate their potential nutritional value for benthic animals. The organic matter content, chlorophyll a concentration, microalgal density and bacteria-derived fatty acid contents of mucus aggregates were higher than those observed in sediment, suggesting that mucus aggregates contain not only high levels of organic matter but also dense concentrations of microalgae and bacteria; therefore, mucus aggregates may serve as a qualitatively more energetic food source for benthic fauna compared to sediments. Benthic diatoms were the most abundant organisms in mucus aggregates. Large numbers of diatoms were trapped in fine mineral particles and mucilage-like strings, suggesting that a portion of the mucus is secreted by these benthic microalgae. Mucus aggregate accounted for only 0.01-3.9% of the daily feeding requirements of the dominant detritivore, Ophiocoma scolopendrina (Echinodermata: Ophiuroidea) over the entire sampling area. In contrast, for the species population on the back reef, where mucus aggregates ultimately accumulate, mucus aggregates provided from 0.4 to 113.3% of food for this species. These results suggest that mucus aggregate availability varies spatiotemporally and that they do not always provide adequate food sources for O. scolopendrina populations.

  8. Association of heterotrophic bacteria with aggregated Arthrospira platensis exopolysaccharides: implications in the induction of axenic cultures.

    PubMed

    Shiraishi, Hideaki

    2015-01-01

    Inducing an axenic culture of the edible cyanobacterium Arthrospira (Spirulina) platensis using differential filtration alone is never successful; thus, it has been thought that, in non-axenic cultures, a portion of contaminating bacteria is strongly associated with Arthrospira cells. However, examination of the behavior of these bacteria during filtration revealed that they were not associated with Arthrospira cells but with aggregates of exopolysaccharides present in the medium away from the Arthrospira cells. Based on this finding, a rapid and reliable method for preparing axenic trichomes of A. platensis was established. After verifying the axenicity of the resulting trichomes on enriched agar plates, they were individually transferred to fresh sterile medium using a handmade tool, a microtrowel, to produce axenic cultures. With this technique, axenic cultures of various A. platensis strains were successfully produced. The technique described in this study is potentially applicable to a wider range of filamentous cyanobacteria. PMID:25333502

  9. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.

    PubMed

    Imani, Rana; Hojjati Emami, Shahriar; Fakhrzadeh, Hossein; Baheiraei, Nafiseh; Sharifi, Ali M

    2012-04-01

    The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also investigated. In both methods, the optimum average size of the aggregates was less than 500 microm. CT aggregates were smaller than HD aggregates. 5,000 cells per drop HD aggregates showed a marked ability to attach and spread on the culture surface. The proliferative ability reduced when the initial cell density was increased. Comparing these methods, we found that the HD method having better size controlling ability as well as enhanced ability to maintain higher rates of viability, spreading, and proliferation. In conclusion, smaller HD aggregates might be a suitable choice as building blocks for making bioink particles in bioprinting technique.

  10. Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities

    PubMed Central

    1985-01-01

    Liver cells isolated from newborn rats and seeded on a non-adherent plastic substratum were found to spontaneously re-aggregate and to form, within a few days, spheroidal aggregates that eventually reached a plateaued diameter of 150-175 micron. Analyses on frozen sections from these spheroids by immunofluorescence microscopy using antibodies to various cytoskeletal elements and extracellular matrix components revealed a sorting out and a histotypic reorganization of three major cell types. A first type consisted of cells that segregated out on the aggregate surface forming a monolayer cell lining; a second type was identified as hepatocytes that regrouped in small islands often defining a central lumen; and a third group of cells reorganized into bile duct-like structures. This intercellular organization in the aggregates was paralleled by the accumulation of extracellular matrix components (laminin, fibronectin, and collagen) and their deposition following a specific pattern around each cell population structure. Determinations of albumin secretion and tyrosine aminotransferase induction by dexamethasone and glucagon at various times after the initiation of the cultures revealed a maintenance of the hepatocyte- differentiated functions for at least up to 2 mo at the levels measured at 3-5 d. It is concluded that cells dispersed as single cells from newborn rat liver conserve in part the necessary information to reconstruct a proper three-dimensional cyto-architecture and that the microenvironment so generated most likely represents a basic requirement for the optimal functioning of these differentiated cells. PMID:2411740

  11. Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features.

    PubMed

    Matthes, Dirk; Daebel, Venita; Meyenberg, Karsten; Riedel, Dietmar; Heim, Gudrun; Diederichsen, Ulf; Lange, Adam; de Groot, Bert L

    2014-01-23

    Recently, several short peptides have been shown to self-assemble into amyloid fibrils with generic cross-β spines, so-called steric zippers, suggesting common underlying structural features and aggregation mechanisms. Understanding these mechanisms is a prerequisite for designing fibril-binding compounds and inhibitors of fibril formation. The hexapeptide VEALYL, corresponding to the residues B12-17 of full-length insulin, has been identified as one of these short segments. Here, we analyzed the structures of multiple, morphologically different (fibrillar, microcrystal-like, oligomeric) [(13)C,(15)N]VEALYL samples by solid-state nuclear magnetic resonance complemented with results from molecular dynamics simulations. By performing NHHC/CHHC experiments, we could determine that the β-strands within a given sheet of the amyloid-like fibrils formed by the insulin hexapeptide VEALYL are stacked in an antiparallel manner, whereas the sheet-to-sheet packing arrangement was found to be parallel. Experimentally observed secondary chemical shifts for all aggregate forms, as well as Ø and ψ backbone torsion angles calculated with TALOS, are indicative of β-strand conformation, consistent with the published crystal structure (PDB ID: 2OMQ). Thus, we could demonstrate that the structural features of all the observed VEALYL aggregates are in agreement with the previously observed homosteric zipper spine packing in the crystalline state, suggesting that several distinct aggregate morphologies share the same molecular architecture.

  12. A turn-on fluorogenic Zn(II) chemoprobe based on a terpyridine derivative with aggregation-induced emission (AIE) effects through nanofiber aggregation into spherical aggregates.

    PubMed

    Jung, Sung Ho; Kwon, Ki-Young; Jung, Jong Hwa

    2015-01-18

    The self-assembly of a terpyridine-based ligand in a DMSO/water solvent mixture (1 : 99 v/v) with a high content of water formed a nanofibrillar structure and showed a non-emissive process. On the other hand, the self-assembly of the terpyridine-based ligand exhibited strong emission in the presence of Zn(2+) due to the formation of coordination bonds between the terpyridine moieties and the Zn(2+) by the aggregation-induced emission effect. The morphology of this aggregate represented a spherical structure.

  13. Engaging Youth through African-Derived Dance and Culture

    ERIC Educational Resources Information Center

    Franklin, Kikora

    2013-01-01

    This article provides a brief history of African and African-derived dance and culture and highlights the physical health, dance education, historical, and cultural benefits of a school-based program that incorporates African dance as its core component. The article also includes the phases of the programming and brings attention to potential…

  14. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    NASA Astrophysics Data System (ADS)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with

  15. Culturing and Applications of Rotating Wall Vessel Bioreactor Derived 3D Epithelial Cell Models

    PubMed Central

    Radtke, Andrea L.; Herbst-Kralovetz, Melissa M.

    2012-01-01

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues 1-6. The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties. The

  16. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  17. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-01-01

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  18. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  19. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    PubMed

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. PMID:25905549

  20. Early stages in the formation and stabilization of acetylcholine receptor aggregates on cultured myotubes: sensitivity to temperature and azide.

    PubMed

    Olek, A J; Krikorian, J G; Daniels, M P

    1986-09-01

    We have studied the effects of temperature and sodium azide on the formation and stability of embryonic brain extract (EBX)2-induced acetylcholine receptor (AChR) aggregates on myotubes. Sequential changes in AChR distribution were studied on living myotubes in culture by video-intensified fluorescence microscopy. Aggregate formation was temperature dependent, increasing sharply from 24-36 degrees, maximal at 36-37 degrees, and virtually blocked at 38-40 degrees. Whereas aggregate size increased rapidly with time (up to 4 hr) at 36 degrees, at 18-24 degrees small (less than or equal to 1 micron) "microaggregates" formed and accumulated for up to 10 hr. Aggregates formed within 1.5 hr at the sites of microaggregates (formed after 4 hr at 23 degrees) if the temperature was raised to 36 degrees. However, if EBX was removed, the microaggregates on 50% of myotubes disassembled within 1.5 hr. The formation of microaggregates at 23 degrees and aggregates at 36 degrees was reversibly inhibited by sodium azide. These results show that clusters of microaggregates are the precursors of aggregates, and suggest that microaggregate clouds represent a discrete, labile, ATP-dependent stage in aggregate formation. Aggregates that had formed after 4 hr in the presence of EBX disassembled slowly (within 12-14 hr) following removal of EBX at 36 degrees, and even more slowly at 23-30 degrees. However, a temperature shift to 38 degrees, or the addition of azide, resulted in a rapid but reversible disassembly of aggregates (within 4 hr). Thus, newly formed aggregates appear to be relatively stable structures, while microaggregate clouds are labile, tending to disassemble or evolve into aggregates.

  1. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives.

    PubMed

    Wu, Qunyan; Deng, Chunmei; Peng, Qian; Niu, Yingli; Shuai, Zhigang

    2012-09-01

    There have been intensive studies on the newly discovered phenomena called aggregation induced emission (AIE), in contrast to the conventional aggregation quenching. Through combined quantum mechanics and molecular mechanics computations, we have investigated the aggregation effects on the excited state decays, both via radiative and nonradiative routes, for pyrazine derivatives 2,3-dicyano-5,6-diphenylpyrazine (DCDPP) and 2,3-dicyanopyrazino phenanthrene (DCPP) in condensed phase. We show that for DCDPP there appear AIE for all the temperature, because the phenyl ring torsional motions in gas phase can efficiently dissipate the electronic excited state energy, and get hindered in aggregate; while for its "locked"-phenyl counterpart, DCPP, theoretical calculation can only give the normal aggregation quenching. These first-principles based findings are consistent with recent experiment. The primary origin of the exotic AIE phenomena is due to the nonradiative decay effects. This is the first time that AIE is understood based on theoretical chemistry calculations for aggregates, which helps to resolve the present disputes over the mechanism.

  2. Evaluation of self-combustion risk in tire derived aggregate fills.

    PubMed

    Arroyo, Marcos; San Martin, Ignacio; Olivella, Sebastian; Saaltink, Maarten W

    2011-01-01

    Lightweight tire derived aggregate (TDA) fills are a proven recycling outlet for waste tires, requiring relatively low cost waste processing and being competitively priced against other lightweight fill alternatives. However its value has been marred as several TDA fills have self-combusted during the early applications of this technique. An empirical review of these cases led to prescriptive guidelines from the ASTM aimed at avoiding this problem. This approach has been successful in avoiding further incidents of self-combustion. However, at present there remains no rational method available to quantify self-combustion risk in TDA fills. This means that it is not clear which aspects of the ASTM guidelines are essential and which are accessory. This hinders the practical use of TDA fills despite their inherent advantages as lightweight fill. Here a quantitative approach to self-combustion risk evaluation is developed and illustrated with a parametric analysis of an embankment case. This is later particularized to model a reported field self-combustion case. The approach is based on the available experimental observations and incorporates well-tested methodological (ISO corrosion evaluation) and theoretical tools (finite element analysis of coupled heat and mass flow). The results obtained offer clear insights into the critical aspects of the problem, allowing already some meaningful recommendations for guideline revision.

  3. Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid-beta aggregation and 5-lipoxygenase.

    PubMed

    Chen, Yi-Ping; Zhang, Zi-Ying; Li, Yan-Ping; Li, Ding; Huang, Shi-Liang; Gu, Lian-Quan; Xu, Jun; Huang, Zhi-Shu

    2013-08-01

    A series of new isoliquiritigenin (ISL) derivatives were synthesized and evaluated as dual inhibitors for amyloid-beta (Aβ) aggregation and 5-lipoxygenase (5-LO). It was found that all these synthetic compounds inhibited Aβ (1-42) aggregation effectively with their IC₅₀ values ranged from 2.2 ± 1.5 μM to 23.8 ± 2.0 μM. These derivatives also showed inhibitory activity to 5-LO with their IC50 values ranged from 6.1 ± 0.1 μM to 35.9 ± 0.3 μM. Their structure-activity relationships (SAR) and mechanisms of inhibitions were studied. This study provided potentially important information for further development of ISL derivatives as multifunctional agents for Alzheimer's disease (AD) treatment.

  4. Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line.

    PubMed Central

    Pearlstein, E; Salk, P L; Yogeeswaran, G; Karpatkin, S

    1980-01-01

    Several properties of 10 cell lines derived from the polyoma-induced PW20 Wistar-Furth rat renal sarcoma have been examined, including the ability of the tumor cells to metastasize spontaneously from subcutaneous sites in syngeneic hosts, the platelet-aggregating activity of material extracted by urea from the surface of cultured cells, the sialic acid content of the platelet-aggregating material, and the degree of sialylation of cell surface glycoconjugates in cultured cells. A correlation has been observed among all of these parameters. The results suggest a possible link between the degree of cell surface sialylation of tumor cells, their ability to aggregate platelets, and their ability to metastasize. PMID:6933486

  5. Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells.

    PubMed

    Wang, Qiuming; Yu, Xiang; Patal, Kunal; Hu, Rundong; Chuang, Steven; Zhang, Ge; Zheng, Jie

    2013-06-19

    The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils is regarded as one of the causative events in the pathogenesis of Alzheimer's disease (AD). Tanshinones extracted from Chinese herb Danshen (Salvia Miltiorrhiza Bunge) were traditionally used as anti-inflammation and cerebrovascular drugs due to their antioxidation and antiacetylcholinesterase effects. A number of studies have suggested that tanshinones could protect neuronal cells. In this work, we examine the inhibitory activity of tanshinone I (TS1) and tanshinone IIA (TS2), the two major components in the Danshen herb, on the aggregation and toxicity of Aβ1-42 using atomic force microscopy (AFM), thioflavin-T (ThT) fluorescence assay, cell viability assay, and molecular dynamics (MD) simulations. AFM and ThT results show that both TS1 and TS2 exhibit different inhibitory abilities to prevent unseeded amyloid fibril formation and to disaggregate preformed amyloid fibrils, in which TS1 shows better inhibitory potency than TS2. Live/dead assay further confirms that introduction of a very small amount of tanshinones enables protection of cultured SH-SY5Y cells against Aβ-induced cell toxicity. Comparative MD simulation results reveal a general tanshinone binding mode to prevent Aβ peptide association, showing that both TS1 and TS2 preferentially bind to a hydrophobic β-sheet groove formed by the C-terminal residues of I31-M35 and M35-V39 and several aromatic residues. Meanwhile, the differences in binding distribution, residues, sites, population, and affinity between TS1-Aβ and TS2-Aβ systems also interpret different inhibitory effects on Aβ aggregation as observed by in vitro experiments. More importantly, due to nonspecific binding mode of tanshinones, it is expected that tanshinones would have a general inhibitory efficacy of a wide range of amyloid peptides. These findings suggest that tanshinones, particularly TS1 compound, offer promising lead compounds with dual

  6. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  7. Inhibition of IAPP Aggregation and Toxicity by Natural Products and Derivatives

    PubMed Central

    Pithadia, Amit; Brender, Jeffrey R.; Fierke, Carol A.; Ramamoorthy, Ayyalusamy

    2016-01-01

    Fibrillar aggregates of human islet amyloid polypeptide, hIAPP, a pathological feature seen in some diabetes patients, are a likely causative agent for pancreatic beta-cell toxicity, leading to a transition from a state of insulin resistance to type II diabetes through the loss of insulin producing beta-cells by hIAPP induced toxicity. Because of the probable link between hIAPP and the development of type II diabetes, there has been strong interest in developing reagents to study the aggregation of hIAPP and possible therapeutics to block its toxic effects. Natural products are a class of compounds with interesting pharmacological properties against amyloids which have made them interesting targets to study hIAPP. Specifically, the ability of polyphenolic natural products, EGCG, curcumin, and resveratrol, to modulate the aggregation of hIAPP is discussed. Furthermore, we have outlined possible mechanistic discoveries of the interaction of these small molecules with the peptide and how they may mitigate toxicity associated with peptide aggregation. These abundantly found agents have been long used to combat diseases for many years and may serve as useful templates toward developing therapeutics against hIAPP aggregation and toxicity. PMID:26649317

  8. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOEpatents

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  9. The A53E α-synuclein pathological mutation demonstrates reduced aggregation propensity in vitro and in cell culture.

    PubMed

    Rutherford, Nicola J; Giasson, Benoit I

    2015-06-15

    Mutations in the gene that encodes α-synuclein (αS) are a known cause of Parkinson's disease. αS is also the major component of pathological inclusions that characterize this disorder and a spectrum of other neurodegenerative diseases termed synucleinopathies. The effects of the most recently identified αS mutation, A53E, on αS aggregation were studied in vitro and in cell culture models. The A53E mutation in αS impedes the formation of aggregated, amyloid protein in vitro compared to wild-type αS. Under certain conditions, A53E αS can still form elongated amyloid fibrils with similar morphology, but with thinner width compared to wild-type αS. Using amyloid seeding of αS in cell culture studies, we demonstrate that significantly less A53E αS could be induced to aggregate compared to wild-type αS, although the mutant protein was still able to form mature inclusions within some cells. Furthermore, expression of A53E αS enhanced toxicity in cells experiencing mitochondrial stress. These findings indicate that the A53E mutation in αS reduces the propensity of αS to aggregate both in vitro and in the cellular environment, and may lead to cellular toxicity through other mechanisms.

  10. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, João B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  11. Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture

    PubMed Central

    Modulevsky, Daniel J.; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E.

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment. PMID:24842603

  12. New Hydroxyquinoline-Based Derivatives as Potent Modulators of Amyloid-β Aggregations.

    PubMed

    Fu, Chin-Lan; Hsu, Li-Shin; Liao, Yung-Feng; Hu, Ming-Kuan

    2016-05-01

    Copper and zinc have been found to contribute to the burden of amyloid-β (Aβ) aggregations in neurodegenerative Alzheimer's disease (AD). Dysregulation of these metals leads to the generation of reactive oxygen species (ROS) and eventually results in oxidative damage and accumulation of the Aβ peptide, which are the key elements of the disease. Aiming to pursue the discovery of new modulators for the disease, we here rationally focused on conjugating the core hydroxyquinoline of the metal-protein attenuating compound PBT2 and the N-methylanilide analogous moiety of the Aβ imaging agent to build a new type of multi-target modulators of Aβ aggregations. We found that the N,N-dimethylanilinyl imines 7a, 8a, and the corresponding amines 7b, 8b exerted efficient inhibition of Cu(2+) - or Zn(2+) -induced Aβ aggregations and significant disassembly of metal-mediated Aβ aggregated fibrils. Further, 7a and 7b also exhibited significant ROC scavenging effects compared to PBT2. The results suggested that 7a and 7b are promising lead compounds for the development of a new therapy for AD. PMID:27027880

  13. Driving Cartilage Formation in High-Density Human Adipose-Derived Stem Cell Aggregate and Sheet Constructs Without Exogenous Growth Factor Delivery

    PubMed Central

    Dang, Phuong N.; Solorio, Loran D.

    2014-01-01

    An attractive cell source for cartilage tissue engineering, human adipose-derived stem cells (hASCs) can be easily expanded and signaled to differentiate into chondrocytes. This study explores the influence of growth factor distribution and release kinetics on cartilage formation within 3D hASC constructs incorporated with transforming growth factor-β1 (TGF-β1)-loaded gelatin microspheres. The amounts of microspheres, TGF-β1 concentration, and polymer degradation rate were varied within hASC aggregates. Microsphere and TGF-β1 loading concentrations were identified that resulted in glycosaminoglycan (GAG) production comparable to those of control aggregates cultured in TGF-β1-containing medium. Self-assembling hASC sheets were then engineered for the production of larger, more clinically relevant constructs. Chondrogenesis was observed in hASC-only sheets cultured with exogenous TGF-β1 at 3 weeks. Importantly, sheets with incorporated TGF-β1-loaded microspheres achieved GAG production similar to sheets treated with exogenous TGF-β1. Cartilage formation was confirmed histologically via observation of cartilage-like morphology and GAG staining. This is the first demonstration of the self-assembly of hASCs into high-density cell sheets capable of forming cartilage in the presence of exogenous TGF-β1 or with TGF-β1-releasing microspheres. Microsphere incorporation may bypass the need for extended in vitro culture, potentially enabling hASC sheets to be implanted more rapidly into defects to regenerate cartilage in vivo. PMID:24873753

  14. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.

    PubMed

    Sun, Yunxiang; Qian, Zhenyu; Wei, Guanghong

    2016-05-14

    Alzheimer's disease (AD) is associated with the pathological self-assembly of amyloid-β (Aβ) peptides into β-sheet enriched fibrillar aggregates. Aβ dimers formed in the initial step of Aβ aggregation were reported to be the smallest toxic species. Inhibiting the formation of β-sheet-rich oligomers and fibrils is considered as the primary therapeutic strategy for AD. Previous studies reported that fullerene derivatives strongly inhibit Aβ fibrillation. However, the underlying inhibitory mechanism remains elusive. As a first step to understand fullerene-modulated full-length Aβ aggregation, we investigated the conformational ensemble of the Aβ1-42 dimer with and without 1,2-(dimethoxymethano)fullerene (DMF) - a more water-soluble fullerene derivative - by performing a 340 ns explicit-solvent replica exchange molecular dynamics simulation. Our simulations show that although disordered states are the most abundant conformations of the Aβ1-42 dimer, conformations containing diverse extended β-hairpins are also populated. The first most-populated β-hairpins involving residues L17-D23 and A30-V36 strongly resemble the engineered β-hairpin which is a building block of toxic Aβ oligomers. We find that the interaction of DMFs with Aβ peptides greatly impedes the formation of such β-hairpins and inter-peptide β-sheets. Binding energy analyses demonstrate that DMF preferentially binds not only to the central hydrophobic motif LVFFA of the Aβ peptide as suggested experimentally, but also to the aromatic residues including F4 and Y10 and the C-terminal hydrophobic region I31-V40. This study reveals a complete picture of the inhibitory mechanism of full-length Aβ1-42 aggregation by fullerenes, providing theoretical insights into the development of drug candidates against AD.

  15. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

    PubMed

    Kou, S C; Lee, G; Poon, C S; Lai, W L

    2009-02-01

    This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.

  16. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

    PubMed

    Kou, S C; Lee, G; Poon, C S; Lai, W L

    2009-02-01

    This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes. PMID:18691863

  17. Aggregates of a hetero-oligophenylene derivative as reactors for the generation of palladium nanoparticles: a potential catalyst in the Sonogashira coupling reaction under aerial conditions.

    PubMed

    Walia, Preet Kamal; Pramanik, Subhamay; Bhalla, Vandana; Kumar, Manoj

    2015-12-18

    The utilization of Pd nanoparticles stabilized by aggregates of hetero-oligophenylene derivative 3 as an excellent catalyst in a copper/amine free Sonogashira coupling reaction under aerial conditions at room temperature has been demonstrated. PMID:26460180

  18. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification

    PubMed Central

    Dang, Phuong N.; Dwivedi, Neha; Phillips, Lauren M.; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D.; Murphy, William L.

    2016-01-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance This study demonstrates the regulation of chondrogenesis

  19. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.

    PubMed

    Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben

    2016-02-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis

  20. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix.

  1. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  2. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. PMID:21705136

  3. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    PubMed

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  4. Positive and negative aggregation responses to cultured human tumor cell lines among different normal individuals.

    PubMed

    Bastida, E; Ordinas, A; Jamieson, G A

    1982-01-01

    Platelets from approximately 50% (7/16) of normal individuals have been shown to have greater sensitivity to aggregation induced by critical threshold concentrations of three human tumor cell lines. These results may have implications for the genetics and epidemiology of human neoplastic disease.

  5. Design, synthesis of novel tryptophan derivatives for antiplatelet aggregation activity based on tripeptide pENW (pGlu-Asn-Trp).

    PubMed

    Xie, Zhouling; Feng, Sen; Wang, Ying; Cao, Chen; Huang, Jing; Chen, Yahui; Kong, Yi; Li, Zhiyu

    2015-09-18

    pENW, a three mer peptide derived from Agkistrodon acutus Guenther venom, has been found to be an antagonist of the GPIIb/IIIa receptor and shows antiplatelet aggregation activity. Based on pENW and a GPIIb/IIIa inhibitor Tirofiban, a series of tryptophan derivatives were designed, synthesized and evaluated for their antiplatelet aggregation activity induced by ADP. The most potent compound 87 was also tested for the bleeding time and antithrombotic activity in vivo in comparison with Tirofiban. The results indicated that 87 shows similar antiplatelet aggregation activity as Tirofiban to the aggregation of platelet induced by all of the four agonists, but has lower bleeding risk than Tirofiban, representing a promising lead compound for further study. PMID:26298494

  6. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    SciTech Connect

    Monnet-Tschudi, Florianne Hazekamp, Arno; Perret, Nicolas; Zurich, Marie-Gabrielle; Mangin, Patrice; Giroud, Christian; Honegger, Paul

    2008-04-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 {mu}M in single treatment and of 1 {mu}M and 2 {mu}M in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 {mu}M of THC or JWH 015, whereas the expression of TNF-{alpha} remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

  7. Biocompatibility of Accelerated Mineral Trioxide Aggregate on Stem Cells Derived from Human Dental Pulp.

    PubMed

    Kulan, Pinar; Karabiyik, Ozge; Kose, Gamze T; Kargul, Betul

    2016-02-01

    The aim of this study was to evaluate the effects of several additives on the setting time and cytotoxicity of accelerated-set mineral trioxide aggregate (MTA) on stem cells of human dental pulp. ProRoot white MTA (WMTA) (Dentsply Tulsa Dental, Johnson City, TN) was mixed with various additives including distilled water, 2.5% disodium hydrogen phosphate (Na2HPO4) (Merck, Darmstadt, Germany), K-Y Jelly (Johnson & Johnson, Markham, ON, Canada), and 5% and 10% calcium chloride (CaCl2) (Merck). The setting times were evaluated using a Vicat apparatus (Alsa Lab, Istanbul, Turkey). Human dental pulp stem cells were isolated and seeded into 48-well plates at 2 × 10(3) cells per well and incubated with MTA samples for 24 hours, 3 days, and 7 days. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. MTA mixed with 10% CaCl2 showed the lowest setting time (P < .05). According to the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium results on the 1st, 3rd, and 7th days, a statistically significant difference was found (P < .05) between MTA groups and the control group. MTA mixed with K-Y Jelly in all groups showed the lowest cell viability at all time points (P < .05). The cell viability of MTA mixed with distilled water, 5% CaCl2, 10% CaCl2, and Na2HPO4 increased significantly through time (P < .05). This in vitro study found MTA mixed with 5% and 10% CaCl2 and Na2HPO4 is biocompatible with dental pulp stem cells in terms of cell viability. Further in vitro and in vivo investigations are required to prove the clinical applications of MTA mixed with various additives.

  8. Design, synthesis, and evaluation of resveratrol derivatives as Aß(₁-₄₂) aggregation inhibitors, antioxidants, and neuroprotective agents.

    PubMed

    Lu, Chuanjun; Guo, Yueyan; Li, Jianheng; Yao, Meicun; Liao, Qiongfeng; Xie, Zhiyong; Li, Xingshu

    2012-12-15

    A series of novel resveratrol derivatives were designed, synthesised and evaluated as potential therapeutic agents for the treatment of Alzheimer's disease. Among these compounds, compound 7l, (E)-5-(4-(isopropylamino)styryl)benzene-1,3-diol, exhibited potent ß-amyloid aggregation inhibition activity, which was confirmed by a ThT fluorescence assay (71.65% at 20 μM) and transmission electron microscopy (TEM). Compound 7l also exhibited good antioxidant activity (4.12 Trolox equivalents in an oxygen radical absorbance capacity assay and a 37% reduction in reactive oxygen species in cells at 10 μM). The cytotoxicity analysis of compounds 7f, 7i, 7j and 7l indicated that these compounds have lower toxicities than resveratrol at 60 μM.

  9. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells

    SciTech Connect

    Chen, P.-Y.; Huang, Lynn L.H. . E-mail: lynn@mail.ncku.edu.tw; Hsieh, H.-J. . E-mail: hjhsieh@ntu.edu.tw

    2007-08-17

    For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs.

  10. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity

    PubMed Central

    Rudolph, Stephan; Klein, Antonia Nicole; Tusche, Markus; Schlosser, Christine; Elfgen, Anne; Brener, Oleksandr; Teunissen, Charlotte; Gremer, Lothar; Funke, Susanne Aileen; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein. PMID:26840229

  11. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    PubMed Central

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  12. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected.

  13. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected. PMID:26196242

  14. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells

    PubMed Central

    Hansen, Christian; Angot, Elodie; Bergström, Ann-Louise; Steiner, Jennifer A.; Pieri, Laura; Paul, Gesine; Outeiro, Tiago F.; Melki, Ronald; Kallunki, Pekka; Fog, Karina; Li, Jia-Yi; Brundin, Patrik

    2011-01-01

    Post-mortem analyses of brains from patients with Parkinson disease who received fetal mesencephalic transplants show that α-synuclein–containing (α-syn–containing) Lewy bodies gradually appear in grafted neurons. Here, we explored whether intercellular transfer of α-syn from host to graft, followed by seeding of α-syn aggregation in recipient neurons, can contribute to this phenomenon. We assessed α-syn cell-to-cell transfer using microscopy, flow cytometry, and high-content screening in several coculture model systems. Coculturing cells engineered to express either GFP– or DsRed-tagged α-syn resulted in a gradual increase in double-labeled cells. Importantly, α-syn–GFP derived from 1 neuroblastoma cell line localized to red fluorescent aggregates in other cells expressing DsRed–α-syn, suggesting a seeding effect of transmitted α-syn. Extracellular α-syn was taken up by cells through endocytosis and interacted with intracellular α-syn. Next, following intracortical injection of recombinant α-syn in rats, we found neuronal uptake was attenuated by coinjection of an endocytosis inhibitor. Finally, we demonstrated in vivo transfer of α-syn between host cells and grafted dopaminergic neurons in mice overexpressing human α-syn. In summary, intercellularly transferred α-syn interacts with cytoplasmic α-syn and can propagate α-syn pathology. These results suggest that α-syn propagation is a key element in the progression of Parkinson disease pathology. PMID:21245577

  15. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix. PMID:17315895

  16. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein

    PubMed Central

    Ahsan, Nuzhat; Mishra, Satyendra; Jain, Manish Kumar; Surolia, Avadhesha; Gupta, Sarika

    2015-01-01

    Accumulating evidence suggests that deposition of neurotoxic α-synuclein aggregates in the brain during the development of neurodegenerative diseases like Parkinson’s disease can be curbed by anti-aggregation strategies that either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol exhibits anti-amyloid activity but the use of this polyphenol is limited owing to its instability. As chemical modifications in curcumin confiscate this limitation, such efforts are intensively performed to discover molecules with similar but enhanced stability and superior properties. This study focuses on the inhibitory effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin isoxazole and their derivatives against α-synuclein aggregation, fibrillization and toxicity. Employing biochemical, biophysical and cell based assays we discovered that curcumin pyrazole (3) and its derivative N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only arresting fibrillization and disrupting preformed fibrils but also preventing formation of A11 conformation in the protein that imparts toxic effects. Compounds 3 and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant form of α-synuclein. These two analogues of curcumin described here may therefore be useful therapeutic inhibitors for the treatment of α-synuclein amyloidosis and toxicity in Parkinson’s disease and other synucleinopathies. PMID:25985292

  17. Effects of a garlic-derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets.

    PubMed

    Srivastava, K C; Tyagi, O D

    1993-08-01

    When garlic cloves are chopped or crushed several dialkyl thiosulfinates are rapidly formed by the action of the enzyme alliin lyase or alliinase (EC 4.4.1.4) on S(+)-alkyl-L-cysteine sulfoxides. Allicin (diallyl thiosulfinate or allyl 2-propene thiosulfinate) is the dominant thiosulfinate released. A variety of sulfur containing compounds are formed from allicin and other thiosulfinates depending on the way in which garlic is handled. One such compound identified recently is ajoene which has been reported to possess antithrombotic properties. We present here data on the antiplatelet properties of ajoene together with its effects on the metabolism of arachidonic acid (AA) in intact platelets. Thus, ajoene was found to inhibit platelet aggregation induced by AA, adrenaline, collagen, adenosine diphosphate (ADP) and calcium ionophore A23187; the nature of the inhibition was irreversible. In washed platelets stimulated by labelled arachidonate, ajoene inhibited the formation of thromboxane A2; 12-lipoxygenase product(s) were reduced at higher ajoene concentrations. This garlic-derived substance inhibited the incorporation of labelled AA into platelet phospholipids at higher concentration. In labelled platelets, on stimulation with either calcium ionophore A23187 or collagen, reduced amounts of thromboxane and 12-HETE (12-hydroxyeicosatetraenoic acid) were produced in ajoene-treated platelets compared to control platelets. This substance had no effect on the deacylation of platelet phospholipids. The results suggest that at least one of the mechanisms by which ajoene shows antiplatelet effects could be related to altered metabolism of AA.

  18. Resource recycling through artificial lightweight aggregates from sewage sludge and derived ash using boric acid flux to lower co-melting temperature.

    PubMed

    Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei

    2012-02-01

    This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.

  19. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    PubMed

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  20. Identification of a small, naked virus in tumor-like aggregates in cell lines derived from a green turtle, Chelonia mydas, with fibropapillomas

    USGS Publications Warehouse

    Lu, Y.; Aguirre, A.A.; Work, T.M.; Balazs, G.H.; Nerurkar, V.R.; Yanagihara, R.

    2000-01-01

    Serial cultivation of cell lines derived from lung, testis, periorbital and tumor tissues of a green turtle (Chelonia mydas) with fibropapillomas resulted in the in vitro formation of tumor-like cell aggregates, ranging in size from 0.5 to 2.0 mm in diameter. Successful induction of tumor-like aggregates was achieved in a cell line derived from lung tissue of healthy green turtles, following inoculation with cell-free media from these tumor-bearing cell lines, suggesting the presence of a transmissible agent. Thin-section electron microscopy of the cell aggregates revealed massive collagen deposits and intranuclear naked viral particles, measuring 50??5 nm in diameter. These findings, together with the morphological similarity between these tumor-like cell aggregates and the naturally occurring tumor, suggest a possible association between this novel virus and the disease. Further characterization of this small naked virus will clarify its role in etiology of green turtle fibropapilloma, a life-threatening disease of this endangered marine species. Copyright (C) 2000 Elsevier Science B.V.

  1. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  2. Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity.

    PubMed

    Frenkel-Pinter, Moran; Tal, Sharon; Scherzer-Attali, Roni; Abu-Hussien, Malak; Alyagor, Idan; Eisenbaum, Tal; Gazit, Ehud; Segal, Daniel

    2016-01-01

    Tauopathies, such as Alzheimer's disease (AD), are a group of disorders characterized neuropathologically by intracellular toxic accumulations of abnormal protein aggregates formed by misfolding of the microtubule-associated protein tau. Since protein self-assembly appears to be an initial key step in the pathology of this group of diseases, intervening in this process can be both a prophylactic measure and a means for modifying the course of the disease for therapeutic purposes. We and others have shown that aromatic small molecules can be effective inhibitors of aggregation of various protein assemblies, by binding to the aromatic core in aggregation-prone motifs and preventing their self-assembly. Specifically, we have designed a series of small aromatic naphthoquinone-tryptophan hybrid molecules as candidate aggregation inhibitors of β -sheet based assembly and demonstrated their efficacy toward inhibiting aggregation of the amyloid-β peptide, another culprit of AD, as well as of various other aggregative proteins involved in other protein misfolding diseases. Here we tested whether a leading naphthoquinone-tryptophan hybrid molecule, namely NQTrp, can be repurposed as an inhibitor of the aggregation of the tau protein in vitro and in vivo. We show that the molecule inhibits the in vitro assembly of PHF6, the aggregation-prone fragment of tau protein, reduces hyperphosphorylated tau deposits and ameliorates tauopathy-related behavioral defect in an established transgenic Drosophila model expressing human tau. We suggest that NQTrp, or optimized versions of it, could act as novel disease modifying drugs for AD and other tauopathies.

  3. Rapidly derived colorectal cancer cultures recapitulate parental cancer characteristics and enable personalized therapeutic assays.

    PubMed

    Ashley, Neil; Jones, Matthew; Ouaret, Djamila; Wilding, Jenny; Bodmer, Walter F

    2014-09-01

    We have developed a simple procedure for deriving pure cultures of growing cancer cells from colorectal cancers, including material refrigerated overnight, for pathological characterization and cytotoxicity assays. Forty-six cancers were processed and cultures set up under varying culture conditions. Use of a Rho kinase (ROCK1) inhibitor markedly increased culture survival, resulting in 80% of samples growing in culture for at least 1 month and beyond. Overnight refrigeration of samples before culture initiation had little effect on success rates, paving the way for cultures to be established for samples collected over wide geographical areas, such as those for clinical trials. Primary cultures demonstrated good correlation for differentiation markers compared to parent cancers, and were highly dynamic in 3D culture. In Matrigel, many colonies formed central lumens, indicating the presence of stem-like cells. Viable colonies in these cultures recapitulated the in vivo generation of carcinoembryonic antigen (CEA)-positive necrotic/apoptotic debris, much of which was derived from abnormal vacuolated dynamic 'bubble cells' that have not previously been described. Although bubble cells morphologically resembled signet ring cells, a rare cancer subtype, immunostaining suggested that they were most likely derived from terminally differentiated enterocytes. Micro-assays showed that drug toxicity could be measured in these cultures within hours and with sensitivity down to a few hundred cells. Primary cultures derived by our method provide valid in vitro avatars for studying the pathology of cancers in vitro and are amenable to pre-clinical drug testing, paving the way for personalized cancer treatment.

  4. Derivation, culture, and characterization of VUB hESC lines.

    PubMed

    Mateizel, Ileana; Spits, Claudia; De Rycke, Martine; Liebaers, Inge; Sermon, Karen

    2010-04-01

    In this report, we present the derivation and characterization of 15 hESC lines established at the Vrije Universiteit Brussel, Belgium in collaboration with the Universitair Ziekenhuis Brussel, Belgium, using surplus in vitro fertilization embryos and embryos carrying monogenic disorders donated for research. Four lines were derived from blastocyst-stage embryos presumed to be genetically normal, and 11 hESC lines were obtained from embryos shown to carry genetic mutations by preimplantation genetic diagnosis. All the lines express markers of pluripotency as determined by immunocytochemistry and RT-PCR, and formed teratomas when injected into SCID mice. All VUB hESC lines, except for VUB17, are reported in the European hESC registry and are available upon request after signing a Material Transfer Agreement from the VUB (contact person: Prof. Dr. Karen Sermon; Karen.Sermon@uzbrussel.be). PMID:20224973

  5. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation

    PubMed Central

    Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin

    2015-01-01

    Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180

  6. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation

    PubMed Central

    Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin

    2015-01-01

    Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180

  7. Proliferative effects of humoral factors derived from neuroblastoma cells on cultured astrocytes.

    PubMed

    Ohashi, M; Amano, S; Hazama, F; Handa, J

    1994-08-29

    The proliferative effects of humoral factors released from N18-RE105 neuroblastoma (NRE) cells on cultured astrocytes were assessed in separate co-culture and conditioned medium studies. In both experimental conditions, the humoral factors derived from neuroblastoma cells had growth-promoting effects on C6 glioma cells of astroglial lineage, but not on primary cultured astrocytes from new-born rat cerebral cortex. It is assumed that neuron-derived humoral factors include astroglial growth factors and that differences in responsiveness between two kinds of cells are probably related to the stages of astroglial maturation processes.

  8. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    PubMed

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  9. The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells.

    PubMed

    Bettendorff, L

    1994-05-26

    Thiamine transport in cultured neuroblastoma cells is mediated by a high-affinity carrier (KM = 40 nM). In contrast, the uptake of the more hydrophobic sulbutiamine (isobutyrylthiamine disulfide) is unsaturable and its initial transport rate is 20-times faster than for thiamine. In the cytoplasm, sulbutiamine is rapidly hydrolyzed and reduced to free thiamine, the overall process resulting in a rapid and concentrative thiamine accumulation. Incorporation of radioactivity from [14C]thiamine or [14C]sulbutiamine into intracellular thiamine diphosphate is slow in both cases. Despite the fact that the diphosphate is probably the direct precursor for both thiamine monophosphate and triphosphate, the specific radioactivity increased much faster for the latter two compounds than for thiamine diphosphate. This suggests the existence of two pools of thiamine diphosphate, the larger one having a very slow turnover (about 17 h); a much smaller, rapidly turning over pool would be the precursor of thiamine mono- and triphosphate. The turnover time for thiamine triphosphate could be estimated to be 1-2 h. When preloading the cells with [14C]sulbutiamine was followed by a chase with the same concentration of the unlabeled compound, the specific radioactivities of thiamine and thiamine monophosphate decreased exponentially as expected, but labeling of the diphosphate continued to increase slowly. Specific radioactivity of thiamine triphosphate increased first, but after 30 min it began to slowly decrease. These results show for the first time the existence of distinct thiamine diphosphate pools in the same homogeneous cell population. They also suggest a complex compartmentation of thiamine metabolism. PMID:8186267

  10. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses

    PubMed Central

    Åslund, Andreas; Sigurdson, Christina J.; Klingstedt, Therése; Grathwohl, Stefan; Bolmont, Tristan; Dickstein, Dara L.; Glimsdal, Eirik; Prokop, Stefan; Lindgren, Mikael; Konradsson, Peter; Holtzman, David M.; Hof, Patrick R.; Heppner, Frank L.; Gandy, Samuel; Jucker, Mathias; Aguzzi, Adriano; Hammarström, Per; Nilsson, K. Peter R.

    2010-01-01

    Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, showed conformation-dependent optical properties and could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Aβ- assemblies during in vitro fibrillation of Aβ peptides. In brain tissue samples, Aβ deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8), indicating that p-FTAA detects all the immuno-positive aggregated proteinaceous species in Alzheimer disease, but with significantly shorter imaging time (100 fold) compared to immunofluorescence. In addition, a patchy islet-like staining of individual Aβ plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA, suggesting that pre-fibrillar species are likely an intrinsic component of Aβ plaques in human brain. The major hallmarks of Alzheimer’s disease, namely Aβ aggregates versus NFTs could also be distinguished due to distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Aβ−tau interactions and pathogenesis both ex vivo and in vivo. PMID:19624097

  11. Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer's disease.

    PubMed

    Huang, Ming; Xie, Sai-Sai; Jiang, Neng; Lan, Jin-Shuai; Kong, Ling-Yi; Wang, Xiao-Bing

    2015-02-01

    A series of coumarin derivatives were designed, synthesized, and evaluated as novel multifunctional agents against Alzheimer's disease (AD). In vitro studies showed that most of these compounds exhibited significant potency to inhibit hMAO-B selectively and self-induced Aβ1-42 aggregation. In particular, compound 13 presented the greatest potential to inhibit hMAO-B (IC50=0.081μM, SI >1234) and good inhibition of Aβ1-42 aggregation (52.9% at 20μM). Moreover, compound 13 could function as a metal-chelator, penetrate the blood-brain barrier (BBB) and show low cell toxicity in rat pheochromocytoma (PC12) and SH-SY5Y cells. Taken together, these results suggested that compound 13 might be a promising multifunctional agent for AD treatment. PMID:25542589

  12. Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer's disease.

    PubMed

    Huang, Ming; Xie, Sai-Sai; Jiang, Neng; Lan, Jin-Shuai; Kong, Ling-Yi; Wang, Xiao-Bing

    2015-02-01

    A series of coumarin derivatives were designed, synthesized, and evaluated as novel multifunctional agents against Alzheimer's disease (AD). In vitro studies showed that most of these compounds exhibited significant potency to inhibit hMAO-B selectively and self-induced Aβ1-42 aggregation. In particular, compound 13 presented the greatest potential to inhibit hMAO-B (IC50=0.081μM, SI >1234) and good inhibition of Aβ1-42 aggregation (52.9% at 20μM). Moreover, compound 13 could function as a metal-chelator, penetrate the blood-brain barrier (BBB) and show low cell toxicity in rat pheochromocytoma (PC12) and SH-SY5Y cells. Taken together, these results suggested that compound 13 might be a promising multifunctional agent for AD treatment.

  13. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    PubMed

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization.

  14. Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

    PubMed

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K; Karimi, Tahereh; Jabbari, Esmaiel

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  15. Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

    PubMed

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K; Karimi, Tahereh; Jabbari, Esmaiel

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  16. Experimental and Computational Investigation of the Effect of Hydrophobicity on Aggregation and Osteoinductive Potential of BMP-2-Derived Peptide in a Hydrogel Matrix

    PubMed Central

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K.; Karimi, Tahereh

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73–92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005–0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  17. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix.

    PubMed

    Zhang, Jidong; Hatakeyama, Jun; Eto, Ko; Abe, Shin-Ichi

    2014-09-01

    Male gonad development is initiated by the aggregation of pre-Sertoli cells (SCs), which surround germ cells to form cords. Several attempts to reconstruct testes from dissociated testicular cells have been made; however, only very limited morphogenesis beyond seminiferous cord formation has been achieved. Therefore, we aimed to reconstruct seminiferous tubules using a 3-dimensional (D) re-aggregate culture of testicular cells, which were dissociated from 6-dpp neonatal mice, inside a collagen matrix. We performed a short-term culture (for 3 days) and a long-term culture (up to 3 wks). The addition of KnockOut Serum Replacement (KSR) promoted (1) the enlargement of SC re-aggregates; (2) the attachment of peritubular myoid (PTM) cells around the SC re-aggregates; (3) the sorting of germ cells inside, and Leydig cells outside, seminiferous cord-like structures; (4) the alignment of SC polarity inside a seminiferous cord-like structure relative to the basement membrane; (5) the differentiation of SCs (the expression of the androgen receptor); (6) the formation of a blood-testis-barrier between the SCs; (7) SC elongation and lumen formation; and (8) the proliferation of SCs and spermatogonia, as well as the differentiation of spermatogonia into primary spermatocytes. Eventually, KSR promoted the formation of seminiferous tubule-like structures, which accompanied germ cell differentiation. However, these morphogenetic events did not occur in the absence of KSR. This in vitro system presents an excellent model with which to identify the possible factors that induce these events and to analyze the mechanisms that underlie cellular interactions during testicular morphogenesis and germ cell differentiation.

  18. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA

    PubMed Central

    Wei, Zhiyun; Batagov, Arsen O.; Carter, David R. F.; Krichevsky, Anna M.

    2016-01-01

    Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here, using RNA sequencing, we demonstrate that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, possibly due to the confounding effect of the FBS. Analysis of publically available exRNA datasets supports the notion of FBS contamination. Furthermore, FBS transcripts can be taken up by cultured cells and affect the results of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA. PMID:27503761

  19. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA.

    PubMed

    Wei, Zhiyun; Batagov, Arsen O; Carter, David R F; Krichevsky, Anna M

    2016-01-01

    Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here, using RNA sequencing, we demonstrate that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, possibly due to the confounding effect of the FBS. Analysis of publically available exRNA datasets supports the notion of FBS contamination. Furthermore, FBS transcripts can be taken up by cultured cells and affect the results of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA. PMID:27503761

  20. [Palm oil derivatives with different concentration of palmitic acid and antioxidants. Effects upon plasmatic lipids and platelet aggregation].

    PubMed

    Scorza, T; Martucci, A; Torrealba de Ron, A T

    1999-03-01

    It was evaluated the effect of diet rich with cholesterol (0.1%) and different concentration of palmitic acid (16:0) and antioxidants (vitamin C, alpha tocopherol and retinol) upon plasmatic lipids and platelet aggregability in rabbits. The animals were distributed in three groups: I. Standard chow meal (Rp Conejarina) + cholesterol (chol) 0.1%; II. Standard chow meal + chol 0.1% + semipurified palm oil 10% (16:0 = 39.8%, oleic acid 48.7%, linoleic acid 11.4%, retinol 7.3 ug/dL, alpha tocopherol 157.6 ug/dL; III. Standard chow meal + chol 0.1% + crude palm oil 10% (16:0 = 45.3%, oleic acid 46.3%, linoleic acid 7.9%, retinol 96.4 ug/dL, alpha tocopherol 322.8 ug/dL). Monthly determination of plasmatic lipids were done (Enzymatic methods) and at ten months platelet aggregability with ADP, plasmatic vitamin C, retinol and, alpha tocopherol determination were done. Total plasmatic cholesterol (TC) and LDLc increased significantly in the three groups of animals. Significant differences between groups were not found. Platelet aggregability was lower in the animals fed with palmitic acid rich diet (groups II and III) (P = 0.002 and 0.001). Retinol, alpha tocopherol plasmatic concentrations revealed no significant differences. Vitamin C in the groups I was lower than groups II and III (P < 0.05 < 0.02). In this study hypercholesterolemic rabbits fed with rich diets (crude and semipurified) had lower platelet aggregability without changes in plasmatic lipids concentrations.

  1. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates.

    PubMed

    Martins, André F; Oliveira, Alexandre C; Morfin, Jean-François; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2016-03-01

    We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature (17)O NMR and NMRD study allowed the assessment of the water exchange rate, k ex (298) = 9.7 × 10(6) s(-1), about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd(3+) centers as evidenced by higher relaxivities at 20-60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1-40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M(-1) for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1-40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1-40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils. PMID:26613605

  2. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates.

    PubMed

    Martins, André F; Oliveira, Alexandre C; Morfin, Jean-François; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2016-03-01

    We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature (17)O NMR and NMRD study allowed the assessment of the water exchange rate, k ex (298) = 9.7 × 10(6) s(-1), about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd(3+) centers as evidenced by higher relaxivities at 20-60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1-40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M(-1) for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1-40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1-40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils.

  3. Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo.

    PubMed

    Więckowska, Anna; Więckowski, Krzysztof; Bajda, Marek; Brus, Boris; Sałat, Kinga; Czerwińska, Paulina; Gobec, Stanislav; Filipek, Barbara; Malawska, Barbara

    2015-05-15

    Due to the complex nature of Alzheimer's disease, multi-target-directed ligand approaches are one of the most promising strategies in the search for effective treatments. Acetylcholinesterase, butyrylcholinesterase and β-amyloid are the predominant biological targets in the search for new anti-Alzheimer's agents. Our aim was to combine both anticholinesterase and β-amyloid anti-aggregation activities in one molecule, and to determine the therapeutic potential in vivo. We designed and synthesized 28 new compounds as derivatives of donepezil that contain the N-benzylpiperidine moiety combined with the phthalimide or indole moieties. Most of these test compounds showed micromolar activities against cholinesterases and aggregation of β-amyloid, combined with positive results in blood-brain barrier permeability assays. The most promising compound 23 (2-(8-(1-(3-chlorobenzyl)piperidin-4-ylamino)octyl)isoindoline-1,3-dione) is an inhibitor of butyrylcholinesterase (IC50=0.72 μM) that has β-amyloid anti-aggregation activity (72.5% inhibition at 10 μM) and can cross the blood-brain barrier. Moreover, in an animal model of memory impairment induced by scopolamine, the activity of 23 was comparable to that of donepezil. The selected compound 23 is an excellent lead structure in the further search for new anti-Alzheimer's agents. PMID:25868744

  4. Multitarget-directed benzylideneindanone derivatives: anti-β-amyloid (Aβ) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against Alzheimer's disease.

    PubMed

    Huang, Ling; Lu, Chuanjun; Sun, Yang; Mao, Fei; Luo, Zonghua; Su, Tao; Jiang, Huailei; Shan, Wenjun; Li, Xingshu

    2012-10-11

    A novel series of benzylideneindanone derivatives were designed, synthesized, and evaluated as multitarget-directed ligands against Alzheimer's disease. The in vitro studies showed that most of the molecules exhibited a significant ability to inhibit self-induced β-amyloid (Aβ(1-42)) aggregation (10.5-80.1%, 20 μM) and MAO-B activity (IC(50) of 7.5-40.5 μM), to act as potential antioxidants (ORAC-FL value of 2.75-9.37), and to function as metal chelators. In particular, compound 41 had the greatest ability to inhibit Aβ(1-42) aggregation (80.1%), and MAO-B (IC(50) = 7.5 μM) was also an excellent antioxidant and metal chelator. Moreover, it is capable of inhibiting Cu(II)-induced Aβ(1-42) aggregation and disassembling the well-structured Aβ fibrils. These results indicated that compound 41 is an excellent multifunctional agent for the treatment of AD.

  5. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres.

    PubMed

    Myllymäki, Teemu T T; Nonappa; Yang, Hongjun; Liljeström, Ville; Kostiainen, Mauri A; Malho, Jani-Markus; Zhu, X X; Ikkala, Olli

    2016-09-14

    We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions. PMID:27491728

  6. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres.

    PubMed

    Myllymäki, Teemu T T; Nonappa; Yang, Hongjun; Liljeström, Ville; Kostiainen, Mauri A; Malho, Jani-Markus; Zhu, X X; Ikkala, Olli

    2016-09-14

    We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions.

  7. Enhanced Efficacy of Human Brain-Derived Neural Stem Cells by Transplantation of Cell Aggregates in a Rat Model of Parkinson's Disease

    PubMed Central

    Shin, Eun Sil; Hwang, Onyou; Hwang, Yu-Shik; Suh, Jun-Kyo Francis; Chun, Young Il

    2014-01-01

    Objective Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. Methods Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[18F]-fluoro-D-glucose ([18F]-FDG) and [18F]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([18F]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. Results The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [18F]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human β2 microglobulin (a human cell marker) positive cells were visualized at the transplant site. Conclusion These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine. PMID:25535514

  8. Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization.

    PubMed

    Raju, Murugesan; Mooney, Brian P; Thakkar, Kavi M; Giblin, Frank J; Schey, Kevin L; Sharma, K Krishna

    2015-03-01

    Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways.

  9. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation.

    PubMed

    Cheruvara, Harish; Allen-Baume, Victoria L; Kad, Neil M; Mason, Jody M

    2015-03-20

    Aggregation of α-synuclein (α-syn) into toxic fibrils is a pathogenic hallmark of Parkinson disease (PD). Studies have focused largely on residues 71-82, yet most early-onset mutations are located between residues 46 and 53. A semirationally designed 209,952-member library based entirely on this region was constructed, containing all wild-type residues and changes associated with early-onset PD. Intracellular cell survival screening and growth competition isolated a 10-residue peptide antagonist that potently inhibits α-syn aggregation and associated toxicity at a 1:1 stoichiometry. This was verified using continuous growth measurements and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity studies. Atomic force microscopy and circular dichroism on the same samples showed a random-coil structure and no oligomers. A new region of α-syn for inhibitor targeting has been highlighted, together with the approach of using a semirational design and intracellular screening. The peptides can then be used as candidates for modification in drugs capable of slowing or even preventing the onset of PD.

  10. Intracellular Screening of a Peptide Library to Derive a Potent Peptide Inhibitor of α-Synuclein Aggregation*

    PubMed Central

    Cheruvara, Harish; Allen-Baume, Victoria L.; Kad, Neil M.; Mason, Jody M.

    2015-01-01

    Aggregation of α-synuclein (α-syn) into toxic fibrils is a pathogenic hallmark of Parkinson disease (PD). Studies have focused largely on residues 71–82, yet most early-onset mutations are located between residues 46 and 53. A semirationally designed 209,952-member library based entirely on this region was constructed, containing all wild-type residues and changes associated with early-onset PD. Intracellular cell survival screening and growth competition isolated a 10-residue peptide antagonist that potently inhibits α-syn aggregation and associated toxicity at a 1:1 stoichiometry. This was verified using continuous growth measurements and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity studies. Atomic force microscopy and circular dichroism on the same samples showed a random-coil structure and no oligomers. A new region of α-syn for inhibitor targeting has been highlighted, together with the approach of using a semirational design and intracellular screening. The peptides can then be used as candidates for modification in drugs capable of slowing or even preventing the onset of PD. PMID:25616660

  11. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Ma, Jianbiao; Gao, Hui

    2015-12-30

    Characteristic aggregation-induced quenching of π-fluorophores imposed substantial hindrance to their utilization in nanomedicine for insight into microscopic intracellular trafficking of therapeutic payload. To address this obstacle, we attempted to introduce a novel aggregation-induced emission (AIE) fluorophore into the cationic polymer, which was further used for formulation of a gene delivery carrier. Note that the selective restriction of the intramolecular rotation of the AIE fluorophore through its covalent bond to the polymer conduced to immense AIE. Furthermore, DNA payload labeled with the appropriate fluorophore as the Förster resonance energy transfer (FRET) acceptor verified a facile strategy to trace intracellular DNA releasing activity relying on the distance limitation requested by FRET (AIE fluorophore as FRET donor). Moreover, the hydrophobic nature of the AIE fluorophore appeared to promote colloidal stability of the constructed formulation. Together with other chemistry functionalization strategies (including endosome escape), the ultimate formulation exerted dramatic gene transfection efficiency. Hence, this report manifested a first nanomedicine platform combining AIE and FRET for microscopic insight into DNA intracellular trafficking activity. PMID:26634294

  12. 2-Alkynyl derivatives of adenosine-5'-N-ethyluronamide: selective A2 adenosine receptor agonists with potent inhibitory activity on platelet aggregation.

    PubMed

    Cristalli, G; Volpini, R; Vittori, S; Camaioni, E; Monopoli, A; Conti, A; Dionisotti, S; Zocchi, C; Ongini, E

    1994-05-27

    A series of new 2-alkynyl and 2-cycloalkynyl derivatives of adenosine-5'-N-ethyluronamide (NECA) and of N-ethyl-1'-deoxy-1'-(6-amino-2-hexynyl-9H-purin-9-yl)-beta-D- ribofuranuronamide (1, HE-NECA), bearing hydroxy, amino, chloro, and cyano groups in the side chain, were synthesized. The compounds were studied in binding and functional assays to assess their potency for the A2 compared to A1 adenosine receptor. The presence of an alpha-hydroxyl group in the alkynyl chain of NECA derivatives accounts for the A2 agonist potency, leading to compounds endowed with sub-nanomolar affinity in binding studies. However, these analogues also possess good A1 receptor affinity resulting in low A2 selectivity. From functional experiments the 4-hydroxy-1-butynyl (6) and the 4-(2-tetrahydro-2H-pyranyloxy)-1-butynyl (16) derivatives appear to be very potent in inducing vasorelaxation without appreciable effect on heart rate. The new compounds were also tested as inhibitors of platelet aggregation induced by ADP. Introduction of an alpha-hydroxyl group in the alkynyl side chain caused a greater increase in antiaggregatory activity than either NECA or HE-NECA, resulting in the most potent inhibitors of platelet aggregation so far known in the nucleoside series. The presence of an alpha-quaternary carbon such as the 3-hydroxy-3,5-dimethyl-1-hexynyl (12) and the 3-hydroxy-3-phenyl-1-butynyl (15) derivatives markedly reduced the antiaggregatory potency without affecting the A2 affinity. The hydrophobicity index (k') of the new nucleosides barely correlated with the binding data, whereas high k' values were associated with increased A2 vs A1 selectivity but with reduced activity in all functional assays. Some of the compounds synthesized possess interesting pharmacological properties. Compounds having an appropriate balance between vasorelaxation and antiplatelet activity, if confirmed in vivo, deserve further development for the treatments of cardiovascular disorders.

  13. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  14. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

    PubMed

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm(2)). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  15. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

    PubMed

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-06-09

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm(2)). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light.

  16. Direct Conversion of Pluripotent Human Embryonic Stem Cells Under Defined Culture Conditions into Human Neuronal or Cardiomyocyte Cell Therapy Derivatives.

    PubMed

    Parsons, Xuejun H

    2016-01-01

    Developing novel strategies for well-controlled efficiently directing pluripotent human embryonic stem cells (hESCs) exclusively and uniformly towards clinically relevant cell types in a lineage-specific manner is not only crucial for unveiling the molecular and cellular cues that direct human embryogenesis but also vital to harnessing the power of hESC biology for tissue engineering and cell-based therapies. Conventional hESC differentiation methods require uncontrollable simultaneous multi-lineage differentiation of pluripotent cells, which yield embryoid bodies (EB) or aggregates consisting of a mixed population of cell types of three embryonic germ layers, among which only a very small fraction of cells display targeted differentiation, impractical for commercial and clinical applications. Here, a protocol for lineage-specific differentiation of hESCs, maintained under defined culture systems, direct from the pluripotent stage using small-molecule induction exclusively and uniformly to a neural or a cardiac lineage is described. Lineage-specific differentiation of pluripotent hESCs by small-molecule induction enables well-controlled highly efficient direct conversion of nonfunctional pluripotent hESCs into a large supply of high-purity functional human neuronal or cardiomyocyte cell therapy derivatives for commercial and therapeutic uses.

  17. Skin punch biopsy explant culture for derivation of primary human fibroblasts.

    PubMed

    Vangipuram, Malini; Ting, Dennis; Kim, Sam; Diaz, Robert; Schüle, Birgitt

    2013-01-01

    Tissues and cell lines derived from an individual with disease are ideal sources to study disease-related cellular phenotypes. Patient-derived fibroblasts in this protocol have been successfully used in the derivation of induced pluripotent stem cells to model disease(1). Early passages of these fibroblasts can also be used for cell-based functional assays to study specific disease pathways, mechanisms(2) and subsequent drug screening approaches. The advantage of the presented protocol over enzymatic procedures are 1) the reproducibility of the technique from small amounts of tissue derived from older patients, e.g. patients affected with Parkinson's disease, 2) the technically simple approach over more challenging methodologies using enzymatic treatments, and 3) the time consideration: this protocol takes 15-20 min and can be performed immediately after biopsy arrival. Enzymatic treatments can take up to 4 hr and have the problems of overdigestion, reduction of cell viability and subsequent attachment of cells when not handled properly. This protocol describes the dissection and preparation of a 4-mm human skin biopsy for derivation of a fibroblast culture and has a very high success rate which is important when dealing with patient-derived tissue samples. In this culture, keratinocytes migrate out of the biopsy tissue within the first week after preparation. Fibroblasts appear 7-10 days after the first outgrowth of keratinocytes. DMEM high glucose media supplemented with 20% FBS favors the growth of fibroblasts over keratinocytes and fibroblasts will overgrow the keratinocytes. After 2 passages keratinocytes have been diluted out resulting in relatively homogenous fibroblast cultures which expresses the fibroblast marker SERPINH1 (HSP-47). Using this approach, 15-20 million fibroblasts can be derived in 4-8 weeks for cell banking. The skin dissection takes about 15-20 min, cells are then monitored once a day under the microscope, and media is changed every 2

  18. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    PubMed Central

    Fereydouni, Bentolhoda; Salinas-Riester, Gabriela; Heistermann, Michael; Dressel, Ralf; Lewerich, Lucia; Drummer, Charis; Behr, Rüdiger

    2016-01-01

    We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripotent stem cell markers including OCT4A (POU5F1). This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs). OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes. PMID:26664406

  19. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    PubMed Central

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-01-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts. PMID:27311788

  20. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  1. Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-rich plasma gel.

    PubMed

    Chatterjea, Anindita; Yuan, Huipin; Fennema, Eelco; Burer, Ruben; Chatterjea, Supriyo; Garritsen, Henk; Renard, Auke; van Blitterswijk, Clemens A; de Boer, Jan

    2013-02-01

    There is a rise in the popularity of arthroscopic procedures in orthopedics. However, the majority of cell-based bone tissue-engineered constructs (TECs) rely on solid preformed scaffolding materials, which require large incisions and extensive dissections for placement at the defect site. Thus, they are not suitable for minimally invasive techniques. The aim of this study was to develop a clinically relevant, easily moldable, bone TEC, amenable to minimally invasive techniques, using human mesenchymal stromal cells (hMSCs) and calcium phosphate microparticles in combination with an in situ forming platelet-rich plasma gel obtained from human platelets. Most conventional TECs rely on seeding and culturing single-cell suspensions of hMSCs on scaffolds. However, for generating TECs amenable to the minimally invasive approach, it was essential to aggregate the hMSCs in vitro before seeding them on the scaffolds as unaggregated MSCs did not generate any bone. Twenty four hours of in vitro aggregation was determined to be optimal for maintaining cell viability in vitro and bone formation in vivo. Moreover, no statistically significant difference was observed in the amount of bone formed when the TECs were implanted via an open approach or a minimally invasive route. TECs generated using MSCs from three different human donors generated new bone through the minimally invasive route in a reproducible manner, suggesting that these TECs could be a viable alternative to preformed scaffolds employed through an open surgery for treating bone defects.

  2. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  3. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  4. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  5. Generation of Islet-like Cell Aggregates from Human Adipose Tissue-derived Stem Cells by Lentiviral Overexpression of PDX-1

    PubMed Central

    Bahrebar, M.; Soleimani, M.; Karimi, M. H.; Vahdati, A.; Yaghobi, R.

    2015-01-01

    Background: Pancreatic duodenal homeobox1 (PDX-1) is a transcription factor that is important in regulating pancreas development and maintaining β-cell function. β-cell replacement is an effective approach for the treatment of type 1 diabetes. Human adipose-mesenchymal stem cells (hAMSCs) are the ideal population cells for differentiating into insulin-producing cells. Objective: To determine if islet-like cell aggregates production could be generated from hAMSCs by lentiviral overexpression of PDX-1. Methods: After isolation of hAMSCs, characteristics of these cells were identified by flow-cytometic analysis and multilineage differentiation studies. PDX-1 gene delivered into hAMSCs through lentiviral vector for differentiating hAMSCs into insulin-producing cells (IPCs) at the utilized protocol for 14 days. Characteristics of IPCs were evaluated by immunocytofluorescence, dithizone staining, and quantitative reverse transcription PCR. In response to high glucose medium, insulin release was detected by chemiluminescence enzyme immunoassay. Results: The islet-like cell aggregates appeared about 10 days after introduction of PDX-1 into hAMSCs. PDX-1 induced its own expression (auto-induction), a number of islet-related genes such as Ngn3, Nkx2-2, and insulin. The insulin-positive cells were detected in the PDX-1 transduced cells. In response to glucose challenge test, secretion of insulin hormone in the medium with high glucose concentration significantly increased in the PDX-1-transduced cells related to medium with low glucose concentration. Conclusion: Introduction of lentiviral PDX-1 significantly induces hAMSCs to differentiate into islet-like cell aggregates, which may provide a source of adipose stem cells-derived insulin-producing cells for cell replacement therapy in type 1 diabetes. PMID:26082830

  6. Effect of salinity on methanogenic propionate degradation by acclimated marine sediment-derived culture.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-12-01

    Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl.

  7. Colloidal Properties of Aqueous Fullerenes: Isoelectric Points and Aggregation Kinetics of C60 and C60 Derivatives

    EPA Science Inventory

    Aqueous colloidal suspensions of C-60 (aqu/C-60) and the C-60 derivatives PCBM ([6,6]-phenyl C-61-butyric acid methyl ester) and the corresponding butyl and octyl esters, PCBB and PCBO (aqu/PCB-R, where R is an alkyl group), were produced by stirring in double deionized water for...

  8. Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing.

    PubMed

    Gilbert, Ashley N; Shevin, Rachael S; Anderson, Joshua C; Langford, Catherine P; Eustace, Nicholas; Gillespie, G Yancey; Singh, Raj; Willey, Christopher D

    2016-01-01

    The use of patient-derived xenografts for modeling cancers has provided important insight into cancer biology and drug responsiveness. However, they are time consuming, expensive, and labor intensive. To overcome these obstacles, many research groups have turned to spheroid cultures of cancer cells. While useful, tumor spheroids or aggregates do not replicate cell-matrix interactions as found in vivo. As such, three-dimensional (3D) culture approaches utilizing an extracellular matrix scaffold provide a more realistic model system for investigation. Starting from subcutaneous or intracranial xenografts, tumor tissue is dissociated into a single cell suspension akin to cancer stem cell neurospheres. These cells are then embedded into a human-derived extracellular matrix, 3D human biogel, to generate a large number of microtumors. Interestingly, microtumors can be cultured for about a month with high viability and can be used for drug response testing using standard cytotoxicity assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live cell imaging using Calcein-AM. Moreover, they can be analyzed via immunohistochemistry or harvested for molecular profiling, such as array-based high-throughput kinomic profiling, which is detailed here as well. 3D microtumors, thus, represent a versatile high-throughput model system that can more closely replicate in vivo tumor biology than traditional approaches. PMID:27341166

  9. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera.

    PubMed

    Chakraborty, Moumita; Karun, Anitha; Mitra, Adinpunya

    2009-01-01

    Chitosan-induced elicitation responses of dark-incubated Cocos nucifera (coconut) endosperm cell suspension cultures led to the rapid formation of phenylpropanoid derivatives, which essentially mimics the defense-induced biochemical changes in coconut palm as observed under in vivo conditions. An enhanced accumulation of p-hydroxybenzoic acid as the major wall-bound phenolics was evident. This was followed by p-coumaric acid and ferulic acid. Along with enhanced peroxidases activities in elicited lines, the increase in activities of the early phenylpropanoid pathway enzymes such as, phenylalanine ammonia lyase (PAL), p-coumaroyl-CoA ligase (4CL) and p-hydroxybenzaldehyde dehydrogenase (HBD) in elicited cell cultures were also observed. Furthermore, supplementation of specific inhibitors of PAL, C4H and 4CL in elicited cell cultures led to suppressed accumulation of p-hydroxybenzoic acid, which opens up interesting questions regarding the probable route of the biosynthesis of this phenolic acid in C. nucifera.

  10. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera.

    PubMed

    Chakraborty, Moumita; Karun, Anitha; Mitra, Adinpunya

    2009-01-01

    Chitosan-induced elicitation responses of dark-incubated Cocos nucifera (coconut) endosperm cell suspension cultures led to the rapid formation of phenylpropanoid derivatives, which essentially mimics the defense-induced biochemical changes in coconut palm as observed under in vivo conditions. An enhanced accumulation of p-hydroxybenzoic acid as the major wall-bound phenolics was evident. This was followed by p-coumaric acid and ferulic acid. Along with enhanced peroxidases activities in elicited lines, the increase in activities of the early phenylpropanoid pathway enzymes such as, phenylalanine ammonia lyase (PAL), p-coumaroyl-CoA ligase (4CL) and p-hydroxybenzaldehyde dehydrogenase (HBD) in elicited cell cultures were also observed. Furthermore, supplementation of specific inhibitors of PAL, C4H and 4CL in elicited cell cultures led to suppressed accumulation of p-hydroxybenzoic acid, which opens up interesting questions regarding the probable route of the biosynthesis of this phenolic acid in C. nucifera. PMID:18448193

  11. The effects of hypoxia on in vitro culture of dental-derived stem cells.

    PubMed

    Werle, Stefanie Bressan; Chagastelles, Pedro; Pranke, Patricia; Casagrande, Luciano

    2016-08-01

    The culture of cells under hypoxia is considered one of the hot topics of tissue engineering, especially when exploring the proliferation capacity, a critical step for cellular-based therapies. The use of in vitro hypoxic environment aims to simulate the oxygen concentrations found in stem cell niches. Dental tissues are attractive sources of stem cells, as they are obtained from discarded tissue, after third molar extraction and exfoliation deciduous teeth, respectively. However, small amounts of cells are obtained from these sources. Thus, optimizing the in vitro conditions for proliferation and differentiation of these cells is essential for future regenerative strategies. This review presents a summary of the results regarding the effect of hypoxia on dental-derived stem cells after an electronic search on PubMed databases. The studies show increased differentiation potential and paracrine action of dental-derived stem cells under hypoxic environment. There are controversies related to proliferation of dental-derived stem cells under induced hypoxia. The lack of standardization in cell culture techniques contributes to these biases and future studies should describe in more detail the protocols used. The knowledge regarding the effect of hypoxia on dental-derived stem cells needs further clarification for assisting the clinical application of these cells.

  12. The effects of hypoxia on in vitro culture of dental-derived stem cells.

    PubMed

    Werle, Stefanie Bressan; Chagastelles, Pedro; Pranke, Patricia; Casagrande, Luciano

    2016-08-01

    The culture of cells under hypoxia is considered one of the hot topics of tissue engineering, especially when exploring the proliferation capacity, a critical step for cellular-based therapies. The use of in vitro hypoxic environment aims to simulate the oxygen concentrations found in stem cell niches. Dental tissues are attractive sources of stem cells, as they are obtained from discarded tissue, after third molar extraction and exfoliation deciduous teeth, respectively. However, small amounts of cells are obtained from these sources. Thus, optimizing the in vitro conditions for proliferation and differentiation of these cells is essential for future regenerative strategies. This review presents a summary of the results regarding the effect of hypoxia on dental-derived stem cells after an electronic search on PubMed databases. The studies show increased differentiation potential and paracrine action of dental-derived stem cells under hypoxic environment. There are controversies related to proliferation of dental-derived stem cells under induced hypoxia. The lack of standardization in cell culture techniques contributes to these biases and future studies should describe in more detail the protocols used. The knowledge regarding the effect of hypoxia on dental-derived stem cells needs further clarification for assisting the clinical application of these cells. PMID:27045351

  13. Cell aggregation and sedimentation.

    PubMed

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  14. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering.

    PubMed

    Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L; Weichselbaum, Ralph R; Ervin, Natalia; Cankova, Zdravka; Brey, Eric M

    2009-09-01

    Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately reflect the diversity of ECM composition between tissues. In this paper, a method is presented for extracting solutions of proteins and glycoproteins from soft tissues and inducing assembly of these proteins into gels. The extracts contain ECM proteins specific to the tissue source with low levels of intracellular molecules. Gels formed from the tissue-derived extracts have nanostructure similar to ECM in vivo and can be used to culture cells as both a thin substrate coating and a thick gel. This technique could be used to assemble hydrogels with varying composition depending upon the tissue source, hydrogels for three-dimensional culture, as scaffolds for tissue engineering therapies, and to study cell-matrix interactions.

  15. Maternal-Effect Gene Expression in Cultured Preantral Follicles Derived from Vitrified-Warmed Mouse Ovary

    PubMed Central

    Fatehi, Roya; Ebrahimi, Bita

    2015-01-01

    Objective This study was conducted to assess survival of follicles, their oocyte maturation and fertilization potential as well as expression of early embryo developmental genes in in vitro cultured pre-antral follicles derived from vitrified-warmed mouse ovary. Materials and Methods In this experimental study, ovaries of 12-day old Naval Medical Research Institute (NMRI) female mice were placed into non-vitrified and vitrifiedwarmed groups. Isolated preantral follicles from experimental groups were cultured in vitro for 12 days. On the 12th day of culture, oocyte maturation was induced and then matured oocytes were in vitro fertilized. The rates of oocyte maturation and two-cell stage embryo formation were assessed. Relative expression of Mater and Zar1 was evaluated on days 1, 6, 10 and 12 of culture. Data analysis was performed by t test and two-way ANOVA (P<0.05). Results Our data showed no significant difference between the control and vitrification groups in the rate of follicular survival, oocyte maturation and two-cell stage embryo formation. The level of gene expression was higher on the 6thand 10thdays of culture for Mater and Zar1 in vitrified-warmed group compared with non-vitrified group, however, there was no significant difference between the two groups. Conclusion It seems that the applied vitrification method did not reveal any negative effect on maturation and developmental competence of oocytes surrounded in preantral follicles and therefore could preserve follicular reserves efficiently. PMID:26199912

  16. Triiodothyronine expands the lactotroph and maintains the lactosomatotroph population, whereas thyrotrophin-releasing hormone augments thyrotroph abundance in aggregate cell cultures of postnatal rat pituitary gland.

    PubMed

    Pals, K; Vankelecom, H; Denef, C

    2006-03-01

    In the present study, we used a three-dimensional pituitary cell culture system from early postnatal rats to examine the in vitro developmental potential of triiodothyronine (T3) and thyrotrophin-releasing hormone (TRH). Cell types were identified at the hormone mRNA level by single-cell reverse transcription-polymerase chain reaction and any change in abundance was further examined by immunofluorescence staining of the corresponding hormone protein. In aggregates from 14-day-old rats, long-term (12-16 days) treatment with T3 (0.5 nM) increased the abundance of cells expressing prolactin mRNA (PRLmRNA cells) by 2.5-fold and lowered that of nonhormonal cells and thyroid-stimulating hormone beta (TSHbeta)mRNA cells. The abundance of growth hormone (GH)mRNA cells decreased during culture compared to that in the freshly dispersed pituitary gland and T3 did not significantly affect this cell population. Cells coexpressing PRL mRNA and GH mRNA virtually disappeared during culture but reappeared in the presence of T3. T3 increased the abundance of PRL-immunoreactive (ir) cells in aggregates from 14-day-old rats, as well as in aggregates from newborn and 1-week-old rats. As estimated by bromodeoxyuridine (BrdU) labelling, a 3-day treatment with T3 enhanced the number of PRL-ir cells that had incorporated BrdU, but did not yet expand the total population of PRL-ir cells. Long-term treatment with TRH (100 nM) did not affect the proportion of PRLmRNA or GHmRNA cells, but consistently increased the proportional number of TSHbeta(mRNA) and TSHbeta-ir cells. The present data confirm the findings obtained in recent in vivo loss of function genetic studies suggesting that T3 plays a prominent role in postnatal expansion of the lactotroph population and that TRH is important for thyrotroph development. The data suggest that the effect of T3 is brought about by a direct action on the pituitary gland through a cell proliferation mechanism. T3 also appears to support the

  17. A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue

    PubMed Central

    Shelley, Brandon C.; Gowing, Geneviève; Svendsen, Clive N.

    2014-01-01

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products. PMID:24962813

  18. Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model.

    PubMed

    Thompson, William R; Uzer, Gunes; Brobst, Kaitlyn E; Xie, Zhihui; Sen, Buer; Yen, Sherwin S; Styner, Maya; Rubin, Janet

    2015-01-01

    Studying osteocyte behavior in culture has proven difficult because these embedded cells require spatially coordinated interactions with the matrix and surrounding cells to achieve the osteocyte phenotype. Using an easily attainable source of bone marrow mesenchymal stem cells, we generated cells with the osteocyte phenotype within two weeks. These "stem cell derived-osteocytes" (SCD-O) displayed stellate morphology and lacunocanalicular ultrastructure. Osteocytic genes Sost, Dmp1, E11, and Fgf23 were maximally expressed at 15 days and responded to PTH and 1,25(OH)2D3. Production of sclerostin mRNA and protein, within 15 days of culture makes the SCD-O model ideal for elucidating regulatory mechanisms. We found sclerostin to be regulated by mechanical factors, where low intensity vibration significantly reduced Sost expression. Additionally, this model recapitulates sclerostin production in response to osteoactive hormones, as PTH or LIV repressed secretion of sclerostin, significantly impacting Wnt-mediated Axin2 expression, via β-catenin signaling. In summary, SCD-O cells produce abundant matrix, rapidly attain the osteocyte phenotype, and secrete functional factors including sclerostin under non-immortalized conditions. This culture model enables ex vivo observations of osteocyte behavior while preserving an organ-like environment. Furthermore, as marrow-derived mesenchymal stem cells can be obtained from transgenic animals; our model enables study of genetic control of osteocyte behaviors.

  19. Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture

    PubMed Central

    Angelini, Francesco; Ionta, Vittoria; Rossi, Fabrizio; Miraldi, Fabio; Messina, Elisa; Giacomello, Alessandro

    2016-01-01

    Introduction: Cardiac progenitor cells (CPCs) represent a powerful tool in cardiac regenerative medicine. Pre-clinical studies suggest that most of the beneficial effects promoted by the injected cells are due to their paracrine activity exerted on endogenous cells and tissue. Exosomes are candidate mediators of this paracrine effects. According to their potential, many researchers have focused on characterizing exosomes derived from specific cell types, but, up until now, only few studies have analyzed the possible in vitro effects of bovine serum-derived exosomes on cell proliferation or differentiation. Methods: The aim of this study was to analyse, from a qualitative and quantitative point of view, the in vitro effects of bovine serum exosomes on human CPCs cultured either as cardiospheres or as monolayers of cardiosphere-forming cells. Results: Effects on proliferation, yield and molecular patterning were detected. We show, for the first time, that exogenous bovine exosomes support the proliferation and migration of human cardiosphere-forming cells, and that their depletion affects cardiospheres formation, in terms of size, yield and extra-cellular matrix production. Conclusion: These results stress the importance of considering differential biological effects of exogenous cell culture supplements on the final phenotype of primary human cell cultures. PMID:27340620

  20. Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro.

    PubMed

    Peterson, Jennifer M; Pizza, Francis X

    2009-01-01

    We tested the hypothesis that cytokines derived from differentiated skeletal muscle cells in culture induce neutrophil chemotaxis after mechanical strain. Flexible-bottom plates with cultured human muscle cells attached were exposed to mechanical strain regimens (ST) of 0, 10, 30, 50, or 70 kPa of negative pressure. Conditioned media were tested for the ability to induce chemotaxis of human blood neutrophils in vitro and for a marker of muscle cell injury (lactate dehydrogenase). Conditioned media promoted neutrophil chemotaxis in a manner that was related both to the degree of strain and to the magnitude of muscle cell injury (ST 70 > ST 50 > ST 30). Protein profiling using a multiplex cytokine assay revealed that mechanical strain increased the presence of IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor, monocyte chemotactic protein (MCP)-1, and IL-6 in conditioned media. We also detected 14 other cytokines in conditioned media from control cultures that did not respond to mechanical strain. Neutralization of IL-8 and GM-CSF completely inhibited the chemotactic response for ST 30 and ST 50 and reduced the chemotactic response for ST 70 by 40% and 47%, respectively. Neutralization of MCP-1 or IL-6 did not reduce chemotaxis after ST 70. This study enhances our understanding of the immunobiology of skeletal muscle by revealing that skeletal muscle cell-derived IL-8 and GM-CSF promote neutrophil chemotaxis after injurious mechanical strain.

  1. Cataractogenicity and bioactivation of naphthalene derivatives in lens culture and in vivo

    SciTech Connect

    Lubek, B.M.; Kubow, S.; Basu, P.K.; Wells, P.G. )

    1989-01-01

    The cataractogenicity of naphthalene derivatives was investigated in a lens culture system that included the lens with an intact capsule and epithelium. The in vivo cataractogenicity of naphthalene, 1000 or 2000 mg/kg ip, also was evaluated in New Zealand white and Chinchilla pigmented rabbits. A dose-related brunescence was observed in lenses incubated with 1,4-naphthoquinone in concentrations from 31.6 to 316 microM. With 316 microM naphthoquinone, lenses were totally opaque within 24 hr. No lenticular opacities were observed with 1-naphthol or 2-naphthol in incubations lasting up to 96 hr. The bioactivation of naphthalene derivatives to reactive free radical intermediates by lenses in organ culture was investigated by electron spin resonance spectrometry (ESR) using the spin trap alpha-phenyl-N-t-butylnitrone (PBN). Lenses were incubated with 316 microM naphthoquinone and 100 mM PBN for 0.25, 4 or 7 hr. A spin trapped radical product with unresolved peaks was observed with 0.25 and 7 hr incubation. No radicals were detected in the 4 hr incubation, nor in control cultures lacking either the lens, naphthoquinone or PBN. In the in vivo studies, naphthalene was cataractogenic in both albino and pigmented rabbits. The in vitro results indicate that naphthoquinone can be bioactivated by rabbit lens to a reactive free radical intermediate, which may contribute to cataractogenicity.

  2. LPS ligand and culture additives improve production of monomeric MD-1 and 2 in Pichia pastoris by decreasing aggregation and intermolecular disulfide bonding.

    PubMed

    Mengwasser, Kristen E; Bryant, Clare E; Gay, Nick J; Gangloff, Monique

    2011-04-01

    Myeloid differentiation proteins MD-1 and MD-2 have both been shown to form a heterogeneous collection of oligomers when expressed in absence of their respective receptor, RP105 and TLR4. The biological relevance of these oligomers is not clear. Only monomeric proteins have been found to be active and able to trigger an immune response to endotoxin by modulating the TLR4 pathway. In this study, we produced variants of MD-1 and MD-2 in Pichia pastoris. To minimize the time and expense of initial expression tests, small-scale cultures have been set up to allow the rapid identification of the highest expressing clone and the optimal expression conditions. The expression vectors used, the site of linearization and the locus of integration affected the yield of transformation. Next we screened culture additives and found that they significantly increased the fraction of monomeric proteins secreted in the culture medium (up to 15% of the total MD protein produced). We confirmed their presence by size-exclusion chromatography. Optimal anti-aggregation agents were protein-dependent except for LPS that presented stabilizing effects for all MD proteins. Contrary to previous reports, this study suggests that MD-1 can bind to LPS. PMID:21130168

  3. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington’s disease

    PubMed Central

    Zeng, Yixuan; Guo, Wenyuan; Xu, Guangqing; Wang, Qinmei; Feng, Luyang; Long, Simei; Liang, Fengyin; Huang, Yi; Lu, Xilin; Li, Shichang; Zhou, Jiebin; Burgunder, Jean-Marc; Pang, Jiyan; Pei, Zhong

    2016-01-01

    Huntington’s disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt). Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington’s disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson’s and Alzheimer’s diseases. To identify potential neuroprotective molecules for Huntington’s disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington’s disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a stable trimeric complex that can prevent the formation of mutant Htt aggregates. Taken together, we conclude that xyloketal derivatives could be novel drug candidates for treating Huntington’s disease. Molecular target analysis is a good method to simulate the interaction between proteins and drug compounds. Further, protective candidate drugs could be designed in future using the guidance of molecular docking results. PMID:27110099

  4. Effective Rho-associated protein kinase inhibitor treatment to dissociate human iPS cells for suspension culture to form embryoid body-like cell aggregates.

    PubMed

    Horiguchi, Ayumi; Yazaki, Koyuki; Aoyagi, Mami; Ohnuki, Yoshitsugu; Kurosawa, Hiroshi

    2014-11-01

    Treatment conditions using Y-27632 in the preparation of cell suspension of dissociated human pluripotent stem cells (hiPSCs) were investigated in the context of embryoid body (EB)-like cell aggregates. The effectiveness of a pretreatment with Y-27632 before cell dissociation and that of a Y-27632 treatment during cell dissociation were investigated from the viewpoint of simplicity and robustness. The duration of Y-27632 treatment in the preparation process affected the circularity and agglomeration of dissociated hiPSCs. A single application of pretreatment failed to prevent the onset of blebbing. However, a pretreatment promoted the agglomeration of dissociated hiPSCs when combined with the addition of Y-27632 to cell suspension. Our results indicate that pretreatment enhances the agglomeration potential of dissociated hiPSCs. When cell dissociation was performed in the presence of Y-27632, dissociated hiPSCs possessed the highest circularity and significant agglomerating property. It was shown that treatment with Y-27632 during cell dissociation is a simple and robust method to prepare dissociated hiPSCs for suspension culture to form EB-like cell aggregates.

  5. Human Umbilical Cord Blood–Derived Mesenchymal Stem Cells in the Cultured Rabbit Intervertebral Disc

    PubMed Central

    Anderson, D. Greg; Markova, Dessislava; An, Howard S.; Chee, Ana; Enomoto-Iwamoto, Motomi; Markov, Vladimir; Saitta, Biagio; Shi, Peng; Gupta, Chander; Zhang, Yejia

    2014-01-01

    Objective Back pain associated with symptomatic disc degeneration is a common clinical condition. Intervertebral disc (IVD) cell apoptosis and senescence increase with aging and degeneration. Repopulating the IVD with cells that could produce and maintain extracellular matrix would be an alternative therapy to surgery. The objective of this study was to determine the potential of human umbilical cord blood–derived mesenchymal stem cells (hUCB-MSCs) as a novel cell source for disc repair. In this study, we intended to confirm the potential for hUCB-MSCs to differentiate and display a chondrocyte-like phenotype after culturing in micromass and after injection into the rabbit IVD explant culture. We also wanted to confirm hUCB-MSC survival after transplantation into the IVD explant culture. Design This study consisted of micromass cultures and in vitro rabbit IVD explant cultures to assess hUCB-MSC survival and differentiation to display chondrocyte-like phenotype. First, hUCB-MSCs were cultured in micromass and stained with Alcian blue dye. Second, to confirm cell survival, hUCB-MSCs were labeled with an infrared dye and a fluorescent dye before injection into whole rabbit IVD explants (host). IVD explants were then cultured for 4 wks. Cell survival was confirmed by two independent techniques: an imaging system detecting the infrared dye at the organ level and fluorescence microscopy detecting fluorescent dye at the cellular level. Cell viability was assessed by staining the explant with CellTracker green, a membrane-permeant tracer specific for live cells. Human type II collagen gene expression (from the graft) was assessed by polymerase chain reaction. Results We have shown that hUCB-MSCs cultured in micromass are stained blue with Alcian blue dye, which suggests that proteoglycan-rich extracellular matrix is produced. In the cultured rabbit IVD explants, hUCB-MSCs survived for at least 4 wks and expressed the human type II collagen gene, suggesting that the

  6. Mouse bone marrow-derived mast cells (BMMC) change their phenotype when cultured with fibroblasts

    SciTech Connect

    Levi-Schaffer, F.; Austen, K.F.; Stevens, R.L.

    1986-03-05

    The heparin-containing mast cells (HP-MC) that reside in the connective tissues of the mouse, but not the chondroitin sulfate containing mast cells in the gastrointestinal mucosa, stain with safranin when exposed to alcian blue/safranin. Mouse BMMC (the presumptive in vitro counterpart of the in vivo differentiated mucosal mast cell) were cultured for 2-14 days with confluent skin-derived 3T3 fibroblasts in RPMI-1640 containing 10% fetal calf serum and 50% WEHI-3 conditioned medium. Although the BMMC adhered to the fibroblast monolayer, they continued to divide, probably due to the presence of interleukin-3 in the conditioned medium. The mast cells remained viable throughout the period of co-culture, since they failed to release LDG and because they increased their histamine content per cell approx.15-fold. After 8-9 days of co-culture, >50% of the BMMC changed histochemically becoming safranin positive. At this time, 30-50% of the (/sup 35/S)glycosaminoglycans on the proteoglycans synthesized by these co-cultured mass cells were heparin, whereas the initial BMMC synthesized proteoglycans containing only chondroitin sulfate E. That interleukin 3-dependent mouse BMMC can be induced to undergo a phenotypic change so as to express characteristics of a HP-MC suggests that the tissue microenvironment determines the differentiated characteristics of these cells.

  7. Derivation of iPSCs after culture of human dental pulp cells under defined conditions.

    PubMed

    Takeda-Kawaguchi, Tomoko; Sugiyama, Ken; Chikusa, Shunji; Iida, Kazuki; Aoki, Hitomi; Tamaoki, Naritaka; Hatakeyama, Daijiro; Kunisada, Takahiro; Shibata, Toshiyuki; Fusaki, Noemi; Tezuka, Ken-Ichi

    2014-01-01

    Human dental pulp cells (hDPCs) are a promising resource for regenerative medicine and tissue engineering and can be used for derivation of induced pluripotent stem cells (iPSCs). However, current protocols use reagents of animal origin (mainly fetal bovine serum, FBS) that carry the potential risk of infectious diseases and unwanted immunogenicity. Here, we report a chemically defined protocol to isolate and maintain the growth and differentiation potential of hDPCs. hDPCs cultured under these conditions showed significantly less primary colony formation than those with FBS. Cell culture under stringently defined conditions revealed a donor-dependent growth capacity; however, once established, the differentiation capabilities of the hDPCs were comparable to those observed with FBS. DNA array analyses indicated that the culture conditions robustly altered hDPC gene expression patterns but, more importantly, had little effect on neither pluripotent gene expression nor the efficiency of iPSC induction. The chemically defined culture conditions described herein are not perfect serum replacements, but can be used for the safe establishment of iPSCs and will find utility in applications for cell-based regenerative medicine. PMID:25521610

  8. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells

    PubMed Central

    Legzdina, Diana; Romanauska, Anete; Nikulshin, Sergey; Kozlovska, Tatjana; Berzins, Uldis

    2016-01-01

    Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy. PMID:27426094

  9. Proportional-Integral-Derivative (PID) Control of Secreted Factors for Blood Stem Cell Culture

    PubMed Central

    Caldwell, Julia; Wang, Weijia; Zandstra, Peter W.

    2015-01-01

    Clinical use of umbilical cord blood has typically been limited by the need to expand hematopoietic stem and progenitor cells (HSPC) ex vivo. This expansion is challenging due to the accumulation of secreted signaling factors in the culture that have a negative regulatory effect on HSPC output. Strategies for global regulation of these factors through dilution have been developed, but do not accommodate the dynamic nature or inherent variability of hematopoietic cell culture. We have developed a mathematical model to simulate the impact of feedback control on in vitro hematopoiesis, and used it to design a proportional-integral-derivative (PID) control algorithm. This algorithm was implemented with a fed-batch bioreactor to regulate the concentrations of secreted factors. Controlling the concentration of a key target factor, TGF-β1, through dilution limited the negative effect it had on HSPCs, and allowed global control of other similarly-produced inhibitory endogenous factors. The PID control algorithm effectively maintained the target soluble factor at the target concentration. We show that feedback controlled dilution is predicted to be a more cost effective dilution strategy compared to other open-loop strategies, and can enhance HSPC expansion in short term culture. This study demonstrates the utility of secreted factor process control strategies to optimize stem cell culture systems, and motivates the development of multi-analyte protein sensors to automate the manufacturing of cell therapies. PMID:26348930

  10. A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates

    NASA Astrophysics Data System (ADS)

    Frost, James E.; Jones, Garth A.

    2014-11-01

    The objective of this study is to investigate under what circumstances Förster theory of electronic (resonance) energy transfer breaks down in molecular aggregates. This is achieved by simulating the dynamics of exciton diffusion, on the femtosecond timescale, in molecular aggregates using the Liouville-von Neumann equation of motion. Specifically the focus of this work is the investigation of both spatial and temporal deviations between exciton dynamics driven by electronic couplings calculated from Förster theory and those calculated from quantum electrodynamics. The quantum electrodynamics (QED) derived couplings contain medium- and far-zone terms that do not exist in Förster theory. The results of the simulations indicate that Förster coupling is valid when the dipole centres are within a few nanometres of one another. However, as the distance between the dipole centres increases from 2 nm to 10 nm, the intermediate- and far-zone coupling terms play non-negligible roles and Förster theory begins to break down. Interestingly, the simulations illustrate how contributions to the exciton dynamics from the intermediate- and far-zone coupling terms of QED are quickly washed-out by the near-zone mechanism of Förster theory for lattices comprising closely packed molecules. On the other hand, in the case of sparsely packed arrays, the exciton dynamics resulting from the different theories diverge within the 100 fs lifetime of the trajectories. These results could have implications for the application of spectroscopic ruler techniques as well as design principles relating to energy harvesting materials.

  11. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  12. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies. PMID:26838269

  13. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  14. Microarray analysis of cultured human brain aggregates following cortisol exposure: implications for cellular functions relevant to mood disorders.

    PubMed

    Salaria, S; Chana, G; Caldara, F; Feltrin, E; Altieri, M; Faggioni, F; Domenici, E; Merlo-Pich, E; Everall, I P

    2006-09-01

    Increased cortisol levels in humans are often observed in patients suffering from mood disorders. In this study human fetal brain aggregates were exposed to cortisol at 500 nM for 3 weeks, as an in-vitro model of chronic cortisol exposure. Microarray analysis on extracted mRNA using the Affymetrix U133A platform was then performed. Our results demonstrated a significant effect of cortisol on 1648 transcripts; 736 up-regulated and 912 down-regulated genes. The most differentially regulated biological categories were: RNA processing, protein metabolism, and cell growth. Within these categories we observed a down-regulation of fibroblast growth factor 2 (FGF2) (-1.5-fold) and aquaporin4 (AQP4) (-1.7-fold), alongside an up-regulation of fibroblast growth factor 9 (FGF9) (+1.7-fold) and vesicle associated membrane protein2 (VAMP2) (+1.7-fold). FGF2, FGF9, AQP4 and VAMP2 changes were confirmed at the protein level by immunohistochemistry. Alterations in FGF transcripts are in keeping with recent literature demonstrating such effects in patients with mood disorders. PMID:16844382

  15. Culture and Drug Profiling of Patient Derived Malignant Pleural Effusions for Personalized Cancer Medicine

    PubMed Central

    Pietilae, Elina; Vlajnic, Tatjana; Baschiera, Betty; Arabi, Leila; Lorber, Thomas; Oeggerli, Martin; Savic, Spasenija; Obermann, Ellen; Singer, Thomas; Rothschild, Sacha I.; Zippelius, Alfred; Roth, Adrian B.; Bubendorf, Lukas

    2016-01-01

    Introduction The use of patients’ own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs) are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs. Methods MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib) according to the mutational status or chemotherapeutics based on the recommendation of the oncologists. Results We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs. Conclusions We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner. PMID:27548442

  16. Extended Culture Conditions for Multipotent Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Zhang, Kui; Ikeda, Yayoi; Kasugai, Shohei; Ikeda, Masa-Aki

    2016-03-01

    Mesenchymal stem cells (MSCs) offer a promising source of cells for musculoskeletal regeneration because of their potential to differentiate into bone, cartilage and fat. However, their proliferation and multilineage differentiation potential decreases with aging or increased time in in vitro culture. To determine culture conditions capable of enabling maintenance of MSCs for extended periods of time, human bone marrow-derived MSCs (BM-MSCs) were cultured in growth medium containing various combinations of growth factors and small chemical compounds. Upon reaching confluence, MSCs were subcultured continuously and then tested for differentiation capacity. After screening various growth factors and small chemical compounds, we found a combination capable of maintaining the proliferation potential of BM-MSCs obtained from a 19-year-old donor (young MSCs) up to passage 13 (P13). In contrast, unsupplemented MSCs reached senescence at P10. Total population doublings of control (P10) and supplemented MSCs (P12) were estimated at 20.4 and 42, respectively. Young MSCs cultured with supplements maintained osteogenic, adipogenic and chondrogenic differentiation capacities at P12 as confirmed by expression of lineage-specific differentiation markers. Furthermore, the supplementation of to BM-MSCs obtained from 65- and 79-year-old donors (aged MSCs) also continued to proliferate until P12, and maintained osteogenic and adipogenic differentiation capacity until P7 and P8, respectively, whereas, unsupplemented aged MSCs stopped proliferating at P8. These results indicate that our extended culture conditions maintained the proliferative capacity of young MSCs while retaining their multipotent differentiation potential, and improved both proliferation and differentiation of aged MSCs.

  17. Extended Culture Conditions for Multipotent Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Zhang, Kui; Ikeda, Yayoi; Kasugai, Shohei; Ikeda, Masa-Aki

    2016-03-01

    Mesenchymal stem cells (MSCs) offer a promising source of cells for musculoskeletal regeneration because of their potential to differentiate into bone, cartilage and fat. However, their proliferation and multilineage differentiation potential decreases with aging or increased time in in vitro culture. To determine culture conditions capable of enabling maintenance of MSCs for extended periods of time, human bone marrow-derived MSCs (BM-MSCs) were cultured in growth medium containing various combinations of growth factors and small chemical compounds. Upon reaching confluence, MSCs were subcultured continuously and then tested for differentiation capacity. After screening various growth factors and small chemical compounds, we found a combination capable of maintaining the proliferation potential of BM-MSCs obtained from a 19-year-old donor (young MSCs) up to passage 13 (P13). In contrast, unsupplemented MSCs reached senescence at P10. Total population doublings of control (P10) and supplemented MSCs (P12) were estimated at 20.4 and 42, respectively. Young MSCs cultured with supplements maintained osteogenic, adipogenic and chondrogenic differentiation capacities at P12 as confirmed by expression of lineage-specific differentiation markers. Furthermore, the supplementation of to BM-MSCs obtained from 65- and 79-year-old donors (aged MSCs) also continued to proliferate until P12, and maintained osteogenic and adipogenic differentiation capacity until P7 and P8, respectively, whereas, unsupplemented aged MSCs stopped proliferating at P8. These results indicate that our extended culture conditions maintained the proliferative capacity of young MSCs while retaining their multipotent differentiation potential, and improved both proliferation and differentiation of aged MSCs. PMID:27443069

  18. Characterization of a primary brown adipocyte culture system derived from human fetal interscapular fat

    PubMed Central

    Seiler, Sarah E; Xu, Dan; Ho, Jia-Pei; Lo, Kinyui Alice; Buehrer, Benjamin M; Ludlow, Y John W; Kovalik, Jean-Paul; Sun, Lei

    2015-01-01

    Brown fat has gained widespread attention as a potential therapeutic target to treat obesity and associated metabolic disorders. Indeed, the anti-obesity potential of multiple targets to stimulate both brown adipocyte differentiation and recruitment have been verified in rodent models. However, their therapeutic potential in humans is unknown due to the lack of a human primary brown adipocyte cell culture system. Likewise, the lack of a well-characterized human model has limited the discovery of novel targets for the activation of human brown fat. To address this current need, we aimed to identify and describe the first primary brown adipocyte cell culture system from human fetal interscapular brown adipose tissue. Pre-adipocytes isolated from non-viable human fetal interscapular tissue were expanded and cryopreserved. Cells were then thawed and plated alongside adult human subcutaneous and omental pre-adipocytes for subsequent differentiation and phenotypic characterization. Interscapular pre-adipocytes in cell culture differentiated into mature adipocytes that were morphologically indistinguishable from the adult white depots. Throughout differentiation, cultured human fetal interscapular adipocytes demonstrated increased expression of classical brown fat markers compared to subcutaneous and omental cells. Further, functional analysis revealed an elevation in fatty acid oxidation as well as maximal and uncoupled oxygen consumption in interscapular brown adipocytes compared to white control cells. These data collectively identify the brown phenotype of these cells. Thus, our primary cell culture system derived from non-viable human fetal interscapular brown adipose tissue provides a valuable tool for the study of human brown adipocyte biology and for the development of anti-obesity therapeutics. PMID:26451287

  19. Ultrastructural and autoradiographic investigations of cell cultures derived from tendons or ligamentous material from patients with fibromatous disorders.

    PubMed

    Neumüller, J; Tohidast-Akrad, M; Ammer, K; Hakimzadeh, A; Stransky, G; Weis, S; Partsch, G; Eberl, R

    1988-01-01

    Cell cultures were derived from tendons or ligamentous material from patients with carpal tunnel syndrome (CTS), Dupuytren's contracture (DP), tendopathia nodosa (TN) and hallux valgus (HV). The ultrastructure of the operation specimens as well as of the cell monolayers was investigated, using a floating sheet method in order to preserve both cell-to-cell contacts and the orientation of the monolayers. The histologic features of the tissues obtained in the operations were correlated with the ultrastructure of the cells in culture derived from these specimens. In DP, above all in the nodules, an activation of the capillary endothelium in the vicinity of myofibroblasts and mast cells was observed. In CTS the collagen fibrils varied extremely in diameter. In DP and TN biopsies a splicing process of helicoidly arranged fibrils could be seen. A disintegration of elastic fibers in the fibrillar and amorphous components was found in DP nodules, HV and TN tissues. Transitional forms between fibroblasts and myofibroblasts were observed not only in DP but also-though in a smaller percentage--in the cultures derived from the other patients. The cells showed organelles for active protein synthesis and transport. Autophagocytosis and the formation of multilamellated bodies took place in TN and HV cultures. In CTS, DP and TN cultures cells were connected via gap junctions. In some cultures, above all in those derived from CTS, monocilia were found. In CTS cultures the formation of intracellular collagen occurred. Growth parameters were rather low in HV cultures. PLmax (maximal pulse labelling index) values were higher in TN cultures than in DP and HV cultures. Plating efficiency (PE) values were higher in cultures derived from cell-rich and capillarized tissues than in biopsies with few cells. PMID:3229549

  20. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  1. Teratogenicity of benzoic acid derivatives of retinoic acid in cultured mouse embryos.

    PubMed

    Goulding, E H; Jetten, A M; Abbott, B D; Pratt, R M

    1988-01-01

    Isotretinoin (13-cis-RA) is a human teratogen and mouse embryos exposed to 13-cis-RA in vivo exhibit many of the same defects as humans. Early postimplantation mouse embryos exposed to 13-cis-RA in culture exhibit developmental alterations of the visceral arches, similar to those seen after in vivo exposure. Certain benzoic acid derivatives of retinoic acid have been shown to possess activity equal to or greater than retinoic acid in several in vitro systems. This study examines the teratogenic effects of some of these retinoids on mouse embryos in vitro. Day 8 CD-1 mouse embryos were cultured for 48 hours in the presence of these benzoic acid derivatives. With the exception of Ro-15-0778, all compounds produced visceral arch malformations similar to those seen in embryos exposed to 13-cis-RA, but at dramatically different effective concentrations. Extremely low concentrations of the retinoic acid-related compounds tested appear to have detrimental effects on embryonic development and these compounds may be poor candidates for therapeutic use.

  2. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters

    PubMed Central

    Andreakis, Nikos; Høj, Lone; Kearns, Philip; Hall, Michael R.; Ericson, Gavin; Cobb, Rose E.; Gordon, Benjamin R.; Evans-Illidge, Elizabeth

    2015-01-01

    Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters. PMID:26308620

  3. Evaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture

    PubMed Central

    Mamashli, Maliheh; Ramezani, Mina; Parsa, Maliheh; Ostad, Seyyed Nasser

    2011-01-01

    Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and produces various cell types including the melanocytes, neuronal and glial cells of the sensory, autonomic and enteric nervous system as well as the chromaffin cells of the adrenal gland. These cells have been used extensively for in-vitro studies of neurogenesis. Cultured cells by micromass culture method derived from midbrain of six embryos (13 day postcoitum; 34-36 smites) and exposed to various concentrations of EMD for 5 days at 37°C and differentiated foci were counted. Retinoic Acid (20 μg/mL) was used as standard positive control. These cells were stained using Mayer’s hematoxylin which is specific for staining differentiated cell nucleus. Neutral red staining determines cell viability rather than related cell differentiation but is used for normalization of Mayer’s hematoxylin results. At the concentration as low as 8 μg/mL of EMD, no toxic effect on fetal cells was observed and it is suggested that EMD has no teratogenic effect at studied concentrations. PMID:24250425

  4. Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana.

    PubMed

    Fu, Xiao; Yin, Zhong-Ping; Chen, Ji-Guang; Shangguan, Xin-Chen; Wang, Xiaoqiang; Zhang, Qing-Feng; Peng, Da-Yong

    2015-01-14

    Chlorogenic acid and its derivatives (CADs) are valuable bioactive plant secondary metabolites with many health benefits. In the present study, Stevia rebaudiana hairy root cultures were established, and the culture conditions for the production of CADs were optimized. The hairy roots were induced by coculture of S. rebaudiana leaves and Agrobacterium rhizogenes (C58C1) after infection, which were further verified by PCR detection of rolB and rolC genes. HPLC-MS and HPLC analysis showed that chlorogenic acid (3-caffeoylquinic acid, 3-CQA), 3,5-dicaffeoylquinic acid (3,5-CQA), and 4,5-dicaffeoylquinic acid (4,5-CQA) were the major CADs in the hairy roots. Eight single roots with rapid growth rate were selected. Among them, T3 had the highest yield of CADs. B5 medium supplemented with 40 g/L sucrose was more suitable for the production of CADs than others. Under optimal culture conditions, the total content of these three compounds reached 105.58 mg/g and total yield was 234.40 mg/100 mL.

  5. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture.

    PubMed

    Vilar, J; Gilbert, T; Moreau, E; Merlet-Bénichou, C

    1996-05-01

    Vitamin A and its metabolic derivatives are known to be key signalling molecules in regulating morphogenetic events in vertebrate development. Here we investigated their possible involvement during mammalian kidney development using paired rat metanephros organ culture. Metanephroi were explanted from 14-day-old embryos and cultured for six days in a chemically defined medium containing a retinoid at a dose of 10(-11) to 10(-4) M. Retinol, all-trans and 9-cis retinoic acid were able to promote metanephros growth and differentiation in vitro. A significant increase in the number of nephrons was observed from 10(-8) M of retinol and 10(-10) M of all-trans retinoic acid, before any change in growth parameters. A threefold increase in the number of nephrons was obtained at a dose of 10(-6) M. At low retinoid concentrations, there was a modulating effect of triiodothyronine on retinoid-stimulated nephrogenesis since the absence of triiodothyronine in the medium enhanced the nephrogenic stimulation. Exposure of metanephroi from 13-day-old embryos to all-trans retinoic acid (10(-7) M) led to a sixfold increase of nephron formation. Finally, we analyzed the branching pattern of the ureteric bud and showed that within 48 hours of culture, it was significantly more developed upon retinoid exposure. In conclusion, this study demonstrates that retinoic acid is a key regulator of renal organogenesis in controlling nephrogenic induction processes and ureteric bud patterning, and that the younger the metanephros, the greater the effect.

  6. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    PubMed

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors.

  7. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    PubMed

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors. PMID:27514999

  8. Sertoli cells promote proliferation of bone marrow-derived mesenchymal stem cells in co-culture.

    PubMed

    Zhang, Fenxi; Lu, Ming; Liu, Hengxing; Ren, Tongming; Miao, Yingying; Wang, Jingjing

    2016-05-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are a major source for cell transplantation. The proliferative ability of BMSCs is an important determinant of the efficiency of transplant therapy. Sertoli cells are "nurse" cells for development of sperm cells. Our recent study showed that Sertoli cells promoted proliferation of human umbilical cord mesenchymal stem cells (hUCMSCs) in co-culture. Studies by other groups also showed that Sertoli cells promoted growth of endothelial cells and neural stem cells. In this study, we investigated the effect of Sertoli cells on proliferation of BMSCs. Our results showed that Sertoli cells in co-culture significantly enhanced proliferation of BMSCs (P < 0.01). Moreover, co-culture with Sertoli cells also markedly increased mRNA and/or protein expressions of Mdm2, p-Akt and Cyclin D1, and decreased p53 expression in BMSCs (P < 0.01 or < 0.05). These findings indicate that Sertoli cells have the potential to enhance proliferation of BMSCs. PMID:27319049

  9. Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies

    SciTech Connect

    Delavalle, Pierre-Yves; Alsaleh, Khaled; Pillez, Andre; Cocquerel, Laurence; Allet, Cecile; Dumont, Patrick; Loyens, Anne; Leteurtre, Emmanuelle; Omary, M. Bishr; Dubuisson, Jean; Rouille, Yves; Wychowski, Czeslaw

    2011-11-01

    Cytoplasmic inclusions are found in a variety of diseases that are characteristic morphological features of several hepatic, muscular and neurodegenerative disorders. They display a predominantly filamentous ultrastructure that is also observed in malignant rhabdoid tumor (MRT). A cellular clone containing an intracytoplasmic body was isolated from hepatocyte cell culture, and in the present study we examined whether this body might be related or not to Mallory-Denk body (MDB), a well characterized intracytoplasmic inclusion, or whether this cellular clone was constituted by malignant rhabdoid tumor cells. The intracytoplasmic body was observed in electron microscopy (EM), confocal immunofluorescence microscopy and several proteins involved in the formation of its structure were identified. Using light microscopy, a spheroid body (SB) described as a single regular-shaped cytoplasmic body was observed in cells. During cytokinesis, the SB was disassembled and reassembled in a way to reconstitute a unique SB in each progeny cell. EM examination revealed that the SB was not surrounded by a limiting membrane. However, cytoplasmic filaments were concentrated in a whorled array. These proteins were identified as keratins 8 and 18 (K8/K18), which formed the central core of the SB surrounded by a vimentin cage-like structure. This structure was not related to Mallory-Denk body or aggresome since no aggregated proteins were located in SB. Moreover, the structure of SB was not due to mutations in the primary sequence of K8/K18 and vimentin since no difference was observed in the mRNA sequence of their genes, isolated from Huh-7 and Huh-7w7.3 cells. These data suggested that cellular factor(s) could be responsible for the SB formation process. Aggregates of K18 were relocated in the SB when a mutant of K18 inducing disruption of K8/K18 IF network was expressed in the cellular clone. Furthermore, the INI1 protein, a remodeling-chromatin factor deficient in rhabdoid cells, which

  10. A model for the kinetics of homotypic cellular aggregation under static conditions

    NASA Technical Reports Server (NTRS)

    Neelamegham, S.; Munn, L. L.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.

  11. STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES

    SciTech Connect

    Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

    2005-04-01

    Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

  12. Development of a Xeno-Free Autologous Culture System for Endothelial Progenitor Cells Derived from Human Umbilical Cord Blood

    PubMed Central

    Park, Soon-Jung; Kim, Hojin; Bae, Daekyeong

    2013-01-01

    Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs) in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs), we isolated extracts (UCE) and collagen (UC-collagen) from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases. PMID:24086472

  13. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    SciTech Connect

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  14. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    PubMed

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates. PMID:27168373

  15. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  16. Magnetite nanoparticles doped photoresist derived carbon as a suitable substratum for nerve cell culture.

    PubMed

    Zhu, Zanzan; Rezhdo, Olijora; Perrone, Matthew; Bao, Zhengzheng; Munir, Ahsan; Wang, Jianlong; Zhou, H Susan; Shao, Jiahui

    2013-02-01

    A method which alters the substrate's physical and electrochemical properties by doping photoresist derived carbon with magnetite nanoparticles has been developed to enhance the existing substrate's ability to foster cell growth. Cyclic voltammetry, scanning electron microscopy and atomic force microscopy are used to evaluate the characters of the prepared film. And then, the magnetite nanoparticles doped carbon film is used as substrate for the growth of nerve cell. Here, rat pheochromocytoma cells are used for culture to test substrate-cell interactions. The results showed an increase in cell concentration and average neurite length with the increase of nanoparticle concentration on the surface. Importantly, the nerve cells can be grown on the magnetite nanoparticles doped carbon even in the absence of nerve growth factor. This finding will potentially provide a new material for nerve regeneration.

  17. Equine cloning: in vitro and in vivo development of aggregated embryos.

    PubMed

    Gambini, Andrés; Jarazo, Javier; Olivera, Ramiro; Salamone, Daniel F

    2012-07-01

    The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.

  18. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture

    PubMed Central

    2014-01-01

    Background Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. Results Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. Conclusions Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal

  19. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes.

    PubMed

    Kucera, Jan P; Prudat, Yann; Marcu, Irene C; Azzarito, Michela; Ullrich, Nina D

    2015-01-01

    Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  20. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    PubMed

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration.

  1. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    PubMed Central

    Kucera, Jan P.; Prudat, Yann; Marcu, Irene C.; Azzarito, Michela; Ullrich, Nina D.

    2015-01-01

    Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias. PMID:26442264

  2. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  3. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  4. Cell-to-cell propagation of infectious cytosolic protein aggregates

    PubMed Central

    Hofmann, Julia P.; Denner, Philip; Nussbaum-Krammer, Carmen; Kuhn, Peer-Hendrik; Suhre, Michael H.; Scheibel, Thomas; Lichtenthaler, Stefan F.; Schätzl, Hermann M.; Bano, Daniele; Vorberg, Ina M.

    2013-01-01

    Prions are self-templating protein conformers that replicate by recruitment and conversion of homotypic proteins into growing protein aggregates. Originally identified as causative agents of transmissible spongiform encephalopathies, increasing evidence now suggests that prion-like phenomena are more common in nature than previously anticipated. In contrast to fungal prions that replicate in the cytoplasm, propagation of mammalian prions derived from the precursor protein PrP is confined to the cell membrane or endocytic vesicles. Here we demonstrate that cytosolic protein aggregates can also behave as infectious entities in mammalian cells. When expressed in the mammalian cytosol, protein aggregates derived from the prion domain NM of yeast translation termination factor Sup35 persistently propagate and invade neighboring cells, thereby inducing a self-perpetuating aggregation state of NM. Cell contact is required for efficient infection. Aggregates can also be induced in primary astrocytes, neurons, and organotypic cultures, demonstrating that this phenomenon is not specific to immortalized cells. Our data have important implications for understanding prion-like phenomena of protein aggregates associated with human diseases and for the growing number of amyloidogenic proteins discovered in mammals. PMID:23509289

  5. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression.

    PubMed

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-01

    In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  6. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels.

    PubMed

    Sridharan, BanuPriya; Lin, Staphany M; Hwu, Alexander T; Laflin, Amy D; Detamore, Michael S

    2015-01-01

    There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton's jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance.

  7. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels

    PubMed Central

    Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.

    2015-01-01

    There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986

  8. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures.

    PubMed

    Moyo, Mack; Amoo, Stephen O; Aremu, Adeyemi O; Gruz, Jiří; Subrtová, Michaela; Doležal, Karel; Van Staden, Johannes

    2014-10-01

    Micropropagation of Hypoxis hemerocallidea Fisch. and C.A. Mey was used as a model system to study the influence of cytokinins (CKs) on plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in organ and callus cultures and their antioxidant activity. Fourteen free phenolic acids were detected using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) while antioxidant activity was evaluated using oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Cytokinins had a significant effect on the biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in H. hemerocallidea organ cultures. In particular, meta-topolin-treated organ cultures produced high concentrations of gallic, protocatechuic, gentisic, p-hydroxybenzoic, m-hydroxybenzoic, salicylic, chlorogenic and trans-cinnamic acids. The isoprenoid CK, N(6)-(2-isopentenyl)-adenine significantly increased the accumulation of hydroxycinnamic acid derivatives, namely, caffeic, p-coumaric, sinapic and ferulic acids. Cytokinin-treated organ cultures exhibited a significant increase in antioxidant activity, particularly in the ORAC model. In callus cultures, CKs decreased the concentrations of hydroxycinnamic acid derivatives and antioxidant activity when compared to the control. Overall, both CK type and concentration had a significant effect on plant regeneration, callus proliferation, biochemical accumulation of free phenolic acids and antioxidant activity of the resultant extracts.

  9. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis.

    PubMed

    Tanaka, Kensuke; Fujita, Tetsuo; Umezawa, Hiroki; Namiki, Kana; Yoshioka, Kento; Hagihara, Masahiko; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-11-01

    Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and

  10. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  11. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    SciTech Connect

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M.; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  12. Microfluidic assessment of functional culture-derived platelets in human thrombi under flow.

    PubMed

    Kamat, Viraj; Muthard, Ryan W; Li, Ruizhi; Diamond, Scott L

    2015-10-01

    Despite their clinical significance, human platelets are not amenable to genetic manipulation, thus forcing a reliance on mouse models. Culture-derived platelets (CDPs) from human peripheral blood CD34(+) cells can be genetically altered and may eventually be used for transfusions. By use of microfluidics, the time-dependent incorporation of CD41(+)CD42(+) CDPs into clots was measured using only 54,000 CDPs doped into 27 μL of human whole blood perfused over collagen at a wall shear rate of 100 sec(-1). With the use of fluorescence-labeled human platelets (instead of CDPs) doped between 0.25% and 2% of total platelets, incorporation was highly quantitative and allowed monitoring of the anti-αIIbβ3 antagonism that occurred after collagen adhesion. CDPs were only 15% as efficient as human platelets in their incorporation into human thrombi under flow, although both cell types were equally antagonized by αIIbβ3 inhibition. Transient transfection allowed the monitoring of GFP(+) human CDP incorporation into clots. This assay quantifies genetically altered CDP function under flow. PMID:26145051

  13. Microfluidic assessment of functional culture-derived platelets in human thrombi under flow.

    PubMed

    Kamat, Viraj; Muthard, Ryan W; Li, Ruizhi; Diamond, Scott L

    2015-10-01

    Despite their clinical significance, human platelets are not amenable to genetic manipulation, thus forcing a reliance on mouse models. Culture-derived platelets (CDPs) from human peripheral blood CD34(+) cells can be genetically altered and may eventually be used for transfusions. By use of microfluidics, the time-dependent incorporation of CD41(+)CD42(+) CDPs into clots was measured using only 54,000 CDPs doped into 27 μL of human whole blood perfused over collagen at a wall shear rate of 100 sec(-1). With the use of fluorescence-labeled human platelets (instead of CDPs) doped between 0.25% and 2% of total platelets, incorporation was highly quantitative and allowed monitoring of the anti-αIIbβ3 antagonism that occurred after collagen adhesion. CDPs were only 15% as efficient as human platelets in their incorporation into human thrombi under flow, although both cell types were equally antagonized by αIIbβ3 inhibition. Transient transfection allowed the monitoring of GFP(+) human CDP incorporation into clots. This assay quantifies genetically altered CDP function under flow.

  14. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures.

    PubMed

    Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo

    2012-11-01

    The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones.

  15. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures.

    PubMed

    Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo

    2012-11-01

    The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones. PMID:23047252

  16. Micropatterned, clickable culture substrates enable in situ spatiotemporal control of human PSC-derived neural tissue morphology.

    PubMed

    Knight, G T; Sha, J; Ashton, R S

    2015-03-28

    We describe a modular culture platform that enables spatiotemporal control of the morphology of 2D neural tissues derived from human pluripotent stem cells (hPSCs) by simply adding clickable peptides to the media. It should be widely applicable for elucidating how spatiotemporal changes in morphology and substrate biochemistry regulate tissue morphogenesis. PMID:25688384

  17. Empirically Derived Combinations of Tools and Clinical Cutoffs: An Illustrative Case with a Sample of Culturally/Linguistically Diverse Children

    ERIC Educational Resources Information Center

    Oetting, Janna B.; Cleveland, Lesli H.; Cope, Robert F., III

    2008-01-01

    Purpose: Using a sample of culturally/linguistically diverse children, we present data to illustrate the value of empirically derived combinations of tools and cutoffs for determining eligibility in child language impairment. Method: Data were from 95 4- and 6-year-olds (40 African American, 55 White; 18 with language impairment, 77 without) who…

  18. Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines

    PubMed Central

    Rungsiwiwut, Ruttachuk; Ingrungruanglert, Praewphan; Numchaisrika, Pranee; Virutamasen, Pramuan; Phermthai, Tatsanee; Pruksananonda, Kamthorn

    2016-01-01

    Although human pluripotent stem cells (hPSCs) can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS) prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS) showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs) prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS) displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system. PMID:26839561

  19. Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer.

    PubMed

    Valta, Maija P; Zhao, Hongjuan; Saar, Matthias; Tuomela, Johanna; Nolley, Rosalie; Linxweiler, Johannes; Sandholm, Jouko; Lehtimäki, Jaakko; Härkönen, Pirkko; Coleman, Ilsa; Nelson, Peter S; Corey, Eva; Peehl, Donna M

    2016-04-01

    LuCaP serially transplantable patient-derived xenografts (PDXs) are valuable preclinical models of locally advanced or metastatic prostate cancer. Using spheroid culture methodology, we recently established cell lines from several LuCaP PDXs. Here, we characterized in depth the features of xenografts derived from LuCaP 136 spheroid cultures and found faithful retention of the phenotype of the original PDX. In vitro culture enabled luciferase transfection into LuCaP 136 spheroids, facilitating in vivo imaging. We showed that LuCaP 136 spheroids formed intratibial, orthotopic, and subcutaneous tumors when re-introduced into mice. Intratibial tumors responded to castration and were highly osteosclerotic. LuCaP 136 is a realistic in vitro-in vivo preclinical model of a subtype of bone metastatic prostate cancer.

  20. Enhanced Metabolizing Activity of Human ES Cell-Derived Hepatocytes Using a 3D Culture System with Repeated Exposures to Xenobiotics.

    PubMed

    Kim, Jong Hyun; Jang, Yu Jin; An, Su Yeon; Son, Jeongsang; Lee, Jaehun; Lee, Gyunggyu; Park, Ji Young; Park, Han-Jin; Hwang, Dong-Youn; Kim, Jong-Hoon; Han, Jiyou

    2015-09-01

    Highly homogeneous and functional stem cell-derived hepatocyte-like cells (HLCs) are considered a promising option in the cell-based therapy of liver disease and the development of effective in vitro toxicity screening tools. However, the purity of cells and expression and/or activity of drug metabolizing enzymes in stem cell-derived HLCs are usually too low to be useful for clinical or in vitro applications. Here, we describe a highly optimized hepatic differentiation protocol, which produces >90% (BGO1 and CHA15) albumin-positive HLCs with no purification process from human embryonic stem cell lines. In addition, we show that hepatic enzyme gene expressions and activities were significantly improved by generating 3D spheroidal aggregate of HLCs, compared with 2D HLCs. The 3D differentiation method increased expression of nuclear receptors (NRs) that regulate the proper expression of key hepatic enzymes. Furthermore, significantly increased hepatic functions such as albumin and urea secretion were observed in 3D hepatic spheroids, compared with 2D HLCs. HLCs in the spheroid exhibited morphological and ultrastructural features of normal hepatocytes. Importantly, we show that repeated exposures to xenobiotics facilitated further functional maturation of HLC, as confirmed by increased expression of genes for drug metabolizing enzymes and transcription factors. In conclusion, the 3D culture system with repeated exposures to xenobiotics may be a new strategy for enhancing hepatic metabolizing ability of stem cell-derived HLCs as a cell source for in vitro high-throughput hepatotoxicity models. PMID:26089346

  1. Mechanism of initial attachment of cells derived from human bone to commonly used prosthetic materials during cell culture.

    PubMed

    Howlett, C R; Evans, M D; Walsh, W R; Johnson, G; Steele, J G

    1994-02-01

    The suitability of polymeric biomaterials as surfaces for the attachment and growth of cells has often been investigated in cell culture. In this study the contribution that serum fibronectin (Fn) or vitronectin (Vn) make to the attachment and spreading of cells cultured from explanted human bone (bone-derived cells) during the first 90 min of culture was determined for metallic and ceramic surfaces. The requirement for Fn or Vn for attachment and spreading of bone-derived cells onto stainless steel 316 (SS), titanium (Ti) and alumina (Al2O3) and to polyethyleneterephthalate (PET) was directly tested by selective removal of Fn or Vn from the serum prior to addition to the culture medium. Attachment and spreading of bone-derived cells onto SS, Ti and Al2O3 surfaces were reduced by 73-83% when the cells were seeded in medium containing serum from which the Vn had been removed. Cell attachment and spreading on these surfaces when seeded in medium containing Fn-depleted serum (which contained Vn) were not reduced to the same extent as in the medium containing Vn-depleted serum. The bone-derived cells failed to attach to the surfaces to the same extent when seeded in medium containing serum depleted of both Vn and Fn. Our results show that for human bone-derived cells, the attachment and spreading of cells onto SS, Ti and Al2O3 as well as PET during the first 90 min of a cell culture attachment assay are a function of adsorption of serum Vn onto the surface. PMID:7515290

  2. Organoid Culture of Isolated Cells from Patient-derived Tissues with Colorectal Cancer

    PubMed Central

    Xie, Bing-Ying; Wu, Ai-Wen

    2016-01-01

    Background: Colorectal cancer (CRC) is a heterogeneous disease; current research relies on cancer cell lines and animal cancer models, which may not precisely imitate inner human tumors and guide clinical medicine. The purpose of our study was to explore and further improve the process of producing three-dimensional (3D) organoid model and impel the development of personalized therapy. Methods: We subcutaneously injected surgically resected CRC tissues from a patient into BALB/c-nu mice to build patient-derived xenografts (PDXs). Isolated cells from PDXs at appropriate tumor size were mingled with Matrigel, and then seeded in ultra-low attachment 96-well plates at four cell densities (500, 1000, 2000, and 4000 single cells/well). Cells were cultured with advanced Dulbecco's Modified Eagle Medium/F12 medium additional with various factors added to maintain tumor's biological traits and growth activity. The growth curves of the four cell densities were measured after 24 h of culture until 25 days. We evaluated the effects of four chemotherapeutic agents on organoid model by the CellTiter-Glo® Luminescent Cell Viability Assay. Hematoxylin and eosin (H and E) staining of 3D organoids was performed and compared with patient and CRC PDX tissues. Furthermore, immunohistochemistry was performed, in which the organoids were stained with the proliferation marker, Ki-67. During the experimental process, a phase-contrast microscope was used. Results: Phenotype experimental results showed that 3D organoids were tightly packed together and grew robustly over time. All four densities of cells formed organoids while that composed of 2000 cells/well provided an adequate cultivation system and grew approximately 8-fold at the 25th day. The chemosensitivity of the four conventional drugs was [s]-10-hydroxycamptothecin > mitomycin C > adriamycin > paclitaxel, which can guide clinical treatment. Histological features of CRC patient's tumor tissues and mice tumor xenograft tissues were

  3. Transferable neuronal mini-cultures to accelerate screening in primary and induced pluripotent stem cell-derived neurons.

    PubMed

    Niedringhaus, Mark; Dumitru, Raluca; Mabb, Angela M; Wang, Yuli; Philpot, Benjamin D; Allbritton, Nancy L; Taylor, Anne Marion

    2015-01-01

    The effort and cost of obtaining neurons for large-scale screens has limited drug discovery in neuroscience. To overcome these obstacles, we fabricated arrays of releasable polystyrene micro-rafts to generate thousands of uniform, mobile neuron mini-cultures. These mini-cultures sustain synaptically-active neurons which can be easily transferred, thus increasing screening throughput by >30-fold. Compared to conventional methods, micro-raft cultures exhibited significantly improved neuronal viability and sample-to-sample consistency. We validated the screening utility of these mini-cultures for both mouse neurons and human induced pluripotent stem cell-derived neurons by successfully detecting disease-related defects in synaptic transmission and identifying candidate small molecule therapeutics. This affordable high-throughput approach has the potential to transform drug discovery in neuroscience. PMID:25666972

  4. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    PubMed

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  5. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Guo, Pan; Li, Wei; Wu, Guolin; Ma, Jianbiao; Gao, Hui

    2016-03-11

    A fluorophore displaying aggregation-induced emission was introduced at the terminus of branched polyethylenimine (PEI). The formulated polyplex not only demonstrated an improved safety profile and preserved transfection activity but also importantly indicated that the uncomplexed naked DNA rather than the polyplexes translocated into the nucleus.

  6. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.

    PubMed

    Choi, Jeein; Kim, Sohyeun; Jung, Jinsun; Lim, Youngbin; Kang, Kyungsun; Park, Seungsu; Kang, Sookyung

    2011-10-01

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis

  7. Irreversible aggregation of the Fc fragment derived from polymeric but not monomeric serum IgA1--implications in IgA-mediated disease.

    PubMed

    Almogren, Adel; Kerr, Michael A

    2008-01-01

    IgA is by far the most abundant immunoglobulin in humans. It is found in serum and in secretions (SIgA). Unlike any other class of immunoglobulin, each form of IgA occurs naturally in different polymerisation states. In serum, the predominant form of IgA is IgA1 of which around 90% is monomeric and 10% is dimeric or polymeric. The proportion of dimeric/polymeric IgA increases in a number of important diseases, such as IgA nephropathy and in chronic liver disease. In both, there is evidence that further aggregation of dimeric/polymeric IgA is the cause of the characteristic tissue deposition. To investigate the effect of role of IgA polymerisation on the structure and function of IgA, we purified different molecular forms of IgA1 from myeloma serum (monomer, dimer and trimer) and SIgA1 from colostrum. Structural features of these different IgA1 forms were examined following proteolysis using Neisseria gonorrhoeae IgA1 type 2 protease and Streptococcus pneumoniae IgA1 protease. These IgA1 proteases cleave IgA1 at the hinge region and produce Fcalpha and Fab fragments. Western blot analysis demonstrated that the Fcalpha fragments of serum dimeric and trimeric but not monomeric IgA1 aggregated to form multimers resistant to disruption in SDS-PAGE under non-reducing conditions. Size exclusion chromatography under native conditions of cleaved serum dimeric IgA1 demonstrated that aggregation occurs because of structural changes in the IgA per se and was not an effect of the SDS-PAGE system. In the same assay, SIgA1 (dimeric) did not aggregate after digestion. The results suggest an important, previously unrecognised, property of dimeric/polymeric serum IgA1, which might explain its propensity to aggregate and deposit in tissues.

  8. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  9. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  10. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  11. Bioluminescence-mediated longitudinal monitoring of adipose-derived stem cells in a large mammal ex vivo organ culture.

    PubMed

    Peeters, Mirte; van Rijn, Sjoerd; Vergroesen, Pieter-Paul A; Paul, Cornelis P L; Noske, David P; Vandertop, W Peter; Wurdinger, Thomas; Helder, Marco N

    2015-09-09

    Recently, ex vivo three-dimensional organ culture systems have emerged to study the physiology and pathophysiology of human organs. These systems also have potential as a translational tool in tissue engineering; however, this potential is limited by our ability to longitudinally monitor the fate and action of cells used in regenerative therapies. Therefore, we investigated luciferase-mediated bioluminescence imaging (BLI) as a non-invasive technique to continuously monitor cellular behavior in ex vivo whole organ culture. Goat adipose-derived stem cells (gADSCs) were transduced with either Firefly luciferase (Fluc) or Gaussia luciferase (Gluc) reporter genes and injected in isolated goat intervertebral discs (IVD). Luciferase activity was monitored by BLI for at least seven days of culture. Additionally, possible confounders specific to avascular organ culture were investigated. Gluc imaging proved to be more suitable compared to Fluc in monitoring gADSCs in goat IVDs. We conclude that BLI is a promising tool to monitor spatial and temporal cellular behavior in ex vivo organ culture. Hence, ex vivo organ culture systems allow pre-screening and pre-validation of novel therapeutic concepts prior to in vivo large animal experimentation. Thereby, organ culture systems can reduce animal use, and improve the speed of innovation by overcoming technological, ethical and financial challenges.

  12. Bioluminescence-mediated longitudinal monitoring of adipose-derived stem cells in a large mammal ex vivo organ culture

    PubMed Central

    Peeters, Mirte; van Rijn, Sjoerd; Vergroesen, Pieter-Paul A.; Paul, Cornelis P. L.; Noske, David P.; Peter Vandertop, W.; Wurdinger, Thomas; Helder, Marco N.

    2015-01-01

    Recently, ex vivo three-dimensional organ culture systems have emerged to study the physiology and pathophysiology of human organs. These systems also have potential as a translational tool in tissue engineering; however, this potential is limited by our ability to longitudinally monitor the fate and action of cells used in regenerative therapies. Therefore, we investigated luciferase-mediated bioluminescence imaging (BLI) as a non-invasive technique to continuously monitor cellular behavior in ex vivo whole organ culture. Goat adipose-derived stem cells (gADSCs) were transduced with either Firefly luciferase (Fluc) or Gaussia luciferase (Gluc) reporter genes and injected in isolated goat intervertebral discs (IVD). Luciferase activity was monitored by BLI for at least seven days of culture. Additionally, possible confounders specific to avascular organ culture were investigated. Gluc imaging proved to be more suitable compared to Fluc in monitoring gADSCs in goat IVDs. We conclude that BLI is a promising tool to monitor spatial and temporal cellular behavior in ex vivo organ culture. Hence, ex vivo organ culture systems allow pre-screening and pre-validation of novel therapeutic concepts prior to in vivo large animal experimentation. Thereby, organ culture systems can reduce animal use, and improve the speed of innovation by overcoming technological, ethical and financial challenges. PMID:26350622

  13. New Synthetic Pyrazine Carboxamide Derivatives as Potential Elicitors in Production of Secondary Metabolite in In vitro Cultures

    PubMed Central

    Tůmová, Lenka; Tůma, Jiří; Doležal, Martin; Dučaiová, Zuzana; Kubeš, Jan

    2016-01-01

    Background: Silymarin, an active polyphenolic fraction of Silybum marianum, and high flavonoid content of Fagopyrum possess various interesting biological activities. The substituted pyrazine-2-carboxamides were previously used as effective elicitors of studied secondary metabolites. Objective: To study the effect of new synthetic pyrazine carboxamide derivatives, N-(4-chlorobenzyl)-5-tert-butylpyrazine-2-carboxamide (1) and 3-(3-((trifluoromethyl) benzyl) amino) pyrazine-2-carboxamide (2), on flavonolignan and flavonoid production in S. marianum and Fagopyrumes culentum in vitro cultures. Materials and Methods: Callus and suspension cultures were cultured on MS medium containing α-naphtaleneacetic acid or 2,4-D. Three elicitor concentrations for different exposure times were tested. Dried and powdered samples of callus and suspension cultures were extracted with methanol and analyzed by DAD-HPLC. Results: Compound 1 showed as a good elicitor of taxifolin production. The effect on silymarin complex was less visible with a maximum between 24 and 48 h after 3.292 ×10−4 mol/L concentration. The detailed analysis showed that silychristin was the most abundant. Compound 2 was effective in rutin production only in callus culture with maximum 24 h and 168 h after application of 3.3756 ×10−3 mol/L concentration and 48 and 72 h after 3.3756 ×10−4 mol/L concentration. Conclusion: From the results of the performed experiments, it can be concluded that compound 1 shows to be suitable elicitor for enhanced production of taxifolin and silychristin in S. marianum, mainly when 3.292 ×10−4 mol/L concentration was used, and compound 2 is suitable for increase rutin production in callus cultures and less appropriate for suspension cultures of F. esculentum. SUMMARY The influence of two new synthetic pyrazine-2-carboxamidesderivatives on secondary metabolite content of Silybum marianum and Fagopyrum esculentum in vitro cultures was tested.In S. marianum, the derivate N-(4

  14. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation

    PubMed Central

    Wang, Wenguang; Li, Jia; Wu, Kun; Azhati, Baihetiya; Rexiati, Mulati

    2016-01-01

    Background The aim of this study was to establish a culture method for mouse dendritic cells (DCs) in vitro and observe their morphology at different growth stages and their ability to induce the proliferation of T lymphocytes. Material/Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. The derived DCs were then assessed for morphology, phenotype, and function. Results The mouse BM-derived mononucleocytes had altered cell morphology 3 days after induction by GM-CSF and IL-4 and grew into colonies. Typical dendrites appeared 8 days after induction. Many mature DCs were generated, with typical dendritic morphology observed under scanning electron microscopy. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in the mature DCs. Furthermore, the mature DCs displayed a strong potency in stimulating the proliferation of syngenic or allogenic T lymphocytes. Conclusions Mouse BM-derived mononucleocytes cultured in vitro can produce a large number of DCs, as well as immature DCs, in high purity. The described in vitro culture method lays a foundation for further investigations of anti-tumor vaccines. PMID:26802068

  15. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes.

    PubMed

    Kim, Ji-Young; Park, Chan Do; Lee, Joon Ho; Lee, Chang-Hoon; Do, Byung-Rok; Lee, Ai Young

    2012-01-01

    Cell-to-cell interactions between melanocytes and keratinocytes increase the proliferation and migration of melanocytes. In fact, mixed keratinocyte and melanocyte cultures have been used for autologous cell transplantation for treatment of vitiligo. However, this may require taking an amount of skin tissue large enough to leave scars. In this study, the in vitro effect of adipose-derived stem cells (ADSCs) on proliferation, differentiation and migration of melanocytes was compared with that of keratinocytes using immunohistochemistry and a Boyden chamber migration assay. The proliferation and migration of melanocytes was significantly stimulated by co-culture with ADSCs compared with melanocyte monocultures, al-though the effect of ADSCs was less powerful than that of keratinocytes. This may be related to increases in stem cell factor and basic fibroblast growth factor, growth factors for melanocytes, produced by the ADSCs. The ratios of melanocytes stained with antibodies against Trp-2, E-cadherin and N-cadherin were significantly increased by co-culturing with ADSCs compared with co-culturing with keratinocytes as well as melanocyte monocultures. The proportion of less-pigmented melanocytes was also increased and sustained for a longer duration in the presence of ADSCs. Our data show that co-culturing with ADSCs results in increased melanocyte proliferation and migration while reducing differentiation, and could provide a means to treat disorders such as vitiligo.

  16. Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against α-synuclein-induced synapse damage.

    PubMed

    Alhebshi, A H; Odawara, A; Gotoh, M; Suzuki, I

    2014-06-01

    The seeds of Nigella sativa are used worldwide to treat various diseases and ailments. Thymoquinone (TQ) that is present in the essential oil of these seeds mediates most of the plant's diverse therapeutic effects. The present study aimed to determine whether TQ protects against α-synuclein (αSN)-induced synaptic toxicity in rat hippocampal and human induced pluripotent stem cell (hiPSC)-derived neurons. Here, we report that αSN decreased the level of synaptophysin, a protein used as an indicator of synaptic density, in cultured hippocampal and hiPSC-derived neurons. However, simultaneous treatment with αSN and TQ protected neurons against αSN-induced synapse damage, as revealed by immunostaining. Moreover, administration of TQ efficiently induced protection in these cells against αSN-induced inhibition of synaptic vesicle recycling in hippocampal and hiPSC-derived neurons as well as against mutated P123H β-synuclein (βSN) in hippocampal neurons, as revealed by experiments using the fluorescent dye FM1-43. Using a multielectrode array, we further demonstrated that the treatment of hiPSC-derived neurons with αSN induced a reduction in spontaneous firing activity, and cotreatment with αSN and TQ partially reversed this loss. These results suggest that TQ protects cultured rat primary hippocampal and hiPSC-derived neurons against αSN-induced synaptic toxicity and could be a promising therapeutic agent for patients with Parkinson's disease and dementia with Lewy bodies.

  17. Design, Synthesis and Structure-Activity Relationship (SAR) Studies of 2,4-Disubstituted Pyrimidine Derivatives: Dual Activity as Cholinesterase and Aβ-Aggregation Inhibitors

    PubMed Central

    Mohamed, Tarek; Zhao, Xiaobei; Habib, Lila K.; Yang, Jerry; Rao, Praveen P. N.

    2011-01-01

    A novel class of 2,4-disubstituted pyrimidines (7a–u, 8a–f, 9a–e) that possess substituents with varying steric and electronic properties at the C-2 and C-4 positions, were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. In vitro screening identified N-(naphth-1-ylmethyl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (9a) as the most potent AChE inhibitor (IC50 = 5.5 μM). Among this class of compounds, 2-(4-methylpiperidin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine (9e) was identified as the most potent and selective BuChE inhibitor (IC50 = 2.2 μM, Selectivity Index = 11.7) and was about 5.7-fold more potent compared to the commercial, approved reference drug galanthamine (BuChE IC50 = 12.6 μM). In addition, the selective AChE inhibitor N-benzyl-2-(4-methylpiperazin-1-yl)pyrimidin-4-amine (7d), exhibited good inhibition of hAChE-induced aggregation of Aβ1–40 fibrils (59% inhibition). Furthermore, molecular modeling studies indicate that a central pyrimidine ring serves as a suitable template to develop dual inhibitors of cholinesterase and AChE-induced Aβ aggregation thereby targeting multiple pathological routes in AD. PMID:21429752

  18. The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Heras-Bautista, Carlos O; Katsen-Globa, Alisa; Schloerer, Nils E; Dieluweit, Sabine; Abd El Aziz, Osama M; Peinkofer, Gabriel; Attia, Wael A; Khalil, Markus; Brockmeier, Konrad; Hescheler, Jürgen; Pfannkuche, Kurt

    2014-08-01

    Cardiomyocytes (CMs) from induced pluripotent stem (iPS) cells mark an important achievement in the development of in vitro pharmacological, toxicological and developmental assays and in the establishment of protocols for cardiac cell replacement therapy. Using CMs generated from murine embryonic stem cells and iPS cells we found increased cell-matrix interaction and more matured embryoid body (EB) structures in iPS cell-derived EBs. However, neither suspension-culture in form of purified cardiac clusters nor adherence-culture on traditional cell culture plastic allowed for extended culture of CMs. CMs grown for five weeks on polystyrene exhibit signs of massive mechanical stress as indicated by α-smooth muscle actin expression and loss of sarcomere integrity. Hydrogels from polyacrylamide allow adapting of the matrix stiffness to that of cardiac tissue. We were able to eliminate the bottleneck of low cell adhesion using 2,5-Dioxopyrrolidin-1-yl-6-acrylamidohexanoate as a crosslinker to immobilize matrix proteins on the gels surface. Finally we present an easy method to generate polyacrylamide gels with a physiological Young's modulus of 55 kPa and defined surface ligand, facilitating the culture of murine and human iPS-CMs, removing excess mechanical stresses and reducing the risk of tissue culture artifacts exerted by stiff substrates.

  19. Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface

    PubMed Central

    Wong, Tzyy Yue; Chen, Ying-Hui; Liu, Szu-Heng; Solis, Mairim Alexandra; Yu, Chen-Hsiang; Chang, Chiung-Hsin; Huang, Lynn L. H.

    2016-01-01

    Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth. PMID:27057169

  20. Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface.

    PubMed

    Wong, Tzyy Yue; Chen, Ying-Hui; Liu, Szu-Heng; Solis, Mairim Alexandra; Yu, Chen-Hsiang; Chang, Chiung-Hsin; Huang, Lynn L H

    2016-01-01

    Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth. PMID:27057169

  1. Construction aggregates

    USGS Publications Warehouse

    Bolen, W.P.; Tepordei, V.V.

    2001-01-01

    The estimated production during 2000 of construction aggregates, crushed stone, and construction sand and gravel increased by about 2.6% to 2.7 Gt (3 billion st), compared with 1999. The expansion that started in 1992 continued with record production levels for the ninth consecutive year. By commodity, construction sand and gravel production increased by 4.5% to 1.16 Gt (1.28 billion st), while crushed stone production increased by 1.3% to 1.56 Gt (1.72 billion st).

  2. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    PubMed

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  3. Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability.

    PubMed

    Wei, Xiao-Meng; He, Ruo; Chen, Min; Su, Yao; Ma, Ruo-Chan

    2016-04-01

    Methanotrophs not only play an important role in mitigating CH4 emissions from the environment, but also provide a large quantity of CH4-derived carbon to their habitats. In this study, the distribution of CH4-derived carbon and microbial community was investigated in a consortium enriched at three O2 tensions, i.e., the initial O2 concentrations of 2.5 % (LO-2), 5 % (LO-1), and 21 % (v/v) (HO). The results showed that compared with the O2-limiting environments (2.5 and 5 %), more CH4-derived carbon was converted into CO2 and biomass under the O2 sufficient condition (21 %). Besides biomass and CO2, a high conversion efficiency of CH4-derived carbon to dissolved organic carbon was detected in the cultures, especially in LO-2. Quantitative PCR and Miseq sequencing both showed that the abundance of methanotroph increased with the increasing O2 concentrations. Type II methanotroph Methylocystis dominated in the enrichment cultures, accounting for 54.8, 48.1, and 36.9 % of the total bacterial 16S rRNA gene sequencing reads in HO, LO-1, and LO-2, respectively. Methylotrophs, mainly including Methylophilus, Methylovorus, Hyphomicrobium, and Methylobacillus, were also abundant in the cultures. Compared with the O2 sufficient condition (21 %), higher microbial biodiversity (i.e., higher Simpson and lower Shannon indexes) was detected in LO-2 enriched at the initial O2 concentration of 2.5 %. These findings indicated that compared with the O2 sufficient condition, more CH4-derived carbon was exuded into the environments and promoted the growth of non-methanotrophic microbes in O2-limiting environments. PMID:26728286

  4. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study.

    PubMed

    Baba, Kyoko; Yamazaki, Yasuharu; Ishiguro, Masashi; Kumazawa, Kenichi; Aoyagi, Kazuya; Ikemoto, Shigehiro; Takeda, Akira; Uchinuma, Eiju

    2013-12-01

    This study examined the potential for osteogenesis via regenerative medicine using autologous tissues (umbilical cord (UC) and umbilical cord blood (UCB)) in nude mice. The study was designed to provide the three elements required for regenerative medicine (cell, scaffold, and growth factor) and autoserum for culture by means of autologous tissues. Mesenchymal stromal cells were obtained from UC (UC-MSCs). Fibrin, platelet-rich-plasma, and autoserum were obtained from UCB as scaffold, growth factor and serum for culture respectively. UC-MSCs were obtained from Wharton jelly and cultured with UCB-derived fibrin (UCB-fibrin) for 3-4 weeks to induce their differentiation into osteoblasts. They were implanted subcutaneously into the dorsum of male nude mice for 6 weeks prior to undergoing assessment. The assessments performed were haematoxylin and eosin, and alizarin red staining, immunohistochemical staining of human mitochondria, scanning electron microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry and real-time reverse transcriptase-polymerase chain reaction to assess the expressions of osteoblast markers. Consequently, the differentiation of UC-MSCs into osteoblasts and the production of hydroxyapatite were verified. This study suggested the possible formation of bone tissue using biomedical materials obtained from UC and UCB.

  5. Characterization and in vitro culture of putative spermatogonial stem cells derived from feline testicular tissue.

    PubMed

    Tiptanavattana, Narong; Thongkittidilok, Chommanart; Techakumphu, Mongkol; Tharasanit, Theerawat

    2013-01-01

    Spermatogonial stem cells (SSCs) function to regulate the balance of self-renewal and differentiation of male gametes. SSCs have been successfully isolated and cultured in vitro in several species, but not in feline. Therefore, in this study, we aimed to culture and characterize feline SSCs. In experiment 1, testes (n=5) from different pubertal domestic cats were cryosectioned and fluorescently immunolabeled to examine the expression of SSC (GFRα-1), differentiated spermatogonium (c-kit) and germ cell (DDX-4) markers. In experiments 2 and 3, testicular cells were digested and subsequently cultured in vitro. The resultant presumptive SSC colonies were then collected for SSC identification (experiment 2), or further cultured in vitro on feeder cells (experiment 3). Morphology, gene expression and immunofluorescence were used to identify the SSCs. Experiment 1 demonstrated that varying types of spermatogenic cells existed and expressed different germ cell/SSC markers. A rare population of putative SSCs located at the basement membrane of the seminiferous tubules was specifically identified by co-expression of GFRα-1 and DDX-4. Following enzymatic digestion, grape-like colonies formed by 13-15 days of culture. These colonies expressed GFRA1 and ZBTB16, but did not express KIT. Although we successfully isolated and cultured feline SSCs in vitro, the SSCs could only be maintained for 57 days. In conclusion, this study demonstrates, for the first time, that putative SSCs from testes of pubertal domestic cats can be isolated and cultured in vitro. These cells exhibited SSC morphology and expressed SSC-specific genes. However, long-term culture of these putative SSCs was compromised.

  6. New ambuic acid derivatives from the solid culture of Pestalotiopsis neglecta and their nitric oxide inhibitory activity

    PubMed Central

    Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei

    2015-01-01

    Four new ambuic acid derivatives (1–4), and four known derivatives (5–8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively. PMID:25989228

  7. Comparison of single cell culture derived Solanum tuberosum L. plants and a model for their application in breeding programs.

    PubMed

    Wenzel, G; Schieder, O; Przewozny, T; Sopory, S K; Melchers, G

    1979-03-01

    The techniques of microspore and protoplast regeneration starting from dihaploid Solanum tuberosum plants has been improved to such an extent that the production of more than 2000 microspore derived A1 plant lines and of several hundred protoplast derived plantlets has become possible. Further, from the dihaploid Solanum species S. phureja the regeneration of microspores to plants, and from the species S. infundibuliforme, S. sparsipilum and S. tarijense the regeneration of protoplasts to calluses, has been achieved. The plants descending from the two single cell culture systems are compared with reference to phenotypic markers and economic qualities. Some principles characteristic for either microspore or protoplast derived plants are examined and their significance is discussed. The results are compiled into an extended analytical synthetic breeding scheme based on a stepwise reduction of the autotetraploid to the monohaploid level and a subsequent controlled combination to a new synthetic completely heterozygous tetraploid potato.

  8. Emerin expression in tubular aggregates.

    PubMed

    Manta, Panagiota; Terzis, Gerasimos; Papadimitriou, Constantinos; Kontou, Chrysanthi; Vassilopoulos, Demetris

    2004-06-01

    Emerin is an inner nuclear membrane protein that is mutated or not expressed in patients with X-linked Emery-Dreifuss muscular dystrophy (X-EDMD/EMD). Cytoplasmic localization of emerin in cultured cells or tissues has been reported, although this remains a controversial issue. Tubular aggregates (TAs) are pathological structures seen in the sarcoplasm of human skeletal muscle fibers in various disorders. The TAs derive from the sarcoplasmic reticulum (SR) and represent, probably, an adaptive response of the SR to various insults to the muscle fibers. In the present study, we present immunohistochemical evidence of emerin expression in TAs. Muscle biopsies with tubular aggregates from four male, unrelated patients were studied. The percentage of muscle fibers containing TAs varied between 5 and 20%. Routine histochemistry revealed intense reaction of TAs with NADH-TR, AMPDA, and NSE, but not with COX, SDH, myosin ATPase (pH 9.4, 4.3, 4.6), PAS, and Oil red O staining. Immunohistochemical study revealed strong immunostaining of TAs with antibodies against emerin and 7 SERCA2-ATPase. Immunostaining of TAs was also seen with antibodies against heat shock protein and dysferlin, but not with antibodies to lamin A, dystrophin, adhalin, beta, gamma, delta sarcoglycans, and merosin. These results suggest that emerin, an inner nuclear membrane protein, is present at the TAs. The interpretation and significance of this finding is discussed in relation to experimental data suggesting that normal emerin localization at the inner nuclear membrane depends on lamin A and mutations in the N-terminal domain of emerin cause mislocalization of the protein to the sarcoplasmic membranes.

  9. Recovery of Green Plantlets from Albino Shoot Primordia Derived from Anther Culture of Indica Rice (Oryza sativa L.)

    PubMed Central

    Mohiuddin, Abul Kashem Md.; Karim, Nilufer Hye; Sultana, Shahanaz; Ferdous, Zannatul

    2011-01-01

    A simple method was developed to permit albino plant regeneration from anther culture of Hobigonj Boro (Hbj B) IV and Hbj B VI, two local varieties of aromatic indica rice from Bangladesh. Three crucial factors were identified for the albino shoot primordia to change into green plantlets in culture; components of M10 induction medium, callus size (range 0.2–0.4 cm long) and height of shoot primordia (range 2–3 mm). Immediate transfer of shoot primordia (2–3 mm) from M10 medium to regeneration medium followed by continuous incubation under fluorescent light (100-lux, 25±1°C) triggered albino shoot primordia to turn green in 2–3 days. Callus size did not show any effect on the change. Albino plantlets derived from anther callus cultured in KA, KB, KC, KD and KE media did not recover in both the varieties. Transfer of albino shoot primordia shorter or longer than 2–3 mm from the above 5 cultures to regeneration medium did not cause the shoot primordia to turn green. 100% albino shoot primordia initiated from Hbj B VI and 79% from Hbj B IV in M10 medium changed to green plantlets upon transfer to regeneration medium. Subsequent culture and subculture of green plantlets showed rapid formation of many new green plantlets. PMID:24575205

  10. What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue

    PubMed Central

    Qureshi-Baig, Komal; Ullmann, Pit; Rodriguez, Fabien; Frasquilho, Sónia; Nazarov, Petr V.; Haan, Serge; Letellier, Elisabeth

    2016-01-01

    Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance. PMID:26745821

  11. What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue.

    PubMed

    Qureshi-Baig, Komal; Ullmann, Pit; Rodriguez, Fabien; Frasquilho, Sónia; Nazarov, Petr V; Haan, Serge; Letellier, Elisabeth

    2016-01-01

    Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance. PMID:26745821

  12. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys.

    PubMed

    Sugahara, Go; Kamiie, Junichi; Kobayashi, Ryosuke; Mineshige, Takayuki; Shirota, Kinji

    2016-06-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R.

  13. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys

    PubMed Central

    SUGAHARA, Go; KAMIIE, Junichi; KOBAYASHI, Ryosuke; MINESHIGE, Takayuki; SHIROTA, Kinji

    2016-01-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R. PMID:26854253

  14. Phylogenetic diversity and antibacterial activity of culturable fungi derived from the zoanthid Palythoa haddoni in the South China Sea.

    PubMed

    Qin, Xiao-Yan; Yang, Kai-Lin; Li, Jing; Wang, Chang-Yun; Shao, Chang-Lun

    2015-02-01

    Investigation on diversity of culturable fungi mainly focused on sponges and corals, yet little attention had been paid to the fungal communities associated with zoanthid corals. In this study, a total of 193 culturable fungal strains were isolated from the zoanthid Palythoa haddoni collected in the South China Sea, of which 49 independent isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analyses. Thirty-five strains were selected for phylogenetic analysis based on fungal ITS sequences. The results indicated that 18 genera within eight taxonomic orders of two phyla (seven orders of the phylum Ascomycota and one order of the phylum Basidiomycota) together with one unidentified fungal strain have been achieved, and Cladosporium sp. represented the dominant culturable genus. Particularly, 14 genera were isolated from a zoanthid for the first time. The antibacterial activities of organic extracts of mycelia and fermentation broth of 49 identified fungi were evaluated, and 29 (59.2 %) of the isolates displayed broad-spectrum or selective antibacterial activity. More interestingly, more than 60 % of the active fungal strains showed strong activity against two aquatic pathogenic bacteria Nocardia brasiliensis and Vibrio parahaemolyticus, compared with other pathogenic bacteria, indicating that zoanthid-derived fungi may protect its host against pathogens. This is the first report of systematically phylogenetic diversity and extensively antibacterial activity of zoanthid-derived fungi.

  15. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    SciTech Connect

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  16. Inter-microcarrier transfer and phenotypic stability of stem cell-derived Schwann cells in stirred suspension bioreactor culture.

    PubMed

    Shakhbazau, Antos; Mirfeizi, Leila; Walsh, Tylor; Wobma, Holly M; Kumar, Ranjan; Singh, Bhagat; Kallos, Michael S; Midha, Rajiv

    2016-02-01

    Emerging bioreactor technologies offer an effective way for scaled-up production of large numbers of cells for cell therapy applications. One of the clinical paradigms where cell therapy can be an asset is restorative neurosciences. Nerve repair can benefit from the injections of stem cells and/or Schwann cells, acting as a source for axon myelination, myelin debris clearance, and trophic support. We have adapted microcarrier-based suspension bioreactor culture for Schwann cells (SCs) differentiated from a new stem cell source - skin-derived precursors (SKPs). SKP-derived SCs attach and grow on different types of microcarriers in both static and stirred culture, with Cytodex 3 and CultiSpher-S found most effective. Inter-microcarrier migration of SKP-SCs represents a key mechanism for rapid expansion and colonization in stirred suspension culture. We have shown that microcarrier-expanded SKP-SCs cells express Schwann cell markers p75-NTR, GFAP and S100 and retain their key ability to myelinate axons both in vitro and in vivo. Scaled-up microcarrier-based production of SKP-SCs in suspension bioreactors appears feasible for timely generation of sufficient cell numbers for nerve repair strategies.

  17. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  18. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-05-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  19. Enrichment and Molecular Characterization of a Bacterial Culture That Degrades Methoxy-Methyl Urea Herbicides and Their Aniline Derivatives

    PubMed Central

    El-Fantroussi, Said

    2000-01-01

    Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3,4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37°C, 3,4-dichloroaniline was transformed only at 28°C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates. PMID:11097876

  20. Bioconversion of artemisinin to its nonperoxidic derivative deoxyartemisinin through suspension cultures of Withania somnifera Dunal.

    PubMed

    Sabir, Farzana; Kumar, Anil; Tiwari, Pragya; Pathak, Neelam; Sangwan, Rajender S; Bhakuni, Rajendra S; Sangwan, Neelam S

    2010-01-01

    Biotransformation of artemisinin was investigated with two different cell lines of suspension cultures of Withania somnifera. Both cell lines exhibited potential to transform artemisinin into its nonperoxidic analogue, deoxyartemisinin, by eliminating the peroxo bridge of artemisinin. The enzyme involved in the reaction is assumed to be artemisinin peroxidase, and its activity in extracts of W. somnifera leaves was detected. Thus, the non-native cell-free extract of W. somnifera and suspension culture-mediated bioconversion can be a promising tool for further manipulation of pharmaceutical compounds. PMID:21138064

  1. N-Alkynyl Derivatives of 5-Fluorouracil: Susceptibility to Palladium-Mediated Dealkylation and Toxigenicity in Cancer Cell Culture

    NASA Astrophysics Data System (ADS)

    Weiss, Jason; Fraser, Craig; Rubio-Ruiz, Belén; Myers, Samuel; Crispin, Richard; Dawson, John; Brunton, Valerie; Patton, E.; Carragher, Neil; Unciti-Broceta, Asier

    2014-07-01

    Palladium-activated prodrug therapy is an experimental therapeutic approach that relies on the unique chemical properties and biocompatibility of heterogeneous palladium catalysis to enable the spatially-controlled in vivo conversion of a biochemically-stable prodrug into its active form. This strategy, which would allow inducing local activation of systemically administered drug precursors by mediation of an implantable activating device made of Pd(0), has been proposed by our group as a way to reduce drug’s systemic toxicity while reaching therapeutic levels of the active drug in the affected tissue / organ. In the seminal study of such an approach, we reported that propargylation of the N1 position of 5-fluorouracil suppressed the drug’s cytotoxic properties, showed high stability in cell culture and facilitated the bioorthogonal restoration of the drug’s pharmacological activity in the presence of extracellular Pd(0)-functionalized resins. To provide additional insight on the properties of this system, we have investigated different N1-alkynyl derivatives of 5-fluorouracil and shown that the presence of substituents near the triple bond influence negatively on its sensitivity to palladium catalysis under biocompatible conditions. Comparative studies of the N1- versus the N3-propargyl derivatives of 5-fluorouracil revealed that masking each or both positions equally led to inactive derivatives (>200-fold reduction of cytotoxicity relative to the unmodified drug), whereas the depropargylation process occurred faster at the N1 position than at the N3, thus resulting in greater toxigenic properties in cancer cell culture.

  2. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope.

    PubMed

    Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A

    2007-01-01

    Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer. PMID:17524303

  3. N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture

    PubMed Central

    Weiss, Jason T.; Fraser, Craig; Rubio-Ruiz, Belén; Myers, Samuel H.; Crispin, Richard; Dawson, John C.; Brunton, Valerie G.; Patton, E. Elizabeth; Carragher, Neil O.; Unciti-Broceta, Asier

    2014-01-01

    Palladium-activated prodrug therapy is an experimental therapeutic approach that relies on the unique chemical properties and biocompatibility of heterogeneous palladium catalysis to enable the spatially-controlled in vivo conversion of a biochemically-stable prodrug into its active form. This strategy, which would allow inducing local activation of systemically administered drug precursors by mediation of an implantable activating device made of Pd0, has been proposed by our group as a way to reach therapeutic levels of the active drug in the affected tissue/organ while reducing its systemic toxicity. In the seminal study of such an approach, we reported that propargylation of the N1 position of 5-fluorouracil suppressed the drug's cytotoxic properties, showed high stability in cell culture and facilitated the bioorthogonal restoration of the drug's pharmacological activity in the presence of extracellular Pd0-functionalized resins. To provide additional insight on the properties of this system, we have investigated different N1-alkynyl derivatives of 5-fluorouracil and shown that the presence of substituents near the triple bond influence negatively on its sensitivity to palladium catalysis under biocompatible conditions. Comparative studies of the N1- vs. the N3-propargyl derivatives of 5-fluorouracil revealed that masking each or both positions equally led to inactive derivatives (>200-fold reduction of cytotoxicity relative to the unmodified drug), whereas the depropargylation process occurred faster at the N1 position than at the N3, thus resulting in greater toxigenic properties in cancer cell culture. PMID:25121087

  4. Influence of age of aggregates and prokaryotic abundance on glucose and leucine uptake by heterotrophic marine prokaryotes.

    PubMed

    Azúa, Iñigo; Unanue, Marian; Ayo, Begoña; Artolozaga, Itxaso; Iriberri, Juan

    2007-03-01

    The kinetics of glucose and leucine uptake in attached and free-living prokaryotes in two types of microcosms with different nutrient qualities were compared. Microcosm type M1, derived from unaltered seawater, and microcosm type M2, from phytoplankton cultures, clearly expressed different kinetic parameters (Vmax/cell and K' m). In aggregates with low cell densities (M1 microcosm), the attached prokaryotes benefited from attachment as reflected in the higher potential uptake rates, while in aggregates with high cell densities (M2 microcosm) differences in the potential uptake rates of attached and free-living prokaryotes were not evident. The aging process and the chemical changes in aggregates of M2 microcosms were followed for 15-20 days. The results showed that as the aggregates aged and prokaryotic abundance increased, attached prokaryotes decreased their potential uptake rate and their K' m for substrate. This suggests an adaptive response by attached prokaryotes when aggregates undergo quantitative and qualitative impoverishment.

  5. The Sign "Institute" and Its Derivatives: A Family of Culturally Important ASL Signs

    ERIC Educational Resources Information Center

    Kowalsky, Jilly; Meier, Richard P.

    2013-01-01

    The sign "institute" is the source of a family of ASL signs that are used to refer to residential schools for deaf children and to other institutions. The members of the "institute" sign family--although initialized--are well-established within the Deaf community and, importantly, are used to refer to highly-valued aspects of Deaf culture. This is…

  6. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture

    PubMed Central

    Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia

    2016-01-01

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751

  7. Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions.

    PubMed

    Soares, Filipa A C; Chandra, Amit; Thomas, Robert J; Pedersen, Roger A; Vallier, Ludovic; Williams, David J

    2014-03-10

    The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes.

  8. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits

    SciTech Connect

    Powell, Joshua D.; Hess, Becky M.; Hutchison, Janine R.; Straub, Tim M.

    2015-05-01

    We report the construction of an in vitro three dimensional (3D) co-culture platform consisting of differentiated lung epithelial cells and monocytes from New Zealand white rabbits. Rabbit lung epithelial cells were successfully grown at air-liquid interface, produced mucus, and expressed both sialic acid alpha-2,3 and alpha-2,6. Blood-derived CD14+ monocytes were deposited above the epithelial layer resulting in the differentiation of a subset of monocytes into CD11c+ cells within the co-culture. These proof-of-concept findings provide a convenient means to comparatively study in vitro versus in vivo rabbit lung responses as they relate to inhalation or lung-challenge studies.

  9. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    PubMed Central

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  10. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter.

    PubMed

    Ovchinnikov, Dmitry A; Hidalgo, Alejandro; Yang, Seung-Kwon; Zhang, Xinli; Hudson, James; Mazzone, Stuart B; Chen, Chen; Cooper-White, Justin J; Wolvetang, Ernst J

    2015-01-01

    The prospective isolation of defined contractile human pluripotent stem cell (hPSC)-derived cardiomyocytes is advantageous for regenerative medicine and drug screening applications. Currently, enrichment of cardiomyocyte populations from such cultures can be achieved by combinations of cell surface markers or the labor-intensive genetic modification of cardiac developmental genes, such as NKX2.5 or MYH6, with fluorescent reporters. To create a facile, portable method for the isolation of contractile cardiomyocytes from cardiomyogenic hPSC cultures, we employed a highly conserved cardiac enhancer sequence in the SLC8A1 (NCX1) gene to generate a lentivirally deliverable, antibiotic-selectable NCX1cp-EGFP reporter. We show that human embryonic stem cells (and induced pluripotent stem cells) transduced with the NCX1cp-EGFP reporter cassette exhibit enhanced green fluorescent protein (EGFP) expression in cardiac progenitors from 5 days into the directed cardiac hPSC differentiation protocol, with all reporter-positive cells transitioning to spontaneously contracting foci 3 days later. In subsequent stages of cardiomyocyte maturation, NCX1cp-EGFP expression was exclusively limited to contractile cells expressing high levels of cardiac troponin T (CTNT), MLC2a/v, and α-actinin proteins, and was not present in CD90/THY1(+) cardiac stromal cells or CD31/PECAM(+) endothelial cells. Flow-assisted cytometrically sorted EGFP(+) fractions of differentiated cultures were highly enriched in both early (NKX2.5 and TBX5) and late (CTNT/TNNI2, MYH6, MYH7, NPPA, and MYL2) cardiomyocyte markers, with a significant proportion of cells displaying a ventricular-like action potential pattern in patch-clamp recordings. We conclude that the use of the cardiac-specific promoter of the human SLC8A1(NCX1) gene is an effective strategy to isolate contractile cardiac cells and their progenitors from hPSC-derived cardiomyogenic cultures. PMID:25075536

  11. Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis.

    PubMed

    Jin, Wei; Jia, Kuntong; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng

    2013-06-01

    The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells. PMID:23661087

  12. Data on acylglycerophosphate acyltransferase 4 (AGPAT4) during murine embryogenesis and in embryo-derived cultured primary neurons and glia.

    PubMed

    Bradley, Ryan M; Mardian, Emily B; Marvyn, Phillip M; Vasefi, Maryam S; Beazely, Michael A; Mielke, John G; Duncan, Robin E

    2016-03-01

    Whole mouse embryos at three developmental timepoints, embryonic (E) day E10.5, E14.5, and E18.5, were analyzed for Agpat4 mRNA expression. Primary cortical mouse cultures prepared from E18.5 mouse brains were used for immunohistochemistry. Our data show that Agpat4 is differentially expressed at three timepoints in murine embryogenesis and is immunodetectable in both neurons and glial cells derived from the developing mouse brain. This paper contains data related to research concurrently published in Bradley et al. (2015) [1].

  13. Differential effects of culture conditions on the migration pattern of stromal cell-derived factor-stimulated hematopoietic stem cells.

    PubMed

    Weidt, Corinna; Niggemann, Bernd; Hatzmann, Wolfgang; Zänker, Kurt S; Dittmar, Thomas

    2004-01-01

    Evidence is mounting that hematopoietic stem cells (HSCs) play a critical role in bone marrow regeneration and tissue renewal, for which migration is an obvious prerequisite. Computer-aided analysis and a three-dimensional collagen matrix assay enabled us to analyze single-cell migratory characteristics of stromal cell-derived factor-1 alpha (SDF-1 alpha)-stimulated cord blood-derived HSCs. We defined and resolved specific migratory parameters in spontaneous and SDF-1 alpha-induced migration of these cells. The addition of interleukin 6 to the culture medium led to differential SDF-1 alpha-stimulated migratory response, which comprised a recruitment of nonmoving cells and an increase in speed and frequency of pauses but a decrease in pause duration. We were thus able to decipher the exact parameters that result in an increase in the migration of HSCs and demonstrate that extensive analysis of single-cell behavior is elementary in the study of stem cell migration.

  14. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: a review.

    PubMed

    Murthy, Hosakatte Niranjana; Georgiev, Milen I; Park, So-Young; Dandin, Vijayalaxmi S; Paek, Kee-Yoeup

    2015-06-01

    Plant cell, tissue and organ cultures (PCTOC) have become an increasingly attractive alternative for the production of various high molecular weight molecules which are used as flavourings, fragrances, colouring agents and food additives. Although PCTOC products are cultivated in vitro in a contamination free environment, the raw material produced from PCTOC may contain many components apart from the target compound. In some cases, PCTOC raw materials may also carry toxins, which may be naturally occurring or accumulated during the culture process. Assessment of the safety of PCTOC products is, therefore, a priority of the biotech industries involved in their production. The safety assessment involves the evaluation of starting material, production process and the end product. Before commercialisation, PCTOC products should be evaluated for their chemical and biological properties, as well as for their toxicity. In this review, measures and general criteria for biosafety evaluation of PCTOC products are addressed and thoroughly discussed.

  15. Radiation effects on cultured human monocytes and on monocyte-derived macrophages

    SciTech Connect

    Buescher, E.S.; Gallin, J.I.

    1984-06-01

    Prior to administration, leukocyte transfusions are commonly irradiated with up to 5,000 R to eliminate lymphocytes and thereby prevent graft-versus-host disease in the recipient. It has been widely believed that phagocytes are resistant to this irradiation. In a recent report, it was noted that phagocyte oxidative metabolism was compromised during preparation of white cells for transfusion. As part of the effort to examine the basis for this inhibition of phagocyte function during white cell preparation, an assessment was made of the effects of irradiation on the long-lived monocytes that have been shown to persist at inflammatory foci posttransfusion. Human monocytes were irradiated for up to 3 min, receiving 2,500-5,000 R. This irradiation damaged human monocytes, significantly decreasing their in vitro survival for the first 3 wk of culture, and growth as assessed by two-dimensional cell size measurements during the first 2 wk of culture. Despite smaller cell size, total cell protein was significantly increased over time in irradiated cultures. Extracellular release of lysozyme and beta-glucuronidase per cell was not affected by irradiation, but extracellular lactate dehydrogenase (LDH) release was significantly increased after irradiation. Irradiated monocytes killed Listeria monocytogenes at a slower rate than the nonirradiated controls. Thus, the data indicate that irradiation in doses used to prevent graft-versus-host disease in leukocyte transfusion recipients has a deleterious effect on in vitro human monocyte survival and function.

  16. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    PubMed Central

    Ülker, Hayriye Esra; Ülker, Mustafa; Gümüş, Hasan Önder; Yalçın, Muhammet; Şengün, Abdulkadir

    2013-01-01

    This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E) and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE) temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (P < 0.05). The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (P > 0.05). Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick. PMID:23984419

  17. A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy.

    PubMed

    Rossetti, Fábia Cristina; Lopes, Luciana Biagini; Carollo, Aline Regina H; Thomazini, José A; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2011-11-01

    The hydrophilic character and aggregation phenomena exhibited by the photosensitizer zinc phthalocyanine tetrasulfonate (ZnPcSO(4)) make it difficult for this compound to penetrate the skin, and reduce the compound's photodynamic efficacy. A microemulsion (ME) was developed to increase the skin penetration of ZnPcSO(4) while avoiding its aggregation. Ternary phase diagrams composed of surfactants (Span® 80/Tween® 80), canola oil and a propylene glycol (PG)/water mixture (3:1) were constructed as a basis for choosing an adequate ME preparation. Rheological, electrical conductivity, dynamic light scattering and zeta potential studies were carried out to characterize the ME formulations. Monomerization of ZnPcSO(4) in the ME was determined photometrically and fluorometrically. In vitro skin penetration and retention of the compound in the skin were measured using porcine ear skin mounted on a diffusion cell apparatus. The in vivo accumulation 6h after ZnPcSO(4) application was determined fluorometrically in hairless mice skin. Confocal laser scanning microscopy was used to visualize ZnPcSO(4) distribution in the skin. A ME composed of canola oil:surfactant:PG-water at 38:47:15 (w/w/w) was chosen for ZnPcSO(4.) This was oil-in-water with internal phase diameter of 15.7±0.15nm. Spectroscopic techniques confirmed that the ME was able to keep ZnPcSO(4) in its monomeric form. In the in vitro penetration of ZnPcSO(4) in the stratum corneum (SC) and in epidermis (without stratum corneum) with dermis ([E+D]) was 33.0- and 28.0-fold higher, respectively compared to the control solution of the drug. In vivo studies, confirmed that when the ME was used as carrier, ZnPcSO(4) concentrations in the SC and [E+D] were about 1.6- and 5.6-fold higher, respectively, than controls. Visualization of ZnPcSO(4) skin penetration by confocal laser scanning microscopy confirmed that the ME increased both penetration and biodistribution of this photosensitizer in the skin. PMID:21763732

  18. Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluid-derived stem cells.

    PubMed

    Lloyd-Griffith, Cai; Duffy, Garry P; O'Brien, Fergal J

    2015-12-01

    Amniotic fluid-derived stem cells (AFSCs) are a unique stem cell source that may have great potential for use in tissue engineering (TE) due to their pluripotentiality. AFSCs have previously shown angiogenic potential and may present an alternative cell source for endothelial-like cells that could be used in range of applications, including the pre-vascularisation of TE constructs and the treatment of ischaemic diseases. This study investigated the ability of these cells to differentiate down an endothelial lineage with the aim of producing an endothelial-like cell suitable for use in pre-vascularisation. As hypoxia and the associated HIF-1 pathway have been implicated in the induction of angiogenesis in a number of biological processes, it was hypothesised that culture in hypoxic conditions could enhance the endothelial differentiation of AFSCs. The cells were cultured in endothelial cell media supplemented with 50 ng mL(-1) of VEGF, maintained in normoxia, intermittent hypoxia or continuous hypoxia and assessed for markers of endothelial differentiation at day 7 and 14. The results demonstrated that AFSCs subjected to these culture conditions display an endothelial gene expression profile and adopted functional endothelial cell characteristics indicative of early endothelial differentiation. Culture in continuous hypoxia enhanced endothelial gene expression but did not enhance functional endothelial cell characteristics. Overall, AFSCs subjected to endothelial stimuli demonstrated a less mature endothelial gene expression profile and phenotype when compared with HUVECs, the endothelial cell control. However, this study is the first time that the positive effect of an extended period of continuous hypoxic culture on endothelial differentiation in AFSCs has been demonstrated.

  19. [Influence of different gelatin concentration and lymphocyte isolation liquid on primary culture of umbilical cord blood derived adhesive cells].

    PubMed

    Zhang, Cheng; Chen, Xing-Hua; Zhang, Xi; Gao, Lei; Kong, Pei-Yan; Liu, Hong; Liang, Xue; Peng, Xian-Gui; Wang, Qing-Yu

    2008-12-01

    In order to study the influence of different gelatin concentrations, and lymphocyte isolation liquid on primary culture of umbilical cord blood-derived adhesive cells (hCBACs), the red blood cells of umbilical cord blood was separated by 3% and 6 % gelatin for detecting the effectiveness of sedimentation, then the adhesion rate at 48 hours, the day of initial expansion and the rate of culture success were detected for hCBACs cultured with CD34(+) cells after the mononuclear cells were separated by 6% gelatin followed by Ficoll and Percoll, and the morphological characteristics and growth status were observed by invert microscopy. Cytochemistry stain for nonspecific esterase stain (NSE), peroxidase (POX), periodic acid Schiff reaction (PAS) and alkali phosphatase (ALP) and immunocytochemistry labeling for CD31, CD45, CD68 and fibronectin (Fn) were detected. The results showed that 6 % gelatin was better than that 3% gelatin for red blood sedimentation. The Percoll was predominant over Ficoll in adhesion rate at 48 hours, the day of initial expansion, the time of initial formation of adhesive cell colony units, the time of maximal numbers of adhesive cell colony units, the the cell fusion time and ratio of culture success. 60% fibroblast-liked cells, 36% macrophage liked cells and 4% small-round cells were observed in cells isolated by both isolated methods. The cytochemistry stain for NSE, POX, PAS and ALP was similar in two groups, the difference was not statistically significant between these two groups. The immunocytochemistry labeling for CD31, CD45, CD68 and Fn was also similar in both groups and the difference was also not statistically significant between these two groups. It is concluded that the combination of 6% gelatin with Percoll is an ideal separation method for primary culture of hCBACs, which provides basic information for clinical application.

  20. Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment.

    PubMed

    Miranda, Cláudia C; Fernandes, Tiago G; Pascoal, Jorge F; Haupt, Simone; Brüstle, Oliver; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-10-01

    3D suspension culture is generally considered a promising method to achieve efficient expansion and controlled differentiation of human pluripotent stem cells (hPSCs). In this work, we focused on developing an integrated culture platform for expansion and neural commitment of hPSCs into neural precursors using 3D suspension conditions and chemically-defined culture media. We evaluated different inoculation methodologies for hPSC expansion as 3D aggregates and characterized the resulting cultures in terms of aggregate size distribution. It was demonstrated that upon single-cell inoculation, after four days of culture, 3D aggregates were composed of homogenous populations of hPSC and were characterized by an average diameter of 139 ± 26 μm, which was determined to be the optimal size to initiate neural commitment. Temporal analysis revealed that upon neural specification it is possible to maximize the percentage of neural precursor cells expressing the neural markers Sox1 and Pax6 after nine days of culture. These results highlight our ability to define a robust method for production of hPSC-derived neural precursors that minimizes processing steps and that constitutes a promising alternative to the traditional planar adherent culture system due to a high potential for scaling-up. PMID:25866360

  1. Aggregating embryonic but not somatic nuclear transfer embryos increases cloning efficiency in cattle.

    PubMed

    Misica-Turner, Pavla M; Oback, Fleur C; Eichenlaub, Michael; Wells, David N; Oback, Björn

    2007-02-01

    Our objectives were to compare the cellular and molecular effects of aggregating bovine embryonic vs. somatic cell nuclear transfer (ECNT vs. SCNT) embryos and to determine whether aggregation can improve cattle cloning efficiency. We reconstructed cloned embryos from: 1) morula-derived blastomeres, 2) six adult male ear skin fibroblast lines, 3) one fetal female lung fibroblast line (BFF), and 4) two transgenic clonal strains derived from BFF. Embryos were cultured either singularly (1X) or as aggregates of three (3X). In vitro-fertilized (IVF) 1X and 3X embryos served as controls. After aggregation, the in vitro development of ECNT but not that of SCNT or IVF embryos was strongly compromised. The inner cell mass (ICM), total cell (TC) numbers, and ICM:TC ratios significantly increased for all the aggregates. The relative concentration of the key embryonic transcript POU5F1 (or OCT4) did not correlate with these increases, remaining unchanged in the ECNT and IVF aggregates and decreasing significantly in the SCNT aggregates. Overall, the IVF and 3X ECNT but not the 1X ECNT embryos had significantly higher relative POU5F1 levels than the SCNT embryos. High POU5F1 levels correlated with high in vivo survival, while no such correlation was noted for the ICM:TC ratios. Development to weaning was more than doubled in the ECNT aggregates (10/51 or 20% vs. 7/85 or 8% for 3X vs. 1X, respectively; P < 0.05). In contrast, the SCNT and IVF controls showed no improvement in survival. These data reveal striking biological differences between embryonic and somatic clones in response to aggregation.

  2. The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO₂ sol-gel-derived biomaterial.

    PubMed

    Marycz, Krzysztof; Śmieszek, Agnieszka; Grzesiak, Jakub; Siudzińska, Anna; Marędziak, Monika; Donesz-Sikorska, Anna; Krzak, Justyna

    2015-01-01

    The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs) and bone marrow multipotent stromal cells (BMSCs) cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCL). Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX). Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine. PMID:25710015

  3. Bisthiodiketopiperazines and Acorane Sesquiterpenes Produced by the Marine-Derived Fungus Penicillium adametzioides AS-53 on Different Culture Media.

    PubMed

    Liu, Yang; Li, Xiao-Ming; Meng, Ling-Hong; Jiang, Wen-Li; Xu, Gang-Ming; Huang, Cai-Guo; Wang, Bin-Gui

    2015-06-26

    Chemical investigation of the marine-sponge-derived fungus Penicillium adametzioides AS-53 resulted in the identification of two new bisthiodiketopiperazine derivatives, adametizines A (1) and B (2), from cultivation in a liquid potato-dextrose broth (PDB) culture medium, whereas two new acorane sesquiterpenes, adametacorenols A (3) and B (4), were isolated from a rice solid culture medium. The structures of these compounds were elucidated on the basis of spectroscopic analysis. The absolute configuration of compound 1 was determined by X-ray crystallographic analysis, and that of 3 was determined by modified Mosher's method. Compound 1 exhibited lethality against brine shrimp (Artemia salina) with an LD50 value of 4.8 μM and inhibitory activities against Staphyloccocus aureus, Aeromonas hydrophilia, Vibrio spp. V. harveyi and V. parahaemolyticus, and Gaeumannomyces graminis with minimum inhibitory concentration values of 8, 8, 32, 8, and 16 μg/mL, respectively. Chlorination at C-7 significantly increased the brine shrimp lethality and antimicrobial activity of the bisthiodiketopiperazines. PMID:26039736

  4. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    PubMed Central

    Hammer, Susanne C.; Becker, Annegret; Rateitschak, Katja; Mohr, Annika; Lüder Ripoli, Florenza; Hennecke, Silvia; Junginger, Johannes; Hewicker-Trautwein, Marion; Brenig, Bertram; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2016-01-01

    Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies. PMID:27690019

  5. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the USA" (Alisa Woodring);…

  6. Genetic Stability of Bacterial Artificial Chromosome-Derived Human Cytomegalovirus during Culture In Vitro

    PubMed Central

    Murrell, Isa; Wilkie, Gavin S.; Davison, Andrew J.; Statkute, Evelina; Fielding, Ceri A.; Tomasec, Peter; Wilkinson, Gavin W. G.

    2016-01-01

    ABSTRACT Clinical human cytomegalovirus (HCMV) strains invariably mutate when propagated in vitro. Mutations in gene RL13 are selected in all cell types, whereas in fibroblasts mutants in the UL128 locus (UL128L; genes UL128, UL130, and UL131A) are also selected. In addition, sporadic mutations are selected elsewhere in the genome in all cell types. We sought to investigate conditions under which HCMV can be propagated without incurring genetic defects. Bacterial artificial chromosomes (BACs) provide a stable, genetically defined source of viral genome. Viruses were generated from BACs containing the genomes of strains TR, TB40, FIX, and Merlin, as well as from Merlin-BAC recombinants containing variant nucleotides in UL128L from TB40-BAC4 or FIX-BAC. Propagation of viruses derived from TR-BAC, TB40-BAC4, and FIX-BAC in either fibroblast or epithelial cells was associated with the generation of defects around the prokaryotic vector, which is retained in the unique short (US) region of viruses. This was not observed for Merlin-BAC, from which the vector is excised in derived viruses; however, propagation in epithelial cells was consistently associated with mutations in the unique long b′ (UL/b′) region, all impacting on gene UL141. Viruses derived from Merlin-BAC in fibroblasts had mutations in UL128L, but mutations occurred less frequently with recombinants containing UL128L nucleotides from TB40-BAC4 or FIX-BAC. Viruses derived from a Merlin-BAC derivative in which RL13 and UL128L were either mutated or repressed were remarkably stable in fibroblasts. Thus, HCMV containing a wild-type gene complement can be generated in vitro by deriving virus from a self-excising BAC in fibroblasts and repressing RL13 and UL128L. IMPORTANCE Researchers should aim to study viruses that accurately represent the causative agents of disease. This is problematic for HCMV because clinical strains mutate rapidly when propagated in vitro, becoming less cell associated, altered in

  7. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures

    PubMed Central

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-01-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49fhi/CD90lo cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49fhi/CD90lo cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  8. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    PubMed

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  9. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum

    PubMed Central

    Dauleh, Sumaya; Santeramo, Ilaria; Fielding, Claire; Ward, Kelly; Herrmann, Anne; Murray, Patricia

    2016-01-01

    The human omentum has been long regarded as a healing patch, used by surgeons for its ability to immunomodulate, repair and vascularise injured tissues. A major component of the omentum are mesothelial cells, which display some of the characteristics of mesenchymal stem/stromal cells. For instance, lineage tracing studies have shown that mesothelial cells give rise to adipocytes and vascular smooth muscle cells, and human and rat mesothelial cells have been shown to differentiate into osteoblast- and adipocyte-like cells in vitro, indicating that they have considerable plasticity. However, so far, long-term cultures of mesothelial cells have not been successfully established due to early senescence. Here, we demonstrate that mesothelial cells isolated from the mouse omentum could be cultured for more than 30 passages. While epithelial markers were downregulated over passages in the mesothelial cells, their mesenchymal profile remained unchanged. Early passage mesothelial cells displayed clonogenicitiy, expressed several stem cell markers, and up to passage 5 and 13, respectively, could differentiate along the adipogenic and osteogenic lineages, demonstrating stem/progenitor characteristics and differentiation potential. PMID:27403660

  10. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  11. Culture medium modulates the behaviour of human dental pulp-derived cells: technical note.

    PubMed

    Lopez-Cazaux, S; Bluteau, G; Magne, D; Lieubeau, B; Guicheux, J; Alliot-Licht, B

    2006-01-01

    In vitro approaches have extensively been developed to study reparative dentinogenesis. While dental pulp is a source of unidentified progenitors able to differentiate into odontoblast-like cells, we investigated the effect of two media; MEM (1.8 mM Ca and 1 mM Pi) and RPMI 1640 (0.8 mM Ca and 5 mM Pi) on the behaviour of human dental pulp cells. Our data indicate that MEM significantly increased cell proliferation and markedly enhanced the proportion of alpha-smooth muscle actin positive cells, which represent a putative source of progenitors able to give rise to odontoblast-like cells. In addition, MEM strongly stimulated alkaline phosphatase activity and was found to induce expression of transcripts encoding dentin sialophosphoprotein, an odontoblastic marker, without affecting that of parathyroid hormone/parathyroid hormone related protein-receptor and osteonectin. In conclusion, these observations demonstrate that not only proliferation but also differentiation into odontoblast-like cells was induced by rich calcium and poor phosphate medium (MEM) as compared to RPMI 1640. This study provides important data for the determination of the optimal culture conditions allowing odontoblast-like differentiation in human pulp cell culture.

  12. Streaming instability of aggregating slime mold amoebae

    NASA Astrophysics Data System (ADS)

    Levine, Herbert; Reynolds, William

    1991-05-01

    We propose a new model of aggregation in the cellular slime mold D. Discoideum. Our approach couples the excitable signaling system to amoeba chemotaxis; the resultant system of equations is tractable to analytical and numerical approaches. Using our model, we derive the existence of a streaming instability for the concentric target aggregation pattern.

  13. The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm.

    PubMed

    Pietrosiuk, A; Sykłowska-Baranek, K; Wiedenfeld, H; Wolinowska, R; Furmanowa, M; Jaroszyk, E

    2006-10-01

    Hairy root cultures of Lithospermum canescens were established using three strains of Agrobacterium rhizogenes: ATCC 15834, LBA 9402 and NCIB 8196. Eight lines resulting from infection with A. rhizogenes ATCC 15834 demonstrated sufficient biomass increase and were submitted to further investigations. The contents of acetylshikonin (ACS) and isobutyrylshikonin (IBS) in transformed hairy roots made up ca. 10% of those observed in natural roots of L. canescens (24.35 and 14.48 mg g(-1) DW, respectively). One line, Lc1-D, produced the largest amounts of ACS (2.72 mg g(-1) DW) and IBS (0.307 mg g(-1) DW). Traces of pyrrolizidine alkaloids (PA), canescine and canescenine, were found in all lines of transformed hairy roots.

  14. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.

    PubMed

    Han, Sufang; Wang, Bin; Li, Xing; Xiao, Zhifeng; Han, Jin; Zhao, Yannan; Fang, Yongxiang; Yin, Yanyun; Chen, Bing; Dai, Jianwu

    2016-07-01

    Accumulating evidence has revealed three-dimensional (3D) culture could better mimic the stem cell niche in vivo in comparison with conventional two-dimensional (2D) culture. In this study, we found that bone marrow derived mesenchymal stem cells (BMSCs) cultured in 3D collagen scaffold (3D BMSCs) exhibited distinctive features including significantly enhancing neurotrophic factor secretions and reducing macrophage activations challenged by lipopolysaccharide (LPS) in vitro. To further evaluate 3D BMSCs' potential benefits to the regeneration of spinal cord injury (SCI), the 3D and 2D BMSCs were respectively implanted in rat hemisected SCI. Compared with 2D cohort, 3D BMSCs transplantation significantly reduced the expressions of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 at 5 days after transplantation, markedly enhanced axonal regeneration, and promoted motor functional recovery during 8 weeks of observation. When Nocodazole was used to depolymerize the cytoskeleton of 3D BMSCs, the changed expressions of neurotrophic factors and inflammatory cytokines were blunted, at least partially. Thus synergistic effects of neuronal protection and immunomodulation of 3D BMSCs may lead to a better functional recovery of SCI and the underlying mechanism may involve the alteration of their cellular morphology because of 3D culture. This study contributes to a better understanding of the cellular characteristics of 3D BMSCs and provides a novel strategy to promote the repair of the injured spinal cord. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1759-1769, 2016. PMID:26990583

  15. Exogenous nitric oxide enhances calcification in embryonic stem cell-derived osteogenic cultures.

    PubMed

    Ehnes, D D; Geransar, R M; Rancourt, D E; Zur Nieden, N I

    2015-01-01

    While the involvement of nitric oxide in bone formation, homeostasis and healing has been extensively characterized, its role in directing pluripotent stem cells to the osteogenic lineage has not been described. Yet, the identification of chemical inducers that improve differentiation output to a particular lineage is highly valuable to the development of such cells for the cell-based treatment of osteo-degenerative diseases. This study aimed at investigating the instructive role of nitric oxide (NO) and its synthesizing enzymes on embryonic stem cell (ESC) osteogenic differentiation. Our findings showed that NO levels may support osteogenesis, but that the effect of nitric oxide on osteoblast differentiation may be specific to a particular time phase during the development of osteoblasts in vitro. Endogenously, nitric oxide was specifically secreted by osteogenic cultures during the calcification period. Simultaneously, messenger RNAs for both the endothelial and inducible nitric oxide synthase isoforms (eNOS and iNOS) were upregulated during this late phase development. However, the specific eNOS inhibitor L-N(5)-(1-Iminoethyl)ornithine dihydrochloride attenuated calcification more so than the specific iNOS inhibitor diphenyleneiodonium. Exogenous stage-specific supplementation of culture medium with the NO donor S-nitroso-N-acetyl-penicillamine increased the percentage of cells differentiating into osteoblasts and enhanced calcification. Our results point to a primary role for eNOS as a pro-osteogenic trigger in ESC differentiation and expand on the variety of supplements that may be used to direct ESC fate to the osteogenic lineage, which will be important in the development of cell-based therapies for osteo-degenerative diseases.

  16. Isolation, Culture, and Characterization of Human Umbilical Cord Blood-Derived Mesenchymal Stromal Cells.

    PubMed

    Bieback, Karen; Netsch, Philipp

    2016-01-01

    Umbilical cord blood (CB) is considered one of the youngest available sources of adult stem cells. Besides hematopoietic stem cells, CB has been shown to contain endothelial progenitor cells as well as mesenchymal stromal/stem cells (MSC). To isolate MSC from cord blood, CB is collected into a sterile bag containing the anticoagulant citrate-phosphate-dextrose (CPD). The CB is then processed by density-gradient centrifugation to obtain mononuclear cells (MNC). These are cultured until the outgrowth of fibroblastoid cell colonies appears. After reaching a subconfluent stage, cells are harvested, expanded, and characterized as cord blood mesenchymal stromal cells (CB-MSC) according to standard criteria: plastic adherence, fibroblast morphology, CFU-f assay, proliferation potential, immune phenotype, and differentiation potential.Apparently, the frequency of MSC in CB is extremely low. Thus, not every CB unit will provide adequate MSC isolation yields. Different strategies have been proposed aiming to optimize the isolation success by selecting CB units of optimal quality. It is commonly agreed on that a high CB volume, a high cellular content, and a short time frame between birth and MSC isolation are criteria that will enhance the MSC isolation success.The procedures in this chapter are standardized protocols that were established and optimized in the authors' research laboratory; however, various modifications of the protocols are possible. PMID:27236676

  17. Adsorption properties of biologically active derivatives of quaternary ammonium surfactants and their mixtures at aqueous/air interface. I. Equilibrium surface tension, surfactant aggregation and wettability.

    PubMed

    Rojewska, Monika; Biadasz, Andrzej; Kotkowiak, Michał; Olejnik, Anna; Rychlik, Joanna; Dudkowiak, Alina; Prochaska, Krystyna

    2013-10-01

    The adsorption properties of surfactant mixtures containing two types of quaternary derivatives of lysosomotropic substances: alkyl N,N-dimethylalaninates methobromides and alkyl N,N-dimethylglycinates methobromides were studied. Quantitative and qualitative description of the adsorption process was carried out on the basis of experimentally obtained equilibrium surface tension isotherms. The results indicated that most of the systems studied revealed synergistic effect both in adsorption and wetting properties. In vitro studies on human cancer cells were undertaken and the data obtained showed that the mixtures suppressed the cancer cells' proliferation more effectively than individual components. Results of preliminary research on the interaction of catanionic mixtures with phospholipids suggested a possibility of a strong penetration of cell membranes by the mixtures investigated.

  18. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines

    PubMed Central

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-01-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  19. Evaluation of bupropion hydrochloride developmental cardiotoxic effects in chick cardiomyocyte micromass culture and stem cell derived cardiomyocyte systems.

    PubMed

    Shaikh Qureshi, W M; Latif, Muhammad Liaque; Parker, Terry L; Pratten, Margaret K

    2014-10-01

    The use of antidepressant drug bupropion hydrochloride (BPN) during pregnancy results in increased cardiovascular anomalies. In this study, BPN developmental cardiotoxic effects in in vitro system were evaluated using chick cardiomyocyte micromass (MM) culture system and mouse embryonic stem cell derived cardiomyocyte (ESDC) system. In MM system, the cardiomyocyte contractile activity significantly decreased only at BPN 200 μM, while in ESDC system BPN concentration above 75 μM resulted in decreased contractile activity. The increase in drug concentration also affected the cardiomyocyte viability and total cellular protein content in both systems, but in ESDC system the cell viability failed to attain significant difference. The drug failed to induce reactive oxygen species production in both systems, but has affected the cardiac connexin43 expression especially in MM system. We observed that BPN showed developmental cardiotoxic effects irrespective of the stage of cardiac development in both in vitro systems.

  20. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    PubMed

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  1. Derivation of a continuous myogenic cell culture from an embryo of common killifish, Fundulus heteroclitus.

    PubMed

    Gignac, Sarah J; Vo, Nguyen T K; Mikhaeil, Michael S; Alexander, J Andrew N; MacLatchy, Deborah L; Schulte, Patricia M; Lee, Lucy E J

    2014-09-01

    The common killifish or mummichog (Fundulus heteroclitus) is an estuarine teleost increasingly used in comparative physiology, toxicology and embryology. Their ability to withstand extreme environmental conditions and ease of maintenance has made them popular aquatic research organisms. Scientific advances with most popular model organisms have been assisted with the availability of continuous cell lines; however, cell lines from F. heteroclitus appear to be unavailable. The development of a killifish cell line, KFE-5, derived from the mid trunk region of a late stage embryo is described here. KFE-5 grows well in Leibovitz's L-15 media with 10% fetal bovine serum (FBS). This cell line has been passaged over 60 times in a span of three years, and cells at various passages have been successfully cryopreserved and thawed. The cells are mostly fibroblastic but contain myogenic cells that differentiate into mono-, bi- and multi-nucleated striated myocytes. Immunofluorescence detection of muscle specific antigens such as α-actinin, desmin, and myosin confirms KFE-5 as a myogenic cell line. KFE-5 has a temperature preference for 26-28°C and has been shown to withstand temperatures up to 37°C. The cell line responds to chemical signals including growth factors, hormones and extracellular matrix components. KFE-5 could thus be useful not only for mummichog's thermobiology but also for studies in fish muscle physiology and development. PMID:24836542

  2. Brain-derived neurotrophic factor as an indicator of chemical neurotoxicity: an animal-free CNS cell culture model.

    PubMed

    Woehrling, Elizabeth K; Hill, Eric J; Nagel, David; Coleman, Michael D

    2013-12-01

    Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model. PMID:24512234

  3. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures.

    PubMed

    Gaid, Mariam M; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-11-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²⁺ and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.

  4. Activation of human monocyte-derived macrophages cultured on Teflon: response to interferon-gamma during terminal maturation in vitro.

    PubMed

    Andreesen, R; Gadd, S; Brugger, W; Löhr, G W; Atkins, R C

    1988-05-01

    Macrophages (M phi) are potential antitumor effector cells derived from circulating blood monocytes (mo). Most studies on human mo/M phi biology and function have been performed using immature mo precursor cells. However, the conclusions drawn may be questionable, as mo have to undergo terminal differentiation before they reach relevant tissue sites of inflammation and immune reaction. We have analyzed the ability of mo-derived, teflon-cultured M phi to respond to activating stimuli with an increased tumor cytotoxic effector cell function using recombinant interferon-gamma (IFN-gamma), IFN-alpha 2, granulocyte/macrophage colony stimulating factor (GM-CSF), interleukin(IL) 2, IL 1 alpha, and bacterial lipopolysaccharides (LPS) as mediator molecules. It could be shown that the response of M phi to the most potent activator molecule, IFN-gamma, depends on the terminal differentiation from the mo stage to the mature M phi. Whereas adherent mo could be activated only moderately, M phi increased their cytotoxicity by a factor of up to 400. IFN-gamma activation positively correlated with the effector cell number, the time of incubation and the dosage used. Activation did not depend on the presence of LPS, and was lost within 24 to 48 h. LPS itself activated cells only in the microgram range. IFN-alpha 2 activated M phi only at a two log higher concentration than IFN-gamma; GM-CSF was only slightly effective, whereas M phi incubation with IL 1 alpha or IL 2 did not result in M phi activation. Thus, the ability of human M phi to become activated appears to be a function of cellular maturation and is acquired during the terminal step of M phi differentiation. Teflon-cultured M phi could facilitate studies of the activation of human M phi and may be more suitable cells for adoptive immunotherapy in cancer patients than blood monocytes. PMID:3136081

  5. Brain-derived neurotrophic factor as an indicator of chemical neurotoxicity: an animal-free CNS cell culture model.

    PubMed

    Woehrling, Elizabeth K; Hill, Eric J; Nagel, David; Coleman, Michael D

    2013-12-01

    Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.

  6. β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing mammary glands.

    PubMed

    Monzani, P S; Bressan, F F; Mesquita, L G; Sangalli, J R; Meirelles, F V

    2011-04-12

    Epithelial cells from mammary gland tissue that are cultured in vitro are able to maintain specific functions of this gland, such as cellular differentiation and milk protein synthesis. These characteristics make these cells a useful model to study mammary gland physiology, development and differentiation; they can also be used for production of exogenous proteins of pharmaceutical interest. Bovine mammary epithelial cells were cultured in vitro after isolation from mammary gland tissue of animals at different stages of development. The cells were plated on Petri dishes and isolated from fibroblasts using saline/EDTA treatment, followed by trypsinization. Cells isolated on plastic were capable of differentiating into alveolus-like structures; however, only cells derived from non-pregnant and non-lactating animals expressed β-casein. Real-time qPCR and epifluorescence microscopy analyses revealed that alveolus-like structures were competent at expressing Emerald green fluorescent protein (EmGFP) driven by the β-casein promoter, independent of β-casein expression.

  7. Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions.

    PubMed

    Lee, Kang-In; Kim, Hyeong-Taek; Hwang, Dong-Youn

    2014-09-01

    The efficient generation of integration- and xeno-free iPSCs is a prerequisite for their use in clinical applications. Furthermore, non-invasiveness of somatic cell acquisition for iPSC generation is another factor to consider. In this study, we established a practical, simple, and convenient method to generate integration- and xeno-free iPSCs from urine cells which can be obtained in a non-invasive manner. Our method was based on extracellular matrix-based xeno-free iPSC culture condition and episomal transfection, and worked efficiently with both urine cells and adipose-derived stromal cells (ADSCs). To obtain strictly xeno-free iPSCs, we also formulated a new xeno-free culture medium for primary urine cells. Intriguingly, urine cells displayed slower growth, and more dramatic increase in apoptosis at high passage numbers than ADSCs. However, urine cells at low passage (

  8. In vivo Growth and Differentiation of Canine Olfactory Bulb-Derived Neural Progenitor Cells under Variable Culture Conditions

    PubMed Central

    Walton, Raquel M.; Wolfe, John H.

    2008-01-01

    The dog serves as a large animal model for multiple neurologic diseases that may potentially benefit from neural progenitor cell (NPC) transplantation. In the adult brain, multipotent NPCs reside in the subventricular zone and its rostral and caudal extensions into the olfactory bulb and hippocampus. The olfactory bulb represents a surgically accessible site for obtaining cells for autologous NPC transplantation. To model conditions that would occur for ex vivo gene therapy in the postnatal brain, NPCs were isolated from the canine olfactory bulb, expanded ex vivo under different culture conditions, and compared quantitatively for growth and immunophenotype. Under standard growth conditions, canine olfactory bulb-derived NPCs (OB-cNPCs) could be expanded nearly 500-fold in the time evaluated. Canine OB-cNPCs grown on poly-D-lysine (PDL) or on PDL-fibronectin had similar growth rates, whereas supplementation with leukemia inhibitory factor (LIF) resulted in significantly slower growth. However, when OB-cNPC cultures were grown on PDL-fibronectin or PDL supplemented with LIF, a greater proportion of cells with neuronal markers were generated upon differentiation. PMID:18261803

  9. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. PMID:26774799

  10. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.

    PubMed

    Kim, Jangho; Choi, Kyoung Soon; Kim, Yeonju; Lim, Ki-Tack; Seonwoo, Hoon; Park, Yensil; Kim, Deok-Ho; Choung, Pill-Hoon; Cho, Chong-Su; Kim, Soo Young; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-12-01

    Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs.

  11. More Novel Hantaviruses and Diversifying Reservoir Hosts — Time for Development of Reservoir-Derived Cell Culture Models?

    PubMed Central

    Eckerle, Isabella; Lenk, Matthias; Ulrich, Rainer G.

    2014-01-01

    Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses. PMID:24576845

  12. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  13. More novel hantaviruses and diversifying reservoir hosts--time for development of reservoir-derived cell culture models?

    PubMed

    Eckerle, Isabella; Lenk, Matthias; Ulrich, Rainer G

    2014-01-01

    Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses. PMID:24576845

  14. Suppression of cancer-initiating cells and selection of adipose-derived stem cells cultured on biomaterials having specific nanosegments.

    PubMed

    Kao, Ta-Chun; Lee, Henry Hsin-Chung; Higuchi, Akon; Ling, Qing-Dong; Yu, Wan-Chun; Chou, Yu-Hsuan; Wang, Pin-Yu; Suresh Kumar, S; Chang, Yu; Hung Chen, Yung; Chang, Yung; Chen, Da-Chung; Hsu, Shih-Tien

    2014-04-01

    Cancer-initiating cells [cancer stem cells (CSCs)] in colon cancer cells can be selectively suppressed when they are cultured on Pluronic (nanosegment)-grafted dishes, whereas CSCs are maintained on conventional tissue culture dishes and extracellular matrix-coated dishes. CSCs persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumorigenic clones. The purification or depletion (suppression) of CSCs should be useful for analyzing CSC characteristics and for clinical application. CSCs can be selectively suppressed from colon cancer cells containing adipose-derived stem cells (ADSCs) on Pluronic-grafted dishes, while ADSCs remain on the dishes. ADSCs on Pluronic-grafted dishes after the suppression of the CSCs can differentiate into osteoblasts, chondrocytes, adipocytes, cardiomyocytes, and neuronal cells. The CSCs and ADSCs exhibited different characteristics. The selection of ADSCs was possible on Pluronic-grafted dishes that suppressed the CSCs from the fat tissues of cancer patients (i.e., cell-sorting dishes), which was explained by specific biomedical characteristics of Pluronic. PMID:24039170

  15. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable UCB-MSCs and fetal bovine serum (FBS)-dependent expansion methods. Hence, this study aimed to establish a xenogenic and allogeneic supplement-free expansion protocol. Methods UCB was collected to prepare activated platelet-rich plasma (aPRP) and mononuclear cells (MNCs). aPRP was applied as a supplement in Iscove modified Dulbecco medium (IMDM) together with antibiotics. MNCs were cultured in complete IMDM with four concentrations of aPRP (2, 5, 7, or 10%) or 10% FBS as the control. The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion, the percentage of successfully isolated cells in the primary culture, surface marker expression, and in vitro differentiation potential following expansion. Results The results showed that primary cultures with complete medium containing 10% aPRP exhibited the highest success, whereas expansion in complete medium containing 5% aPRP was suitable. UCB-MSCs isolated using this protocol maintained their immunophenotypes, multilineage differentiation potential, and did not form tumors when injected at a high dose into athymic nude mice. Conclusion This technique provides a method to obtain UCB-MSCs compliant with good manufacturing practices for clinical application. PMID:24565047

  16. Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm(2). After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs.

  17. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  18. Gene Expression Profiles of Human Adipose Tissue-Derived Mesenchymal Stem Cells Are Modified by Cell Culture Density

    PubMed Central

    Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm2. After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs. PMID:24400072

  19. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells.

    PubMed

    Wang, Bo; Van Veldhoven, Paul P; Brees, Chantal; Rubio, Noemí; Nordgren, Marcus; Apanasets, Oksana; Kunze, Markus; Baes, Myriam; Agostinis, Patrizia; Fransen, Marc

    2013-12-01

    Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.

  20. Design, synthesis and in vitro study of 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives as COX-2 and β-amyloid aggregation inhibitors.

    PubMed

    Dadashpour, Sakineh; Tuylu Kucukkilinc, Tuba; Unsal Tan, Oya; Ozadali, Keriman; Irannejad, Hamid; Emami, Saeed

    2015-03-01

    In order to find novel cyclooxygenase (COX)-2 inhibitors for treating inflammatory-based diseases such as Alzheimer's disease (AD), an ethyl carboxylate side chain was added to 5-(4-chlorophenyl)-6-(4-(methylsulfonyl)phenyl)-3-(methylthio)-1,2,4-triazine (lead compound II) to maintain residual inhibition of COX-1 through interacting with Arg120. A preliminary molecular docking study on both the COX-1/COX-2 active sites truly confirmed our hypothesis. Accordingly, a series of ethyl 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives were synthesized and their chemical structures were confirmed by NMR, IR and MS spectra. Further in vitro COX-1/COX-2 evaluations revealed that compound 6c (COX-2 IC50  = 10.1 μM, COX-1 IC50  = 88.8 μM) is the most selective COX-2 inhibitor while maintaining residual inhibition of COX-1. In order to evaluate their potential use against AD, an in vitro evaluation of β-amyloid fibril formation was performed. The results indicated that the prototype compounds 6 are effective β-amyloid destabilizing agents while compound 6c could inhibit 94% of the β-amyloid fibril formation after 48 h. Finally, the in silico assessment results of their blood-brain barrier permeability were satisfactory. PMID:25690564

  1. Design, synthesis and in vitro study of 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives as COX-2 and β-amyloid aggregation inhibitors.

    PubMed

    Dadashpour, Sakineh; Tuylu Kucukkilinc, Tuba; Unsal Tan, Oya; Ozadali, Keriman; Irannejad, Hamid; Emami, Saeed

    2015-03-01

    In order to find novel cyclooxygenase (COX)-2 inhibitors for treating inflammatory-based diseases such as Alzheimer's disease (AD), an ethyl carboxylate side chain was added to 5-(4-chlorophenyl)-6-(4-(methylsulfonyl)phenyl)-3-(methylthio)-1,2,4-triazine (lead compound II) to maintain residual inhibition of COX-1 through interacting with Arg120. A preliminary molecular docking study on both the COX-1/COX-2 active sites truly confirmed our hypothesis. Accordingly, a series of ethyl 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives were synthesized and their chemical structures were confirmed by NMR, IR and MS spectra. Further in vitro COX-1/COX-2 evaluations revealed that compound 6c (COX-2 IC50  = 10.1 μM, COX-1 IC50  = 88.8 μM) is the most selective COX-2 inhibitor while maintaining residual inhibition of COX-1. In order to evaluate their potential use against AD, an in vitro evaluation of β-amyloid fibril formation was performed. The results indicated that the prototype compounds 6 are effective β-amyloid destabilizing agents while compound 6c could inhibit 94% of the β-amyloid fibril formation after 48 h. Finally, the in silico assessment results of their blood-brain barrier permeability were satisfactory.

  2. Biochemical and ultrastructural analysis of. beta. -VLDL and AC-LDL metabolism by pigeon monocyte-derived macrophages in culture

    SciTech Connect

    Henson, D.A.

    1987-01-01

    It is proposed that monocyte-derived foam cells in atherosclerotic lesions of White Carneau pigeons become lipid-filled through the uptake of lipoproteins including ..beta..-migrating very low density lipoproteins (..beta..-VLDL) and acetylated low density lipoproteins (Ac-LDL). Using iodinated forms of the above lipoproteins, specific and saturable receptors for both ..beta..-VLDL and Ac-LDL were detected on the surface of White Carneau pigeon monocyte-derived macrophages in culture. Competition studies demonstrated the high degree of binding specificity for /sup 125/I-Ac-LDL. Likewise, binding of /sup 125/I-..beta..-VLDL to its receptor was significantly inhibited by excess ..beta..-VLDL, however LDL from both hyper- and normocholesterolemic pigeons were also recognized by the receptor. Upon binding of ..beta..-VLDL and Ac-LDL to their respective receptors, the lipoproteins were rapidly internalized and delivered to intracellular sites of degradation. As measured by the amount of /sup 14/C-oleate incorporated into cholesteryl /sup 14/C-oleate, the cholesterole liberated from the degradation of both ..beta..-VLDL and Ac-LDL stimulated cholesteryl ester synthesis in the pigeon cells. Using lipoproteins conjugated to colloidal gold of visualization with transmission electron microscopy, a major difference in the binding and uptake properties of ..beta..-VLDL-Gold and Ac-LDL-Gold was documented.

  3. Rat embryonic hippocampus and induced pluripotent stem cell derived cultured neurons recover from laser-induced subaxotomy

    PubMed Central

    Selfridge, Aaron; Chiang, Chai-Chun; Reyna, Sol M.; Weissmiller, April M.; Shi, Linda Z.; Preece, Daryl; Mobley, William C.; Berns, Michael W.

    2015-01-01

    Abstract. Axonal injury and stress have long been thought to play a pathogenic role in a variety of neurodegenerative diseases. However, a model for studying single-cell axonal injury in mammalian cells and the processes of repair has not been established. The purpose of this study was to examine the response of neuronal growth cones to laser-induced axonal damage in cultures of embryonic rat hippocampal neurons and induced pluripotent stem cell (iPSC) derived human neurons. A 532-nm pulsed Nd:YVO4 picosecond laser was focused to a diffraction limited spot at a precise location on an axon using a laser energy/power that did not rupture the cell membrane (subaxotomy). Subsequent time series images were taken to follow axonal recovery and growth cone dynamics. After laser subaxotomy, axons thinned at the damage site and initiated a dynamic cytoskeletal remodeling process to restore axonal thickness. The growth cone was observed to play a role in the repair process in both hippocampal and iPSC-derived neurons. Immunofluorescence staining confirmed structural tubulin damage and revealed initial phases of actin-based cytoskeletal remodeling at the damage site. The results of this study indicate that there is a repeatable and cross-species repair response of axons and growth cones after laser-induced damage. PMID:26157985

  4. Bisulfite and sulfite as derivatives of sulfur dioxide alters biomechanical behaviors of airway smooth muscle cells in culture.

    PubMed

    Song, Aijing; Lin, Feng; Li, Jianming; Liao, Qingfeng; Liu, Enmei; Jiang, Xuemei; Deng, Linhong

    2014-02-01

    Sulfur dioxide (SO2) is a common air pollutant that triggers asthmatic symptoms, but its toxicological mechanisms are not fully understood. Specifically, it is unclear how SO2 in vivo affects airway smooth muscle (ASM) cells of which the mechanics is known to ultimately mediate airway hyperresponsiveness (AHR) - a hallmark feature of asthma. To this end, we investigated the effects of bisulfite/sulfite (1:3 M/M in neutral fluid to simulate the in vivo derivatives of inhaled SO2 in the airways), on the viability, migration, stiffness and contractility of ASM cells cultured in vitro. The results showed that bisulfite/sulfite consistently increased viability, migration, F-actin intensity and stiffness of ASM cells in similar fashion as concentration increasing from 10(-4) to 10(-1) mmol/L. However, bisulfite/sulfite increased the ASM cell contractility induced by KCl only at the concentration between 10(-4) and 10(-3) mmol/L (p < 0.05), while having no consistent effect on that induced by histamine. At the concentration of 10(0) mmol/L, bisulfite/sulfite became acutely toxic to the ASM cells. Taken together, the data suggest that SO2 derivatives at low levels in vivo may directly increase the mass, stiffness and contractility of ASM cells, which may help understand the mechanism in which specific air pollutants contribute in vivo to the pathogenesis of asthma.

  5. Novel insights into amylin aggregation

    PubMed Central

    Pillay, Karen; Govender, Patrick

    2014-01-01

    Amylin is a peptide that aggregates into species that are toxic to pancreatic beta cells, leading to type II diabetes. This study has for the first time quantified amylin association and dissociation kinetics (association constant (ka) = 28.7 ± 5.1 L mol−1 s−1 and dissociation constant (kd) = 2.8 ± 0.6 ×10−4 s−1) using surface plasmon resonance (SPR). Thus far, techniques used for the sizing of amylin aggregates do not cater for the real-time monitoring of unconstrained amylin in solution. In this regard we evaluated recently innovated nanoparticle tracking analysis (NTA). In addition, both SPR and NTA were used to study the effect of previously synthesized amylin derivatives on amylin aggregation and to evaluate their potential as a cell-free system for screening potential inhibitors of amylin-mediated cytotoxicity. Results obtained from NTA highlighted a predominance of 100–300 nm amylin aggregates and correlation to previously published cytotoxicity results suggests the toxic species of amylin to be 200–300 nm in size. The results seem to indicate that NTA has potential as a new technique to monitor the aggregation potential of amyloid peptides in solution and also to screen potential inhibitors of amylin-mediated cytotoxicity. PMID:26019498

  6. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity.

    PubMed

    Mattis, Virginia B; Tom, Colton; Akimov, Sergey; Saeedian, Jasmine; Østergaard, Michael E; Southwell, Amber L; Doty, Crystal N; Ornelas, Loren; Sahabian, Anais; Lenaeus, Lindsay; Mandefro, Berhan; Sareen, Dhruv; Arjomand, Jamshid; Hayden, Michael R; Ross, Christopher A; Svendsen, Clive N

    2015-06-01

    Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics. PMID:25740845

  7. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Hedrick, J.; Chakrabarti, A.

    1998-01-01

    Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.

  8. Mutants of Lactobacillus plantarum ML11-11 deficient in co-aggregation with yeast exhibited reduced activities of mixed-species biofilm formation.

    PubMed

    Furukawa, Soichi; Nojima, Natsumi; Nozaka, Soma; Hirayama, Satoru; Satoh, Ayumi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-01-01

    Lactic acid bacteria (LAB) mutants deficient in inter-species co-aggregation with yeast were spontaneously derived from Lactobacillus plantarum ML11-11, a significant mixed-species biofilm former in static co-cultures with budding yeasts. These non-co-aggregative mutants also showed significant decreases in mixed-species biofilm formation. These results suggest the important role of co-aggregation between LAB and yeast in mixed-species biofilm formation. Cell surface proteins obtained by 5 M LiCl extraction from the wild-type cells and non-co-aggregative mutant cells were analyzed by SDS-PAGE. There was an obvious difference in protein profiles. The protein band at 30 kDa was present abundantly in the wild-type cell surface fraction but was significantly decreased in the mutant cells. This band assuredly corresponded to the LAB surface factors that contribute to co-aggregation with yeasts. PMID:22313775

  9. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  10. Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids.

    PubMed

    Berg, Jürgen; Roch, Manfred; Altschüler, Jennifer; Winter, Christine; Schwerk, Anne; Kurtz, Andreas; Steiner, Barbara

    2015-02-01

    Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson's disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.

  11. Modified low density lipoproteins suppress production of a platelet-derived growth factor-like protein by cultured endothelial cells.

    PubMed Central

    Fox, P L; DiCorleto, P E

    1986-01-01

    Cultured endothelial cells (EC) produce a platelet-derived growth factor-like protein (PDGF-c) that stimulates the growth of cultured cells of mesenchymal origin. We have examined the effect of native plasma low density lipoprotein (LDL) and chemically modified LDL on production of PDGF-c by EC. Acetyl-LDL, but not native LDL, suppressed the production of PDGF-c by bovine aortic EC. Half-maximal inhibition was observed at a concentration of 25-75 micrograms of cholesterol per ml, and maximal inhibition (0-25% of control) at 150 micrograms of cholesterol per ml. EC treated with acetyl-LDL showed no morphological damage, there was no change in cell number, and the effect on production of PDGF-c was substantially reversed upon removal of the acetyl-LDL. The observed inhibition of PDGF-c production was specific, since total cellular and secreted protein synthesis were unaffected by acetyl-LDL. Acetyl-LDL suppressed PDGF-c production in both bovine aortic and human umbilical vein EC, but not in rat heart EC. This cell specificity correlated with the presence of scavenger receptors as measured by degradation of 125I-labeled acetyl-LDL and uptake of fluorescently labeled acetyl-LDL. Dimethylpropanediamine-LDL, a cationic modified lipoprotein, also inhibited PDGF-c production. The inhibition by both types of modified LDL was accompanied by significant intracellular cholesterol accumulation, suggesting a role for EC lipid composition in the regulation of production of PDGF-c. PMID:3460071

  12. Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process.

    PubMed

    George, Meena; Farooq, Masiha; Dang, Thi; Cortes, Bernadette; Liu, Jonathan; Maranga, Luis

    2010-08-15

    The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg-based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin-Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25-30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers > or =8.6 log(10) FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn-around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production. PMID:20589670

  13. Brain-derived neurotrophic factor increases inhibitory synapses, revealed in solitary neurons cultured from rat visual cortex.

    PubMed

    Palizvan, M R; Sohya, K; Kohara, K; Maruyama, A; Yasuda, H; Kimura, F; Tsumoto, T

    2004-01-01

    To elucidate chronic actions of brain-derived neurotrophic factor (BDNF) on GABAergic synapses, we examined effects of a long-term application of BDNF for 10-15 days on autapses (synapses) of solitary GABAergic neurons cultured from rat visual cortex. Solitary neuron preparations were used to exclude a possible contamination of BDNF actions on excitatory neurons in dissociated neuron culture or slice preparations. Neurons were confirmed to be GABAergic pharmacologically with bicuculline, a selective antagonist for GABAA receptors and immunocytochemically with antibody against glutamic acid decarboxylase 65, a GABA synthesizing enzyme. To evaluate GABAergic synaptic function, evoked and/or miniature inhibitory postsynaptic currents (IPSCs) were recorded in the whole-cell voltage-clamp mode. The treatment with BDNF at a concentration of 100 ng/ml enhanced the amplitude of evoked IPSCs and the frequency of miniature IPSCs. In contrast, BDNF did not have a detectable effect on the amplitude of miniature IPSCs and the paired pulse ratio of IPSCs evoked by two, successive activations. To evaluate morphological changes, neurons were immunocytochemically stained with antibodies against microtubule-associated protein 2, to visualize somatodendritic region and synapsin I, to visualize presynaptic sites. The quantitative analysis indicated that BDNF increased the area of soma, the numbers of primary dendrites and dendritic branching points, the total length of dendrites and the number of synaptic sites. Such an action of BDNF was seen in both subgroups of GABAergic neurons, parvalbumin-positive and -negative neurons. To visualize functionally active presynaptic sites, neurons were stained with a styryl dye, FM1-43. BDNF increased the number of stained sites that was correlated with the frequency of miniature IPSCs. These results suggest that the chronic treatment with BDNF promotes dendritic and synaptic development of GABAergic neurons in visual cortex.

  14. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats.

    PubMed

    Dludla, P V; Muller, C J F; Louw, J; Joubert, E; Salie, R; Opoku, A R; Johnson, R

    2014-04-15

    Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle that contributes to cardiovascular deaths in the diabetic population. Excessive generation of free radicals has been directly implicated in the pathogenesis of DCM. The use of antioxidants, through dietary supplementation, to combat increased cellular oxidative stress has gained popularity worldwide. Aspalathus linearis (rooibos) is a popular herbal tea that contains a novel antioxidant, aspalathin. Literature has reported on the antidiabetic, anti-inflammatory and free radical scavenging effects of rooibos. However, its protective effect against DCM has not been established. Therefore, this study investigated whether chronic exposure to an aqueous extract of fermented rooibos (FRE) has an ex vivo cardioprotective effect on hearts obtained from streptozotocin (STZ) induced diabetic rats. Adult Wistar rats were injected with 40 mg/kg of STZ. Two weeks after STZ injection, cardiomyocytes were isolated and cultured. Cultured cardiomyocytes were treated with FRE (1 and 10 μg/ml), vitamin E (50 μg/ml), and n-acetyl cysteine (1mM) for 6h, before exposure to either hydrogen peroxide (H2O2) or an ischemic solution. Cardiomyocytes exposed to H2O2 or an ischemic solution showed a decrease in metabolic activity and glutathione content with a concomitant increase in apoptosis and intracellular reactive oxygen species. Pretreatment with FRE was able to combat these effects and the observed amelioration was better than the known antioxidant vitamin E. This study provides evidence that an aqueous extract of fermented rooibos protects cardiomyocytes, derived from diabetic rats, against experimentally induced oxidative stress and ischemia. PMID:24268738

  15. Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture.

    PubMed

    Cipriano, Aaron F; Sallee, Amy; Guan, Ren-Guo; Zhao, Zhan-Yong; Tayoba, Myla; Sanchez, Jorge; Liu, Huinan

    2015-01-01

    Crystalline Mg-Zn-Ca ternary alloys have recently attracted significant interest for biomedical implant applications due to their promising biocompatibility, bioactivity, biodegradability and mechanical properties. The objective of this study was to characterize as-cast Mg-xZn-0.5Ca (x=0.5, 1.0, 2.0, 4.0wt.%) alloys, and determine the adhesion and morphology of bone marrow derived mesenchymal stem cells (BMSCs) at the interface with the Mg-xZn-0.5Ca alloys. The direct culture method (i.e. seeding cells directly onto the surface of the sample) was established in this study to probe the highly dynamic cell-substrate interface and thus to elucidate the mechanisms of BMSC responses to dynamic alloy degradation. The results showed that the BMSC adhesion density on these alloys was similar to the cell-only positive control and the BMSC morphology appeared more anisotropic on the rapidly degrading alloy surfaces in comparison with the cell-only positive control. Importantly, neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on BMSC responses. We speculated that degradation-induced dynamic surface topography played an important role in modulating cell morphology at the interface. This study presents a clinically relevant in vitro model for screening bioresorbable alloys, and provides useful design guidelines for determining the degradation rate of implants made of Mg-Zn-Ca alloys.

  16. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    PubMed

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.

  17. Smad signal pathway regulates angiogenesis via endothelial cell in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model.

    PubMed

    Lin, Shiyu; Xie, Jing; Gong, Tao; Shi, Sirong; Zhang, Tao; Fu, Na; Lin, Yunfeng

    2016-01-01

    Co-implantation of adipose-derived stromal cells (ASCs) and endothelial cells (ECs) can markedly expedite the formation of functional microvascular beds and provides possible methods for cell-based revascularization therapies to treat various diseases. Furthermore, we investigated the role of TGFβ/Smad signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model established in vitro with co-culture between ASCs and ECs. We found that angiogenesis was attenuated in the co-culture gels after inhibition of ALK5/Smad2/3 with SB431542. Genes coding for VEGF-A, VEGF-B, VE-ca, FGF-1, PDGF, BMP-4, and BMP-7 were significantly reduced in both mono-cultured and co-cultured ECs. Furthermore, the decrease in co-cultured ECs was prominent relative to mono-cultured ECs. Taken together, these findings suggest that in the co-culture between ASCs and ECs, TGFβ/Smad signal pathway regulates angiogenesis via ECs; moreover, the findings that the co-cultured ECs were regulated more significantly than mono-cultured ECs suggest that suppression of Smad signal pathway may regulate the paracrine secretion of ASCs to further modulate angiogenesis of ECs. PMID:26694166

  18. The Aggregation of Four Reconstructed Zygotes is the Limit to Improve the Developmental Competence of Cloned Equine Embryos

    PubMed Central

    Gambini, Andrés; De Stefano, Adrian; Bevacqua, Romina Jimena; Karlanian, Florencia; Salamone, Daniel Felipe

    2014-01-01

    Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE's) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE's per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated. PMID:25396418

  19. Ca2+-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions

    PubMed Central

    Uzun, Ahmet U.; Mannhardt, Ingra; Breckwoldt, Kaja; Horváth, András; Johannsen, Silke S.; Hansen, Arne; Eschenhagen, Thomas; Christ, Torsten

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca2+-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T). While (−)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation. PMID:27672365

  20. Ca2+-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions

    PubMed Central

    Uzun, Ahmet U.; Mannhardt, Ingra; Breckwoldt, Kaja; Horváth, András; Johannsen, Silke S.; Hansen, Arne; Eschenhagen, Thomas; Christ, Torsten

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca2+-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T). While (−)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.

  1. Ca(2+)-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions.

    PubMed

    Uzun, Ahmet U; Mannhardt, Ingra; Breckwoldt, Kaja; Horváth, András; Johannsen, Silke S; Hansen, Arne; Eschenhagen, Thomas; Christ, Torsten

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca(2+)-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca(2+)-currents (ICa,T). While (-)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (-)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (-logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (-logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation. PMID:27672365

  2. Natural aggregates of the conterminous United States

    USGS Publications Warehouse

    Langer, William H.

    1988-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregates. These materials are commonly used construction materials and frequently can be interchanged with one another. They are widely used throughout the United States, with every State except two producing crushed stone. Together they amount to about half the mining volume in the United States. Approximately 96 percent of sand and gravel and 77 percent of the crushed stone produced in the United States are used in the construction industry. Natural aggregates are widely distributed throughout the United States in a variety of geologic environments. Sand and gravel deposits commonly are the results of the weathering of bedrock and subsequent transportation and deposition of the material by water or ice (glaciers). As such, they commonly occur as river or stream deposits or in glaciated areas as glaciofluvial and other deposits. Crushed stone aggregates are derived from a wide variety of parent bedrock materials. Limestone and other carbonates account for approximately three quarters of the rocks used for crushed stone, with granite and other igneous rocks making up the bulk of the remainder. Limestone deposits are widespread throughout the Central and Eastern United States and are scattered in the West. Granites are widely distributed in the Eastern and Western United States, with few exposures in the Midwest. Igneous rocks (excluding granites) are largely concentrated in the Western United States and in a few isolated localities in the East. Even though natural aggregates are widely distributed throughout the United States, they are not universally available for consumptive use. Some areas are devoid of sand and gravel, and potential sources of crushed stone may be covered with sufficient unconsolidated material to make surface mining impractical. In some areas many aggregates do not meet the physical property requirements for certain uses, or they may contain mineral constituents that react

  3. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate.

    PubMed

    Pennington, Britney O; Clegg, Dennis O; Melkoumian, Zara K; Hikita, Sherry T

    2015-02-01

    Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies. PMID:25593208

  4. Inhibitory effect of a new butadiene derivative on the production of plasminogen activator inhibitor-1 in cultured bovine endothelial cells.

    PubMed

    Ohtani, A; Takagi, T; Hirano, A; Murakami, J; Sasaki, Y

    1996-12-01

    Tissue-type plasminogen activator (t-PA) and its physiological inhibitor, plasminogen activator inhibitor-1 (PAI-1), are known to be synthesized by vascular endothelial cells and to play important roles in regulating the fibrinolytic activity of plasma. We found that a new butadiene derivative, (3E, 4E)-3-benzylidene-4-(3,4,5-trimethoxybenzylidene)pyrrolidine -2,5-dione (T-686), inhibits PAI-1 production without affecting plasminogen activator (PA) synthesis in cultured bovine endothelial cells. T-686 (1-10 microM) dose-dependently decreased the accumulation of PAI-1 in conditioned medium from the treated cells and elevated PA activity in the conditioned medium. Analysis of the conditioned medium by the zymography technique indicated that T-686 decreased the activities of PAI-1 with an M(r) of 55,000 and t-PA/PAI-1 complex with an M(r) of 99,000. Furthermore, T-686 attenuated the augmentation of PAI-1 antigen induced by lipopolysaccharide in the conditioned medium. The decrease of PAI-1 antigen was in parallel with the reduction of the PAI-1 mRNA level (Northern blots). These results suggest that T-686 can promote net fibrinolytic activity through suppression of PAI-1 production without affecting PA elaboration in endothelial cells.

  5. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction.

    PubMed

    Sharma, Ruchi; Greenhough, Sebastian; Medine, Claire N; Hay, David C

    2010-01-01

    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  6. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses

    PubMed Central

    2011-01-01

    Background Approximately 60% of emerging viruses are of zoonotic origin, with three-fourths derived from wild animals. Many of these zoonotic diseases are transmitted by rodents with important information about their reservoir dynamics and pathogenesis missing. One main reason for the gap in our knowledge is the lack of adequate cell culture systems as models for the investigation of rodent-borne (robo) viruses in vitro. Therefore we established and characterized a new cell line, BVK168, using the kidney of a bank vole, Myodes glareolus, the most abundant member of the Arvicolinae trapped in Germany. Results BVK168 proved to be of epithelial morphology expressing tight junctions as well as adherence junction proteins. The BVK168 cells were analyzed for their infectability by several arbo- and robo-viruses: Vesicular stomatitis virus, vaccinia virus, cowpox virus, Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, Puumalavirus, and Borna disease virus (BDV). The cell line was susceptible for all tested viruses, and most interestingly also for the difficult to propagate BDV. Conclusion In conclusion, the newly established cell line from wildlife rodents seems to be an excellent tool for the isolation and characterization of new rodent-associated viruses and may be used as in vitro-model to study properties and pathogenesis of these agents. PMID:21729307

  7. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    PubMed Central

    Sharma, Ruchi; Greenhough, Sebastian; Medine, Claire N.; Hay, David C.

    2010-01-01

    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays. PMID:20169088

  8. A 3D Alzheimer's disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons.

    PubMed

    Zhang, Dawei; Pekkanen-Mattila, Mari; Shahsavani, Mansoureh; Falk, Anna; Teixeira, Ana I; Herland, Anna

    2014-02-01

    The recent progress in stem cell techniques has broadened the horizon for in vitro disease modeling. For desired in vivo like phenotypes, not only correct cell type specification will be critical, the microenvironmental context will be essential to achieve relevant responses. We demonstrate how a three dimensional (3D) culture of stem cell derived neurons can induce in vivo like responses related to Alzheimer's disease, not recapitulated with conventional 2D cultures. To acquire a neural population of cells we differentiated neurons from neuroepithelial stem cells, derived from induced pluripotent stem cells. p21-activated kinase mediated sensing of Aβ oligomers was only possible in the 3D environment. Further, the 3D phenotype showed clear effects on F-actin associated proteins, connected to the disease processes. We propose that the 3D in vitro model has higher resemblance to the AD pathology than conventional 2D cultures and could be used in further studies of the disease. PMID:24290439

  9. SENSITIVITY ANALYSIS OF AGGREGATED ENVIRONMENTAL INDICES WITH A CASE-STUDY OF THE MID-ATLANTIC REGION

    EPA Science Inventory

    Environmental indicators are often aggregated into a single index for various purposes in environmental studies. Aggregated indices derived from the same data set can differ, usually because the aggregated indices' sensitivities are not thoroughly analyzed. Furthermore, if a sens...

  10. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures.

    PubMed

    Boehnke, Karsten; Iversen, Philip W; Schumacher, Dirk; Lallena, María José; Haro, Rubén; Amat, Joaquín; Haybaeck, Johannes; Liebs, Sandra; Lange, Martin; Schäfer, Reinhold; Regenbrecht, Christian R A; Reinhard, Christoph; Velasco, Juan A

    2016-10-01

    The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery. PMID:27233291

  11. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures

    PubMed Central

    Boehnke, Karsten; Iversen, Philip W.; Schumacher, Dirk; Lallena, María José; Haro, Rubén; Amat, Joaquín; Haybaeck, Johannes; Liebs, Sandra; Lange, Martin; Schäfer, Reinhold; Regenbrecht, Christian R. A.; Reinhard, Christoph; Velasco, Juan A.

    2016-01-01

    The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery. PMID:27233291

  12. A Comparison of Three-Dimensional Culture Systems to Evaluate In Vitro Chondrogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Watts, Ashlee E.; Ackerman-Yost, Jeremy C.

    2013-01-01

    Objective To compare in vitro three-dimensional (3D) culture systems that model chondrogenesis of bone marrow-derived mesenchymal stem cells (MSCs). Methods MSCs from five horses 2–3 years of age were consolidated in fibrin 0.3% alginate, 1.2% alginate, 2.5×105 cell pellets, 5×105 cell pellets, and 2% agarose, and maintained in chondrogenic medium with supplemental TGF-β1 for 4 weeks. Pellets and media were tested at days 1, 14, and 28 for gene expression of markers of chondrogenic maturation and hypertrophy (ACAN, COL2B, COL10, SOX9, 18S), and evaluated by histology (hematoxylin and eosin, Toluidine Blue) and immunohistochemistry (collagen type II and X). Results alginate, fibrin alginate (FA), and both pellet culture systems resulted in chondrogenic transformation. Adequate RNA was not obtained from agarose cultures at any time point. There was increased COL2B, ACAN, and SOX9 expression on day 14 from both pellet culture systems. On day 28, increased expression of COL2B was maintained in 5×105 cell pellets and there was no difference in ACAN and SOX9 between FA and both pellet cultures. COL10 expression was significantly lower in FA cultures on day 28. Collagen type II was abundantly formed in all culture systems except alginate and collagen type X was least in FA hydrogels. Conclusion equine MSCs respond to 3D culture in FA blended hydrogel and both pellet culture systems with chondrogenic induction. For prevention of terminal differentiation and hypertrophy, FA culture may be superior to pellet culture systems. PMID:23725547

  13. Role of the ERK1/2 Signaling Pathway in Osteogenesis of Rat Tendon-Derived Stem Cells in Normoxic and Hypoxic Cultures

    PubMed Central

    Li, Pei; Xu, Yuan; Gan, Yibo; Song, Lei; Zhang, Chengmin; Wang, Liyuan; Zhou, Qiang

    2016-01-01

    Background: Ectopic ossification and increased vascularization are two common phenomena in the chronic tendinopathic tendon. The increased vascularization usually leads to an elevated local oxygen tension which is one of micro-environments that can influence differentiate status of stem cells. Objective: This study aimed to investigate the osteogenesis capacity of rat tendon-derived stem cells TDSCs (rTDSCs) in normoxic and hypoxic cultures, and to study the role of ERK1/2 signaling pathway in this process. Methods: rTDSCs were subjected to osteogenesis inductive culture in hypoxic (3% O2) and normoxic (20% O2) conditions. The inhibitor U0126 was added along with culture medium to determine the role of ERK1/2 signaling pathway. Cell viability, cell proliferation, alizarin red staining, alkaline phosphatase (AKP) activity, gene expression (ALP, osteocalcin, collagen I and RUNX2) and protein expression (p-ERK1/2 and RUNX2) of osteogenic-cultured rTSDCs were analyzed in this study. Results: Hypoxic and normoxic culture had no effects on cell viability of rTDSCs, whereas the proliferation potential of rTDSCs was significantly increased in hypoxic culture. The osteogenesis capacity of rTDSCs in normoxic culture was significantly promoted compared with hypoxic culture, which was reflected by an increased alizarin red staining intensity, an elevated ALP activity, and the up-regulated gene (ALP, osteocalcin, collagen I and RUNX2) or protein (RUNX2) expression of osteogenic makers. However, the osteogenesis capacity of rTDSCs in both hypoxic and normoxic cultures was attenuated by the inhibitor U0126. Conclusion: Normoxic culture promotes osteogenic differentiation of rTDSCs compared with the hypoxic culture, and the ERK1/2 signaling pathway is involved in this process. PMID:27499695

  14. Non-Trivial Feature Derivation for Intensifying Feature Detection Using LIDAR Datasets Through Allometric Aggregation Data Analysis Applying Diffused Hierarchical Clustering for Discriminating Agricultural Land Cover in Portions of Northern Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Villar, Ricardo G.; Pelayo, Jigg L.; Mozo, Ray Mari N.; Salig, James B., Jr.; Bantugan, Jojemar

    2016-06-01

    Leaning on the derived results conducted by Central Mindanao University Phil-LiDAR 2.B.11 Image Processing Component, the paper attempts to provides the application of the Light Detection and Ranging (LiDAR) derived products in arriving quality Landcover classification considering the theoretical approach of data analysis principles to minimize the common problems in image classification. These are misclassification of objects and the non-distinguishable interpretation of pixelated features that results to confusion of class objects due to their closely-related spectral resemblance, unbalance saturation of RGB information is a challenged at the same time. Only low density LiDAR point cloud data is exploited in the research denotes as 2 pts/m2 of accuracy which bring forth essential derived information such as textures and matrices (number of returns, intensity textures, nDSM, etc.) in the intention of pursuing the conditions for selection characteristic. A novel approach that takes gain of the idea of object-based image analysis and the principle of allometric relation of two or more observables which are aggregated for each acquisition of datasets for establishing a proportionality function for data-partioning. In separating two or more data sets in distinct regions in a feature space of distributions, non-trivial computations for fitting distribution were employed to formulate the ideal hyperplane. Achieving the distribution computations, allometric relations were evaluated and match with the necessary rotation, scaling and transformation techniques to find applicable border conditions. Thus, a customized hybrid feature was developed and embedded in every object class feature to be used as classifier with employed hierarchical clustering strategy for cross-examining and filtering features. This features are boost using machine learning algorithms as trainable sets of information for a more competent feature detection. The product classification in this

  15. The Efficient Derivation of Trophoblast Cells from Porcine In Vitro Fertilized and Parthenogenetic Blastocysts and Culture with ROCK Inhibitor Y-27632

    PubMed Central

    Hou, Dongxia; Su, Min; Li, Xiawei; Li, Zhiying; Yun, Ting; Zhao, Yuhang; Zhang, Manling; Zhao, Lihua; Li, Rongfeng; Yu, Haiquan; Li, Xueling

    2015-01-01

    Trophoblasts (TR) are specialized cells of the placenta and play an important role in embryo implantation. The in vitro culture of trophoblasts provided an important tool to investigate the mechanisms of implantation. In the present study, porcine trophoblast cells were derived from pig in vitro fertilized (IVF) and parthenogenetically activated (PA) blastocysts via culturing in medium supplemented with KnockOut serum replacement (KOSR) and basic fibroblast growth factor (bFGF) on STO feeder layers, and the effect of ROCK (Rho-associated coiled-coil protein kinases) inhibiter Y-27632 on the cell lines culture was tested. 5 PA blastocyst derived cell lines and 2 IVF blastocyst derived cell lines have been cultured more than 20 passages; one PA cell lines reached 110 passages without obvious morphological alteration. The derived trophoblast cells exhibited epithelium-like morphology, rich in lipid droplets, and had obvious defined boundaries with the feeder cells. The cells were histochemically stained positive for alkaline phosphatase. The expression of TR lineage markers, such as CDX2, KRT7, KRT18, TEAD4, ELF5 and HAND1, imprinted genes such as IGF2, PEG1 and PEG10, and telomerase activity related genes TERC and TERF2 were detected by immunofluorescence staining, reverse transcription PCR and quantitative real-time PCR analyses. Both PA and IVF blastocysts derived trophoblast cells possessed the ability to differentiate into mature trophoblast cells in vitro. The addition of Y-27632 improved the growth of both PA and IVF blastocyst derived cell lines and increased the expression of trophoblast genes. This study has provided an alternative highly efficient method to establish trophoblast for research focused on peri-implantation and placenta development in IVF and PA embryos. PMID:26555939

  16. The Efficient Derivation of Trophoblast Cells from Porcine In Vitro Fertilized and Parthenogenetic Blastocysts and Culture with ROCK Inhibitor Y-27632.

    PubMed

    Hou, Dongxia; Su, Min; Li, Xiawei; Li, Zhiying; Yun, Ting; Zhao, Yuhang; Zhang, Manling; Zhao, Lihua; Li, Rongfeng; Yu, Haiquan; Li, Xueling

    2015-01-01

    Trophoblasts (TR) are specialized cells of the placenta and play an important role in embryo implantation. The in vitro culture of trophoblasts provided an important tool to investigate the mechanisms of implantation. In the present study, porcine trophoblast cells were derived from pig in vitro fertilized (IVF) and parthenogenetically activated (PA) blastocysts via culturing in medium supplemented with KnockOut serum replacement (KOSR) and basic fibroblast growth factor (bFGF) on STO feeder layers, and the effect of ROCK (Rho-associated coiled-coil protein kinases) inhibiter Y-27632 on the cell lines culture was tested. 5 PA blastocyst derived cell lines and 2 IVF blastocyst derived cell lines have been cultured more than 20 passages; one PA cell lines reached 110 passages without obvious morphological alteration. The derived trophoblast cells exhibited epithelium-like morphology, rich in lipid droplets, and had obvious defined boundaries with the feeder cells. The cells were histochemically stained positive for alkaline phosphatase. The expression of TR lineage markers, such as CDX2, KRT7, KRT18, TEAD4, ELF5 and HAND1, imprinted genes such as IGF2, PEG1 and PEG10, and telomerase activity related genes TERC and TERF2 were detected by immunofluorescence staining, reverse transcription PCR and quantitative real-time PCR analyses. Both PA and IVF blastocysts derived trophoblast cells possessed the ability to differentiate into mature trophoblast cells in vitro. The addition of Y-27632 improved the growth of both PA and IVF blastocyst derived cell lines and increased the expression of trophoblast genes. This study has provided an alternative highly efficient method to establish trophoblast for research focused on peri-implantation and placenta development in IVF and PA embryos.

  17. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    PubMed

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use. PMID:25777046

  18. A rapid method for simultaneous evaluation of free light chain content and aggregate content in culture media of Chinese hamster ovary cells expressing monoclonal antibodies for cell line screening.

    PubMed

    Ishii, Yoichi; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2016-04-01

    The goal of developing a monoclonal antibody (mAb) production process is high productivity and high quality. Because the productivity and quality of mAbs depend on cell line properties, the selection of cell lines suitable for large-scale production is an important stage in process development for mAb production. The light chain (LC) is important for antibody folding and assembly in the endoplasmic reticulum; cell lines that secrete a large amount of LCs in the medium secrete high-quality antibodies with high productivity. LC contents in culture media have been estimated by western blotting, reverse-phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay. However, these analyses require fine tuning of experimental conditions for each antibody analyzed. Here we report a rapid and simple high-sensitivity size-exclusion chromatography (HS-SEC) method to evaluate the contents of low-molecular weight species (LMWS, mainly consisting of LC monomers and dimers) and high-molecular weight species (HMWS, aggregates) in the media for cell line screening. Because LMWS and HMWS are important indicators of productivity and quality, respectively, for cell line screening, HS-SEC will be useful in the first step of cell line selection needed for large-scale production. PMID:26467692

  19. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    SciTech Connect

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  20. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses

    PubMed Central

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O.; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m-2s-1), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m-2s-1 under controlled condition. When LC–MS and GC–MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3′,5′ hydroxylase and flavonoid 3′ hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses. PMID:26442042

  1. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses.

    PubMed

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m(-2)s(-1)), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m(-2)s(-1) under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3',5' hydroxylase and flavonoid 3' hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses. PMID:26442042

  2. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells.

    PubMed

    Baek, Hyunjung; Noh, Yoo Hun; Lee, Joo Hee; Yeon, Soo-In; Jeong, Jaemin; Kwon, Heechung

    2014-09-01

    Salivary gland stem/progenitor cells belong to the endodermal lineage and may serve as good candidates to replace their dysfunctional counterparts. The objective of this study was to isolate large numbers of salivary gland tissue-derived stem cells (SGSCs) from adult rats in order to develop a clinically applicable method that does not involve sorting or stem cell induction by duct ligation. We analysed SGSCs isolated from normal rat salivary glands to determine whether they retained the major characteristics of stem cells, self-renewal and multipotency, especially with respect to the various endodermal cell types. SGSCs expressed high levels of integrin α6β1 and c-kit, which are surface markers of SGSCs. In particular, the integrin α6β1(+) /c-kit(+) salivary gland cells maintained the morphology, proliferation activity and multipotency of stem cells for up to 92 passages in 12 months. Furthermore, we analysed the capacity of SGSCs to differentiate into endoderm lineage cell types, such as acinar-like and insulin-secreting cells. When cultured on growth factor reduced matrigel, the morphology of progenitor cells changed to acinar-like structures and these cells expressed the acinar cell-specific marker, α-amylase, and tight junction markers. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) data showed increased expression of pancreatic cell markers, including insulin, Pdx1, pan polypeptide and neurogenin-3, when these cells formed pancreatic clusters in the presence of activin A, exendin-4 and retinoic acid. These data demonstrate that adult salivary stem/progenitor cells may serve as a potential source for cell therapy in salivary gland hypofunction and diabetes.

  3. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture.

    PubMed

    Lei, Lei; Liao, WeiMing; Sheng, PuYi; Fu, Ming; He, AiShan; Huang, Gang

    2007-06-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21-40 years old, 41-60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t x log2/logNt - logN0" was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=0.002, P<0.05). These findings suggested that a higher level of hADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  4. Case Report: Industrial X-Ray Injury Treated With Non-Cultured Autologous Adipose-Derived Stromal Vascular Fraction (SVF).

    PubMed

    Iddins, C J; Cohen, S R; Goans, R E; Wanat, R; Jenkins, M; Christensen, D M; Dainiak, N

    2016-08-01

    Local cutaneous injuries induced by ionizing radiation (IR) are difficult to treat. Many have reported local injection of adipose-derived stromal vascular fraction (SVF), often with additional therapies, as an effective treatment of IR-induced injury even after other local therapies have failed. The authors report a case of a locally recurrent, IR-induced wound that was treated with autologous, non-cultured SVF without other concurrent therapy. A nondestructive testing technician was exposed to 130 kVp x rays to his non-dominant right thumb on 5 October 2011. The wound healed 4 mo after initial conservative therapy with oral/topical α-tocopherol, oral pentoxifylline, naproxen sodium, low-dose oral steroids, topical steroids, hyperbaric oxygen therapy (HBOT), oral antihistamines, and topical aloe vera. Remission lasted approximately 17 mo with one minor relapse in July 2012 after minimal trauma and subsequent healing. Aggressive wound breakdown during June 2013 required additional therapy with HBOT. An erythematous, annular papule developed over the following 12 mo (during which time the patient was not undergoing prescribed treatment). Electron paramagnetic resonance (EPR) done more than 2 mo after exposure to IR revealed dose estimates of 14 ± 3 Gy and 19 ± 6 Gy from two centers using different EPR techniques. The patient underwent debridement of the 0.5 cm papular area, followed by SVF injection into and around the wound bed and throughout the thumb without complication. Eleven months post SVF injection, the patient has been essentially asymptomatic with an intact integument. These results raise the possibility of prolonged benefit from SVF therapy without the use of cytokines. Since there is currently no consensus on the use of isolated SVF therapy in chronic, local IR-induced injury, assessment of this approach in an appropriately powered, controlled trial in experimental animals with local radiation injury appears to be indicated. PMID:27356054

  5. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch

    PubMed Central

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M. L.; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G.

    2015-01-01

    Introduction Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. Methods hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. Results SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Conclusions Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes

  6. Aggregation effects of surface heterogeneity in land surface processes

    NASA Astrophysics Data System (ADS)

    Su, Z.; Pelgrum, H.; Menenti, M.

    In order to investigate the aggregation effects of surface heterogeneity in land surface processes we have adapted a theory of aggregation. Two strategies have been adopted: 1) Aggregation of radiative fluxes. The aggregated radiative fluxes are used to derive input parameters that are then used to calculate the aerodynamic fluxes at different aggregation levels. This is equivalent to observing the same area at different resolutions using a certain remote sensor, and then calculating the aerodynamic fluxes correspondingly. 2) Aggregation of aerodynamic fluxes calculated at the original observation scale to different aggregation levels. A case study has been conducted to identify the effects of aggregation on areal estimates of sensible and latent heat fluxes. The length scales of surface variables in heterogeneous landscapes are estimated by means of wavelet analysis.

  7. Growth hormone aggregates in the rat adenohypophysis

    NASA Technical Reports Server (NTRS)

    Farrington, M.; Hymer, W. C.

    1990-01-01

    Although it has been known for some time that GH aggregates are contained within the rat anterior pituitary gland, the role that they might play in pituitary function is unknown. The present study examines this issue using the technique of Western blotting, which permitted visualization of 11 GH variants with apparent mol wt ranging from 14-88K. Electroelution of the higher mol wt variants from gels followed by their chemical reduction with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. With the blot procedure we found 1) that GH aggregates greater than 44K were associated with a 40,000 x g sedimentable fraction; 2) that GH aggregates were not present in glands from thyroidectomized rats, but were in glands from the thyroidectomized rats injected with T4; 3) that GH aggregates were uniquely associated with a heavily granulated somatotroph subpopulation isolated by density gradient centrifugation; and 4) that high mol wt GH forms were released from the dense somatotrophs in culture, since treatment of the culture medium with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. Taken together, the results show that high mol wt GH aggregates are contained in secretory granules of certain somatotrophs and are also released in aggregate form from these cells in vitro.

  8. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  9. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer.

    PubMed

    Feng, Y; Zhu, M; Dangelmajer, S; Lee, Y M; Wijesekera, O; Castellanos, C X; Denduluri, A; Chaichana, K L; Li, Q; Zhang, H; Levchenko, A; Guerrero-Cazares, H; Quiñones-Hinojosa, A

    2014-12-11

    Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM.

  10. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system.

    PubMed

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage.

  11. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells

    PubMed Central

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    Objective The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. Materials and Methods In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). Results The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. Conclusion The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration.

  12. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells

    PubMed Central

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    Objective The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. Materials and Methods In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). Results The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. Conclusion The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration. PMID:27602310

  13. Characterization of Ovine Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells. PMID:27625564

  14. Characterization of Ovine Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells.

  15. Alterations of gene expression and protein synthesis in co-cultured adipose tissue-derived stem cells and squamous cell-carcinoma cells: consequences for clinical applications

    PubMed Central

    2014-01-01

    Introduction This is the first study evaluating the interactions of human adipose tissue derived stem cells (ADSCs) and human squamous cell carcinoma cells (SCCs), with regard to a prospective cell-based skin regenerative therapy and a thereby unintended co-localization of ADSCs and SCCs. Methods ADSCs were co-cultured with A431-SCCs and primary SCCs (pSCCs) in a transwell system, and cell-cell interactions were analyzed by assessing doubling time, migration and invasion, angiogenesis, quantitative real time PCR of 229 tumor associated genes, and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPS). Results of co-culture were compared to those of the respective mono-culture. Results ADSCs’ proliferation on the plate was significantly increased when co-cultured with A431-SCCs (P = 0.038). PSCCs and ADSCs significantly decreased their proliferation in co-culture if cultured on the plate (P <0.001 and P = 0.03). The migration of pSCC was significantly increased in co-culture (P = 0.009), as well as that of ADSCs in A431-SCC-co-culture (P = 0.012). The invasive behavior of pSCCs and A431-SCCs was significantly increased in co-culture by a mean of 33% and 35%, respectively (P = 0.038 and P <0.001). Furthermore, conditioned media from co-cultured ADSC-A431-SCCs and co-cultured ADSCs-pSCCs induced tube formation in an angiogenesis assay in vitro. In A431-SCC-co-culture 36 genes were up- and 6 were down-regulated in ADSCs, in A431-SCCs 14 genes were up- and 8 genes were down-regulated. In pSCCs-co-culture 36 genes were up-regulated in ADSCs, two were down-regulated, one gene was up-regulated in pSCC, and three genes were down-regulated. Protein expression analysis revealed that three proteins were exclusively produced in co-culture (CXCL9, IL-1b, and MMP-7). In A431-SCC-co-culture the concentration of 17 proteins was significantly increased compared to the ADSCs mono-culture (2.8- to 357-fold

  16. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  17. Security at the Expense of Liberty: A Test of Predictions Deriving from the Culture of Control Thesis

    ERIC Educational Resources Information Center

    Pickett, Justin T.; Mears, Daniel P.; Stewart, Eric A.; Gertz, Marc

    2013-01-01

    In "The Culture of Control: Crime and Social Order in Contemporary Society," David Garland linked contemporary crime control policies and welfare reforms to a cultural formation that he termed the "crime complex of late modernity." According to Garland, once established, the crime complex exerts a contemporaneous effect on public views about both…

  18. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors

    PubMed Central

    Yang, HongNa; Wang, Jing; Wang, Feng; Liu, XiaoDun; Chen, Heng; Duan, WeiMing; Qu, TingYu

    2016-01-01

    Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (p < 0.01). Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24 h, about 5% of cells became VMAT2 (vascular monoamine transporter 2)-positive neurons, and less than 5% of cells became DAT (dopamine transporter)-positive neurons at 72 h following differentiation in cultures. Importantly, these TH-, VMAT2-, and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P < 0.01), as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons. PMID:27147976

  19. Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application.

    PubMed

    Xu, Tianxin; Zhu, Mingyan; Guo, Yibing; Wu, Di; Huang, Yan; Fan, Xiangjun; Zhu, Shajun; Lin, Changchun; Li, Xiaohong; Lu, Jingjing; Zhu, Hui; Zhou, Pengcheng; Lu, Yuhua; Wang, Zhiwei

    2015-10-01

    The cutting-edge technology of three-dimensional liver decellularized bioscaffold has a potential to provide a microenvironment that is suitable for the resident cells and even develop a new functional organ. Liver decellularized bioscaffold preserved the native extracellular matrix and three-dimensional architecture in support of the cell culture. The goal of this study was to discover if three-dimensional extracellular matrix derived from mouse liver could facilitate the growth and maintenance of physiological functions of mouse isolated islets. We generated a whole organ liver decellularized bioscaffold which could successfully preserve extracellular matrix proteins and the native vascular channels using 1% Triton X-100/0.1% ammonium protocol. To evaluate the potential of decellularized liver as a scaffold for islets transplantation, the liver decellularized bioscaffold was infused with mouse primary pancreatic islets which were obtained through Collagenase P digestion protocol. Its yield, morphology, and quality were estimated by microscopic analysis, dithizone staining, insulin immunofluorescence and glucose stimulation experiments. Comparing the three-dimensional culture in liver decellularized bioscaffold with the orthodoxy two-dimensional plate culture, hematoxylin-eosin staining, immunohistochemistry, and insulin gene expression were tested. Our results demonstrated that the liver decellularized bioscaffold could support cellular culture and maintenance of cell functions. In contrast with the conventional two-dimensional culture, three-dimensional culture system could give rise to an up-regulated insulin gene expression. These findings demonstrated that the liver bioscaffold by a perfusion-decellularized technique could serve as a platform to support the survival and function of the pancreatic islets in vitro. Meanwhile three-dimensional culture system had a superior role in contrast with the two-dimensional culture. This study advanced the field of

  20. Isolation of Pancreatic Cancer Cells from a Patient-Derived Xenograft Model Allows for Practical Expansion and Preserved Heterogeneity in Culture.

    PubMed

    Pham, Kien; Delitto, Daniel; Knowlton, Andrea E; Hartlage, Emily R; Madhavan, Ricky; Gonzalo, David H; Thomas, Ryan M; Behrns, Kevin E; George, Thomas J; Hughes, Steven J; Wallet, Shannon M; Liu, Chen; Trevino, Jose G

    2016-06-01

    Commercially available, highly passaged pancreatic cancer (PC) cell lines are of limited translational value. Attempts to overcome this limitation have primarily consisted of cancer cell isolation and culture directly from human PC specimens. However, these techniques are associated with exceedingly low success rates. Here, we demonstrate a highly reproducible culture of primary PC cell lines (PPCLs) from patient-derived xenografts, which preserve, in part, the intratumoral heterogeneity known to exist in PC. PPCL expansion from patient-derived xenografts was successful in 100% of attempts (5 of 5). Phenotypic analysis was evaluated with flow cytometry, immunofluorescence microscopy, and short tandem repeat profiling. Importantly, tumorigenicity of PPCLs expanded from patient-derived xenografts was assessed by subcutaneous injection into nonobese diabeteic.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice. Morphologically, subcutaneous injection of all PPCLs into mice yielded tumors with similar characteristics to the parent xenograft. PPCLs uniformly expressed class I human leukocyte antigen, epithelial cell adhesion molecule, and cytokeratin-19. Heterogeneity within each PPCL persisted in culture for the frequency of cells expressing the cancer stem cell markers CD44, CD133, and c-Met and the immunologic markers human leukocyte antigen class II and programmed death ligand 1. This work therefore presents a reliable method for the rapid expansion of primary human PC cells and, thereby, provides a platform for translational investigation and, importantly, potential personalized therapeutic approaches.

  1. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin

    PubMed Central

    Pellett, Sabine; Schwartz, Michael P.; Tepp, William H.; Josephson, Richard; Scherf, Jacob M.; Pier, Christina L.; Thomson, James A.; Murphy, William L.; Johnson, Eric A.

    2015-01-01

    Botulinum neurotoxin (BoNT) detection provides a useful model for validating cell-based neurotoxicity screening approaches, as sensitivity is dependent on functionally competent neurons and clear quantitative endpoints are available for correlating results to approved animal testing protocols. Here, human induced pluripotent stem cell (iPSC)-derived neuronal cells were cultured on chemically-defined poly(ethylene glycol) (PEG) hydrogels formed by “thiol-ene” photopolymerization and tested as a cell-based neurotoxicity assay by determining sensitivity to active BoNT/A1. BoNT/A1 sensitivity was comparable to the approved in vivo mouse bioassay for human iPSC-derived neurons and neural stem cells (iPSC-NSCs) cultured on PEG hydrogels or treated tissue culture polystyrene (TCP) surfaces. However, maximum sensitivity for BoNT detection was achieved two weeks earlier for iPSC-NSCs that were differentiated and matured on PEG hydrogels compared to TCP. Therefore, chemically-defined synthetic hydrogels offer benefits over standard platforms when optimizing culture conditions for cell-based screening and achieve sensitivities comparable to an approved animal testing protocol. PMID:26411797

  2. Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa

    NASA Technical Reports Server (NTRS)

    Kaur Sawhney, R.; Shekhawat, N. S.; Galston, A. W.

    1985-01-01

    We have previously reported that aseptically cultured mesophyll protoplasts of Vigna divide rapidly and regenerate into complete plants, while mesophyll protoplasts of Avena divide only sporadically and senesce rapidly after isolation. We measured polyamine titers in such cultures of Vigna and Avena, to study possible correlations between polyamines and cellular behavior. We also deliberately altered polyamine titer by the use of selective inhibitors of polyamine biosynthesis, noting the effects on internal polyamine titer, cell division activity and regenerative events. In Vigna cultures, levels of free and bound putrescine and spermidine increased dramatically as cell division and differentiation progressed. The increase in bound polyamines was largest in embryoid-forming callus tissue while free polyamine titer was highest in root-forming callus. In Avena cultures, the levels of total polyamines decreased as the protoplast senesced. The presence of the inhibitors alpha-difluoromethyl-arginine (specific inhibitor of arginine decarboxylase), alpha-difluoromethylornithine (specific inhibitor of ornithine decarboxylase) and dicyclohexylamine (inhibitor of spermidine synthase) reduced cell division and organogenesis in Vigna cultures. Addition of low concentration of polyamines to such cultures containing inhibitors or removal of inhibitors from the culture medium restored the progress of growth and differentiation with concomitant increase in polyamine levels.

  3. Culture of mouse amniotic fluid-derived cells on irradiated STO feeders results in the generation of primitive endoderm cell lines capable of self-renewal in vitro.

    PubMed

    Babic, Aleksandar M; Jang, Sunyoung; Nicolov, Eugenia; Voicu, Horatiu; Luckey, Chance J

    2013-01-01

    The cells present in amniotic fluid (AF) are currently used for prenatal diagnosis of fetal anomalies but are also a potential source of cells for cell therapy. To better characterize putative progenitor cell populations present in AF, we used culture conditions that support self-renewal to determine if these promoted the generation of stable cell lines from AF-derived cells (AFC). Cells isolated from E11.5 mouse were cultured on irradiated STO fibroblast feeder layers in human embryonic germ cell derivation conditions. The cultures grew multicellular epithelial colonies that could be repropagated from single cells. Reverse transcription semiquantitative polymerase chain reaction of established cell lines revealed that they belonged to the extraembryonic endoderm (ExEn) expressing high levels of Gata6, Gata4, Sox17, Foxa2 and Sox7 mRNA. Hierarchical clustering based on the whole transcriptome expression profile of the AFC lines (AFCL) shows significant correlation between transcription profiles of AFCL and blastocyst-derived XEN, an ExEn cell line. In vitro differentiation of AFCL results in the generation of cells expressing albumin and α-fetoprotein (AFP), while intramuscular injection of AFCL into immunodeficient mice produced AFP-positive tumors with primitive endodermal appearance. Hence, E11.5 mouse AF contains cells that efficiently produce XEN lines. These AF-derived XEN lines do not spontaneously differentiate into embryonic-type cells but are phenotypically stable and have the capacity for extensive expansion. The lack of requirement for reprogramming factors to turn AF-derived progenitor cells into stable cell lines capable of massive expansion together with the known ability of ExEn to contribute to embryonic tissue suggests that this cell type may be a candidate for banking for cell therapies. PMID:24060676

  4. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    SciTech Connect

    Adachi, Naoki; Kubota, Yoshitaka; Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  5. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  6. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays

    PubMed Central

    Amin, Hayder; Maccione, Alessandro; Marinaro, Federica; Zordan, Stefano; Nieus, Thierry; Berdondini, Luca

    2016-01-01

    The recent availability of human induced pluripotent stem cells (hiPSCs) holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs). These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after 3 months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e., poly-dl-ornithine (PDLO), poly-l-ornithine (PLO), and polyethylenimine (PEI), that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even 3-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings and emerging network

  7. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays.

    PubMed

    Amin, Hayder; Maccione, Alessandro; Marinaro, Federica; Zordan, Stefano; Nieus, Thierry; Berdondini, Luca

    2016-01-01

    The recent availability of human induced pluripotent stem cells (hiPSCs) holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs). These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after 3 months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e., poly-dl-ornithine (PDLO), poly-l-ornithine (PLO), and polyethylenimine (PEI), that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even 3-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings and emerging

  8. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays.

    PubMed

    Amin, Hayder; Maccione, Alessandro; Marinaro, Federica; Zordan, Stefano; Nieus, Thierry; Berdondini, Luca

    2016-01-01

    The recent availability of human induced pluripotent stem cells (hiPSCs) holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs). These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after 3 months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e., poly-dl-ornithine (PDLO), poly-l-ornithine (PLO), and polyethylenimine (PEI), that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even 3-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings and emerging network

  9. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition.

    PubMed

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan; Chan, Woon Khiong; Shu-Chien, Alexander Chong

    2014-10-01

    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.

  10. Manufacture of Clinical-Grade Human Clonal Mesenchymal Stem Cell Products from Single Colony Forming Unit-Derived Colonies Based on the Subfractionation Culturing Method.

    PubMed

    Yi, TacGhee; Kim, Si-na; Lee, Hyun-Joo; Kim, Junghee; Cho, Yun-Kyoung; Shin, Dong-Hee; Tak, Sun-Ji; Moon, Sun-Hwa; Kang, Ji-Eun; Ji, In-Mi; Lim, Huyn-Ja; Lee, Dong-Soon; Jeon, Myung-Shin; Song, Sun U

    2015-12-01

    Stem cell products derived from mesenchymal stem cells (MSCs) have been widely used in clinical trials, and a few products have been already commercialized. However, the therapeutic effects of clinical-grade MSCs are still controversial owing to mixed results from recent clinical trials. A potential solution to overcome this hurdle may be to use clonal stem cells as the starting cell material to increase the homogeneity of the final stem cell products. We have previously developed an alternative isolation and culture protocol for establishing a population of clonal MSCs (cMSCs) from single colony forming unit (CFU)-derived colonies. In this study, we established a good manufacturing practice (GMP)-compatible procedure for the clinical-grade production of human bone marrow-derived cMSCs based on the subfractionation culturing method. We optimized the culture procedures to expand and obtain a clonal population of final MSC products from single CFU-derived colonies in a GMP facility. The characterization results of the final cMSC products met our preset criteria. Animal toxicity tests were performed in a good laboratory practice facility, and showed no toxicity or tumor formation in vivo. These tests include single injection toxicity, multiple injection toxicity, biodistribution analysis, and tumorigenicity tests in vivo. No chromosomal abnormalities were detected by in situ karyotyping using oligo-fluorescence in situ hydridization (oligo-FISH), providing evidence of genetic stability of the clinical-grade cMSC products. The manufacture and quality control results indicated that our GMP methodology could produce sufficient clonal population of MSC products from a small amount of bone marrow aspirate to treat a number of patients. PMID:26421757

  11. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  12. Controlled, scalable embryonic stem cell differentiation culture.

    PubMed

    Dang, Stephen M; Gerecht-Nir, Sharon; Chen, Jinny; Itskovitz-Eldor, Joseph; Zandstra, Peter W

    2004-01-01

    Embryonic stem (ES) cells are of significant interest as a renewable source of therapeutically useful cells. ES cell aggregation is important for both human and mouse embryoid body (EB) formation and the subsequent generation of ES cell derivatives. Aggregation between EBs (agglomeration), however, inhibits cell growth and differentiation in stirred or high-cell-density static cultures. We demonstrate that the agglomeration of two EBs is initiated by E-cadherin-mediated cell attachment and followed by active cell migration. We report the development of a technology capable of controlling cell-cell interactions in scalable culture by the mass encapsulation of ES cells in size-specified agarose capsules. When placed in stirred-suspension bioreactors, encapsulated ES cells can be used to produce scalable quantities of hematopoietic progenitor cells in a controlled environment.

  13. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture

    PubMed Central

    Odawara, A.; Katoh, H.; Matsuda, N.; Suzuki, I.

    2016-01-01

    The functional network of human induced pluripotent stem cell (hiPSC)-derived neurons is a potentially powerful in vitro model for evaluating disease mechanisms and drug responses. However, the culture time required for the full functional maturation of individual neurons and networks is uncertain. We investigated the development of spontaneous electrophysiological activity and pharmacological responses for over 1 year in culture using multi-electrode arrays (MEAs). The complete maturation of spontaneous firing, evoked responses, and modulation of activity by glutamatergic and GABAergic receptor antagonists/agonists required 20–30 weeks. At this stage, neural networks also demonstrated epileptiform synchronized burst firing (SBF) in response to pro-convulsants and SBF suppression using clinical anti-epilepsy drugs. Our results reveal the feasibility of long-term MEA measurements from hiPSC-derived neuronal networks in vitro for mechanistic analyses and drug screening. However, developmental changes in electrophysiological and pharmacological properties indicate the necessity for the international standardization of culture and evaluation procedures. PMID:27188845

  14. Cell-type Selective Phototoxicity Achieved with Chlorophyll-a Derived Photosensitizers in a Co-culture System of Primary Human Tumor and Normal Lung Cells

    PubMed Central

    Tracy, Erin C.; Bowman, Mary J.; Pandey, Ravindra K.; Henderson, Barbara W.; Baumann, Heinz

    2011-01-01

    The ATP-dependent transporter ABCG2 exports certain photosensitizers (PS) from cells, implying that the enhanced expression of ABCG2 by cancer cells may confer resistance to photodynamic therapy (PDT) mediated by those PS. In 35 patient-derived primary cultures of lung epithelial and stromal cells, PS with different subcellular localization and affinity for ABCG2 displayed cell-type specific retention both independent and dependent on ABCG2. In the majority of cases, the ABCG2 substrate 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) was lost from fibroblastic cells more rapidly than from their epithelial counterparts, even in the absence of detectable ABCG2 expression, facilitating selective eradication by PDT of epithelial over fibroblastic cells in tumor/stroma co-cultures. Pairwise comparison of normal and transformed epithelial cells also identified tumor cells with elevated or reduced retention of HPPH, depending on ABCG2. Enhanced ABCG2 expression led to the selective PDT survival of tumor cells in tumor/stroma co-cultures. This survival pattern was reversible through HPPH derivatives that are not ABCG2 substrates or the ABCG2 inhibitor imatinib mesylate. PS retention, not differences in subcellular distribution or cell signaling responses, was determining cell type selective death by PDT. These data suggest that up-front knowledge of tumor characteristics, specifically ABCG2 status, could be helpful in individualized PDT treatment design. PMID:21883244

  15. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture.

    PubMed

    Odawara, A; Katoh, H; Matsuda, N; Suzuki, I

    2016-05-18

    The functional network of human induced pluripotent stem cell (hiPSC)-derived neurons is a potentially powerful in vitro model for evaluating disease mechanisms and drug responses. However, the culture time required for the full functional maturation of individual neurons and networks is uncertain. We investigated the development of spontaneous electrophysiological activity and pharmacological responses for over 1 year in culture using multi-electrode arrays (MEAs). The complete maturation of spontaneous firing, evoked responses, and modulation of activity by glutamatergic and GABAergic receptor antagonists/agonists required 20-30 weeks. At this stage, neural networks also demonstrated epileptiform synchronized burst firing (SBF) in response to pro-convulsants and SBF suppression using clinical anti-epilepsy drugs. Our results reveal the feasibility of long-term MEA measurements from hiPSC-derived neuronal networks in vitro for mechanistic analyses and drug screening. However, developmental changes in electrophysiological and pharmacological properties indicate the necessity for the international standardization of culture and evaluation procedures.

  16. Sarcocyst Development in Raccoons (Procyon lotor) Inoculated with Different Strains of Sarcocystis neurona Culture-Derived Merozoites.

    PubMed

    Dryburgh, E L; Marsh, A E; Dubey, J P; Howe, D K; Reed, S M; Bolten, K E; Pei, W; Saville, W J A

    2015-08-01

    Sarcocystis neurona is considered the major etiologic agent of equine protozoal myeloencephalitis (EPM), a neurological disease in horses. Raccoon ( Procyon lotor ) is considered the most important intermediate host in the life cycle of S. neurona in the United States; S. neurona sarcocysts do mature in raccoon muscles, and raccoons also develop clinical signs simulating EPM. The focus of this study was to determine if sarcocysts would develop in raccoons experimentally inoculated with different host-derived strains of in vitro-cultivated S. neurona merozoites. Four raccoons were inoculated with strains derived from a raccoon, a sea otter, a cat, and a horse. Raccoon tissues were fed to laboratory-raised opossums ( Didelphis virginiana ), the definitive host of S. neurona . Intestinal scraping revealed sporocysts in opossums who received muscle tissue from raccoons inoculated with the raccoon-derived or the sea otter-derived isolates. These results demonstrate that sarcocysts can mature in raccoons inoculated with in vitro-derived S. neurona merozoites. In contrast, the horse and cat-derived isolates did not produce microscopically or biologically detected sarcocysts. Immunoblot analysis revealed both antigenic and antibody differences when testing the inoculated raccoons. Immunohistochemical staining indicated differences in staining between the merozoite and sarcocyst stages. The successful infections achieved in this study indicates that the life cycle can be manipulated in the laboratory without affecting subsequent stage development, thereby allowing further purification of strains and artificial maintenance of the life cycle.

  17. Sarcocyst Development in Raccoons (Procyon lotor) Inoculated with Different Strains of Sarcocystis neurona Culture-Derived Merozoites.

    PubMed

    Dryburgh, E L; Marsh, A E; Dubey, J P; Howe, D K; Reed, S M; Bolten, K E; Pei, W; Saville, W J A

    2015-08-01

    Sarcocystis neurona is considered the major etiologic agent of equine protozoal myeloencephalitis (EPM), a neurological disease in horses. Raccoon ( Procyon lotor ) is considered the most important intermediate host in the life cycle of S. neurona in the United States; S. neurona sarcocysts do mature in raccoon muscles, and raccoons also develop clinical signs simulating EPM. The focus of this study was to determine if sarcocysts would develop in raccoons experimentally inoculated with different host-derived strains of in vitro-cultivated S. neurona merozoites. Four raccoons were inoculated with strains derived from a raccoon, a sea otter, a cat, and a horse. Raccoon tissues were fed to laboratory-raised opossums ( Didelphis virginiana ), the definitive host of S. neurona . Intestinal scraping revealed sporocysts in opossums who received muscle tissue from raccoons inoculated with the raccoon-derived or the sea otter-derived isolates. These results demonstrate that sarcocysts can mature in raccoons inoculated with in vitro-derived S. neurona merozoites. In contrast, the horse and cat-derived isolates did not produce microscopically or biologically detected sarcocysts. Immunoblot analysis revealed both antigenic and antibody differences when testing the inoculated raccoons. Immunohistochemical staining indicated differences in staining between the merozoite and sarcocyst stages. The successful infections achieved in this study indicates that the life cycle can be manipulated in the laboratory without affecting subsequent stage development, thereby allowing further purification of strains and artificial maintenance of the life cycle. PMID:25811893

  18. An Aggregate IRT Procedure for Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Camilli, Gregory; Fox, Jean-Paul

    2015-01-01

    An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…

  19. Three-dimensional chemotaxis-driven aggregation of tumor cells

    PubMed Central

    Puliafito, Alberto; De Simone, Alessandro; Seano, Giorgio; Gagliardi, Paolo Armando; Di Blasio, Laura; Chianale, Federica; Gamba, Andrea; Primo, Luca; Celani, Antonio

    2015-01-01

    One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation – mediated by a diffusible attractant – is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells. PMID:26471876

  20. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays

    PubMed Central

    Patel, Asha K.; Celiz, Adam D.; Rajamohan, Divya; Anderson, Daniel G.; Langer, Robert; Davies, Martyn C.

    2016-01-01

    Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 µM in cardiomyocytes cultured on the co-polymer compared to 0.5 µM on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials. PMID:26005764

  1. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    SciTech Connect

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  2. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays.

    PubMed

    Patel, Asha K; Celiz, Adam D; Rajamohan, Divya; Anderson, Daniel G; Langer, Robert; Davies, Martyn C; Alexander, Morgan R; Denning, Chris

    2015-08-01

    Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 μM in cardiomyocytes cultured on the co-polymer compared to 0.5 μM on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials.

  3. Engineering a Fibrocartilage Spectrum Through Modulation of Aggregate Redifferentiation

    PubMed Central

    Murphy, Meghan K.; Masters, Taylor E.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II to I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage. PMID:24380383

  4. Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic.

    PubMed

    Bara, Jennifer J; Richards, R Geoff; Alini, Mauro; Stoddart, Martin J

    2014-07-01

    Mesenchymal stem cells (MSCs) are increasingly being used in tissue engineering and cell-based therapies in all fields ranging from orthopedic to cardiovascular medicine. Despite years of research and numerous clinical trials, MSC therapies are still very much in development and not considered mainstream treatments. The majority of approaches rely on an in vitro cell expansion phase in monolayer to produce large cell numbers prior to implantation. It is clear from the literature that this in vitro expansion phase causes dramatic changes in MSC phenotype which has very significant implications for the development of effective therapies. Previous reviews have sought to better characterize these cells in their native and in vitro environments, described known stem cell interactions within the bone marrow, and discussed the use of innovative culture systems aiming to model the bone marrow stem cell niche. The purpose of this review is to provide an update on our knowledge of MSCs in their native environment, focusing on bone marrow-derived MSCs. We provide a detailed description of the differences between naive cells and those that have been cultured in vitro and examine the effect of isolation and culture parameters on these phenotypic changes. We explore the concept of "one step" MSC therapy and discuss the potential cellular and clinical benefits. Finally, we describe recent work attempting to model the MSC bone marrow niche, with focus on both basic research and clinical applications and consider the challenges associated with these new generation culture systems.

  5. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  6. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  7. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  8. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    SciTech Connect

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  9. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    PubMed Central

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  10. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  11. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells

    PubMed Central

    2013-01-01

    Introduction Human Wharton’s jelly (WJ) has become a preferred source of mesenchymal stem cells (MSCs) whose clinical applications are limited by the use of adequate xeno-free (XF), in vitro manipulation conditions. Therefore, the objective of our study was to characterize WJ-derived MSCs (WJ-MSCs), isolated by different methods and cultured in a commercially available, MSC XF medium, not least of all by investigating their endothelial differentiation capacity. Methods WJ explants and enzymatically dissociated WJ cells were cultured in a defined, XF medium for MSCs. Adherent cells at passages 2 and 5 were characterized as MSCs by flow cytometry, MTT, real-time quantitative reverse transcription PCR, and functional multipotent differentiation assays. The endothelial differentiation capacity of MSCs isolated and expanded until passage 2 in the MSC XF medium, and then subcultured for five passages in a commercially available endothelial growth medium (group A), was assessed over serial passages, as compared to adherent WJ-derived cells isolated and expanded for five consecutive passages in the endothelial medium (group B). Results The MSC phenotype of WJ explant- and pellet-derived cells, isolated and expanded in the MSC XF medium, was proven based on the expression of CD44/CD73/CD90/CD105 surface markers and osteo-/adipo-/chondrogenic multipotent differentiation potential, which differed according to the isolation method and/or passage number. Upon exposure to endothelial differentiation cues, cells belonging to group A did not exhibit endothelial cell characteristics over serial passages; by contrast, WJ pellet-derived cells belonging to group B expressed endothelial characteristics at gene, protein and functional levels, potentially due to culture conditions favoring the isolation of other stem/progenitor cell types than MSCs, able to give rise to an endothelial progeny. Conclusions The use of defined, MSC XF media for isolation and expansion of human WJ-MSCs is

  12. Average shape of transport-limited aggregates.

    PubMed

    Davidovitch, Benny; Choi, Jaehyuk; Bazant, Martin Z

    2005-08-12

    We study the relation between stochastic and continuous transport-limited growth models. We derive a nonlinear integro-differential equation for the average shape of stochastic aggregates, whose mean-field approximation is the corresponding continuous equation. Focusing on the advection-diffusion-limited aggregation (ADLA) model, we show that the average shape of the stochastic growth is similar, but not identical, to the corresponding continuous dynamics. Similar results should apply to DLA, thus explaining the known discrepancies between average DLA shapes and viscous fingers in a channel geometry. PMID:16196793

  13. Average Shape of Transport-Limited Aggregates

    NASA Astrophysics Data System (ADS)

    Davidovitch, Benny; Choi, Jaehyuk; Bazant, Martin Z.

    2005-08-01

    We study the relation between stochastic and continuous transport-limited growth models. We derive a nonlinear integro-differential equation for the average shape of stochastic aggregates, whose mean-field approximation is the corresponding continuous equation. Focusing on the advection-diffusion-limited aggregation (ADLA) model, we show that the average shape of the stochastic growth is similar, but not identical, to the corresponding continuous dynamics. Similar results should apply to DLA, thus explaining the known discrepancies between average DLA shapes and viscous fingers in a channel geometry.

  14. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells.

    PubMed

    Apone, Fabio; Tito, Annalisa; Carola, Antonietta; Arciello, Stefania; Tortora, Assunta; Filippini, Lucio; Monoli, Irene; Cucchiara, Mirna; Gibertoni, Simone; Chrispeels, Maarten J; Colucci, Gabriella

    2010-02-15

    Small peptides and aminoacid derivatives have been extensively studied for their effect of inducing plant defense responses, and thus increasing plant tolerance to a wide range of abiotic stresses. Similarly to plants, these compounds can activate different signaling pathways in mammalian skin cells as well, leading to the up-regulation of anti-aging specific genes. This suggests the existence of analogous defense response mechanisms, well conserved both in plants and animal cells. In this article, we describe the preparation of a new mixture of peptides and sugars derived from the chemical and enzymatic digestion of plant cell wall glycoproteins. We investigate the multiple roles of this product as potential "biostimulator" to protect plants from abiotic stresses, and also as potential cosmeceutical. In particular, the molecular effects of the peptide/sugar mixture of inducing plant defense responsive genes and protecting cultured skin cells from oxidative burst damages were deeply evaluated.

  15. Exploration and isolation of novel thermophiles in frozen enrichment cultures derived from a terrestrial acidic hot spring.

    PubMed

    Sakai, Hiroyuki D; Kurosawa, Norio

    2016-03-01

    An isolation strategy, exploring novel microorganisms in frozen enrichment cultures (ENFE), which uses a combination of enrichment culture and 16S rRNA gene clone analysis, was evaluated for isolating uncultured thermophiles from a terrestrial acidic hot spring. The procedure comprised (a) multiple enrichment cultures under various conditions, (b) cryostorage of all enrichments, (c) microbial community analyses of the enrichments using 16S rRNA gene sequences, and (d) purification of microorganisms from enrichments containing previously uncultured microorganisms. The enrichments were performed under a total of 36 conditions, and 16 of these enrichments yielded positive microbial growth with the detection of three previously uncultured archaea. Two of the three previously uncultured archaea, strains HS-1 and HS-3, were successfully isolated. Strain HS-1 and HS-3 represented a novel lineage of the order Sulfolobales and novel species of the genus Sulfolobus, respectively. Although innovative isolation methods play strategic roles in isolating previously uncultured microorganisms, the ENFE strategy showed potential for characterizing and isolating such microorganisms using conventional media and techniques.

  16. REGULATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR MESSENGER RNA LEVELS IN AVIAN HYPOTHALAMIC SLICE CULTURES. (R825294)

    EPA Science Inventory

    Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in ...

  17. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    PubMed

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-01-01

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P < 0.01). By using a dynamic three-dimensional cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters. PMID:27420984

  18. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  19. Tracking hypoxic signaling within encapsulated cell aggregates.

    PubMed

    Skiles, Matthew L; Sahai, Suchit; Blanchette, James O

    2011-01-01

    , is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 10(10) pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion. Western blot analysis of encapsulated cells in 20% and 1% oxygen also

  20. A tissue-engineered bioabsorbable nerve conduit created by three-dimensional culture of induced pluripotent stem cell-derived neurospheres.

    PubMed

    Uemura, Takuya; Takamatsu, Kiyohito; Ikeda, Mikinori; Okada, Mitsuhiro; Kazuki, Kenichi; Ikada, Yoshito; Nakamura, Hiroaki

    2011-01-01

    We previously reported a bioabsorbable nerve conduit coated with Schwann cells for the treatment of peripheral nerve defects. Since there have been dramatic developments in induced pluripotent stem (iPS) cells in recent years, the purpose of the present study was to create a tissue-engineered nerve conduit coated with iPS cell-derived neurospheres. Such a conduit was constructed by three-dimensional (3D)-culture of these cells using a bioabsorbable polymer conduit as a scaffold. The nerve conduit was composed of a mesh of poly L-lactide, and a porous sponge of 50% poly L-lactide and 50% poly ε-caprolactone. The primary and secondary neurospheres (PNS and SNS, respectively) induced from iPS cells were suspended in individual conduits. The conduits were incubated for 7 or 14 days in vitro and then evaluated using immunohistochemistry. All of the 7- and 14-day differentiated PNS and SNS were observed to have adhered to the inner surface of the conduits and to have migrated into the inner porous sponge. The engrafted cells were positive for anti-Tuj1, -S-100 and -GFAP antibodies, indicating that their pluripotent ability to form neural or glial cells was maintained. These findings indicate the feasibility of creating nerve conduits coated with a 3D-culture of iPS cell-derived neurospheres for the treatment of peripheral nerve defects. PMID:22561252

  1. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    PubMed

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. PMID:26971678

  2. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives.

    PubMed

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A; Kiss, Anna K; Wysokińska, Halina

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L(-1) of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS(3) and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.

  3. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    SciTech Connect

    Colleoni, Silvia; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  4. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives.

    PubMed

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A; Kiss, Anna K; Wysokińska, Halina

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L(-1) of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS(3) and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023

  5. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    PubMed Central

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023

  6. A Gaussia luciferase cell-based system to assess the infection of cell culture- and serum-derived hepatitis C virus.

    PubMed

    Koutsoudakis, George; Pérez-del-Pulgar, Sofía; González, Patricia; Crespo, Gonzalo; Navasa, Miquel; Forns, Xavier

    2012-01-01

    Robust replication of hepatitis C virus (HCV) in cell culture occurs only with the JFH-1 (genotype 2a) recombinant genome. The aim of this study was to develop a system for HCV infection quantification analysis and apply it for the selection of patient sera that may contain cell culture infectious viruses, particularly of the most clinically important genotype 1. Initially, a hepatoma cell line (designated Huh-7.5/EG(4A/4B)GLuc) was generated that stably expressed the enhanced green fluorescent protein (EGFP) fused in-frame to the secreted Gaussia luciferase via a recognition sequence of the viral NS3/4A protease. Upon HCV infection, NS3/4A cleaved at its signal and the Gaussia was secreted to the culture medium, thus facilitating the infection quantification. The Huh-7.5/EG(4A/4B)GLuc cell line provided a rapid and highly sensitive quantification of HCV infection in cell culture using JFH-1-derived viruses. Furthermore, the Huh-7.5/EG(4A/4B)GLuc cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target distinct stages of the HCV life cycle; the Ź-factor of this assay ranged from 0.72 to 0.75. Additionally, eighty-six sera derived from HCV genotype 1b infected liver transplant recipients were screened for their in vitro infection and replication potential. Approximately 12% of the sera contained in vitro replication-competent viruses, as deduced by the Gaussia signal, real time quantitative PCR, immunofluorescence and capsid protein secretion. We conclude that the Huh-7.5/EG(4A/4B)GLuc cell line is an excellent system not only for the screening of in vitro replication-competent serum-derived viruses, but also for the subsequent cloning of recombinant isolates. Additionally, it can be utilized for high-throughput screening of antiviral compounds. PMID:23300900

  7. A Gaussia Luciferase Cell-Based System to Assess the Infection of Cell Culture- and Serum-Derived Hepatitis C Virus

    PubMed Central

    Koutsoudakis, George; Pérez-del-Pulgar, Sofía; González, Patricia; Crespo, Gonzalo; Navasa, Miquel; Forns, Xavier

    2012-01-01

    Robust replication of hepatitis C virus (HCV) in cell culture occurs only with the JFH-1 (genotype 2a) recombinant genome. The aim of this study was to develop a system for HCV infection quantification analysis and apply it for the selection of patient sera that may contain cell culture infectious viruses, particularly of the most clinically important genotype 1. Initially, a hepatoma cell line (designated Huh-7.5/EG(4A/4B)GLuc) was generated that stably expressed the enhanced green fluorescent protein (EGFP) fused in-frame to the secreted Gaussia luciferase via a recognition sequence of the viral NS3/4A protease. Upon HCV infection, NS3/4A cleaved at its signal and the Gaussia was secreted to the culture medium, thus facilitating the infection quantification. The Huh-7.5/EG(4A/4B)GLuc cell line provided a rapid and highly sensitive quantification of HCV infection in cell culture using JFH-1-derived viruses. Furthermore, the Huh-7.5/EG(4A/4B)GLuc cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target distinct stages of the HCV life cycle; the Ź-factor of this assay ranged from 0.72 to 0.75. Additionally, eighty-six sera derived from HCV genotype 1b infected liver transplant recipients were screened for their in vitro infection and replication potential. Approximately 12% of the sera contained in vitro replication-competent viruses, as deduced by the Gaussia signal, real time quantitative PCR, immunofluorescence and capsid protein secretion. We conclude that the Huh-7.5/EG(4A/4B)GLuc cell line is an excellent system not only for the screening of in vitro replication-competent serum-derived viruses, but also for the subsequent cloning of recombinant isolates. Additionally, it can be utilized for high-throughput screening of antiviral compounds. PMID:23300900

  8. Comparative assessment of genetic and epigenetic variation among regenerants of potato (Solanum tuberosum) derived from long-term nodal tissue-culture and cell selection.

    PubMed

    Dann, Alison L; Wilson, Calum R

    2011-04-01

    Three long-term nodal tissued cultured Russet Burbank potato clones and nine thaxtomin A-treated regenerant lines, derived from the nodal lines, were assessed for genetic and epigenetic (in the form of DNA methylation) differences by AFLP and MSAP. The treated regenerant lines were originally selected for superior resistance to common scab disease and acceptable tuber yield in pot and field trials. The long-term, tissue culture clone lines exhibited genetic (8.75-15.63% polymorphisms) and epigenetic (12.56-26.13% polymorphisms) differences between them and may represent a stress response induced by normal plant growth disruption. The thaxtomin A-treated regenerant lines exhibited much higher significant (p < 0.05) genetic (2-29.38%) and epigenetic (45.22-51.76%) polymorphisms than the nodal cultured parent clones. Methylation-sensitive mutations accumulated within the regenerant lines are significantly correlated (p < 0.05) to disease resistance. However, linking phenotypic differences that could be of benefit to potato growers, to single gene sequence polymorphisms in a tetraploid plant such as the potato would be extremely difficult since it is assumed many desirable traits are under polygenic control.

  9. Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters.

    PubMed

    Chun, So Young; Mack, David L; Moorefield, Emily; Oh, Se Heang; Kwon, Tae Gyun; Pettenati, Mark J; Yoo, James J; Coppi, Paolo De; Atala, Anthony; Soker, Shay

    2015-05-01

    This study investigated the differentiation of human amniotic fluid-derived stem cells (hAFSCs) into insulin-producing clusters in vitro. Adenovirally-delivered mouse Pdx1 (Ad-Pdx1) induced human Pdx1 expression in hAFSCs and enhanced the coordinated expression of downstream β-cell markers. When Ad-Pdx1-transduced hAFSCs were sequentially treated with activin A, bFGF and nicotinamide and the culture plate surface coated with poly-l-ornithine, the expression of islet-associated human mRNAs for Pdx1, Pax6, Ngn3 and insulin was increased. C-peptide ELISA confirmed that Ad-Pdx1-transduced hAFSCs processed and secreted insulin in a manner consistent with that pathway in pancreatic β-cells. To sustain the β-cell-like phenotype and investigate the effect of three-dimensional (3D) conformation on the differentiation of hAFSCs, Pdx1-transduced cells were encapsulated in alginate and cultured long-term under serum-free conditions. Over 2 weeks, partially differentiated hAFSC clusters increased in size and increased insulin secretion. Taken together, these data demonstrate that ectopic Pdx1 expression initiates pancreatic differentiation in hAFSCs and that a β-cell-like phenotype can be augmented by culture conditions that mimic the stromal components and 3D geometry associated with pancreatic islets.

  10. Expression of glial cell line-derived neurotrophic factor and its receptors in cultured retinal Müller cells under high glucose circumstance.

    PubMed

    Zhu, Xinping; Sun, Yan; Wang, Zhongping; Cui, Weigang; Peng, Yuwen; Li, Ruixi

    2012-03-01

    This study aimed to explore the effect of high glucose concentration on the expression of glial cell line-derived neurotrophic factor (GDNF) and its family ligand receptors (GFRs) GFRα1 and GFRα2 in Müller cells and the protective role of GDNF in cultured Müller cells under high glucose circumstance. Cultured Müller cells (untreated or treated with 200 ng/mL of GDNF) were exposed to high glucose conditions (20 mmol/L glucose). We found that the expression levels of GDNF and GFRα1 mRNA and protein increased gradually over time under high glucose and exogenous GDNF-treated conditions, whereas the upregulation in GFRα2 expression was observed only in the early stage of high glucose conditions. Exogenous GDNF not only decreased apoptosis in cultured Müller cells under high glucose circumstance, but also accelerated the levels and speed of synthesis of GDNF and GFRα1 proteins in Müller cells. These results suggest that Müller cells can synthesize GDNF and GFRs under high glucose conditions, and GDNF may play important role in protecting Müller cells during the early stage of diabetic retinopathy. The difference in GFRs expression indicated that GDNF and neurturin may exert different effects on Müller cells under high glucose circumstance.

  11. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction.

    PubMed

    Andreeva, Elena; Andrianova, Irina; Rylova, Julia; Gornostaeva, Aleksandra; Bobyleva, Polina; Buravkova, Ludmila

    2015-08-01

    The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science.

  12. Structural determinants of Tau aggregation inhibitor potency.

    PubMed

    Schafer, Kelsey N; Cisek, Katryna; Huseby, Carol J; Chang, Edward; Kuret, Jeff

    2013-11-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers.

  13. Structural Determinants of Tau Aggregation Inhibitor Potency*

    PubMed Central

    Schafer, Kelsey N.; Cisek, Katryna; Huseby, Carol J.; Chang, Edward; Kuret, Jeff

    2013-01-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers. PMID:24072703

  14. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure.

    PubMed

    Ding, Xuebing; Ma, Mingming; Teng, Junfang; Teng, Robert K F; Zhou, Shuang; Yin, Jingzheng; Fonkem, Ekokobe; Huang, Jason H; Wu, Erxi; Wang, Xuejing

    2015-09-15

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of 'prion-like propagation' of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy.

  15. Aggregates, broccoli and cauliflower

    NASA Astrophysics Data System (ADS)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  16. Morphological classification of nanoceramic aggregates

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Kang, Bongwoo; Ospina, Carolina; Sung, Changmo

    2005-01-01

    Aluminum silicate nanoaggregates grown at near-room temperature on an organic template under a variety of experimental conditions have been imaged by transmission electron microscopy. Images have been automatically classified by an algorithm based on "spectrum enhancement", multivariate statistics and supervised optimization. Spectrum enhancement consists of subtracting, in the log scale, a known function of wavenumber from the angle averaged power spectral density of the image. Enhanced spectra of each image, after polynomial interpolation, have been regarded as morphological descriptors and as such submitted to principal components analysis nested with a multiobjective parameter optimization algorithm. The latter has maximized pairwise discrimination between classes of materials. The role of the organic template and of a reaction parameter on aggregate morphology has been assessed at two magnification scales. Classification results have also been related to crystal structure data derived from selected area electron diffraction patterns.

  17. Ease of calving, blood chemistry, insulin and bovine growth hormone of newborn calves derived from embryos produced in vitro in culture systems with serum and co-culture or with PVA.

    PubMed

    Jacobsen, H; Schmidt, M; Hom, P; Sangild, P T; Greve, T; Callesen, H

    2000-07-01

    Blood chemistry (pH, pCO2, pO2, glucose, lactate) as well as plasma insulin and growth hormone of calves derived from embryos produced under 2 different in vitro culture systems (modified SOFaa with 20% serum and co-culture with bovine oviduct epithelial cells [IVP serum, n=8] or with 3 mg/mL PVA [IVPdefined, n=6]) were compared with those of calves derived from AI (n=5). Calvings were classified according to the ease (unassisted, light traction, heavy traction). Blood samples were taken from the jugular vein of calves at 5, 15, 30 and 60 min, and at 2, 3, 6, 12, 18 and 24 h after delivery, then daily for 6 d. At the second day of life after 4 feedings and a 4-h fasting period, a glucose tolerance test was performed to evaluate glucose metabolism and insulin secretion. Calves in the IVP serum group had higher birth weights than AI calves (LS mean +/- SEM, IVP serum: 45.2 +/- 1.4 kg vs AI: 40.4 +/- 1.7 kg; P < 0.05), while the birth weights of calves in the IVP defined group were in between (IVPdefined: 41.9 +/- 1.6 kg). More IVP serum calves (75%) needed assistance than IVP defined (33%) or AI (40%) calves. The effect of ease of calving vs the effect of embryo culture was compared in relation to blood parameters at birth. There was an effect of ease of calving but not of embryo culture conditions on blood pH, lactate and PCO2. Calves requiring heavy traction had lower pH during the first 3 h after calving, a higher lactate during the first 60 min after calving and a higher pCO2 the first 2 h after calving than calves born unassisted. Calves requiring heavy traction also had lower pH the first 2 h and higher lactate the first 3 h after calving than calves born by light traction. IVP defined calves had lower lactate than IVP serum calves the first 60 min after calving. At 6 h after delivery, all blood parameters had stabilized. There was no effect of either embryo culture or ease of calving on basal insulin and growth hormone level, or the ability of the calves to

  18. The Mechanisms of Aberrant Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel; Vendruscolo, Michele; Dobson, Chris; Knowles, Tuomas

    2012-02-01

    We discuss the development of a kinetic theory for understanding the aberrant loss of solubility of proteins. The failure to maintain protein solubility results often in the assembly of organized linear structures, commonly known as amyloid fibrils, the formation of which is associated with over 50 clinical disorders including Alzheimer's and Parkinson's diseases. A true microscopic understanding of the mechanisms that drive these aggregation processes has proved difficult to achieve. To address this challenge, we apply the methodologies of chemical kinetics to the biomolecular self-assembly pathways related to protein aggregation. We discuss the relevant master equation and analytical approaches to studying it. In particular, we derive the underlying rate laws in closed-form using a self-consistent solution scheme; the solutions that we obtain reveal scaling behaviors that are very generally present in systems of growing linear aggregates, and, moreover, provide a general route through which to relate experimental measurements to mechanistic information. We conclude by outlining a study of the aggregation of the Alzheimer's amyloid-beta peptide. The study identifies the dominant microscopic mechanism of aggregation and reveals previously unidentified therapeutic strategies.

  19. Rotating bacteria aggregate into active crystals

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander; Wu, Xiao-Lun; Libchaber, Albert

    2014-11-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate the collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arises from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  20. Rotating Bacteria Aggregate into Active Crystals

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Wu, X. L.; Libchaber, A.

    2014-12-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking, two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arise from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  1. Static compression of porous dust aggregates

    NASA Astrophysics Data System (ADS)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-07-01

    To understand the structure evolution of dust aggregates is a key in the planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they become fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals (Okuzumi et al. 2012, ApJ, 752, 106). Thus, some other compression mechanisms are required to form planetesimals. We investigate the static compression of highly porous aggregates. First, we derive the compressive strength by numerical N-body simulations (Kataoka et al. 2013, A&A, 554, 4). Then, we apply the strength to protoplanetary disks, supposing that the highly porous aggregates can be quiasi-statically compressed by ram pressure of the disk gas and the self gravity. As a result, we find the pathway of the dust structure evolution from dust grains via fluffy aggregates to compact planetesimals. Moreover, we find that the fluffy aggregates overcome the barriers in planetesimal formation, which are radial drift, fragmentation, and bouncing barriers. (The paper is now available on arXiv: http://arxiv.org/abs/1307.7984 )

  2. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method.

    PubMed

    Lim, Ki-Taek; Kim, Jangho; Seonwoo, Hoon; Chang, Jung Uk; Choi, Hwajung; Hexiu, Jin; Cho, Woo Jae; Choung, Pill-Hoon; Chung, Jong Hoon

    2013-02-01

    This study instituted a simple approach to stimulate alveolar bone regeneration for tooth tissue engineering by controlling effects of low fluid dynamic shear stress (LFDSS) on growth and differentiation in vitro. Human alveolar bone-derived mesenchymal stem cells (hABMSCs) harvested from human mandibular alveolar bone were cultured with LFDSS to generate cultures containing bone-like formations. To distinguish between osteodifferentiation and bone-like formation, cells were cultured either with or without fluid shear stress. The calcium content and alkaline phosphatase (ALP) activity of hABMSCs were used as indicators of osteogenesis. Cell viability and proliferation after stimulating with LFDSS for 10-60 min/day were higher than with longer stimulations. Mineralized nodules formed when osteoblasts were cultured with an induction medium, a marker of osteogenic differentiation. ALP activity tended to increase after 10 and 60 min/day of stimulation. In addition, LFDSS conditions also increased gene expression of IBSP, RUNX2, COL-I, ALP, OCN, and OPN, as shown by reverse transcriptase-polymerase chain reaction. From the results of a proteomics array, LFDSS groups were intensely expressed with several factors (EGF, HGF, IGF, TGF, and PDGF). Furthermore, CD146 and Stro-1 expression increased in cells treated with 30 min/day and decreased in cells treated with 120 min/day, as determined by cell surface antigen analysis by fluorescence-activated cell-sorting analysis. These results strongly showed that LFDSS at the proper intensity and time enhanced the differentiation and maturation of hABMSCs. In conclusion, an appropriate level of LFDSS can potently and positively modulate proliferation and differentiation in hABMSCs.

  3. Enhanced biological performance of human adipose-derived stem cells cultured on titanium-based biomaterials and silicon carbide sheets for orthopaedic applications.

    PubMed

    Lopa, S; De Girolamo, L; Arrigoni, E; Stanco, D; Rimondini, L; Baruffaldi Preis, F W; Lanfranchi, L; Ghigo, M; Chiesa, R; Brini, A T

    2011-01-01

    It is well known that the surface properties of biomaterials may affect bone-healing processes by modulating both cell viability and osteogenic differentiation. In this study we evaluated proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) cultured on three prototypes of titanium disks and on thin layers of silicon carbide (SiC-PECVD), a material characterized by a high hardness and wear resistance. Our data indicated that all the tested surfaces supported cell growth, in particular, hASCs seeded on both titanium treated by a double-step etching process (TIT) and titanium modified by two Anodic Spark Deposition processes (TAA) grew better respect to the ones cultured on titanium obtained by KOH alkali etching process on TAA (TAAK). Furthermore, hASCs well colonized SiC-PECVD surface, showing a quite similar viability to cells cultured on plastic (PA). TIT and TAA better supported osteogenic differentiation of hASCs compared to PA, as shown by a marked increase of both alkaline phosphatase activity and calcified extracellular matrix deposition; in contrast TAAK did not positively affect hASCs differentiation. SiC-PECVD did not alter osteogenic differentiation of hASC cells: indeed, ALP and calcium deposition levels were comparable to those of cells cultured on plastic. Furthermore, we observed similar results testing hASCs either pre-differentiated for 14 days in osteogenic medium or directly differentiated on biomaterials. Our study suggests that modifications of titanium surface may improve osteo-integration of implant devices and that SiC-PECVD may represent a valid alternative for the coating of prosthetic devices to reduce wear and metallosis events.

  4. Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons.

    PubMed

    Kim, Joo Youn; Lee, Hong Kyu; Hwang, Bang Yeon; Kim, SeungHwan; Yoo, Jae Kuk; Seong, Yeon Hee

    2012-06-01

    Ilex latifolia (Aquifoliaceae), one of the primary components of "Ku-ding-cha", has been used in Chinese folk medicine to treat headaches and various inflammatory diseases. A previous study demonstrated that the ethanol extract of I. latifolia could protect against ischemic apoptotic brain damage in rats. The present study investigated the protective activity of I. latifolia against glutamate-induced neurotoxicity using cultured rat cortical neurons in order to explain a possible mechanism related to its inhibitory effect on ischemic brain damage and identified potentially active compounds from it. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h triggered neuronal cell death. I. latifolia (10-100 μg/mL) inhibited glutamate-induced neuronal death, elevation of intracellular calcium ([Ca(2+)](i)), generation of reactive oxygen species (ROS), the increase of a pro-apoptotic protein, BAX, and the decrease of an anti-apoptotic protein, BcL-2. Hypoxia-induced neuronal cell death was also inhibited by I. latifolia. 3,4-Dicaffeoylquinic acid (diCQA), 3,5-diCQA, and 3,5-diCQA methyl ester isolated from I. latifolia also inhibited the glutamate-induced increase in [Ca(2+)](i), generation of ROS, the change of apoptosis-related proteins, and neuronal cell death; and hypoxia-induced neuronal cell death. These results suggest that I. latifolia and its active compounds prevented glutamate-induced neuronal cell damage by inhibiting increase of [Ca(2+)](i), generation of ROS, and resultantly apoptotic pathway. In addition, the neuroprotective effects of I. latifolia on ischemia-induced brain damage might be associated with the anti-excitatory and anti-oxidative actions and could be attributable to these active compounds, CQAs.

  5. Dynamic self-organization of microwell-aggregated cellular mixtures.

    PubMed

    Song, Wei; Tung, Chih-Kuan; Lu, Yen-Chun; Pardo, Yehudah; Wu, Mingming; Das, Moumita; Kao, Der-I; Chen, Shuibing; Ma, Minglin

    2016-06-29

    Cells with different cohesive properties self-assemble in a spatiotemporal and context-dependent manner. Previous studies on cell self-organization mainly focused on the spontaneous structural development within a short period of time during which the cell numbers remained constant. However the effect of cell proliferation over time on the self-organization of cells is largely unexplored. Here, we studied the spatiotemporal dynamics of self-organization of a co-culture of MDA-MB-231 and MCF10A cells seeded in a well defined space (i.e. non-adherent microfabricated wells). When cell-growth was chemically inhibited, high cohesive MCF10A cells formed a core surrounded by low cohesive MDA-MB-231 cells on the periphery, consistent with the differential adhesion hypothesis (DAH). Interestingly, this aggregate morphology was completely inverted when the cells were free to grow. At an initial seeding ratio of 1 : 1 (MDA-MB-231 : MCF10A), the fast growing MCF10A cells segregated in the periphery while the slow growing MDA-MB-231 cells stayed in the core. Another morphology developed at an inequal seeding ratio (4 : 1), that is, the cell mixtures developed a side-by-side aggregate morphology. We conclude that the cell self-organization depends not only on the cell cohesive properties but also on the cell seeding ratio and proliferation. Furthermore, by taking advantage of the cell self-organization, we purified human embryonic stem cells-derived pancreatic progenitors (hESCs-PPs) from co-cultured feeder cells without using any additional tools or labels. PMID:27275624

  6. Peyer's Patch M Cells Derived from Lgr5+ Stem Cells Require SpiB and Are Induced by RankL in Cultured “Miniguts”

    PubMed Central

    de Lau, Wim; Kujala, Pekka; Schneeberger, Kerstin; Middendorp, Sabine; Li, Vivian S. W.; Barker, Nick; Martens, Anton; Hofhuis, Frans; DeKoter, Rodney P.; Peters, Peter J.; Nieuwenhuis, Edward

    2012-01-01

    Peyer's patches consist of domains of specialized intestinal epithelium overlying gut-associated lymphoid tissue (GALT). Luminal antigens reach the GALT by translocation through epithelial gatekeeper cells, the so-called M cells. We recently demonstrated that all epithelial cells required for the digestive functions of the intestine are generated from Lgr5-expressing stem cells. Here, we show that M cells also derive from these crypt-based Lgr5 stem cells. The Ets family transcription factor SpiB, known to control effector functions of bone marrow-derived immune cells, is specifically expressed in M cells. In SpiB−/− mice, M cells are entirely absent, which occurs in a cell-autonomous fashion. It has been shown that Tnfsf11 (RankL) can induce M cell development in vivo. We show that in intestinal organoid (“minigut”) cultures, stimulation with RankL induces SpiB expression within 24 h and expression of other M cell markers subsequently. We conclude that RankL-induced expression of SpiB is essential for Lgr5 stem cell-derived epithelial precursors to develop into M cells. PMID:22778137

  7. The polysaccharide from Tamarindus indica (TS-polysaccharide) protects cultured corneal-derived cells (SIRC cells) from ultraviolet rays.

    PubMed

    Raimondi, L; Lodovici, M; Guglielmi, F; Banchelli, G; Ciuffi, M; Boldrini, E; Pirisino, R

    2003-03-01

    The aim of this work was to investigate the possible protective effect of a new viscosising agent, TS-polysaccharide, on corneal-derived cells (SIRC) exposed to ultraviolet-B rays. To verify this, SIRC cells were first exposed, in the absence or in the presence of TS-polysaccharide (1% w/v), for 9 s at the UV-B source and then post-incubated for 45 min at 37 degrees C. After this period the hydrogen peroxide (H(2)O(2)) accumulated in the medium and the concentration of 8-hydroxy-2'-deoxy-guanosine (8-OHdG) in cell DNA was measured. In addition, the amount of (3)H-methyl-thymidine incorporated in cellular DNA was evaluated after 18 h from irradiation. Our results show that cells exposed to UV-B rays accumulate H(2)O(2), and have higher levels of 8OHdG and a lower amount of (3)H-methyl-thymidine incorporated in DNA than control cells. In the presence of TS-polysaccharide, the H(2)O(2) and 8-OHdG accumulation, and the (3)H-methyl-thymidine incorporation were significantly reduced with respect to the values measured in cells exposed in the absence of the polysaccharide. We propose a protective role of the polysaccharide in reducing UV-B derived DNA damage to eye cells. This finding could be of some clinical importance when the polysaccharide is used as a delivery system for ophthalmic preparations.

  8. Thrombin mitogenic responses and protein phosphorylation are different in cultured human endothelial cells derived from large and microvessels

    SciTech Connect

    Dupuy, E.; Bikfalvi, A.; Rendu, F.; Toledano, S.L.; Tobelem, G. )

    1989-12-01

    It is well established that thrombin induces various biological responses in endothelial cells derived from large vessels. However, little is known about the effects of thrombin on the microvasculature. Protein phosphorylation may be one of the mechanisms by which an extracellular stimulus initiates cellular events like proliferation. Therefore, we have compared the effects of either human alpha-thrombin or phorbol esters (TPA) on the proliferation or protein phosphorylation in endothelial cells derived from large vessels (umbilical vein, HUVEC) or microvessels (omental tissue, HOMEC). In HOMEC, thrombin did not stimulate cell proliferation and protein phosphorylation while TPA slightly reduced the cell proliferation and induced the phosphorylation of a 27-kDa protein. In contrast, in HUVEC, thrombin or TPA markedly enhanced the cell proliferation and stimulated the phosphorylation of a 59-kDa protein. These data indicate that endothelial cells from large and small vessels respond differently to thrombin and there is a complex and as yet unclear relationship between the proliferation and the protein phosphorylation induced by thrombin.

  9. Neurite Outgrowth and Neuroprotective Effects of Quercetin from Caesalpinia mimosoides Lamk. on Cultured P19-Derived Neurons.

    PubMed

    Tangsaengvit, Napat; Kitphati, Worawan; Tadtong, Sarin; Bunyapraphatsara, Nuntavan; Nukoolkarn, Veena

    2013-01-01

    Quercetin has been isolated for the first time from ethyl acetate extract of Caesalpinia mimosoides Lamk. C. mimosoides Lamk. (Fabaceae) or Cha rueat (Thai name) is an indigenous plant found in mixed deciduous forest in northern and north-eastern parts of Thailand. Thai rural people consume its young shoots and leaves as a fresh vegetable, as well as it is used for medicinal purposes.The antioxidant capacity in terms of radical scavenging activity of quercetin was determined as IC50 of 3.18 ± 0.07 µg/mL, which was higher than that of Trolox and ascorbic acid (12.54 ± 0.89 and 10.52 ± 0.48 µg/mL, resp.). The suppressive effect of quercetin on both purified and cellular acetylcholinesterase (AChE) enzymes was investigated as IC50 56.84 ± 2.64 and 36.60 ± 2.78 µg/mL, respectively. In order to further investigate the protective ability of quercetin on neuronal cells, P19-derived neurons were used as a neuronal model in this study. As a result, quercetin at a very low dose of 1 nM enhanced survival and induced neurite outgrowth of P19-derived neurons. Furthermore, this flavonoid also possessed significant protection against oxidative stress induced by serum deprivation. Altogether, these findings suggest that quercetin is a multifunctional compound and promising valuable drugs candidate for the treatment of neurodegenerative disease.

  10. Fish and fisher behaviour influence the vulnerability of groupers (Epinephelidae) to fishing at a multispecies spawning aggregation site

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Graham, N. A. J.; Cinner, J. E.; Almany, G. R.; Waldie, P.

    2015-06-01

    Targeted fishing of spawning aggregations is a major contributor to extinction risk in numerous species of grouper (Epinephelidae). Marine reserves are often used to protect spawning aggregation sites, including multispecies sites shared by several species of grouper. However, marine reserves may be biologically, socioeconomically or culturally unviable in some fisheries, and alternative management actions must be explored. Implementing effective management actions that control rather than prohibit fishing requires an improved understanding of how species vary in their vulnerability to fishing gears and respond to changes in fishing effort. To estimate sources of variability in vulnerability to fishing (i.e. catchability), catch-per-unit-effort (CPUE) and other fisheries data were collected in parallel with underwater visual census-derived estimates of aggregation size at a multispecies spawning site of Epinephelus fuscoguttatus and E. polyphekadion. Despite having similar abundances, E. polyphekadion was eightfold more vulnerable to capture by hook-and-line gear, clearly outcompeting its congener for bait. Contrasting with the common assumption of a proportional relationship, the CPUE of both species was unrelated to the size of their respective aggregations. Moreover, the CPUE of each species was unrelated to hook size and depth fished. However, E. polyphekadion CPUE declined as the density of fishing effort increased at the site, with gear saturation identified as the likely mechanism for this effect. E. fuscoguttatus CPUE was negatively related to the size of aggregations formed by its congener, stemming from the superior competitiveness and therefore higher selectivity of the gear for E. polyphekadion. Our findings demonstrate that CPUE is an unreliable indicator of spawning aggregation status. The other sources of variation in CPUE that we identify have implications for gear-based management, which must be based on understanding of gear selectivity for

  11. Involvement of cAMP in the Human Serum-Induced Migration of Adipose-Derived Stem Cells

    PubMed Central

    Lee, Minji; Koh, Wonyoung; Kim, Bomee; Chung, Hyeju; Cho, Gahyang; Kim, Haekwon

    2016-01-01

    Previously we observed that human adipose-derived stem cells (hADSCs) could form aggregation during culture in the presence of human serum (HS). In the present study, we have examined if the aggregation might result from the cell migration and analyzed the difference of cell adhesivity after culture in various conditions. When cells were cultured in fetal bovine serum (FBS) alone, there was no morphological change. Similarly, cells pretreated with FBS for 1 day or cultured in a mixture of FBS and HS showed little change. In contrast, cells cultured in HS alone exhibited formation of cell-free area (spacing) and/or cell aggregation. When cells cultured in FBS or pretreated with FBS were treated with 0.06% trypsin, almost cells remained attached to the dish surfaces. In contrast, when cells cultured in HS alone were examined, most cells detached from the dish by the same treatment. Treatment of cells with forskolin, isobutylmethyl xanthine (IBMX) or LY294002 inhibited the formation of spacing whereas H89 or Y27632 showed little effect. When these cells were treated with 0.06% trypsin after culture, most cells detached from the dishes as cells cultured in HS alone did. However, cells treated with IBMX exhibited weaker adhesivity than HS alone. Based on these observations, it is suggested that HS treatment might decrease the adhesivity and induce three-dimensional migration of hADSCs, in the latter of which cAMP signaling could be involved.

  12. Involvement of cAMP in the Human Serum-Induced Migration of Adipose-Derived Stem Cells

    PubMed Central

    Lee, Minji; Koh, Wonyoung; Kim, Bomee; Chung, Hyeju; Cho, Gahyang; Kim, Haekwon

    2016-01-01

    Previously we observed that human adipose-derived stem cells (hADSCs) could form aggregation during culture in the presence of human serum (HS). In the present study, we have examined if the aggregation might result from the cell migration and analyzed the difference of cell adhesivity after culture in various conditions. When cells were cultured in fetal bovine serum (FBS) alone, there was no morphological change. Similarly, cells pretreated with FBS for 1 day or cultured in a mixture of FBS and HS showed little change. In contrast, cells cultured in HS alone exhibited formation of cell-free area (spacing) and/or cell aggregation. When cells cultured in FBS or pretreated with FBS were treated with 0.06% trypsin, almost cells remained attached to the dish surfaces. In contrast, when cells cultured in HS alone were examined, most cells detached from the dish by the same treatment. Treatment of cells with forskolin, isobutylmethyl xanthine (IBMX) or LY294002 inhibited the formation of spacing whereas H89 or Y27632 showed little effect. When these cells were treated with 0.06% trypsin after culture, most cells detached from the dishes as cells cultured in HS alone did. However, cells treated with IBMX exhibited weaker adhesivity than HS alone. Based on these observations, it is suggested that HS treatment might decrease the adhesivity and induce three-dimensional migration of hADSCs, in the latter of which cAMP signaling could be involved. PMID:27660827

  13. Involvement of cAMP in the Human Serum-Induced Migration of Adipose-Derived Stem Cells.

    PubMed

    Lee, Minji; Koh, Wonyoung; Kim, Bomee; Chung, Hyeju; Cho, Gahyang; Kim, Haekwon

    2016-06-01

    Previously we observed that human adipose-derived stem cells (hADSCs) could form aggregation during culture in the presence of human serum (HS). In the present study, we have examined if the aggregation might result from the cell migration and analyzed the difference of cell adhesivity after culture in various conditions. When cells were cultured in fetal bovine serum (FBS) alone, there was no morphological change. Similarly, cells pretreated with FBS for 1 day or cultured in a mixture of FBS and HS showed little change. In contrast, cells cultured in HS alone exhibited formation of cell-free area (spacing) and/or cell aggregation. When cells cultured in FBS or pretreated with FBS were treated with 0.06% trypsin, almost cells remained attached to the dish surfaces. In contrast, when cells cultured in HS alone were examined, most cells detached from the dish by the same treatment. Treatment of cells with forskolin, isobutylmethyl xanthine (IBMX) or LY294002 inhibited the formation of spacing whereas H89 or Y27632 showed little effect. When these cells were treated with 0.06% trypsin after culture, most cells detached from the dishes as cells cultured in HS alone did. However, cells treated with IBMX exhibited weaker adhesivity than HS alone. Based on these observations, it is suggested that HS treatment might decrease the adhesivity and induce three-dimensional migration of hADSCs, in the latter of which cAMP signaling could be involved. PMID:27660827

  14. Reconstituted Thymus Organ Culture.

    PubMed

    Deng, Zimu; Liu, Haifeng; Rui, Jinxiu; Liu, Xiaolong

    2016-01-01

    Reconstituted thymus organ culture is based on fetal thymus organ culture (FTOC). Purified thymocyte populations, from genetically modified mice or even from other species, are cultured in vitro with thymic lobes depleted of their endogenous thymocytes (by 2'-deoxyguanosine treatment) to form a new thymus. This potent and timesaving method is distinct from FTOC, which assesses development of unmodified thymic lobes, and reaggregate thymic organ culture, in which epithelial cells are separately purified before being aggregated with thymocytes.